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Abstract 

Background: Regulatory authorities around the world have introduced incentives to improve 

the speed-to-market of innovative therapies.  

Aim and methods: To better understand the capacity and portfolio planning decisions of 

autologous cell therapies and particularly the impact of fast-tracking designations, this paper 

describes a mixed-integer linear programming approach for the optimisation of capacity 

investment and portfolio selection decisions to maximise the net present value of a candidate 

portfolio of therapies under different regulatory programs.  

Results: The illustrative example shows that fast-track designations allow a 25% earlier 

breakeven, 42-86% higher NPV over a 20-year horizon with earlier upfront capital and reduce 

the portfolio’s sensitivity to uncertainties. 

Conclusion: Fast-track designations are effective in providing commercialisation incentives, 

but high capital risks given the compressed timeline should be better considered.  

Keywords: autologous cell therapies, capacity planning, optimisation, regulatory, drug 

development, decisional tool 

Introduction 

Autologous cell therapies are a unique class of products where tissues/cell originate from the 

patient and are returned to the patient for therapeutic purposes. A previously published study 

examined three autologous interventions (Epicel, Provenge and Carticel) and summarised the 

premarket and post-market challenges of commercialising cell therapies, citing unclear 

regulatory environment and long developmental timelines as the main premarket challenges 

and manufacturing and supply chain challenges as two key post-market challenges [1]. More 

specifically, these challenges are manifested in three aspects.  

Firstly, as the products are living cells, they are very sensitive to environmental changes and 

therefore to ensure safety and quality of the product, cold or ultra-cold supply chain has to 

be considered. Distribution logistics can have a massive impact on the formulation of the 

product and has to be considered early in the product development cycle [2]. The unique 

requirement for autologous cell therapy products to be produced on-demand with cell 
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material originating from patients presents new capacity and supply chain complications that 

have proven to be commercially challenging [3]. Specific to autologous therapies, the 

geographical constraint and sometimes, trade-off for quality, has led to more interest in 

decentralised manufacturing [4].  

Secondly, managing the cost of goods and marketing cost is a key contributing factor to 

commercial success. Lipsitz et al have outlined the cost of good (COG) planning roadmap for 

manufacturing of cell therapies from cell sourcing to patient administration [5]. An interesting 

challenge faced in the commercialisation of Dendreon, one of the first immunotherapy 

products for prostate cancer, was the financial implications of substantial upfront investment 

in specialised GMP production facilities. The lag in treatment adoption and the expensive 

underutilised facilities caused massive amounts of debts and eventual market failure [1]. 

Given the requirement for GMP-compliant facilities to be in place and listed for market 

authorisation, the lead strategy towards capacity planning (i.e. capacity added in anticipated 

of increase in demand) can become a huge burden for resource-constrained companies 

seeking to commercialise cell therapies.  

Thirdly, autologous cell therapies are specific to the patient, which means manufacturing 

cannot be scaled up using larger-scale equipment and has to be scaled out to produce a single 

batch of therapy per patient. This not only diminishes the effect of traditional economies of 

scale but also presents risks in mix-ups and cross-contamination [6].  

For pharmaceutical product development, process development for manufacturing scale-up 

and production planning take place alongside clinical trials to prepare for mass production 

and market roll-out. In drug development, the critical path for new medicinal products 

proposed by the FDA, manufacturing scale-up and production planning are often only 

considered in later phases of clinical trials [7]. When applying for market authorisation, the 

proposed manufacturing sites should be listed and must be GMP-compliant. Setting up GMP-

compliant facilities is time-consuming and capital-intensive [8], but for the product to attain 

maximal economic returns during the market exclusivity period (only 20 years from the filing 

date of the patent), the GMP-compliant manufacturing capacity has to be available when the 

product is market-ready, whether through contracting out or building own facilities.  
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The capacity planning problem has been a long-standing one in the pharmaceutical industry 

due to the uncertainties around product development, high upfront investment costs and 

highly regulated industry landscape. These challenges make the optimisation of capacity 

planning for pharmaceuticals different from other industries such as agrochemicals. 

Ineffective capacity planning can lead to serious capacity crunches such as that faced by the 

monoclonal antibody (mAb) industry in the 1990s, which were estimated to have caused 

around $3-$4 billion in total revenue loss due to insufficient supply of products [9,10]. 

Papageorgiou et al studied the optimisation of investment strategies for product 

development and introduction of active pharmaceutical ingredient (API) [11] and others have 

looked into similar problems under uncertain clinical trial outcomes, market pressures and 

regulations [12]. Liu used a MILP approach to simultaneously optimise the global supply chain 

for pharmaceuticals considering costs, responsiveness and customer service levels [13]. For 

biopharmaceutical facility planning, Siganporia et al have formulated a discrete-time MILP 

model to optimise in-house and contract manufacturing decisions and to study the adoption 

of fed-batch and continuous perfusion culture processes [14]. More recently, Wang et al 

studied the CAR-T supply chain to maximise the overall net present value and minimise 

average response time of patients under demand distribution uncertainties [15]. Simulation 

studies looking into demand resilience and reagent supplies conducted by Lam et al and Wang 

et al [16,17] have discussed the operational challenges for autologous cell therapies. 

Optimisation studies have also been proposed to look at the use of mobile medical units for 

delivering therapies from manufacturing centres to local treatment facilities for autologous 

cell therapies [18]. However, these existing models have not addressed the impact of unique 

regulatory pathways for autologous cell therapies on strategic commercialisation decisions 

such as timing for capital investment and portfolio considerations.  

With the maturation of advanced therapeutic medicinal products (ATMPs) as a drug modality 

and more and more products moving from bench to market, regulatory authorities around 

the world have evolved to address to put forward clearer regulatory guidelines and strategies 

to reduce the developmental timelines. Regulatory authorities around the world have 

introduced frameworks to allow faster access to these treatments for life-threatening 

diseases such as blood cancers and genetic disorders [19–21]. These policies have been shown 
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to accelerate the commercialisation of ATMPs and have been generally well-accepted and 

well-adopted (Supplementary material 1).  

With the introduction of accelerated approval processes, the clinical development duration 

can reduce from 6-7 years (full-fledged phase 1, phase 2, phase 3 clinical trial) to 2-3 years 

(small scale clinical trials with surrogate end-points) [22], which requires the industrialisation 

timeline for process development and capacity planning to be managed accordingly. 

Therefore, the industry needs to re-evaluate the outsourcing and investment strategies for 

securing manufacturing capacities to benefit fully from accelerated approval. This is a highly 

relevant decision to consider as the number of clinical trials in the cell and gene therapy 

domain has been increasing exponentially over the last few years. Just for the cancer cell 

therapy pipeline, the number of active agents increased by 46.7% [23].  

