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Abstract: (1) Background: This study investigates influential risk factors for predicting 30-day
readmission to hospital for Campylobacter infections (CI). (2) Methods: We linked general practitioner
and hospital admission records of 13,006 patients with CI in Wales (1990–2015). An approach called
TF-zR (term frequency-zRelevance) technique was presented to evaluates how relevant a clinical
term is to a patient in a cohort characterized by coded health records. The zR is a supervised
term-weighting metric to assign weight to a term based on relative frequencies of the term across
different classes. Cost-sensitive classifier with swarm optimization and weighted subset learning
was integrated to identify influential clinical signals as predictors and optimal model for readmission
prediction. (3) Results: From a pool of up to 17,506 variables, 33 most predictive factors were
identified, including age, gender, Townsend deprivation quintiles, comorbidities, medications, and
procedures. The predictive model predicted readmission with 73% sensitivity and 54% specificity.
Variables associated with readmission included male gender, recurrent tonsillitis, non-healing open
wounds, operation for in-gown toenails. Cystitis, paracetamol/codeine use, age (21–25), and heliclear
triple pack use, were associated with a lower risk of readmission. (4) Conclusions: This study gives a
profile of clustered variables that are predictive of readmission associated with campylobacteriosis.

Keywords: hospitalisation; readmission; Campylobacter infections; machine learning; text mining;
feature selection; electronic health records

1. Introduction

Campylobacteriosis is the most common form of culture-positive bacterial gastroen-
teritis worldwide, with the species C.jejuni and C.coli, inhabiting the intestinal tracts of both
humans and animals, and accounting for up to 95% of human infections [1]. The disease
burden has been estimated to be over 2.4 million people per annum in the USA [2,3]. In the
UK, Campylobacter is thought to cause more than 280,000 cases of food poisoning annually,
and be responsible for more than 100 deaths a year at an estimated cost of £900 million [4].

Campylobacter infections are typically attributed to the handling and consumption
of chicken and, less frequently, with the consumption of unpasteurized milk, red meat,
sausages, contaminated water, or transmission from household pets or farm animals. Most
infections are sporadic, with relatively few identifiable outbreaks, so it is difficult to trace
the sources and routes of transmission. Thus, translation of exposure to infection remains
poorly understood [2,5–8].

Clinical manifestations of Campylobacter entirits typically include sudden onset ab-
dominal pain, cramping, fever and frequent diarrhoea, with bloody stools in around one in
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ten patients. Fatality is most common in the elderly and those with comorbid conditions [9].
Late sequelae, such as inflammatory bowel diseases [10–12], rheumatologic disorders (i.e.,
reactive arthritis) [13–16], Guillain-Barré syndrome (GBS) [17,18], and Glomerulonephri-
tis [19], often cause long term morbidity. In Europe, the incidence of campylobacter
infection has continued to increase in the last decade, and reported increases in infection
rates have necessitated the establishment of measures for prevention and control through
the food chain [20]. Despite its high incidence, the factors associated with chronic infection
or recurrence, and hence readmission, remain poorly understood.

Complications associated with Campylobacter infection often require hospitalisation [21–23],
and in England and Wales approximately 10% of reported cases were admitted to hos-
pital for treatment [24]. In an Australian provincial setting, the average anunual rate of
Campylobacter-associated hospital admissions was 13.6%, and the readmission rate of
Campylobacter-associated hospitalizaiton was 5.53% whthin 28 days after discharge [25].
In the USA, campylobacteriosis costs an estimated $1.3 billion a year in hospitalisation
and other medical costs, surpassing salmonellosis and shigellosis [2,3], with unplanned
readmission adding to the clinical and financial burden [26].

