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ABSTRACT 

Generalized Linear Models (GLMs) (McCullagh and Nelder, 1989) provide a 

unified fi'amework for fixed effect models where response data arise fi'om exponential family 

distributions. Much recent research has attempted to extend the framework to include 

random effects in the linear predictors. Different methodologies have been employed to 

solve different motivating problems, for example Generalized Linear Mixed Models 

(Clayton, 1994) and Multilevel Models (Goldstein, 1995). A thorough review and 

classification of this and related material is presented. In Item Response Theory (IRT) 

subjects are tested using banks of pre-calibrated test items. A useful model is based on the 

logistic function with a binary response dependent on the unknown ability of the subject. 

Item parameters contribute to the probability of a correct response. Within the framework 

of the GLM, a latent variable, the unknown ability, is introduced as a new component of the 

linear predictor. This approach affords the opportunity to structure intercept and slope 

parameters so that item characteristics are represented. A methodology for fitting such 

GLMs with latent variables, based on the E M algorithm (Dempster, Laird and Rubin, 1977) 

and using standard Generalized Linear Model fitting software GLIM (Payne, 1987) to 

perform the expectation step, is developed and applied to a model for binary response data. 

Accurate numerical integration to evaluate the likelihood functions is a vital part of the 

computational process. A study o f the comparative benefits of two different integration 

strategies is undertaken and leads to the adoption, unusually, of Gauss-Legendre rules. It is 

shown how the fitting algorithms are implemented with G L I M programs which incorporate 

FORTRAN subroutines. Examples from IRT are given. A simulation study is undertaken to 

investigate the sampling distributions of the estimators and the effect o f certain numerical 

attributes of the computational process. Finally a generalized latent variable model is 

developed for responses from any exponential family distribution. 
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CHAPTER 1. INTRODUCTION. 

1.1. LATENT VARIABLES AND THEIR APPLICATIONS 

Latent variables have been described as "random variables which cannot be 

measured directly, but which play essential roles in the description of observable quantities." 

(BrilHnger and Preisler, 1982). In a latent variable model an attempt is made to explain 

measured observable (or manifest) data by including the effect of at least one covariate that 

cannot be measured. For example, in social survey data, it might be thought that the 

answers to questions on political outlook are determined by a variable which could be 

labelled 'conservatism', and which individuals could be assumed to possess in varying 

degrees. An individual's conservatism, i f such a quantity exists, cannot o f course be 

measured in any direct way. Instead it manifests itself through attitude and behaviour. 

Attitude and behaviour can be investigated by questionnaires or recorded in other ways. A 

latent variable model for the data gathered in such a way would then include an unknown 

covariate to represent the effect of this underiying 'conservatism*. 'Quality o f life' is another 

latent variable which belongs to the social sciences. 

A latent variable is therefore hidden or in some sense hypothetical. Probably the first 

application considered arose from the work of Spearman (e.g. Spearman, 1904) in the early 

20th century. He was interested in studying human abilities and introduced the concept of 

general intelligence which could not be directly measured but which appeared to influence 

the results of various different types of tests. Work on measuring IQ and other types of 

'latent traits', as they are termed, continues in the field of Item Response Theory (IRT) 

where the responses to test questions are modelled as dependent on the unknown abilities. 

Economics is another field in which latent variable models are used. A random 

variable which could be called 'business confidence' probably contributes to such things as 

the level of prices on the stock exchange and the value of international currencies. The exact 



nature of'business confidence' is debatable since it arises from a variety o f differing opinions 

and attitudes, but there is little doubt that the resuU has a tangible effect on the economy 

and that it is useful to be able to account for it in economic modelling (Bartholomew, 

1987). Latent variable models are also found in engineering. For example, in optical signal 

estimation an unobserved random signal is of interest. The signal is associated with the 

absorption of photons which can be observed and measured (Brillinger and Preisler, 1982). 

Sometimes, although a latent variable may be measurable in principle, it is often too 

difficult to record an accurate measurement in practice. For example, Brillinger and Preisler 

(1982) write about a latent variable model in medicine where red blood cell counts depend 

on the volume of a blood sample which cannot be accurately recorded. In economics, 

personal wealth comes into this category. In Down's Syndrome screening the date of the 

last menstrual period and therefore foetal age is a covariate that is often measured with 

error. Accident counts are predicted by traffic flow rates which contain errors (Wright and 

Bamett, 1991) and there are latent variables models for count data which have applications 

in Hematology and Cardiology (Bamett and Wright, 1992). 

12. ANALYTICAL FRAMEWORKS FOR LATENT VARIABLE MODELS 

In the past latent variable models have been developed within several different 

statistical frameworks. For example there are random effects models where one or more 

unknown random variables are assumed to contribute towards the observed data. A 

distribution is usually assumed for each of these variables and interest is centred on the 

variances of their distributions and thereby their contributions to the overall variability of 

the data. In some models each individual observation depends on a different realisation of a 

random covariate; in others a single realisation influences a group o f observations, which 

are correlated as a result. In the latter case a clustering or nesting effect is produced in the 

data. I f several random variables are included in a model there may be several 



corresponding layers of nesting. Alternatively, the random effects may produce a crossed 

design where realisations of the random variables influence the observations in different 

combinations but without implying a hierarchy. More complicated models can include both 

hierarchical and crossed effects. 

The classic latent variable model is the factor analysis model (Bartholemew, 1987). 

Starting vAih a correlation or covariance matrix for continuous manifest variables, the 

analyst tries to discover an unknown number of underiying continuous latent variables 

(factors) which account for the relationships amongst the observations. Also to be 

determined are the slope coefficients (factor loadings) on each unknown factor. These are 

directly related to the variances of the factors, so estimating variances in random effects 

models and estimating factor loadings in factor analysis models are essentially equivalent 

means of estimating the efifects of latent covariates. Latent trait and latent class analysis 

(Andersen, 1990) are two extensions of factor analysis designed to deal with discrete 

manifest variables; the former is appropriate when the latent variables are continuous and 

the latter when they are categorical. 

In the examples discussed in Section 1.1 the response data may take many different 

forms. It may be normally distributed continuous data or, as in intelligence tests or social 

survey questionnaires, it may be sets of dichotomous or polytomous responses. 

Alternatively in the transport and medical applications mentioned the data is in the form of 

Poisson counts. Linear random effects models for continuous data are well developed. 

When observations are discrete much attention has been given to the problem of 

incorporating random effects into various well-known linear fixed effects models. For 

example for binary data McCulloch (1994) used a probit model with random effects and 

Drum and McCullagh (1993) fitted a logistic model with crossed random effects; 

Tsutakawa (1988) and Hagenaars (1993) have considered mixed log-linear models for 

count data with a Poisson distribution. 



Generalized linear models (GLMs) (Nelder and Wedderbum, 1972; McCullagh and 

Nelder, 1989) provide a unified framework for fixed effect models where the response data 

can arise fi-om a variety of different probability distributions within the exponential family. 

Several attempts have been made in recent years to develop methodology to deal with 

random effects within the GLM fi*amework. Various researchers have explored different 

approaches to these models, often referred to as generalized linear mixed models 

(GLMMs). For example, Liang and Zeger (1986) and Zeger, Liang and Albert (1988) 

developed 'generalized estimating equations' (GEEs). Later, Zeger and Karim (1991) and 

Karim and Zeger (1992) used Gibbs sampling (Gelfand and Smith, 1990) within a Bayesian 

fi-amework to find parameter and variance component estimates. 

A principal area of past and current research related to the G L M M is maximum 

likelihood (ML) estimation using the Expectation-Maximization (EM) algorithm (Dempster, 

Laird and Rubin, 1977). References for this work include Anderson and Aitkin (1988) and 

Aitkin and Francis (1996). Another growing research area which is attracting perhaps the 

majority of current interest focuses on the related techniques of penalised (or predictive) 

quasi-likelihood (PQL) and marginal quasi-likelihood (MQL) estimation which depend on 

the linearization of non-linear models (Breslow and Clayton, 1993; McGilchrist, 1994; Lee 

and Nelder, 1996). 

Multilevel modelling (Goldstein, 1995) grew out of a need to provide a general 

methodology for analysing a variety of data whose structure depended on one or more 

random effects. Originally developed for mixed linear models (Goldstein, 1986) multilevel 

procedures have been extended to a variety of non-linear models (including GLMs) where 

the random effects may be nested or crossed. Multilevel modelling involves MQL and more 

recently PQL procedures which depend upon a linearization o f the model. Amongst 

widespread applications, Pickles, Pickering and Taylor (1996) use multilevel modelling 

softAvare to fit a mixed generalized linear model with random effects. 



The analysis of longitudinal or repeated measures data (e.g. Diggle, Liang and 

Zeger, 1994) is a wide field where GLMMs or other latent variable models may be 

applicable. 

Latent variable models have been widely exploited in IRT in recent years and a 

separate body of research has developed in this area. Many of the approaches that have 

been applied to mainstream random effects models have also been applied to IRT models. 

The EM algorithm has been used to obtain maximum likelihood estimates of item 

parameters (Bock and Aitkin, 1981) and for joint estimation of item parameters and ability 

covariates (Mislevy, 1989). A Bayesian framework has also been used (Swaminathan and 

Gifford, 1986) and this has been combined with Gibbs sampling (Albert, 1992). More 

recently attention has turned to multidimensional models, that is models with more than one 

latent variable (Segall, 1996). Using a factor analysis framework Meng and Schilling (1996) 

have developed a Monte Carlo Expectation Maximization (MCEM) algorithm using the 

Gibbs sampler to fit a multidimensional IRT model. 

Finally latent variables play a large part in errors-in-variables modelling (Fuller, 

1987). The observed covariates in models of this type are considered to consist of an 

unobserved latent covariate and an error component. Estimation of the variation of this 

error component and of the parameters of the distributions of the latent variables is again of 

interest in modelling the variability of the response data. 

1.3. A MOTIVATING EXAMPLE. 

One of the major concerns of this thesis is the use of latent variable GLMs in the 

analysis of item response data. A specific example of an IRT application where these models 

have been employed is a timed item test of mental arithmetic described by Wright et al 

(1994). By applying latent variable GLM methodology to the response data obtained from 

this computerised test the researchers were able to model the relationships between the 



parameters and the characteristics o f the test items. The subjects were presented with a 

series of mathematical equalities to which they were asked to respond 'true' or 'false'. For 

example the correct response to the equality 12-17+9=4 is 'true' and to 17+19-23=15 the 

correct response is 'false'. Considerable attention was given to the design of items at five 

different levels of difficulty with strict rules defining each expression type. 

An additional feature of the test design was the control of response time for 

individual items. Tests of this type are often subject to 'strategy' on the part of the subjects 

who have to choose between speed and accuracy. Because the overall time is limited a 

subject may decide to devote it to completing a few items as accurately as possible, or 

alternatively he or she may rush through the test answering all the questions with little better 

than a guess. A scoring system which can effectively compare the abilities of subjects 

adopting these opposing strategies has yet to be devised. Furthermore it can be argued that 

different skills are in fact being employed in the two cases. To overcome the confounding 

effect of strategy the mental arithmetic test was presented in a way which controlled the 

response time of the candidates. Each equality was shown on the computer screen for a set 

period of 4, 6 or 8 seconds. At the end of this period the subject was told to 'respond now' 

and given 1.5 seconds to press the right or left mouse button to indicate his or her answer. 

In this way both the lower and upper limits of the time allowed are fixed and become a 

characteristic of the test item. 

The ten basic expression types, i.e. true and false at each of the five difficulty levels, 

were each presented for each of the three time periods to give a block o f 30 different item 

types. A 60 item test was then constructed fi"om two such blocks and given to 293 subjects. 

The results were analysed using the latent variable generalized linear modelling software 

developed by the author at the Human Assessment Laboratory at the University of 

Plymouth and described later in this thesis. The IRT fi-amework requires that a logistic 

fiinction known as the item response curve should be fitted to each item. This curve, which 



maps ability to probability of success on a given item, is defined by three parameters, the 

guessing parameter or lower asymptote, the difficulty or location parameter and the 

discrimination or slope parameter. The guessing parameter is set at 0.5 for all the items. The 

difficulty and discrimination parameters are modelled as various functions of the expression 

type and/or response time. The ability covariates appear in the model as unknown random 

effects. Using the latent variable G L M software several different models with item 

parameters structured in this way can be fitted to the data. 

The results of this analysis suggested that this particular data set could be adequately 

described by a model with a constant discrimination parameter and a difficulty parameter 

determined by the item time and the item difficulty level. The item response curves of 60 

items were therefore defined by eight parameters. These results can be generalized to 

predict the difficulties of new items fi^om their expression type and permitted response time 

and used for the construction of new item banks and new tests. In this way latent variable 

GLMs provide a formal methodology for modelling item parameters in terms of the 

structural characteristics of the items. 

1.4. GUIDE TO THE THESIS. 

This thesis consists of ten chapters the first of these being a short introduction to the 

topic of latent variables. 

The subject of the thesis is latent variable generalized linear models, an immensely 

v^de topic. One of the objectives of the research has been to identify and bring together 

many of the diverse models which may be classified under this heading and to trace their 

common characteristics. As a result the methodology developed within this thesis is placed 

in its context and its relationship to the many contributions which have been made in the 

field is defined. Chapter 2 consists of a review of some related linear models which include 

unknown covariates. In Chapter 3 the theory of generalized linear models and its extension 



to GLMs with random effects is outlined. This then leads to a review of the published 

literature in the field. Much of the research referred to earlier in this introduction is 

discussed here in greater detail. Ln view of the major interest of this thesis in modelling in 

the IRT field, a more detailed examination of some of the models used for item response 

data is presented in Chapter 4 and the relationship of IRT models to latent variable GLMs is 

clarified. 

Chapter 5 is concerned with the methodology for M L estimation that has been 

developed for latent variable GLMs. It contains a discussion of the EM algorithm and the 

generalized linear modelling software package GLIM (Payne, 1987). These two elements 

are combined to produce a general fitting algorithm for models in this class. A shortcoming 

of the procedure is the lack of a convenient means of calculation for the standard errors of 

the resulting parameter estimates so some possible solutions to this problem are explored. 

Chapter 6 moves fi"om the general to the specific. A binary response model for IRT 

applications is discussed at some length and it is shown how, by considering the 'expected 

complete data log likelihood ftinction', the general fitting algorithm developed in Chapter 5 

can be applied to this model. The computational techniques used to fit the model require the 

application of a method of numerical integration. In Chapter 7 the influence of the choice of 

integration strategy on parameter estimation is investigated. Previous researchers (e.g. Bock 

and Aitkin, 1981) have favoured Gauss-Hermite integration. This alternative method is 

contrasted with and compared to the Gauss-Legendre method of approximation which was 

adopted in the methodology presented in this thesis. 

Chapter 8 describes the implementation of the general fitting algorithm using EM 

and GLIM for fitting the binary response model developed in Chapter 6. There is a detailed 

description of software written for the analysis of data fi-om the timed mental arithmetic test 

referred to in Section 1.3. The software is also used to analyse a second example, a timed 

transitive inference test. The contents of Chapter 9 evolved from a pilot simulation study. It 



became apparent during this study that an analysis of the effect of the variables required by 

the computation process at run-time (such as starting values) was needed. In this chapter 

several issues of this nature are discussed. 

Chapter 10 is the final chapter of the thesis. In this chapter the latent variable model 

for binary responses is extended to Poisson and normal data. It is then shown how the 

methodology can be extended to all response data fi-om the exponential family in order to 

arrive at a truly generalized latent variable linear model. 



CHAPTER 2. LINEAR MODELS WITH RANDOM E F F E C T S . 

2.1. INTRODUCTION. 

This chapter consists of a review of some of the linear models whose development 

has led up to the latent variable GLM. Emphasis is placed on the variance/covariance 

structure of the models and the additional components of dispersion introduced by the 

inclusion of latent covariates. In order to establish a fixed reference point Section 2.2 begins 

with the general linear model with fixed effects; this model has a single dispersion 

parameter, the error variance. The general linear model has been extended to a general 

mixed model in order to incorporate components of variation attributable to random effects 

(or latent covariates). Extra variation may also arise ft^om grouping or nesting which leads 

to non-zero covariances between the responses. In Section 2.3 it is shown that the same 

model results whether random effects are assumed or whether components of the 

covariance matrix produced by clustering are modelled directly (variance components 

models). 

The same distinctions between fixed and random effects are found in factor analysis 

models (Section 2.4). Here responses are modelled as linear combinations of small numbers 

of unknown latent variables, plus an independent error. At the start of analysis the number 

of unknown factors is itself usually unknown and the problem is to find the smallest number 

of underiying variables which will explain the correlations between the responses. In the 

factor analysis model as in other random effects models the covariance structure depends on 

the parameters of the distribution of the latent variable (hyperparameters). 

2.2. THE GENERAL LINEAR MODEL. 

The general linear model, 

- y=Xp_^e, - - - - -(2.1) _ 

10 



where >̂  is a realisation of / , an n -vector random variable, is one of the most widely used 

models in applied statistics. Models of this form include simple and multiple regression, 

analysis of variance and analysis of covariance (see, for example. Draper and Smith (1981) 

and Hocking (1985)). In this model Y consists of a systematic and a random component. 

The systematic component is the weciorXfi formed fi'om X, a known n x p design 

matrix, and /?, an unknown p-vector parameter. The random n -vector E of which e is a 

realisation has E{E) = 0 and Var[E) = V - a^I„, where/„ is the n x n identity matrix. 

The basic normal-theory model requires in addition that the errors are independently 

normally distributed (v^th mean zero and constant variance o^). 

The response variable has mean vector 

so the expected value of each response is a linear combination of parameters representing 

treatment effects and/or regression covariates. Both are considered fixed mathematical 

quantities which do not contribute any extra random variation to the model. 

In addition the dispersion matrix V has a very simple structure: 

Var{Y) = V = a'l„ 

This is because the responses are independent, the variance is assumed constant over the 

observations, and all the variance is attributed to a single random component. 

2.3. VARIANCE COMPONENT AND RANDOM EFFECTS MODELS. 

2.3.1. Variance Components. 

Often situations arise when the assumptions of independence and constant variance 

for Kare violated. Typically this occurs when the observations are nested in some way. 

Suppose there are / units or clusters on which observations are made These may be, for 

11 



example, human or animal subjects, or natural groups such as family units, classes of 

students or fields of wheat plants. Suppose a series of J observations is made on each of 

the main units, to give I x J = n responses. There may be different treatments or 

covariates to distinguish between the units and/or the subunits. It would be reasonable to 

surmise that a response on a particular unit is more closely related to another response on 

the same unit than to a response on a different unit. The n observations can no longer be 

considered mutually independent and the general linear model (equation 2.1) with its single 

dispersion component is inadequate to represent the data. 

A variance components model is one in which the stochastic dependence amongst 

the data is directly modelled in the covariance matrix E where Y - A^JW(/i,z) (Lindsey, 

1993). In a simple example, the data consist of n observations, as described above, with J 

measurements from each of / clusters. A possible assumption is that the covariance of any 

two responses from the same cluster is a constant, say T , and that this value applies to all 

the clusters. Responses from different clusters remain independent however. This is a 

constant covariance model. The variance of each observation has two components: the 

within cluster variability, c r \ which is again assumed constant for all clusters, and the 

between cluster variability which is assumed equal to the within unit covariance r . 

The J X J dispersion matrix for the observations in cluster i ,V-, is therefore the 

same for a l l / , / = 1,2,...,/: 

T CT̂  + r . . . r 

T 

Therefore the n x // dispersion matrix Zis block diagonal with the / identical matrices V-, 

forming the blocks on the diagonal and all other elements zero: 

12 



K, 0 ••• 0 
0 ••• 0 
• • • • 

0 0 Vj 

The covariance structure can therefore be specified as 

E = /„ where V, = T\J + a V , (2.2) 

w h e r e i s the J x J identity matrix and 1̂  is the J x J matrix consisting entirely of 

ones. 

In this model the component r may be negative, indicating greater variability within 

the units than between them. This is acceptable since r is a covariance and a component of 

total variance, not a variance by itself (Lindsay, 1993). In more complex variance component 

models, the variance may be broken down into more than two components corresponding 

to ftirther levels of nesting. In a 2-way design (Rao, 1973; Ch.4) there are c responses in 

each of pqceWs arranged as, say, p rows and q columns. Components o f variance can be 

defined to model the correlation between observations. A pair in the same cell are assumed 

to have a common covariance equal to the sum of the following: the covariance between 

observations in the same row, the covariance between observations in the same column, 

plus any covariance attributable to an interaction effect between rows and columns. 

Assuming all other pairs of responses are independent, the variance of each observation is a 

sum of these three components plus the common between-responses variance resulting fi^om 

the independent error term. 

2.3.2. Fixed Effects, Random Effects and Variance Components. 

The differences between fixed and random effects are fully described in Searle 

(1971, Ch.9). Fixed effects are not subject to a sampling process. An experiment may be 

designed to estimate the effects of different levels of a factor. The treatment levels are pre-

13 



chosen and there is no interest in any other levels or in the parameters of any general 

population of effects. Inferences drawn fi-om the data concern only the chosen factor levels. 

Similarly covariates in a regression model are pre-determined quantities. In contrast, a 

random effect in a statistical model corresponds to an independent variable which can be 

considered to be drawn at random fi-om a larger population of similar variables. The value 

of the realisation of the variable is often unknown and seldom of direct interest. What is of 

interest is the variation in the data which is attributable to the random effect. Inferences 

drawn fi*om the data therefore concern the whole population. For example, when a social 

survey is conducted by different interviewers, there is a measurable interviewer effect on the 

data (Anderson and Aitkin, 1985: Anderson, 1988). The contribution of an individual 

interviewer to the responses is not important. However, the variability amongst the general 

population of interviewers adds to the variability of the responses and as such becomes a 

component of variance in the model. 

In the literature the terms Variance components model' and 'random effects model* 

are fi-equently used interchangeably. Whereas the variance components model above 

emphasises the homogeneity found within the main units, the stress in the random effects 

model is on the extra variation across these units. Although the philosophy behind them may 

be different, resuhing models can be identical. In a random effects model the total variance 

in the model is again partitioned into components. Because all the components are defined 

as true variances there is a restriction on them to be positive. The random effects model, i f 

so defined, is therefore less general than the direct modelling of the covariance matrix 

described in Section 2.3.1. 

In this section a model described as a variance components model and a model used 

for random effects are examined and found to be identical. 
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2.3.2.1. A General Model for Variance Components. 

A general variance components model (Rao, 1973; Ch.4, and, for example, Jenrich 

and Sampson, 1976) can be written 

J/ = + Z, r ^ + Z , / ^ +.. .+Zc r ^ + £ (2.3) 

Here the response vector is a realisation of an w-vector random variable with a 

multivariate normal distribution i.e. where // and Z are determined by the 

components of the model (2.3). Xp is the H-vector of systematic effects seen in the general 

linear model and e is an /; -vector of independent random error terms with each term a 

realisation of the random variable E, - A^|o,a;^J. The Z^s are known n x design 

matrices, where c - 1,2,...,C. These matrices consist of dummy variables which indicate the 

clusters to which the response variables belong. Each Z^ corresponds to a level of 

clustering. The s are unknown -vectors of random values with zero mean vector and 

variance matrix o^l^^. Each of these vectors is associated with a level o f nesting and the 

unknown components of the vector can be considered to represent the effect of the clusters 

at that level in the hierarchy. Because of their common variance all the units at a particular 

level contribute the same component of variance to the model. The x /s and e_ are assumed 

independent of each other. 

It follows that 

£ ( > : ) = / i = ^ ^ 

and 

The parameters to be estimated are the fixed effects y?, and the variance components 

a / , a 2 \ . . . , a c \ a / . 
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The following example will clarify the relationship between the model in (2.3) and 

the model directly specified in the example in Section 2.3.1 both having the same covariance 

structure. For the sake of simplicity let the data consist of 4 observations, 2 on each of two 

subjects which means I = J = 2 and // = 4 . The response y^j refers to the j th observation 

on the / th subject. There is only one level of clustering so C = 1. The structure of the mean 

vector / i will not be considered. The model can be written 

or, more fully, 

1 0" 

yn 1 0 > l " yn 
0 1 0 1 

yii. 0 1 _̂ 22_ 

where / , - A^(o,cr,̂ ) represents the effect of the /th subject. 

The covariance matrix is: 

S = 

2 2 0 0 2 0 0 0 
2 2 0 0 0 2 0 0 

+ 0 0 2 ^/ 0 0 2 0 

0 0 2 2 0 0 0 

(2.4) 

By putting a / = r , the within subject covariance and between subject variance, and 

a / = , the within subject variance, the dispersion matrix in equation (2.4) can be seen to 

have the same structure as that in equation (2.2). However in this model all the variance 

components are defined as true variances and therefore must all be positive. In this sense the 

model is less general than that described in section 2.3.1 because it does not allow for 
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negative correlations between observations on the same unit. The situation where there is 

greater variability within the clusters than between them is not allowed for. 

2.3.2.2. The General Linear Mixed Model. 

The general linear model can be extended to a mixed model which includes the 

possibility of both fixed and random effects (Searle, 1971; Ch. 10). 

y_ = Xp^Zi^e (2.5) 

Again y is the response // -vector and Xfi is the systematic component vector which 

appears in (2.1) and (2.3). The error vector e_ is fi"om a normal distribution with mean 0 

and variance R = o^l^. Zy is an additional random component vector that does not 

appear in (2.1). Z is a known n \ q design matrix and y is an unknown <7-vector o f 

mutually independent random effects with expected means 0 and variance matrix D. D is a 

<7x^ diagonal matrix with elements a^^,u^^,...,a^^,a^^,a^^ ,...,a^^ ,...,<JC .a^^,...,ac , 

where the components of y associated with the cth level of nesting (c ^ i,2,...,C: 

R\ + 2̂ +" "^^c = ^ ) share a common variance a / , which therefore appears on the 

diagonal o^D q^ times in succession. No assumption about the distribution of y_ is made at 

this stage. Element / of Zy is a linear combination of the random effects associated with 

response y.. y and e_ are assumed independent of each other. 

This formulation is exactly the same as (2.3) except that the design matrices 

Z,,Zj,...,Z^;, and the vectors / 2 ' " '^c ^^^^ combined in one matrix Zand one 

vector y (Harville, 1977). That is 

z = [z,;z2;-:Zc] 
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Therefore 

E{r) = ̂  = x^ 

and 

Var{y) = Z = ZDZ'' + R where R = a / / „ 

Since D and R are diagonal and have diagonal elements equal to the variances of the 

random effects and error terms, the variances and covariances that appear in I are sums of 

these variances. In fact the structure of Z is again exactly the same as in equations (2.2) and 

(2.4). 

In their study of the effect o f teaching styles on pupil achievement, Aitkin ei al 

(1981) used a mixed model of this type. Here, a child's score is dependent on a covariate 

(pre-test score), a fixed effect (teaching style) and a random effect (teacher ability). 

2.4. FACTOR ANALYSIS MODELS. 

The origins of factor analysis (Anderson, 1984; Bartholomew, 1987) lie in the first 

decade of this century. The concepts, models and methods were first devised to suit the 

needs of psychologists in order to assist the study and testing of mental abilities. The subject 

also has applications in other social sciences and to economic data. 

It is supposed that a vector of observed responses y can be explained by dividing 

each observation into two parts, as in all the models examined in this chapter. The 

first is a "predictive" component which is a linear combination of a small unknown number 

of unobservable underiying (i.e. latent) factors, each one of which might be influencing a 

subset of the observations. These subsets might not be mutually exclusive. The second part 

is an independent error term peculiar to a particular observation. This assumption is a 

necessary consequence of the requirement that the mean of response y., conditional on the 

latent factors that enter its predictive component, is independent. Factor analysis is 
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concerned with estimating the number and nature of the latent factors and the parameters of 

the equations that give the conditional means of the responses. 

As an example, suppose the response vector consists of a series of scores obtained 

by one individual on a set of test questions. It might be that a subset of the questions test 

spatial ability, another subset tests reasoning ability and there are also some questions that 

test both. It is hoped that the result of fitting a factor analysis model reveals that two factors 

can explain the responses, with the responses to those items requiring good spatial ability 

for success depending only on the spatial ability factor in the predictive component, the 

responses to those items requiring reasoning skills depending on the factor representing 

reasoning ability, and the responses to those items requiring both abilities having a 

predictive component consisting of a linear combination of both factors. 

The coefficients of the factors in the predictive component are termed the factor 

loadings and are equivalent to the slopes on the covariates in a regression model. The 

factors can be treated as fixed parameters i f interest is centred on the particular subjects in 

the investigation or experiment. More commonly the factors are assumed to be random 

variables drawn from a wider population. This choice of analyses mirrors that found in fixed 

and random effect general linear models. 

2.4.1. The Linear Factor Model. 

The linear factor model is 

>; = / i + Z / + £ 

where ^ is the //-vector of observed responses with mean vector / i (c.f fixed effects vector 

xp in general linear model) and covariance matrix E. / is the ^/-vector of factors {q < / / ) 

and Z is the nxq matrix of factor loadings. I f / is fixed then the model is equivalent to the 

general linear model (equation 2.1), with Zf incorporated into XP. I f / is a realisation of 
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random variable F , it is equivalent to the general linear mixed model (equation 2.5). As 

usual, e is the /i-vector of independent random errors with E{E) = 0 and l^ar{E) = R 

(diagonal). 

One of the objectives of factor analysis is to determine the least possible the 

number of factors, so that the conditional means of the y^ are independent. I f a subset of 

responses depends on one or more conmion factors then there is a correlation amongst 

those responses. If, by determining and conditioning on those common factors, the 

correlation is eliminated then it is assumed that there are no other factors influencing the 

response. The conditional means are written 

£(K1/) = ̂  + Z / 

and so by implication 

Var(y\f) = R 

Therefore in the conditional distribution of ¥ ] / only the mean depends on / . 

I f the factors are random variables then it is assumed that E{F) = 0, in order that 

E{V) = / i , and yar{F) = D . I f D is diagonal the factors are 'orthogonal* (i.e. independent i f 

F is distributed normally); i f not they are termed 'oblique'. The covariance structure of the 

model is therefore given by 

Var{y)=7: = ZDZ^ +R 

This is identical to the covariance matrix previously seen in the general linear mixed model 

in Section 2.3.2.2. and in the variance components models in Sections 2.3.1 and 2.3.2.1. 

