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Abstract: This paper presents a Godunov-type large time step (LTS) solver of the non-

homogeneous shallow water equations (SWEs). Source terms are decomposed into simple 

characteristic waves in approximate Riemann solvers (ARS) and exact Riemann solvers (ERS), and 

information is transferred over multiple cells per time step using the LTS method. Benchmark 

simulations are presented using different solution algorithms (ARS and ERS with and without 

entropy fixes) for two rarefactions driven by divergent flow, a pair of bores driven by opposing 

flows, and a dam break over a shelf-like step. In these cases, spurious flow discontinuities and 

oscillations can occur for Courant–Friedrichs–Lewy number (CFL) > 1 in the absence of an entropy 

fix. Implementation of a weak-solution LTS entropy fix improves the results, but shock shifting 

nevertheless occurs in certain cases. The paper also considers steady, frictionless, transcritical flow 

over a bed hump. In this final case, the model is run for integer CFL ranging from 1 to 10. For CFL 

≤ 3, satisfactory results are obtained (without divergence and oscillation) using ARS without an 

entropy fix. For larger CFL, the results either diverge or exhibit convergent oscillations downstream 

of the hydraulic jump. Use of an entropy fix designed for implementation in an LTS scheme 

improves the results for CFL ≤ 5.  

 

Keywords: Large Time Step scheme, Shallow Water Equations, Step Riemann Solver, oscillation 

suppression 

 

1. Introduction 

Advection-dominated shallow environmental flows may exhibit high, even discontinuous, 

gradients in free surface elevation, flow velocity, and material transport fluxes. Particular examples 

include the hydraulic jump in an open channel that occurs as the flow transitions from supercritical 

to subcritical conditions, the hydraulic bore caused by a dam break or tidal incursion into a river, 

and steep-fronted flows that characterize urban flood inundation. Theoretical analysis of such flows 

requires solving conservation laws for mass and momentum expressed as hyperbolic systems with 

source and sink terms representing bed gradient, frictional, and other effects (see e.g. Abbott and 

Minns [1] and Cunge et al. [2]). Since the 1980s, many approximate Riemann solvers (ARS) have 

been proposed for such hyperbolic systems following the pioneering work of Roe [3], including 

schemes by Osher and Solomon [4], Harten et al. [5], and Liou and Christopher [6], and summarized 
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in books by Toro [7, 8], LeVeque [9] and Guinot [10], and reviews by Toro and García-Navarro [11], 

etc. The majority of these schemes are restricted by the Courant–Friedrichs–Lewy (CFL) condition 

(CFL = cΔt/Δx < 1 where c is the wave celerity, Δt is the time step and Δx is the spatial step), which 

requires a very small time step that reduces computational efficiency.  

In 1982, LeVeque [12] devised a Godunov-type (LTS) scheme that overcame the CFL 

constraint in a first-order upwind difference solver used to simulate one-dimensional shock wave 

propagation. The essence of this work (thus LTS) was to track the influence of a single 

computational interface through multiple adjacent cells, while the conventional method forbids the 

interface to pass through even one cell, i.e. CFL < 1. The more cells the solver can track through, 

the more relaxed the CFL condition could be. Soon afterwards, Harten [13] applied the LTS scheme 

within a total-variation diminishing (TVD) solver of the Euler equations, and demonstrated its 

applicability to a shock wave in gas dynamics. In 1988, LeVeque [14] extended his original scheme 

to two-dimensions and second order accuracy, and presented results for obliquely propagating shock 

waves. Even though the scheme is highly efficient computationally, it has not been as widely 

implemented as classical schemes. In 2006, Murillo et al. [15] applied the LTS scheme to solving 

the shallow water equations and demonstrated its effectiveness in simulating various benchmark 

cases of steady and transient flows including dam breaks and a hydraulic jump. Meanwhile, Qian 

and Lee used LTS to solve the Euler equations in aerodynamics for inviscid flow past airfoils [16] 

and later extended the method to TVD schemes [17]. Recently, Xu et al. [18] devised a method to 

suppress spurious oscillations in a LTS scheme for an ERS of the shallow water equations (SWEs), 

and accurately reproduced dam break flows for CFL up to 25. Morales-Hernández et al. [19] 

developed a two-dimensional LTS scheme for the SWEs that handled wetting and drying, which 

they applied to a circular dam break, a dam break over an adverse slope, a tsunami interacting with 

a beach, and a flood event induced by dam failure in the Ebro River. Lindqvist et al. [20] compared 

the performance of several LTS-TVD schemes and examined numerical entropy fixes for 

application to generalized transonic rarefactions in nonlinear systems. The foregoing discussion 

relates solely to the use of LTS in Godunov-type solvers of homogenous hyperbolic partial equations.  

