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Abstract In order to characterise the non-Gaussian infoonatontained within the EEG signals, a new feature
extraction method based on bispectrum is proposedapplied to the classification of right and lefotor
imagery for developing EEG-based brain-computezrfate systems. The experimental results on the B&i
data set have shown that based on the proposaddeat LDA classifier, SVM classifier and NN ciifiss
outperform the winner of the BCI 2003 competition the same data set in terms of either the mutual
information, the competition criterion, or miscldissition rate.
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higher-order statistics, bispectrum.
1. Introduction

The recent decade has witnessed a rapid developaiehtain-computer interface (BCI) technology. An
independent BCIl is a communication system for adimiy a device, e.g. computer, wheelchair or a
neuroprosthesis, by human intensions, which dodsdepend on the brain’s normal output pathways of
peripheral nerves and muscles but relies on thectigile signals representing responsive or inteatibrain
activities [35]. Current techniques for monitorifgrain activities include electroencephalogram (EEG)
Electrocorticogram, Positron Emission Tomography TR, functional Magnetic Resonance Imaging (fMRId
Magnetoencephalography (MEG), among which EEG leas Ipopularly used for BCl implementation due $o it
low cost, non-invasive nature, and its comparaieasily recording brain signals [12][14][35]. Whs more,
EEG data indicates that neural patterns of mearimgach brain occur in trajectories of discregpst whist the
amplitude modulation in EEG wave is the mode ofregping meanings [7]. Although these EEG wave pgacke
do not represent external objects, they embodyimpiement the meanings of objects for each indiaidin
terms of what they portend for the future of thadividual, and what that individual should do wéhd about
them [7][8]. The information obtained in EEG canebéracted for social communication.

However, a successful EEG-based BCI system veryhmdepends on whether the following two
requirements can be satisfied: 1) The extracted Ed#Bures are able to differentiate the task-oe@rirain
states; and 2) The methods for classifying suctufea in real time are efficient. Specificallyjstessential to be
able to extract complex spatial and temporal pastedrom noisy multi-channel data obtained from EEG

measurements [1], as well-studied classificationthods are available in the field of machine leagnin
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[16][31][37]. The pros and cons of linear and noeér classification methods for BCI research cafobed in
[19].

Currently, most existing schemes for extracting Ele@ures are based on autoregressive (AR) models o
adaptive AR models (AAR) [1][3][8][24][32], and paw spectral density (PSD) [2][36] (see [35] forexiew).
In practice, physiologically meaningful EEG featumn be extracted from various frequency bandsaufrded

EEG signals. McFarlandt al. reported that the imagined movement signals cbaldeflected in the rhythm

(13-22 H3z [17]. Pfurtscheller showed that (8—13 Hz) and/or rhythm amplitudes could serve as effective
inputs for a BCI to distinguish a movement or matoagery [23]. Moon et al [18] employed a smoothin
algorithm for the power o& (/7) -band (8-13 Hz) and off -band (5-7 Hz) frequencies of EEG curve and the

variation of pulse width obtained from ECG curwe generate their corresponding trend curves, therthree
trend features are applied to a fuzzy system tnatt the mental workload. In [22], a fuzzy ARTMARural
network based BCI was proposed, in which two défferspectral analyzes methods were used to olbmiR$D
of the EEG signals from 0 to 50 Hz.

However, conventional methods for feature extractimsed on AR models and PSD assume linearity,
Gaussianility and minimum-phase within EEG signals,, the amplitudes of EEG signals are normally
distributed, their statistical properties do notywaver time, and their frequency components amomelated.
Under these assumptions, the EEG signal is coregidaes a linear superimposition of statisticallyeipendent
sinusoidal or other wave components, and only feaquy and power estimates are considered while phase
information is generally ignored. In reality, hoveey EEG signals are generated by a typical nonlisgstem
consisting of, for examplepost-synaptic neurons whose firing action potestele based on whether their
membrane potential is greater than a thresholds BEG signals would have many sinusoidal componats
distinct frequencies, interacting nonlinearly t@guce one or more sinusoidal components at sundiffiedence
frequencies [20], which cannot be completely chirégged by autocorrelation functions, as done bymdtels
or PSD estimation methods.