The assumptions that the random errors E and the factors F have normal distributions are 

needed to ensure the normality of the distribution of the responses. 

By assuming standard normal distributions for the factors, D can be replaced by the 

identity matrix, which means that 
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Here the variances that enter the structure of S are made up of additive sums of squares of 

the factor loadings plus an error variance. The covariances are sums of products of the 

common factor loadings. I f D is not the identity matrix but is diagonal then each component 

of variance (apart fi'om the error variance) is multiplied by the variance of the associated 

factor and each component of covariance is multiplied by the variance of the associated 

common factor. To illustrate this consider a model with 3 observations and 2 factors. The 

first factor enters into the model for the first observation, the second factor enters into the 

model for the second observation and both factors enter into the third model. The matrix of 

factor loadings is therefore of the form 

Z = 
0 

0 

« 3 « 4 

Let the dispersion matrix of £ = be 

D = 
0 

0 

and let the error variance matrix be 

R 

This results in the following covariance structure 

0 a^d^^a" 
0 

a^a^d^ a^a^d^ a^d^ + a^d^ + a ' 

a.a^d^ 

Thus by assuming identical standard normal distributions for the factors (i.e. by 

putting c/, = = 1) the variances are merely absorbed into the factor loadings. 
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2.4.2. Other Factor Models. 

An important area of recent research in factor analysis deals with categorical 

responses variables which depend on unknown normally distributed factors. Included in this 

field, also known as latent trait analysis, are many of the models used in Item Response 

Theory (see Chapter 4). 
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CHAPTER 3. GENERALIZED L I N E A R MODELS AND 

GENERALIZED LINEAR MODELS WITH RANDOM E F F E C T S ^ 

3.1. INTRODUCTION. 

Generalized linear models, the basics of which are outlined in Section 3.2, were first 

introduced in the 1970s. Due to the ready availability of software to implement the 

associated fitting algorithms they have proved an invaluable and widely-used tool. 

Formulated to deal with several types of non-normal response including binomial and 

Poisson data, the GLM provides a generalisation of the normal-theory general linear fixed 

effects model. Under the GLM, observations are independent and the variance of each is 

still attributable only to the error component. More recently the term generalized linear 

mixed mode! (GLMM) has been used to describe GLMs which include one or more random 

effects. GLMMs have components of variance and covariance in excess of the dispersion 

due to random error and they are briefly examined in Section 3 .3. This section includes an 

extensive review of the statistical literature that has resulted fi-om research into these models 

over the past 15 years. 

3.2. THE GENERALIZED LINEAR MODEL. 

The models described in Section 2.3 are normal-theory models: the distributions of 

the responses are assumed to be normal. In addition, in the general linear model the 

expected value of the response variable is predicted by a linear combination of the 

explanatory effects. Nelder and Wedderbum (1972) introduced an important generalisation 

of the general linear model. Included within the same theoretical fi-amework were well-

known existing models for responses with non-normal distributions and expected values 

which are non-linear fiinctions of the predictor variables; for example, logistic regression 
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and probit analysis models which link binary responses to continuous covariates, and log-

linear models used in the analysis of contingency tables where the observations are sets of 

Poisson counts dependent on categorical effects. 

The GLM has a structure shared by the models mentioned above and many others. 

In this new class of model the response variable is assumed to come from a member of the 

exponential family of distributions (which includes the normal, binomial, Poisson and 

gamma distributions), and the non-random part of the model is expressed as a 

transformation of a linear combination of effects. In addition the theory provides a general 

fitting algorithm (see Section 5.3.1.). The purpose of this section is to review the principal 

ideas behind GLMs. The theory of the GLM is developed and expanded in the book 

'Generalized Linear Models' (McCullagh and Nelder, 1989). 

3 .2.1. The components of a GLM. 

Assume a vector Y of n independent random variables with expected values 

E{Y.) = . Let the response data be a realisation of y. In the general linear normal-

theory model, y is assumed normally distributed and ^ is equated to the systematic 

component X f i . Under the GLM these assumptions are extended to include responses 

from certain non-normal distributions and situations where E{}^ is a non-linear function of 

the systematic component. 

There are three components of a GLM: these are (1) the error distribution, (2) the 

linear predictor and (3) the link ftinction. These are outlined briefly below. 

3.2.1.1. The Error Distribution. 

Under the G L M it is assumed that the response y. is a realisation of a random 

variable which^has^ distribution from the exponential family of distributions. This means 
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that the probability density function, (or probability mass function) of Y. can be written in 

the following form: 

f r A . < f ) = exp{{y ,-b{e,)) la{<t>)^c{y, ,^)} (3.1) 

where a(.), b{.) and c(.) are specific functions, 9^ is known as the canonical parameter, 

and ^ is a known scale parameter constant over observation y. 

In Appendix A, where the reader is referred for more details, it is shown that 

E(Y) = ^i,=h\d.) 

and 

Var(}^) = ^>"(^)a(^) 

The ftinction h"{6,) is known as the variance function and is dependent upon the mean ; 

it is also expressed as VijuA. a{^) is usually of the form — where the w are known prior 

weights. 

NORMAL BINOMIAL POISSON 

61. Mi 
In 

l+exp(-^,) 
exp(^,) 

Var(}^) /»,exp(g,) 

(l + exp(^,))^ 

exp(^,) 

T A B L E 1. Canonical parameters, means, variances and variance functions of normal, 

binomial and Poisson distributions. 
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Table 1 shows the canonical parameters of the normal, binomial (where TT^ 

represents the expected proportion of successes) and Poisson distributions as functions of 

the respective mean values. The expected values and variances are expressed in terms of the 

canonical parameters and the variance functions as fijnctions of the means. 

3.2.1.2. The Linear Predictor. 

Associated with each response vector ^ is a vector 77 of linear predictors where 

n=^i (3 2) 

X is the n x /? design matrix for the model, the elements of which are Os and Is or values 

of known covariates. The vector Isa. p-vector of fixed effect parameters. The Os and Is 

correspond to the fixed effect parameters which are included in the model for each response 

and the covariates have slope parameters to be estimated. The linear predictor can thus be a 

highly structured combination of parameters. 

3.2.1.3. The Link Function. 

The systematic component / i of a G L M is connected to the linear predictor by a link 

function, usually the same one for each response. That is 

where g(.) is monotonic and differentiable. The linear predictor and the link function 

together describe how the location of the distribution of Y. is explained by the covariates. 

(The mean value fixes the position of the distribution on the numeric scale whereas the 

variation helps define its shape). 

For each member of the exponential family there is a canonical link fijnction which 

transforms the location parameter to the canonical parameter of the given distribution. 

That is, 
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77, =g(|y,) = ^ 

For a normally distributed variable with mean / i . the canonical link fiinction is the identity 

function. That is, 

It =g(M) = M 

In this case the G L M is the usual normal-theory general linear model. When the error 

distribution is binomial with / i . = n., the expected proportion of successes, a logit 

transform is used to give 

77.=g(;r,) = l n - ^ = ^ 

This GLM therefore reduces to the familiar logistic regression model for binomial 

responses. For Poisson variables where fi. = A,, the expected value of the hh count 

Here the canonical link function is the log transform used in traditional log linear models. 

The theory of GLMs is therefore a generalized framework through which various 

normal and non-normal linear and non-linear models can be analysed as one. This 

methodology was originally developed only for fixed effects in the linear predictor; with 

independent responses all variation is accounted for by the error distribution (Section 

3.2.1.1.). 

3.3 THE GENERALIZED LINEAR MIXED MODEL. 

3.3.1. The Model. 

The GLM as described above is formulated for fixed effects in the linear predictor 

and allows for a single component of variance. As in normal theory models it is sometimes 

necessary to include extra sources of variation in GLMs: this has led to the development of 

the generalized linear mixed model (GLMM), defined as a G L M that includes at least one 

random effect (Claytdn^l 994). Under the general linearmixed model (equation 2.5) the -
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means are modelled as the sum of fixed and random effects. There is an obvious 

generalisation to non-normal models: the random effects are added to the linear predictors. 

The «-vector of linear predictors associated through link fijnction g{.) with response 

vector y therefore becomes 

g{M) = r ] = X ^ + Zr (3.3) 

where ^ is a /?-vector of unknowm parameters representing fixed eflfects associated with n x 

p design matrix X and is a ̂ -vector of random effects associated with nxq design 

matrix Z which may be partitioned as in equation (2.3). The distribution firom which the 

random effects are sampled is usually assumed to be multivariate normal with mean vector 

0 and qxq dispersion matrix D where D = 0(0)) and 6; = (Px ,CF^ ,..,,ac), the vector 

of components of variance in the model attributable to the random effects. D is also often 

taken to be diagonal but assumptions about the random effects may vary. 

Under the GLMM responses are conditionally independent with means 

and variances 

Var[Y,\rya{<l>)V{fx,^) 

where <j> is the dispersion parameter and K(.) is the known variance ftinction dependent on 

the conditional mean. 

Suppose the linear predictor for observation with a single random effect y^,^ 

realisation of random variable , is 

= x / ^ + r , where ^ A^(0,a/) (3.4) 

If the random e f f e c t i s a realisation fi-om a standard normal distribution, it is easily seen 

that ajFj - A^(0,a/). The equation for the linear predictor (3.2) can be re-written 
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77, = x / ^ + a , / 2 where ^ A (̂0,1) (3.5) 

In matrix notation the model is written as in (3.3) but in the design matrix Z , the 

components which were ones (Is) are replaced by the standard deviations a, , a 2 , . . , a ( . and 

0) becomes a vector of Is. Equation (3.5) is therefore equivalent to equations (3.4) and 

(3 .3). In other words the variances of the random effects are absorbed into the design 

matrix Z where they can be estimated as slope parameters on the random effect (c.f linear 

factor model in Section 2.4.1). 

In a normal error model the covariance structure is independent of the means, 

allowing extra variation to be easily accommodated. In GLMs with non-normal error 

distributions the variance is a fixed function of the mean. Sometimes when all possible 

explanatory variables have been fitted the amount of residual variation is greater than the 

variance function for the given error structure allows. If no other explanation can be found 

this extra variation is termed overdispersion which may be modelled by the addition of a 

random effect to the linear predictor (Aitkin, 1994; Anderson and Hinde, 1988). 

Overdispersion can lead to underestimation of the standard errors of the fixed effect 

parameters of a GLM since the extra uncertainty is not included in the likelihood function 

and hence the information matrix (see section 5.3.1.). Overdispersion in specific GLMs such 

as the Poisson model has been examined by Hinde (1982) and in binomial GLMs by 

Anderson (1988), and Czado (1994). 

3.3.2. Estimation in GLMMs. 

Over the last decade and a half much research interest has been focused on the 

problem of finding effective fitting algorithms for non-linear models with random effects, 

including GLMs with latent variables. As time has moved forward there has been a greater 

degree of generalisation. The methodologies have basic elements in common: in order to fit 
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a GLMM a likelihood function for the unknown parameters including the variance 

components and possibly the random effects is formulated. From this likelihood estimating 

equations are derived and must be solved. Models with various different likelihood 

functions have been devised by diflferent researchers, some requiring strong assumptions 

about the distributions of the data and the random effects. Other more general approaches 

have been based on quasi-likelihood models (McCullagh and Nelder, 1989). These models 

have the very weak assumptions that (i) E^Y^) = ^. {p) and (ii) Var{Y.) = a(^)K(/y.) as in a 

G L M but without the requirement of an exponential family distribution for Y^. Quasi-

likelihood estimating equations have the same properties as M L estimating equations for a 

GLM and the same asymptotic theory can be applied to the parameter estimates. Likelihood 

methods used for exponential family models can therefore be applied to much broader 

models and vice-versa. As the estimating equations are invariably non-linear an iterative 

algorithm based on the Newton-Raphson procedure or Fisher's Method of Scoring (see 

Section 5.3.1) is usually employed. 

If full distributional assumptions can be made, it is possible to specify the joint 

distribution of the conditional data and the random effects. If estimates of the random 

effects themselves are not required they can be integrated out of the joint distribution to 

obtain a marginal distribution of the data dependent on the fixed parameters and the 

variance components. Maximum likelihood estimates can be obtained from this likelihood 

with the use of the E M algorithm (Dempster, Laird and Rubin, 1977). The development of 

this area of research is described in Section 3.3.2.1 below. Section 3.3.2.2 describes the 

progress of the other major technique which has been applied to the analysis of GLMMs, 

the basis of which is an approximation of the non-linear GLMM by a linear model. The 

resulting likelihood function then allows the application of repeated normal theory 

techniques. The procedures for the analysis of multilevel models (Goldstein, 1995) of which 

GLMMs are a special case, can be implemented with widely available software. They are 
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also based upon linearization methods and are discussed in Section 3.3.2.3. Some authors 

have concentrated on incorporating random effects into one particular G L M such as the 

probit or logistic model, sometimes v^th severe restrictions on design matrices X and Z and 

narrow distributional assumptions for the random effects. Some of these miscellaneous 

models are discussed in Section 3.3.2.4. 

Although an attempt has been made to review most of the relevant published 

material in this wide field it should be noted that some omissions have had to be made. 

Research of specific relevance to IRT is reviewed in Section 4.3 of the next chapter. 

3.3.2.1. ML Estimation with the E M Algorithm. 

This approach leads to ML estimators of the fixed parameters and variance 

components. The random eflFects are not estimated and can only appear in the model in a 

nested, not crossed, design. The use of the marginal distribution in the likelihood fijnction 

results in a difficult integration which becomes more difficult as the levels of nesting 

increase. For this reason it is necessary to introduce an approximation to the marginal 

distribution of the data. This distribution is an integral obtained by integrating the joint 

distribution of the data and the random effects with respect to the random effects. It is 

approximated by using Gaussian quadrature the effects of which on the estimates are for the 

most part unknov^. Perhaps the greatest contribution to this methodology was made by 

Bock and Aitkin (1981) who proposed the use of the E M algorithm (Dempster et a!, 1977) 

for ML estimation of item parameters in item response models with a latent ability 

covariate. Followring Bock and Lieberman (1970), Bock and Aitkin (1981) used a normal 

cumulative distribution fijnction for the conditional probability of a correct response and 

obtained an unconditional likelihood for each possible response pattern by using Gauss-

Hermite quadrature to approximate the integral over the ability distribution in the marginal 

distribution. The likelihood equations resulting from this model were reformulated and 
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shown to be the likelihood equations for a probit analysis in which the independent variables 

are the quadrature points (nodes) and the data are (i) the expected frequencies of correct 

responses to each item at each ability level and (ii) the expected size of the sample 

responding to each item at each ability level. 

The authors also showed how the same expressions for (i) and (ii) can be derived by 

borrowing from the principles of missing data used in the E M algorithm. They replaced the 

missing data (abilities) in the log likelihood equations vAih their expectation conditional on 

the observed data and current parameter estimates. This, as they point out, is not quite the 

same as the approach outlined by Dempster et al (1977) which in its most general form 

computes the expected value of the log likelihood of the complete data conditional on the 

observed data and current parameter estimates. 

Bock and Aitkin (1981) also showed that it is unnecessary to make any assumption 

about the distribution of the ability variable. Discrete posterior densities conditional on the 

data for each ability node can be calculated and used as weights in the corresponding probit 

analysis. 

The two-step E M algorithm is employed iteratively as follows: the first step is the 

expectation step which results in the computation of (i) and (ii) above, given working 

estimates of the item parameters and the second is the maximisation step where the probit 

model is fitted to this data in order to update the estimates. Bock and Aitkin do not reveal 

details of their software but report slow convergence of the algorithm and the lack of a 

readily available inverse information matrix to provide standard errors as disadvantages of 

the methodology. 

Hinde (1982) adopted a similar approach using GLIM software (Payne, 1987) for 

fitting GLMs, to help with the problem of over-dispersion in Poisson data. It is assumed 

that the extra variability in the data can be attributed to some unknown random effect, just 

as the variability in item response data is in a similar way attributed to a random latent 
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ability covariate. In this application there is a resulting expansion of the data as K copies of 

each response are created (K is the number of quadrature points) each with a different 

weight derived from the approximate distribution of the latent variable. In the Bock and 

Aitkin application however there is a reduction of the data. This is because the data consists 

of all the different item score patterns observed and the numbers of subjects recording each 

possible pattern. Later a further summation of subjects at each ability node occurs. This 

reduction in the length of the vectors being processed by the computer is advantageous 

when handling large data sets. 

The ML methodology using the EM algorithm was extended by Brillinger and 

Preisler (1983) to a v^der class of latent variable models where the responses are 

conditionally independent depending on parameter p and the latent variables have 

independent distributions depending on parameter a . They applied it specifically to a 

problem with Poisson counts. They were followed by Anderson and Aitkin (1985) who 

considered a logistic model with random effects to describe binomial responses to a social 

survey where interviewer variability was thought to influence the data. They used the E M 

algorithm with GENSTAT software (Alvey, 1977) rather than GLIM to enable them to 

accommodate more than one level of nesting and different sized clusters, but reported 

problems with limitations on data space for large data sets made even larger as a result of 

the expansion required. 

Anderson (1988) compared this same logistic model v^th random effects to other 

models that might explain overdispersion in binomial data. She found it an appropriate 

model when the extra variation could be attributed to clustering and a distribution for the 

random effect could be assumed. She listed slow convergence of the E M algorithm, 

computational intensity and the necessity for numerical methods to approximate the integral 

in the marginal likelihood as disadvantages of the procedure. 
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Later, Anderson and Hinde (1988) generalized the EM methodology to all GLMs 

with random effects by adding the random component to the linear predictor. They 

suggested that extensions to more than one level of nested random effects could be easily 

incorporated within the general algorithm. Problems of implementation including the 

suitability and accuracy of any particular method of Gaussian quadrature are not dealt with 

in the paper (or elsewhere). 

Aitkin and Francis (1996) produced GLIM4 (Francis et a/, 1993) macros which 

implemented the methodology described by Hinde (1982) and Anderson and Hinde (1988) 

and used them to solve several apparently different types of problem. These include both 

overdispersion in binomial and Poisson models and maximum likelihood estimation of the 

unknown parameters of the component distributions in finite mixture problems. A random 

effect included in the linear predictor of a G L M is assumed to be normally distributed. 

When the integration of the marginal distribution of the data is approximated using 

Gaussian quadrature the resulting likelihood function is the same as the likelihood of a finite 

mixture of exponential family distributions. The location parameters of the underlying 

distributions are the known quadrature nodes and the proportions attributable to each 

component are weights. During the expectation step of the E M algorithm these weights, 

which depend on the current parameter values, are computed. This likelihood is then 

maximised during the M-step to obtain better parameter estimates. 

As before (Hinde, 1982; Anderson and Hinde, 1988) the data must be expanded to 

(number of quadrature points) times its original length. As Aitkin himself suggests that K 

> 20 is necessary for a reasonably accurate approximation, it appears that large data sets 

might strain the data space limitations of GLIM4. This is borne out in practice. The 

software was supplied with Gauss-Hermite nodes and weights although these were easy to 

change. 
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The algorithm implemented in these macros can also be extended to non-parametric 

estimation of the distribution of the random effect. In this case the nodes and weights (or 

mixture proportions) are unknown and are estimated along with the usual model parameters 

for a given K which is increased from K= 1 until the likelihood is maximised. 

The authors have adapted the non-parametric procedure to produce further macros 

for variance component estimation in models where the data is nested in a two-level 

structure. Here weights are computed during the E-step at the higher level of nesting. These 

are then used to weight the individual responses during the M-step. 

Since Bock and Aitkin wrote their original paper in 1981 ML estimation and the E M 

algorithm have been v/idely used statistical techniques both in the mainstream field of 

GLMMs and in item response modelling. Although other methodologies have been 

developed, some with a great deal of success, to deal with the problem of random effects in 

various non-linear models, the ML-EM procedures still offer a valid alternative and research 

to improve upon them continues today. Recently, Meng and Schilling (1996) have 

attempted to eliminate the error due to the numerical integration required in this 

methodology by using Gibbs sampling to compute the E-step. Meng and Schilling assert, 

with reference to the use of Gauss-Hermite quadrature, that 'Uhe predictive (i.e. posterior) 

distributions for the individual latent abilities become more peaked as the number of items 

increases, leading to 'lumpy' observed-data likeUhood for the model parameters, but the 

reliability of the fixed point Gauss-Hermite quadrature method relies on the smoothness of 

the integrand" (see Section 7.4). Although criticisms of this method of integral 

approximation and therefore of the entire M L methodology abound in the literature it 

appears that there is no published work which attempts ML estimation using the E M 

algorithm with any alternative numerical method. One of the objects of this thesis is to 

contribute towards the ML-EM methodology by exploring the implementation of the 

algorithm with alternative quadrature rules (see Chapter 7). 
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3.3.2.2. 'Linearization' Methods. 

This section covers a variety of closely related models and methods. Some models 

include assumptions about the conditional distributions of the data and some of these also 

have distributions for the random effects. More general results have been obtained using 

quasi-likelihood models. One approach has been to replace the non-linear part of the model 

by a linear function and another to approximate the likelihood fijnction instead. The score 

equations derived from the likelihood are solved by iterative processes the form of which 

may differ slightly from author to author. Similarly theoretically different estimators are 

frequently used to obtained the same estimates. A common advantage of'linearization' 

methods is their applicability to all kinds of crossed and nested models. However estimates 

have been found to exhibit bias and the use of an approximating linear model must be in 

doubt in many situations where the data is far from normally distributed. One of these 

doubtful cases is that of binary response data. 

Schall (1991) was one of the first researchers to suggest an algorithm for estimating 

fixed effects, random effects and variance components in GLMs with random effects. It was 

based on a proposal (Fellner, 1986, 1987) for the iterative computation of maximum 

likelihood estimates of variance components in the normal linear model. The link fijnction 

g(.) of the GLM is linearized using Taylor's first order approximation. This resuhs in a 

linear random effects model for the 'adjusted dependent variable', z, (see McCullagh and 

Nelder, 1989) where 

Schall's fitting algorithm consists of two-steps: the first step provides least-squares 

estimates of the fixed and random effects given current estimates for the dispersion 

parameters; the second step updates the estimates for the dispersion parameters given 

current values for the fixed and random effects. The estimates obtained from this procedure 
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can be taken as approximate ML estimates when the conditional distribution of the data and 

the prior distribution of the random effects are from the exponential family. A variation of 

the second step gives approximate restricted maximum likelihood (REML) estimates, which 

take account of the loss of degrees of fi-eedom due to the estimation of the fixed effects 

(Patterson and Thompson, 1971). The algorithm can be programmed fairly simply using 

GLIM and is applicable to designs incorporating both nested and crossed random effects. 

Although a covariance matrix is given it is dependent upon the estimates of the random 

effects and the extra variability due to these estimates is not taken into account. 

Very similar algorithms to Schall were derived by Engel and Keen (1992) who 

dispensed with the need for full distributional assumptions for either the data or the random 

effects. Their approach is based on a combination of quasi-likelihood methods and minimum 

norm quadratic unbiased estimation (MINQUE) (Rao, 1973). 

Schall (1991) and Engel and Keen (1992) both describe special cases of penalised 

quasi-likelihood (PQL) estimation in GLMMs. This methodology is generalized further by 

Breslow and Clayton (1993). They worked wath a quasi-likelihood fiinction for the data and 

a multivariate normal distribution for the random effects. They obtained a marginal quasi-

likelihood by integrating the exponent of the sum of the two likelihoods over the random 

effects. They approximated this marginal quasi-likelihood using Laplace's method for 

integral approximation (Tiemey and Kadane, 1986) and arrived, after several simplifying 

assumptions, at a likelihood function for the fixed and random effects equivalent to the PQL 

used by Green (1987). The resulting estimating equations are solved iteratively. The fixed 

and random parameter estimates are substituted in the approximation to the marginal quasi-

likelihood to give an approximate quasi-likelihood function for the variance components. 

This is then adjusted to obtain REML estimates. The new estimates for the variance 

components are used to obtain improved parameter estimates and so on until convergence. 

The estimating equations are recognisable as those derived by Harville (1977) for the 

37 



normal linear mixed model, in which case they give best linear unbiased prediction (BLUP) 

(McGilchrist, 1994; see below) estimates in the case of the fixed and random effects and 

REML estimates in the case of the variance components. Like Schall (1991), Breslow and 

Clayton, (1993) found the fixed and random effect estimators to be approximate marginal 

M L estimators. The assumptions and approximations made in order to arrive at these 

equations suggest that the more normally the data are distributed the greater the validity of 

the model. 

Breslow and Clayton, (1993) compare PQL with another similar approach to 

inference in GLMMs which they call marginal quasi-likelihood (MQL) and is the procedure 

proposed by Goldstein (1991) (see Section 3 .3 .2.3). In MQL an approximate marginal 

mean is specified. This does not include the random effects which are therefore not included 

in the linear predictor. For given components of dispersion the fixed effects only are 

computed iteratively with Fisher scoring. The resulting estimates are then used in the same 

REML equations as in the PQL approach to calculate updated variance parameters, 

although for this model the equations are derived by applying the method o f 

pseudolikelihood (Carroll and Ruppert, 1982). In the MQL version the random effects are 

not estimated until convergence has occurred. 

Laplace's integral approximation was independently applied to marginal 

distributions of the data in non-linear mixed models by Wolfinger (1993). In the case of the 

GLMM his resulting estimating equations are equivalent to those of Schall (1991) assuming 

normality for the random effects. 

McGilchrist (1994), following McGilchrist and Aisbett (1991), adapted a method 

known as best linear unbiased prediction (BLUP) (e.g. Henderson, 1975) for linear models 

with fixed and random effects and applied the theory to GLMs with random effects. They 

showed how BLUP estimators can be adjusted to find approximate M L and REML 

estimators (Harville, 1977) for fixed parameters, random effects and variance components 
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in a G L M M and other non-linear models where the random effects are assumed to be 

normally distributed. The iterative BLUP procedure maximises the joint 'log-likelihood' of 

the fixed and random parameters. This hkelihood can, under certain assumptions, be 

approximated by a quadratic expression. I f the likelihood derived from the approximate 

asymptotic distribution of the M L estimators of the fixed and random effects (McGilchrist 

and Aisbett, 1991) is substituted into this joint 'log-likelihood' the same quadratic 

expression results. This reasoning justifies the use of the approximate asymptotic likelihood. 

Together with a normal prior, this allows restrictions on the random effects to be 

incorporated into the model. When this theory is applied to the G L M M , it is reduced to a 

normal linear mixed model with an adjusted dependent variable. This approach is again 

effectively equivalent to Schall (1991). The resulting estimators, although an improvement 

on straight BLUP procedures, have however been shown in simulation studies to be biased 

particularly in the case of the variance components (Kuk, 1995). Kuk proposes an iterative 

Monte Carlo method to correct the bias shown in initial estimates obtained by BLUP or 

similar estimation. 

The term hierarchical generalized linear model (HOLM) was defined by Lee and 

Nelder (1996). These are GLMs v^th linear predictors that include random variables whose 

distributions are not confined to the normal. (In this paper, the term ' G L M M ' is restricted 

to those HGLMs v^th normally distributed random effects). The authors bring together, 

generalise and extend the work of many of the researchers in this area. 

The approach has much in common with McGilchrist (1994) being based on the 

joint likelihood derived fi'om the conditional distribution of the data and the distribution of 

the random effects (also Henderson, 1975). This is called the /i-likelihood and the estimates 

which maximise it the maximum //-likelihood estimates (MHLE). The resulting score 

equations for the MHLEs are those derived by Schall (1991), Engel and Keen (1992) 

Breslow and Clayton (1993), Wolfinger (1993), and McGilchrist (1994). For the estimators 
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of the dispersion components Lee and Nelder, (1995) define the adjusted profile h-

likelihood (APHL) and the maximum adjusted profile //-likelihood estimators (MAPHLEs). 

It is shown how these estimators lead to the REN4L estimators also derived by the previous 

researchers. Analysis using HGLMs is simpHfied when the model is a G L M M and also when 

the distribution of the random eflfects is conjugate to that of the data. For example the 

Poisson-gamma model, the binomial-beta model and the gamma-inverse gamma are all 

conjugate HGLMs. However the problem of bias, which can be particularly serious in the 

variance components associated with binary responses, is not addressed by this paper. In 

addition, the authors make no mention of the multilevel modelling software (Goldstein, 

1995) which is extensively used to fit models of this type. 

3.3.2.3. Multilevel Models. 

Muhilevel models (Goldstein, 1995) and the general-purpose software for their 

application ML3 (Prosser ei al, 1991) and Ml/ / (Rasbach et a/, 1995), were developed as 

tools for the systematic analysis of data with a hierarchical structure. Data is grouped in 

levels corresponding to the clustering mechanisms present. For example, in IRT terms, the 

binary item responses are level one units. These units are grouped by subject, the level two 

units. I f the subjects were clustered ftirther such as by age groupings these would become 

level three units and so on. Fixed and random effects may appear at any level. More 

complex structures where the data is cross-classified can be encompassed in the general 

fi-amework. In multilevel modelling terms the G L M is a single-level model. 

The methodology, originally developed for continuous data (Goldstein, 1986), has 

been generalized to non-linear models for discrete data (Goldstein, 1991). The procedure is 

the MQL approach described by Breslow and Clayton (1993) (see previous section) and can 

be implemented with the software package ML3. The general multilevel model is expressed 

as the sum of two parts, one linear and one non-linear. Random variables can belong to 
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either component. Both the fixed and the random parts of the non-linear function are then 

linearized using first and possibly second order terms fi-om a Taylor's expansion. The result 

is a standard multilevel linear model to which the linear estimation procedure can be 

applied. This involves the use of an iterative generalized least squares (IGLS) algorithm 

where the estimating equations are based upon quasi-likelihoods rather than fijil 

distributions. Multivariate normality is however assumed in the random effects in order to 

compute a weight matrix. Approximate maximum likelihood estimates of the fixed 

parameters and the variance components are obtained. These may be biased in the case of 

the variance component estimates even in the linear model and REML modifications can be 

applied to correct the bias. The addition of the quadratic terms from Taylor's approximation 

may in some circumstances produce substantially improved estimates but may not in others. 

Convergence of the algorithm is not always guaranteed. 