In practice, there are many cases involving additional source terms, such as ones related to 

wind and bed friction stresses, Coriolis acceleration from the rotation of the Earth, bed porosity as 

a momentum source term, etc. It is well established that variable depth as a source term has 

implications for the correct balancing of the scheme, such as the dam break over a bed hump 

considered by LeVeque [21]. In general, the conservation properties of a Godunov-type shallow 

flow solver can be jeopardized by incorrect treatment of source terms in the shallow water equations 

related to flow geometry. According to Garcia-Navarro and Vazquez-Cendon [22] damage can be 

caused to the conservation properties of the scheme through careless treatment of source terms 

related to the flow geometry. Bed and wind friction stresses are commonly introduced as source 

terms in the shallow water equations. In such cases, the equations can become computationally stiff, 

and are handled using implicit schemes [23], and fractional step and f-wave methods [24]. 

Herein, we extend the principle of LTS to SWEs with the bed-slope source term. Recalling the 

principle of LTS, we focus on incorporating source terms into a Riemann solver such that the 

Riemann solver can accurately track the influence of the source term (together with interfacial waves) 

from one interface through multiple adjacent cells. The major challenge consists of two problems. 

The first problem is to find or develop a proper Riemann solver for SWEs with source terms and 

the second is to examine whether such a Riemann solver can incorporate the LTS method. In general, 
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Godunov-type schemes for shallow water equations with the bed-slope source term can be 

discretized into a series of local step Riemann problems (SRPs). Each SRP is solved using either an 

ARS or ERS. Murillo and García-Navarro [25] used an augmented Riemann solver to solve the 

SRPs as multiple states for the shallow water equations with source terms. Based on different 

conservation principles (mass or momentum), multiple ERSs for local SRPs were proposed for 

shallow flow over a non-uniform bed [26, 27]. Bernetti et al. [28] treated the channel bed as an 

additional equation, and the enlarged hyperbolic system thus enabled both mass and momentum 

conservations to be considered at the same time. Based on the enlarged equation set, Bernetti et al. 

derived a new ERS. However, this ERS assumes some prior knowledge of the wave structure, and 

so its generalization is challenging. Rosatti et al. [29] further showed that the wave generated at the 

bed discontinuity is in fact a contact wave, across which Riemann invariants do not hold, rendering 

the foregoing ERSs questionable, especially under the condition of a negative step bed. To date, 

previous studies have not provided a satisfactory ERS for shallow flow on the non-uniform bed. 

With the aim to enable LTS for SWEs with bed-slope source term, we firstly develop a new ERS, 

based on the governing equation set derived by Rosatti et al.[29], but not requiring prior knowledge 

of wave structures, and then we derive LTS algorithms from the new ERS and an existing ARS for 

SWEs with the bed-slope source term so that we can evaluate their performance under multiple 

benchmark scenarios.  

The paper is structured as follows. Section 2 presents the governing shallow water equations 

with a bed-slope source term in hyperbolic matrix-vector form. Section 3 describes the ARS and 

ERS used to evaluate the local step Riemann problems, and gives details of the LTS scheme 

employed to accelerate the solver, and entropy fixes used to minimize spurious oscillations and 

discontinuities in the solutions. Section 4 presents results obtained for several unsteady, transcritical 

flows over a step, and steady, transcritical flow over a bed hump. Section 5 lists the main findings. 

2. Governing Equations 

Consider shallow flow in one spatial dimension. Assuming the pressure is hydrostatic, the 

inviscid shallow water equations with a bed-slope source term obtained from mass and momentum 

conservation laws (see e.g. [8]) may be written in matrix-vector form as follows: 

 
f

t x
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 

 

F UU
S  (1) 

 
2 2
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  
            

   

U F U S   

where U is the vector of dependent variables, F(U) is the horizontal flux vector, Sf is the vector of 

source terms, t is time, x is downstream distance along the channel, h is the local water depth 

measured vertically from the bed to the free surface, u is the local bulk flow velocity, g is 

gravitational acceleration, and z is the bed elevation above a fixed horizontal datum.  
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3. Numerical Model 

3.1 Step Riemann Problem  

Fig. 1 depicts the varying water level and bed profile along a one-dimensional open channel of 

constant, unit width with frictionless lateral walls. The flow domain is discretized using finite 

volumes, as shown in Fig. 2, such that the grid is regular, and distance x = i∆x where ∆x is the spatial 

grid increment. During the numerical solution process, each interface between neighboring cells 

comprises a local step Riemann problem (SRP), as exemplified by the interface (indicated by an 

arrow) between the ith and i+1th cell.  