Therefore, this study aims to develop a mathematical model for investigating capacity 

planning decisions to maximise the net present value (NPV) of an autologous cell therapy 

portfolio to illustrate the impact of ‘fast-track’ approval processes. An illustrative example 

comparing ‘fast-track’ and standard approval processes is conducted to assess the 

implications of the former on the timing for capital investment in cell therapy manufacturing 

facilities, the scale and location of facilities of different scales (smaller decentralised facilities 

vs larger centralised facilities) and product portfolio. 

Method 

This study considers strategic commercialisation challenges such as product portfolio and 

capacity planning decisions for autologous cell therapies simultaneously. This section 

describes the problem and the rationale of modelling and presents the mathematical 

descriptions. 

I. Problem statement 

A holistic approach that simultaneously considers product portfolio, capacity planning and 

equipment procurement is needed to address the challenges facing the commercial 

development of autologous cell therapies. The problem is summarised as follows: 

Given: 

- Set of potential products and the time horizon for planning 
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- Forecasted demand levels at different hospital locations 

- Forecasted selling price of each product 

- Manufacturing cost, process duration and equipment requirement of each product 

- Set of location for hospitals and facilities 

- Set of facility scale (pilot, small, medium, large) 

- Two types of facilities (contract, new build) 

- Construction lead-times and capital investment 

- Contract negotiation time duration and costs 

- Fixed cost for facilities and operating cost 

- Fixed number of equipment available at contract manufacturers 

- Interest rate 

Determine: 

- Set of products selected 

- Facility investment schedule 

- Optimal facility location  

- Optimal facility scale 

- Optimal engagement of facility type over the time horizon 

- Equipment procurement schedule for each built facility over the time horizon 

The goal is to optimise the expected NPV of a company developing these products. 

II. Model formulation 

A uniform time discretisation mixed-integer linear programming (MILP) problem is 

formulated. Specific to the nature of autologous cell therapies, some key features include 

parallel closed automated processing (scale-out manufacturing); total product consumption 

(product generated from patients return to patients at the same location); location, facility 

scale (pilot, small, medium, large) and type (contract or newbuild) specific considerations. 

Previous published models have considered the treatment delivery response time [15] which 

is an important operational level decision for autologous cell therapies, but this model 

focusses on strategic decisions on portfolio, capacity planning and investment, paying 

particular attention on the impacts of regulatory programmes. 

The formulation is presented in detail as follows and the overall supply chain network 

structure diagram is presented in Figure 1 
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(1) Notations 

Indices 

𝑃𝑃 Product (P1, P2, P3, …, Pp) 

𝑚𝑚 Product manufacturing process (complex, simple) 

𝑓𝑓 Location of facility (London, Bristol, Newcastle, Edinburgh) 

ℎ Location of hospital (London, Bristol, Newcastle, Edinburgh) 

𝐹𝐹𝐹𝐹 Facility type (contract, newbuild) 

𝐹𝐹𝐹𝐹 Facility scale (pilot, small, medium, large) 

𝑡𝑡 Time periods (years)  

 

Sets 

𝐶𝐶𝐶𝐶 Set of complex products 

𝑆𝑆𝑆𝑆 Set of simple products 

𝐶𝐶𝐶𝐶 Time periods over which clinical trials occur (years) 

𝑀𝑀𝑀𝑀𝑀𝑀 Time periods over which the product is on market (years)  

 

Parameters 

𝐷𝐷𝐷𝐷𝑚𝑚,𝑡𝑡
𝑃𝑃,ℎ  Annual Demand of product P at hospital h requiring process m at year t 

𝐶𝐶𝐷𝐷𝑡𝑡𝑃𝑃 Annual demand for all complex products  

𝑆𝑆𝐷𝐷𝑡𝑡𝑃𝑃 Annual demand for all simple products 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃 Price of product P in year t (thousand USD), 𝑡𝑡 ∈ 𝑀𝑀𝑀𝑀𝑀𝑀 

𝜑𝜑 Funding available (thousand USD) 

Facility 

𝜎𝜎𝐹𝐹𝐹𝐹 Facility footprint for facility scale Fs (m2) 

𝐼𝐼𝐼𝐼𝐼𝐼𝐹𝐹𝐹𝐹
𝑓𝑓  Investment cost of facility at location f and scale Fs (thousand USD) 

𝜏𝜏𝜏𝜏𝐹𝐹𝐹𝐹,𝐹𝐹𝐹𝐹
𝑓𝑓  Set-up time of facility at location f, type Ft, scale Fs (thousand USD) 

𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓 Contract cost of engaging contract facility at f (thousand USD) 
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𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹,𝐹𝐹𝐹𝐹
𝑓𝑓  Annual facility fixed cost for facility at location f, type Ft, scale Fs 

(thousand USD) 

𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝐹𝐹𝐹𝐹 Footprint of utilities and support equipment (m2) 

𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝐹𝐹𝐹𝐹 Capital Cost of utility equipment (thousand USD) 

𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝐹𝐹𝐹𝐹 Footprint of core equipment for facility scale Fs (m2) 

𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝐹𝐹𝐹𝐹 Capital cost of Core equipment for facility scale Fs (thousand USD) 

𝜎𝜎𝑄𝑄𝑄𝑄,𝐹𝐹𝐹𝐹 Footprint of QC equipment space for facility scale Fs (m2) 

𝐶𝐶𝑄𝑄𝑄𝑄,𝐹𝐹𝐹𝐹 Capital cost of QC equipment for facility scale Fs (thousand USD) 

𝜎𝜎𝑒𝑒𝑒𝑒,𝑚𝑚,𝐹𝐹𝐹𝐹 Production equipment floor space for process m (m2) 

𝐶𝐶𝑒𝑒𝑒𝑒,𝑚𝑚,𝐹𝐹𝐹𝐹 Capital cost of production equipment for process m (thousand USD) 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹 Max production space for facility of scale Fs 

𝑀𝑀 Maximum operating days in each time period 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 Facility operating cost per square meter per year (thousand USD) 

𝐼𝐼𝐼𝐼𝐼𝐼𝐹𝐹𝐹𝐹
𝑓𝑓  Investment cost of a facility at location 𝑓𝑓 and scale 𝐹𝐹𝐹𝐹 

Cost of goods 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑃𝑃 Manufacturing variable cost of goods of product P (thousand USD) 

𝑂𝑂𝑂𝑂𝑂𝑂𝐹𝐹𝐹𝐹 Outsource penalty of facility type Ft 

𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹 Scale penalty of facility scale Fs 

𝐿𝐿𝐿𝐿𝑓𝑓 Location penalty of facility location f 

𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹,𝐹𝐹𝐹𝐹
𝑃𝑃,𝑓𝑓  Cost of goods of product P at facility location f, type Ft, scale (thousand 

USD) 

𝑑𝑑ℎ
𝑓𝑓 Distance between facility at f and hospital at h (in miles) 

𝑡𝑡𝑡𝑡 Transport cost per mile (USD) 

𝑡𝑡𝑡𝑡ℎ
𝑓𝑓 Transport cost per treatment (USD) 