To overcome this limitation, this paper proposesew set of features for EEG-based BCI systems, twhic
includes higher-order statistics based on the bisp@ of EEG signals. To evaluate the effectivermsthis
feature set, the LDA (linear discriminant analysisissifier, support vector machine (SVM) classjfend neural
network (NN) classifier are adopted to classify ez BCIl data set which was used in the BCI coitipet
2003 [4]. On the other hand, it is known that irtt@an recognition, error rate is the most commaomded
criterion in measuring the performances of diffénmethods. However, error rate only considers itpessof the
classifier outputs, but not the degrees of memigsstf patterns belonging to each class, so eatar measure
just provides classification accuracy of the usksifier for us, does not give us the informatimw much
confidence about the classifying result is. In ortte combine classification accuracy and confidericeBCl
competition 2003 on the Graz BCI data set, entropaged mutual information (MI) [28][29] obtained tino
classifying results was used as the criterion togare the performances of different methods. Grddteof
classifying results by a classifier indicates tbliassifier produces the results with higher confie In this
paper, the classifying results obtained by the LBXM, and NN classifiers based on the proposedifeatet
are extensively compared with the ones achievethé®yBCl competition 2003 winning methods [5] [27 the

same data set in terms of the criteria of Ml ansctassification rate.



2. Bispectrum based feature extraction

2.1 The definition and properties of the third-orde  r cumulant and bispectrum

For a non-Gaussian third-order stationary randooegss{ X(t)} , its third-order cumulant in a discrete form is

defined as
Cs, (m,n) = E[x(k)x(k + m)x(k + n)] (1)

whereE is the expectation over the process multiplie® bggged versions of itself [25][21]. The corresging

bispectrum is defined as the 2-D Fourier transfofitine third-order cumulant:

Y H¥

B, (W, ;) = Cy(m )exy] - j20 (Mg + 2)

m=-¥ R-¥

If a random procesX(t) is Gaussian, thefC,, (M, n) = 0, thus non-Gaussian process can be detected by this
property. If z(t) =x(t) +w(t), where w(t) is Gaussian and independent ok(f), then
C,,(m,;n) =C,, (m,n). Therefore colored or white noise processes gopressed and the bispectrum of a

non-Gaussian signal can be recovered. By usinghigider statistics, the standard minimum-phasengsson,
which is necessary when the process is charaatebydinear model based on Gaussian or only seocoder
statistics are used, may be removed. Furthermaghehorder cumulants can give evidence of nonlibga
while the autocorrelation sequence can not. Thespepties would be very useful as features for Edifhal
classification. For instance, Fig. 1 shows an EH@ha corresponding to a left-hand motor imagety, i
bispectrum and the diagonal slice, while Fig. Bsiltates an EEG signal corresponding to a righttirantor
imagery, its bispectrum and the diagonal slice.lesgst in the data samples shown, it is obvious that
bispectrum provides distinctive features for the types of EEG signals. This suggests the bispactnay be

useful for signal classification.
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Fig.1 (a):An EEG signal corresponding to a left-dhamotor imagery; (b)a contour plot of the magnitude of the

estimated bispectruon the bi-frequencies fl, f2 plane; and (c): the diagonal slice of the bispautr
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Fig.2 (a): an EEG signal corresponding to a rigiméhmotor imagery; (ba contour plot of the magnitude of the

estimated bispectruon the bi-frequencies fl, f2 plane; and (c): the diagonal slice of the bispautr

2.2 Feature extraction

In order to characterise the temporal and frequémfoymation within EEG data, this paper proposesige the

following hybrid features for an EEG-based BCI syst
1) 4 coefficients of the AR model obtained by thed@method [30].

2) 4 features related to PSD:
(i) peak frequency of the PSD;
(i) peak value of the PSD;

(iii) the first-order spectral moment of the PSD:

N
m(PSD =  kxPSD, ®

k=1

and

(iv) the second-order spectral moment of the PSD:

m(PSD= (k- m) xPSD @

k=1

3) 4 features related to the third-order statistics

(i) the sum of logarithmic amplitudes of the bispem,



H,=  log(|B, (1, m))|) (5)

g, ol F

whereF is the frequency range to be considered.

