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Editorial
Probiotics are live microbes conferring health benefit to the host, by

reinforcing mucosal barrier integrity and functionality. Recently,
attention has focussed on their immunomodulatory role: a microbial
on-off switch mediating homeostatic/tolerogenic mucosal responses,
whilst maintaining responsiveness to pathogenic infection [1]. As with
pathogenic bacteria and their conserved pathogen associated
molecular patterns (PAMPs), probiotics exhibit microbial associated
molecular patterns (MAMPs), thus pattern recognition is fundamental
to understanding how probiotics modulate immune fate decisions:
activation or tolerisation. Probiotic MAMPs, include LTA, PGN, LPS,
flagellin and CpG DNA; initiating inflammatory responses through
recognition by pattern recognition receptors, TLR2, NOD1/NOD2,
TLR4, TLR5, TLR9, respectively. PRR recognition of both pathogen
and probiotic MAMPs highlights our limited understanding of pattern
recognition defining protective anti-pathogen responses or
immunomodulatory responses to beneficial microbes.

PRRs drive mucosal cytokine responses
Probiotics modulate mucosal macrophages (Mϕs), which exhibit

functional heterogeneity, from microbial killing and inflammation to
antigen presentation and modulation of mucosal responses;
consequent cytokine profiles driving innate and adaptive responses.
PRR ligation drives both immune activation and suppression;
determined by receptor expression, cell type, endogenous negative
regulators and external environmental signals, hence MAMP
responsiveness defines Mϕ immune phenotype. Intestinal Mϕs exhibit
a homeostatic M2 subset phenotype, characterised by high phagocytic
activity, scavenger receptors (CD36, CD68, CD206), secretion of
regulatory, anti-inflammatory (TGFβ, IL-10) and low pro-
inflammatory cytokine levels (TNFα, IL-1β, IL-6, IL-8), favouring
humoral and tolerogenic responses [2-4]. In the context of
inflammation, mucosal Mϕs display an inflammatory M1 phenotype,
expressing iNOS, immune activators (HLA-DR, CD86) and pro-
inflammatory cytokines (TNFα, IL-1β, IL-6, IL-12, IL-18, IL-23).
Subset functional heterogeneity is determined by tissue environment,
indeed, subset-specific MAMP-responsiveness results in
discriminatory cytokine profiles with downstream effects on T cell
subset differentiation and activation. How probiotics modulate
cytokine production and innate-adaptive bridge responsiveness will
facilitate controlling immune fate decisions.

Probiotic modulation of macrophage cytokines and immune
fate

Probiotic cytokine modulation is Mϕ subset- and strain-dependent.
Subset-dependence was demonstrated, where several lactobacilli

augmented LPS-induced M1 TNFα and suppressed M2 homeostatic
Mϕs [5], whereas other strains increased M1 IL-10:IL-12 ratio [6].
Thus, probiotics differentially modulate Mϕ cytokine production and
plasticity between pro-inflammatory (M1) and anti-inflammatory/
tolerogenic (M2) phenotypes. Investigating bioactive modulatory
molecules, probiotic-derived LTA, suppressed and cross-regulated
LPS-, LTA- and PGN-induced Mϕ TNFα [7-9] and differentially
regulated TLR2-dependent IL-10:IL-12 ratios in a strain-dependent
manner [10], hence modulating Mϕ-mediated tolerisation and CMI.
Additional to this PRR crosstalk, gastrointestinal tract transit
significantly induces bacterial death, hence releasing probiotic-derived
MAMPs such as CpG DNA, recognised by TLR9. Indeed, probiotic
DNA induced and up-regulated Mϕ IL-1β, IL-6, IL-12, TNFα, IL-10
[11,12], indicative of regulating both immune-activation and
immunosuppression; whether it cross-regulates TLR2- and TLR4-
mediated responses in both homeostatic and pathological
environments awaits investigation.

There is not only TLR-mediated polarisation and plasticity, but also
effects of TLR crosstalk on tolerisation. Cytokine suppression suggests
endotoxin tolerisation (ET) mechanisms drive differential immune fate
responsiveness to MAMPs and PAMPs. There are many ET
mechanisms; including TLR down-regulation, expression of TLR
negative regulators (Myd88s, IRAK-M, Tollip, A20, p50/p50 NFκB),
and exogenously secreted feedback molecules (IL-10) [13].
Additionally, ET is dependent on Mϕ subset and further defined by
MAMP encountered [14]. It is evident that commensals and probiotics
coordinate tolerance [15]. Lactobacillus paracasei Cultech suppressed
LPS-induced TNFα and IL-6 in a TLR2-dependant manner, associated
with suppression of NFκB activation and up-regulation of negative
regulators (A20, SOCS1, SOCS3, IRAK-M) [16]. Probiotics also
modulate immune responses via miRNA induction, regulating mRNA
expression and translation. Knockdown of proinflammatory miR-155
up-regulated SHIP1 and suppressed LPS-induced TNFα, IL-6, IL-12
[17,18] and M1 subset polarisation [19], whereas TLR2-induced
miR-146a inhibited TNFα by suppressing IκBα phosphorylation and
IRAK-1 expression [20]. Consequently, probiotic immunomodulation
via ET and selective Mϕ polarisation may involve differentially
regulating miR-155 and miR-146a expression.

Mucosal macrophages, pathology, probiotics and clinical
translatability?

Dysregulated Mϕs drive chronic inflammatory pathology such as
Crohn’s disease (CD) and ulcerative colitis (UC), by M1-associated cell
mediated-, and M2-associated humoral-immunity, respectively.
Consequently, pathological involvement of distinct Mϕ subsets
represents a realistic target for therapeutic intervention, modulating
activation, suppression, or reprogramming plasticity. Ideally, future
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probiotic-based therapeutics would restore Mϕ homeostasis: achieved
by manipulating functional plasticity and selective subset suppression.
Thus, in CD, selective M1 tolerisation or reprogramming towards anti-
inflammatory M2-like cytokine profiles, whereas tolerising or
manipulating M2 plasticity towards a pro-inflammatory M1
phenotype, to treat and manage UC. Mucosal breakdown characterises
these diseases, resulting in dysregulated MAMP recognition.
Consequently, probiotic treatment demonstrated mixed results, some
augmenting pathology [1]. To harness probiotic immunoactivation
and tolerogenicity, research must further characterise
immunomodulatory capacity of these microbes, on not only
homeostatic and pathological Mϕs, but on a variety of cells and their
environments, mimicking healthy and diseased tissue. Ultimately,
probiotic Mϕ-targetting therapies, may not be effective on their own;
future rationale will consider 3-dimensional mucosal tissue, where
pathological Mϕs are merely important bit-players in a complicated
orchestral arrangement of pathological cells and their responses.
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