𝑃𝑃𝑃𝑃𝑃𝑃  Process turnaround time for product P (days) 

𝛿𝛿𝑡𝑡 Discount factor at year t 

 

Variables 

𝐹𝐹𝐹𝐹𝑡𝑡 Investment cost at year t 
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𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 Contract cost at year t 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡 Production equipment investment cost at year t 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡 Fixed equipment (support, core and QC) investment cost at year t 

𝐸𝐸𝐸𝐸𝐸𝐸𝑓𝑓,𝐹𝐹𝐹𝐹,𝐹𝐹𝐹𝐹,𝑡𝑡
𝑚𝑚  Number of equipment for process m purchased for facility at f of 

scale Fs at year t 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑓𝑓,𝐹𝐹𝐹𝐹,𝐹𝐹𝐹𝐹,𝑡𝑡
𝑚𝑚  Number of equipment available for process m at facility location f, 

type Ft, scale Fs at year t 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑓𝑓,𝐹𝐹𝐹𝐹,𝐹𝐹𝐹𝐹,𝑡𝑡
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 Annual maximum operational days of available complex equipment 

for producing complex products 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑓𝑓,𝐹𝐹𝐹𝐹,𝐹𝐹𝐹𝐹,𝑡𝑡
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  Maximum operational days of available simple equipment for 

producing simple products 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡 Fixed operating costs at year t 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑓𝑓,𝐹𝐹𝐹𝐹,𝐹𝐹𝐹𝐹,𝑡𝑡
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 Complex treatments produced at facility location f, type Ft, scale Fs 

at year t 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑓𝑓,𝐹𝐹𝑡𝑡,𝐹𝐹𝐹𝐹,𝑡𝑡
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  Simple treatments produced at facility location f, type Ft, scale Fs at 

year t 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ℎ,𝑡𝑡
𝑃𝑃  Product P delivered at hospital h in year t 

𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡𝑃𝑃 Total treatment P delivered in all hospitals at year t  

𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡𝑃𝑃 Total treatment P produced in all facilities at year t 

𝜀𝜀𝑓𝑓,𝐹𝐹𝐹𝐹,𝐹𝐹𝐹𝐹,ℎ,𝑡𝑡
𝑃𝑃  Total treatment P delivered at hospital h from facility location f, type 

Ft, scale Fs at year t 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑃𝑃 Total sales of product P at year t (in USD) 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡 Total transportation cost at year t (USD) 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡 Total COG at year t (USD) 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡 Total revenue at year t (USD) 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 Total cashflow at year t (USD) 

𝑁𝑁𝑁𝑁𝑁𝑁 Net present value over time horizon (USD) 

 

Binary Variables 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹,𝐹𝐹𝐹𝐹,𝑡𝑡
𝑓𝑓  Facility investment decision of facility at location f, type Ft, scale Fs at year t 
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𝐴𝐴𝐹𝐹𝐹𝐹,𝐹𝐹𝐹𝐹,𝑡𝑡
𝑓𝑓  Facility availability at year t 

𝑉𝑉𝑃𝑃 Product selection decision 

 

(2) Mathematical descriptions 

The cost and constraints equations are organised into facility level, equipment level, product 

level and capital level with the overall objective to maximize the NPV over the time horizon. 

Facility-level constraints and costing 

Facility availability constraint 

Contract manufacturing facilities (CMO) 

It is assumed that at every location, a pilot-scale CMO facility is available to be engaged at the 

start of the time horizon for planning. Contracting out manufacturing to CMOs requires no 

upfront capital investment, but it involves contract negotiations for the price, intellectual 

property ownership and exclusivity which require significant technical and legal expertise [24]. 

Hence, an upfront cost for contract negotiation (𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓 ) is required, as well as a contract 

negotiation period (𝜏𝜏𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑓𝑓 ). The contract facilities are assumed to have a fixed 

number of equipment for complex and simple processes (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑓𝑓,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑡𝑡
𝑃𝑃𝑃𝑃𝑃𝑃 ). 

Newbuild facilities 

Purpose-built facilities with equipment purchases based on the required processes take a 

longer time to set up. The time required to set up facilities is represented by 𝜏𝜏𝜏𝜏𝐹𝐹𝐹𝐹,𝐹𝐹𝐹𝐹
𝑓𝑓 . A binary 

variable 𝐴𝐴𝐹𝐹𝐹𝐹,𝐹𝐹𝐹𝐹,𝑡𝑡
𝑓𝑓 , assigned to represent the availability of a facility of type Ft and scale Fs, is 

equal to 1 if the facility has been built at location 𝑓𝑓 at year t.  

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹,𝐹𝐹𝐹𝐹,𝑡𝑡
𝑓𝑓 , representing facility investment decisions, is set to 1 if the decision to invest has 

been made at time t, but this facility becomes available (and starts to contribute to production 

output) only after it has been set up completely (Eq 1): 

𝐴𝐴𝐹𝐹𝐹𝐹,𝐹𝐹𝐹𝐹,𝑡𝑡
𝑓𝑓 ≤ 𝐴𝐴𝐹𝐹𝐹𝐹,𝐹𝐹𝐹𝐹,𝑡𝑡−1

𝑓𝑓 + 𝐹𝐹𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹,𝐹𝐹𝐹𝐹,𝑡𝑡−𝜏𝜏𝜏𝜏𝐹𝐹𝐹𝐹,𝐹𝐹𝐹𝐹

𝑓𝑓
𝑓𝑓  Eq 1 
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Contract facility upfront cost 

As explained in Eq 1, if a contract facility is engaged at year t, the binary variable 

𝐹𝐹𝐹𝐹𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑡𝑡
𝑓𝑓  is assigned to be 1. An upfront cost of engaging a contract facility will be 

incurred (once the negotiation is concluded) to account for contract negotiation costs or 

retainer contract costs (upfront contract cost even if nothing is produced) (Eq 2). 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = �𝐹𝐹𝐹𝐹𝐹𝐹
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹,𝑡𝑡−𝜏𝜏𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑓𝑓
𝑓𝑓 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓

𝑓𝑓

 Eq 2 

Newbuild facility investment cost 

The investment cost of a facility at location 𝑓𝑓 and scale 𝐹𝐹𝐹𝐹 is given by 𝐼𝐼𝐼𝐼𝐼𝐼𝐹𝐹𝐹𝐹
𝑓𝑓 , which includes 

design and construction costs, basic cleanroom hardware (cleanroom panels), land costs and 

qualification and validation costs. If the decision of building a facility is made at year t (i.e. 

𝐹𝐹𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝐹𝐹𝐹𝐹,𝑡𝑡
𝑓𝑓 = 1), the facility investment cost (𝐹𝐹𝐹𝐹𝑡𝑡) is given by Eq 3. 