MQL methods for analysing hierarchical data are also implemented in the program 

VARCL (Longford, 1988). This software produced identical estimates to ML3 using 10 

simulated data sets in a comparative study of the two packages carried out by Rodriguez 

and Goldman (1995). They found that both Goldstein and Longford model discrete data 

using the same linear approximation. The algorithms used to produce the parameter 

estimates vary slightly in that Longford uses Fisher scoring rather than GLS for the variance 

components but this does not effect the results. Rodriguez and Goldman used the packages 

to fit multilevel models for simulated binary response data with two- and three-level 

structures. They found the estimates to be severely downwardly biased particularly in the 

case of the variance components when the random eflfects were large or when the number of 

units within a level were small. Including quadratic terms in the approximation improved 

matters only slightly. 

In response to this criticism, Goldstein and Rasbash (1996) suggest adopting a 

slightly different procedure during the computation This corresponds to the PQL (penalised 
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or 'predictive' quasi-likelihood) approach (Breslow and Clayton, 1993). In the PQL 

approach current estimates of the random effects are included in the linear part of the 

expansion of the non-linear function; in the MQL approach they are not. Thus at each 

iteration a current estimate of the random effects is included in the estimating equations. 

The PQL modification is incorporated in the updated software package Ml / i and appears to 

improve the estimates considerably when used in conjunction vAih the second order 

approximafion. In a simulation study with binary data (Goldstein, 1995, p99) the best 

resuhs were again produced using the PQL version with second-order terms included in the 

model. 

Bias in the variance component estimates has not however been completely 

eliminated and further research is needed in this area to assess which methods (PQL or 

MQL with or without second order approximations) should be used in which situations. 

Pickles, Pickering and Taylor (1996) used Ml/i software with first-order PQL 

estimation to fit a mixed generalized linear model with random effects. 

3.3.2.4. Miscellaneous examples of extensions of random effects models to GLMs. 

One of the first researchers to develop methodology to include latent variables 

within a particular GLM was Williams (1982). He used GLIM for M L estimation in a 

logistic model incorporating extra-binomial variation associated with unobserved random 

variables. In this model the response, conditional on the random effect, is binomially 

distributed. The relationship between the mean and the variance of the random effect is 

specified and this leads to the relationship between the unconditional expectation and 

variance of the response variable. Estimation is therefore based upon the quasi-likelihood 

and does not include estimation of the random effects. A restriction of the model is that the 

covariates cannot vary within a unit (or cluster). 
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Stiratelli, Laird and Ware (1984) presented a more flexible logistic model for serial 

binary observations firom a panel of subjects with general covariates and normal random 

eflfects at the subject level. M L and Bayesian estimation techniques were combined with the 

EM algorithm. Later, using a probit model v^th normal random effects for binomial data, 

Gilmour, Anderson and Rae (1985) described a 'joint-maximisation' method. The 

estimating equations derived for both these models are special cases of those developed 

later by Schall (1991). 

An early attempt to model data with extra components of dispersion within the 

GLM fi-amework was an analysis of longitudinal data with time-dependent covariates by 

Liang and Zeger (1986). They derived 'generalized estimating equations' (GEEs) based on 

maximum quasi-likelihood estimation. These equations give consistent estimates of the fixed 

parameters under weak assumptions about the joint distribution of the repeated 

measurements. A working correlation matrix is estimated to model the dependency between 

observations on the same subject but the focus of this method was essentially on estimation 

of the fixed parameters. Following this, Zeger, Liang, and Albert (1988) distinguished 

between subject-specific and population averaged models and applied GEEs to both. 

Subject-specific models are those in which each subject's individual response is of interest 

rather than that of the population as a whole. In these situations variation across subjects is 

explicitly modelled as in the GLMM. Moment estimates for the variance components and 

the fixed parameter solutions to the GEEs are calculated simultaneously within an iterative 

procedure. The authors found that convergence may not be achieved when the data is 

extremely non-normal. 

Im and Gianola (1988) used two diflferent maximisation methods for computing M L 

estimates in mixed probit and logistic models for binomial data on lamb mortality. They 

preferred the simplex method (Nelder and Mead, 1965) to the E M algorithm because it 

could be adapted to produce an asymptotic covariance matrix. Gonaway (1990) took an 
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unusual approach by modelling binary responses with the 'log-log' fijnction as an alternative 

to the logit or probit link. In addition he suggested a log-gamma distribution for the random 

effects. This allowed the marginal likelihood to be computed wathout the need for numerical 

integration. 

Zeger and Karim (1991) applied a Bayesian fi^amework to the G L M M and used the 

Gibbs sampler to address the computational problems posed by the complex numerical 

integration that can occur in the likelihood function. Samples are drawn repeatedly fi^om the 

conditional distributions of the fixed, random and then variance parameters in turn, given 

the most recently sampled values of the other parameters. After a sufficiently large number 

of sampling iterations the process converges to the joint distribution of the parameters. 

More values can then be generated to simulate the empiriczil joint distribution from which 

inferences can be made. The method can be applied to both nested and crossed effects 

models and can accommodate different assumptions about the random effects. Although 

computationally intensive the method is easy to implement. The Bayesian/Gibbs approach 

was applied to the well-known salamander mating data (McCullagh and Nelder, 1989) by 

Karim and Zeger (1992). This data has a complicated structure with crossed random effects 

and has been the subject of several analyses including that of Drum and McCullagh (1993) 

who adapted restricted maximum likelihood (REML) estimation to logistic models with 

crossed random effects in the linear predictor. They compared their results favourably with 

estimation using linearization methods (Schall, 1991). 

McCulloch (1994) considered a probit model for binary data with normally 

distributed random effects and used the EM algorithm for M L and REML estimation of the 

variance components. For crossed effects EM is combined with Gibbs sampling to avoid a 

complicated integration. 
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CHAPTER 4. GENERALIZED LINEAR MODELS IN ITEM 

RESPONSE THEORY, 

4.1. INTRODUCTION. 

The previous two chapters have been concerned with presenting a general review of 

some of the ways that latent variables have been incorporated into linear models (Chapter 2) 

and non-linear models with particular reference to GLMs (Chapter 3). Chapter 4, although still 

forming part of a review of a wdde field, is much more detailed than the previous presentation 

because its subject matter is Item Response Theory (IRT) (Hambleton and Swaminathan, 1985; 

Hambleton, Swaminathan and Rogers, 1991) which is the chief application area of the 

methodologies described in this thesis. IRT is a branch of psychometrics which is concerned 

vnth measurement in the field of psychology. By examining this single application area in 

greater depth this chapter will demonstrate that IRT is a rich source of opportunities for the 

application of latent variable GLMs for dichotomous responses. Demands for better modelling 

tools within this area has therefore led to the development of the modelling software which will 

be described in later chapters. 

One of the objectives of IRT is the development of tests to measure latent traits in 

human subjects (Lord and Novick, 1968). A latent trait is usually some kind of underlying 

ability or aptitude such as general intelligence, suitability for a certain career, talent for a 

particular task, etc. Test questions or 'items' are designed to measure a particular trait. A bank 

of test items is created and the subject is given a test consisting of a subset of items selected 

fi^om the bank. Each item has its own properties such as type, difficulty or time allowed for 

completion. Statistical models (Bimbaum,1962 and 1969) relate the probability of a correct 

answer to the item parameters and a subject's latent ability. In Section 4.2 some of the most 
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common models used to interpret item response data are described. It is shown how these 

particular models can be brought within the fi-amework of the GLM. Several different 

procedures which have been developed for fitting the models are also discussed (Section 4.3). 

In a typical IRT situation there is a vector of binary response data which consists of the 

results of testing / subjects on J items. The response of each subject to each item depends on 

the item parameters and the ability (the latent trait) of the subject. This ability is unknov^ and 

cannot be found by any direct methods of measurement. The problem is to fit the model, 

estimating the item parameters, without knowledge of the latent covariate. Having been 

calibrated in this manner the items can then be used for ability estimation for another set of 

subjects at some future time. The following discussion is restricted to test items where a 

dichotomous response variable is recorded; that is, the response is either a 1 if the answer is 

correct, or 0 i f it is incorrect. In addition, the assumption of unidimensionality is adopted; in 

other words, it is proposed that the responses can be explained by a single latent trait. In theory 

the application of GLMs can be extended to polytomous responses and muhidimensional latent 

variables. 

4 2. THE MODELS. 

The response y^^ of subject / to item j is modelled as the additive combination of its 

expected value and an error component, where the expected response depends on the 

parameters of the item, P , and the latent ability of the subject, y.. That is 
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Since the responses are dichotomous it can be assumed that their distribution in equation (4.1) 

is binomial. When the response variable is from the exponential family, as in this case, and the 

function which gives the expected value can be written in the form 

with 

rj,=x/l^+z^r. (4.2) 

i.e. with a link function g and a linear predictor 7j.j in this linear form, then the model is a 

GLMM as described in Section 3.3 (see equation 3.5). 

The probability, TT^, o f a correct response by subject / to item J is equal to the expected 

value of the response. In IRT the function relating probability of success to latent ability is 

known as the Item Characteristic Function (or Curve), assumed to be monotonically increasing 

between the limiting values of 0 and 1. It has been modelled at various times both by the ogive 

curve of the cumulative normal distribution and by a logistic regression fijnction. For a logistic 

regression curve 

This is the inverse of the logit link function 

(4.4) 

which is the canonical link function for the binomial distribution. In IRT the ability variable y 

is not known and, since subjects are presumably selected at random for purposes of item 

calibration and are of no interest themselves, it is reasonable to treat the abilities as random 

effects added to the linear predictor. ( I f the are known fixed effects then these models are 
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ordinary GLMs.) Therefore binary response IRT models with logit link functions and linear 

predictors in the form of equation (4.2) are latent variable GLMs. 

-TTT-T-r ,. 1 , - , . - + ' 1 -• 

-• ^ 'h^z.. v 
I r i ! r i T i ! ! ! 

FIGURE I . A Typical Item Characteristic Function. 

The typical S-shaped logistic curve is shown in Figure 1. The parameters of the item 

alter the exact shape and location of the curve and IRT models are distinguished by the number 

of parameters items are assumed to possess. The three principal models are distinguished by 

having either one, two or three parameters per item. 

4.2.1. Item Parameters. 

IRT models incorporate up to three item parameters which represent specific properties 

of the items in a test bank. The one-parameter model, which is also known as the Rasch model, 

includes a diflficulty parameter, denoted b. Specifically, in the one-parameter model, b is the 
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ability level of a subject with 0.5 probability of success. This parameter determines the position 

of the logistic curve in relation to the ability scale (Figure 2). Large positive values of b 

indicate very difficult items where the curve is at the right-hand end of the scale. Large negative 

values are associated v/ith easy items where the curve is situated towards the left-hand end of 

the ability axis. 

Ability 

FIGURE 2. Item Characteristic Functions showing difficulty parameter. 

The two-parameter model includes a discrimination parameter, denoted a. The 

discrimination parameter is equivalent to the slope on at the point on the curve where TT^^ is 

equal to 0.5. Consider two subjects with abilities differing by one unit and whose probabilities 

of success are neither unusually high nor unusually low. I f the curve slopes steeply then their 

probabilities of success vsrill differ v^dely. The same two subjects vAW have much closer 

probabilities of success on an item associated with a curve with a shallow slope (Figure 3). 

Therefore, the greater the value of a, the more discriminating the item. 
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F I G U R E 3 Item Characteristic Functions showing discrimination parameter 

c=0 25 

Abilrty 

F I G U R E 4. Item Characteristic Functions showing guessing parameter 

In the three-parameter model a third parameter, denoted c, is used This is sometimes 

called the guessing parameter This parameter represents a lower asymptote of the fijnction 
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(Figure 4), or equivalently, the probability that a subject with minimum ability has of answering 

the test item correctly. Such a subject's response is determined only by chance. Therefore the 

guessing parameter represents the probability of guessing the correct answer. 

Yen (1981) compared the performances of one-, two- and three parameter models in 

explaining data obtained from eight different achievement tests which were given to students 

aged approximately 12 to 14. The tests were in Maths and English and all consisted of multiple-

choice items with four options each. The results o f this study indicated that the three-parameter 

model was the most appropriate model for all the eight data sets and might well be the best 

choice for all data from multiple-choice tests. The three-parameter model does however require 

larger sample sizes than the one- and two-parameter models to estimate parameters to a given 

level of accuracy. 

4.2.2. One-, Two-, and Three-Parameter Models. 

When all three parameters are included in the model it is known as the three-parameter 

logistic model. In this model the probability of subject / responding correctly to item j is 

" ""TT^ ^ ^ " " ' ^ " ^ " ^ ' ^ ^ 

where 

The two-parameter model is obtained by setting Cj to zero and the one-parameter 

model by fijrther setting a. to 1. The linear predictor, equation (4.6), is therefore always of the 

form shown in equation (4.2) and the link ftinction is the logit link, equation (4.4), in the one-

and two-parameter models. The three-parameter model has an unknown parameter Cj which is 

not part o f the linear predictor and the model is not a GLM. However i f this parameter is 
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known the model becomes a G L M although the link function is no longer the canonical link 

function. The link function is obtained from equation (4.5) as shown in Appendix B. 

77̂  = I n - y T ^ where c. < TT^J 

In Section 3.3.1 (equations (3.4) and (3.5)) it was shown that the variances of the 

random effects are equivalent to the square of the slope parameters on the random effects. I f it 

is assumed that the components of the random effects vector are sampled fi^om independent and 

identical normal distributions with zero means and a common variance, then this is equivalent 

to assuming that all items have the same power of discrimination. The standard deviation is 

equivalent to a discrimination parameter. Increasing the discrimination of the items has the 

same effect as spreading out the distribution of ability. In this case the linear predictors are of 

the form 

where / . is a realisation of random variable T. and T. - A^(o,l) 

I f the discrimination parameter is allowed to vary between items then it must be indexed 

by j. Then the linear predictors are of the form 

where T. A^(0,l) 

Both versions of the linear predictor conform to the GLM. 

4.2.3. Likelihood Functions for the One-, Two- and Three-Parameter Models. 

I f y is the response pattern o f / subjects attempting 7 items, then the log likelihood 

function for ability vector y and item parameters conditional on response pattern y is 
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.=1 >=i 

where TT^J , which is dependent on item parameter ^ and ability , is the probability of subject 

/ responding correctly to item j. 

In the one-parameter model where /? = (b^ ) 

Hence, 

1 + e 

In the two-parameter model where = {bj,aj) 

Hence, 

In the three-parameter model where /? = ( * ; . C j Y 

\-c \-\-c,e 
^ w h e r e ; ^ . =a,( / . . -Z^J 

Hence, 

In4/,^|>;) = X Z 
.=1 j=\ 

1 + ̂  .-.(r*-^>) 

1 + e 
1 ' 
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4.3 ESTIMATION 

4.3.1. Ability Estimation. 

When the item parameters of all the test questions answered by a subject are known, the 

maximum likelihood estimates of the subjects' latent abilities can be obtained by standard 

methods of maximum likelihood estimation. Let y_ = (y,, ^ytz >">yuf represent the responses 

of subject / to J test items. Assuming that, conditional on latent trait y., the responses of 

subject / are independent, then the log likelihood for response pattern y is 

where TT^J is a function (either equation (4.3) or (4.5)) of the item parameters and the subject's 

ability. Differentiating with respect to and equating the result to zero gives a set of non­

linear M L equations which are usually solved iteratively by the Newton-Raphson method. 

Mislevy (1984, 1985) used the EM algorithm (Dempster et al, 1977) to compute estimates of 

the parameters of the ability distribution when the item parameters of the item response model 

are known. 

Problems with this procedure arise when zero or perfect scores are recorded. When 

y = 0, i.e. all responses are incorrect, the likelihood equation is satisfied only when y. = -QO . 

When y =\, i.e. all responses are correct, the likelihood equation is satisfied only when 

= 00. There are therefore no maximum likelihood estimates for ability in these cases. In 

addition, convergence to a local rather than a global maximum of the function can take place in 

some situations. However this is unlikely to happen i f there are more than 20 items in a test 

(Hambleton and Swaminathan, 1985). 

54 



4.3.2. Item Parameter Estimation. 

I f the latent variables, y , were known the model parameters could be estimated using 

the maximum likelihood methods associated with either logistic regression or, where 

appropriate, the fitting algorithms for GLMs provided by GLIM (Payne, 1987) or other 

software packages. Since the values of y_ cannot be known, model fitting in IRT has been 

problematic. In a fixed effects model the abilities appear in the likelihood fiinction as nuisance 

parameters, the number of which increases with the number of subjects and for this reason it is 

often not possible to apply asymptotic theory to the estimators o f the item parameters. The 

most widely used procedure is joint maximum likelihood estimation where both item and ability 

parameters are estimated simultaneously. Conditional maximum likelihood is a method which 

applies only to the one-parameter model. A method which involves eliminating y fi-om the 

likelihood equations is commonly known as 'marginal' maximum likelihood. All these methods 

have problems associated with them and parameter estimation for these models is a subject of 

current research. 

4.3.2.1. Conditional Maximum Likelihood Estimation. 

Estimation of item parameters is easier i f the ability parameters are not present in the 

Ukelihood fijnction. Conditional maximum likelihood (CML) (Anderson, 1970 and 1972) 

estimation is a method of achieving this in the one-pzu"ameter (Rasch) model. The total number 

of items answered correctly by subject /, r., is a sufficient statistic for ^ . By conditioning on 

the likelihood can be expressed in terms of r_ instead of . However there are no similar 

sufficient statistics to enable the two- and three-parameter models to be fitted by this method. 
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4.3.2.2. Marginal Maximum Likelihood Estimation. 

This method is so-called because the Hkelihood function is derived from the marginal 

distribution of the data. However the method also relies on expressing the likelihood v^thout 

reference to the ability parameters. I f y is the response pattern of / subjects attempting J 

items, then the probability of y conditional on ability vector / and item parameters P is 

,=1 > = 1 L 

The joint probability of and is 

1=1 y = i 

where / r ( / ) is the probability distribution of y which may be taken to be standard normal. 

When this joint probability is integrated with respect to the ability parameters the result can be 

interpreted as the likelihood of given y. 

y J 

.=1 >=i 

Bock and Lieberman (1970) originally developed 'marginal' maximum likelihood 

(MML) estimation for item response models. They used a two-parameter normal ogive curve to 

model the probability of a correct response. However, because of the high computational 

requirements their algorithm for maximising the likelihood with respect to the parameters was 

impractical for use with more than 10-12 item tests. 

Bock and Aitkin (1981) (see Section 3.3.1.1) considerably advanced the computation of 

M L item parameter estimates in the two-parameter item response model with latent ability 

covariates. They proposed the use o f the E M algorithm and approximated the continuous 

ability distribution of the subjects by a discrete distribution with a finite number of ability 
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points. The E-step of EM calculates the expected number of correct responses and expected 

sample size at each ability level. The M-step produces updated item parameter estimates using 

probit analysis, but does not make use of the general methodology for fitting GLMs. 

Thissen (1982) applied Bock and Aitkin's algorithm to the one-parameter logistic model 

and compared it to CML estimation. The results indicated that the estimates given by Bock and 

Aitkin's marginal likelihood method v^ere as reliable as the CML estimates and the procedure 

was easier to implement than CML. In addition CML is not applicable to models with more 

than one parameter. Mislevy and Bock (1984) produced computer software, BILOG to 

estimate up to three parameters in logistic item response models using the M M L procedures 

developed and refined by Bock and Lieberman (1970) and Bock and Aitkin (1981). This 

software included the facility to specify prior distributions for the item parameters and 

produced optional Bayes' estimates. Although widely used, it could be expensive to run on 

mainframe computers. A version for PCs was introduced later (PC-BILOG: Mislevy, 1989). 

4.3.2.3. Joint Maximum Likelihood Estimation. 

This procedure can be used to fit one-, two- or three-parameter models. By assuming 

that subjects with the same response patterns or equal total scores have the same ability, the y 

can be treated as a finite number of fixed effects and estimated simultaneously with the other 

model parameters /?. The log likelihood function for response pattern y_ - \y_^>y_^y -yy^ is 

where is a function of P and x,-. I f indeterminacy in the model is eliminated the maximum 

likelihood equations obtained by equating the first derivatives to zero can be solved iteratively. 
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First, a suitable starting value for p is obtained. The first ability estimates can then be found by 

solving the set of A'̂  non-linear equations, as described in the previous section. Having obtained 

an initial set of ability estimates, the item parameters are estimated by solving another system o f 

non-linear equations. This may be accomplished by Newton-Raphson iteration or by the 

method of scoring (see Chapter 5). New ability estimates can then be calculated. This 

procedure hopefully results in convergence at the maximum likelihood estimates of /? and y . 

Unfortunately convergence is not always rapid and sometimes does not occur at all, 

particularly when there are items which have been answered correctly or incorrectly by all 

subjects, or subjects with zero or perfect scores. Further, it is not always clear whether the 

iterative procedure has converged to a local or a global maximum of the joint likelihood 

function. The assumption of a finite number of fixed abilities is difficuh to justify when the 

subjects themselves are not specifically o f interest, even though it may lead to asymptotically 

unbiased and consistent estimators, particularly in the case of the Rasch model. 

Rigdon and Tsutakawa (1983) investigated the application of the E M algorithm to joint 

maximum likelihood estimation of item parameters and ability estimates fi"om the same data. 

They used a more general version of EM than Bock and Aitkin to find item parameters that 

maximised the expected log likelihood given the data and estimates fi"om the previous iteration. 

They assumed a normal distribution for the ability variable. Point estimates are obtained fi-om 

the posterior ability probability distribution function, using a semi-Bayesian approach. That is, 

a prior probability distribution is used to obtain Bayesian estimates for the ability parameters 

but for the item parameters marginal maximum likelihood estimates are calculated using EM. 

As in all these applications Gauss-Hermite quadrature is employed for approximating integrals 

on the grounds that the exponent from the normal distribution appears as a factor in the 

integrands. The fiill procedure and a second modified version were applied to the one-
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parameter logistic model. Tsutakawa (1984) afterwards applied the fiill version of this 

algorithm to the two-parameter logistic model. 

4.3.2.4. Bayesian Estimation. 

Bayesian methods in which prior distributions for item and ability parameters are 

specified and incorporated into the likelihood fiinction have also been used in item response 

modelling (O'Hagan, 1976; Sun et al, 1996). Both the item parameters and the ability estimates 

are considered to be random variables. Prior densities for these variables can express 

knowledge about the difficulty and discrimination power, for example, of the test items. 

Alternatively, vague priors can be used. A joint posterior distribution for the parameters is 

obtained by combining the prior information with the conditional distribution of the data and 

possibly integrating out any nuisance parameters. Finally Bayesian modal estimates are obtained 

by maximising the joint posterior density fiinction with respect to each parameter. 

Swaminathan and Gifford (1982, 1985, 1986) applied a Bayesian approach to the 

problem of joint item parameter and ability estimation in the logistic model. Three separate 

papers dealt with the one-, two- and three-parameter cases respectively. In the two-parameter 

model problems of inadmissible estimates of the discrimination parameter had been experienced 

with other joint estimation procedures and although the M M L methods had produced an 

improvement these problems still occurred. By specifying a prior distribution for this and the 

other item parameters as well as for the ability estimates, the authors kept the discrimination 

estimate fi'om going out of range and found that all the parameters were estimated with 

increased accuracy. The authors reported similar success when they applied Bayesian methods 

to joint estimation in the three-parameter logistic model. Specification of priors ensured that the 

discrimination and chance level parameters stayed within range and improved estimates were 
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obtained. Mislevy (1986) devised a more general Bayesian fi-amework for logistic item response 

models with up to three parameters. 

In general methods in which both ability and item parameters are estimated from the 

same data are open to question. It will be demonstrated in this thesis that by integrating out the 

ability parameters a distinct advantage can be gained. 

4.3.2.5. Recent Developments and New Directions. 

More recent developments in item parameter estimation focus on adaptations of Monte-

Carlo simulation. Albert (1992) introduced Gibbs sampling (Gelfand and Smith, 1990) to IRT. 

Using a Bayesian model he first specified a joint posterior density for the item and ability 

variables derived from a two-parameter probit model for the data, a normal density for the 

random eff*ects and a vague prior for the item parameters. In maximum likelihood estimation 

the ability parameters are integrated out of the joint posterior density to obtain the marginal 

posterior density ftinction which can be maximised with respect to the parameters. Albert 

questioned the use of M L methods such as the EM algorithm which approximate the joint 

distribution of the parameters with a multivariate normal ftinction. This may not be valid unless 

samples are large. Instead Albert suggested using the Gibbs sampler to simulate a sample from 

the joint posterior distribution of the item and ability pareuneters. From this sample posterior 

means, modes and standard errors can be calculated for the parameter estimates. 

Meng and Schilling (1996) also used Gibbs sampling, this time applying the method to 

item response models with high dimensional latent variables (i.e. more than one latent ability is 

assumed to influence the test results of each subject). Meng and Schilling retain the use of the 

E M algorithm for M L estimation of the item parameters in a two-parameter probit model in the 

manner of Bock and Aitkin (1981). In the muhidimensional case the integration required to 
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obtain the marginal density of the data becomes increasingly complex as the number of 

dimensions increases. The authors raise many doubts about the accuracy and usefulness of the 

usual numerical method of approximation based on Gauss-Hermite quadrature. The Gibbs 

sampler is employed therefore to simulate the expected complete data log likelihood function 

(see Section 6.2.4.) whose calculation is normally the task of the E-step of the EM algorithm. 

By this method the computations required for numerical integration are avoided and the 

expected frequencies and sample sizes for use by the M-step are calculated from the simulated 

Gibbs sample. A Newton-Raphson method is suggested for the maximisation routine. No 

reference is made to GLM methodology. Meng and Schilling (1996) call their procedure the 

Monte-Carlo Expectation-Maximisation (MCEM) algorithm. 

In IRT a subject currently attracting a great deal of interest is multidimensional adaptive 

testing (MAT) (Segail, 1996). Candidates for testing sit at computers and are presented with an 

individual selection of test items based on their on-going responses to items in the current test. 

Algorithms based on M L and Bayesian techniques are required for the simultaneous estimation 

of multidimensional ability vectors and the selection of items to be presented to the subjects. 

These tests require large banks of items whose response functions are dependent on several 

latent variables. Developing methodology for the fitting of response curves in the 

multidimensional context is a topic for future research. 
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CHAPTER 5, MAXIMUM LEKELff lOOD ESTIMATION USING 

THE E M ALGORITHM AND G L I M 

5 1. INTRODUCTION. 

The EM algorithm (Dempster, Laird and Rubin, 1977) is a general iterative method 

for obtaining maximum likelihood (ML) estimates of model parameters in situations where 

the observed data is in some way incomplete. It is called the EM algorithm because it 

combines two procedures at each iteration, an expectation phase (E-step) and a 

maximisation phase (M-step). During the E-step the expected complete data log likelihood 

is computed using estimates of the unknown parameters. This likelihood is then maximised 

during the M-step to give new parameter estimates. This chapter describes how the EM 

algorithm can be used in conjunction with the model fitting software package GLIM (Payne, 

1987) to obtain maximum likelihood parameter estimates for latent variable GLMs. 

Section 5 .2 of this chapter looks at the definition of an E M algorithm in its most 

general form and gives a theoretical description of the two steps. A simple example which 

has been much quoted in the literature is used to illustrate the main points o f the theory and 

several areas of application are listed. This is followed by a note on aspects of convergence, 

an area which appears to be not yet flilly understood. 

Since 1977 the literature on E M has grown considerably. Many publications 

describe applications of the algorithm. For example, Kimura (1992) applies it to a functional 

calibration model in which there is an observed data vector y which approximates an 

unknown vector of true measurements x. The model is assumed to have a normal error 

distribution. The E-step of E M computes x and the M-step estimates the model parameters 
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Attempts have been made to improve upon the basic algorithm. The slow 

convergence of EM in certain situations has led to the development of methods for speeding 

up the process. The lack of a covariance matrix for the parameter estimates has prompted 

several proposals for incorporating its computation into the EM iterations; see Louis 

(1982), Meilijson (1989) and Meng and Rubin (1991). In certain situations the complete 

data likelihood, which is maximised during the M-step, may not be as computationally 

simple as it is in most of the cases where the algorithm is an obvious choice. For these 

situations an ECM algorithm has been proposed (Meng and Rubin, 1993) where the 

complete data likelihood function is conditional on some function of the parameters. The 

M L estimates based on the conditional likelihood are simpler to compute in a series of CM-

steps than they would be in an equivalent M-step. 

GLIM (Payne, 1987) is a computer sofhvare package designed principally to fit 

generalized linear models (see Section 3.2). It does this by an iterative estimation procedure 

called Iterative Re-weighted Least Squares (IRLS) which is described in Section 5.3. It is 

shown how G L I M can be extended and adapted to fit GLMs with latent variables by using 

the package to perform an EM algorithm. A major drawback of the methodology is the lack 

of easily calculated standard errors for the parameter estimates. Some possible methods of 

dealing with this problem are discussed in section 5.4. 

5.2. THE EM ALGORITHM 

The EM algorithm was first described by Dempster, Laird and Rubin (1977). Prior 

to this date various forms of the algorithm were in existence, each version written for a 

particular application or problem. By presenting a unified fi^amework Dempster, Laird and 

Rubin provided a widely applicable tool. They were able to define the incomplete data 

situation mathematically and to describe a generalized E M algorithm (GEM) for computing 

M L estimates in appropriate circumstances. 
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5.2.1. The Generalized EM Algorithm. 

Let there be a data set X = {X^,X^,..,X^)GX and let its probability density fijnction 

be fx{^\fi) Usually, finding the M L estimate of ̂  by maximising the log likelihood 

fijnction would not be a problem. Suppose for one or more of a variety of possible 

reasons the observations x cannot be recorded. Instead y = y{x) e Y is observed. That is, 

the complete data x is only observed indirectly through y and must be estimated from y, 

using knowledge of fx{^\^ 

Let the probability density (or mass) of the observed data be gr{y\fi) • 

Then 

where /? = [r_y = y(x)]. 

Each iteration of the EM algorithm consists of two steps: the expectation step 

followed by the maximisation step. The iteration begins with the /n* estimate of the 

parameter /3, . During the expectation step ^^'"^ and the observed data y are used 

to compute an estimate o f a sufficient statistic o f the complete data x. This is used 

in the maximisation step to estimate new values of ̂  which maximise the expected log 

likelihood fijnction l^^^^y y^'^^^U) • ^^e updated estimates are then input into the 

(/w+l)* E-step, a new approximation /*™'̂ **(x) of the sufficient statistic is obtained, and so 

on until the difference between y?*"* and fl^"^^^ is sufficiently small, for some /w, to indicate 

convergence of the parameter estimates. 
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Dempster, Laird and Rubin (1977) describe the algorithm for special cases where 

the distribution /x{^\Pj belongs to the regular exponential or curved exponential family. 

However, the most general level where the distribution of X and hence the likelihood 

fiinction of conditional on X is not specified is considered here. At the expectation step of 

the /n* iteration a fijnction Qof conditional on the current estimates * is computed 

where 

Q ( ^ t ) = i ' M \ y ' t \ (5 2) 

That is, the expectation of the complete data log likelihood over the region 

^ = \2£y = y(^)] *s taken, using the observed data and the current parameter estimates. 

This leads to a "pseudo-complete data" problem which is solved during the M-step. 

Maximum likelihood estimates P are chosen to maximise the expected log likelihood or 

equivalently to solve the equations 

where the value of fi which satisfies these equations is \ 

5.2.2. Examples. 

Dempster, Laird and Rubin give a simple example to illustrate the principles of the 

EM algorithm. The data is taken fi'om Rao (1965). 

In this example, 197 animals are split into five categories. A multinomial model is 

assumed in which the probability of being categorised in a given cell depends on the 

parameter TT. The complete data X = {XI,X2,X^,X^,X^) would consist of the 5 cell counts 

fi-om which it would be possible to calculate the M L estimate of ;r, TT, by straightforward 

means. However, only four counts are observed. These are the total of cells 1 and 2 added 
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together, and the individual counts for cells 3, 4 and 5. So the observed data is 

Cell No. 1 2 3 4 5 

Prob. I 
2 

n 
4 4 

Count 125 18 20 34 

The object is to obtain the M L estimate TT, using the four observed counts. 

The E-step of the EM algorithm here consists of estimating expected values of x, 

and given the current estimate of ;r, 7T^'"\ The probability of an animal being categorised 

in either cell 1 or cell 2 is + f . The proportion of the total likely to be categorised in cell 1 

2 
IS 

1 
2 

i + f ~ 2 + ;r 
and in cell 2 is 

4 n 
+ f 2 + ;r 

Therefore at iteration w, 

= 125 X ^ and x̂ *'* = 125 x \. 

Since x/'* = 125 - x^^'^, a sufficient statistic r*'*(x) for the complete data is 

( x / ' \ x 3 , x , , x , ) . 

At the M-step an updated estimate of n is obtained by maximising the log likelihood 

function using the complete data values estimated during the E-step. 

/(;r|x) = Iog/^(x | ; r ) 

(5.4) 

{x,^x,^x,-^x,^x,)\^^^^ 

x . l x j i x j i x j x j 

DifiFerentiating with respect to;T and equating the result to 0 gives the M L estimate of n. 

n 
X 2 + X 3 

X2 + X3 + X4 + X j 

Therefore, the M-step, at iteration /w, consists of the calculation 
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/'">+34 
(5.5) 

The algorithm computes the M L estimate of;r using a starting value of 0.5 as 

follows: 

Let = 0.5 

Iteration (0): E-step. 

x / ' ' = 100 and = 25, using (5.4). 

M-step. 

= 2 5 J 4 I 1 8 - . 2 O ^ 0-608247422 , using (5.5). 

The table below shows the values of ^^"^ obtained after 8 iterations: 

m 

0 0.500000000 

1 0.608247423 

2 0.624321051 

3 0.626488879 

4 0.626777323 

5 0.626815632 

6 0.626820719 

7 0.626821395 

8 0.626821484 

The true maximum likelihood estimate of n, obtained analytically, is 0.626821498 (correct 

to 9 d p ). 

As this example shows EM can be used when missing data is fi'om a multinomial 

distribution. In analysis of variance the models are assumed to be normal and linear. In this 

case, an unbalanced design can be made computationally straightforward by using E M to fill 
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in the design matrix so that it becomes balanced. Similarly, missing values in muhivariate 

normal data can be replaced by calculating the expectations of their means, mean squares 

and mean products (with other variables) during the E-step of the algorithm. The complete 

data likelihood can then be maximised, using sufficient statistics calculated from these 

expectations, to obtain parameter estimates for the underlying multivariate distribution. 

In the following example taken from McLachlan and Krishnan (1997) two observations are 

missing in a 3^designed experiment. The data is adapted from Cochran and Cox (1957) and 

is shov^ in the following table v^th a question mark indicating a missing response: 

No. of Lettuce Plants Nitrogen Level Phosphorus Level 

/ (yd (xu) 

1 ? -1 -1 

2 409 -1 0 

3 341 -1 1 

4 413 0 -1 

5 358 0 0 

6 7 0 1 

7 326 1 -1 

8 291 1 0 

9 312 1 1 

In this experiment the response variable is y^, the number of lettuce plants grown 

under a combination /, (/ = 1,2, ... ,9) of two factors, nitrogen level, x„., and phosphorus 

level, X j - . There are three levels of each of these factors denoted by -1,0 and 1. The 

following linear regression model is suggested for the data: 
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where P = {Po^PiyPiY parameters to be estimated and the error terms, e., are 

distributed normally with zero means and common variance . 

For the complete data problem, i.e. the fijll 3^ experiment, the least-squares estimate 

of P is given by the formula 

where X is the design matrix 

" l - 1 - f 
1 - 1 0 

1 - 1 1 

1 0 - 1 
1 0 0 

1 0 I 
1 1 - 1 

t 1 0 
1 1 1 

and y is the vector of responses. This leads to the following simple resuhs 

o 1 ^ -
^ 1=1 

«4 1=7 

I r 1 

A =^1^3 +>'6 +>'9 -y^-yi. 

The error variance is estimated by the residual mean square. 

By applying a version of the E M algorithm which exploits the simplicity of the 

complete data analysis, it is possible to calculate least squares estimates o f the model 

parameters in the incomplete data case given above. The procedure which was suggested by 

Healy and Westmacott (1956) is as follows: 

(1) Find starting values for the missing responses. 
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(2) Compute least-squares estimates of the model parameters using complete data 

methods. 

(3) Calculate new values for the missing data given the parameter estimates 

computed in step 2. 

(4) Update the missing response values with the new estimates computed in step 3. 

(5) Return to step 2 and continue until the parameter estimates converge. 

This procedure is now applied to the lettuce plant data. An initial estimate of P can 

be computed using observations yi^y^ and^/j. Using the model Y_ = X/3 we obtain 

'409" 1 -1 0 ' 
413 = 1 0 -1 

358 1 0 0 

which leads to P^ = (358-51,-55). From this we predict 

y, = 358-51(-1) - 55(-l) = 464 

and 

y^ = 358-51(0)-55(l) = 303 

These are the starting values for the missing responses. In step 2 of the algorithm least 

squares estimates of /? are computed using these starting values in place of the missing 

data. Thus we have, at iteration 1, 

^ = ^ = 357,4445 

^4 i=7 1=1 

-47.5 

A = - [ ; ' 3 + > ' 6 + 3 ^ 9 - y x - 3 ^ 7 ] =-4116667 

The residual sum of squares is 1868.158. From these estimates new values of y^ Bndy^ are 

predicted, and so on until convergence. Convergence to four decimal places for the 
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parameter values and the residual sum of squares occurs after 19 iterations for this data set. 

The final estimates are 

^ - ^ - - _ _ 

355.9690 -41.7830 -31.9458 429.6978 324.0233 885.6418 

Dempster, Laird and Rubin discuss many other instances where E M is applied in 

incomplete data situations, including censored, truncated and grouped data, finite mixture 

models, hyper-parameter estimation, variance component estimation, factor analysis, 

discriminant analysis and time series analysis. 

5.2.3. Convergence. 

In Section 3 of their 1977 paper Dempster, Laird and Rubin discuss the convergence 

properties of the E M algorithm. A proof that the algorithm always converges to a maximum 

likelihood estimate of P given the incomplete data y_ is desirable. However the results given 

in the paper fall somewhat short of this. 

Let / (^) = logg,(j;l^) 

Theorem 1 shows that, on each iteration of E M , 

and if Q[^-\r)>Q{^'\r) 
then (rX^'O 

In addition, if ^ is a ML estimate of p then /(^) is a stationary point of the algorithm. 

Conditions under which the sequence ^ *̂̂ *)>- -.^(^*'*) ••• converges to l{p^ are 
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discussed but a mistake in theorem 2 pointed out by Wu (1983) invalidates most of the 

subsequent proofs presented by Dempster, Laird and Rubin. Wu himself lists several 

convergence results, in particular stating that, if /(^) is uni-modal vAxh only one stationary 

point and ~ ^ ^ ^ P j is continuous in P and p_, then ^ -> ^ as m -> oo where 

5.3. GLIM. 

5.3.1. Iterative Re-Weighted Least Squares Estimation. 

This section consists of an examination of the method of solution of maximum 

likelihood equations for generalized linear models used by the GLIM package (McCullagh 

and Nelder, 1989; Dobson, 1990; Payne, 1987). The algorithm described here is an essential 

component of the software devised to fit latent variable GLMs. 

As before, it is assumed that the data vector is a realisation of a vector of n 

independent random variables each with a probability distribution from the exponential 

family (see equation (3.1)), and with expected value E{Y} = / i . The log likelihood, 

expressed as a function of the canonical parameter 6 conditional on the data y, with <p 

known, is 

where 

The linear predictor is 
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where x/ is the /th row of design matrix X. The linear predictor is related to the expected 

value /J. by the link function g(.) so that 

It is required to estimate the parameter vector /?. For maximum likelihood estimates, it is 

necessary to differentiate the log likelihood with respect to to obtain the score vector 

t^fi^. The7**" component of t± is 

In Appendix B it is shown that 

'St.? (5.6) 
. var():) 

For ML estimates the system of equations to be solved is 

In all but the case of the normal model these equations are non-linear. 

The Newton-Raphson method of solving a system of non-linear equations F ( x ) = 0, 

using suitable starting values finds x'"* at iteration m > I as follows: 

= x'-'' - v(x<"-'>)rV(x<'"̂ »*) (5.7) 

where J(jr) is the matrix of first derivatives with respect to x of the functions F{x) and 

both are evaluated at x*"*"'*. The iterative system is run until a suitable convergence criterion 

is satisfied. 

Using the Newton-Raphson method to solve the ML equations uifi) = Q. where 

is the ML estimate of fi, the system (5.7) becomes 
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given an initial approximation . Here the elements of J are the second derivatives of 

the log likelihood function since the components of u are the first derivatives (both 

evaluated at y9 = fi^"^^^). Hence J is the Hessian matrix H where 

The information matrix is 1 = £ 
ap^ 

In large samples H is approximately equal to the negative of 1, so - J can be replaced by I 

to give 

This is known as Fisher's Method of Scoring. Pre-multiplying by I , we have 

(̂ '"̂ 'Oir̂ K̂ '""')]̂ *""'̂ ^̂ ") (5.8) 
From (5.6) we have that 

which leads (see Appendix B) to 

n 

I * = Z ^ j / ^ ^ i * where w. = 

or, in matrix notation 

I = X^WX 

where X is the design matrix for the model and is a diagonal matrix of weights wnth 

elements w,. 
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Substituting for I in (5.8), we obtain 

X^WX'l"" = X^Wxt-'' + (5.9) 

The element of the p-vector on the right hand side of this equation can be written as 

'an? 

By putting 

it can be seen that the elements are of the form 

n 

(=1 

so (5.9) becomes 

X'^WXP'^'"^ = X^Wz (5.10) 

which, with weights W - V'^a^'^l^, are the normal equations for the general linear model 

(see Section 2.2 for notation) with dependent variable z . When the responses are non-

normal the weights are functions of the means and hence of p. 

The algorithm used by modelling software G L I M (Payne, 1987) to solve the 

maximum likelihood equations for generalized linear models comprises the following steps: 

*(0) 
(i) Evaluate z_andW at starting values P 

(ii) Evaluate X^'WX and X^'Wz. 

(iii) Solve (5.10) for p '\ 

- ( 2 ) 
(iv) Repeat steps (i) to (iii) for P to obtain P 
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(v) Continue repeating steps (i) to (iii), obtaining p^""^ from , 

m - 3,4,5,..., until the convergence criterion is satisfied. 

5.3.2. Using GLIM to Fit Generalized Linear Models. 

GLIM allows the user to fit standard GLMs by specifying a particular error 

distribution from a range of exponential family error distributions (Section 3.2.1.1) and a 

link function (Section 3.2.1.3) to relate the linear predictors to the expected values, also 

selected from a range of standard functions. Once these two functions have been chosen 

GLIM can calculate the information it requires for the IRLS model fitting algorithm 

described above. The link function provides the formula for computing fitted values, i.e. / / , 

from the linear predictor. In addition when a standard link function is chosen can be 

automatically calculated and evaluated at the fitted values. This vector is required for the 

evaluation of r and W in equation (5 .10) above. The form of the error distribution 

determines the formula for Var(K.) which is also required for the evaluation of W. Finally 

GLIM computes a measure of goodness-of -fit known as the deviance which is equal to 

minus twice the log likelihood. For this it requires an equation to calculate the contribution 

of each data value to the total deviance. Again this is determined by the error distribution. 

Alternatively a non-standard G L M may be fitted. In this case G L I M has the facility 

to use code supplied by the user to assign values to the four vectors described above; that 

dt] 
is, the fitted values, the variances, ^, and the deviances. 

Finally, the details of the model to be fitted are specified. The components of the 

linear predictors; that is, the elements of the design matrix A'and the parameters to be 

estimated, are declared. GLIM then fits the model by calculating values which maximise the 
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likelihood function of the model parameters conditional on the data set using the IRLS 

algorithm described in Section 5.3.1. 

5.3.3. Using GLIM to Fit Latent Variable Generalized Linear Models. 

The methodology for fitting latent variable GLMs using the E M algorithm and 

GLIM depends upon the use of the IRLS procedure during the maximisation phase of EM. 

To obtain ML estimates for the parameters of latent variable GLMs, the latent variables are 

regarded as missing data. The expectation step then computes expected complete data 

values, given current parameter estimates and the observed data. The maximisation step 

then maximises the complete data log likelihood using these expected values and produces 

updated parameter estimates which are used in the next E-step unless convergence has 

occurred. 

It will be demonstrated in Chapter 6 that the model for the expected complete data 

is a GLM. This G L M can be fitted to the expected complete data values produced by the 

expectation step using standard software such as GLIM. The maximisation step of the E M 

algorithm can therefore be accomplished in the latent variable situation by performing the 

iterative IRLS procedure until convergence. The parameter estimates for the fitted complete 

data model are then taken as the new parameters for the next E M iteration. A new set of 

expected complete data values are calculated by the next E-step based on these new 

parameters. Then the GLM is fitted once again to the new expected complete data using 

ERLS. Iterations continue in this way until the E M procedure is deemed to have converged. 

The E M algorithm can be programmed entirely within GLIM. A macro to run the 

control loop until convergence is required. In a single iteration this macro makes calls to 

other macros which implement the E-step, the M-step and a convergence check. Code for 

the E-step must be supplied but the M-step makes use of GLIM's built-in fitting algorithm. 

A facility for incorporating subroutines written in FORTRAN is also employed. The general 
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methodology is applicable to all latent variable models where the expected complete data 

log likelihood belongs to a GLM. 

5.4. STANDARD ERRORS OF THE PARAMETER ESTIMATES. 

5.4.1. The Problem. 

The standard errors of the maximum likelihood parameter estimates P are not easily 

obtainable when the EM algorithm is used to fit a latent variable GLM. The IRLS 

maximisation routine that GLIM implements uses the information matrix (the negative of 

the matrix of expected values of the second derivatives of the log likelihood function) to 

solve the likelihood equations. The inverse of the information matrix is an asymptotic 

approximation to the covariance matrix of p and v^th this matrix readily available G L I M 

can easily produce approximate standard errors for each of its estimates. For a latent 

variable GLM, the estimates P from the GLIM M-step are the result of a nnaximisation of 

the expected complete data log likelihood. The covariance matrix, as far as G L I M is 

concerned, is therefore the inverse of the information matrix based on the second 

derivatives of the expected complete data likelihood. However, the covariance matrix, as far 

as the fitting of latent variable GLMs is concerned, is the inverse of the information matrix 

based on the observed data likelihood. As a result the standard errors output by G L I M 

provide only lower bounds for the true standard errors, since the extra uncertainty 

introduced by the missing data increases the variability of the parameter estimates. 

In order to calculate confidence intervals for the parameters of a latent variable 

GLM, it is necessary to obtain estimates of the standard errors of the ML estimates 

calculated with the fitting algorithm described in this chapter. With this objective in mind 

some asymptotic likelihood theory is reviewed in Section 5.4.2 in order to establish the 

theoretical sampling distribution of P the ML estimate of^. Then in Section 5 4̂ 3 a review 
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of some alternative methods for finding standard errors of the parameter estimates is 

presented. 

5.4.2. Asymptotic Likelihood Theory. 

The following section contains a brief review of large sample likelihood theory 

(Kalbfleisch and Prentice, 1989, Dobson, 1990). As before, let the observed data log 

likelihood be 

/(^) = logg,tl^) 

The 'score vector' w = (//,, ? / 2 , . . . , « p ) ^ is defined as the vector of first derivatives with 

respect to p 

dp -

Asymptotically the Central Limit theorem applies to w which has a multivariate normal 

distribution in large samples with mean 0 and covariance matrix I , the information matrix. 

This is given by the following well-knowm resuhs (see, for example, Dobson (1990), 

Appendix A): 

(i) £(w) = 0 

and 

(ii) E{mi)^ E\-tj;] 

=i> I = £ [ - « : ] 

where the covariance matrix of w, I = I ( ^ ) , is the matrix of negatives of the second 

derivatives known as the 'information matrix*. Since it is a function of the unknown ^ it is 

usually approximated by evaluating at P= p.ln addition, in large samples the expectation 

over Y can be replaced by the actual data y. That is, asymptotically. 
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- ul\y=y as /? -> 00 

where n is the dimension of y. 

The Hessian matrix, H{P), of second derivatives evaluated at y and P is 

H{P) = 

so in large samples 

m ^ - H { i ) (5.11) 

The sampling distribution of ^ , the maximum likelihood estimate of p will now be 

considered. Using Taylor's approximation to the first order about the point P = P, 

u{P)-^lL{P)^H{p){P-p) 

Since P is the ML estimate u{P) = 0 and H{P) can be replaced by - \{P) as in (5.11), 

then 

(P-p)-^r'KiP) (5.12) 

provided 1 is non-singular. Taking expectations of both sides gives 

E(p-p) = q 

That is, P is an asymptotically unbiased estimate of p. 

The covariance matrix for P can be derived from (5.12): 

= r ' 

since I is symmetric and I = EQiti^). 

Thus the ML estimate P is asymptotically multivariate normal with mean p and 

covariance matrix T"'. It follows that the standard error of the component of P, 
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/ = l ,2 , . . . . , /7, is given by the square root of the / element on the diagonal of 1 ', and a 

95% confidence interval for /?. is 

4 - 1.96VF7 <P,<P,-^ 1.96VF7 

The variances and covariances of the components of ^ are determined by the 

degree of curvature of the likelihood fijnction / / ( ^ b ) around ^ . A flat likelihood function 

is associated with a large variance in the M L estimate since the difference between the ML 

estimate and the true parameter value may be large even for small differences in their 

likelihoods. Conversely a steeply curved likelihood function indicates small variations in the 

estimates. A large difference between the ML estimate and the true value becomes a much 

more unlikely event since the difference in the likelihoods is also large. Thus the standard 

errors of the components of fi are calculated from the second derivatives of the observed 

data likelihood function. For a one parameter model 

Thus, the greater the curvature of the log likelihood function, the smaller the variance of the 

ML estimate. 

The effect of the missing data is to increase the variability in the parameter 

estimates. The standard errors of estimates that maximise the complete data likelihood are 

smaller than those based on incomplete data; the greater the amount of missing data, the 

larger the standard errors of P. 

One of the drawbacks of the E M algorithm is that it does not automatically or v^th 

any ease provide estimates of the standard errors of the ML parameter estimates P. This is 

because the method finds parameter estimates which maximise the observed (incomplete) 

data likelihood /^(^I j^ by actually maximising the expected complete data likelihood 
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function ix{^^ The information matrix obtained during the computation does not 

therefore relate to the relevant likelihood fijnction. 

The problem in making inferences about P when using the E M algorithm lies in the 

calculation of the information matrix, I , for the incomplete data The likelihood function for 

the incomplete data is frequently algebraically complex and the process of finding its first 

and second derivatives analytically can be extremely difficult. 

5.4.3. Alternative Methods Of Calculating Standard Errors. 

5.4.3.1. Analytic Methods. 

The matrix of second derivatives of the observed data log likelihood is given by the 

expression 

dp" '-^-'-^ "-[dp 

see Section 6.2.2. 

The information matrix is 

'r(^d = 2::^lnJPr,4>:J^. .^)/r(r,>r.; (5.13) 

\ = E 
7 

(5.14) 
dp' 

and the covariance matrix of P is TV Attempts at direct algebraic differentiation of the 

observed data log likelihood have not yielded any useful results. 

The information matrix defined in (5.14) is the expected information matrix. The 

observed information matrix is the matrix of second derivatives evaluated at K = y. 

dp 2 'r [By) (5.15) 

In large samples (5.14) and (5.15) are approximately equal. For GLMs wnth canonical link 

fiinctions they are always equal. 

Louis (1982) describes a method for calculating the observed information matrix 

when using the EM algorithm. He shows that the observed information matrix (5.15) can be 

calculated from the expected values of the first and second derivatives of the complete data 
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log likelihood. Expectations are taken with respect to the posterior distribution of y_ 

conditional on the data and P (see Section 6.2.4). 

yly 
-E-

dp 

when all terms are ev l̂luated at P = P . The first term represents the observed information 

matrix of the expected complete data and the second the expected square of the score 

functions of the complete data. Although the first term should be available as a by-product 

of the final M-step of the E M algorithm, it has so far proved difficult to express the second 

term in an algebraic form which can be easily evaluated. 

A further method, suggested by Meilijson (1989), requires that the observed data be 

independent and identically distributed, and so is not applicable to conditionally independent 

responses. 

5.4.3.2. The SEM Algorithm. 

Meng and Rubin (1991) suggest a 'supplemented' E M algorithm (SEM) for 

calculating the variance/covariance matrix of P. The essential part of this method is the 

calculation of a/? xp matrix DM, where p is the dimension of p. The elements of DM are in 

some sense linear approximations, based on Taylor's theorem, to the individual convergence 

rates of the p parameters. DM is computed iteratively until convergence of each one of its 

elements is achieved. The rationale behind this computation is that the convergence rate of 

EM is dependent on the amount of missing data; the more missing data the slower the 

convergence of EM. It can be shown that the extra variability of the parameter estimates 

due to the missing data is a function of DM. 

where I^ is the observed information matrix of equation (5 .15) and l^^ »s the expected 

complete data observed information matrix obtainable from the final E M iteration. 

Unfortunately the author's attempts to apply SEM have not met with great success. 

It was found that a large number of time-consuming extra iterations of E M were required to 

calculate the elements of DM. In addition, very small differences in some parameters over 

-successive iterations led to instability in the numerical estimates of the convergence.rates. _ 
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Further work is needed to assess whether SEM could be modified or adapted to suit the 

application being researched. 

5.4.3.3. "Aitkin's Method". 

Some empirical evidence of the sampling distributions of the maximum likelihood 

parameter estimates has been obtained from the simulation study described in Chapter 9. 

Estimates of standard errors obtained from this study have compared well with estimates 

obtained from a simple method suggested by Aitkin (1994) which makes use of the fact 

that, under certain conditions, the likelihood ratio test and the Wald test are equivalent. The 

significance of a single parameter P can be tested in two diflferent ways. A z-statistic which 

has a standard normal distribution can be computed under the null hypothesis that ^ = 0 so 

that 

p 
z - (5.16) 

s.e 

where P is the estimate of /?. Alternatively a fijil model including the parameter p and a 

reduced model without P are both fitted. The change in deviance (minus twice the log 

likelihood) between the full and reduced models has a chi-squared distribution wnth 1 degree 

of freedom under an equivalent null hypothesis (i.e. that the two models fit equally well). 

The signed square root of the difference in deviance is therefore also a standard normal 

variable. Therefore (5 .16) can be equated to the square root of the difference in deviance 

between the two models 

s.e. 

which leads to 

This method is generally useful and easy to implement. However, there are obvious 
A A A 

limitations when the standard error of a combination of parameters (e.g. p - Pi+Pi)'^^ 

required. 
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CHAPTER 6> A LATENT VARIABLE GLM F O R BINARY 

RESPONSES, 

6 1. INTRODUCTION. 

In Section 6.2 a general model for binary responses is considered. Three different 

likelihood fijnctions associated with this model are examined. The maximisation of the 

likelihood of the observed response data which is required in order to fit the model has proved 

intractable by direct methods. The response data together with the values of the latent 

covariates are referred to as the 'complete data*. The log likelihood function for the complete 

data would normally be maximised by a standard fitting algorithm for GLMs if the covariates 

were known. Instead the expected complete data log likelihood fijnction is considered. This 

likelihood function is shown to be also the likelihood fijnction of a (different but related) G L M 

where the abilities are discrete and known. The expected complete data log likelihood function 

can therefore be maximised by the IRLS fitting algorithm. 

6.2. THE BINARY RESPONSE MODEL. 

The IRT models described in Section 4.2 are examples of GLMs for binary response 

data with single latent variables. In the following section this model is described in more general 

terms and a likelihood function is obtained for the observed data vector. Standard methods of 

maximum likelihood estimation cannot be applied directly to this function. Instead the 

expectation of the log likelihood of the complete data, i.e. the observed data vector y and the 

latent covariates y, is calculated and this likeUhood is compared with the likelihood function of 

a GLM vwth fixed effects. 
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6.2.1. Defining the Latent Variable GLM. 

The response y,. , a realisation of random variable >Ĵ  , is theyth (/=1,2,. . . ^ observation 

(e.g. response to item j ) on the unit (e.g. subject /) (/=1,2,. It is possible that not all J 

observations are recorded for every unit. In this case the total number of responses recorded for 

unit / is denoted J(i) and the total number of units responding to item J is denoted The 

expected value of the random variable is dependent on unknown parameter vector /? and latent 

covariate (e.g. the ability of subject / ) , a realisation of latent variable F,. It is assumed that 

the conditional distribution of Y^j is binomial 

} ; ~ B i ( l , ; r , ( x , ) ) 

A non-canonical link function is chosen to model the relationship between the linear 

predictor and the conditional mean. Its inverse is 

' '^ l + exp(-;7,) 

where Cj is a known parameter representing the lower asymptote of the logistic function. When 

Cj = 0, the link function is canonical for the binomial distribution. Thus Cj represents the lowest 

value of the expected response which can arise fi"om extremely low values o f . In some 

models Cj > 0. For example, in an IRT model for a multiple-choice test response a positive 

value for this parameter reflects the underiying positive probability of a very low ability 

candidate correctly answering a question by guesswork alone. 

The link function as defined above is directly comparable to the three-parameter IRT 

model discussed in Chapter 4. i t must be emphasised however that in the treatment that follows 

the 'guessing' parameter Cj is not estimated (as it would be in most IRT applications). Instead it 
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is fixed at a pre-determined value. I f this parameter were not fixed the model would not be a 

GLM and it would not be possible to apply G L M methodology to its fitting algorithm 

The linear predictor associated with observation ^y , given that F, = is 

where is the row of the fixed effects design matrix associated with responses to item j, <p 

is a vector of fixed effect parameters and Oj is the slope on / . . Comparing this to the ERT 

model given in equations (4.5) and (4.6) where 

it can be seen that QJ is equivalent to the discrimination parameter Oj and x^^^ corresponds 

to - Qjbj where bj is the difficulty parameter. The vector of unknown parameters in the model 

is denoted where p ^ - {<p ^ , a j ) . 

I f r . - A^(0,l) and QJ = a for al l j \ then aV. - A^(o,a^) so that is equivalent to the 

variance of the random effect. 

I f vector y is assumed to contain observed values instead of unknov^ covariates, the 

model described is an ordinary fixed effect GLM. The likelihood function based on known y 

and responses y can be thought of as the 'complete data' likelihood. 

For y.j ^ Bi(/7,^, ) , the log likelihood expressed as a fijnction of TT-J is 

where C, = In is a constant. So, assuming independent observations conditional on 
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1=1 j = i 

w h e r e C 2 = X Z < " V j is a constant. 

With n-j. = 1, for all / and j, and TT.J = 7t^j{j) , the log likelihood o f the complete data 

expressed as a function of the unknown parameters is 

ksXPiy^r^i:^^^ (6-2) 

with C2 = 0 . 

This function is normally maximised using standard software such as GLIM to obtain 

maximum likelihood parameter estimates. However in a latent variable G L M y_ is unknown. 

What is really required is the maximisation of the log likelihood of the observed data y which 

is not as straightforward, as the next section demonstrates. 

6.2.2. The Observed Data Likelihood: 

Since conditional independence of the responses is assumed, the probability function of 

the vector response variable Y_ conditional on item parameters P and latent vector y is 

PrA^ = y\r,P) = Y\Y\<i^-^^r" ^^^^ 

Since the are also independent the p.d.f of Tthe latent variable vector is 

The joint probability distribution of K and T is 

(6.4) 
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(6.5) 

and the marginal distribution of / is obtained by integration with respect to y 

Pr(y\P) = \Pur(y\r,^/r_(r)dr where R = [r.y = y{y)] 

or, substituting (6.3) and (6.4), 

rr 
2 

dy, (6.6) 

This integration cannot be performed analytically and so an approximation is introduced based 

upon a numerical quadrature rule of some form (see Chapter 7). Essentially, the integral is 

replaced by a weighted summation over K nodes , with weights w^, (k^\,2,...^ the values 

of which depend upon the chosen integration strategy. Equation (6.6) now becomes 

(6.7) 

l - c 
where now TT.. = c, + ——r and n,. = x /c? -\-a,.y.. The continuous distribution of 

' l + exp(-7.,) *̂ -J ' 

the latent ability variable has been replaced by a discrete number, K, of ability points. Instead of 

associating each subject with an individual ability y. there is now a restricted range of K 

abilities y^. 