Readmission rates are utilised as indicators of hospital performance and quality of
care. Absolute number and rate of readmission continue to rise in the UK, increasing by
19% between 2010 and 2017. Furthermore, readmission classified as potentially preventable
is rising twice this rate, estimated at over 40% over the same time-period [27]. Preventable
readmissions therefore represent an increasing burden on healthcare systems and hospitals
have strong incentives to predict, at the time of discharge, patients who would be at
high risk of readmission. The absence of effective predictive models currently limits the
effectiveness of readmission reduction strategies. To develop a reliable predictive model,
one first needs to identify modifiable predictors of readmission regarding patients and
care. However, this can be challenging for diseases, such as campylobacteriosis studied
here, where cases of infection are not well explained by the commonly recognized risk
factors [6,28–30] and reliable predictors of hospitalisation have not been clearly established.

In current clinical practice, the risk of patient readmission can be evaluated using
the LACE index, defined by four independent variables: length of stay (L); acuity level
of admission (A); comorbidity condition (C); and use of emergency rooms (E) [29]. Use
of the LACE index, assuming a linear relationship among the four variables [30,31], can
result in poor predictive performance [29]. In fact, there is no standard LACE threshold to
classify patients as readmission versus non-readmission, and practitioner assessment is
often subjective in defining such threshold. In contrast to the LACE index, some regression
models have been developed to predict readmission from patient hospital records, but
majority of the models [29,31,32] were not only built from a small number of variables but
also were not developed to be generalizable, often relying on a small number of coded
terms from primary care records.

Following a decade of rising readmission rates in the UK, in 2011 the Department
of Health introduced policies focussed on reversing this trend which included financial
penalties for 30-day readmission [33]. This coincided with the US Hospital Readmission
Reduction Programme, which also included punitive financial measures for underperform-
ing hospitals [34]. The estimated cost of readmission in the USA stands at approximately
$17.4 billion [33], unplanned readmission has therefore become a major concern in ad-
vanced healthcare systems. Procedures for reducing readmissions, such as education,
follow-up visits, and discharge ‘teams’ have been implemented in many hospitals [34], but
these methods are often impractical, costly and of limited impact. Indeed, readmission
rates have continued to rise in English hospitals since the introduction of these policies [35].
In light of this, there is an urgent need to identify factors that accurately predict the risk
of readmission.

Risk factors for campylobacteriosis are widely recognized [5,7,36,37] but reliable pre-
dictors of hospitalisation have not been clearly established. Recently natural language
processing techniques were adopted to predicit hospitalizations with structural and un-
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structural data [38,39]. Here, we develop a robust, validated, and cost-effective data-driven
method to identify the most informative hospital readmission predictors from primary
care medical records. We use a novel incorporation of machine learning techniques with
electronic health records, in which clinical terms (diagnosis codes, procedure codes and
medication codes) recorded in general practice were analysed using a text mining scheme,
while the prediction of the re-hospitalisation was treated as a problem of document classifi-
cation in text mining.

2. Materials and Methods

This study aims to identify key influential factors from a pool of demographic variables
and clinical events recorded in primary care to predict the outcomes of campylobacteriosis
patients admitted to hospital, classified as ‘readmission’ and ‘non-readmission’. Figure 1
illustrates the process of building the prediction model.
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Figure 1. The flow diagram of the process of building readmission prediction model.

2.1. Data Collection and Linkage

A GP database from the Abertawe Bro Morgannwg University (ABMU) Health Board
area with Campylobacter infections between 1990 and 2015 was linked to the Patient Episode
Database for Wales (PEDW) which records all episodes of inpatient and daily case activity
in NHS Wales hospitals. The data linkage was conducted via the Secure Anonymised
Information Linkage (SAIL) databank [40,41]. The SAIL databank brings together and links
a wide range of person-based data from multiple sources relevant to health. SAIL utilises a
range of measures to ensure that the data are anonymous and secure, and that they can
be safely utilised for research within a robust information governance framework [41].
Each patient was given a unique Encrypted Anonymised Linking Field (ALF_E). Different
databses of electronic health records hold inidviudal ALF_Es which indicate patient level
data records. So, these different databases can be linked at individal level by the ALF_Es.