𝐹𝐹𝐹𝐹𝑡𝑡 = ���𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹,𝐹𝐹𝐹𝐹,𝑡𝑡
𝑓𝑓 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼𝐹𝐹𝐹𝐹

𝑓𝑓

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑓𝑓

 Eq 3 

Fixed facility costs and fixed operating costs 

Fixed facility costs include the rental and land cost of the facility (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹,𝐹𝐹𝐹𝐹
𝑓𝑓 ) and the fixed 

operating costs (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡) are the fixed operating costs of running the heat, ventilation and air-

conditioning (HVAC) of the facility (Eq 4). The fixed operating costs is given by the cost of air 

changes per m2 (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂) multiplied by the footprint of facility (𝜎𝜎𝐹𝐹𝐹𝐹) which is scale dependent. 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡 = ���(𝐴𝐴𝐹𝐹𝐹𝐹,𝐹𝐹𝐹𝐹,𝑡𝑡
𝑓𝑓 ∗ (𝜎𝜎𝐹𝐹𝐹𝐹 ∗ 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹,𝐹𝐹𝐹𝐹

𝑓𝑓 )
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑓𝑓

) Eq 4 

 

Equipment-level constraints and costing 

Equipment availability constraint 

Closed processes are assumed for each facility to allow parallel production of treatments for 

different patients within the same cleanroom with a Grade C/D background and reduced risks 

of cross-contamination. Shared space and equipment are assumed within a facility to account 

for equipment common for all types of processes. 
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A facility is divided into 4 main spaces as shown in the illustrative facility schematic shown in 

Supplementary Material 2.  

The support footprint (𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝐹𝐹𝐹𝐹) accounts for airlocks between cleanrooms and corridors, 

changing rooms, waste management, utilities and HVAC areas (heat, ventilation and air 

conditioning).  QC footprint (𝜎𝜎𝑄𝑄𝑄𝑄,𝐹𝐹𝐹𝐹) accounts for the area required for QC equipment. Core 

equipment footprint (𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝐹𝐹𝐹𝐹) accounts for the area required for core equipment such as 

filling lines, incubators and cold storage facilities. These spaces are dependent on the scale of 

the facility, i.e. the bigger the facility the more support space is required. The remaining space 

in the facility is given by Eq 5a and can be used to accommodate production equipment. 

Production equipment footprint (𝜎𝜎𝑒𝑒𝑒𝑒,𝑚𝑚,𝐹𝐹𝐹𝐹 ) is dependent on the number of equipment to 

support the quantity of products P produced using process 𝑚𝑚. The number of production 

equipment that can be accommodated in an available facility is constrained by Eq 5b.  

The number of equipment at a given facility is limited by the space available in the chosen 

scale of the facility. Four facility scales (Fs) are considered: pilot, small, medium and large. 

Within the facility with a footprint of 𝜎𝜎𝐹𝐹𝐹𝐹 depending on scale Fs, supporting space, quality 

control area and core equipment must be present.  

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹 = 𝜎𝜎𝐹𝐹𝐹𝐹 − 𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝐹𝐹𝐹𝐹 − 𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝐹𝐹𝐹𝐹 − 𝜎𝜎𝑄𝑄𝑄𝑄,𝐹𝐹𝐹𝐹 

 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹 ∗ 𝐴𝐴𝐹𝐹𝐹𝐹,𝐹𝐹𝐹𝐹,𝑡𝑡
𝑓𝑓 ≥�(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑓𝑓,𝐹𝐹𝐹𝐹,𝐹𝐹𝐹𝐹,𝑡𝑡

𝑚𝑚

𝑚𝑚

∗ 𝜎𝜎𝑒𝑒𝑒𝑒,𝑚𝑚,𝐹𝐹𝐹𝐹) 

Eq 5a 

 

Eq 5b 

 

Equipment available at given year t (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑓𝑓,𝐹𝐹𝐹𝐹,𝐹𝐹𝐹𝐹,𝑡𝑡
𝑚𝑚 ) is the number of equipment available in 

the previous year plus the equipment purchased during the period (𝐸𝐸𝐸𝐸𝐸𝐸𝑓𝑓,𝐹𝐹𝐹𝐹,𝑡𝑡
𝑚𝑚 ). It is assumed 

that the equipment purchased the year before will stay in the facility for the lifetime of the 

facility (Eq 6) and therefore the equipment purchased must be a positive integer (Eq 7). 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑓𝑓,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝐹𝐹𝐹𝐹,𝑡𝑡
𝑚𝑚 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑓𝑓,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝐹𝐹𝐹𝐹,𝑡𝑡−1

𝑚𝑚 + 𝐸𝐸𝐸𝐸𝐸𝐸𝑓𝑓,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝐹𝐹𝐹𝐹,𝑡𝑡
𝑚𝑚  Eq 6 

𝐸𝐸𝐸𝐸𝐸𝐸𝑓𝑓,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝐹𝐹𝐹𝐹,𝑡𝑡
𝑚𝑚 ≥ 0 Eq 7 
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Equipment investment cost 

Support, core and QC equipment are essential for any product or process and are therefore 

assumed to be purchased when the investment on a newbuild facility occurs. 

Support equipment refers to HVAC, utilities and environmental monitoring system-related 

equipment, and the capital cost is dependent on facility scale (𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝐹𝐹𝐹𝐹). Core equipment 

costs (𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝐹𝐹𝐹𝐹 ) refers to costs of equipment core to all processes such as filling lines, 

incubators and cold storage facilities (Supplementary Material 7 (1)). QC equipment costs 

(𝐶𝐶𝑄𝑄𝑄𝑄,𝐹𝐹𝐹𝐹) refers to costs of equipment for product quality control, the list of commonly used 

are listed in Supplementary Material 7 (2).  

Production equipment can be purchased at any point after the completion of the facility and 

as demand arises. Therefore, the equipment investment cost at a certain year is given by the 

number of equipment purchased that year multiplied by the capital cost of the production 

equipment. 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡 = ��𝐹𝐹𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝐹𝐹𝐹𝐹,𝑡𝑡
𝑓𝑓 ∗ (

𝐹𝐹𝐹𝐹

𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝐹𝐹𝐹𝐹 + 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝐹𝐹𝐹𝐹 + 𝐶𝐶𝑄𝑄𝑄𝑄,𝐹𝐹𝐹𝐹)
𝑓𝑓

 Eq 8 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡 = ���𝐶𝐶𝑒𝑒𝑒𝑒,𝑚𝑚,𝐹𝐹𝐹𝐹 ∗ 𝐸𝐸𝐸𝐸𝐸𝐸𝑓𝑓,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝐹𝐹𝐹𝐹,𝑡𝑡
𝑚𝑚

𝑚𝑚𝐹𝐹𝐹𝐹𝑓𝑓

 Eq 9 

 

Product-level constraints 

Product type and demand 

The types of cell therapy products can be generalised into simple and complex, where simple 

products require a simple process to produce (i.e. expansion process without genetic 

modifications) and complex products require a complex process to produce (i.e. require 

genetic modifications through viral transduction). The annual product demand at each 

hospital (𝐷𝐷𝐷𝐷𝑚𝑚,𝑡𝑡
𝑃𝑃,ℎ) is assumed to be a known parameter. Only products authorised for market 

use are allowed to be sold at the expected price (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃); products in clinical trials are not 

reimbursed and are costed as developmental costs. 
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Eq 10 and Eq 11 aggregate respectively the total demand for each complex (𝐶𝐶𝐷𝐷𝑡𝑡𝑡𝑡𝑃𝑃 ) and simple 

product (𝑆𝑆𝐷𝐷𝑡𝑡𝑡𝑡𝑃𝑃 ) across all hospitals at location h. 