The likelihood of the data y is given by equation (6.7) with ^ the variable. The log 

likelihood function for the observed data is therefore 

or 

K I J{i) 

(=1 k=i\j=\ 
(6.8) 
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Theoretically this likelihood must be maximised in order to fit the latent variable GLM. The 

likelihood equations are a non-linear system of equations which require the matrix of second 

derivatives for a Newton-Raphson-type method of solution. In addition estimates of the 

standard errors of the parameter estimates depend on the second derivatives and also require 

the inversion of this matrix.. Expressions for the second derivatives are very complicated and 

alternative methods are sought for the solution of the likelihood equations. The EM algorithm 

provides an attractive alternative method as it does not require the differentiation of the 

complicated function shown in equadon (6.8). In addition it is supported by proven convergence 

theorems (Wu, 1983). Results obtained by using EM are therefore more reliable. 

The method of fitting the latent variable GLM using the EM algorithm incorporating 

GLIM was outlined in the previous chapter. The object is to maximise the observed data 

likelihood (6.8), that is the likelihood function of (irrespective of ^ ) , using the information 

in the complete data likelihood (6.2). To achieve this the EM algorithm maximises the 

expectation of the complete data log likelihood, instead of the actual complete data log 

likelihood. To derive an expression for the expected complete data likelihood, it is necessary to 

consider first the posterior distribution of the latent variable. 

6.2.3. The Posterior Distribution of the Latent Variable: 

The computation of the expected complete data likelihood requires the distribution of 

r conditional on data vector y and the computed parameter estimates p. This 'posterior' 

distribution is found using Bayes' Theorem 

R 

(6.9) 
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where the probability distribution of V given F = x and of £ are given by Rinctions (6.3) and 

(6.4). 

The integral in the denominator is a normalising constant which can be approximated by 

a weighted sum over K nodes as in equation (6.7). This leads to 

(6.10) 

Substituting functions (6.3) and (6.4) in the above, the posterior probability distribution 

of the latent variable associated with subject / is 

where the normalising constant C 3 is 

exp 2 

K I 

exp hi 
2 

(6.11) 

6.2.4. The Expected Complete Data Likelihood. 

The log likelihood function for the complete data and 7̂ , as a function of fi, is 

obtained from the joint p .d . f of the two variables V and F : 

Taking natural logarithms 

-_\ / \^2nJ i=\ i=\ 
exp 2 

1 ' / M ^ 
V 2 ; r i = i ; = i i=» 

(6.12) 

91 



The ftinction Q, the expected complete data log likelihood, is found by taking expectations of 

function (6.12) over the posterior distribution of F given the data and parameter estimates as 

in equation (6.9). 

dSl^P) = \ t f\y, In + (1 - ) ln ( l - 7r,)\fr^^ [y, j)dy, 

where 

which is a constant. Evaluation of the integral required for the above expectation is impossible 

by analytic methods. Applying quadrature rules to approximate the integral using K nodes , 

with weights gives 

e t e ^ = Z Z Z ^ i , ' " ' ^ ) l n ( l - ; r , ) / n , , ( n l > : , , ^ (613) 
t = i ,=1 j=i L J J '* 

The conditional (given the data) posterior probability that the value o f the latent 

variable associated with unit / is is denoted P^^ where ^ P^^ =^ \. P^^ can he expressed as 

p . = I* K 
(6.14) 

where the conditional probability of response vector is 

and the probability of rk >s fr{rk)^k with 

ylln 
exp 
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Using the posterior distribution of the continuous variable f given in (6.10) 

fr.w_ r,\yrP —-— (6.15) 

Substituting (6.15) in (6.14) 

(6.16) 

It is therefore possible to substitute (6.16) in (6.13) to give 

.1 * = l 

1=1 i = l 

K J 

An insightful way to view this is to think of the continuous distribution of the latent 

variable being replaced by a discrete distribution with a finite number, K, o f values 

y\^7i, - -^7K probability masses Pi^Pn^ •-'PiK defined by the quadrature rule. The 

approximation to function Q, the posterior expectation, is eflfectively a discrete expectation 

with masses P^^ at nodes y ̂ . 

Summing over / gives 

K J 

e t e ^ = Z S [ f / > * l n ^ , » +(Nj,-U,,)\r,(\-n.,)] + C, (6.17) 

Hj) 
where N = X ^ * >s interpreted as the expected number of responses to itemy for subjects 

1=1 

with latent attribute (e.g. ability) concentrated on the node y^ and U = 2] as the 
1=1 

expected number of positive responses to item j dependent on latent attribute y^. When all the 

units have responded to all 7 items then the j index is redundant. Then Â^̂  is simply the 
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expected number of units with latent attribute , given the data and current parameter 

estimates. However i f the total number of responses to item j is dependent on J then the Â ^̂  

may vary over J. These expected sums of responses are the expected complete data. 

By comparing the expected complete data log likelihood function shown in equation 

(6.17) with the complete data log likelihood function in equation (6.2), it is easily seen that 

(6.17) has the form of a log likelihood function of a GLM with responses Ujt - Bî A^^t ,;r^jt) 

The link function, which is 

1-c, 
;r... = c , + • l_,exp(-7,,) 

and the linear predictor associated with observation Uj^ which is 

are equivalent to those defined in Section 6.2.1 (the subject subscript / is replaced by k). This is 

the key to the methodology described in this thesis. Maximising the expected complete data log 

likelihood is equivalent to fitting the G L M whose log likelihood function is equation (6.17). 

Using this result we have successfully fitted latent variable GLMs using standard G L M fitting 

sofl:ware. The software written for this purpose and its implementation is described in the next 

three chapters. 
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CHAPTER 7. CHOOSING A NUMERICAL INTEGRATION 

STRATEGY. 

7.1. INTRODUCTION 

From Section 6 ,2.4 the posterior distribution of the latent variable F is 

R 

It was also shown in this section that the expectation of the complete data likelihood with 

respect to this distribution, expressed as a function of ^ , is 

Q(MJ) = h^''PyxSy^r\fl)]fr,y(r^^^ (7.2) 
R ~ 

Combining equations (7.1) and (7.2) the fiinction Qcan be written in the form 

= 7 — T T N ^r , (7.3) 

R 

where 

and 

f2ir<) = Pyjr.{y,\r>J) 

The integrals above are analytically intractable. The algorithm for obtaining maximum 

likelihood parameter estimates involves numerical approximation to these integrals. The factors 

influencing the choice of integration strategy are outlined in this section. Various numerical 
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methods of integration are available. Simple Newton-Cotes rules are briefly considered in 

Section 7.2. Section 7.3 contains an introduction to Gaussian Quadrature with specific 

attention on Gauss-Legendre and Gauss-Hermite methods. The performances of these two 

quadrature rules are compared in Section 7.4. 

7.2. NEWTON-COTES RULES. 

The simplest numerical methods for approximating integrals are the various Newton-

Cotes formulae such as the trapezoidal rule and Simpson's formula (see, for example, Froberg, 

1969). These rules are derived by integrating interpolating polynomials through known values 

of the function at equidistant intervals. These values are weighted and summed, the weights 

being chosen to maximise accuracy. Nev^on-Cotes methods are appropriate in situations where 

the integrands are not known explicitly but discrete evaluated points are available, for example 

in tabulated form. The nodes (or abscissae) are therefore pre-determined by the data. 

7.3. GAUSSIAN QUADRATURE. 

7.3.1. Introduction. 

When the function requiring numerical integration is knov^ explicitly then some form 

of Gaussian quadrature may be appropriate. By making use of Lagrangian interpolating 

polynomials, these rules allow both the weights and the abscissae to be chosen to minimise the 

error. In general it is required to find nodes and weights , k=\,2,...JC, such that 

fa{x)fix)dx = X wj{x,) + R, (7.4) 

where 

J« ( X , - x , ) . . . ( x , - x , _ 0 ( x , - x , , , ) . . . ( x , - X j , ) 
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The error term is Rf. 

= \^a(x)ix - X, ) . . . (x - X j , ){ao + a,x + a^x^ + ..}dx 

where ao ,(3r,,a2, . . . are constants. 

These methods rely on the existence of sets of K polynomials which are orthogonal with 

respect to the known weight function a{x) over the interval [ a , ^ ] . In these sets the ^th 

polynomial has k roots. The K abscissae are the roots of the polynomial. Once they have 

been chosen, the weights are automatically determined. (For example: Davis and Rabinov^tz, 

1984; Froberg, 1973; Burdon and Faires, 1989). The roots of the polynomials used for different 

quadrature rules and the weights associated with them are extensively tabulated (e.g. Stroud 

and Sechrest, 1966, Abramowitz and Stegun, 1972). 

7.3.2. Gauss-Legendre Rule. 

The Gauss-Legendre integration rule makes use of the set of Legendre polynomials. 

This set is orthogonal on [-1,1] with respect to the weight function a(x) = 1. Therefore the 

approximation takes the form 

j\/ix)dx^f^wj(x,) (7.5) 

A transformation is used to translate x e[a,Z>] to x' e [ - l , l ] . This is 

x ' = r — l ( 2 x - a - M (7.6) 

so that when the range o f integration is changed to \a,b\ (7,5) becomes 

V 2 yn; vv 2 y \ 2 JJ \ 2 /n; 

where - 1 < x j < 1 and < x^ A-=l ,2 , . . . ^ . 
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Gauss-Legendre Quadrature with 16 Nodes 
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T 

-1 0 

nodes/panels 

FIGURE 5. Gauss-Legendre Quadrature. 

For a Gauss-Legendre approximation to the integral J/{x)cix using K nodes the 

following procedure is adopted. First the nodes and weights for a 4-point integration rule over 

the interval [-1,1] are obtained from tables. They are considered to constitute one panel. The 

number of panels (K/4) over the required range [a,b] is obtained. The limits and widths of the 

ranges of the new panels are then calculated by dividing [a,b] into (K/4) panels of equal width, 

and the original nodes are transformed to each of these new intervals using equation (7.6). The 

original weights are scaled to the width of the new panels, panels narrower than the originzil 

(<2) requiring smaller weights and vice versa. The procedure results in K nodes and weights 

over the range [a,b]. Figure 5 shows K=\6, i.e. 4 panels, over [-3,3]. The widths of the panels 
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and the weights are 3/4 of their original size. The abscissae x'^ e [ - l , l ] , 1,2,3,4, have been 

transformed four times so that G [-3,-1.5] for ̂ =1,2,3,4, x^ e[-1.5,0] for A:=5,6,7,8, 

X, e[0,1.5] for*=9,10,ll ,12, and e[1.5,3] for ^=13,14,15,16. 

Using Gauss-Legendre quadrature in this manner the function Q in equation (7.3) can 

be approximated by 

/ ^^ ^ ' r ^ V2) 
K / 2 / \ 

where the are the abscissae obtained by the procedure outlined above and the are the 

associated scaled weights. In another form 

Q{gyJ)^±tF\r.\i)^'^^ (7.8) 
1=1 k=\ 

where W,^ =exp ^ A 

7.3.3. Gauss-Hermite Rule. 

In this case the K abscissae are the roots of the A!^ Hermite polynomial . These 

polynomials are orthogonal on the interval ( - 0 0 , 0 0 ) with respect to weight function 

a{x) = e'''. Therefore the nodes and weights are chosen so that 

£ e - 7 ( x ) a ! r * i : " ' » / ( x » ) (7.9) 

The functions to be integrated in equations (7.1) and (7.2) are of the form 
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where F[y) is a function of . In order to employ the Gauss-Hermite rule a transformation of 

the variable, namely y - V2x , is required. This gives 

K K 

e-^'F{./2x)dx « Z W , F ( V 2 X , ) = Zw,F{y,) 

where the x^ are the tabulated solutions of = 0, y^ = -Jlx^ and the are the associated 

weights, which are also tabulated. Using Gauss-Hermite quadrature the function 0 in equation 

(7.3) can be approximated by 

Q { ^ y , S « i i F , ( r A 0 } ^ ^ ^ ^ (7.10) 
1=1 k=l 

Equations (7.10) and (7.8) are written in the same form so that the and are directly 

comparable. 

7.3.4. Discussion. 

It would appear at first sight that the Gauss-Hermite quadrature rule is the optimal 

choice for the required integration because of the presence in the integrand of the factor e ^ , 

which can easily be transformed to the weight function e'""'. However there are various 

reasons why this is not in fact the case and why it is anticipated that a Gauss-Legendre rule 

gives a better performance. 

The functions equivalent to / ( x ) in equation (7.9) can be sharply peaked and 

asymmetrical (about zero) and generally dominate the integrand, which is therefore a 'lumpy* 

asymmetrical function. It is surmised that this is because the posterior distribution of the latent 

covariate y is approximately N{^,a^), the means and standard deviations varying over the 
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different units (subjects). Although the integrands may vary in their shapes the same set of 

nodes and weights is required to approximate these functions for all the units of observation. 

Comparison of Gauss-Hermite and Gauss-Legendre Integration Rules 
16 Nodes 
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FIGURE 6. Comparison of Gauss-Legendre and Gauss-Hermite Rules showing nodes. 

Figure 6 shows a comparison between a 16-node Gauss-Hermite rule with weights 

(equation 7.10) where the interval of integration is [ - oo ,oo] and a 16-node Gauss-Legendre 

rule with weights = exp ^ ^ w ' t (see equation 7.8). Thus the in Figure 6 

( A 
correspond to the weights shown in Figure 5 multiplied by the function exp - ' * A . 

For Gauss-Legendre approximation the interval of integration is, in this case, [-3,3]. 

This range is chosen to approximate the range of a standard normal distribution. The infinite 
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range of the Gauss-Hermite rule would therefore appear at first sight to be more appropriate. 

However, the graph on the left shows how the standard normal distribution dominates the 

Gauss-Hermite method with too many nodes of negligible weight 'wasted' in what equate to 

the tails of the distribution of y . The Gauss-Legendre rule is based on panels of 4 nodes which 

are scaled and replicated over a finite interval and the right-hand graph shows a more useful 

distribution with a greater number o f nodes spread over the region o f interest. It is conjectured 

that this is more effective in approximating distributions where the data indicates a high 

probability that the variable y is not near the centre of the standard normal distribution. 

7.4. A COMPARATIVE STUDY. 

7.4.1. Design. 

In order to compare the relative performance of Gauss-Legendre and Gauss-Hermite 

integration rules a comparative study of two versions of the model-fitting software was 

undertaken. The first version was the software described elsewhere in this thesis, incorporating 

Gauss-Legendre quadrature, and the second used Gauss-Hermite quadrature but was in all 

other respects identical. Two data sets were simulated from the model 

where the linear predictors are 

i .e. the true values of both the slope and intercept parameters were 1 for all j . 

Data set 1 was the smaller, comprising 50 units (subjects) with 25 observations on each, 

data set 2 was larger with 400 units of 100 observations. The model fitting algorithm (described 

fiilly in Chapter 8) was run on each data set using both integration rules with 4, 8, 12, 16, 20, 
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24, 32 and 48 nodes. All the Gauss-Legendre rules used assumed the interval of integration to 

be [-3,3]. The algorithm was run on the smaller data set with a convergence criterion of 0.001 

and on the larger set with 0.01. 

It was hoped that both rules would converge towards similar estimates of both slope 

and intercept parameters as the number of nodes increased. Differences in the patterns of 

convergence were noted. Standard errors for the parameter estimates were taken from the 

results of the simulation study for similar sized data sets (see Table 8). These were compared 

with the errors in the estimates as the number of nodes increased. The results were plotted and 

the graphs can be seen in Figure 7. 

7.4.2. Resuhs. 

In the smaller data set the integration rules produced estimates which converged 

towards the same parameter value, specifically 1.21 to 2 d p for the intercept and 1.10 to 2 d p 

for the slope. The Gauss-Legendre estimates were very close to this value when 12 nodes were 

used but the Gauss-Hermite values took longer to settle dovsm as expected, requiring 20 nodes 

to attain a similar accuracy. In the large data set convergence to (0.95,1.00) was better with the 

Gauss-Legendre rule, again confirming expectations. A set of 20 nodes gave very good 

accuracy in this case but 32 and 48 points were needed to achieve a similar level of accuracy on 

the intercept and slope respectively when a Gauss-Hermite approximation was used. In terms of 

time the increased number of iterations meant that the Gauss-Hermite rules could take twice as 

long as the Gausss-Legendre rules to achieve the same accuracy. 

I was noted that when 64 nodes were used the error in the Gauss-Legendre estimates 

increased again slightly. This problem was alleviated when the range of integration was 
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extended to [-4,4]. The estimates were well-behaved for /C < 64 and 64 nodes was too large a 

number for practical purposes. 
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Comparison of Gauss-Hermite and Gauss-Legendre Integration Rules 
for Different Nos. of Nodes 
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FIGURE 7. Comparison of Performances of Integration Rules. 
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7.4.3. Conclusion. 

With Gauss-Legendre quadrature more accurate parameter estimates are obtained using 

a smaller number of nodes. This was particularly noticeable in the large data set that was tested 

where Gauss-Hermite approximation required an impracticably large number o f nodes to 

achieve acceptable accuracy. 

Gauss-Legendre quadrature may be an appropriate choice regardless of the properties 

of the function to be integrated. The Gauss-Hermite method works best in situations where the 

weight function e"'* dominates the integrand and the function / ( x ) in equation (5.2.9) is 

relatively smooth. In this latent variable context however it seems likely that the f ( x ) 

approximates to a normal distribution, usually with a non-zero mean, which dominates the 

integrand. The larger the sample size, particularly when there are a large number of 

observations per unit, the smaller the standard deviations of these posterior distributions and 

the greater the tendency for the individual means to deviate from zero. This is why the Gauss-

Legendre quadrature rule with its more even spread of nodes and weights is able to out­

perform Gauss-Hermite. 

For example, in the IRT application a subject who correctly answers only a very few 

items in a large test has a very high probability of a low ability score. The posterior distribution 

of his ability is sharply peaked about a low mean. Other subjects may have equally sharply 

peaked distributions at the other end of the scale whilst others will be more central in relation to 

the range of integration. The Gauss-Legendre integration rule is better able to approximate this 

range of ability distributions than Gauss-Hermite. 
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CHAPTER 8, F I T T m G A LATENT VARIABLE G L M F O R 

BINARY RESPONSES. 

8.1 INTRODUCTION. 

In this chapter the methodology for fitting latent variable GLMs is applied to the model 

for binary response data developed in Chapter 6. It is shown how software written in G L I M to 

implement the EM algorithm can be used to fit a model of this type to a data set fi'om an 

experiment in IRT. 

In Section 8.2 the fitting methodology for latent variable GLMs using the E M algorithm 

and GLIM which was described in Chapter 5 is applied to the binary response model. In 

Section 8 .3 there is a detailed description of the implementation of the model fitting software 

and in Section 8.4 it is specifically applied to two examples fi-om Item Response Theory, a 

timed item test of mental arithmetic and a timed transitive inference test. 

8.2 FITTING THE BINARY RESPONSE MODEL. 

The general procedure for fitting a latent variable G L M using the E M algorithm and 

GLIM has been described in Chapter 5. When the response data is binary the algorithm 

proceeds as follows: 

STEP 1: Choose a suitable number of quadrature points for the integral approximations 

and calculate the nodes and weights w^^ as defined by an appropriate integration rule (see 

Chapter 7). 

STEP 2: Choose starting values for the parameter estimates . 
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STEP 3; This step is the expectation step of the EM algorithm. Using response vector 

y and parameter estimate ^'"^ calculate A^̂ *, the expected number of units at node 

attempting item j, and Uj^, the expected number of units at node scoring 1 on observation y, 

forj=l,2,. . . ,7and A=l,2, . . ^ , where 

an 

1=1 i=l 

From equation (6.14) 

I* K 

which will be written 

p _ Pit 

where 

Expanding this expression gives 

(8.1) 

At = ( 2 ; r ) " 2 w , exp - ^ + tUin ; r^,+(l->. ,) ln(l- ;r , , ) 

where 

1-c, 

1 + exp 
(8.2) 

and 

(8.3) 
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STEP 4: Using the IRLS algorithm within GLIM, fit the model to the data 

K = {^u^^^^> ••^^J^>^n>^22>•^•>^J2,^ -.^2^>^^K> • • ^ ^ J K y assuming Uj, Bi(A^^.,,;r 

with link function (8.2) and linear predictor (8.3). This is the maximisation step of the E M 

algorithm. 

STEP 5: Using the new parameters * obtained from the M-step in the (/w+/)th 

iteration of EM, repeat steps 3 and 4 until convergence. 

A similar fitting algorithm for GLMs with random effects is described by Hinde (1988). 

However Hinde suggests using the P^^ as prior weights and expanding the original data vector 

o f length n, (/;= / x ̂ , to a vector o f length {K x w). Because of the summation over the / 

subjects that occurs in equation (6.17) the method outlined here has the advantage that it 

reduces the data vector from n = I xJlo n ^JxK (assuming K<I). This summation over / is 

possible when there are no model parameters indexed by /. In the IRT applications under 

consideration model parameters are normally fiinctions o f the item characteristics and so this 

reduction in what may be extremely large data sets is possible. As a result computer processing 

is speeded up and there is less strain on memory resources. 

8.3 RUNNING THE MODEL FITTING SOFTWARE 

8.3 .1 . An Overview of the GLIM Program. 

All the software routines required to fit a latent variable G L M for binary responses are 

implemented in a single G LI M program. A listing of this program is attached in Appendix C. A 

generalized linear model v/ith the non-standard link ftinction given in equation (8.2) is built into 
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the program code by declaring the SO>W directive. This allows the macro FIT to assign fitted 

values to the system vector %Jv using the values of the linear predictors in the system vector 

%lp. Thus the model predicts that the number of subjects at ability node k answering itemy 

correctly is 

1-c 
c.. + 

' l + exp(-77^.,) 

where TT , is the probability of a correct response and Â ^̂  is the number responding. 

Similarly the macros DIR, VAR and D £ F assign user-defined values to the derivatives — , the 

vanance functions and the deviances respectively. The derivatives are given by the equation 

the variances 

Kar (^ , , ) = A^ , , ; r , , ( l - ; r^ . , ) 

and the deviances 

D., = 2Uj, log 
U 

Macros F / r and Z>£K therefore define the logistic functions v^th guessing parameters 

(when the guessing parameter is zero it is the standard logistic model) which relate the linear 

predictors to the expected values and yAR and DEK define the binomial distribution from 

which the data are assumed to come. 

The components of the binary response model defined above are therefore pre-set in the 

program. Although the structure of the linear predictor is decided by the user at run-time this is 

omplished only within the limits set up in the G L I M code. The factors and covariates which acc 
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the user may wish to include in a model formula are also coded into the program. Factor levels 

are generated and assigned to vectors during the program's initialisation routines. The factors 

can be included in or excluded fi'om any model formulae under consideration and their exact 

nature will depend on the individual application. Similarly values of any fixed covariates which 

may appear in the model are also assigned to vectors. 

The program is designed to enable the user to fit a model and obtain the results and then 

repeat the fitting procedure with an alternative model formula as many times as required 

without having to re-run the program. There are also facilities to enter and change the number 

of quadrature nodes used in the numerical integration routines and to enter and change the 

tolerance levels which are the criteria o f convergence. In this way the program can be used to 

obtain suitable starting values by iterating only a few times with a small number of quadrature 

points. This is normally a relatively quick process. The convergence criteria can then be made 

more stringent and the number of nodes increased to obtain more accurate estimates. 

The program consists o f a set o f nested macros. By calling the highest level of macro 

the user can run the entire model fitting algorithm fi'om start to finish with only the minimum of 

input. Alternatively more control can be gained by rurming a succession of lower level macros 

in the user's desired order (provided certain rules regarding sequence are obeyed). For 

example, instead o f allowing the program to iterate back and forth between the expectation and 

maximisation steps of E M until convergence it is possible to run each step individually. This 

may be desirable i f a close examination of the results of each step is required. It also allows the 

iterations to proceed until the user decides, with the results in view, that he or she wishes it to 

stop, rather than ending the algorithm by some predetermined criterion. 

G L I M has the facility to call subroutines written in FORTRAN and data may be passed 

between these subroutines and the GLIM calling program. Several of the GLIM macros that 
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comprise the latent variable G L M model fitting software make use o f this facility which is 

implemented with the 5/^55" command. This directive transfers control to a FORTRAN 

module TASS.F77' which in turn calls the required subroutine. The software has been 

designed so that when GLIM passes control to a FORTRAN subroutine the user is informed 

v^th a message on the screen indicating the nature of the processing that is taking place. 

8.3.2. Running the G LI M Program. 

8.3 .2.1. Initialisation Routines. 

The program is started from the package GLIM. The user types 

Sifiput FILENAME 

where FILENAME is a file containing the GLIM program GLIRTI . When this is loaded the 

user is first asked for the name of a file to which the results of all the model fitting procedures 

can be written. 

Enter name offile for otttput ofparameter estimates 

The program then sets some default values for the run. These are a default model which has a 

common intercept and slope on abiUty for every item, a default tolerance (0.001) and a default 

maximum accuracy (9 d.p.) for calculations. The first two of these may be altered by input from 

the keyboard during the run. 

The user is then prompted: 

Use macro NODES then INJTfor initial estimates 

Use macro LOOP to nm EM algorithm 

Alternatively typing 'SUSERUN' will call all three macros automatically one afler the other. 
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8.3.2.2. Calculating the Quadrature Nodes and Weights. 

When the macro NODES is called control is immediately passed to a FORTRAN 

subroutine called LEGDAT and the following message is displayed: 

subroutine LEGDA T - calculating standard normal nodes 

Input no. of nodes (4,8,12,..., 60) 

Input min and max 

The user must supply (i) the number o f nodes required for the numerical integration 

procedure (only multiples of 4 between 4 and 60 are accepted) and (ii) a lower and upper limit 

for the range of integration. This will normally be (-3,3) or (-4,4) for the standard normal 

distribution. As in STEP 1 (Section 8.2) above the subroutine then calculates the required set 

of nodes and weights using Gauss-Legendre quadrature rules (see Chapter 7). A file 'Q.DAT' 

contains nodes and weights for a 4-point integration rule taken from tables (e.g. Stroud and 

Sechrest, 1966) and is available to the subroutine. Output is to a vector which is passed back to 

the GL IM calling program and to a file 'LEG4.DAT' which is only used for the purposes of 

further (related) research. 

8.3.2.3. Entering the Mode! Formula. 

When control is returned to GLIM, macro NODES prompts the user to specify the 

components of the linear predictor and a tolerance level: 

You must enter a model specification and a tolerance level (%x) 

Current model: "MMMM" Tol: "nn" 

To specify a new model enter macro MODEL 

reset %x if a new tolerance is required 
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The scalar %x contains the current tolerance value used to detect convergence of the 

EM algorithm. Its contents are displayed {mi) and can be changed by typing, for example, 

Scal%x=0.000l$ 

The current model formula is held in the named string MODEL and is displayed on the screen 

{A4MMM). A new one is entered by typing, for example, 

SMACROMODEL A^B $ 

where ̂ 4 and 5 are vectors containing factor levels. 

8.3.2.4. Starting the Algorithm. 

When the macro INIT 'is run control is once again passed to a FORTRAN subroutine 

and the message 

subroutine INIT -imtialisation 

appears on the screen. The vectors o f nodes and weights calculated by the LEGDAT 

subroutine are passed as a single string from G L I M to INIT. This subroutine opens the file 

'A2GLIRT.DAT' which contains the observed binary response data to which the model is to be 

fitted. The first two values on this file are the dimensions o f the data, / and 7 (i.e. the number of 

subjects and number of items in the case of IRT data). Next to be read from this file are the J 

lower asymptotes or guessing parameters Cj which may be different for each item. Finally the / 

by J data matrix is read into an array. 

The next step (STEP 2 of Section 8.2 above) is to assign initial values to the slope and 

intercept parameter vectors. At present suitable constants are assigned to both parameters 

within the FORTRAN code. The FORTRAN subroutine now has all the information it needs 

for STEP 3 the calculation of initial values for the expected complete data 

U-[u,,,U,,,...,Uj,Mn,Uu.-.,yj2^--^^ and 
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K = {^u^^u^- -^^j\>^i2>^22^- - , ^ j 2 > - -^^2i>^2Ky- - ^ ^ j K y using cquations (8.1) and 

(6.14). These values are passed back to G L I M where they are stored in vectors. 

Before the first maximisation step is run to fit a model to the expected data values all 

the vectors required for the IRLS algorithm must be in place. A macro PREP is called which 

deletes any data vectors remaining fi*om the fitting of a previous model and sets up new ones. 

The vector containing the data i.e. U must be declared as such (SYVAR). The data N_ are the 

'binomial' denominators and are used in the specification of the binary response model through 

the user-defined macros FIT, DIR, DEVand VAR. GLIM requires that all the vectors involved 

in the fit must be of the same length as the data This entails expanding the /C-vector of ability 

nodes by repeating each node J times. Similarly the J guessing parameters must each be copied 

/C times. Vectors containing factor levels and fixed covariates are then generated. The result is 

that the set of J items, complete with the factor levels and covariates associated with each 

item, is repeated AT times, with one set of items at each ability node. 

Two dummy sets of items are added to the end of the data vector. Thus IJ_ becomes 

extra components represent dummy data points at ability levels o f 0 and 1. For example t/a.j^+i 

represents the number of subjects at ability level 0 answering item 2 correctly and U2,K^2 the 

number of subjects at ability level 1 answering item 2 correctly. The last 2J values of the ability 

vector are set accordingly to y zeros followed by J ones. The corresponding components o f f / 

and N_ are set to Os and Is respectively. These data points are given zero weighting so that 

they do not contribute towards the parameter estimation. They are otherwise treated as bona 

fide data and have associated item factor levels and covariates. During the fitting algorithm 

values are assigned to the related components o f the system vectors as for any other data value 
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After fitting the model the system vector o f linear predictors %LP will contain values o f the 

intercept only for each item where the ability node is 0, and the sum of the intercept and the 

slope for each of the items where the ability node is I . The slopes can therefore be found by 

simple subtraction. This allows the slopes and intercepts which may have complicated 

structures varying from item to item depending on the factors used in the model to be easily 

extracted and passed to the next E-step. 

At this stage a message informing the user of the current model, the number o f items, 

the number of nodes and the tolerance level is displayed. For example: 

MODEL: BLOCK + DIFFGAMMA 

ITEMS: 60 NODES: 16 TOL:0.00I 

GLIM is now ready to fit the first model. This is controlled by macro MAX. The message 

Maximisation Step: Iteration J 

is displayed and the GLIM fitting algorithm is implemented (STEP 4). At the end of its 

iterations G L I M displays the new parameter estimates along with standard errors and a scaled 

deviance (the latter two are irrelevant to the present purpose). 

8.3.2.5. Continuing the EM Iterations. 

At this point the program has completed the first E M iteration and produced some 

initial parameter estimates to use in the second expectation phase.. In order to run the E M 

algorithm to convergence the user may use macro LOOP (STEP 5). This macro will 

automatically test for convergence af^er every E-step. Alternatively he or she can use macros 

ESTEP and A-m'alternately. Whichever way it is done the next stage is to call the FORTRAN 

subroutine ESTEP which implements the fii l i expectation step of the E M algorithm. The 

calculations used to compute fresh values of U and TV̂ are those performed in subroutine INIT 

116 



(equation 8.1) but using the updated intercept and slope parameters fi'om the previous M-step. 

As before a message appears on the screen whilst the routine is running: 

subroutine ESTEP - expectation phase 

When control returns to GLIRTl the new expected complete data is read into GLIM 

vectors and the program is immediately ready for another fitting routine implemented by macro 

MAX. 

8.3.2.6. Convergence. 

A secondary task of the subroutine ESTEP is to calculate the 'fit statistic', - 2 / , where / 

is If (P \y); that is the observed data log likelihood function evaluated at the current 

parameter estimates and the observed responses y. This statistic is part of the log 

likelihood ratio statistic which can be used to compare the goodness-of-fit o f different models. 

It is used here to detect convergence of the E M algorithm. It has been shown (Dempster, Laird 

and Rubin, 1977) that each iteration of E M increases the likelihood (Section 5.2.3). As the log 

likelihood increases, -21 decreases. A sufficiently small decrease in -21 indicates that 

convergence has occurred. Alternatively, a maximum has been reached i f there is no significant 

increase in the log likelihood over the last iteration. I f convergence is not indicated then the E M 

cycle continues. 

The calculation and checking of the fit statistic is performed outside o f the main G L I M 

program because of the higher level of accuracy it is possible to achieve using FORTRAN. The 

subroutine E ĴIT opens a file called 'FIT.DAT' and writes to it one record consisting of a 

double precision variable. This variable is the fit statistic and is set to zero by the initialisation 

routine. Each time the expectation step is run 'FIT.DAT' is opened and the last value of the fit 

117 



statistic is read. Before the subroutine ends a new value is calculated and written to the file in 

place of the old one. It is also displayed on the screen for the user to see at each iteration: 

FIT statistic: (nnmmn. nwvmn) 

The diflference between the new fit statistic and the previous one is compared with the tolerance 

level set by the user (this is passed to the subroutine fi-om GLIRTl) . I f the difference in fits is 

less than the required tolerance then the current value of - 2 / is passed back to GLIRTl in 

place of the tolerance. On returning to GLIM, before starting the maximisation routine, macro 

CHECK sets a switch i f it detects that the tolerance level passed to ESTEP has been changed. 

This switch then initiates macro ENDUP after the final mode! fit. 

8.3.2.7. Restarting the Program. 

Macro ENDUP automatically writes the results of the final IRLS fitting algorithm to the 

output file named at the start of the run. Details of the model formula, the number of 

quadrature points used, the convergence criterion and the final fit statistic are all written to the 

file together with the standard G L I M output which was also displayed on the screen. The 

message 

use macro NODES for new nodes, or re-set tolerance (%x) 

then use macro LOOP to re-run algorithm 

is then displayed. The user can then run the algorithm again with an increased number of 

quadrature points and/or tighten up the convergence criterion. Alternatively he or she may exit 

fi-om the program at this point. I f further models are fitted the final results are appended to the 

file and can be printed when needed. 
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8 4. EXAMPLES FROM ITEM RESPONSE THEORY. 

8 .4.1. Example 1 - A Timed Item Test of Mental Arithmetic. 

The latent variable G L M for binary response data, described in Chapter 6, was fitted, 

using the methodology described in this chapter, to response data arising from a timed mental 

arithmetic test (Wright et a/, 1994). This application was described in the introduction to this 

thesis (Section 1.3). 

8.4.1.1. The Data. 

In this example 293 subjects answered a total of 60 test items. The subjects were 

presented with successive items on a computer screen. Each one consisted of an arithmetic 

equality (e.g. ' 1 1 - 4 + 8 = 1 5 ' o r ' 1 5 - 8 + 12 = 21') which was either true or false, for a pre­

set time period of either 4, 6 or 8 seconds. The item was then removed from the screen and the 

subject given 1.5 seconds to respond 'true* or false*. The items were divided into 2 replications 

of 30 item types. Within each replication 10 items, of which 5 were in fact true and 5 false, 

presented at each o f the three exposure times. In addition 5 different types of expression 

devised for the arithmetic equalities, corresponding to 5 supposed levels of difficulty. 

Each group of 5 true or 5 false questions at each exposure time contained one item of each 

expression type, giving a total of 30 different types of item. The order of items was randomised 

within replication, and in effect a total o f 4 different patterns of randomisation were used. Each 

60-item test therefore consisted of two replications. The questions for this timed item 

arithmetic test are attached to this thesis in Appendix D. 

were 

were 
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8.4.1.2. Fitting the Model. 

In Section 8.3.1 it was shown how the binomial distribution and link function 

which define the binary response model for this data are incorporated in a G L I M program. It 

was also stated that the components of the linear predictor are decided by the user at run-time 

and that these are dependent on structures set up in the G L I M code. Within the general 

framework of the latent variable GLM for binary response data, different models were fitted to 

the data using alternative specifications o f the linear predictor. From equation (8.3) it can be 

seen that the linear predictor consists of two parts; the first is the intercept X y ^ ^ which 

corresponds to the difficulty parameter associated with item y ; the second is the effect of the 

random variable. The slope on the random variable is the corresponding discrimination 

parameter. In the timed mental arithmetic test the structure of the intercept and slope 

parameters is dependent on a set of item characteristics. The intercept is a linear combination of 

fixed effect parameters from ^ . For the data described above a model for the difficulty 

parameter may include effects due to the expression type, the effect of the correct response 

being either true or false and the effect of the exposure time, all of which may contribute to the 

difficulty of an item. The first two of these are treated as factors with 5 and 2 levels 

respectively. The exposure time can be treated in two ways, as discrete or continuous. I f it is 

treated as a discrete variable, it enters the model as a factor with 3 levels. I f it is modelled as a 

continuous variable, its reciprocal is entered into the design matrix as a covariate. Smaller 

values of time are associated with more difficult items which also have larger (absolute value) 

difficulty parameters. In its reciprocal form the value of the lime covariate gets bigger as time 

gets shorter. In this model, £^ contains the slope on the reciprocal. The discrimination 

parameter can also appear in a model as a structured combination of these or other item 
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characteristics. However in this particular example interest lay chiefly in stnicturing the 

intercept. 

To suit the requirements of the data set described in this example vectors containing the 

levels of five factors were set up in the GLIM software for use in the specification of the linear 

predictors of the models to be fitted. These were 

(i) item difficulty (5 levels) 

(ii) whether the equality presented is true or false (2 levels) 

(iu) block (2 levels) 

(iv) the individual item (J levels) 

(v) time (3 levels). 

The reciprocal o f time could also be included as a covariate and a vector containing the 

values 1/4,1/6 and 1/8 was generated. 

MODEL D.F. FIT STATISTIC 

Null 2,399 16394.0 

Y 2,398 15611.6 

time + y 2,396 14974.3 

difficulty + y 2,394 14590.3 

time + difficulty + / 2,391 13950.0 

time, difficulty + / 2,384 13831.8 

item + y 2,339 13433.5 

item + item, y 2,280 13319.8 

TABLE 2. Results of Fitting Several Models to Timed Item Test Data. 
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8.4.1.3. Results. 

Various models were fitted in which the difficulty parameter was structured to include 

different item characteristics. Each time a new model was fitted the final E-step produced a fit 

statistic -21 (equal to minus twice the log likelihood o f the observed data) which was used to 

assess to what degree the inclusion or exclusion of parameters afifected the fit of the model to 

the data. Some of the resuhs are shown in Table 2. There appeared to be no significant effect 

attributable to truth/falsity. 

A fijU model containing 120 parameters was fitted allowing both the difficulty and 

discrimination parameters to vary over the items. Theoretically the change in fit between the 

fijil and a restricted model vnXh p parameters has asymptotically a x^\^<i~p distribution i f the 

restricted model fits well. However comparison with x^na-p resulted in rejection of the null 

hypothesis in all cases. Comparisons between the fit of the different models were therefore 

made using the ratio between the increase in the fit statistic and the decrease in parameters 

estimated. On this basis a 61 parameter model where the slope on ability was kept constant did 

not fit appreciably less well than the full model for the loss o f 59 parameters. A constant slope 

on ability was therefore retained. It was concluded that, relatively, the best fit with the least 

number of parameters was achieved by a 9-parameter model which included the effects of the 

expression type and exposure time in the difficulty parameter (or intercept). 

8.4.2. Example 2 - Transitive Inference Test. 

8.4.2.1. The Data. 

This test was given under similar conditions to the previous example. As part of a 

recruitment selection procedure 1273 British Army applicants were given an experimental 
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timed item inference test consisting of 44 items. The questions, randomised in 5 blocks of 8 and 

I block of 4, and a summary of the response data matrix are attached in Appendix E. 

Again, an essential feature of the test was the controlled response time. Each item was 

presented to the subject for a controlled period o f t ime, either 2,3,4 or 5 seconds during which 

period the subject was unable to respond. At the end of the set time response buttons appeared 

on the computer screen and the subject was asked to give his response immediately. 

8.4.2.2. The Analysis. 

In analysing the response data various models which allowed structured parameters for 

difficulty (i.e. intercept) and discrimination (i.e. slope on ability) were fitted. Eight different 

problem types were identified according to the form in which the item was composed. These 

eight forms are illustrated in Table 3, 

It was hypothesised that some of these problem forms were easier to solve than others. 

Hence problem type was set up as a factor with 8 levels to be included as part of the difficulty 

TYPE PROBLEM FORM DIFFICULTY 

I A is better than B. Who is better? 1 

2 A is better than B. Who is worse? 2 

3 A is worse than B. Who is better? 2 

4 A is worse than B. Who is worse? 1 

5 A is not as bad as B. Who is better? 3 

6 A is not as bad as B. Who is worse? 2 

7 A is not as good as B. Who is better? 2 

8 A is not as good as B. Who is worse? 3 

TABLE 3. Problem Forms used in Transitive Inference Test. 
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and/or discrimination parameters. Time was also set up as a factor with four levels. As in the 

first example (above) the reciprocal o f time could also be included in a model as a covariate. In 

these cases a slope parameter could be estimated and the product "slope. 1/time" included in the 

difficulty parameter for each item. For comparative purposes the software also included 'item' 

as a factor with 44 levels. 

8.4.2.3. Results. 

As in the previous example the relative differences in fit between the restricted models 

were assessed by comparing the changes in the fit statistics with the changes in number of 

parameters estimated. This was because very large values of the goodness of fit statistics 

were observed for all of the models, which resulted in rejection of all the models. Furthermore 

we note that it has been suggested that the distribution is not valid in the binary data 

situation. 

First of all the difficulty and discrimination parameters were modelled using problem 

type Cprobtype') and/or time as factors in combination and alone. It can be seen fi-om the table 

of results (Table 4) that both these factors contributed relatively highly to the fit of the model 

when included in the intercept. Conversely neither one nor the other (nor both) improved the 

model fit very much when included in the structure of the discrimination parameter. 

Using these two factors only model M14 'probtype + time + y'with 12 parameters was 

considered relatively the best model in terms of fit and parsimony. However by entering the 

reciprocal o f time as a covariate into the make-up o f the intercept a reduction to 10 parameters 

could be achieved ( M l 3). This resulted in only a small loss of fit. 
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MODEL D.F FIT STATISTIC 

M l y 878 44552.1 

M2 l/time + y 878 43802.8 

M3 probtype + y 871 42588.2 

M4 probtype +probtype.Y 864 42538.5 

M5 probtype + time.y 868 41874.8 

M6 probtype + (time + probtype).Y 861 41716.4 

M7 time + y 875 41532.5 

M8 time +time.y 872 41311.8 

M9 time + probtype.y 868 41048.6 

MIO time + (time + probtype).Y 865 40913.1 

M i l probdifr+ l/time+ y 875 40346.8 

M12 probdifT + time + y 873 40318.5 

M13 probtype + l/time + y 870 40168.6 

M14 probtype + time + y 868 40131.0 

M15 probtype + time +time.y 865 40121.6 

M16 probtype + time + probtype.y 861 40108.4 

M17 probtype + time + (time + probtype).y 858 40088.8 

M18 item + y 835 39665.7 

M19 item + item.y 792 39538.8 

TABLE 4. Results o f Fitting Several Models to Transitive Inference Test Data. 

An attempt was also made to reduce the eight different problem types to three types 

based on an assessment of their difficulty. The value of parameters for the eight problem types 

obtained from a previous model was used to assist this process. Each problem consisted of a 

statement and a question. It was hypothesised that an item was easier i f (a) the comparative 

words used in the statement and question were the same (forms 1,4,6,7) and (b) the statement 

did not contain a negative (forms 1,2,3,4). This gave three difficulty levels: 
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(i) Problems with consistent wording in statement and question 

and a positive statement 

(ii) Problems with either consistent wording and a negative statement or 

inconsistent wording and a positive statement 

(iii) Problems with both inconsistent wording and a negative statement. 

Thus the eight problem types were reduced to three. The levels of this difficulty factor 

CprobdifiP) are shown in the third column of Table 3. Model M12 shows the resuh of fitting a 7 

parameter model with the intercept made up of a problem difficulty effect (3 levels) and a time 

effect (3 levels) and a constant slope on ability. I f time appears as a covariate instead of a factor 

(Model M l 1) the number of parameters to be estimated is only 5. 

In conclusion it was found that four models M l 1 (five parameters), M12 (seven 

parameters). M l 3 (ten parameters) and M14 (twelve parameters) fitted relatively well. 

Although the 12 parameter model is a better fit the parsimony o f the 5 parameter model is 

surely appealing. The parameter estimates for these four models are also given in Appendix F, 

Figures 8 and 9 show item response curves for the fitted five and seven parameter models 

respectively. It is clear that at each of the three difficulty levels the items become easier and the 

probability of success greater as the time allowed to complete the item is increased. In addition 

the graphs show that the probability of success is highest for the (supposed) easiest items at 

difficulty level 1 for all levels of time allowed, and the probability of success is lowest for the 

(supposed) hardest items at difficulty level 3. The seven parameter model, which includes time 

as a factor, predicts that there is very little difference in probability o f success between items 

with exposure times of 4 seconds and items wath exposure times o f 5 seconds, suggesting that 

the extra second does not confer much more advantage. This result, although apparent, is less 

evident in the five parameter model which includes a slope on the reciprocal of time. Both 
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models predict that increasing the time allowed for an item from 2 to 3 seconds increases the 

probability of success by a far greater amount. 

The item response curves in Figures 8 and 9 reflect the information in the following 

table which shows the mean number o f correct responses given over all items at each difficulty 

level for each exposure time. For example, the mean number of correct answers to the most 

difficult items (level 3) when a time limit of 3 seconds is allowed is 929. This table does not of 

course take into account subject ability. 

Difficulty Time Mean No. Correct 
1 2 1001 
1 3 1165 
1 4 1216 
1 5 1199 
2 2 883 
2 3 1106 
2 4 1162 
2 5 1177 
3 2 777 
3 3 929 
3 4 1071 
3 5 1177 
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CHAPTER 9. A SIMULATION STUDY> 

9 1. OBJECTIVES. 

The simulation study has been used frequently as a tool in the evaluation of 

statistical modelling techniques. For example, in Item Response Theory, as new 

methodology has been developed various simulation studies have been carried out to test 

and compare the properties of different models and fitting algorithms (see Chapter 4). One 

o f the first such studies to investigate joint M L estimation under the three-parameter logistic 

model was undertaken by Frederick Lord in 1975. His data simulated a test of 90 items 

taken by 2,995 examinees. Later, Yen (1981) simulated samples of data fi-om 1000 subjects 

and 36 test items in order to compare the three logistic models. Another study (Hulin, ei a/, 

1982) was conducted to assess the accuracy o f simultaneous item parameter and ability 

estimation in both the two and three-parameter models. Swaminathan and Gifford (1983) 

sought to investigate the properties of the three-parameter logistic model. They compared a 

maximum likelihood estimating procedure using the computer program LOGIST (Wood, 

Wingersky and Lord, 1978) with an alternative method of parameter estimation devised by 

Urry (1974) and implemented by the program ANCILLES. These are just a few examples: a 

review of the work done in this field including these and other simulation studies can be 

found in Baker (1987). Recently, Siegel (1996) used a simulated data set to compare the 

efficiency o f multidimensional adaptive testing and one-dimensional adaptive testing in the 

measurement of abilities. 

The simulation study described in this chapter was originally designed with a view 

towards investigating the sampling distributions of the estimators described in the model 

fitting procedure using the EM algorithm and GLIM. More specifically, it was hoped to 

gain insight into (a) the degree and nature of any bias in the parameter estimates and (b) the 
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precision of the estimates obtained. O f principle interest was the effect on both the bias and 

accuracy of sample size, that is the effect of both the number, / , of units (or clusters, 

groups or subjects) and the number, J, of observations (or items) within the units. A third 

important issue was the influence on the estimators o f the known parameter c- which 

represents the lower asymptote. 

As the simulation study proceeded it became appzu'ent that the results obtained were 

dependent not only on the sampling distributions of the estimators as required but also on 

the numerical artefacts of the computational procedures employed. The study was therefore 

extended to include an investigation of these extraneous factors and an assessment of their 

impact on this and ftiture simulation studies. The work described in this chapter can 

therefore be regarded as a pilot study in which the ground is prepared for fijrther 

investigations. 

9.2. DESIGN. 

Simulated data for the purposes of this study were generated fi-om the model 

described in Section 6.2.1 where 

= 1) = = c. + — i l f ^ , / = l,2,...,Ay = 1,2,...,J 
' ' ' l + exp(-;7^.) 

and the linear predictors, written in a simplified form, are 

The study proceeded in the following way. The slope and intercept parameters <Pj 

and were set to some suitable fixed values. These values therefore constituted the true 

values o f the parameters which the fitting procedure would attempt to recover, with varying 

sample sizes and values of the lower asymptote Cj. The values of / (no. units) used were 

50, 100, 200 and 400. Larger sample sizes would have been a considerable drain on 
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computer time and probably not have added to the overall conclusions. The values of J 

(number o f observations per unit) were set to 25, 50 and 100. These values directly 

reflected the quantity o f information about the parameters contained in the data. A sample 

size of 25 might represent a large amount o f information for a 2-parameter model but a 

small amount for a model with more parameters. Various attempts were made to run the 

simulations wath J =200 but this resulted in considerable numerical problems in the 

software, mainly due to the small likelihoods generated. As 200 was also considered an 

unrealistically high value for J in most applications it was decided not to proceed with this 

value in the present study. The 12 different combinations of / and 7 were tested with the 

lower asymptote parameter set to 0 and to 0.5, for all j, giving a total of 24 different tests. 

The lower asymptote indicates the probability of obtaining a given response completely by 

chance. The maximum possible value is 0.5 for binary outcomes. The value of 0 

corresponds to a situation where the expected response is not influenced by chance. (An 

example of this is a test situation where the subject must provide an answer rather than 

choose firom given alternatives.) 

For each individual simulation, / independent values of the random effect y^ were 

generated fi-om a standard normal distribution. The probabilities ;r,-,, were then calculated 

fi-om the above model. The binomial error term was simulated by putting y.j = 1 i f < n^j, 

otherwise = 0, where the are independently drawn fi-om a uniform distribution on 

[0,1 ] . This implies that P(>^ = 1) = and PiY^j = 0) = 1 - , as required. In each o f the 

24 different simulation situations, 100 independent sets o f response data were generated and 

the model fitting procedure run on each set. The empirical distributions of the 100 estimates 

for each parameter in each situation were examined for normality. The means and standard 

errors were calculated and plotted against sample size. 
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For the pilot study the true values of both the slope and intercept parameters (pj and 

were set to 1 for all j . With the dimension of the unknown parameter vector restricted 

to 2, examination of the likelihood function could be accomplished by graphical methods. It 

was hoped that the simplicity of this model would reveal some of the major strengths and 

weaknesses of the procedure. 

9.3. SUBSIDIARY ISSUES 

It was recognised that variables in the model fitting procedure other than sample size 

and parameter values might contribute towards the bias and accuracy of the final estimates. 

It was therefore necessary to investigate and as far as possible eliminate or at least stabilise 

their influence on the fitting procedure. Into this category came (1) the value of the 

parameter vector (a*^\^*°*) used to start the algorithm, (2) the tolerance used to detect 

convergence, and (3) the range and number o f nodes used for the integration 

approximation. 

Questions concerning the validity of results stemmed fi-om the fact that there are 

two different vectors which estimate the true parameter {a,<p). These are (i) the true 

maximum likelihood estimate (a ,^ ) and (ii) the approximation ( a , ^ ) which is actually 

obtained from the software. The three variables / , J and Cj, together with the K 

integration nodes and weights, determine the likelihood function and therefore its maximum 

(a ,^) but the tolerance level and starting parameters influence ( a , ^ ) , or, in other words, 

the accuracy with which (a ,^ ) is obtained. The empirical distributions o f d and ^ and 

their relationship to the true values were obviously of primary interest in the investigation. 

However the distributions obtained from the study were of d and ^ and it was not initially 
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possible to know with what precision (d,^) estimated ( a , ^ ) , nor the extent of the effect 

of the error. 

Initial choices were made for these three variables and then revised as further 

information came to light during the course of the study. The bases for the decisions that 

were made are outlined in this section. 

9.3.1. Starting Values. 

Preliminary observations of the effect of the starting values on the final estimates 

appeared to indicate that low starting values led to low estimates of the intercept parameter 

in particular. In order to investigate this an examination of the likelihood functions of 

various data sets was conducted. In each case, the likelihood of the data was calculated 

over a 2- dimensional grid of parameter values. The grid points were at intervals o f 0.01 

over the range 0.75-1.25 for both intercept and slope. The 'true' parameter, (1 , 1), was 

therefore in the centre of the grid. Each Ukelihood value was then expressed as a proportion 

of the maximum on the grid and a contour map based on lines o f equal proportions was 

plotted using the software S-PLUS (StatSci.,1991). Examination of these likelihood plots 

and of cross-sections taken horizontally and vertically through the maximum indicated that 

the 'hills' were typically of a shape elongated in the direction of the intercept axis. Thus a 

small increase in the likelihood function was associated with a much greater change in the 

intercept than in the slope. This finding was backed up by observations of the changing 

parameter estimates during convergence of the fitting algorithm, when much greater 

changes were generally observed in the intercept parameter between iterarions than in the 

slope parameter. This meant that the final estimates tended to be nearer the maximum of the 

likeUhood function for the slope than for the intercept; the small change in the likelihood 

_ needed to reach the maximum after the procedure converged would have produced more 
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Likelihood Functions and Iteration Paths for two simulated data sets. 
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FIGURE 10. Likelihood contour maps showing iteration paths. 
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change in the estimate for the intercept than the slope. As a result of this property of the 

likelihood function the intercept estimates depended more heavily on the value of the 

starting vector since this determined the direction from which the maximum was 

approached. 

In order to illustrate the dependency of the final estimates on their starting values, 

the fitting algorithm was run on the same data set using 4 different initial vectors. The 

estimates obtained at each iteration o f the EM algorithm were plotted on the likelihood 

contour maps in order to show the 'paths' of convergence towards the maximum. Two 

examples are shown in Figure 10. Example 1 is a data set consisting of 50 observations on 

each of 100 subjects with a lower asymptote set to 0. In example 2 there are 100 

observations on each of 400 subjects and a value of 0.5 for the lower asymptote. The values 

used were (1.25, 1.25), (0.75, 0.75), (0.75, 1.25) and (1.25, 1). In both 

examples all 4 fitting procedures converged to estimates of the maximum likelihood value o f 

the slope parameter which were all within 0.01 of each other. The difference between the 

lowest and highest estimate of the intercept parameter was 0.07 in example 1 and 0.04 in 

example 2 (see Table 5). It was also noted that in example 1 the estimates all appear to be 

roughly equidistant from the maximum; in example 2 the 2 sets of estimates that start from 

an intercept equal to 1.25 appear to be nearer the true maximum. 

The evidence indicated that constantly approaching the maximum of the likelihood 

function from a single fixed starting vector could result in biased estimates o f the intercept 

in particular and, to a lesser extent, the slope. Because the tendency was either to 

consistently underestimate or consistently overestimate the M L estimate (a,^p) the 

expected value of the distribution of {d,<p) could not be assumed to be the same as that of 

( a , ^ ) . Limited experimentation using the same 100 data sets with different fixed starting 

vectors did indeed confirm that bias could be induced in the ihtercepfparameter by using ̂  
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certain starting values. As the position of the maximum in relation to any given point on the 

grid could not be pre-determined, it was decided to overcome this problem by randomising 

the starting vector in the range 

(0.75 < a^°> < 1.25, 0.75 ^ Ŝ̂ o) < , 25) 

This did have the effect of eliminating the bias in the example tested. The standard errors 

obtained when the starting values were randomised were not noticeably different from those 

obtained when fixed values were used. It should be noted however that only one 

combination of sample sizes was tested in order to produce this finding; it was assumed, 

without testing, that it would apply equally to all the simulation situations. 

EXAMPLE 1 EXAMPLE 2 

Start Slope Est. Intercept Est. Slope Est. Intercept Est. 

(1.25, 1.25) 1.15 1.12 1.07 1.04 

(0.75, 0.75) 1.15 1.05 1.08 1.00 

(0.75, 1.25) 1.15 1.12 1.07 1.03 

(1-25, 1) 1.16 1.05 1.08 1.01 

TABLE 5. Parameter estimates obtained for different starting values. 

9.3.2. Convergence Criteria. 

In order to detect convergence and stop the model fitting algorithm, the fit statistic, 

- 2 / , where / is the observed data log likelihood at the current parameter estimates, was 

calculated. When the difference between two consecutive values of this statistic was less 

than a given tolerance value then the algorithm was assumed to have reached a maximum 

value of the Hkelihood fijnction. 
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In a real data situation the model fitting algorithm can be run continuously with 

decreasing tolerances until either a satisfactory accuracy in the parameter values is obtained 

or no further improvement is possible. However, as far as the simulation study was 

concerned, a tolerance that would lead to convergence in a reasonable number o f iterations 

whilst producing estimates that were close to those that maximised the likelihood was 

required. Since a set of simulations using large sample sizes might run for over 24 hours, it 

was thought worthwhile to sacrifice some accuracy for the sake of reducing the overall run 

times. Some experimentation was therefore undertaken in order to assess how to fix the 

tolerance to achieve a reasonable level of accuracy in all conditions without incurring the 

cost of excessive run times. 

The magnitude of the fit statistic depended on the sample sizes and could be 

calculated as, very roughly, 21 =IxJ, (bearing in mind that the true log likelihoods differed 

fi-om their computed values by an additive constant). This product was reduced by 

approximately 0.8 when the lower asymptote was set to 0.5. The fit statistic was found to 

be accurate only to 6 or 7 significant figures. Setting the convergence criterion to detect 

small diflferences in the 7th significant figure therefore sometimes resulted in a failure to 

converge. Since the accuracy of the estimates therefore depended on the sample sizes 

through the fit statistic, fixing the tolerance at a constant value for all the simulation 

situations would have resulted in a greater accuracy in the larger sample estimates than in 

the smaller data sets. The tolerance therefore needed to be set to different levels according 

to the magnitude of the fit statistic. 

It was eventually decided to calculate a tolerance equal to / x y x 5 x 10"* .This 

level was chosen to ensure that convergence would occur in relatively few iterations for all 

starting values and sample sizes. These tolerances appeared to give similar levels of 

accuracy in the two examples discussed in section 9.3.1. However, after noting the rather 
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strange behaviour of the standard errors in the results table (see Figure 11) some of which 

increased rather than decreased with sample size, it was decided to look more closely at the 

accuracy of the estimates of ( a , ^ ) . I t was felt that some proportion of the error in the 

parameter estimates might be attributable to the numerical constraints of estimation rather 

than the true variation in the M L estimates. Firstly the calculation o f the likelihood ratio 

statistic on which convergence was based was reviewed. More accuracy in this statistic was 

achieved by handling the calculation and checking for convergence w\h\n the FORTRAN 

subroutines o f the model-fitting sofhvare. Secondly, having established a more accurate f i t 

statistic, tests were conducted to see whether it was possible to improve on the estimates 

previously obtained. Table 6 shows the results of using the new calculations on the two 

example data sets described in section 9.3.1. Two different starting values were used for 

each example. The largest tolerance shown in each case is that which gave the best estimate 

using the old fit statistic (restricting the choice to powers of 10). The figures in brackets are 

the previous best estimates. 

Although the tighter convergence criteria made little difference to the estimation of 

the slope parameter the new procedure allowed more accurate estimation o f the intercept. 

At the cost of vastly increased numbers of iterations particularly for the more 'distant* 

starting value (0.75,1.25), accuracy to 3 decimal places on both parameters was obtained 

with tolerances of 10"* for the smaller data set and 10"' for the larger. In view of these 

results, the 2 sets of simulations corresponding to the sample sizes used in the two examples 

were run again using the same simulated data and same random starting values as before. 

However the tolerance levels were reduced to be reasonably confident of accuracy to 2 

decimal places on the parameter estimates. The object was to discover the effect of the 

greater accuracy on the standard errors of {d,^). 
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Example 1 True M L estimate. H . 1494. 1.0842) 

Start: (1.25.n Start: (0.75.1.25) 

Tolerance Slope Est. Intcpt Est. # Iterations Slope Est. Intcpt Est. # Iterations 

.0001 1.150 

(1.150) 

1.082 

(1.078) 

44 

(33) 

1.149 

(1.149) 

1.086 

(1.090) 

81 

(46) 

.00001 1.150 1.083 57 1.149 1.085 93 

.000001 1.149 1.084 70 1.149 1.084 106 

Examole 2 True M L estimate. n .0744. 1.0211) 

Start: 0.25.1) Start: (0.75.1.25) 

Tolerance Slope Est. Intcpt Est. # Iterations Slope Est. Intcpt Est. # Iterations 

.001 1.075 

(1.075) 

1.019 

(1.017) 

24 

(20) 

1.074 

(1.074) 

1.024 

(1.026) 

58 

(32) 

.0001 1.075 1.020 32 1.074 1.022 67 

.00001 1.074 1.021 41 1.074 1.021 76 

TABLE 6. Parameter estimates obtained fi-om difiFerent convergence criteria. 

The results of these tests compared with the results of the original simulations (see 

Tables 8 and 9) showed that the improved accuracy made almost no difference to either the 

means or the standard errors rounded to 2 decimal places. In fact, with the narrower criteria 

the standard errors showed small increases in example 1 and small decreases in example 2. 

The run times for the 100 simulations were vastly longer and became prohibitive in the large 

samples. The conclusion was that it was reasonable to accept the validity o f the results 

obtained with the original convergence criteria. The more accurate calculation of the fit 

statistic was however incorporated into the software for all fiiture implementations. 
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9.3.3. Range and number of nodes. 

The greater the number of nodes, K, used to approximate the integral 

by 

the longer the calculations during both the expectation and the maximisation steps. In large 

samples a high number of nodes could cause excessively long run times. Since the likelihood 

function includes the above integral it depends in part on the choice ofK which in turn, 

together with the specified range of integration, determines the value of both the nodes, y^^, 

and the weights, . It was thought necessary to examine whether increasing K resulted in 

better approximations of the true parameter value (1,1). Several different data sets were 

examined. For each set a starting vector and a tolerance were fixed and the model fitting 

EXAMPLE 1 EXAMPLE 2 

No. Nodes Slope Est. Intercept Est. Slope Est. Intercept Est. 

8 1.05 1.24 1.06 1.00 

12 1.16 1.05 1.08 1.01 

16 1.15 1.07 1.08 1.02 

20 1.16 1.07 1.08 1.02 

40 1.17 1.07 LOS 1.02 

TABLE 7. Parameter estimates obtained from different numbers o f nodes. 
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algorithm was run using 8,12,16,20 and 40 nodes within the range (-3,3). Table 7 shows the 

resulting parameter estimates for the two example data sets used previously. It is chiefly 

noticeable how little difference there is between the estimates except in the case of 8 nodes 

in example 1. In addition increasing the number of nodes does not appear to move the 

estimates towards the true values in either example. On the basis of this and similar results it 

was decided to perform the integration with 12 nodes (or 3 panels) between the values of -3 

and 3, suitable limits for a standard normal distribution. 

9.4. RESULTS: 

9.4.1. Bias. 

The results o f the first part o f the simulation study are tabulated in Table 8 with all 

figures rounded to 2 decimal places. The entries for the slopes and intercepts are the means 

and standard deviations of the 100 estimates of each parameter obtained in each simulation. 

The results showed no indication of bias in the estimates of either the slope or the intercept 

parameter even in the smallest samples. The largest deviation of a mean from the true 

parameter value was 0.04 and the smallest standard error 0.04 so the departures from the 

true values were not significant in any instance. Results obtained when the accuracy of the 

fit statistic was improved are shown in Table 9 and verify the first table of figures shown 

(see Section 9.3.2.). 
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Lower Asvmotote = 0 Lower Asvmptote = 0.5 

Obs(J). Units(/) slope s.e. intcpt s.e. slope s.e. intcpt s.e. 

25 50 0.99 0.13 0.98 0.17 0.99 0.19 1.00 0.16 

25 100 1.00 0.09 0.99 0.10 0.98 0.13 0.98 0.13 

25 200 1.00 0.07 1.00 0.08 1.00 0.10 0.99 0.09 

25 400 0.99 0.05 1.00 0.05 1.00 0.07 1.01 0.06 

50 50 0.99 0.12 0.96 0.15 1.01 0.15 1.03 0.15 

50 100 0.99 0.08 0.99 0.10 1.00 0.10 1.01 0.11 

50 200 1.01 0.06 1.01 0.08 1.00 0.08 0.99 0.07 

50 400 1.01 0.04 1.00 0.06 1.01 0.05 1.00 0.05 

100 50 0.99 0.11 1.01 0.15 0.99 0.13 0.98 0.13 

100 100 0.99 0.08 1.01 0.12 1.00 0.09 0.99 0.10 

100 200 0.98 0.05 1.01 0.08 1.01 0.06 0.99 0.08 

100 400 0.98 0.04 1.00 0.07 1.01 0.05 1.00 0.06 

TRUE VALUES 1 1 1 1 

TABLE 8. Simulation results showing mean parameter estimates and their standard errors 

for different sample sizes and lower asymptotes. 
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Tol. Slope s.e Intercept s.e. 

/=100, J=50, Cj=0 .0125 0.993 0.081 0.993 0.097 

.0001 0.993 0.083 0.996 0.106 

.000001 0.993 0.084 0.996 0.107 

7=400, 100, c .̂=0.5 0.2 1.005 0.050 0.998 0.061 

.001 1.005 0.049 1.000 0.058 

.00001 1.005 0.049 1.000 0.058 

TABLE 9. Selected simulation results obtained for different convergence criteria using 

improved fit statistic. 
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Example 1 - Slopes Example 1 - Intercepts 

0.7 0.8 0.9 1.0 1.1 1.2 1.3 

HistDaram of slope estimatBs 

Normal prob. plot for slope estimates 

- 2 - 1 0 1 2 

Quantiles o* Standard Normal 

Example 2 - Slopes 

0.7 08 0.9 1.0 1.1 1.2 

Histoflram of slope estimates 

1.3 

Normal prob. plot for slope estimates 

0.7 0.8 0.9 1.0 1.1 1.2 1.3 

Histogram of intercept estimates 

Normal prob. plot for intercept estimates 

- 2 - 1 0 1 

Quantiles of Standard Nomial 

. 2 - 1 0 1 2 

Quantiles of Standard Normal 

Example 2 - Intercepts 

0.7 08 0,9 1.0 1.1 1.2 1.3 

HistDflram of intercept estimates 

Normal prob. plot for intercept estimates 

-1 0 1 

Quantiles of Standard Normal 

FIGURE 11. Histograms and Normal Probability Plots for parameter estimates fi-om two 

simulated data sets. 
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FIGURE 12. Standard errors of jparameter estimates. 

146 



9.4.2. Normality. 

Histograms o f the parameter estimates and normal probability plots were obtained in 

each separate simulation. Figure 11 shows these graphs for both the intercept and slope 

parameters in two example simulation situations, corresponding to the individual examples 

previously examined in this section. In example 1, the simulated data consisted of 100 

replications of samples of 50 observations on each of 100 units with a lower asymptote 

equal to 0. In example 2 the simulation consisted of larger data sets with 400 units, 100 

observations per unit and a lower asymptote set to 0.5. The probability plots confirm the 

normality of the distributions of both in both examples. The histograms reveal that all four 

means are close to 1 and that smaller variances are observed in the larger sample. 

9.4.3. Standard Errors. 

Figure 12 illustrates in more detail how the standard errors varied with sample size. 

The top four graphs show how the standard errors of both parameters decrease as the 

number of units in the sample increases. This distinct trend is observed with both values of 

the lower asymptote, and appears however many measurements are made on each unit. A 

possible conclusion to be drawn from this is that the accuracy of the fitting procedure is 

sensitive to the normality of the distribution of the random effect in the sample. As the 

approximation to a standard normal distribution improves with the larger values of / so do 

the parameter estimates. The slope parameter is estimated with greater precision (i.e. 

smaller standard errors) when the lower asymptote is set to 0. When Cj = 0.5 the amount o f 

information in the observations about the random effect is effectively reduced by a half, 

since this is equivalent to a half o f the observations occurring by chance rather than as a 

result of the influence of the random effect. Therefore less accurate estimation of the slope 
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parameter (also the standard deviation of the random effect) could be expected. The lower 

asymptote does not have a similar effect on the intercept. 

The four lower plots in Figure 12 show the behaviour of the standard errors as the 

number of observations within a unit is increased. This time there is no overall tendency for 

larger numbers of observations to be associated v^th smaller standard errors. Increasing the 

number of observations beyond 50 per unit has some effect on the precision of the slope 

parameter when / = 50, 100 or 200 and when the lower asymptote is 0.5. For the intercept, 

the standard errors increase when J > 50 except for / = 50 or 100 and - 0.5. Thus 

increasing the number o f observations appears to improve the precision of the estimate only 

over the samples where there is less information in the data. These results lead to the 

possibility that saturation levels can be reached. Increasing the number o f observations 

beyond a certain point which depends on / cannot improve the precision o f the estimates. 

In the 2-parameter model all the observations are contributing to the estimation o f 

(a,q>). (For example, in the IRT application this corresponds to a situation where all the 

test items are of identical difficulty and discrimination.) I f there were more parameters in the 

model presumably there would be larger standard errors for small values of J but the 

precision could be expected to improve as the number of observations increased. 
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CHAPTER 10, GENERALIZING LATENT VARIABLE GLMS 

FOR EXPONENTIAL RESPONSES, 

10.1. INTRODUCTION. 

In Chapter 6 the methodology for latent variable GLMs was applied to binary response 

data. In Section 10.2 of this chapter the same procedures are adapted hypothetically to Poisson 

data thought to be dependent upon latent variables. An expression is derived for the log 

likelihood of the expected complete data and this is compared to the log likelihood of the 

standard G L M for Poisson data where covariates are all fixed and known. As in the binomial 

case the form of the expected complete data likelihood allows parameters to be estimated with 

standard maximisation routines designed for the GLM. 

Binomial and Poisson variables are both discrete and both have fixed relationships 

between their means and variances. Normally distributed data have neither o f these properties. 

Although other methods for estimating random effects in normal models are obviously well 

developed (e.g. Searie, 1971; Harville, 1975; Draper and Smith, 1981; Hocking, 1985), the 

methodology for latent variable GLMs is applied to the normal case in Section 10.3 for 

theoretical interest. Normal data which can be assumed to have constant variance is considered 

first, followed by the more general case where the variance is allowed to differ between 

observations. 

In the final part o f this chapter, Section 10.4, a latent variable G L M is considered in its 

most general form. Without specifying a distribution for the response data other than that it is 

from the exponential family, an expression for the expected complete data log likelihood is 

derived. This is compared as before with the log likelihood of the standard GLM, this time in its 
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general form. As a result of this process general rules which govern the relationship between 

the two likelihood functions are deduced. 

10.2. A MODEL FOR POISSON RESPONSES. 

A latent variable GLM is appropriate in situations where the response data are 

realisations of Poisson variables dependent upon some unknown random covariate. For 

example the data might be road traffic accident counts (Wright and Bamett, 1991) in which an 

important contributory variable was not measured at the time that the data was collected. 

Overdispersion in Poisson models has been examined by Hinde (1982) and Aitkin and Francis 

(1966). Brillinger and Preisler (1983) looked at counts of red blood cells which depended on a 

latent covariate. Machine failures where some kind of propensity to failure on the part of the 

machine underlies the data could also be modelled in this way, a similar latent variable might 

contribute to counts of flaws in different fabric samples. 

10.2.1. The Poisson Response Latent Variable GLM. 

As in Section 6.2.1 it will be assumed that the data has a nested structure with J 

observations available on each of / units. In the IRT example in section 8.4 there is a link 

between all the responses (i.e. i'ly.i'ij» Ĵ'/y a"y7) ^^at they are all responses to the 

same item. It is then attributes at item level which are represented by the parameter P^. 

Similarly in the Poisson case the count on one unit is in some sense the same type of 

response as t h e c o u n t on the others. For example, in a transport application, there might be J 

counts of accidents recorded on different days of the week at each of /junctions so that y^^ is 
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the count at junction i on day j and P, is the vector of parameter values (e.g. visibility due to 

weather) associated with day j. 

As before the response j / , ^ is a realisation of random variable Y^j and represents the 

(j=\,2,...J) observation on the /th unit {i=\,2,...J). I t is possible that not all 7observations are 

recorded for every unit. As before the total number of responses recorded for unit /' is denoted 

J(i) and the total number of units responding to item j is denoted The expected value of Y^j 

is dependent on unknown parameter vector and latent covariate y-, a realisation of latent 

variable which contributes to the model at the unit (e.g. junction) level. This time it is 

assumed that the conditional distribution of Y^j is Poisson. 

The canonical link fijnction for the Poisson distribution is 

7 , ( r , ) = l n A , ( r , ) 

so that parameter A,-̂ . conditional on y. is given by the inverse link function 

A.Iri =exp(77^) 

The linear predictor associated with observation y^j can be assumed to be the same as in 

the binary response model 

where x^/ is the row of the fixed effects design matrix associated with response yij, q) _ is a 

vector of fixed effect parameters and Uj is the discrimination parameter, or slope on y.. As in 

Section 6.2.1 the distribution of is assumed standard normal. 

For Y^j - Po{Xi^, the log likelihood expressed as a function of X^j is 
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where Cp, = - l n ( ; ' , ! ) is a constant. So, assuming independent observations conditional on y 

'y.r i^y'i) = tl.(yo^ - ^j)+c„ (10.1) 

where Cpj is a constant. 

Function (10.1) is therefore the equivalent Poisson likelihood to equation (6.2), the 

likelihood for binary responses. With known y this is the conventional likelihood function for a 

Poisson response GLM and the values of ft which maximise it can be computed with software 

such as GLIM. 

10.2.2. The Observed Data Likelihood. 

The observed data likelihood for the Poisson model is obtained, as in Section 6.2.2, by 

taking the joint distribution of Y conditional on ^ and / , integrating v^th respect to / and 

then approximating the integral using a Gaussian quadrature rule as before. Taking logs of the 

resuh gives the following likelihood function for the observed data, equivalent to (6.8): 

exp (10.2) 

It is assumed that this function is as difficult to maximise as the likelihood for binary responses. 

It is therefore necessary to examine the expected complete data log likelihood for the Poisson 

model following the reasoning in Section 6.2.4. 

10.2.3. The Expected Complete Data Likelihood. 

The log likelihood function for the complete data is again found by first taking natural 

152 



logarithms of the joint p.d.f. of the two variables K and £ 

/ •'('). 1 _ 

. - 1 ; _ i '=1 

(10.3) 

Taking expectations of function (10.3) over the posterior distribution of £ given the data and 

parameter estimates as in equation (6.9) we obtain 

^ ' R '=1 /=» 

P4 

where is simply the region over which y, is defined and 

n - i r r f ^ exp 
21 

2 

with normalising constant 

2 

and also a constant. 

The integral is again approximated as the sum o f w e i g h t e d function evaluations at nodes , 

with weights : 

As in Section 6.2.4 the conditional posterior probability of discrete variable n is denoted P,, 

where 

As in the binary case the expected complete data log likelihood in (10.4) is in effect a discrete 

approximation to the posterior expectation with masses /̂ ^ at nodes I t can be written 
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^ ' ,=1 j=i 
K J 

*=1 J=l 
+ C P4 

Summing over / gives 

K J 

*=1 j=l 

lU) 

where A^,, = Z is interpreted as the expected number of observations o f typey dependent 
i=l 

upon latent effect and {/^^ = Si'y ^ expected total count over all observations of 
(=1 

type J dependent on latent effect . For example, Mj^ might be the expected number of 

counts made on day j conditional on and the expected value o f the total of all the 

counts made on day J conditional on y^. 

I f the Uj^ were Poisson variables with parameters Nj^^kj^, U would have, by 

comparison with equation (10.1), a complete data log likelihood function o f the form 

This can be written 

K J 

/.,,Ult/.r) = ZZKln^>* -^;.^>0 + ZZf/.Jn^.* (10.6) 

The expression Z S ^ y * w h i c h is not dependent on p can be absorbed into the 

constant and does not effect the maximum likelihood parameter estimates. By comparing (10.5) 

and (10.6) it can be seen that the expected complete data likelihood ftinction (10 5) has the 

form of a log likelihood function of a G L M with responses U - Po{NjtXj^^ The link 
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function and linear predictor are found by replacing / . by in the G L M for the complete data 

and changing the / subscript to fc. Thus the link function is 

and the linear predictor associated with observation Ujt is 

As in the binary response example maximising the expected complete data log likelihood is 

equivalent to fitting the G L M whose log likelihood function is equation (10.6) to the expected 

complete data t / and . 

10.3. A MODEL FOR NORMAL RESPONSES. 

In this section a similar analysis is applied to continuous normal response data where a 

latent variable is thought to enter into the model. An expression for the expected complete data 

log likelihood is derived for theoretical interest. The question o f whether this is a reasonable 

model to use in approaching the problem of M L estimation in such a situation is not discussed. 

10.3 .1 . A Latent Variable GLM for Normal Responses. 

All the assumptions made in Sections 6.2.1 and 10.2.1 continue to hold in this section. 

The data again has a nested structure wi thy observations available on each o f / units. The 

nested structure of the data, responses y^- (/=l,2,...,y), (/=1,2,. . / ; , IQ) and J(0, vector ff, and 

latent covariate y., a realisation of F, are all as previously defined. However this time the Y^, 

conditional on the y^, are continuous normal variables with, it is assumed at first, constant 

vanance: 
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In a GLM the canonical link function for the normal distribution is the identity function 

with the linear predictor as before 

where x / , ^ and a, are all as in both the previous examples. It is also assumed that 

r, ~ N{0,\) 

For Yy\r, ~ N(^J,CT'), the log likelihood is, assuming independent observations 

conditional on y, 

- - ^ ' CT ,=1 / = i V / 

+ C N2 
(10.7) 

where is a constant. 

Function (10.7) is therefore the conventional likelihood function for a normal response 

GLM which, i f y were known, could be maximised for with the standard software. I f this is 

GLIM and the model has known constant variance there is a facility to assign this value to 

the scale parameter (Payne, 1987). I f the variance is unknown it can be estimated firom the 

deviance (Payne, 1987). 

10.3.2. The Expected Complete Data Likelihood. 

For the complete data likelihood logarithms of the joint p.d.f of K and F are taken: 

2 ^ 
1 1 Mif (10.8) 

Expectations of function (10.8) are taken over the posterior distribution of £ given the data 
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and parameter estimates: 

(10.9) 

where 

/ r j ^ , i i ; , . | = c „ - ' r i n : j ^ » p la' 
exp 

2 1 
2 

with normalising constant 

/ AO 

j t=i 1=1 j=\ v2 ; r<T 2a' 
exp! 

Once again approximating the integral in (10.9) as the sum of K function evaluations at nodes 

y^, weighted by : 

/ 2 \ 

It is now possible to replace the continuous conditional posterior distribution of the latent 

variable by the discrete posterior probabilities P^^ where 

so that 

r 2 ^ 

K J 
2 > 

2 ; 
+ c Af4 

Summing over / gives 

K J 

+ C (10.11) 
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and Poisson cases. = 
The interpretations 

of and Nj, are similar to the binary and Poisson cases. TV,* " 5 ^ * 

the expected number of observations of type j dependent upon latent effect y^ and 

U.^ = ^y^jPn is the expected sum of all observations j dependent on latent effect y^. For 

example, Nj^ might be the expected number of measurements made under experimental 

conditions j conditional on y^ and Uj^ the expected value of the sum of all the measurements 

made under experimental conditions j conditional on y^. 

It is now proposed that Uj^ is a hypothetical random variable with 

Uj^ - N{Nj^fij^,Nj^a'^y The vector U_ has by comparison with equation (10.7), a complete 

data log likelihood function of the form 

1 ' 

which is the same as 

'v-r(MIJ..r) > -T-Zt u„^„ - ŝ-j + c „ (10^12) 

Apart from the difference in the constant terms (10.11) and (10.12) are the same. That is the 

expected complete data likelihood function (10.11) has the form of a log likelihood function o f 

a GLM with responses U - -^(A^yiPy*,^y*<7^)where the link function is 

and the linear predictor associated with observation Uj,, is 
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The variances are specified by declaring a ' as the value of the scale parameter i f a ' is known, 

or estimating it from the model deviance if it is unknown. To create variances of the form ^ 
a' 

where = A^^/' a vector of reciprocals of Â ^̂  must also be declared as prior weights 

(Payne, 1987). As in the binary and Poisson response examples, maximising the expected 

complete data log likelihood is equivalent to fitting the G L M whose log likelihood function is 

equation (10.12) to the expected complete data U and N^. 

10.3.3. Normal Models with Non-Constant Variance. 

More generally the distribution of the random variable from Section 10.3.1. can be 

written 

Y,j\y,-N MyCr.),"" 

where w.j are known prior weights. The special case when all the are equal to 1 is 

discussed above in Sections 10.3.1 and 10.3.2. The likelihood function equivalent to (10.7) is 

of the form 

^ \ c , , (10.13) 

where C^^ a constant. 

After approximating the integral and replacing the continuous posterior distribution of 

the latent variable by its discrete form, the expected complete data log likelihood becomes 
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^ ' cr j=i 4=1 
yijMj^ 

2 > 

Z 2 
r=l \ 

tJ4 

Summing over / gives a variable term 

K J 

^ Z Z 
<y k=\ j=l 

AT (10.14) 

and the expected complete data is Â -̂̂  = ^w.jP,^ and Uj^ = S^'y^y^* the sums of 

discrete posterior probabilities which constituted the expected complete data in the previous 

examples are in this case weighted by the w-j. It is easily seen that (10.14) is the variable part of 

(10.12) which is the log likelihood function o f Uj^ - ^{^jkMjk>^jk<^^)- Thus the model for 

the expected complete data is fitted with prior weights Nj,'' -

10.4 THE GENERAL EXPONENTIAL MODEL 

In this section it is shown that under certain conditions the expected complete data log 

likelihood function can be derived for a latent variable G L M with response data fi-om any 

exponential family distribution and that this fijnction always has the form o f the log likelihood 

function of a different but related G L M which can be fitted with the standard IRLS algorithm. 
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10.4.1. The Latent Variable GLM for Exponential Responses. 

Once again y^j represents thef", (7=1,2,. observation on the unit/subject, 

(i=\,2,.../). The random variable Y^- is assumed to have a distribution fi-om the exponential 

family which can be written in the form of equation (3.1) 

/.(>',;^i;.?^)= expj(>.,0, - A ( ^ , ) ) / a , ( ^ (10.15) 

with canonical parameter O^j and E(Yij)= b'(Oy). The^-vector of observations on unit /, _v., is 

associated with latent covariate x, its expected value is dependent on and unknown 

parameter vector p only. In this model no parameters are indexed by /, and the units are 

differentiated only by the value of the latent effect. The link flinction and linear predictor are 

expressed in their general forms in Chapter 3, Section 3.3, equations (3.3) and (3.5). 

In the equivalent G L M with known y , the log likelihood for 0, (with ^ and y^j 

known) is, assuming independent observations conditional on y , 

with a constant. 

10.4.2. The Generalized Expected Complete Data Log Likelihood. 

To derive the expected complete data log likelihood without distributional assumptions 

let the probability function o f the vector response variable Y_ conditional on item parameters ^ 

and latent vector / be fYjr{^y>^ P^ f- Lthe latent variable vector be / r ( y ) • 

Assuming independent responses conditional on the latent variables, independent latent 
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variables, and taking natural logarithms of the joint distribution gives a complete data likelihood 

of the form 

/. „(/̂ ;',/) = Z i : [ l " A , . U l ^ . ' ^ > ) l + 2 : i n / r ( r . ) ( ' 017) 

The function 0, the expected complete data log Ukelihood, is found by taking expectations of 

(10.17) over the posterior distribution of T given the data and parameter estimates. 

where C^^ is constant and the conditional posterior distribution of F is 

/ - \ / r , l r ( j i : j l ^ ' ^ ) / r ( x , ) 

R 

The integration is then approximated by a weighted sum of function evaluations at 

nodes . As a result the value range of the continuous latent variable V. is replaced by a set of 

discrete nodes indexed by k, (k=\,2,...JC), so function Q becomes 

^ i=l J=\ M 
+c E4 

(10.18) 

where 

(10.19) 

or 

Without making any assumptions about the distributions of either the response variable 

the latent variable, a discrete posterior conditional probability distribution for y, is defined 

by mass points P^^ where 
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p. ik - K 

Substituting in (10.19) gives 

with the term P^^ denoting the posterior probability that response vector y_ depends on y^ 

given parameters ^ . Substituting (10.20) in (10.18) we obtain 

I f the assumption that the distribution o f Y^^ is from the exponential family is now made, 

then the expected complete data log likelihood becomes 

y,̂  =ZZZ 
,=1 j=i t = i 

(10.21) 

Revmting and summing over /, we obtain 

Ei 

or 

(10.22) 

where 

and 

i=l 

i=l 
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As previously seen the t/^^ can be interpreted as the expected total response for all 

observations of type j conditional on y^.. For example for binomial data it is a total number of 

successful outcomes and for Poisson data it is a total count. The Nare the expected number 

o f responses o f type j conditional on latent effect y^. 

K^^cxoTV^{v,,y,,,^..y,,y,,y^^^^^ in which 

Vj^ = Uj^Nj^'^ can be formed from the expected complete data and interpreted as the vector of 

mean expected responses for observations of type j conditional on y^. These data can be 

treated as i f they were realisations of random variables from exponential family distributions 

with canonical parameters . This is essentially the same parameter as in (10.15). It is now 

dependent on fixed y^ but defines the same relationship between the mean and the linear 

predictor as in the distribution of the response data. In addition the values N^^"' are assigned 

to the functions aj^{(p); that is the scale parameter is set to 1 and the Â ^̂  are set up as prior 

weights (Payne, 1987). Using a standard generalized linear model for K under these 

conditions, we obtain the log likelihood function based on equation (10.16) as 

1=1 t = l 

EV 

This can be revmtten as 

J K 

which is the likelihood function in (10.22) up to the constant term. 
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10.4.3. Summary. 

During the E-Step of the EM algorithm a vector K of expected complete data is 

computed. Component Vj^ of the vector is the mean expected response for observations of 

type j dependent on covariate y^. These data values are calculated using a discrete posterior 

probability distribution o f the latent variable conditional on the data and current parameter 

estimates. This continuous distribution is approximated by a set of masses P^^ at nodes y^. An 

updated estimate of parameter vector p is calculated during the M-step by maximising the log 

likelihood of a fixed eflfects G L M for expected data V_. This G L M has the same error 

distribution, canonical parameter and linear predictor as the original latent variable GLM. 

Where unknown values of the latent variable (indexed by i) appeared in the latent variable 

model the fixed effects model has discrete known covariates . In addition the fixed effects 

model requires prior weights equivalent to the expected number of responses of type j which 

' ( » 

are conditional on y^ i.e. on Nj^~^ where Nj,^ = ^ Pit 
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A P P E N D I X A 

The GLM and the Exponential Family of Distributions 

Under the GLM the distribution of the random response variable is restricted to 

the exponential family and can be expressed in the following form; 

MyrAJ) = ̂ MiyA-b(0,))/a,(0) + c{y,J)} (A. l ) 

where , Z>(.) and c(.) are specific functions, 0. is known as the canonical parameter, 

and ^ is a known scale parameter constant over observation y. 

Now the log likelihood for 0., with ^ and ^, known is 

ir {Or,y<, <f) = {yfii +cCv.. <*) (a .2) 

(A, 3) 
So de, aX<l>) 

Now B = 0 

oX<t>) 

From (A.3) 

^1 b"{e,) 

Now - E —7 = E 
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b"{9) = E 

=> Var{Y;) = b'\e,)aX<t>) 

* The proof of these well-known results can be found, for example, in Dobson (1990), 

Appendix A. 

Example A I . Normal distribution: 

Let )^~Af(/i , ,o^). Then 

2a' 

This can be written as 

a' 2W ) 

Comparing this with (A. 1): 

- O 

b{e^)- — - 2 

^ + ln2;r<* 

Therefore, 

Var{Y;) = b"{e,)aX<P) = cr= 
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Example A2. Binomial Distribution: 

1. In this treatment the random variable is the proportion and the number of 

successes out of n. trials. Let 1̂  = — where Y.* - Bi{n^,n^). Then 

This can be written as 

Comparing this with (A. 1): 

\ . .. . . I 

Therefore 

Z,( ,̂.) = - l n ( l - ; r , ) = ln(l + e''') 

c ( V i , ^ ) = In 

Example A2. Poisson Distribution; 

Let ~ PoiAJ Then 

This can be written as 
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/',U;^,) = e''pb->"^.-^.-i"0'.')] 

Comparing this with (A.l); 

cO',.«>) = - ln(; ' J) 

Therefore 

E{Y,) = b\e,) = e''' 

Var{Y) = b"{9,)a,{(l>) = e'' 

Other members of the exponential family are the negative binomial, the gamma and 

the inverse Gaussian distributions. 
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A P P E N D I X B 

MOnFl S IN ITF.M RESPONSE THEORY 

LINK FUNCTION OF THREE-PARAMETER MODEL. 