  

 

Fig. 1 Schematic of bed and free surface elevation profiles along a one-dimensional channel  

 

 

Fig. 2  Finite volume discretization in the vicinity of the ith computational cell 

 

 

 
Fig. 3 Close-up view of the step Riemann problem at a cell interface 
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3.1.1 Approximate Riemann Solver 

Fig. 3 provides a close-up view of the SRP, and shows a step in the bed of height ∆z, where the 

depth, velocity, and bed elevation are given by (hL , UL, zL) to the left of the step (upsteam) and (hR , 

UR, zR) to the right of the step (downstream). The cell interface occurs at the bed gradient 

discontinuity (i.e. the step itself). To solve this problem, equation (1) is converted into quasi-linear 

form following Rosatti and Begnudelli [29], giving: 

0
t x

  
 

 

U U
A  (2) 

 

where the modified vector of dependent variables is 

h

hu

z

 
  
 
  

U  

 

and the flux Jacobian matrix A is characterized by  

 

det =0iA I ; 
iAR = R  (3) 

with eigenvalues 

1=u c % %; 
2 0  ; 

3 u c  % % (4) 

and the right-hand eigenvector matrix 

2 2

1 1

0

0 0

a

u c u c

u c

 
 

  
 
  

R % % % %

% %

 (5) 

Here, u% and c% are Roe averages of connected cells either side of the stepped interface (Fig. 

3). Letting i represent the left cell and i+1 the right cell, then the Roe-averaged depth and wave 

celerity, u% and c%, are given as: 

L L R R

L R

u h u h
u

h h





%  (6) 

and 

 
2

L Rg h h
c


%  

(7) 

In Eq(5), a is defined: 

2

R L

k

z z
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  
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 
 where 

,

,

L L R

k

R L R

h z z
h

h z z


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
 (8) 

 

The LTS scheme requires information on the wave strength, defined as the difference in the 



6 

 

modified vector of dependent variables between adjacent cells, as follows:  

 

 =

R L

R R L L

R L

h h h

hu h u h u

z z z

  

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U  (9) 

 

The wave strength is also related to the eigenspace, such that: 

 

 1 2 3=   U R  (10) 

 

where the coefficients in the row vector are given by: 
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   
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 (11) 

 

3.1.2 Exact Riemann Solver 

Fig. 4 illustrates one of four possible Riemann solutions for the SRP. At the step, a static shock 

occurs with zero celerity. Either side of the static shock, the variables uSL, hSL, uSR and hSR are 

unknown and can be determined from relations with known variables uL, hL, zL, uR, hR. 

 

Fig. 4 Riemann solution for shallow flow over a step 

 

If the left side is a rarefaction wave, then the Riemann invariants are: 
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SSLL gh+u=gh+u 22  (12) 

If the left side is a shock, the Riemann invariants are: 

 

 
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

























SLSLLLSLSLSLLLL

SLLSLSLLL

uhuhsghuhghuh

hhs=uhuh

2222
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2

1  (13) 

in which s is the speed of the shock. 

 

If the right side is a rarefaction wave, then: 

SSRR ghughu 22   (14) 

If the right side is a shock, then: 

 

 






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


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
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1  (15) 

The static shock satisfies the relationships: 

SL SL SR SRh u = h u  (16) 

1 1

2 2

2 2 2 2

SL SL SL SR SR SRh u + gh = h u + gh + D  (17) 

in which 

 





















 


RL

RL
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LR

k
ZZR

ZZL
k,ZZ

ZZ
hgD

2
 (18) 

Table 1 summarizes the Riemann states for the SRP [29]: 

 

 Right-middle-left Abbr. equations 

1 Rarefaction-static shock-shock RBS (12)(16)(17)(15) 

2 Shock-static shock-shock SBS (13)(16) (17)(15) 

3 Rarefaction-static shock-Rarefaction RBR (12)(16) (17)(14) 

4 Shock-static shock-Rarefaction SBR (13) (16) (17)(14) 

Table 1 Equations of Riemann solver 

 

The resulting 4-6 nonlinear equations are solved numerically using the Levenberg-Marquardt 

method (code available from https://www.math.utah.edu/software/minpack.html). To determine the 

Jacobi matrix, the equations are simplified to a pair of right hand conditions, each of which is 

divided into two sub-conditions (comprising four Riemann invariants). First, we define the 

following variables: 
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1
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If the left side is a rarefaction, the variables are calculated from Eq (12) as. 

1 2LS LS

LS

LS LS

u D gh

u g

h h

  



 
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 (20) 

 

If left side is a shock, the variables are calculated from Eq (13) as 

 

 
3

3 2

3

=
4

LS L LS L
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u u h h D

h hu
D
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When the right side is a rarefaction, then, according to Eq(14): 

7 2

=

RS RS

RS

RS RS

u D gh

u g

h h

  



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 (22) 

 

And according to Eqs (16) and (17), 

1

2 2 2 2

2

1 1
=

2 2

LS LS RS RS

LS LS LS RS RS RS

f h u h u

f h u gh h u gh D

 



   


 (23) 

When the left side is a rarefaction, the Levenberg-Marquardt method is configured as follows: 
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 (24) 

 

When the right side is a shock, according to Eq (16): 

2
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u
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And from Eq (15): 

   
2 2 2

3 5 4

1

2
LS LS R RS RS RS RSf D h u h h D h u gh

  
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  
 (26) 

When the left side is a shock, the Levenberg-Marquardt method is configured as follows: 

 
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 (27) 

The ARS described in Section 0 is used to decide whether the state either side of the step relates 

to a shock or rarefaction before using the Levenberg-Marquardt method.  The eigenvalues are 

L L Lu gh    (28) 
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R R Ru gh    (29) 

For 1 L  , the left side is 

condition result condition result 

1 L   Left rarefaction 3 R   Right rarefaction 

1 L   Left shock 3 R   Right shock 

Table 2 Method of judging wave type 

In Table 2, 1 , 3 are determined from Eq (4). The procedure for solving the SRP follows: 

 

 

 

 

right shock, Eq 27 left shock Eq 21judge kind of wave

right rarefaction, Eq 24 left rarefaction Eq 20by Table2

  
  

 

，

，
 

Table 3 indicates the revised version of Table 1 that results, 

 

 Right-middle-left Abbr. equations 

1 Rarefaction-static shock-shock RBS (24) (20) 

2 Shock-static shock-shock SBS (24) (21) 

3 Rarefaction-static shock-Rarefaction RBR (27) (20) 

4 Shock-static shock-Rarefaction SBR (27) (21) 

Table 3 Equations used by Riemann solver for Step Riemann Problem 

 

The Minpack of the Levenberg-Marquardt method is then configured.  

3.2 Large Time Step Scheme 

The version of SWEs considered herein forms a nonlinear hyperbolic system. To explain the 

updating method at the heart of the LTS scheme for nonlinear hyperbolic systems, we first consider 

the linear hyperbolic partial differential equation for pure advection, 

 

0
u u

t x


 
 

 
. (30) 

 

where u is a scalar dependent variable and λ is the advection wave speed. After discretization with 

the upwind method, equation (12) becomes 

 1

1=
n

n n n ni
i i i i

t
u u u u

x






 


 (31) 

where ∆x is the space step, ∆t is the time step, and 
n

i  is the wave advection speed at interface xi-

1/2 at time tn = n∆t (with n = 0, 1, …nmax). Over the time interval ∆t, a simple wave advecting u 

from xi-1/2 reaches the point ε at time tn+1 (see Fig. 5) and the wave travels a distance s given by: 
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s t  . (32) 

 

Traditional update methods require that ∆t should not be so large that the simple wave exits the 

other cell interface at xi+1/2, which means s < ∆x. The LTS scheme overcomes this constraint, 

permitting the time step to be sufficiently large for the simple wave to enter a cell beyond the i+1/2 

interface, as indicated in Fig. 6. 

 

 

Fig. 5  x-t plot showing wave propagation in space and time for a conventional CFL limited scheme 

  

 

Fig. 6  x-t plot showing wave propagation in space and time for an LTS scheme 

 

In practice, advection in space and time across the grid can be divided into two types: 

Type a. The wave travels across the whole i th cell, in which case the wave propagates exactly 

the length of the cell, such that: 

i is x   (33) 

Type b. The wave travels part of the cell, such as in the i+2 th cell shown in Fig. 6, where the 

distance 's  is obtained as: 

 '=s t t     (34) 

and the square brackets mean taking the integer part of the value of the variable within the 

brackets (for example, [6.5] is 6 and [-6.5] is -6. 

 

To simplify the LTS update method, a further variable, ζ, is introduced as: 

=
s

x





  (35) 

 

and the wave strength is defined as: 

1i iu u u     (36) 

 

Hence, Eq. (18) becomes: 
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1=n n

i i i iu u u    (37) 

 

In short, iu , i , and s are defined by equations (36), (35), (33) and (34), respectively.  In 

LTS, the value of i  is determined from: 

1, simple wave travel through the whole cell

= '
,  simple wave travel through part of the cell

s

x








 (38) 

 

where s’ is the travel instance in a given cell, as indicated in Fig. 6. 

 

When the linear hyperbolic equation (Eq (30)) is expanded to the hyperbolic nonlinear system 

given by Eqs (1) or (2), multiple simple waves are generated at the interface between each pair of 

adjacent cells. The update method of LTS remains the same as Eq (37), except that the scalar 

dependent variable is replaced by the vector of dependent variables, and may be written, 

1n n   U U α   (39) 

where U is defined as in Eq (1) or Eq (2), and the vector α is defined by Eq (11). The bed elevation,

z , is a local constant in time and so is not updated. During implementation, only 1  and 3  are 

used to update h   and hu  . The variable    is defined by Eq (38). Then the celerity    is 

evaluated from Eq (4) in order to determine which and how many cells contain information that 

requires updating as the wave passes through. Likewise, only 1  and 3  are used for updating h 

and hu. 

3.3 Entropy fix 

3.3.1 Exact solution of rarefaction 

This method is to eliminate discontinuity in the rarefaction with ERS. The rarefaction fan 

comprises more than one wave. Fig. 7 shows a left rarefaction, demarked by leading and tail wave 

fronts [16, 18]. 