(ii) the sum of logarithmic amplitudes of diagoe#ments in the bispectrum,

H,= log([B,(ww)) ©)

w

(iii) the first-order spectral moment of the ampdies of diagonal elements in the bispectrum,

N
H,=  kog(|B, (g, w))) @)

k=1
and

(iv) the second-order spectral moment of the anngdis of diagonal elements in the bispectrum,

N
Ho= (k- Hy) xog([B,(w., ) ®)

k=1

The above 12 features are extracted for each chahesery sampling point by using a sliding windaw
which the first order spectral moment and secomtiospectral moment of PSD as useful statisticatrijgtors
are used to convey information about the uncestaifithe PSD distribution, and the four featurdates to the

third-order statistics are employed to charactetieenonlinear information within EEG signals.

3. Classification

In order to demonstrate the effectiveness of tlupg@sed features in BCI applications, the LDA clésation
method, SVM method, and NN classification methog @sed in this paper and compared with othersttieor

sake of self-containment, this section brieflyadmces the LDA, SVM, and NN classifiers.

3.1 LDA classifier

LDA firstly maps the data (feature vectat}o be classified by the following linear transfation:
Y= WX +W, Q)
whereW andw, are determined by maximising the ratio of betwelass variance to within-class variance to

guarantee maximal separability [6]. The within-slaariance matrix is defined by
K L
— | | T
S, = (X' - m)(x - m) (10)
i=1 I=1

whereK is the number of classes, artithe mean vector of the claissL; the number of samples within cldss

and the between-class variance matrix is defined by



S = (m-m(m- ) )

i=1
where/? is the mean of the entire training sample set.
The classification is conducted as follows (for gligity 2 class problem is used as an example):

- classlif y>0
. (12)
class2 if y<O

3.2 SVM Classifier

The invention of SVM was driven by underlying sttitial learning theory, i.e., following the print@pof
structural risk minimization that is rooted in VGnension theory, which makes its derivation evenreno
profound [33]. The SVMs have been a topic of esitem research with wide applications in machinenizg

and engineering. The output of a binary SVM clésssifan be computed by the following expression:

y sgn Yk(x,x) b (13)

il

where X, Y iNlare training samples with input vectots R, and class label { 1,1}, Oare

i
Lagrangian multipliers obtained by solving a qu#draptimization problemp is the bias, and(()g, X )is

called kernel function in SVM. The most commonsed kernel function is the Gaussian RBF function,

2
XX
k(x,%) exp M (14)
The protruding characteristics of SVM lies in itsgant mechanism of handling nonlinear functiorsses [33],

i.e., nonlinear information processing is carried lmy means of linear techniques in an implicitthdimensional

feature space mapped by a nonlinear transformatifX ) from original input space. Although, the analytical

expressions of (X )is unknown, but because only the inner productatimrs (X )" (X) are involved, the

kernel functions can be used to substitute therimpreduct operations according to the Mercer th@ore
Vapnik's theory [33] shows that the SVM solutionfgind by minimizing both the error on the trainiget
(empirical risk) and the complexity of the hypotisespace, expressed in terms of VC-dimension. ismgénse,

the decision function found by SVM is a tradeoffvizeen learning error and model complexity.

3.3 NN Classifier

NN characterized by parallel computing is a powerfiachine learning scheme, which has achieved many
successful applications. Promisingly, in some igpfibn fields, NN models have achieved human-like
performance over more traditional artificial inigénce techniques. Now, NN has become a broad wérich
includes many diverse models and approaches. $nptigper, we only focus on the most widely used ortw

multi-layer feedforward NN trained by backpropagatof error.



A multilayer feedforward network has two or morgdes of units, with the output from one layer segvas
input to the next. There are no connections withlayer.The input layer habl neurons which are merely “fan-
out” units, whereN equals number of classification inputs, no proogstakes place in these units. The layers
with no external output connections are referre@ddchidden layers, whilst there dveneurons in the output
layer, whereM equals number of classification outputs. In mestes, a feedforward NN with one hidden layer
of units is used with a sigmoid activation functfon the units.

For a multi-layer feedforward NN, the well knownckpropagation algorithm is used to train this netwo
from data. Although the backpropagation mechanistnaining multilayer networks was derived by Weshio
1974 [34], it was not popularized until Rumelhastinton, and Williams introduced the training algbm-
generalized delta rule in the late eighties oftthentieth century [26]. Generally speaking, thekpaopagation
algorithm works as follows. At the output layere thutput vector is compared with the desired ostpLite error
is calculated from the delta rule and is propagatetk through the network to adjust the weighth@interests
of minimizing the difference between the NN outpaitel the desired outputs. Such networks can lebitraay
associations by using differentiable activationctions. A theoretical foundation of backpropagat@an be
found in [26] and [34].

4. Experimental results

This section presents experimental results on atreark EEG data set which was used in the BCI ctitigre
2003 [4]. The results obtained using the proposetlfes and the classification methods of LDA, Satihd NN

are compared to those of the competition winners.

4.1 Description of the Graz BCI data set [4][5]

In collecting the Graz BCI data set, the subjec$ asked to control a feedback bar by means of ipdg# or

right hand movements after a cue was indicated.orftler of left and right cues was random. The erpant
consists of 7 runs with 40 trials each. In the kadé¢ data set there are 280 trials. As shown dn i each trial
lasts 9 seconds, in which the first 2 seconds w#et.cAt t=2s an acoustic stimulus indicates thgifr@ng of the
trial, with a cross “+” displayed for 1s. At t=3an arrow (left or right) was displayed as a cue, anthe same
time the subject was asked to do motor imagerygalttwe direction of the cue. Three bipolar EEG cledsin
(anterior ‘+’, posterior ‘-) were measured over , 03z and C4. The EEG was sampled with 128Hz and was

filtered between 0.5 and 30Hz.



T ‘ Feedback period with Cue ‘

Trigger
Beep

Fig. 3: Electrode positions (top) and timing schébwttom) for recording the Graz BCI data set [4]

4.2 Experimental results

Because channel Cz shows its independence of thar mmagery, only channel C3 and C4 were useddature
extraction. Hence, 24 features were obtained fah ddal of the EEG signal, which were sent to theed
classifier. Because the cue (left or right) appeatet=3s, in our experiments, only the data betwie8s and 9s

was used.

Table 1. Examples of feature values of 4 trials

Trials Feature Values

1 -1.198 0.436 -0.066 0.049 -1.174 0.49D083 -0.057 17.000 -3.524 0.572 39.2%.000
-3.272 0.584 44.708 -361712.945 -1371.96975 252.727 -352152.281 -1344.930 1.677.42116

2 -1.389 0.747 -0.244 0.195 -1.455 0.93B324 0.176 40.000 -3.084 1.009 55.782.000
-3.114 1.234 71.965 -356267.876 -1361.5B387 398.842 -353368.409 -1349.770 7.7HI8.451

3 -1.386 0.638 -0.061 0.045 -1.265 0.54%059 0.013 36.000 -3.287 0.905 51.32900
-3.468 0.607 39.949 -360164.029 -1366.56476 513.481 -356478.939 -1354.895 2.685.25

4 -1.237 0.638 -0.203 -0.029 -1.373 0.796224 0.089 2.000 -3.372 0.458 34.933.000
-3.393 0.912 57.449 -365534.236 -1398.41231 159.589 -352820.815 -1357.196 5.57B1.378

Based on the definitions in section 2.2, featuresewextracted at every sampling point, with thelistj
window size being 256 samples in order to captbeerich frequency information in the EEG signal.olar
experiments on a PC with Dual Core CPU, it takéd 3ns to extract features from a pattern with 2&®ing
points, so the proposed feature extraction mettaodbe applied in real-time mental task classiftratiTable 1
illustrates examples of features extracted foriagdstr In the 280 trials, 140 labeled trials werediso train the
classifier. Because the true labels of the othér ttidls are now available in [4], they can be usedest the
generalization performance of the trained classifiée test data set was kept unseen in the featuraction
and the training of the classifiers. In this pajlee SVM with Gaussian kernel (14) is used. Anthimused NN
with 3 layers, the input layer has 24 nodes forféatures, the hidden layer has 15 nodes, andutpiblayer
has two nodes for the classes of hand motor imageny backpropagation algorithm is used to traen NiN.
However, it should be noted that because the SVAdsdier and NN classifier involve the choices ofmg
hyper-parameters during construction, i.e., the S3ladésifier needs to find optimal values for kerpatameter

and the regularization parame€@rwhilst the NN classifier needs to select appmtpriearning rates, so in the
off-line training process, the genetic algorithmAjGis used to select the optimal values of thespehy
parameters for the SVM classifier and the NN cfaessiespectively, in which the original 140 labeleaining

trials are separated into training data subsetvatidation data subset.