In this study, 12,747,826 rows of electronic health records for all patients with Campy-
lobacter infections held in the GP database were linked with the hospital admission database
by the ALF_E. The patients with Campylobacter infections, defined in terms of Read code
(“A0473” for Campylobacter gastrointestinal tract infection) and in GP data and ICD 10 code
(A045—Campylobacter enteritis in hospital admissions), were extracted and the date of
first occurrence was selected. All admissions took place after an infection. The inclusion
criteria for GP records were (i) the patient was alive at discharge and (ii) the patient was
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enrolled within the GP record for 12 months before the date of infection. For each patient,
within 12 months after Campylobacter infection, readmission was defined as any admis-
sion taking place within 30 days following discharge from the previous admission. This
readmission was regarded as a reference admission. If there was no 30-day readmission,
the first admission was treated as a reference admission. In other words, for each patient,
their GP records from 12 months before the infection to their reference admission were
collected. If a patient was readmitted on the same day of discharge, it was counted as
a single continuous admission. For patients who had multiple Campylobacter infections
leading to different hospital admissions, some infections may lead to readmission, others
did not. In this situation, each infection was treated separately, as they corresponded to
different GP visit records. In this way, a total of 13,006 patients admitted to hospital with
Campylobacter infection were obtained, 8.17% of which (1062) were readmissions. In other
words, these 13,006 patients generated 12,747,826 rows of records in the GP databse.

Additional demographic variables included: deprivation status in terms of Townsend
score (quintile); urban status as defined by the Office for National Statistics [42]—‘Urban
> 10 k (Urban Settlements with greater than 10 k population)’, ‘Town and Fringe (located within
the rural domain)’, ‘Village, Hamlet and Isolated Dwellings(located within the rural domain)’; age
bands between GP event date and date of birth (0–5, 6–10, 11–15, 16–20, 21–25, 26–30, 31–35,
36–40, 41–45, 46–50, 51–55, 56–60, 60+). Thus, the initial variables were formed by gender,
age groups and bands of deprivation, and medical records held electronically in general
practice and in the hospital admission dataset.

The 13,006 hospital admitted patients were further randomly split into training (70%
of the data), testing (15%) and validation (15%) data subsets for constructing machine
learning models, selecting the optimal model and testing performance respectively.

2.2. Machine Learning Approach

This cohort study used machine learning methods to identify influential risk factors
that are most predictive of readmission of Campylobacter infections from routine electronic
health records. However, the linked dataset includes different health-related fields with
a range of data structures, for example, age and deprivation fields are categorical val-
ues, while the majority of the factors are text terms from the GP database based on NHS
Read Clinical Term system. The general practice system with 5-bytes provides around
83,000 clinical descriptive terms in hierarchical structure comprising five levels of detail,
whilst each successive level offers more detail to a concept. This means, there are mul-
tiple codes for the same medication/diagnosis/procedure with a progressive level of
detail. Such heterogeneous linked data presents methodological challenges for predictive
analytics [43,44]. To address the challenges, we integrated machine learning and natural
language processing (NLP) techniques to identify the most influential predictors associated
with the readmission of Campylobacter infections from the large number of heterogeneous
variables. A ‘bag of words’ (BoW) scheme [45] consisting of coded terms and other variables
(words) was used to describe each patient, where the number of occurrences of each term
was recorded. The prediction of readmission for each patient was thus treated as a problem
of text classification. The proposed methodology is described below.