 

Product production and cost of goods 

Equipment capacity constraint 

The number of products produced cannot exceed the maximum capacity of the facility and 

its available equipment. Complex products can only be produced using complex equipment 

(Eq 12) and simple products can only be produced using simple equipment (Eq 13). 

�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑓𝑓,𝐹𝐹𝐹𝐹,𝐹𝐹𝐹𝐹,𝑡𝑡
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃

𝑃𝑃

≤ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑓𝑓,𝐹𝐹𝐹𝐹,𝐹𝐹𝐹𝐹,𝑡𝑡
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ∗ 𝑀𝑀 ∀ 𝑃𝑃 ∈ 𝐶𝐶𝐶𝐶 Eq 12 

�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑓𝑓,𝐹𝐹𝐹𝐹,𝐹𝐹𝐹𝐹,𝑡𝑡
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃

𝑃𝑃

≤ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑓𝑓,𝐹𝐹𝐹𝐹,𝐹𝐹𝐹𝐹,𝑡𝑡
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∗ 𝑀𝑀 ∀ 𝑃𝑃 ∈ 𝑆𝑆𝑆𝑆 Eq 13 

 

The variable cost of good (𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑃𝑃 ) is the total fundamental cost of producing each 

treatment, including the raw material, consumable, labour costs. A penalty cost multiplier is 

introduced to consider economies of scale, outsource and location penalties on the variable 

cost of good (𝑉𝑉𝑉𝑉𝑉𝑉𝑂𝑂𝐺𝐺𝑃𝑃).  

Whilst scale-out manufacturing is a more common approach for autologous cell therapies, 

better utilization of human resources and equipment allows a certain degree of economies of 

scale [6]. Therefore, a scale penalty (𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹) is used to account for scale-related cost savings. 

For outsourcing, successful contract manufacturers generally operate at 20-30% profit 

margins [25], hence an outsource penalty cost multiplier (𝑂𝑂𝑂𝑂𝑂𝑂𝐹𝐹𝐹𝐹 ) is used to simulate the 

additional costs incurred. A location penalty multiplier (𝐿𝐿𝐿𝐿𝑓𝑓 ) is used to account for areas 

where the costs of labour is more expensive, e.g. London.  

𝐶𝐶𝐷𝐷𝑡𝑡𝑃𝑃 = �𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝑡𝑡
𝑃𝑃,ℎ

ℎ

 Eq 10 

𝑆𝑆𝐷𝐷𝑡𝑡𝑃𝑃 = �𝐷𝐷𝐷𝐷𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑡𝑡
𝑃𝑃,ℎ

ℎ

 Eq 11 
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𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹,𝐹𝐹𝐹𝐹
𝑃𝑃,𝑓𝑓  refers to the cost per treatment of product P at facility F of type Ft and scale Fs and 

this is computed using 

𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹,𝐹𝐹𝐹𝐹
𝑃𝑃,𝑓𝑓 = 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑃𝑃 ∗ 𝑂𝑂𝑂𝑂𝑂𝑂𝐹𝐹𝐹𝐹 ∗ 𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹 ∗ 𝐿𝐿𝐿𝐿𝑓𝑓 Eq 14 

 

Complete product consumption constraint 

As a feature of autologous cell therapy, all products manufactured must be used at the 

hospitals where the initial demand arose, therefore the total number of treatments delivered 

at hospitals equals to the total number of the treatments produced at the facilities (Eq 15). 

The total number of treatments delivered at hospital h equals the total number of treatments 

produced that are delivered to the hospital (Eq 16). The total number of treatments produced 

at a certain facility equals the total number of treatments demanded at all hospitals produced 

at the facility (Eq 17).  

𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡𝑃𝑃 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡𝑃𝑃 = �𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ℎ,𝑡𝑡
𝑃𝑃

ℎ

= ���𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑓𝑓,𝐹𝐹𝐹𝐹,𝐹𝐹𝐹𝐹,𝑡𝑡
𝑃𝑃

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑓𝑓

 Eq 15 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ℎ,𝑡𝑡
𝑃𝑃 = ���𝜀𝜀𝑓𝑓,𝐹𝐹𝐹𝐹,𝐹𝐹𝐹𝐹,ℎ,𝑡𝑡

𝑃𝑃

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑓𝑓

 Eq 16 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑓𝑓,𝐹𝐹𝐹𝐹,𝐹𝐹𝐹𝐹,𝑡𝑡
𝑃𝑃 = �𝜀𝜀𝑓𝑓,𝐹𝐹𝐹𝐹,𝐹𝐹𝐹𝐹,ℎ,𝑡𝑡

𝑃𝑃

ℎ

 Eq 17 

Transportation costs 

For autologous therapies, transportation between facilities and hospitals is an important cost 

to consider as the raw material originates from patients and must finally be delivered to the 

same patient at the same hospital. Transportation cost per treatment from the hospital at ℎ 

to the facility at 𝑓𝑓 and back (𝑡𝑡𝑡𝑡ℎ
𝑓𝑓) is given by the transportation cost per mile (𝑡𝑡𝑡𝑡) multiplied 

by the return distance between the hospital and facility (𝑑𝑑ℎ
𝑓𝑓 ∗ 2) (Eq 18).  

𝑡𝑡𝑡𝑡ℎ
𝑓𝑓 = 𝑡𝑡𝑡𝑡 ∗ 𝑑𝑑ℎ

𝑓𝑓 ∗ 2 Eq 18 

The total transportation cost (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡) incurred in year t is given by the total number of 

treatments delivered from hospital at ℎ to facility at 𝑙𝑙𝑙𝑙 at year t (𝜀𝜀𝑓𝑓,𝐹𝐹𝐹𝐹,𝐹𝐹𝐹𝐹,ℎ,𝑡𝑡
𝑃𝑃 ) (Eq 19). 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡 = �����𝜀𝜀𝑓𝑓,𝐹𝐹𝐹𝐹,𝐹𝐹𝐹𝐹,ℎ,𝑡𝑡
𝑃𝑃 ∗ 𝑡𝑡𝑡𝑡ℎ

𝑓𝑓

ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑓𝑓𝑃𝑃

 Eq 19 
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Clinical trial and sales constraint 

For the optimisation model to decide which product to invest in and produce, a binary 

variable (𝑉𝑉𝑝𝑝) is used, where 𝑉𝑉𝑝𝑝 equals 1 if the product is selected. 