Moreover, in order to combine classification accyrand confidence, in BCl competition 2003 on thazG
BCI data set, the Ml [28][29] was used as the doteto compare the performances of different méshdable
2 ranks the performances of the BCI competition@@hning methods and the LDA, SVM and NN methods
based on the proposed features in terms of Mergoit, whilst Table 3 illustrates the ranking oraérthe BCI
competition 2003 winning methods and the LDA, SVMI&NN methods with the proposed features in terins o
misclassification rate criterion. To show the timeurse of the mutual information, Fig. 4 depicte time
courses of the mutual information obtained by th€l Bompetition 2003 winning methods [B7]. As a
comparison, Fig. 4 shows the time courses of thesahinformation of the NN, LDA and SVM classifidosised
on the proposed features. In Fig. 4 and Fig. 5,inbeease of the mutual information indicates agréase in
separability between left and right hand motor iergg In our methods shown in Fig. 5 and most BCI
competition methods shown in Fig.4, the MI valuesdt to be zero at time 9s. This is reasonable,useca
according to the experimental settings describexibsection 4.1, the hand motor imagery happeass tai cue
is displayed at time 3s, and this process willlast long. At time 9s, there is no hand motor inmpd@ppening,
so there is no much information leading to the smjmn of the left and right hand motor imagery. shsesult,
the Mls values at time 9s should be zero, whichldesen validated by the proposed methods showmngib eind
most BCI competition methods shown in Fig.4. Hoereas shown in Fig.4 some BCl competitors’ Ml e at
time 9s are not zero, the possible reason is é&wl the sliding windows used in these methodsofaine
feedhacks are so large that they still cover tine equences of hand motor imagery period at tsne 9

In terms of the criterion of BCI competition 20@B8e NN and LDA classifiers based on the proposatlfes
achieve the maximum of the MI 0.64 and 0.63 re$pelgt both of which are greater than 0.61, the acdeieved
by the first winner of the BCI competition 2003 ¢ime Graz dataset. On the other hand, in terms ®f th
misclassification rates, the NN and SVM classifieased on the proposed features achieve the etes 10.0%,
both of which are smaller than the ones achievedlbthe winners of the BCI competition 2003. Hentde
proposed EEG based mental task classification mgstautperform the winner of BCl-competition 2003 tbe

Graz BCI data set, which demonstrates the effentise of the propose feature set.

Table 2: Ranking order of the proposed method aedBtCl competition 2003 winning methods in termghaf MI on the
Graz BCI data set

Ranking Methods Maximal Minimal Misclassification

M1 (bit) Rate (%)

1 NN with the proposed features 0.64 10.00

2 LDA with the proposed features 0.63 10.71

3 BCI_Comp2003_Stwinner 0.61 10.71

4 SVM with the proposed features 0.58 10.00

5 BCI_Comp2003_"% winner 0.46 15.71

6 BCI_Comp2003_"8winner 0.45 17.14

7 BCI_Comp2003_Bwinner 0.44 13.57

10



Table 3: Ranking order of the proposed method hadBCl competition 2003 winning methods in termshef error rates on
the Graz BCI data set

Ranking Methods Minimal Misclassification | Maximal
Rate (%) M1 (bit)
1 NN with the proposed features 10.00 0.64
2 SVM with the proposed features 10.00 0.58
3 LDA with the proposed features 10.71 0.63
4 BCI_Comp2003_Stwinner 10.71 0.61
5 BCIl_Comp2003_Bwinner 13.57 0.44
6 BCl_Comp2003_"% winner 15.71 0.46
7 BCI_Comp2003_"8winner 17.14 0.45

Fig.4 The MI time courses of the BCI competitiomning methods (A~I: the serial numbers of compedjtf?7]: at t=3 s
the cue (left or right in random order) was presdnt

0.6
0.4r
0.2+

0.6
0.4+
0.2

Mutual information [bit]

0.6
0.4+
0.2

O Il I Il Il I I I
0 1 2 3 4 5 6 7 8 9

time[s]

Fig. 5 The MI time courses of the NN (top), LDA idie) and SVM (bottom) classifiers with proposedtiees: at t=3 s the
cue (left or right in random order) was presented.