 

Fig. 7  x-t plot showing the splitting of the left rarefaction  

 

The leading component of the rarefaction has speed, 

h L 
  (40) 
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in which L  is given by Eq (28). The rarefaction tail has speed, 

1t 
  (41) 

in which 1  is given by Eq(4). The Riemann state between the head and the tail is   

=
2

L SU U
U%

  
(42) 

The strength of the rarefaction tail is 

=t S U U U%
  

(43) 

The strength of the rarefaction head is 

=h L U U U%
 

(44) 

Now, the left rarefaction may be expressed by two waves of speeds defined by Eq (40) and Eq 

(41), and strengths defined by Eq (43) and Eq (44).  A similar approach is used for the right 

rarefaction. 

3.3.2 Weak solution of approximate solver 

This method is to eliminate discontinuity in the rarefaction with ARS. To do this, the shocks 

are split into two waves of speeds [25]: 

2

2

L
a

R
b

 


 






 

  

(45) 

and wave strengths: 

=

=

b
a

b a

a
b

b a

 

 

 

 


  


 
 

U U

U U

 

(46) 

 

3.3.3 LTS fix 

An LTS fix is implemented to suppress spurious oscillation arising either with ERS or ARS. 

During the original LTS computations, 
's

x
in Eq (38) is invariably less than unity. We therefore 

introduce the following modification: 

'
0'

1 else

s
s

x
x





 

 


，

，

 (47) 

where δ is fixed to have a value between 0 and 1. In the cases considered herein, δ is set to 0.2.  
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3.4 Test algorithm 

For verification purposes, we eventually need to determine which combination (and in what 

order) of the foregoing techniques achieves the best outcome. Table 4 summarize the resulting eight 

algorithms we consider. All 4 algorithms use the LTS method given by Eq. (37) to update values of 

the dependent variables at each cell in turn, where ζ is determined by Eq (38). 

 

Algorithm. Acronyms Note 

1 LTS-ERS Godunov LTS algorithm based on exact Riemann solver  

2 LTS-ARS Godunov LTS algorithm based on approximate Riemann solver 

3 LTS-ERS-EF Godunov LTS algorithm based on exact Riemann solver with 

entropy fix(chapter 3.3) 

4 LTS-ARS-EF Godunov LTS algorithm based on approximate Riemann solver 

with entropy fix(chapter 3.3)  

Table 4  Test Algorithms  

4. Results and Discussion 

4.1 Case 1: two rarefactions in a channel with a step 

The first case examines diverging flow over a step in an otherwise horizontal channel of overall 

length 25 m. The step is 1 m high, and occupies the right hand side of the channel, such that z = 0 

for x < 12.5 m and z = 1 m for x ≥ 12.5 m.  In the numerical model, the one-dimensional channel 

is divided into 250 regularly spaced cells of spatial increment ∆x = 0.1 m. The time step is adaptively 

obtained from ∆t = Cr ∆x / λ where Cr is a prescribed value of maximum CFL number, as part of 

the updating process. In this case, the initial time step is set to 0.01 s and alters with every succeeding 

time step. Table 5 lists the initial depth and flow conditions in the channel, which are discontinuous 

at the step. Immediately to the left of the step, there is an initial leftward flow of depth 8 m and 

speed 2 m/s. To the right, there is an initial rightward flow of depth 5 m and speed 7.1704 m/s.   

 h(m) q(m2/s) z(m) 

Left (0 ≤ x < 12.5 m) 8.0 -16.0 0 

Right (12.5 < x ≤ 25 m) 5.0 35.852 1 

Table 5  Initial conditions for two rarefactions in a channel with a step 

 

Fig. 8. shows the predicted free surface and discharge per unit width profiles obtained at time 

t =0.8 s using the four updating algorithms (see Table 4) and different CFL numbers. The predictions 

are superimposed on the exact solution [29]. The two upper-left panels of Fig. 8 show the free 

surface and discharge per unit width profiles obtained using Algorithm 1 for a maximum CFL value 

of 1. This is taken as the baseline case. The free surface profiles are in reasonable agreement with 

the analytical solution, and show the presence of a leftward travelling rarefaction head at x = 4.0 m 

and tail at x = 9.4 m, a stationary shock at the step, and rightward travelling rarefaction head at x = 

19.8 m and tail at x = 23.6 m. Likewise, the predicted and exact mass flux profiles are in satisfactory 

agreement, except for slight over-prediction of the left rarefaction and a slight under-prediction of 

the right rarefaction. Increasing CFL to 4, leads to a discontinuity in both free surface elevation and 
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mass flux (evident in the two-upper right panels of Fig. 8). The second and the third rows of Fig. 8 

present the corresponding results obtained using Algorithm 3, this time for CFL = 2, 4, 6 and 8. 