First, a Term-Patient matrix was created to represent each patient by the BoW of terms.
Traditionally, the term frequency (how often a term occurs) was used to weight each
term, for example, a blood pressure check may happen five times a year, a diagnosis
may happen once. However, text mining studies have indicated that term frequency (TF)
based classification methods often fails to effectively distinguish the individuals (patients
here) [45]. Thus, in this paper, an approach called TF-zR (term frequency-zRelevance)
technique was devecloped to evaluates how relevant a clinical term is to a patient in a
cohort characterized by coded electronic health records (see Appendix A). The zR is a
supervised term-weighting (STW) metric to assign a weight to a term based on relative
frequencies of the term across different classes (i.e, readmission and non-readmission).
The mechanism behind such a STW method is that the more relevant term should be the
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one with more concentrated frequency in one class (positive class: readmission/negative
class: non-readmission) than the other class. Then the TF value and the STW metric were
combined to represent each patient (see Appendix A). In this way, a quantitative digest of
each patient represented by this TF-zR method in a Term-Patient matrix was obtained. This
method is different from traditional unsupervised term-weighing methods which do not
consider the impact of sample distributions across different classes.

For this Term-Patient matrix, each variable was then ranked using the information
gain method [46] (see Appendix A) to examine its capacity of distinguishing readmission
with non-readmission across all patients. Normally, the Read codes in general practice
fall into the categories of “Process of Medicine” (PoM) (such as laboratory tests), “Diagnosis
of Conditions” (DoC) and “Medication and Appliances” (MaA). The issue is that the PoM
Read terms are frequent but carry less information, while the DoC and MaA terms, such
as a diagnosis of diabetes, may occur once in a patient’s lifetime but are important and
carry more information. Therefore, it is unsurprising that using a purely TF method, the
PoM codes will suppress the impact of DoC and MaA, although the latter provide more
meaningful clinical knowledge of patient’s health conditions in terms of diagnoses and
treatments. To avoid the suppression of the PoM codes, in this study the Read codes in each
category were assessed and ranked separately in terms of their capacity of distinguishing
the outcomes. Then along with demographic variables, the pool of the selected codes from
each category were used for constructing a classification model in the next phase.

Of the 13,006 patients admitted to hospital with Campylobacter infections, there were
only 8.2% readmissions. Thus, this is an extremely imbalanced data problem. To address the
problem, a cost-sensitive classification scheme [47,48] is used to provide different penalties
of misclassifications of readmission and admission. Specifically, the cost of misclassifying
readmission as admission is greater or more serious than misclassifying admission as
readmission. Using particle swarm optimisation [49] and a weighted learning scheme, the
model with the most influential predictive factors was then identified, offering the best
potential of distinguishing those that were readmitted to hospital with those that were not.
The read codes in the categories of DoC and MaA were given higher weighting than those
in PoM. The final selected predictors were then validated with the independent unlabelled
samples in a testing data subset.

The performance of the model was assessed in terms of sensitivity and specificity
against 15% of the total database.

To further validate the performance of the identified clinical and demographic signals
in predicting the hospitalization of Campylobacter infection, the over-sampling technique
was used to adjust the class distribution of the trained data set for building machine
learning models with the more balanced data set.

3. Results

This study utilised 12,747,826 health records of 13,006 patients admitted to hospital
with Campylobacter infections between 1990 and 2015, while there were 1062 readmissions.
So, this is a highly imbalanced data problem where the negative class has much more
samples than the positive class. Table 1 shows a demographics table of Campylobacter
infection admissions. Children aged 0–5 had the highest rates of hospital admissions, while
patients aged between 46 and 55 had the highest rates of readmission. Children aged 6–15
had the fewest overall hospital admissions and readmissions. Due to a denser population,
more people living in the urban areas had hospital admissions and readmissions than those
living in town and fringe, or village, hamlet and isolated dwellings. Among patients in the
5th Townsend deprivation quintile (the most deprived), the rate of their re-admissions was
8.66%, higher than the rate of re-admissions (7.92%) among those in the 1st deprivation
quintile (the most affluent). It is noted that although these statistics showed the overall
impacts of demographic factors on hospital admissions, this does not mean that they are
significant in predicting the readmissions as the predictors also depend on interactions
between variables.
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Table 1. Demographics table of campylobacter admissions.

Non-Readmission Readmission

Number of admitted patients 11,944 1062

Average age of admissions 43.0 (SD = 22.1) 51.8 (SD = 22.3)

Percentage of male admissions 49.9% 55.6%

Percentage of admissions in most affluent 22.4% 21.7%

Percentage of admission in most deprived 17.6% 18.7%

Percentage of admissions in rural domains * 37.2% 37.7%
* Including “Town and Fringe (located within the rural domain)”, and “Village, Hamlet and Isolated Dwellings
(located within the rural domain)”.

There were 23 categorical demographic variables generated on gender, age groups, de-
privation and urbanicity. In addition, 17,483 clinical events were classified by read codes into
the categories of PoM (8206 codes), DoC (3702 codes) and MaA (5575 codes). In this way, the
linked dataset generated initial data with 17,506 variables. These variables were taken forward
to identify the most influential predictors associated with the Campylobacter readmission.

These clinical terms demonstrated a great disparity in term of TF across the different
categories of PoM, DoC and MaA (Figure 2). The wide range of frequency variations
exactly characterises real clinical practices, in which the PoM events often occur much more
frequently than those of the DoC and MaA. It is noted that these frequency measurements
did not take into account their relevance to the re-admission. Differently, the supervised
term-weighting method—zR metric took into account the contributions of a term across dif-
ferent classes (re-admission and non-readmission) to generate the relevance measurements
which show much better proportionality for different categories of read codes (Figure 3).

After the TF-zR method generated the Term-Patient matrix, applying information-gain
to this Term-Patient matrix allowed the generation of a feature ranking metric for each
variable which assessed the contribution of each variable in distinguishing between the
readmission and non-readmission (Figure 4). Information-gain is normally used to deter-
mine the influential features/attributes/variables that render maximum information about
a class. So in terms of information-gain, the top read codes were selected from each category
of PoM, DoC, and MaA. Then together with 23 categorical demographic variables, a data
space with total 623 variables was generated. From these 623 variables, the swarm opti-
mization with weighted subset learning and cost-sensitive decision tree classifier identified
the 33 optimal features that offered the best potential of predicting the hospitalisation of
Campylobacter infections (Table 2). The 33 most predictive variables included an age group
(ages 21~25 associated with non-readmission), gender, Townsend deprivation quintiles
(bands 1 and 4), comorbidities (12 diagnostic codes), medications (11 prescription codes)
and procedures (6 codes). Applying to an independent test dataset, the classifier with the
33 influential predictors performed significantly above chance to predict readmissions with
sensitivity 0.73 (95% confidence interval (0.71, 0.75)), and specificity of 0.54 (95% confidence
interval (0.53, 0.55)). Cystitis, paracetamol and codeine use, age (21 to 25), and heliclear
triple pack, have turned up to be very efficient in classifying the outcomes of Campylobacter
infections, where patients with these conditions had lower risk of readmission.
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To further validate the performance of the 33 predictors in this imbalanced data
problem, we applied to an independent balanced dataset produced by the over-sampling
technique, the 33 predictors predicted readmissions with sensitivity 0.91 (95% confidence
interval (0.90, 0.913)), and specificity of 0.54 (95% confidence interval (0.52, 0.565)).

In order to demonstrate the efficiency of how the developed modelling approach
tackles the issue of imbalanced classes in medical data, we further compared with logistic
regression, a traditional modelling approach to readmission prediciton. Using the raw data
with same training and testing datasubsets as our model, the logistic regression model with
the same 33 influential predictors offered prediction of readmissions on testing datasubset
with sensitivity 0.0298, and specificity 0.974. Clearly logistic regression approach cannot
tackle the imblanced data issue. Then using the same oversampled data as our model, the
logistic regression model with the same predictors significantly improved the prediciton
performance with sensitivity 0.8196, and specificity 0.5253, but still compared unfavourably
with our developed modelling approach.
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Table 2. The 33 key predictive variables identified.

