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Climate change is expected to have a profound impact on species distributions, 

contracting suitable climate space. Biodiversity areas are important to mitigate these 

negative effects but are static by design and thus do not account for future 

projections of species distributions. The Harpy Eagle Harpia harpyja has a broad 

range across lowland Neotropical forests and thus its distribution could be negatively 

affected by climate change when combined with current rates of habitat loss. To test 

this hypothesis, we use spatial point process models fitted with climatic, topographic, 

and landcover covariates to identify current distribution. We then project to 24 future 

climate scenarios, using three General Circulation Models (GCMs), and two emission 

scenarios between the years 2021 and 2100 averaged over four 20-year periods. 

Our current model identified a core range across Amazonia and the Guiana Shield, 

with evergreen forest (71 %), mean diurnal temperature range (13 %), and elevation 
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(6 %) the most important predictors. Reclassifying the current model to a binary 

prediction estimated a range size of ~7.6 million km2, with the Important Bird and 

Biodiversity Area (IBA) network covering 18 % of habitat (~1.4 million km2) within this 

range. By 2090, range size was predicted to decrease on average by 14.4 % under a 

higher emissions scenario, and 7.3 % under a lower emissions scenario. The IBA 

network would cover 14 % less area under a higher emissions scenario, and 3.3 % 

less distribution area under a lower emissions scenario by 2090. Southern Amazonia 

is predicted to have the greatest reduction in range size and subsequently highest 

loss of Harpy Eagle habitat within the IBA network. Our work demonstrates that the 

combination of climate change and subsequent habitat loss may result in substantial 

losses in distribution for this raptor across the southern edge of its range.  

 

Keywords: biodiversity areas, conservation planning, global warming, Harpia 

harpyja, Species Distribution Models 

 

Climate change is predicted to have a significant impact on the distribution of many 

bird species (Crick 2004), with individual species responding differently to a 

changing climate (Pearce-Higgins & Green 2014). Therefore, assessing the threat 

level to each species is required, along with a species-specific assessment of 

adaptability to change (Pettorelli 2012). Even though the exact mechanisms limiting 

species distributions are often unclear (Journé et al. 2020), ultimately climatic 

conditions interacting with vegetation often determine where terrestrial bird species 

are distributed (Huntley et al. 2007, Barnagaud et al. 2011). Increasing temperatures 

interacting with extreme climates are predicted to have the greatest impact on bird 

populations at higher latitudes or elevations, driving poleward and upslope 
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elevational range shifts (Şekercioğlu et al. 2008, Freeman et al. 2018). However, in 

lowland tropical regions, where precipitation is a key determinant of avian 

distributions (Şekercioğlu et al. 2012), climate change may not necessarily result in 

poleward range shifts but in multi-directional range shifts and contractions 

(VanDerWal et al. 2013, de Moraes et al. 2020, Sutton et al. 2020).  

 

Although temperature increases are predicted to be lower in the tropics compared to 

higher latitudes (IPCC 2014), populations of tropical bird species may be amongst 

the most vulnerable to climate change (Şekercioğlu et al. 2012). The expected 

negative effects of warming and drought on tropical species adapted to narrow 

thermal tolerances may lead to reductions in distribution and potential extinctions 

(Harris et al. 2011). In the Neotropics, rates of warming are expected to be highest in 

central South America (da Costa et al. 2010), with increasing drought conditions 

throughout the pan-Amazonian region, an area largely covered by climate-regulating 

tropical forests. Climate change may then result in an increase in tropical forest 

fragmentation (Coe et al. 2017). Within the Neotropical avifauna, hawks and eagles 

(family: Accipitridae) may be particularly affected by climate change, because they 

generally exist at low population densities (Whitacre 2012) and are sensitive to 

habitat loss and fragmentation (Newton 1979, Krüger & Radford 2008). Factoring in 

the potential for range shifts and contractions adds another potential threat to this 

group in increasingly human-dominated landscapes.  

 

The Harpy Eagle Harpia harpyja is a large Neotropical raptor with a broad but 

currently contracting range across Central and South America, due to habitat loss 

and fragmentation (Miranda et al. 2019,, Sutton et al. 2021a,b). The Harpy Eagle is 
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classified as ‘Near Threatened’ on the International Union for the Conservation of 

Nature (IUCN) Red List (Birdlife International 2017) but is considered endangered or 

locally extinct in most of southern Mexico and Central America, and in the Atlantic 

Forest of Brazil (Vargas González et al. 2006). Harpy Eagles are habitat specialists 

of lowland tropical forest (Sutton et al. 2021b), with habitat loss and persecution the 

current primary threats facing the species (Vargas González et al. 2006). Although 

the Harpy Eagle has a broad distribution, changing climatic conditions interacting 

with deforestation could result in range shifts or contraction. As a habitat-specialist 

raptor (Vargas González et al. 2020) with low reproductive output, the Harpy Eagle 

may be particularly susceptible to the effects of climate change (Huntley et al. 2006), 

because it may struggle to adapt rapidly enough to changing conditions and 

resources (Krüger & Radford 2008,, Miranda et al. 2021).  

 

Species that inhabit lowland areas without extensive topographical diversity may 

need to move long distances to track their preferred climate (Anciães & Peterson 

2009, Harris et al. 2011, Şekercioğlu et al. 2012). For the Harpy Eagle, climate 

change could result in potential shifts or contraction in the species’ range, following 

its strong reliance on lowland tropical forest and associated climate and resources 

(Miranda et al. 2019, Sutton et al. 2021a,b). When coupled with anthropogenic 

factors such as deforestation, which is increasing in lowland tropical forests (Hansen 

et al. 2008, Stabile et al. 2020), there might be considerably less habitat available for 

Harpy Eagle in the future (Sutton et al. 2021b). Biodiversity areas are important for 

preserving the most critical areas to mitigate the various threats facing many 

species, such as habitat loss (Donald et al. 2019). However, identifying the areas 

where species ranges are predicted to shift or contract in a changing climate is a key 
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priority for biodiversity area designation and expansion to ensure continued 

coverage into the future (Blair et al. 2012, Şekercioğlu et al. 2012). 