In the three-parameter logistic model the probability of subject / responding 

correctly to item j is 

1-c, 
7t:.^ = C, + 

where % =^>(y-

Re-arranging (B, 1) => - c .̂)(1 + c"' ') = 1 -

=> n^j- Cj + TTye"^ - CjC''^ ~\~c 

^ e--̂  = ( l - ; r , ) ( ; r , - c , ) - ' 

(B.l) 
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A P P E N D I X C 

Exponential Family 
Score Vector and Information Matrix 

The log likelihood of canonical parameter 6- given response a single realisation 

of the random response variable Y. with a probability distribution from the exponential 

family is 

^m = '-^^'^-c{y;A (B.i) 

Also 

/ i ,=6 ' (^ . ) (B.2) 

Fa/-()^) = 6"(e,)a(«^) (B,3) 

Theyth element of the score vector u is 

/o\ 

The object of the following is to find 

a, _ a, 39, spi, an, 
dp J ae, dn,'at],'dp^ 

(i) From(B.l) 

(ii) From (B.2) 

ae = b"{e,) 

(B.4) 

ae, ai<f>) a(</>) 
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39, ^ 1 (B.6) 

(iii) 
>=1 

(B.7) 

Substituting (B.5), (B.6) and (B.7) in (B.4) 

Using (B. 3) this becomes 

dpj Var{Y,) 
(B.8) 

Therefore 

To find the elements of the information matrix I let weights w. be 

• Kar()^) 

Substituting in (B.8), 

a. 
dp, 
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The information matrix is 

l = E 
a 

dm J 

The jl^ element of the information matrix is therefore 

1;» = E 

Using the product rule 

1;* = -E 

4', Since E(y, - / / j ) = 0 the first term in this expression is 0, and since - 0 the second 

term reduces to 

-E 

dp. 

Using (B.7) we have that 

dp, dn, dp, drj, 
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1=1 
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A P P E N D I X D 

DI. GLIM PROGRAM - GLIRTl. 

SSUBFILEGLIRTl 
$c 
$print;'Enter name of file for output of parameter estimates': $ 
Soutput 13 $ 
Soutput 2 $ 
SMACRO MODEL gamma SENDMAC 
$cal%x=0.001 $ 
Swam 
$acc 9 $ 
Sprint; 'Use macro NODES then INIT for initial estimates'; 
'Use macro LOOP to run EM algorithm'; $ 
$c 
SMACRO RUN 
Suse NODES $ 
Suse INTT $ 
Suse LOOP $ 
SENDMAC 
Sc 
SMACRO NEWNODES 
Suse NODES $ 
Suse LOOP $ 
SENDMAC 
Sc 
SMACRO NODES 
Sc 
Sc calls subroutine LEGDAT to calculate nodes and weights for 
$c integral approximation and stores them in vector V I 
Sc 
Sc 
Sdelvl $ 
Svar63pl $ 
Sprint; 'subroutine LEGDAT - calculating standard normal nodes', $ 
Spass 1 pi $ 
Seal %k=pl(l): ! no. of nodes 

%n=%k+3 $ ! length of V1 
$var%n v l : 

%n sa $ 
Sc store weights and nodes in vector V1 
Seal sa = %gl(%n,l): 

vl=pl(sa) $ 
Sdel pi $ 
$cal%y=l $ ! ensures PREP is run before MAX 
Sprint; 'You must enter a model specification and a tolerance level (%x)'; 
'Current model:' MODEL' Tol:' %x ; 
Sprint To specify a new model enter macro MODEL'; 
'reset %x i f a new tolerance is required'; $ 
SENDMAC 
Sc 
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SMACRO INIT 
$c 
$c calls INIT subroutine to calculate initial estimates for nos. 
$c done and nos. correct 
$c 
$c prepare vector p2 
$c 
$cal%a=%k*401+205: 

%b=%a-%n $ 
$var%ap2 $ 
$var%bpO $ 
$calpO=0 $ 
$assp2=vl,p0 $ 
SdelpO $ 
Sprint; 'subroutine INIT - initialisation*; $ 
Spass 2 p2 $ 
Seal %s=5+%k: 

%j=p2(%s) $ I store no. items 
$c 
$c store guessing parameters in vector gps 
$c 
Svar % j sub: 

% j gps $ 
Seal sub=%gl(%j,l): 

sub=sub+%k+5: 
gps=p2(sub) $ 

$c 
SusePREP $ 
$c 
$c store initial estimates in vectors n and y, then move to P3 
$c 
$cal%t=I: 

%s=%k+%j+6: 
%v=%s+%k*%j: 
%e=%k*%j $ 

$arg MEXP p2 $ 
$while%eMEXP $ 
$delp2 $ 
SuseMAX $ 
SENDMAC 
$c 
SMACRO PREP 
$c 
$c sets up the data required for fitting the model in standard 
$c length vectors gamma, g, item, block, diflf, t f and wt; 
$c vectors n and y are given initial values of I's and O's resp. 
$c 
$del gamma g item block diff time tf wt n y cl c2 sa y l $ 
$c 
Sprint; 'MODEL: ' model $ 
Sprint- ' ITEMS:'•i%j'NODES:' • i %k 'TOL: '%x ; 
$c set no. units 176 



$c 
Seal %u = (%k+2)*%j $ 
$units %u $ 
$c 
$c move nodes to vector gamma 
$c 
Seal sub = %gl(%j,l): 

%s = 4: 
%e = %k: 

gamma=0 $ 
$while %e MGAMMA $ 
Seal gamma(sub) = 0: 

sub = sub+%j; 
gamma(sub)=l $ 

$c 
$c move guessing params to data vector g 
$c 
Seal sub = %gl(%j,l): 

%e = %k+2 $ 
$calg=0 $ 
$while%eMGP $ 
$c 
$c generate item nos. in vector item 
$c 
Seal item = %gl(%j,l) $ 
$c 
$c generate factor levels for block, difficulty and true/false 
$c 
Seal block = %gl(2,10): 

di f f=%gl(5, l ) : 
tf=%gl(2,15)$ 

$c 
$c generate values of co-variate I/time 
$c 
Seal time = %gl(3,5): 

time= l/(2*(time+l))$ 
$c 
$c assign weights to vector wt (= 1 for elements 1 to k*j, 
$c = 0 for elements k*j+l to (k+2)*j) 
$c 
$cal%c = %k*%j : 

%d = %j*2$ 
$var%ccl: 

%d c2 $ 
$calcl = l : 

c2 = 0$ 
$asswt=cl,c2 $ 
$c 
$c initialise expected nos. done and correct, vector n and vector y 
$c 
$caln=l: -

y = 0$ 
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$c 
$c identify y-variable y, factors item, block,, difficulty and 
$c true/false, and weights 
$c 
Syvary $ 
Sfactor item % j block 2 difF 5 tf 2 $ 
Sweight wt $ 
$cal%z=l: 

%i=0: 
%y=0 $ 

$c 
SENDMAC 
$c 
S M A C R O M G A M M A 
$c 
$c moves k nodes to vector gamma in blocks of length j 
$c 
Seal gamma(sub) = Vl(%s): 

sub = sub + % j ; 
%s = %s+I: 
%e = %e-l $ 

SENDMAC 
$c 
SMACRO MGP 
$c 
$c moves j guessing params for 1 to k+2 
$c 
Seal g(sub)=gps: 

sub=sub+%j $ 
$cal%e = %e-l $ 
SENDMAC 
Sc 
SMACRO LOOP 
$whiIe%yPREP $ 
$cal%z=l: 

%p=0 $ 
$while%zEMALG $ 
Suse ENDUP S 
SENDMAC 
$c 
SMACRO EMALG 
SuseESTEP $ 
Suse CHECK S 
Suse MAX $ 
SENDMAC 
$c 
SMACRO ESTEP 
Sc 
Sc passes vector P3 to subroutine ESTEP 
$assP3=%x,Vl,n,y,V2 $ 
Sprint; 'subroutine ESTEP - expectation phase'; S 
$pass3P3 $ 
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Sc 
Sc move expected nos.done and correct fi-om vector P3 to n and y 
Sc 
Scal%s = %k+5: 

%v = %s+(%k+2)*%j: 
%t=l : 
%e=%k*%j $ 

$argMEXPp3 S 
Swhile %e MEXP 
Sc 
SENDMAC 
Sc 
SMACRO CHECK 
Sc 
Sc checks for convergence 
$c 
Seal %z=%eq(p3(l),%x): 

%p=P3(l)S 
SENDMAC 
$c 
SMACRO MAX 
Sc 
$c fit current model 
Sc 
$cal%i=%i+I $ 
Sprint; 'Maximization Step: Iteration:' * i % i ; $ 
Sown fit dir var dev 
Sscale 1 $ 
Seal %lp = %ifl;y>0,%log(y/(n-y+0.5)),-l 5) $ 
Scycle 50$ 
$fit#model $ 
Sdis e $ 
Sc 
Sc move intercepts and slope+intercepts to vector V2 
$c 
$cal%m=%j*2 $ 
Svar %m v2: 

%m sb $ 
Seal sb=%gl(%m,l): 

sb=sb+%k*%j: 
v2=%lp(sb) $ 

SENDMAC 
Sc 
Sc macros for model fitting follow: 
Sc 
SMACRO FIT Seal % fv=n^g+(l-g)/(l+%exp(-%lp))) 
SENDMAC 
Sc 
SMACRO DIR Seal %dr = l/(%fv-n*g) +I/(n-%fv) 
SENDMAC 

• -$cr - - - -- ' - - - - -
SMACRO VAR Seal %va = %fv*(l-%fv/n)S 
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SENDMAC 
Sc 
SMACRO DEV Seal %di = -2*(y*%log(%fv) + (n-y)*%log(n-%fv)) 
Seal yl = %ge(y,0.00000001)*y+(l-%ge(y,0.00000001)) $ 
Seal %di = %di+2*yl*%iog(yl) $ 
Seal y l = n-y $ 
Seal yl = %ge(yl,0.00000001)*yl+(l-%ge(yl,0.00000001)) $ 
Seal %di = %di+2*yl *%log(y 1) $ 
SENDMAC 
Sc 
SMACRO ENDUP 
Soutput 13 $ 
Sprint 'MODEL;' model; "NODES;' ' i %k ; 'TOL;' %x ; 'FINAL FIT;' %p ; 
•NO. ITERATIONS:' % i $ 
Sdisde S 
Soutput 2 S 
Sprint 
'use macro NODES for new nodes, or re-set tolerance(%x)'; 
'then use macro LOOP to re-run algorithm' 
$ 

SENDMAC 
Sc 
SMACRO MEXP 
Sc 
Sc moves data to vectors n and y fi^om vector %1=P2 (after IVNIT) or 
$c%l=p3 (after ESTEP) 
Sc 
$caln(%t) = %l(%s); 

y(%t)=%l(%v): 
%t=%t+l; 
%s=%s+l; 
%v=%v+l; 
%e=%e-l S 

SENDMAC 
Sc 
SRETURN 
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D2, FORTRAN SUBROUTINE PASS 

Qtif****************************************************************** 

C— GLIM 3.77 (copyright) 1984 Royal Statistical Society, London — 

C 
SUBROUTINE PASS (0PT,RARRAY,RLEN,CARRAY,CLEN,RMV,IFT,1FTA) 
INTEGER 0PT,CARRAY(*),CLEN,RLEN,IFT,IFTA(2) 
REAL RARRAY(*),RMV 
EXTERNAL LEGDAT,INIT,ESTEP,WRWARN,fop 
IF (OPT.EQ. 1) CALL LEGDAT(RARRAY,RLEN) 
IF (OPT.EQ. 2) CALL IMT(RARRAY,RLEN) 
IF (0PT.EQ.3) CALL ESTEP(RARRAY,RLEN) 
EF (OPT.LE.O) 

- CALL WRWARN('the PASS subroutine is not implemented',38) 
RETURN 
END 
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D3. FORTRAN SUBROUTINE LEGDAT. 

SUBROUTINE LEGDAT(rarray,rlen) 
INTEGER p,q,rlen,sub 
DOUBLE PRECISION pnodes(2), pwei(2),min,max,xl,x2,y(4) 
REAL rarray(rien) 
OPEN(9,FlLE = 'LEG4.DAT') 
READ(9,7001) pnodes,pwei 

7001 FORMAT(F17.15) 
c 
c Read no. of nodes and range 
c 

WR1TE(*,9999) 
9999 FORMATC Input no of nodes(4,8,12....,60)') 

10READ(*,*)p 
IF(p.lt.4) GO TO 10 
IF(p.gt.60) GOTO 10 
q=M0D(p,4) 
IF(q.ne.0)GOTO 10 
raiTay(l)=p 
p=p/4 
WRITE(*,9998) 

9998 FORMATC Input min and max') 
20 READ(*,*) min,max 

IF(min.ge.max) GO TO 20 
D 0 9 i = 1,2 

pwei(i) = pwei(i)*(max-min)/dble(2*p) 
rarray(i+1 )=pwei(i) 

9 CONTINUE 
sub=3 
D O l i = l , p 

x l = min+(max-min)*dble(i-l)/dble(p) 
x2 = x l + (max-min)/dble(p) 
D 0 2 j = l , 4 

k=ABS(i-2.5)-K).5 
yO)=(x2-xl)*pnodes(k) 
IF(j-lt.3) ya)=-yO) 
y(j)=((xl+x2)+ya))/2 
sub=sub+l 
rarray(sub)=y(j) 

2 CONTINUE 
1 CONTINUE 
CLOSE(9) 
RETURN 
END 
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D4. FORTRAN SUBROUTINE JIN1T.F77 

SUBROUTINE INlT(rarray,reclen) 

c 
c INITIALIZATION PROGRAM 
c 
c 

INTEGER subj,items,nodes,u(1000,200),reclen,sub 
DOUBLE PRECISION temp,asum(1000), 

+ n(60,200),p(1000,60),weight(60), 
+ ccoef!(200),tcoef!i;200),avg,gamma(60), 
+ y(60,200),diff,lp,lastfit 
REAL g(200),raiTay(reclen) 
COMMON /com/ n,p,y,u,asum 

c 
OPEN(9,FILE='a2glirt.dat') 
Iastfit=9d6 
0PEN(17,FILE='fit.dat*) 
WRITE(17,1000) lastfit 

1000 FORMAT(F20.10) 
CL0SE(17) 

c 
c 
c read item data 
c 
c read no. subjects + no. items 
c 

READ(9,*) subj,items 
c 
c read guessing parameters 
c 

READ(9,*) (gO)J=Uitems) 

c 
c read responses 
c 

DO 1 i=l,subj 
RE AD(9,5002)(u(i j ) j=l , i tems) 

5002 FORMAT (i l ,199il) 
1 CONTINUE 

c 
c quadrature formula data 
c 

nodes=rarray(l) 
DO 22 k=l,nodes 

sub=M0D(k,4) 
lF(sub.lt.2) THEN 

sub=3 
ELSE 

sub=2 
ENDIF 
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gamma(k)=rarray(k+3) 
weight(k)=rarray(sub) 

22 CONTI>aJE 
c 
c initialise slope and intercept parameters 
c 

DO 2 j = 1,items 
ccoeff(j) =1 
tcoeff(j)=l 

2 CONTINUE 
c 
c 
c calculate expected no. done and no. correct 
c 

D 0 6 i = l,subj 
asum(i)=O.OdOO 
avg = O.OdOO 
D 0 4 k = Unodes 

p(i,k) = (-(gamma(k)**2)/2) 
DO 3 j=l,items 
lp=ccoeff(j)+tcoeffO)*ganima(k) 
IF(u(ij).eq.l)p(i,k) = p(i,k)+ 

* log(gG)+(l-gO))/(l+exp(-lp))) 
IF(u(i j).eq.O) p(i,k) = p(i,k)+ 

log(l-gG))-log(l+exp(lp)) 
3 CONTINUE 

avg = avg + p(i,k)/nodes 
4 CONTINUE 

DO 5 k=l,nodes 
difiF=p(i,k)-avg 
IF(diff.gt.88) diflF=88 
temp= exp(difF) 
p(i,k) = weight(k)*temp 
asum(i) = asum(i)+ p(i,k) 

5 CONTINUE 
6 CONTINUE 

W T = I 
D 0 9 k = I,nodes 

DOS j = 1,items 
n(kj) = O.OdOO 
y (kj) = O.OdOO 
DO 7 i = l,subj 

IF{u(i j).eq.O) n (kj) = n(kj)+p(i,k)/asum(i) 
IF(u(ij).eq,l)then 

n(k j ) = n(k j)+p(i,k)/asum(i) 
y (k j ) = y(kj)+p(i,k)/asum(i) 

END IF 
7 CONTINUE 
8 CONTINUE 
9 CONTINUE 

c add following to GLIM vector; subjects,items, guessing params, 
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c expected nos.done, expected nos. correct 
c 

sub=nodes+4 
rarray(sub)=subj 
rarray(sub+1 )=items 
sub=sub+2 
DO l O j = 1,items 

rarray(sub)=g(j) 
sub=sub+l 

10 CONTINUE 
DO 11 k=l,nodes 

DO 11 j=l,items 
rarray(sub)=n(kj) 
sub=sub+l 

11 CONTINUE 
DO 12 k=l,nodes 

DO 12 j=l,items 
rarray(sub)=y(kj) 
sub=sub+l 

12 CONTINUE 
close(9) 
RETURN 
END 
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D5. FORTRAN SUBROUTINE ESTEP. 

SUBROUTINE ESTEP(rarray,reclen) 
c 
c 
c E-STEP PROGRAM 
c 
c 

INTEGER subj,items,nodes,u(1000,200),reclen,asub,bsub 
REAL g(200),rarray(reclen),calc,diff,tol 
DOUBLE PRECISION N(60,200),weight(60),lastfit, 
+ ccoeff(200),tcoef!(200),gamma(60), 
+ y(60,200),lp,fit,sum( 1000), p( 1000,60) 
COMMON /com/ N,P, Y,U.SUM 

c 
OPEN(9,FILE='a2glirt.dat') 
0PEN(17,FILE='fit.daf) 
READ(17,*) lastfit 
CL0SE(17) 
0PEN(17,FILE='fit.dat') 

c 
c read item data 
c 

c 
READ(9,*) subj,items 

c read guessing parameters 
c 

READ(9,*)(gO)J=l,items) 
c 
c 
c read item responses 
c 

DO 1 i = l,subj 
sum(i) = O.OdOO 
READ(9,5002)(u(ij)J=l,items) 

5002 FORMAT(il,199il) 
1 CONTINUE 

c 
c extract quadrature formula data from G L I M array 
c 

nodes=rarray(2) 
DO 22 k=l,nodes 
asub=M0D(k,4) 
IF (asub.lt.2) THEN 
asub=4 

ELSE 
asub=3 

ENDIF 
gamma(k)=rarray(k+4) 
weight(k)=rarray(asub) 

22 CONTINUE 
c 
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c c extract item parameter estimates from G L I M array 
c 

asub=5+nodes+2*(2+nodes)*items 
bsub=asub+items 
DO 2 j = 1,items 

ccoeff(j)=rarray(asub) 
tcoeff(j)=rarray(bsub)-ccoeff(j) 
asub=asub+I 
bsub=bsub+l 

2 CONTINUE 
c 
c calculate expected no. done and no. correct 

c 
D 0 6 i = l,subj 

D 0 4 k = 1,nodes 
p(i,k) = (-(gamma(k)**2)/2) 
DO 3 j = 1 ,items 

Ip = ccoefn3)+tcoeff(j)*gamma(k) 
IF(u(ij).eq.l)p(i,k) = p(i,k)+ 

>og(gO) + {I-g(j)) / ( l+exp(-lp))) 
IF(u(ij).eq.O) p(i,k) = p(i,k)+ 

!og(l-gO))-log(l+exp(lp)) 
3 CONTINUE 
4 CONTINUE 

DO 5 k=l,nodes 
p(i,k) = weight(k)*exp(p(i,k)) 
sum(i) = sum(i)+ p(i,k) 

5 CONTINUE 
6 CONTINUE 

c 
c check convergence 
c 

toI=rarray(l) 
f]t=O.OdOO 
DO 98 i=l,subj 

fit = fit-2*log(sum(i)) 
98 CONTHSFUE 

diflNlastfit-fit 
IF(diff.It.toI)rarray(l)=fit 
WRITE{*,1000) fit 

lOOOFORMATC FIT statistic: \¥\2.6) 
WRITE(17,1001)fit 

1001 FORMAT(F18.10) 
D 0 9 k = l,nodes 

DOS j = 1,items 
n (k j ) = O.OdOO 
y ( k j ) = 0.0d00 
D 0 7 i = l,subj 

IF(u(i,j).eq.O) n (k j ) = n(kj)+p(i,k)/sum(i) 
IF(u(ij).eq.l)then 
n (k j ) = n(kj)+p(i,k)/sum(i) 

187 



y ( k j ) = y(kj)+p(i,k)/sum(i) 
END IF 

7 CONTINUE 
8 CONTINUE 
9 CONTINUE 

asub=5+nodes 
bsub=asub+(nodes+2) * items 
DO 10 k = 1,nodes 

DO 10 j=l,items 
rarray(asub)=n(kj) 
rarray(bsub)=y(kj) 
asub=asub+l 
bsub=bsub+l 

10 CONTINUE 
CL0SE(9) 
CL0SE(17) 
RETURN 
END 
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APPENDIX E 

QUESTIONS FOR TIMED ITEM TEST OF MENTAL ARITHMETIC. 

Item No. Problem 
1 8+3+9=20 
2 12-3+8=17 
3 11+15+7=33 
4 15-8+12=19 
5 16+19-27=8 
6 9+3+6=18 
7 11-4+7=14 
8 12+16+6=34 
9 16-8+12=20 
10 16+18-25=9 
11 7+4+8=19 
12 13-4+7=16 
13 12+16+7=35 
14 16-7+13=22 
15 16+15-23=8 
16 8+4+9=22 
17 11-3+8=14 
18 11+16+7=32 
19 14-8+12=16 
20 15+19-27=5 
21 8+3+6=15 
22 12-4+7=17 
23 11+16+6=31 
24 15-8+12=21 
25 15+18-25=6 
26 6+4+8=16 
27 12-4+7=17 
28 11+16+7=32 
29 15-7+13=23 
30 15+16-23=65+ 
31 5+6+9=20 
32 11-4+8=15 
33 11+16+7=34 
34 14-7+12=19 
35 15+18-27=6 
36 8+5+6=19 
37 11-3+8=16 
38 13+16+7=36 
39 14-6+12=20 
40 14+19-25=8 
41 6+5+8=19 
42 12-3+7=16 
43 11+17+8=36 
44 14-8+13=19 
45 17+14-23=5 
46 5+6+7=16 
47 11-4+6=15 

Difficultv/Tvpe 
1 
2 
3 
4 
5 
1 
2 
3 
4 
5 
1 
2 
3 
4 
5 
1 
2 
3 
4 
5 
1 
2 
3 
4 
5 
1 
2 
3 
4 
5 
1 
2 
3 
4 
5 
1 
2 
3 
4 
5 
1 
2 
3 
4 
5 
1 
2 

189 

Time 
4 
4 
4 
4 
4 
6 
6 
6 
6 
6 
8 
8 
8 
8 
8 
4 
4 
4 
4 
4 
6 
6 
6 
6 
6 
8 
8 
8 
8 
8 
4 
4 
4 
4 
4 
6 
6 
6 
6 
6 
8 
8 
8 
8 
8 
4 
4 

True/False 
T 
T 
T 
T 
T 
T 
T 
T 
T 
T 
T 
T 
T 
T 
T 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
T 
T 
T 
T 
T 
T 
T 
T 
T 
T 
T 
T 
T 
T 
T 
F 
F 



Item No. Problem Difficulty/Type Time True/False 
48 11+16+5=34 3 4 F 
49 14-7+9=14 4 4 F 
50 15+18-25=6 5 4 F 
51 8+5+4=19 1 6 F 
52 11-3+6=16 2 6 F 
53 13+16+5=32 3 6 F 
54 14-6+13=23 4 6 F 
55 15+19-24=18 5 6 F 
56 6+3+9=20 1 8 F 
57 12-3+5=16 2 8 F 
58 11+17+4=30 3 8 F 
59 14-8+12=16 4 8 F 
60 17+14-23=10 5 8 F 
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APPENDIX F 

F l . QUESTIONS FOR TRANSITIVE INFERENCE TEST. 

Item Time Question Type Difficulty 

(sees) 
1 2 Paul is slower than John. Who is slower ? Paul John 4 1 
2 3 Bill is slower than Joe. Who is faster ? Bill Joe 
3 5 Chris is happier than Mike. Who is happier ? Mike Chris 
4 4 Pete is not as bad as Ian. \Vho is better ? Pete Ian 
5 2 Dave is not as short as Sid. Who is shorter ? Dave Sid 
6 3 Chris is not as strong as Tom. Who is stronger ? Chris 

Tom 
7 5 Tom is taller than Chris. Who is shorter ? Chris Tom 
8 4 Phil is not as taU as Mike. Who is shorter ? Phil Mike 

3 2 
1 1 
5 3 
6 2 
7 2 

2 2 
8 3 

9 2 Chris is better than Dave. Who is worse ? Dave Chris 
10 3 Steve is heavier than John. Who is heavier ? Steve John 
11 5 Sid is dimmer than Ian. Who is brighter ? Ian Sid 
12 4 Tom is not as bad as Phil. Who is better ? Tom Phil 
13 2 Bill is not as bright as John. Who is brighter ? Bill John 
14 3 Bob is not as old as John. Who is younger ? John Bob 
15 5 Sid is shorter than Paul. Who is shorter ? Sid Paul 
16 

32 

2 2 
1 1 
3 2 
5 3 
7 2 
8 3 
4 1 

4 John is not as sad as Steve. Who is sadder ? Steve John 6 2 
• « • - _ 

17 2 Fred is shorter than Bill. Who is taller ? Fred Bill 
18 3 Chris is not as bad as John. Who is better ? John Chris 5 
19 5 Paul is happier than George. Who is happier ? Paul 1 

George 
20 4 Phil is not as tall as Dave. Who is shorter ? Dave Phil 8 
21 2 George is not as dim as Dave. Who is dimmer ? Dave 6 

George 
22 3 John is not as heavy as Bob. Who is heavier ? John Bob 7 
23 5 Sid is stronger than Steve. Who is weaker ? Sid Steve 2 
24 4 Steve is shorter than John. Who is shorter ? Steve John 4 
25 2 Fred is not as young as Paul. Who is younger ? Paul Fred 
26 3 Bill is not as weak as Joe. Who is stronger ? Joe Bill 
27 5 Chris is not as heavy as Sid. Who is heavier ? Sid Chris 
28 4 Fred is weaker than Pete. Who is stronger ? Pete Fred 
29 2 George is sadder than BiU. Who is sadder ? George Bill 
30 3 Chris is heavier than Sid. Who is lighter ? Sid Chris 
31 5 Fred is brighter than John. Who is brighter ? Fred John 

3 2 

6 2 
5 3 
7 2 
3 2 
4 1 
2 2 
1 1 

4 Fred is not as tall as Bob. Who is shorter ? Bob Fred 8 3 
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Item Time (sees) Question Type 
33 2 Joe is not as slow as Ian. Who is faster ? Joe Ian 5 
34 3 Sid is lighter than Pete. Who is lighter ? Pete Sid 4 
35 5 Dave is not as happy as Chris. Who is sadder ? Dave 8 

Chris 
36' 4 Bill is older than Paul. Who is older ? Bill Paul 1 
37 2 Steve is not as sad as Bill . Who is sadder ? Steve Bill 6 
38 3 Chris is not as bright as Pete. Who is brighter ? Pete Chris 7 
39 5 Tom is brighter than Ian. Who is dimmer ? Tom Ian 2 
40 4 George is lighter than Dave. Who is heavier ? George 3 

Dave 
41 2 John is faster than Joe. Who is faster ? Joe John 1 
42 3 Joe is weaker than Sid. Who is stronger ? Joe Sid 3 
43 5 Paul is worse than Mike. Who is worse ? Paul Mike 4 
44 4 Steve is not as slow as Paul. Who is faster ? Steve Paul 5_ 
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F2 SUMMARY OF RESPONSE DATA MATRIX FOR TRANSITIVE INFERENCE 
TEST 

ITEM NO CORRECT ITEM NO 
NO NO CORRECT 

1 985 23 1160 

2 1060 24 1211 
3 1135 25 820 
4 1031 26 894 
5 804 27 1176 
6 1114 28 1146 
7 1167 29 1116 
8 1114 30 1123 
9 956 31 1238 
10 1195 32 1110 
11 1161 33 777 
12 1084 34 1135 
13 886 35 1177 
14 958 36 1220 
15 1220 37 875 
16 1170 38 1115 
17 983 39 1202 
18 935 40 1171 
19 1234 41 901 
20 1101 42 1128 
21 860 43 1208 
22 1098 44 986 

1400 

1200 

1000 

800 

600 

400 

200 

0 

Frequency of Correct Responses 

^ fo n> a> ^ (O in ?i R « s 
Item Number 

P5 ft 
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F3. PARAMETER ESTIMATES 

M O D E L (MIX): probdifr+ 1/time + gamma 

DEGREES OF FREEDOM: 875 

FIT STATISTIC: 40346.81 

PARAMETER ESTIMATES: 

Problem Difficulty (3 Levels): 1. (Easiest) 5.037 

2. 4.341 

Slope on reciprocal of time: 

Slope on ability: 

3. (Most Difficult) 3.351 

-9.646 

1.322 

M O D E L (M12>: probdifr+ time + gamma 

DEGREES OF FREEDOM: 873 

FIT STATISTIC: 40318.52 

PARAMETER ESTIMATES: 

Problem Difficulty (3 Levels): 1. (Easiest) 2.982 

2. 2.259 

Time (4 levels): 

Slope on ability: 

3. (Most Difficult) 1.173 

1. Two seconds: -2.787 

2. Three seconds:-l .043 

3. Four seconds: -0.1784 

(4. Five seconds: 0.0) 

1.324 
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M O D E L (M13): probtvpe + 1/time + gamma 

DEGREES OF FREEDOM: 870 

FIT STATISTIC: 40168.61 

PARAMETER ESTIMATES: 

Problem Type (8 Levels): 

Slope on reciprocal of time: 

Slope on ability: 

1. (Easiest) 4.664 

2.4.251 3.4.233 4.5.010 

5.2.846 6.3.771 7.4.286 

8. (Most Difficult) 3.594 

-9.046 

1.336 

M O D E L (M14): probtvpe + time + gamma 

DEGREES OF FREEDOM: 868 

FIT STATISTIC: 40131.03 

PARAMETER ESTIMATES: 

Problem Type (8 Levels): 

Time (4 levels): 

Slope on ability 

1. (Easiest) 2.718 

2. 2.355 3. 2.188 

5. 0.7164 6. 1.760 

8. (Most difficult) 1.495 

1. Two seconds: -2.560 

2. Three seconds: -0.9741 

3. Four seconds: -0.04996 

(4. Five seconds: 0.0) 

1.337 

4. 3.037 

7. 2.300 
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