Since the planning objective to maximise overall NPV, it may decide not to produce products 

to its maximum demand. However, to ensure that products are produced for clinical trial 

phases, product demand during clinical trial phases must be met despite the products not 

fetching any reimbursements (Eq 20). 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ℎ,𝑡𝑡
𝑃𝑃 = �𝐷𝐷𝑑𝑑𝑚𝑚,𝑡𝑡

𝑃𝑃,ℎ

𝑚𝑚

∗ 𝑉𝑉𝑝𝑝 ∀ 𝑡𝑡 ∈ 𝐶𝐶𝐶𝐶 Eq 20 

 

The number of treatments of product P delivered at the hospital at location ℎ cannot exceed 

the demand of the product at the same hospital when the product is on market(Eq 21).  

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ℎ,𝑡𝑡
𝑃𝑃 ≤�𝐷𝐷𝐷𝐷𝑚𝑚,𝑡𝑡

𝑃𝑃,ℎ ∗ 𝑉𝑉𝑝𝑝
𝑚𝑚

 ∀ 𝑡𝑡 ∈ 𝑀𝑀𝑀𝑀𝑀𝑀 Eq 21 

 

Product Sales and Revenue 

The annual sales of each product at year t is given by the total treatments multiplied by the 

price of the product (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑃𝑃 ) (Eq 22). The product can only be sold when it receives its market 

authorisation; before then the selling price equals zero (Eq 23). 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑃𝑃 = �����𝜀𝜀𝑓𝑓,𝐹𝐹𝐹𝐹,𝐹𝐹𝐹𝐹,ℎ,𝑡𝑡
𝑃𝑃 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃

ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑓𝑓𝑃𝑃

 ∀𝑡𝑡 ∈ 𝑀𝑀𝑀𝑀𝑀𝑀 Eq 22 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑃𝑃 = 0 ∀𝑡𝑡 ∈ 𝐶𝐶𝐶𝐶 Eq 23 

 

The total revenue is given by the summation of all sales of developed products (Eq 24). 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡 = �𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑃𝑃
𝑃𝑃

 Eq 24 
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Objective function and overall capital constraint 

During the development phase, the total amount of capital is limited by the investment capital 

raised. Therefore, the summation of the cash flows during the development phase is limited 

by the funding available (𝜑𝜑) (Eq 25). 

𝜑𝜑 ≤�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐶𝐶𝐶𝐶
𝑡𝑡

 ∀ 𝑡𝑡 ∈ 𝑀𝑀𝑀𝑀𝑀𝑀 Eq 25 

Discount factors are used for discounting future investments or cash flows into current values 

using the interest rate (𝑟𝑟). It is a weighing factor which is commonly used to reflect the present 

value of future cash flows.  

𝛿𝛿𝑡𝑡 =
1

(1 + 𝑟𝑟)𝑡𝑡
 

Eq 26 

Over the time horizon, it is assumed that the objective of the company is to maximise its 

financial returns through optimising its capacity investment strategies based on the product 

development portfolio, e.g. prioritizing products that will bring the most financial returns 

whilst minimizing capital expenses.  

The cash flow in a certain year is given by the incomes minus the costs incurred in the year 

(Eq 27).  

Cash flow (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡) is the total revenue (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡) minus the facility investment (𝐹𝐹𝐹𝐹𝑡𝑡), contract 

set-up (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 ), equipment procurement (Fixed, 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡  and production equipment 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡 ), fixed operating costs (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡 ), total variable cost of goods (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡 ) and 

transportation costs (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡) (Eq 27). 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡 − 𝐹𝐹𝐹𝐹𝑡𝑡 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 − 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡−𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡 − 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡
− 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡 

Eq 27 

The overall objective of this model is to maximize the net present value of the product 

portfolio. The summation of discounted cashflows at each year gives the expected NPV over 

the time horizon (Eq 28). 

𝑁𝑁𝑁𝑁𝑁𝑁 = �𝑐𝑐𝑐𝑐𝑐𝑐𝑜𝑜𝑤𝑤𝑡𝑡
𝑡𝑡

∗ 𝛿𝛿𝑡𝑡 
Eq 28 
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(3) Model application on an illustrative case study 

The mathematical model was implemented within the General Algebraic Modelling System 

(GAMS) 26.2 and the problem was solved using the CPLEX solver. The optimisation was 

performed on an Intel Core i5-2500K 3.3GHz processor, with 12 GB random access memory 

(RAM). All optimisations were completed to optimality. Two scenarios of a UK based case 

study, with fast-track (FT) and without fast-track designations (NFT), are solved to validate 

the proposed mathematical model. The main advantages of fast-track regulatory schemes 

(detailed in Supplementary material 1) are shorter review times, quicker approvals and 

conditional market authorisations. In this study, this is reflected by the shorter product 

development timeline and the early “takeoff” of the product demand levels (Supplementary 

material 4). 

The time horizon for this study is taken to be 20 years, reflecting the typical patent exclusivity 

period before the entrance of generic products [26]. In this model, a discrete-time 

formulation is used, i.e. time horizon is discretised into 1-year time intervals. As single-use 

closed automated systems are assumed to be used at scale, the changeover time is assumed 

to be negligible in the time horizon of 20 years.  Figure 2 shows the product development 

timeline of orphan/unmet medical need products versus the typical drug development 

timeline.  

The number of products and manufacturing capacity investment is limited by the availability 

of funding (𝜑𝜑). The model optimises the product portfolio based on the amount of funding 

available. Benchmarking against typical series A-C funding rounds, available funding ranges 

from $10m to $200m [27]. 

Product portfolio and demand scenario 

A hypothetical product portfolio can be found in Table 1. The demand level of cell therapy 

products are categorised into niche and mass, where niche products are targeted at orphan 

diseases with a small patient population (e.g. late-stage rare blood cancers such as acute 

lymphoblastic leukaemia) and mass products are targeted at a larger patient population (e.g. 

solid tumours, cartilage). A list of products, their estimated demand and price base on NICE 

and NHS estimates for five indications are shown in Table 1. It is assumed that only products 

authorised for market use are allowed to be sold and products in clinical trials are not 

reimbursed.  
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In this study, four geographical locations are assumed for hospital and facility locations for 

illustrative purposes, namely London, Bristol, Newcastle and Edinburgh. All hospital locations 

are assumed to be capable of delivering both complex and simple products. The distance 

between the locations (𝑑𝑑ℎ
𝑓𝑓 ) can be found in Supplementary Material 3, and the location 

influences the cost of manufacturing (Eq 14) and the transportation costs (Eq 18). 

The national product demand for both scenarios, with fast-track designations and without 

fast-track designations, are distributed amongst the four locations at a ratio of 4:2:2:2. After 

market approval, a ‘ramp-up’ period is assumed to simulate the time needed for a mature 

sales level to be reached [28], Supplementary Material 4 shows the forecasted demand level 

for each product. 

The problem is defined such that the capacity planning decision will be made at the initial 

year under the assumption that products will be successful in clinical trials. The exact product 

demand for each product in various hospital location in each year within the time horizon is 

given in Supplementary Material 5.  

Facility and equipment assumptions 

The facility assumptions are shown in Supplementary Material 6. According to Airgate 

Engineering (Hong Kong), a cleanroom design and construction company based in Hong Kong, 

support space accounts for around 40% of the whole facility for small facilities and 20% for 

larger ones. Floor space occupied by core, QC and production equipment is calculated by 

summation of individual equipment footprint which is estimated by the equipment size 

specified in manufacturer manuals plus 1 meter of working space allowed around each 

equipment. Supplementary Material 7 shows the list of equipment included and their size and 

floorspace requirement.  

Other model parameters are provided in Supplementary Material 8. 

Sensitivity analysis 

The main barriers to cell therapy commercial adoption identified by Davies et al are 

reimbursement, manufacturing and cost-effectiveness [29] and distribution logistics is 

another important challenge mentioned by Dodson et al [1]. To better analyse the effect of 

commercialization challenge-related parameters on the NPV and the robustness of the 

investment plan, a sensitivity analysis of the following parameters is conducted: 
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- Funding availability: Funding available (φ) 

- Reimbursement: Product selling price (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃), Product demand uptake (𝐷𝐷𝐷𝐷𝑚𝑚,𝑡𝑡
𝑃𝑃,ℎ ) 

- Manufacturing: Variable COG of product (𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑃𝑃), Process turnaround time (𝑃𝑃𝑃𝑃(𝑃𝑃)) 

- Logistics: Transport cost per mile (𝑡𝑡𝑡𝑡) 

. 

Results 

I. Product selection decision 

The set of 5 candidate products represents the characteristics of a variety of currently 

commercialized autologous products. P1 represents a moderate demand product with an 

indication with a relatively low reimbursement price. P2 illustrates the case of a niche demand 

product with a higher reimbursement price. P3 represents a niche product for a high-value 

indication. P4 and P5 finally represent high demand products for high-value indications. Two 

scenarios are compared, fast-track (FT) and without fast-track designations (NFT). 

Figure 3A shows the changes in NPV and product portfolio selected with increasing available 

funding (Figure 3B). For both scenarios, with a limited amount of funding, P1 and P2 are 

selected. P1 and P2 require cheaper upfront equipment investments and lower variable cost 

of goods but fetches a lower selling price. With a higher amount of investment funds, complex 

products with higher annual demands (P4, P5) are preferred. Although the selling price of 

these products is relatively lower compared to P3, the market size is much greater and 

delivers a greater overall return. With funding above $40m, the NPV for scenario FT is 

consistently higher than that of scenario NFT, by a range from 40% (𝜑𝜑 = $180-200m) to 86% 

(𝜑𝜑 = $50m).  

A more in-depth analysis of the discounted NPV over 20 years for an investment funding 

constraint of $120m shows that the breakeven for scenario FT occurs at year 7.5, 

approximately 2.5 years earlier than the scenario without fast-track schemes. This represents 

a 25% reduction in the time to achieve breakeven of investments (Figure 5). 

II. Facility investment decision schedule 

Further analysis with 𝜑𝜑 = $120m is considered, where for both scenarios four products are 

selected to be developed and manufactured. 
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The facility investment and equipment purchase decision schedule are shown in Figure 5. For 

both scenarios, contract manufacturing facilities are engaged at base year to produce clinical 

trial materials and disengaged once the newbuild pilot facility is available. As the clinical trial 

demand for all chosen products is forced to be completely satisfied, both scenarios invested 

in newbuild facilities early in the time horizon. Once newbuild facilities are available, contract 

facilities are no longer engaged. 

Comparing the two scenarios, the decision to invest in a larger centralized facility (built at 

Bristol, Figure 5) came in earlier at year 2 on in the FT scenario rather than year 5 in the NFT 

scenario, and correspondingly larger upfront investment is incurred earlier (Figure 6). In terms 

of the total facility and equipment capital investment costs, those of scenario FT are 2% higher 

than scenario NFT. Due to the long construction and validation lead-times of facilities, it is 

noted that for the fast-track option, the investment decisions to build a large newbuild facility 

is made at year 2, which is 3 years earlier for the NFT scenario, highlighting the high capital 

risk nature of commercialization of autologous cell therapies, especially with the crunched 

timeline.   

III. Product distribution 

Due to more expensive manufacturing and higher upfront investment, although the demand 

is higher in London (40% of total demand), the optimized model does not suggest building a 

facility in London and its local demand is satisfied by other facilities. For both scenarios, at the 

terminal year, the products are produced centrally at the large facility built in Bristol where 

production benefits from economies of scale (no scale penalty at large scale) and cheap 

location (no location penalty).  

IV. Sensitivity analysis 

To understand the sensitivity of the NPV to market and manufacturing uncertainties and the 

robustness of the product selection robustness, the input parameters were varied +/- 20%. A 

sensitivity analysis was conducted for capital funding investment of $120m. 

As the model allows for simultaneous optimization of product selection and capacity planning, 

changes in the input parameters have an impact on both product selection and facility 

investment decisions and in turn the NPV over the time horizon (Table 2). The product 
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selection decision is more robust in scenario FT with fewer changes in the product portfolio. 

This, in turn, impacts facility investment and equipment investment decisions. 

For scenario NFT, product P4 is selected for all cases, whilst for scenario FT, product P3 and 

P4 are selected for all cases. Fast-track designations make the decision to develop and 

produce niche, high-value products (P3, P4) more resistant to uncertainties and without FT 

designations, niche, very high-valued products (P3) are not chosen. 

For both scenarios, product demand changes and transportation costs fluctuations made no 

impact on the product portfolio. For both scenario, lower selling price deselects P5 (a very-

high-demand, high-valued complex product) and favours instead simple products (P1, P2). 

For both scenarios, the overall NPV is most sensitive to the selling price, followed by the 

manufacturing variable cost of goods and finally the product demand; the sensitivity to the 

transportation cost and the process turnaround time is minimal (Figure 7). Transportation 

only accounts for around 0.1-0.2% of the total cost and hence its changes have very little 

impact on the overall cost and NPV. Scenario NFT is more sensitive to negative changes in 

both price and manufacturing variable costs than scenario FT.  

With a decrease in selling price and an increase in manufacturing variable costs, for both 

scenarios, the optimal portfolio deselected P5 which has a greater product demand but has a 

lower profit margin. This shows the importance of maintaining profit margins for high demand 

products. With the decrease in selling price and either increase or decrease in manufacturing 

variable costs, for both scenarios, P1 is selected. Although the profit margin for P1 is smaller, 

the barrier of commercialisation P1 is also lowest as shown by the low required funding as 

shown in Figure 3.  