 

Important Bird and Biodiversity Areas (IBAs, BirdLife International 2019) are a key 

biodiversity area network, with extensive global coverage in areas of highest priority 

for endangered and endemic bird species (Donald et al. 2019). IBAs specifically 

target key areas that sustain the long-term viability of bird populations - a key issue 

for Harpy Eagles since they occur at low densities of 4-6 breeding pairs per 100 km² 

(Vargas González & Vargas 2011). As well as birds, IBAs also aim to protect areas of 

high biodiversity and are used as a template for Key Biodiversity Areas (KBAs, IUCN 

2016) an entire global biodiversity area network (IUCN 2016, Donald et al. 2019). 

Therefore, how effective the IBA network will be for covering future Harpy Eagle 

distribution under climate change is a key question for setting spatial conservation 

planning priorities (Şekercioğlu et al. 2012). 

 

Here, we use climatic, topographical, and landcover variables within Species 

Distribution Models (SDMs) to identify distributional constraints from Harpy Eagle 

occurrences. We then use climate projections to predict future distribution using a 

range of climate change scenarios. Specifically, we set out a baseline assessment of 

the range-wide impact of climate change on Harpy Eagle distribution using both 

lower and higher future emission scenarios between the years 2021-2100. Based on 

the future projections, we then identify areas where current IBA network coverage will 

continue or be lost. We aim to inform range-wide conservation planning by: (1) 

estimating the current distributional range for the Harpy Eagle, (2) predicting future 

distribution based on multiple climate change scenarios, and (3) quantifying how 
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effective the current IBA network is for covering areas of future Harpy Eagle 

distribution.  

 

Methods 

Occurrences 

We sourced Harpy Eagle occurrences from the Global Raptor Impact Network (GRIN, 

McClure et al. 2021) a data information system for all raptor species. For the Harpy 

Eagle, GRIN consists of occurrence data from the Global Biodiversity Information 

Facility (GBIF 2019), which are mostly eBird records (79 %, Sullivan et al. 2009), 

along with two additional datasets of observations (Vargas González & Vargas 2011, 

Miranda et al. 2019). Occurrences were cleaned by removing duplicate locations, 

and those with no geo-referenced coordinates. We only included occurrences 

recorded from 1970 onwards to temporally match the timeframe of the climatic 

predictors. We applied a 5-km spatial filter between each occurrence point which 

approximately matches the resolution of the raster data (~4.5 km) and reduces the 

effect of biased sampling (Kramer‐Schadt et al. 2013). After data cleaning, we 

compiled a total of 1146 geo-referenced records. Applying the 5-km spatial filter 

resulted in a subset of 692 Harpy Eagle occurrences for use in the modelling. 

 

Environmental covariates 

We used nine continuous covariates (Table 1) at a spatial resolution of 2.5 arc-

minutes (~4.5-km), a suitable resolution for capturing environmental variation across 

climatically-stable lowland regions with low terrain complexity (Fick & Hjimans 2017). 

We selected covariates a prioiri based on Harpy Eagle biology (Vargas González & 

Vargas 2011, Miranda et al. 2019, Vargas González et al. 2020, Sutton et al. 
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2021a,b), following established SDM protocols for biological relevance (Hirzel & Le 

Lay 2008, Fourcade et al. 2016) and model simplicity to avoid over-fitting (Merow et 

al. 2014). Raster layers were cropped using a delimited polygon consisting of all 

known range countries and Formosa, Jujuy, Misiones and Salta provinces in 

northern Argentina, and Chiapas, Oaxaca, and Tabasco states in southern Mexico. 

These provinces and states are respectively the southern and northern limits of the 

species range. This allowed us to extend into potential future areas of marginal 

habitat on the distribution edges. This provides more realistic model predictions by 

focusing on the accessible area available to the Harpy Eagle (Barve et al 2011). 

Further, reducing the background area used for testing points used in model 

evaluation also limits model overfitting (Radosavljevic & Anderson 2014). All 

covariates showed low collinearity and thus all nine were included as predictors in 

model calibration, with Variance Inflation Factors (VIFs) lower than 6 (Dormann et al. 

2013). 

 

Five climatic covariates, specifically related to temperature and precipitation 

conditions that influence Harpy Eagle distribution, were downloaded from the 

WorldClim v2.1 database (Fick & Hjimans 2017). WorldClim variables are 

interpolated from average monthly weather station climate data (9000-60,000 

stations) between years 1970-2000. WorldClim v2.1 improves on the previous 

WorldClim v1.4 by incorporating remote-sensed satellite data for areas with low 

weather station density. Two topographical covariates were sourced from the 

ENVIREM (Title & Bemmels 2018) and EarthEnv (www.earthenv.org) databases, used 

to provide measures of topographical heterogeneity, where species may find refugia 

from future climatic conditions (Austin & Van Niel 2010, Meineri & Hylander 2017). 
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Elevation and Terrain Roughness Index (TRI) are both key topographic variables 

influencing Harpy Eagle distribution (Vargas González & Vargas 2011, Vargas 

González et al. 2020, Sutton et al. 2021a,b) and including topography in climate 

change SDMs can improve model predictions (Luoto & Heikkinen 2008, Virkkala et al. 

2010). Elevation was derived from a digital elevation model product from the 250-m 

Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010, Danielson & 

Gesch 2011). TRI was derived from the 30 arc-sec resolution Shuttle Radar 

Topographic Mission (SRTM30, Becker et al. 2009).  

 

The two measures of percentage landcover (Evergreen forest and Cultivated) are 

consensus products derived from satellite remote-sensing post-1990, integrating 

GlobCover (v2.2), MODIS land-cover product (v051), GLC2000 (v1.1) and DISCover 

(v2) at 30 arc-sec (~1km) spatial resolution. Both landcover layers were resampled 

to a spatial resolution of 2.5 arc-minutes using bilinear interpolation. Full details on 

methodology and image processing can be found in Tuanmu & Jetz (2014). 

Landcover covariates were included following IUCN guidelines for modelling climate 

change distributions (IUCN 2019), with both evergreen forest and cultivated land key 

predictors for Harpy Eagle distribution (Sutton et al. 2021b). Including landcover in 

SDMs improves future climate change predictions (Pearson et al. 2004, Stanton et 

al. 2012), accounting for the dynamic nature between climate and land use, and 

despite the limitations of using current land use in future predictions (Beale et al. 

2008, Renwick et al. 2012, Stanton et al. 2012, Platts et al. 2019).  
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Species Distribution Models 

We fitted SDMs using a point process modelling (PPM) framework employing the 

maximum entropy software, MAXENT (v3.4.1, Phillips et al. 2017). Internal model 

parameters were set to fit a PPM model treating occurrences as point intensity rather 

than grid cells, following the methodology set out by Renner et al. (2015). Recent 

theoretical work has demonstrated the equivalence of MAXENT to an inhomogeneous 

Poisson process (IPP, Fithian & Hastie 2013, Renner & Warton 2013),), which is the 

most appropriate method for fitting presence-only data SDMs (Warton & Shepherd 

2010). Within the MAXENT software, we selected the complementary log-log (cloglog) 

transform as a continuous index of environmental suitability, with 0 = low suitability 

and 1 = high suitability. Phillips et al. (2017) demonstrated the cloglog transform is 

equivalent to an IPP and can be interpreted as a measure of relative occurrence 

probability proportional to a species relative abundance.  

 

We used a random sample of 10,000 background points as pseudo-absences 

(Barbet-Massin et al. 2012) and to sufficiently sample the background calibration 

environment (Guevara et al. 2018). Convergent threshold was set at 10-5 and 

iterations increased to 5000 from the default (500) allowing for model convergence. 

Optimal-model selection was based on Akaike’s Information Criterion (Akaike 1974) 

corrected for small sample sizes (AICc, Hurvich &Tsai 1989), to determine the most 

parsimonious model from two key MAXENT parameters: regularization multiplier and 

feature classes (Warren & Seifert 2011). Tuning MAXENT parameters results in more 

biologically relevant response curves, limits sampling bias, and reduces over-fitting 

in presence-only predictions (Merow et al. 2013, Radosavljevic & Anderson 2014). 

We used only Linear and Quadratic feature classes to produce less complex and 
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more realistic predictions (Merow et al. 2013, Guevara et al. 2018). Omitting 

Threshold and Product feature classes generally increases model performance and 

gives more biologically meaningful model interpretations (Phillips et al. 2017). Hinge 

features were used initially but resulted in unrealistic, cranked response curves, so 

were omitted from model calibration (Guevara et al. 2018). 

 

For the current distribution, we built eighteen candidate models of varying complexity 

by comparing a range of regularization multipliers from 1 to 5.0 in 0.5 increments, 

and two feature classes (Linear and Quadratic) in all possible combinations using the 

‘block’ method of cross-validation (k = 5) in the ENMeval package in R (Muscarella et 

al. 2014). Block partitioning masks the geographical structure of the data according 

to latitude and longitude lines, dividing all occurrences into four spatially independent 

bins of equal numbers. Masking the geographical structure of test-data means the 

models are projected onto an evaluation region not included in the calibration 

process. All occurrence and background test points are assigned to their respective 

bins dependent on location, further reducing spatial autocorrelation between testing 

and training localities (Muscarella et al. 2014, Radosavljevic and Anderson 2014). 

We chose the block method because it reduces the possibility of encountering non-

analogue climate conditions when transferring model predictions in time 

(Radosavljevic and Anderson 2014).  

 

For future predictions, we built twenty-four SDMs using three earth system General 

Circulation Models (GCMs, Table 2) from the Coupled Model Intercomparison Project 

Phase 6 (CMIP6, Eyring et al. 2016). We used two future emission scenarios 

averaged over four time periods: 2021-2040 (henceforth 2030), 2041-2060 
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(henceforth 2050), 2061-2080 (henceforth 2070) and 2081-2100 (henceforth 2090). 

We used a range of projections to assess the magnitude of climate change from the 

short to long term, accounting for variation in model output sensitivity, and any 

uncertainty in single model predictions (,Lutz et al. 2016). Data were downloaded 

from the WorldClim database (v2.1, Fick & Hjimans 2017) for two CMIP6 emission 

scenarios or Shared Socioeconomic Pathways (SSPs): SSP245 and SSP585. SSP245 

represents limiting warming to < 3°C by 2100, and SSP585 corresponds to a ‘worst-

case scenario’ where no climate policy actions are implemented with CO2
 emissions 

reaching > 120 gigatonnes annually by 2100 (Riahi et al. 2017). Finer resolutions 

(e.g., 30 arc-seconds) of future climatic data are currently unavailable for CMIP6 

projections in WorldClim v2.1, but 2.5 arc-minutes was used as a suitable resolution 

for the broad scale analysed here. All internal MAXENT parameters used for the 

current distribution model were kept for the future distribution models and predicted 

using the ‘projection layers’ function in the MAXENT software.  