There is appreciably better agreement with the exact solution, confirming that the results are 

considerably enhanced when entropy fix is configured into the ERS. The fourth row of Fig. 8 

displays profiles obtained using Algorithm 2 which demonstrate that ARS without an entropy fix 

leads to spurious discontinuities in rarefaction for CFL = 4. Again, implementation of the entropy 

fix cures the problem, as can be seen by the panels in the fifth and sixth rows of Fig. 8 for Algorithm 

4 and CFL = 2, 4, 6 and 8 (but are not as accurate as for Algorithm 2). 
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Fig. 8 Two rarefactions in a channel with a step. Exact solution (solid lines) and predicted (open 

circles) free surface and mass flux profiles at time t = 0.8 s. Bed shelf is the solid rectangle. 
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4.2 Case 2: two shock-like bores in a channel with a step 

The second case corresponds to a tidal bore meeting a river flow. Again, the channel is 25 m 

long, and divided into 250 grid cells, each of spatial increment 0.1 m. The initial time step is 0.01 s, 

and altered thereafter according to the specified maximum CFL number. Table 6 lists the initial 

conditions, which comprise a rightward flow of depth 4 m and speed 4.75 m/s to the left of the step 

interface, and a leftward flow of depth 1.0838 m and speed 2.1854 m/s to the right of the step 

interface. We consider predictions obtained using algorithms outlines in Section 3.4. 

 

 h(m) q(m2/s) z(m) 

Left (0 ≤ x < 12.5 m) 4.0 19 0 

Right (12.5 < x ≤ 25 m) 1.0838 -2.3685 1 

Table 6  Initial conditions for two shock-like bores in a channel with a step 

 

Fig. 9 shows the free surface and mass flux profiles obtained at time 1.5 s using the four 

algorithms for different CFL numbers. Again, the predictions are superimposed on the exact solution 

[29]. The solution comprises a hydraulic drop at the step interface, a rightward propagating 

hydraulic bore at x = 22.7 m, and a leftward bore at x = 8.2 m. For Algorithm 1, the free surface and 

mass flux profiles are in reasonable agreement with the analytical solution when CFL = 1, the 

baseline case. Oscillations occur in both profiles in the right travelling bore when CFL = 4. For 

Algorithm 3, the oscillations are completely eliminated but the bore shifts from the correct position 

owing to numerical dispersion when CFL = 2 and 4. For CFL = 8, the dispersion problem is no 

longer evident, but both water surface and mass flux profiles contain spurious undulations. The 

dispersion problem and oscillation both occur when CFL = 6. For Algorithm 2, small oscillations 

occur in both profiles in the right travelling bore when CFL = 4. Use of the weak entropy fix in 

Algorithm 4, does not overcome this problem when CFL = 4 and worsens when CFL gets larger. 

Bore shifting does not occur when this algorithm is implemented, unlike Algorithm 3. 

The numerical amplification factor is less than 1 (for more details see the Appendix, following 

[30, 31]), and so the LTS scheme is stable for linear hyperbolic equations. In the nonlinear system, 

wave celerities are not uniform at adjacent interfaces, and the wave strengths cannot be offset like 

Eq. (A1) (as mentioned for Type a., the coefficient is 1 if and only if the local celerity > 1). Then 

excessive information from boundary cells accumulates at inner cells inducing oscillation in the 

solution [32]. 
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Fig. 9 Two shock-like bores in a channel with a step. Exact solution (solid lines) and predicted 

(open circles) free surface and mass flux profiles at time t = 1.5 s. Bed shelf is the solid rectangle. 
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4.3 Case 3: rarefaction and shock-like bore in a channel with a step 

This case corresponds to a dam break over an otherwise quiescent wet bed. Again, the channel 

is 25 m long, and divided into 250 grid cells. Table 7 lists the initial flow conditions either side of 

the step interface. The initial time step is set to 0.01 s.  

 

 h(m) q(m2/s) z(m) 

Left (0 ≤ x < 12.5 m) 5.0 0 0 

Right (12.5 < x ≤ 25 m) 1.0 0 1 

Table 7 Initial conditions for dam break in a channel with a step 

 

Fig. 10 shows the water surface and mass flux profiles obtained at time t = 1.5 s, using the four 

algorithms (see Table 4) for different CFL numbers. Predictions are superimposed on the exact 

solution [29]. Here, the solution comprises a hydraulic drop at the step interface, a rightward 

propagating hydraulic bore at x = 21.47 m, and a leftward rarefaction head at x = 2.0 m and tail at x 

= 6.6 m.  For Algorithm 1, the free surface and mass flux profiles are in reasonable agreement with 

the analytical solution when CFL = 1, the baseline case. It can be seen that the rarefaction becomes 

discontinuous when CFL value of 4.  For Algorithm 3, the discontinuity of the rarefaction is cured 

because the configuration of entropy fix (Eqs (40)-(44)) and the oscillations are entirely eliminated 

with entropy fix (Eq. (47)) which can be seen in the second and third rows of Fig. 10 for CFL = 2, 

4, 6 and 8. However, the bore shifts from the correct position as in Case 2 for Algorithm 3. The 

fourth row of Fig. 10 shows the profiles obtained using Algorithm 2. Again, the free surface and 

mass flux profiles are in reasonable agreement with the analytical solution when CFL = 1, the 

rarefaction is discontinuous, and oscillation appears for CFL = 4. The fifth and the sixth rows of Fig. 

