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Abstract

The Posada–Asinara Line is a crustal-scale transpressive shear zone affecting the Variscan base-
ment in northern Sardinia during Late Carboniferous time.We investigated a structural transect
of the Posada–Asinara Line (Baronie) with the aid of geologicalmapping and structural analysis.
N-verging F2 isoclinal folds with associated mylonitic foliation (S2) are the main deformation
features developed during the Posada–Asinara Line activity (D2). The mineral assemblages and
microstructures suggest that the Posada–Asinara Linewas affected by a retrogrademetamorphic
path. This is also confirmed by quartzmicrostructures, where subgrain rotation recrystallization
superimposes on grain boundary migration recrystallization. Crystallographic preferred orien-
tation data, obtained using electron backscatter diffraction, allowed analysis of quartz slip sys-
tems and estimation of the deformation temperature, vorticity of flow and rheological
parameters (flow stress and strain rate) during the Posada–Asinara Line activity. Quartz defor-
mation temperatures of 400 ± 50 °C have been estimated along a transect perpendicular to the
Posada–Asinara Line, in agreement with the syn-kinematic post-metamorphic peak mineral
assemblages and the late microstructures of quartz. The D2 phase can be subdivided in two
events: an earlyD2early phase, related to themetamorphic peak and lowkinematic vorticity (pure
shear dominated), and a late D2late phase characterized by a lower metamorphic grade and an
increased kinematic vorticity (simple shear dominated). Palaeopiezometry and strain rate esti-
mates associated with the D2late deformation event showed an intensity gradient increasing
towards the core of the shear zone. The D2early deformation developed under peak temperature
conditions, while the D2late event was active at shallower structural levels.

1. Introduction

Collisional type orogens are often characterized by the presence of crustal-scale shear zones
driving and affecting the tectono-metamorphic evolution of the inner portion of the belts
(Fossen & Cavalcante, 2017). Such crustal-scale shear zones can show different kinematics,
from normal-sense (e.g. South Tibetan Detachment System; Burchfiel et al. 1992) to thrust-
sense (e.g. Main Central Thrust; Searle et al. 2008 and Higher Himalayan Discontinuity;
Montomoli et al. 2013, 2015) up to transtension and transpression (Goscombe et al. 2005).
Regardless, their long-lasting tectonic history (several Ma) is able to have a deep impact on
the P–T–t paths of the metamorphic rocks and their exhumation (Carosi et al. 2018 and
references therein).

Transpressive tectonics, at the regional scale, can result from different factors such as an
oblique convergence (e.g. Coast Mountains; Depine et al. 2011) or the irregular shape of the
continental margins (e.g. Armorican Massif; Gébelin et al. 2009). Regardless, the occurrence
of transpression coeval with or subsequent to the continental collision deeply affects the evo-
lution of the orogen with respect to the frontal collisional setting.

During the last 30 years, many theoretical, modelling and fieldwork studies have been carried
out in order to characterize transpressional tectonics in complex oblique collisional events (e.g.
Sanderson & Marchini, 1984; Tikoff & Fossen, 1993; Tikoff & Teyssier, 1994; Fossen & Tikoff,
1998; Schulmann et al. 2003). Occurrences of transpressional tectonics are often related to
collisional belts where transpression represents an evolution of the nappe stacking and crustal
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thickening (Matte et al. 1998; Carosi & Oggiano, 2002; Carosi &
Palmeri, 2002; Carosi et al. 2004). Transpressional tectonics also
has a profound impact on the metamorphic architecture of an oro-
genic belt, the latter presenting substantial differences in terms of
the tectono-metamorphic evolution compared to perpendicular
collisional environments (Thompson et al. 1997; Carosi &
Palmeri, 2002; Goscombe et al. 2003, 2005). Syn-collisional trans-
pression has been investigated in first-order regional-scale shear
zones within the main European crystalline basements such as
the South-Armorican Shear Zone in Brittany (Gébelin et al.
2009); the central sector of the Maures-Tanneron massif in
southern France (Corsini & Rolland, 2009; Schneider et al.
2014); the Ferrier-Mollieres shear zone in the Argentera–
Mercantour Massif (Carosi et al. 2016; Simonetti et al. 2018);
and the Posada–Asinara Line (PAL) in northern Sardinia
(Carosi & Palmeri, 2002; Carosi & Oggiano, 2002; Carosi et al.
2005, 2009; Iacopini et al. 2008; Frassi et al. 2009; Cruciani et al.
2015). In these areas, a major role of transpressive structures
related to the exhumation of high- and medium-grade metamor-
phic complexes has been recognized, well before the onset of the

typical post-collisional extensional events (Turrillot et al. 2011;
Schneider et al. 2014). In this work we investigated an area in
NE Sardinia (Fig. 1) where a portion of the PAL, one of the
first-order transpressive shear zones of the Variscan Belt in
southern Europe, crops out (Corsini & Rolland, 2009; Carosi
et al. 2015; Simonetti et al. 2018). This shear zone has been studied
by many authors with respect to the structural settings (e.g. Elter
et al. 1990), metamorphic evolution, and dynamics and kinematics
of flow (e.g. Carosi & Palmeri, 2002; Carosi et al. 2005; Iacopini et al.
2008; Frassi et al. 2009; Cruciani et al. 2015). These authors inves-
tigated the bulk deformation linked to the transpressive monoclinic
flow (Iacopini et al. 2008) mainly focusing on the initial conditions
of the shearing event at medium T conditions (520–630 °C; Carosi
& Palmeri, 2002). The aim of this paper is to fill in the gap concern-
ing the geological history of the long-lasting late transpressive
tectonics, constraining the structural evolution and flow kinematics
during the latest increments of shear deformation related to the
PAL activity.