 

Model evaluation 

We evaluated optimal model selection using both threshold-independent and 

threshold-dependent measures (Radosavljevic & Anderson 2014). Area Under the 

Curve (AUC) is a non-parametric, threshold-independent measure representing an 

overall value of model performance across all thresholds, with AUC = 1.0 being the 

maximum predictive performance, and an AUC = 0.5 being no better than a random 

prediction (Franklin 2009). AUCDIFF, the difference in AUC values from the training 

and test models (AUCTRAIN - AUCTEST) was used to quantify model over-fitting 

(Muscarella et al. 2014), with a value close to zero indicating a low over-fit model 

(Warren & Seifert 2011). We used AUC metrics as a measure of optimal model 
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selection, best suited to comparing a range of candidate models and not as a test of 

final model predictive performance (Lobo et al. 2008, Jiménez-Valverde 2012).  

 

Omission rates report the proportion of training points that are outside of the model 

when converted into a threshold binary prediction, evaluating discriminatory ability at 

a specified threshold. Lower omission rates show improved discrimination between 

suitable and unsuitable pixels (indicating higher performance), whilst overfitted 

models show higher omission rates than expected by theory (Radosavljevic & 

Anderson 2014). We calculated a single threshold-dependent measure based on the 

10% training presence omission rate (OR10) threshold. For low over-fit models the 

expectation for OR10 is a value of 0.10 (Muscarella et al. 2014). We used response 

curves, percent contribution and permutation importance as estimates for variable 

performance within the optimal calibration model. Percent contribution is the 

proportion of each variable to model training gain dependent on the algorithm, 

whereas permutation importance is independent of the algorithm path and 

represents the importance of a given value on the AUC training values (Phillips et al. 

2006). Pair-wise niche overlap metrics were calculated for all future continuous 

distributions to quantify how predictions from the three GCMs differed in geographic 

space using Schoener’s D (Schoener 1968, Warren et al. 2008), which ranges from 

0 (no overlap) to 1 (identical predictions). 

 

We tested final model predictions against random expectations using partial 

Receiver Operating Characteristic ratios (pROC), which estimate model performance 

by giving precedence to omission errors over commission errors (Peterson et al. 

2008). Partial ROC ratios range from 0 – 2 with 1 indicating a random model. 
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Function parameters were set with a 10% omission error rate, and 1000 bootstrap 

replicates on 50% test data to determine significant (𝛼 =  0.05) pROC values > 1.0 in 

the R package ENMGadgets (Barve & Barve, 2013). We used Continuous Boyce 

index (CBI) as a threshold-independent evaluation metric (Hirzel et al. 2006), 

measuring how much environmental suitability predictions differ from a random 

distribution of observed presences (Boyce et al. 2002). It is consistent with a 

Spearman correlation (rs) with values of CBI ranging from -1 to +1, with positive 

values indicating predictions consistent with observed presences, values close to 

zero no different than a random model, and negative values indicating areas with 

frequent presences having low environmental suitability. CBI evaluation was 

calculated on 20% test data with a moving window for threshold-independence and 

101 defined bins in the R package enmSdm (Smith 2019). 

 

Binary models 

To calculate current and future distribution area, all continuous models were 

reclassified as binary threshold predictions. From the three GCM future predictions for 

each 20-year time interval, we calculated mean predictions from the continuous 

outputs for each future emissions scenario. All pixels equal to or greater than the 

median value of 0.396 from the continuous model were used as a suitable threshold 

for conservation planning (Liu et al. 2005, Rodríguez‐Soto et al. 2011, Portugal et al. 

2019). The IBA network polygons (as of September 2019, BirdLife International 2019) 

were then clipped to the reclassified area, establishing those IBAs covering pixels of 

habitat suitability ≥ 0.396 threshold. The IBA shapefile was cropped to the Harpy 

Eagle range extent, and then intersected with each mean binary prediction to 

calculate IBA coverage (km2). Geospatial analysis, modelling and visualisation were 
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conducted in R (v3.5.1, R Core Team, 2018) using the dismo (Hijmans et al. 2017), 

raster (Hijmans 2017), rgdal (Bivand et al. 2019), rgeos (Bivand & Rundle 2019), sp 

(Bivand et al. 2013) and wesanderson (Ram & Wickham 2018) packages.  

 

Results 

Current Distribution Model 

The best-fit model (ΔAICc = 0.0) had feature class parameters Linear and Quadratic, 

with a regularization multiplier of β = 1. Optimal model selection metrics using ‘block’ 

cross-validation had moderate to high predictive performance (AUCTRAIN = 0.780, 

AUCTEST = 0.755). Model overfitting was low (AUCDIFF = 0.025), with discrimination 

ability close to the expected omission rate threshold (OR10 = 0.15). The final 

predictive model was robust against random expectations (pROC = 1.482 ±0.052, 

range=1.321-1.629), with high calibration accuracy between predicted environmental 

suitability and test occurrence points (CBI = 0.928). The current distribution model 

defined a large continuous range across Amazonia and the Guiana Shield, with a 

corridor running north from the Chocó region of Colombia through Central America 

along the Caribbean coast (Fig. 1). Distribution across the largely deforested Atlantic 

Forest region in Brazil was patchy and fragmented, mainly confined to the far south-

east of the region. The reclassified binary threshold prediction (median = 0.396) 

estimated a range size of climatically suitable habitat totalling 7,617,932 km2. Within 

this distributional area the current IBA network covered 18.2 % (1,388,412 km2) of 

habitat for the Harpy Eagle (Fig. S1).  