Variable Name Description

Male Gender
AGE_A21–25 Age group: 21~25 years old

TOWSEND_Q1 Townsend quintile band 1
TOWSEND_Q4 Townsend quintile band 4

67E.. Foreign travel advice
8B311 Medication given
67H.. Lifestyle counselling
9.... Administration

8H7.. Other referral
7G300 Excision of nail bed
R0901 Abdominal colic
K3108 Breast infection
S89z. Other open wounds NOS
K15.. Cystitis
H170. Allergic rhinitis due to pollens
H037. Recurrent acute tonsillitis
A53.. Herpes zoster
N05.. Osteoarthritis and allied disorders

Ayu03 Salmonella infection, unspecified
F501. Infective otitis externa
F504. Impacted cerumen (wax in ear)

N2410 Myalgia unspecified
dian. Paracetamol+codeine phosphate 500 mg/30 mg tablets
ka91. Celluvisc 1% single-use eye drops
da7Z. Venaxx XL 75 mg m/r capsules
dher. Prochlorperazine 5 mg tablets
c13M. Ventolin 200 micrograms Accuhaler
bs18. Warfarin sodium 3 mg tablets
a6g2. Heliclear triple pack
k3g1. Fusidic acid 1% eye drops
e91E. Erythromycin 125 mg/5mL sugar free suspension
c61z. Beclometasone dipropionate 100 micrograms inhaler
da61. Paroxetine 20 mg tablets

4. Discussion

By integrating text mining, feature selection, and machine learning, our study provides
a novel methodology for building a predictive model capable of automatically identifying
influential risk factors from primary care records with good predictive performance.

Using this methodology, we identified 33 most predictive variables of age, gender,
deprivation, comorbidities, medication and medical procedure. Analysis of the clinical
implication of these variables revealed that most of the predictors of readmission relate
to comorbidities of recurrent minor illness (e.g., recurrent tonsillitis, non- healing open
wounds, ingrown toenails, impacted cerumen (wax in ear)). Males with a history of
recurrent minor illnesses are at increased risk of readmission, indicating that patient
profiling could help with support at discharge and more targeted use of antibiotics. Each
such condition may not be directly important in the outcomes of Campylobacter infection, but
combined, they give a profile of individuals that have a history of chronic minor illness and
may be less well equipped to take care of themselves. These ‘at risk’ patients may require
additional support at discharge to reduce readmission risk. Such support could include
enhanced patient education during discharge, conducting follow-up visits or medication
reconciliation [50]. These ‘at risk’ patients contrast with the profile of patients least likely to
be re- admitted, typically younger females with a history of seeking treatment for bacterial
infections and taking medication for illness. Cystitis has emerged in our study as the
most effective variable in predicting no readmission for the campylobacter. Campylobacter
infection patients with cystitis had a lower risk of readmission once they were discharged.
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Perhaps this signals the profile of the person with the least chance of readmission is more
likely female and reports bacterial infections. The predictions identified in this study
therefore provide a justification for using comorbidity as an indicator in the LACE index as
assessed by Charlson comorbidity index to predict readmissions.

There are several advantages to the machine learning approach employed in this study.
First, it works efficiently with a large and very high dimensional dataset for developing
predictive models, which allows the predictive models to avoid the challenges of dimen-
sionality [51]. Second, most machine learning algorithms fail to work with imbalanced
datasets due to subject to a frequency bias in which more emphasis is placed on learning
data observations with more occurrences. Our methodology integrates a cost-sensitive
learning scheme to effectively identify the influential factors. Third, different from clas-
sic unsupervised term-weighting methods including frequency, our methodology used a
supervising term weighting method to generate patient representations by considering
the disparity of term distributions across data classes. This provides a foundation for
identifying predictive factors with good capacity for distinguishing the outcomes of health
conditions. Fourth, different from existing readmission predictive models without consid-
ering model generalisation performance during construction, our methodology centred
on generalisation performance of the constructed model by adopting optimal model se-
lection scheme and using independent data subsets for the different purposes of model
constructions, hyper-parameter identification and model evaluation.