We present the results of a new structural study on mylonites
along the PAL, metamorphosed under medium-grade conditions,

Fig. 1. Sketch-map of the Variscan Belt in Sardinia (modified after Carmignani et al. 2001) and location of the study area (white square).
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coupled with microstructural analyses including the study of
quartz crystallographic preferred orientation (CPO). Quartz petro-
fabric data allowed us to infer the deformation temperatures and
the kinematic vorticity of the flow. Moreover we estimated for the
first time the flow stresses and the strain rate along a N–S
profile of the PAL, applying published recrystallized grain-size
palaeopiezometers for quartz and wet-quartzite flow.

Combining our structural and petrofabric data with the existing
published dataset, we propose an updated model of the PAL
tectonic evolution and its role in the exhumation/extrusion of
metamorphic complexes in orogenic belts.

2. Geological setting

2.a. Overview of the Variscan Belt in Sardinia

TheVariscanBelt in Sardinia (Italy) is one of themost complete trans-
ects of the SouthernVariscanDomain (Matte, 1986; Carmignani et al.
1994, 2001; Corsini & Rolland, 2009; Cruciani et al. 2015) character-
ized by a general lack of strong Alpine–Apenninic reworking. The
current position of Sardinia derives from a 30° anticlockwise rotation
of the Corsica–Sardinia microplate, related to the opening of the
Balearic basin (Alvarez, 1972; Montigny et al. 1981; Deino et al.
2001; Gattacceca, 2001) in the Oligocene Period. Variscan Sardinia
consists of metasedimentary and metaigneous rocks of the northern
margin of Gondwana, affected by Palaeozoic deformation from the
Devonian to Carboniferous periods, related to the collision between
Gondwana, Armorica and Laurussia (Carmignani et al. 1982, 1994,
2001). During the collision, the Gondwanan margin was the lower
plate subducting under Armorica and the peri-Gondwanan
terranes, accommodating most of the deformation (Matte, 1986).
The Variscan Orogeny is responsible for the main deformation
and metamorphic features of Sardinia, consisting of a S- to SW-
verging stacking of tectonic units with an increasing metamorphic
grade moving from the SW to NE (Carmignani et al. 1982, 1994;
Franceschelli et al. 1982).

The Sardinian basement represents the eastern portion of the
inner Ibero-Armorican indenter (Matte, 1986; Carosi & Palmeri,
2002; Cruciani et al. 2015), and it can be subdivided into three areas
characterized by a different tectono-metamorphic evolution
(Carmignani et al. 1982, 1994, 2001; Cruciani et al. 2015).
Along a S to N structural profile, the three areas are (Fig. 1):

(i) The foreland area (External Zone), restricted to SW Sardinia,
composed of a poly-deformed Palaeozoic sequence showing very
low- to low-grade metamorphism (e.g. Carmignani et al. 1994;
Franceschelli et al. 2017 and references therein).

(ii) A SW-verging nappe stack in the central area constituted by
Palaeozoic metasedimentary and metaigneous rocks with low- to
medium-grade metamorphism (Carmignani et al. 1994; Carosi &
Pertusati, 1990; Carosi et al. 1991; Montomoli et al. 2018).
This area is subdivided into two sectors: the External and the
Internal Nappe zones. The Internal Nappe Zone has also been
subdivided into the ‘Medium-Grade Metamorphic Complex’
and the ‘Low-Grade Metamorphic Complex’ characterized,
respectively, by medium- and low-grade metamorphic imprints.

(iii) The Inner Zone, or High-Grade Metamorphic Complex, in
the northernmost sector of the island, represented by high-grade
metamorphic rocks (Franceschelli et al. 1982, 2005; Cruciani
et al. 2015).

This architecture is intruded by late- to post-Variscan gran-
itoids (Ghezzo et al. 1979; Macera et al. 1989; Casini et al. 2015).

2.b. Northern Sardinia

Northern Sardinia is divided into areas with different metamorphic
signatures (Fig. 1): the Internal Nappe Zone represented by the
Low- and Medium-Grade Metamorphic complexes (L–MGMC)
and the Inner Zone represented by the High-Grade Metamorphic
Complex (HGMC) (Cruciani et al. 2015 and references therein).
The HGMC is located in the northernmost part of the island and
consists of migmatites, orthogneisses, amphibolites, minor para-
gneisses and micaschists, calcsilicates and Carboniferous granitoids
(Carmignani et al. 1994, 2001; Casini et al. 2012). The HGMC expe-
rienced an early high-pressure (HP) eclogitic stage (700–740 °C and
>1.5 GPa; see Cruciani et al. 2015 for a review) followed by a HP
granulitic event (660–730 °C, 0.75–0.90 GPa; Miller et al. 1976;
Ghezzo et al. 1979; Franceschelli et al. 1982; