2018-07-27

Probiotics: Microbial Experts in Immunomodulation of Mucosal Macrophage-Driven Responses

D. Foey, A

http://hdl.handle.net/10026.1/18921

10.4172/2471-9552.1000e108
Immunotherapy: Open Access
OMICS Publishing Group

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Probiotics: Microbial Experts in Immunomodulation of Mucosal Macrophage-Driven Responses

Andrew D. Foey

School of Biomedical Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK

Corresponding author: Andrew D. Foey, School of Biomedical Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK, Tel: +44-1752-584623; E-mail: andrew.foey@plymouth.ac.uk

Published date: 27 July 2018

Editorial

Probiotics are live microbes conferring health benefit to the host, by reinforcing mucosal barrier integrity and functionality. Recently, attention has focussed on their immunomodulatory role: a microbial on-off switch mediating homeostatic/tolerogenic mucosal responses, whilst maintaining responsiveness to pathogenic infection [1]. As with pathogenic bacteria and their conserved pathogen-associated molecular patterns (PAMPs), probiotics exhibit microbial associated molecular patterns (MAMPs), thus pattern recognition is fundamental to understanding how probiotics modulate immune fate decisions: activation or tolerisation. Probiotic MAMPs, include LTA, PGN, LPS, flagellin and CpG DNA; initiating inflammatory responses through recognition by pattern recognition receptors, TLR2, NOD1/NOD2, TLR4, TLR5, TLR9, respectively. PRR recognition of both pathogen and probiotic MAMPs highlights our limited understanding of pattern recognition defining protective anti-pathogen responses or immunomodulatory responses to beneficial microbes.

PRRs drive mucosal cytokine responses

Probiotics modulate mucosal macrophages (Mϕs), which exhibit functional heterogeneity, from microbial killing and inflammation to antigen presentation and modulation of mucosal responses; consequent cytokine profiles driving innate and adaptive responses. PRR ligation drives both immune activation and suppression; determined by receptor expression, cell type, endogenous negative regulators and external environmental signals, hence MAMP responsiveness defines Mϕ immune phenotype. Intestinal Mϕs exhibit a homeostatic M2 subset phenotype, characterised by high phagocytic activity, scavenger receptors (CD36, CD68, CD206), secretion of regulatory, anti-inflammatory (TGFβ, IL-10) and low pro-inflammatory cytokine levels (TNFa, IL-1β), IL-6, IL-8), favouring humoral and tolerogenic responses [2-4]. In the context of inflammation, mucosal Mϕs display an inflammatory M1 phenotype; expressing iNOS, immune activators (HLA-DR, CD86) and pro-inflammatory cytokines (TNFa, IL-1β, IL-6, IL-12, IL-18, IL-23). Subset functional heterogeneity is determined by tissue environment, indeed, subset-specific MAMP-responsiveness results in discriminatory cytokine profiles with downstream effects on T cell subset differentiation and activation. How probiotics modulate cytokine production and innate-adaptive bridge responsiveness will facilitate controlling immune fate decisions.

Probiotic modulation of macrophage cytokines and immune fate

Probiotic cytokine modulation is Mϕ subset- and strain-dependent. Subset-dependence was demonstrated, where several lactobacilli augmented LPS-induced M1 TNFa and suppressed M2 homeostatic Mϕs [5], whereas other strains increased M1 IL-10:IL-12 ratio [6]. Thus, probiotics differentially modulate Mϕ cytokine production and plasticity between pro-inflammatory (M1) and anti-inflammatory/tolerogenic (M2) phenotypes. Investigating bioactive modulatory molecules, probiotic-derived LTA, suppressed and cross-regulated LPS-, LTA- and PGN-induced Mϕ TNFa [7-9] and differentially regulated TLR2-dependent IL-10:IL-12 ratios in a strain-dependent manner [10], hence modulating Mϕ-mediated tolerisation and CMI. Additional to this PRR crosstalk, gastrointestinal tract transit significantly induces bacterial death, hence releasing probiotic-derived MAMPs such as CpG DNA, recognised by TLR9. Indeed, probiotic DNA induced and up-regulated Mϕ IL-1β, IL-6, IL-12, TNFa, IL-10 [11,12], indicative of regulating both immune-activation and immunosuppression; whether it cross-regulates TLR2- and TLR4-mediated responses in both homeostatic and pathologic environments awaits investigation.

There is not only TLR-mediated polarisation and plasticity, but also effects of TLR crosstalk on tolerisation. Cytokine suppression suggests endotoxin tolerisation (ET) mechanisms drive differential immune fate responsiveness to MAMPs and PAMPs. There are many ET mechanisms; including TLR down-regulation, expression of TLR negative regulators (Myd88s, IRAK-M, Tollip, A20, p50/p50 NFκB), and exogenously secreted feedback molecules (IL-10) [13]. Additionally, ET is dependent on Mϕ subset and further defined by MAMP encountered [14]. It is evident that commensals and probiotics coordinate tolerance [15]. Lactobacillus paracasei Cultech suppressed LPS-induced TNFa and IL-6 in a TLR2-dependent manner, associated with suppression of NFκB activation and up-regulation of negative regulators (A20, SOCS1, SOCS3, IRAK-M) [16]. Probiotics also modulate immune responses via miRNA induction, regulating miRNA expression and translation. Knockdown of proinflammatory mir-155 up-regulated SHIP1 and suppressed LPS-induced TNFa, IL-6, IL-12 [17,18] and M1 subset polarisation [19], whereas TLR2-induced mir-146a inhibited TNFa by suppressing IκBα phosphorylation and IRAK-1 expression [20]. Consequently, probiotic immunomodulation via ET and selective Mϕ polarisation may involve differentially regulating mir-155 and mir-146a expression.

Mucosal macrophages, pathology, probiotics and clinical translatability?

Dysregulated Mϕs drive chronic inflammatory pathology such as Crohn’s disease (CD) and ulcerative colitis (UC), by M1-associated cell mediated-, and M2-associated humoral-immunity, respectively. Consequently, pathological involvement of distinct Mϕ subsets represents a realistic target for therapeutic intervention, modulating activation, suppression, or reprogramming plasticity. Ideally, future
future rationale will consider 3-dimensional mucosal tissue, where

References