10 display profiles obtained using Algorithm 4, and it is evident that use of the weak solution entropy 

fix improves the predicted rarefaction but does not entirely eliminate the discontinuity.  
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Fig. 10 Rarefaction and shock-like bore in a channel with a step. Exact solution (solid lines) and 

predictions (open circles) free surface and mass flux profiles at time t = 1.5 s. Bed shelf is the solid 

rectangle.  
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4.4 Transcritical flow over a fixed bed hump 

The Godunov-type LTS solver is finally tested for the benchmark case of shallow, transcritical 

flow over a bed hump in a channel of overall length 25 m, originally proposed by Goutal and Maurel 

[33]. Fig. 11 shows the initial conditions, where the free surface elevation is set to a uniform value 

of 0.33 m above the z = 0 datum, and the bed level is specified such that: 

 
2

0.2 0.05 10 8 12

0 otherwise

z x x

z

     




，

，
 (48) 

At the upstream open boundary, the discharge is 0.18 m3/s, and at the downstream boundary, 

the water level is set to a constant value of 0.33 m above the z = 0 datum. Fig. 12 presents the 

analytical solution [33] for shallow flow over the hump, which accelerates from subcritical 

conditions to become supercritical on the downward slope of the hump before abruptly increasing 

in depth at a hydraulic jump, after which the flow is subcritical again. In this case, the ERS is unable 

to achieve a converged result because the relationship is unknown when the left bed is higher than 

the right bed elevation at a step [29]. Hence, the results presented here are obtained using an ARS 

using Algorithm 2 (see Section 3.4) and its version after the entropy fixes have been applied, 

Algorithm 4 (see Section 3.4). 

 

  

Fig. 11  Transcritical flow over a bed hump: 

initial free surface and bed elevation profiles 

Fig. 12 Transcritical flow over a bed hump: 

analytical steady state free surface elevation 

profile[33]  

 

In the Godunov-type LTS solver, the channel is again divided into 250 regularly spaced cells, 

with spatial increment ∆x = 0.1 m. In solving the one-dimensional shallow water equations, a pair 

of waves is generated at each interface between adjacent cells, and so a total of (250-1) x 2 = 498 

waves are generated from the interior interfaces, neglecting the end boundaries. The tolerance used 

to assess convergence is set to 1 x 10-5. 
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Fig. 13 Transcritical flow over a fixed bed hump: Steady state free surface elevation profiles 

obtained from analytical solution [33] (solid line) and LTS prediction using Algorithm 2 (open 

circles). 

 

Fig. 14 Transcritical flow over a fixed bed hump: Steady state mass flux profiles obtained from 

analytical solution [33] (solid line) and LTS prediction using Algorithm 2 (open circles). 

 

Fig. 13 and Fig. 14 compare the numerical predictions by the Godunov-type LTS solver using 

Algorithm 2 for different values of CFL number against analytical solutions of the steady state water 

surface profile and the mass flux along the channel. The LTS-predicted water levels are consistently 

slightly larger than those of the analytical solution upstream of the hump. The hydraulic jump occurs 

at almost the same location on the downstream slope of the hump, regardless of CFL number, and 

in agreement with the analytical solution. The exact shape of the hydraulic jump becomes slightly 

less well defined at the highest values of CFL, with a less prominent minimum depth immediately 

before the jump and spurious oscillations immediately after the jump. The overall results are 

satisfactory for CFL < 4.  However, the LTS scheme could not converge for CFL = 4, 8, and > 10, 

and so no results are presented for these cases. The spurious oscillations are increasingly obvious 
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for CFL > 4, and the results are unacceptable for CFL ≥ 9.  

It is relevant to examine the efficiency of the Godunov-type LTS algorithm, which has been 

implemented on a computer configured as follows: 

CPU: Intel Core i9-10900K @ 3.70GHz with overclock 

Memory: Kingston DDR4 128GB 3200MHz with XMP opened 

SSD: Intel 750 series PCIe interface 1.2TB  

Table 8 lists the number of computational steps, CPU time, and average run time per 

computational step (obtained as the ratio of CPU time to number of steps) required for convergence 

for different CFL numbers when the flow converged to steady state. The CPU time was calculated 

as the difference between the run start time and end time of the program. This approach led to ± 0.2 

s error in CPU time for different runs of exactly the same case because of the use of random memory 

blocks and CPU loads auto-arranged by the above computer system. From the table, we can see that 

the average run time per computational step lies in a narrow range from 3.58 × 10-3 to 3.94 × 10-3 s, 

indicating that this parameter is relatively insensitive to CFL number (bearing in mind the error 

introduced by the computer effectively increases at larger CFL numbers). 