 

Covariate Importance 
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Four covariates contributed 92.9 % to model prediction (Table 3), with evergreen 

forest the highest contributor (71.2 %), followed by mean diurnal temperature range 

(12.9 %), elevation (5.6 %), and isothermality (3.2 %). Evergreen forest had peak 

suitability at 60-70 % proportion forest cover, with peak suitability for zero to low 

proportion of cultivated land (Fig. 2). Mean diurnal temperature range had a 

suitability range of 5 °C, as expected in the relatively stable climatic conditions of 

lowland tropical forests. Topographic areas had highest suitability in the range 0-500 

m elevation and low terrain roughness with TRI peak suitability ~100. Isothermality 

peaked at 40-50 %, reflecting the constant annual temperatures Harpy Eagles 

experience in lowland tropical forests. Precipitation in the wettest month peaked at 

500-600 mm/month, with highest suitability for precipitation in the warmest quarter of 

700-800 mm.  

 

Future distribution models 

The mean binary GCM predictions showed a decline in range size in both emission 

scenarios (Table 4). Under the lower emissions scenario (SSP245), mean range size 

is predicted to decrease by 2 to 7 % from 2030 to 2090 (Table 4, Fig. S2). Under the 

higher emissions scenario (SSP585), mean range size is predicted to decrease by 5 

to 14 % from 2030 to 2090 (Table 4, Fig. S3). From all individual future predictions 

there was high correlation between GCMs in where future geographic space is likely 

to persist (Table S1), but with some variation in the amount of area predicted to 

contract (Tables S2-S3). Using the CanESM5 climate projection as the most sensitive 

GCM, all future climate scenarios predicted a consistent contraction in range size 

across southern and central Amazonia (Figs. 3-4). A core distribution area is 

predicted to persist over the period 2030-2050 across the wider pan-Amazonian 
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region and Guiana Shield under both emission scenarios. However, from 2070 to 

2090 under the higher emissions scenario (Fig. 4), the distribution area is likely to be 

restricted to northern Amazonia, the Guiana Shield, and the Caribbean coast of 

Central America. Southern and south-western Amazonia is predicted to have the 

greatest reductions in distribution area, but with an area adjacent to the east Andean 

slope in Bolivia and Peru persisting to 2090 under the higher emissions scenario.  

 

IBA network coverage 

Using the mean GCM projections under the lower emissions scenario (SSP245), the 

current IBA network would provide similar coverage from 2030 to 2050 with 

percentage losses relative to current distribution between 0.2 and 1.3 % (Table 5). 

By 2070, there would be 4.1 % less distribution area covered, but only 3.3 % less 

distribution area by 2090 (Table 5). Under the higher emissions scenario, decreases 

in IBA network coverage of 2.7 and 2.2 % are predicted for 2030 and 2050 

respectively, with 6 % less coverage by 2070 and 14 % less IBA coverage by 2090 

(Table 5). To identify a ‘worst-case scenario’ for 2090 we used the CanESM5 climate 

projection as the most sensitive GCM under the SSP585 higher emissions scenario. 

This climate change outcome would result in 29 % reduction in range size to 5 441 

364 km2 (Table 4, Table S3), with the current IBA network coverage reduced by 32 % 

to 946 779 km2. Most biodiversity area losses are predicted within south-west Brazil 

across the states of Acre, Rondônia, Mato Grosso and southern Amazonas, and the 

bordering regions in eastern Bolivia and Peru (Fig. 5, Table S4). However, a broad 

area adjacent to the east Andean slope in Bolivia and Peru would still retain IBA 

coverage.  
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Discussion 

Our results demonstrate that climate change could lead to range size contraction for 

the Harpy Eagle and subsequently reduce coverage within the current IBA network, 

mainly across the southern extent of the species range. The reclassified binary 

model estimated a current distribution area totalling ~7.6 million km2, with the current 

IBA network covering 18 % (~1.4 million km2) of this area. By 2090, mean range size 

was predicted to decrease by 14 % under the higher emissions scenario, and 7 % 

under the lower emissions scenario. By 2090 under the higher emissions scenario, 

core refugia were predicted to remain across northern Amazonia, the Guiana Shield, 

and the Caribbean coast of Central America. By 2090, there would be 14 % less 

mean distribution area covered by the IBA network under a higher emissions 

scenario and 3 % less IBA coverage under the lower emissions scenario. Southern 

Amazonia is predicted to have the greatest reductions in distribution area for the 

Harpy Eagle and subsequently highest loss of habitat within the IBA network, in line 

with the current pace of shifting local climates (Mahlstein et al. 2013).  

 

Current distribution  

Methodology to estimate current and future species distributions using SDMs was 

established mainly using climatic variables (Pearson & Dawson 2003, Thuiller 2004, 

Hijmans & Graham 2006,), especially at continental extents where climate is 

expected to exert the strongest influence on distribution (Huntley et al. 2007). 

Evergreen forest was the most important predictor, followed by mean diurnal 

temperature range and elevation. It is recognised that species range limits are 

dependent on the interaction of multiple factors including land cover (Renwick et al. 

2012, Stanton et al. 2012) and topography (Luoto & Heikkinen 2008, Virkkala et al. 
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2010, Hof et al. 2012). The models presented demonstrate that including land cover 

results in a more restricted range estimate for the Harpy Eagle compared to using 

solely climatic and topographical predictors (as in Sutton et al. 2021a). Because the 

Harpy Eagle is a habitat specialist of lowland tropical forests (Miranda et al. 2019, 

Vargas González et al. 2020, Sutton et al. 2021b), it follows that high proportion of 

evergreen forest, lower elevation, and stable temperatures would have the greatest 

influence on determining the species geographic range. Thus, the interaction 

between vegetation, climate, and topography best explains Harpy Eagle range limits, 

over a model relying solely on climate and topography (Sutton et al. 2021a).  

 

In lowland tropical regions, daily and seasonal temperatures are relatively constant 

(Nieuwolt 1977) and a narrow mean diurnal temperature range of 5 °C also makes a 

large contribution to model prediction. This narrow temperature range tolerance is 

common amongst many tropical bird species (Şekercioğlu et al. 2008), and 

ultimately may be a key factor in how a changing climate may affect the distribution 

of many tropical species that have evolved within narrow thermal limits (Harris et al. 

2011, Şekercioğlu et al. 2012). Aside from temperature, precipitation has been 

identified as potentially important for restricting tropical bird species ranges 

(Şekercioğlu et al. 2012,). For the Harpy Eagle, both monthly and seasonal rainfall 

contributed only small percentages to model prediction (Table 3 and Fig. 2). This 

suggests that precipitation may not be a direct determinant of Harpy Eagle 

distribution, but that moist tropical forests dependent on high rainfall constitute a 

more useful proximate predictor. Indeed, the causal chain may well be inverted as > 

70 % forest cover may be required to maintain the forest-dependent rainfall regime in 

Amazonia (Silva Dias et al. 2002, Soares-Filho et al. 2006). 
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Future distributions 

Unlike the general poleward shifts in distribution predicted for many temperate bird 

species, the core climate refugia for the Harpy Eagle will remain in equatorial regions 

of its range and is not predicted to shift, following current climate velocities 

(Mahlstein et al. 2013). By 2090 the main distribution strongholds will remain across 

northern Amazonia, the Guiana Shield, and parts of Central America assuming that 

land cover remains static, which seems unlikely. Including land use has gained wide 

support when predicting future distributions, even when land cover is a static variable 

derived from current land use layers (e.g., Pearson et al. 2004, Renwick et al. 2012, 

Stanton et al. 2012, Platts et al. 2019). Thus, including current land cover restricts 

the future models to those future areas predicted suitable both climatically and from 

land use, despite its unrealistic static nature for future predictions. Incorporating 

future land use scenarios (e.g., Hurtt et al. 2016) within our modelling framework 

would improve model predictions using a more dynamic approach (Beale et al. 2008, 

Huntley et al. 2010). Accounting for the rapid change in human-mediated land use 

(Powers & Jetz 2019), in particular across the Neotropics (Borges & Loyola 2020), 

would improve future forecasting efforts when combined with future climate change 

projections.  

 

Biodiversity areas 

Protecting large areas of key habitat is important for species conservation 

(Rodrigues & Cazalis 2020) and should be prioritised in an ongoing effort to identify 

gaps in coverage, establishing an effective interconnected network (Rodrigues et al. 

2004a, Rodrigues et al. 2004b). Although the current IBA network exceeds the 
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biodiversity area target representation (10 %) for covering Harpy Eagle habitat (~18 

%, Sutton et al. 2021b), future coverage under climate change may see IBA coverage 

reduced in the south of the species range, along with associated impacts of climate 

change such as wildfires. Brazil is predicted to lose most distribution area for the 

Harpy Eagle within the IBA network, across the states of Acre, Rondônia, and Mato 

Grosso. Unfortunately, this area is one of the main agricultural frontiers in Brazil, 

where the ‘arc of deforestation’ is advancing rapidly (Coe et al. 2017, Miranda et al. 

2020). Additionally, the forest-dependent rainfall regime is already increasing the 

extent of the dry season in this region, with the rainy season shortened by 1.81 days 

per year over the period 1998-2012 (Leite-Filho et al. 2019). Expanding biodiversity 

areas and connecting habitat, combined with area-based community conservation 

across these states would be an effective and economical conservation strategy over 

the long-term, even if future climate is deemed less favourable (Hannah et al. 2007).  

 

Whilst the core refugia predicted for the Harpy Eagle across northern Amazonia and 

the Guiana Shield will still retain some level of coverage within the IBA network, this 

is based on current land cover remaining static until 2090. Due to accelerated rates 

of forest change this future land use scenario is unlikely (Powers & Jetz 2019), thus 

expanding IBAs across northern Amazonia, the Guiana Shield, and further north into 

Central America, will be required to maintain a sufficient level of IBA coverage for the 

Harpy Eagle. Priority gaps in the IBA/KBA network have already been identified for the 

Harpy Eagle in north-west Amazonia, Guyana, and the Chocó- Darién ecoregion in 

Colombia (Sutton et al. 2021b). Establishing new IBAs in all these areas seems even 

more necessary now given the core climate refugia projected to remain in these 

regions. Spatial conservation planning would still be focused on current threats such 
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as habitat loss but would incorporate a long-term climate change ‘no regrets’ 

principle (Hannah et al. 2007, Pearce-Higgins & Green 2014) based on best-practice 

modelling for potential future distribution. In addition to the significance of this 

research for the conservation of Harpy Eagles, their position as apex predators used 

as flagship species may provide the necessary incentive to protect valuable habitat 

for many other species. 

 

Though the models here had high predictive power, we recognise limitations to this 

approach. The interpretation of our future distribution models should be taken as a 

maximum range extent, knowing that forest cover is predicted to decrease and 

cultivated land increase over the time period analysed here (Powers & Jetz 2019, 

Lima et al. 2020). Indeed, shifting seasonality in the tropics combined with rapid land 

use change is predicted to have a strongly negative impact on the range limits for 

many tropical taxa (Sodhi et al. 2012). Taking a process-based approach by 

sustaining the underlying mechanisms for adaptation is critical (Tobias et al. 2013). 