11



Furthermore, we use another mental task datasétt¢l@alidate the proposed features for classifyting
hand motor imageries, this dataset was generatediffeyent experimental settings and different seh§ for
hand motor imagery [15]. In our experiments, 12thlas are randomly selected for training and 12tpées
for testing. Table 4 illustrates the experimengsiuits using LDA, SVM and NN to classify this dat& based on
the proposed features, in which the SVM with Garsdiernel (14) and the NN with 3 layers are usedhé
NN, the input layer has 24 nodes for the featuttes,hidden layer has 15 nodes, and the output lggrtwo
nodes, and backpropagation algorithm is used o th@ NN. And GA is used to select the optimalresl of the
hyper-parameters in the SVM classifier and the N&sifier respectively, in which the original 12dbéled

training trials are separated into training datasstiand validation data subset.

Table 4: Experimental results of the proposed.ifest

Ranking Methods Maximal Minimal Misclassification
MI (bit) Rate (%)
1 NN with the proposed features 0.64 10.00
2 SVM with the proposed features 0.63 9.00
3 LDA with the proposed features 0.61 12.00

Moreover, as a comparison, the widely used AR featare extracted for LDA, NN and SVM classifiars t
classify the hand motor imagery tasks [15], in whilse AR features are obtained for each channeisbg the
Burg method [30] in AR model. The structures of S\@Md NN remain the same, and GA is used to sdiect t
optimal values of the hyper-parameters in the SMa&sifier and the NN classifier respectively, inieththe
training data subset and validation data subsesaree as the ones in the above experiments alptdposed
features. Table 5 shows the experimental resuitgudDA, SVM and NN to classify this data set basedthe
AR features. It can be seen that the classifietls thie proposed features can achieve better pesfozenthan the

ones with the AR features in terms of the critefidl and misclassification rate.

Table 5: Experimental results of the AR features

Ranking Methods Maximal Minimal Misclassification
M1 (bit) Rate (%)
1 NN with AR features 0.38 21.00
2 SVM with AR features 0.25 18.00
3 LDA with AR features 0.27 22.00

It is known that EEG signals are generated from dwrbrain which is a system with

highly nonlinear

dynamics, but there is no evidence indicating thatactivation of human brain is Gaussian. We belihat if

the EEG based BCI classification and coding quaity be improved, then more of the informatioaitable in

12



the EEG signals must be exploited, such as thenmton of non-linearity and non-Gaussianality. They

advantages of the proposed feature extraction rddiddn that:

1) the proposed feature set contains high-order statimformation, while the widely used conventibna

features with only second-order measures (sucheapdwer spectrum and autocorrelation functions)
does not. As a consequence, non-minimum phaselsighach as EEG signals, cannot be correctly
characterized by the second-order measures, moresm@e types of phase coupling in EEG signals

which is associated with nonlinearites can notdreectly identified by the second-order measures.

2) the proposed feature set is less affected by Gaussickground noise than the conventional features

with only second-order measures due to the propétyspectrum: the bispectrum of Gaussian sighal i

zero.
The above experimental results have shown thaptbeosed feature set is very effective in identifythe

different mental tasks from EEG signals.

5. Conclusion

In this paper a new feature extraction method psed for classifying EEG signals corresponding to

left/right hand motor imagery. The feature setlidels higher-order statistics based on the bispactifuEEG
signals. Experimental results have shown that basetie proposed features, the LDA classifier, Suiassifier

and NN classifier achieve better classificationf@@nance than the BCI competition 2003 winner om same

BCI data set in terms of the criteria of either diimisclassification rate.
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