V. Computational statistics 

The case study presented in detail here is relatively small, comprising 5 products, 4 hospital 

locations and 4 facility locations. However, the formulation can be applied to larger scale 

problems. As summarised in Table 3,  the numbers of equations and variables increase 

substantially with the size of the problem, making the numerical solution computationally 

more demanding yet still handleable.  
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Discussion 

This work proposed a problem formulation specific to a challenge faced by manufacturers 

seeking to commercialise autologous cell therapies considering the recent introduction of 

fast-track regulatory schemes and the autologous nature of these therapies. Using the United 

Kingdom as an illustrative example, we have shown the impact of fast-track regulatory 

designations on capacity planning and investment decisions.  

Specific to the unique challenges of commercialising autologous cell therapies, this model 

addressed scale-out, geographical constraints, long-term capacity investment decisions and 

the unique regulatory routes of these therapies. A relatively small system is evaluated to 

illustrate the impact of these fast-track designations on the commercialisation pathways. 

With a small number of hospital locations considered, the model favoured a centralised 

facility, which is closer to the hub-and-spoke model which is currently favoured for advanced 

therapies instead of the decentralised single-centre co-located manufacturing approach [30]. 

Opportunities and challenges of fast-track regulatory schemes for autologous cell 

therapies 

Fast-track regulatory designations can allow companies to achieve breakeven years earlier 

and higher NPV over the time horizon (Figure 4). This is consistent with the observations by 

Capital Cell, an online investment platform for healthcare and biotechnology in Europe, which 

concluded that fast-track therapeutics provide lower exit times and higher valuations [31]. A 

review of the value of companies holding Breakthrough Therapy Designations also shows that 

such designations add significant value to the company [32].  

However, with the crunched development timeline, large upfront investments for 

manufacturing would be incurred earlier. This can have great risk implications especially for 

small-medium enterprises seeking to commercialise clinical-stage autologous cell therapy 

products. Secondly, with a small amount of clinical data, the risk of the marketed product may 

be higher. A review on fast-tracked products withdrawn cited lack of efficacy, adverse events 

and safety issues as the main reasons for withdrawal [33]. Further analysis looking into the 

trade-off between developmental risks and speed-to-approval can be critical in instilling 

patient and commercial confidence in such therapies. 
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Strengths and Limitations of the model 

This model considers common product-market characteristics, manufacturing scale-out 

instead of scale-up to simultaneously optimise strategic commercialisation decisions such as 

product portfolio selection, facility and equipment selection for autologous cell therapies. The 

impact of the introduction of fast-track schemes for therapies targeting unmet medical need 

is considered in a comparative scenario analysis exercise. Using sensitivity analysis, we 

identified the critical input parameters that the system is most sensitive to. 

For illustrate the impact of regulatory incentives, the MILP model is applied to a UK specific 

example to demonstrate the applicability of the model. With further extensions including tax 

and trading structures, the model can be applied for simultaneous facility planning and 

product portfolio selection for a wider region. Also, cross-national regulation harmonisation 

is a challenge faced by the regenerative medicine industry [34].  A limitation of the model is 

that the costs of patents and intellectual property rights are not considered. IP licensing is a 

cost that can be significant in the product development process [35]. However, this is 

considered out of scope for analysing the impact of fast-track regulatory schemes on product 

portfolio selection and overall project NPV. Another limitation is that clinical trial failure is not 

accounted for. However, whilst it is unrealistic to assume that each product will be successful 

in clinical trials, the model can serve as a decision aid for companies that need to produce 

capacity investment plans for internal planning and capital raising purposes. In addition, the 

reduced timeline for clinical trial phases also leads to crunched timelines for process 

development for scaling up/out operations, which may in turn require significant adjustment 

in manufacturing strategy and supply chain management later in the development incurring 

time delay and additional costs [36]. Future extensions to the model will consider stochasticity 

in product demand and probabilities of failures in clinical trials.  

The model proposed is a deterministic model and a sensitivity analysis was conducted to 

address the parametric uncertainties. The main intention of this work is to better understand 

the impact of fast-track approval processes on commercialistion decisions. However, the 

approach is limited in addressing issues such as time-varying uncertainty. Future work could 

explore more sophisticated approaches such as stochastic programming. 
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Conclusion 

In this paper, we have described and modelled the unique challenges and opportunities for 

capacity planning and investment strategies for autologous cell therapies in a mixed-integer 

linear programming model. An illustrative example comparing fast-track regulatory schemes 

and typical developmental timelines in the United Kingdom with a hypothetical set of 

products was used to demonstrate the applicability of the model. The results were validated 

against real-world observations in relevant investments. 

The results show that with fast-track designations, whilst upfront investments are incurred 

earlier, the NPV breakeven occurs around 25% earlier with an overall NPV improvement of 

42-86% depending on the investment funding available. Products with higher value 

indications are preferred where sufficient investment funding is in place.  

The scenario with fast-track designations, in general, is less sensitive to changes in model 

parameters.  The sensitivity analysis shows a greater than proportionate impact of selling 

price and manufacturing variable cost of goods on the NPV over the 20-year time horizon for 

both scenarios. A 20% lower selling price causing over 60% lower NPV and a 20% higher 

variable manufacturing costs can cause over 80% lower NPV in the scenario with fast-track 

designations and over 100% in the scenario without such designations, showing a need for 

further research into more robust reimbursement,  manufacturing cost management and 

pricing strategy. 

Overall, this study highlights the opportunities in commercializing autologous cell therapies 

with the introduction of favourable regulatory programmes. The modelling approach and the 

results may facilitate the industry in making product portfolio, capital raising and capacity 

investment decisions. 

Translational Perspective 

Given the increasing number of clinical trials of innovative therapies for unmet medical needs, 

it is important to consider the implications of specific regulatory incentives on the process 

development and commercial development timelines to optimise the commercialisation 

pathway of autologous cell therapies. 
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This study highlighted the high capital risks associated with these therapies under crunched 

timelines and the need to better understand the associated uncertainties and market 

conditions for successful commercialisation of these therapies. In addition, further research 

into the more iterative approach to process development where failures in trials provide 

learnings for future successes would be important especially for rare diseases with unique 

disease pathways.  

 

  

Summary points 

Specific regulatory incentives for innovative therapies for unmet medical needs 

- Regulatory authorities around the world have introduced various incentives to 

improve the speed-to-market of innovative therapies 

- These fast-track designations have an impact on the process development and 

capital investment timelines for autologous cell therapies 

Mixed-integer linear programming model (MILP) 

- Concurrently optimises facility investment timing, scale, location and product 

portfolio of autologous cell therapies 

- Assessed the impact of fast-track designations on commercialisation of autologous 

therapies in terms of breakeven time and NPV 

Illustrative example 

- Sensitivity analysis showed a reduction of the portfolio’s sensitivity to selling price, 

manufacturing costs and demand fluctuations with fast-track designations 

- Variable manufacturing costs showed a higher than proportionate impact on the 

overall NPV for both scenarios 

Conclusion 

- Fast-track designations are effective in helping drug developers achieve faster 

breakeven and higher NPV 
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