Maintaining habitat heterogeneity and connectivity between key areas of protected 

habitat linked to area-based conservation can prevent species extinction (Tobias et 

al. 2013). Thus, to be effective, biodiversity areas need protective status to ensure 

coverage across areas of extensive habitat heterogeneity, topographical diversity, 

and wide elevational ranges (Sodhi et al. 2012). Therefore, including all these 

environmental variable types within the modelling process, as demonstrated here, is 

crucial to identify those areas predicted to remain most suitable into the future.  

 

Changing climates have shaped species distributions over the aeons, yet the current 

magnitude and rate of human-mediated climate change, combined with habitat loss, 
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may result in significant contraction and shift in species range limits, if not extinction 

(Parmesan & Yohe 2003, Travis 2003, Sodhi et al. 2011). When combined with the 

more immediate threat of rapid habitat loss occurring over shorter time scales, a 

changing climate may result in substantial losses in distribution in the long-term for 

this raptor across the southern edge of its range. Thus, maintaining and expanding a 

network of large-sized IBAs that contain high habitat and climatic heterogeneity may 

be a solution within a fixed reserve network that is robust to future climate change 

(Carroll et al. 2010,). This would not only benefit the Harpy Eagle, but as a large 

apex predator requiring large tracts of continuous tropical forest, it would benefit all 

the associated tropical forest biota within those biodiversity areas.  
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Tables 

Table 1. Environmental variables used as predictors in current and future Species Distribution Models 

for the Harpy Eagle. 

 

Predictor Source Citation 

Mean diurnal temperature range (°C) WorldClim v2.1 Fick & Hjimans 2017 

Isothermality (%) WorldClim v2.1 Fick & Hjimans 2017 

Temperature seasonality (SD, °C) WorldClim v2.1 Fick & Hjimans 2017 

Precipitation wettest month (mm) WorldClim v2.1 Fick & Hjimans 2017 

Precipitation warmest quarter (mm) WorldClim v2.1 Fick & Hjimans 2017 

Terrain Roughness Index (TRI) ENVIREM Title & Bemmels 2018 

Elevation (m) EarthEnv Amatulli et al. 2018 

Evergreen forest (%) EarthEnv Tuanmu & Jetz 2014 

Cultivated (%) EarthEnv Tuanmu & Jetz 2014 
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Table 2. General Circulation Models (GCMs) from the Coupled Model Inter-comparison Project Phase 

6 (CMIP6) used to predict future Harpy Eagle distribution.  

 

General Circulation Model (GCM) Acronym Citation 

Canadian Earth System Model v5 CanESM5 Swart et al. 2019 

CNRM Earth System Model v2.1 CNRM-ESM2-1 Séférian et al. 2020 

Model for Interdisciplinary Research on Climate MIROC-ES2L Hajima et al. 2020 

 - Earth System v2 for Long-term simulations     
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Table 3. Percent contribution and permutation importance for variables used as environmental 

predictors in the continuous model for the Harpy Eagle. All values are %. 

 

Predictor Percent contribution Permutation importance 

Evergreen forest (%) 71.2 34.9 

Mean diurnal temperature range (°C) 12.9 19.1 

Elevation (m)   5.6 15.1 

Isothermality (%)   3.2 10.1 

Precipitation wettest month (mm)   2.2   6.3 

Cultivated (%)   1.7   5.0 

Terrain Roughness Index (TRI)   1.5   2.9 

Temperature seasonality (SD, °C)   1.3   5.8 

Precipitation warmest quarter (mm)   0.3   1.0 
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Table 4. Predicted change (%) in future range size for the Harpy Eagle for four 20-year periods 

(2030-2090) using lower (SSP245) and higher (SSP585) emissions climate change scenarios from 

three General Circulation Models (GCMs). 

 

  2030 2050 2070 2090 

GCM / SSP  245   585 245   585  245   585  245 585 

CanESM5 -3.9 -12.7 -9.7 -15.7 -13.5 -19.4 -20.8 -28.6 

CRNM-ESM2-1 -0.9   -0.3  0.2   -0.3    0.2   -0.7    1.6   -4.7 

MIROC-ES2L -0.7   -3.2 -5.1   -2.5   -5.5   -6.1   -2.3 -10.1 

Mean  -1.8   -5.4 -4.9   -6.1   -6.3   -8.7   -7.3 -14.4 
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Table 5. Mean area and percent change from area of predicted future Harpy Eagle distribution within 

the current IBA network employing lower (SSP245) and higher (SSP585) climate change scenarios 

for four 20-year periods (2030-2090).  

 

SSP245 Year Area (km2)  % change 

 
2030 1 385 341   -0.2 

 
2050 1 370 469   -1.3 

 
2070 1 331 280   -4.1 

  2090 1 342 220   -3.3 

  
  

SSP585       

  2030 1 351 043   -2.7 

 
2050 1 357 640   -2.2 

 
2070 1 304 577   -6.0 

  2090 1 194 030 -14.0 
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Figure 1. Predicted continuous distribution model for the Harpy Eagle. Map denotes cloglog 

prediction with values closer to 1 having higher environmental suitability for Harpy Eagle occurrence. 