However, the proposed methodology has some limitations. It requires a high com-
puting load to build a robust prediction model, and extensive cross-validation to evaluate
the potential predictors identified. Furthermore, there are variations unexplained by this
prediction model and additional information about the infections (strain, severity) and the
symptoms are needed to improve the prediction performance.

This study was developed with a focus on campylobacter infection related admissions,
future studies should explore the usability/fittingness of such machine learning and state-
of-the-art methods of natural language processing, such as transformer models such as
BERT [52], BioBERT [53], for word representations in readmission prediction.

5. Conclusions

By identifying predictors of readmission for campylobacter infections in primary care
setting, we conclude that patients with a history of recurrent minor preventable illnesses
may need greater support upon discharge from hospital to prevent readmission. This is
important for reducing the burden on secondary care services that readmission represents
and in improving care for patients. The effectiveness of this approach demonstrates the
potential in machine learning methods in adopting personalised medicine to meet the goal
of reducing preventable readmissions.
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Appendix A

Appendix A.1. zR: Supervised Term Weighting Metric

As each patient is described by a series of read codes and additional categorical
demographic variables, these codes and variables can be treated as terms as carried out in
the text mining. In this way, mining electronic health records in primary care and secondary
care settings corresponds to the task of text categorization which automatically classify
textual documents into different predefined semantic classes. Certainly, different terms in a
document (i.e., a patient record here) often make different contributions to the semantics of
the document. Term weighting is an important step to assess the importance of terms in
classifying unlabelled natural language documents.

In this study, we consider a term weighting scheme by which the more important term
should be the one with more concentrated occurrence in one class (positive class/negative
class) than the other class (negative class/positive class). To formalize this idea, we use a, b,
c, and d to denote the number of different patient records, as listed below:

• a = the number of patient records in the Class 1 that contains the term t.
• b = the number of patient records in the Class 1 that does not contain the term t.
• c = the number of patient records in the Class 0 that contains the term t.
• d = the number of patient records in the in Class 0 that does not contain the term t.

where the Class 1 is the category of patients re-admitted to hospital, the Class 0 is the
category of patients not re-admitted to hospital. Then we can have a contingence table of
term t across the two classes of patients (see Table A1).

Table A1. Contingence table of term t across the two classes of patients.

Term t

Yes No Sum

Class 1 a b N1.
Class 0 c d N0.

Sum N.1 N.0 N

where
N.1 = a + c, N.0 = b + d, N1. = a + b, N0. = c + d, N = a + b + c + d.

Then we first have the information gain of the term t defined as

ig =
a
N
·log

(
a·N

N.1·N1.

)
+

b
N
·log

(
b·N

N.0·N1.

)
+

c
N
·log

(
c·N

N.1·N0.

)
+

d
N
·log

(
d·N

N.0·N0.

)
where the base of this logarithmic operation (log) is 2. Information gain computes the he
impurity in class elements by following the concept of entropy while aiming at decreasing
the level of entropy.

We propose a supervised term weighting-based relevance metric, zRelevance (zR),
to describe the situation of the term t which occurs more often in one class than in the
other class.

zR = pt
1· log

(
2 +

a
max(c, 1)

)
+ pt

0· log
(

2 +
c

max(a, 1)

)
where pt

1 and pt
0 are the relative frequencies (probabilities) of term t occurring across the

patient records of different classes:

pt
1 =

a
N.1
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pt
0 =

c
N.1

The weight for the term t is finally assigned as

W(t) = zR

Appendix A.2. TF-zR Approach to Creation of Term-Patient Matrix

Assuming there be m patients and n terms in the database (i.e., each patient is charac-
terized by these n terms). Let t fij represent the frequency of the term tj in the records of the
patient pti. Then the Term-Patient (TP) matrix used to represent the relationships between
clinical terms and outcomes can be generated as

TPij = t fij·W
(
tj
)

where W
(
tj
)

is the zR relevence metric defined above.
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