 

CFL Number 1 2 3 5 6 7 9 10 Roe 

Steps 2966 1763 1177 816 772 1110 411 1173 6099 

CPU Time (s) 3.66 2.25 1.59 1.12 1.07 1.57 0.59 1.78 3.01 

Time/Step (10-3s) 1.23 1.27 1.35 1.37 1.38 1.41 1.44 1.52 0.49 

Table 8  Computational effort by Godunov-type LTS solver for given CFL numbers compared to 

Roe scheme 

 

As noted above, the numerical simulation does not converge for CFL = 4, and spurious 

oscillations develop downstream of the hydraulic jump for CFL > 4. We now investigate use of an 

entropy fix to correct this effect.  

 

Fig. 15 Transcritical flow over a fixed bed hump: (a) free surface elevation profile for CFL = 4 and 

δ = 0.2; (b) free surface elevation profile for CFL = 5 and δ = 0.2; (c) mass flux profile for CFL = 4 

and δ = 0.2; and (d) mass flux profile for CFL = 5 and δ = 0.2. Analytical solution [33] (solid line) 

and predicted values using Algorithm 2 (open circles). 

  

The free surface elevation profiles depicted in Fig. 15(a) and (b) show that the numerical 

predictions using Algorithm 2 provide an almost perfect match to the exact solution. This is not the 

case for the mass flux profiles in (c) and (d), where the predictions are unsatisfactory immediately 

downstream of the hydraulic jump, with grid scale fluctuations evident for CFL = 5. 

 

a b c d 
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5. Conclusions 

Godunov-type Large Time Scheme (LTS) algorithms have been investigated for non-

homogeneous Shallow Water Equations (SWEs). In order to incorporate correctly the source term 

into the LTS algorithm, a new Exact Riemann Solver (ERS) was implemented in LTS (LTS-ERS). 

We compared LTS-ERS with the LTS algorithm using an existing Approximate Riemann Solver 

(LTS-ARS) for four cases, all of which possess a bed-slope source term. In the first three cases, 

comprising open channel flow over a bed containing a step involving two rarefactions, two shock-

like bores, and a dam break over a wet bed, satisfactory results were obtained for CFL = 2 by all the 

new solvers whereas the conventional solvers were unable to obtain stable results for CFL > 1. 

However, spurious discontinuities and oscillations affected predictions by the LTS-ERS algorithm 

at higher CFL. Entropy fixes were effective in removing discontinuity in the rarefactions for CFL 

up to 8, but less successful at eliminating oscillations for larger CFL. Although the oscillations were 

not fully removed by LTS-ARS in conjunction with entropy fixes when applied to shock-type cases, 

they were successfully eliminated by LTS-ERS with entropy fixes but at the cost of a shift in the 

position of shock-like bores. In the fourth case of steady state, transcritical, frictionless flow over a 

bed hump, satisfactory agreement was also achieved between the predicted free surface profiles and 

corresponding analytical solution, provided CFL ≤ 3. Oscillations or divergence occurred at higher 

CFL values when applying LTS-ARS without entropy fixes. The implementation of entropy fixes 

within the LTS update procedure cured spurious oscillation and divergence, over the range of CFL 

values considered herein.  

The present algorithm requires further development to incorporate additional source terms 

related to bed friction, wind friction, eddy diffusion, Coriolis acceleration, etc., and its extension to 

two-dimensions is essential for broader applications in engineering practice. It should be noted that 

the proposed ERS together with entropy fixes enables the LTS algorithm to achieve more accurate 

representation of rarefaction waves by reducing spurious oscillations at high CFL number but at the 

cost of additional dispersion in the shock-like flows. The proposed ERS is designed for a positive 

step (bed elevation downstream higher than upstream). ERS for a negative step (bed elevation 

downstream lower than upstream) merits further investigation to broaden application of LTS in 

practice.   
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APPENDIX: Fourier analysis of LTS scheme 

First, Eq (30) is discretized over an LTS step as follows: 
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(A1) 

where   is determined from Eq. (35).  We let  expn k

j ju v ikx , and substitute into Eq. (A1), 

giving: 

       1

1exp exp exp expk k k

j j N j N j Nv ikx v ikx v ikx ikx
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 

 (A2) 

Then, the numerical amplification factor is 

      

    

exp exp exp 1

exp 1 1 exp

G iNk x iNk x i N k x

iNk x ik x
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
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       

 (A3) 

Setting k x   , then Eq(A3) becomes: 

      cos sin 1 1 cos sinG N i N i              

 
(A4) 

Hence, 
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 (A5) 

in which    cos sin 1N i N   . Then, 
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(A6) 

From Fig. 6 and Eq. (35) we can see 1  , so the numerical amplification factor 1G  . 

When the CFL number is an exact integer, Eq. (A1) simplifies to: 

1n n

j j Nu u

  (A7) 

Letting, 

   , expu x t i kx t     (A8) 

and substituting into Eq. (A7) gives: 

     exp expi kx t t i k x N x t                (A9) 
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By definition, 

t Nk x    (A10) 

and so, 

Nk x N kaN
ka

t t N

 





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 
 (A11) 

The phase velocity is 

c a
k


   (A12) 

The wave group velocity is 

d
0

d




  (A13) 
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