Black points define known Harpy Eagle occurrences.  
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Figure 2. Response curves for each environmental variable used as predictors in the current 

distribution model for the Harpy Eagle. 
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Figure 3. Continuous predictions from the CanESM5 general circulation model for Harpy Eagle 

distribution using the SSP245 lower emissions scenario across four future climate change 

timeframes. 
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Figure 4. Continuous predictions from the CanESM5 general circulation model for Harpy Eagle 

distribution using the SSP585 higher emissions scenario across four future climate change 

timeframes. 
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Figure 5. Reclassified ‘worst-case scenario’ binary prediction for 2090 under the higher emissions 

scenario (SSP585) using the CanESM5 Global Circulation Model (GCM) projection. Dark khaki area 

is predicted distribution under the CanESM5 climate projection, pale khaki areas are where climate 

space is predicted to be lost. Dark grey polygons show continued coverage of the current Important 

Bird and Biodiversity Area (IBA) network and pale grey polygons where future Harpy Eagle 

distribution will be lost within the IBA network. 
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Supplementary Online Material 

Appendix 1 Supplementary Tables 

 

Table S1. Geographical niche overlap calculated for predicted future distributions for the Harpy Eagle 

from 2030-2090 using three paleoclimate General Circulation Models (GCMs). SSP245 refers to the 

lower emissions Shared Socioeconomic Pathway scenario, and SSP585 refers to the higher 

emissions Shared Socioeconomic Pathway scenario. 

 

SSP245   
 

Year GCM CanESM5       CNRM-ESM2 

2030 CNRM-ESM2 0.948   

 MIROC-ES2L 0.941 0.967 

  
  

2050 CNRM-ESM2 0.950  

 MIROC-ES2L 0.951 0.952 

  
  

2070 CNRM-ESM2 0.937  

 MIROC-ES2L 0.942 0.953 

  
  

2090 CNRM-ESM2 0.918  

  MIROC-ES2L 0.921 0.955 

 
  

 
SSP585   

 
Year GCM CanESM5       CNRM-ESM2 

2030 CNRM-ESM2 0.937   

 MIROC-ES2L 0.943 0.956 

  
  

2050 CNRM-ESM2 0.928  

 MIROC-ES2L 0.927 0.955 

  
  

2070 CNRM-ESM2 0.908  

 MIROC-ES2L 0.908 0.944 

  
  

2090 CNRM-ESM2 0.901  

  MIROC-ES2L 0.887 0.932 
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Table S2. Predicted change in future distribution area (km2) for the Harpy Eagle (and corresponding 

percentage from current distribution) using a lower emissions (SSP245) CMIP6 climate change 

scenario from three General Circulation Models (GCMs). 

 

Year GCM Future area (km2) Change (km2)        Change (%) 

2030 CanESM5 7 318 047 -299 885   -3.9 

 CRNM-ESM2-1 7 550 583   -67 350   -0.9 

 MIROC-ES2L 7 566 312   -51 620   -0.7 

  Mean 7 478 314 -139 618   -1.8 

    
 

2050 CanESM5 6 882 584 -735 348   -9.7 

 CRNM-ESM2-1 7 631 332    13 400    0.2 

 MIROC-ES2L 7 232 711 -385 221   -5.1 

  Mean 7 248 876 -369 056   -4.9 

    
 

2070 CanESM5 6 588 509 -1 029 423 -13.5 

 
CRNM-ESM2-1 7 636 476       18 544    0.2 

 
MIROC-ES2L 7 197 029    -420 904   -5.5 

  Mean 7 140 671    -477 261   -6.3 

     
2090 CanESM5 6 034 912  -1 583 020 -20.8 

 
CRNM-ESM2-1 7 713 258        95 326    1.3 

 
MIROC-ES2L 7 445 726     -172 206   -2.3 

  Mean 7 064 632     -553 300   -7.3 
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Table S3. Predicted change in future distribution area (km2) for the Harpy Eagle (and corresponding 

percentage from current distribution) using a higher emissions (SSP585) CMIP6 climate change 

scenario from three General Circulation Models (GCMs). 

 

Year GCM Future area (km2)   Change (km2)        Change (%) 

2030 CanESM5 6 651 210   -966 722 -12.7 

 CRNM-ESM2-1 7 597 088     -20 844   -0.3 

 MIROC-ES2L 7 376 030    241 902   -3.2 

  Mean 7 208 109   -248 555   -5.4 

      

2050 CanESM5 6 425 874 -1 192 058 -15.7 

 CRNM-ESM2-1 7 598 186      -19 747   -0.3 

 MIROC-ES2L 7 429 399    -188 533   -2.5 

  Mean 7 151 153    -466 799   -6.1 

      

2070 CanESM5 6 142 061 -1 475 871 -19.4 

 
CRNM-ESM2-1 7 565 340      -52 592   -0.7 

 
MIROC-ES2L 7 151 584    -466 348   -6.1 

  Mean 6 952 995    -664 937   -8.7 

    
  

2090 CanESM5 5 441 364 -2 176 568 -28.6 

 
CRNM-ESM2-1 7 261 414    -356 519   -4.7 

 
MIROC-ES2L 6 850 089    -767 843 -10.1 

  Mean 6 517 622 -1 100 310 -14.4 

 

 

 

Table S4. Important Bird and Biodiversity Areas (IBAs) predicted to lose all current Harpy Eagle 

habitat under the worst-case higher emissions scenario (SSP585) for 2090 using the CanESM5 

Global Circulation Model (GCM) projection. See attached Excel file for details. 
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Appendix 2 Supplementary Figures 

 

 

Figure S1. Binary prediction reclassified using the median threshold (0.396). Green areas are 

predicted Harpy Eagle habitat, beige areas predicted unsuitable habitat. Black bordered polygons 

define the current Important Bird and Biodiversity Area (IBA) network within the median threshold 

prediction. 
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Figure S2. Continuous mean predictions from the three general circulation models for Harpy Eagle 

distribution using the SSP245 lower emissions scenario across four future climate change 

timeframes. 
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Figure S3. Continuous mean predictions from the three general circulation models for Harpy Eagle 

distribution using the SSP585 higher emissions scenario across four future climate change 

timeframes. 
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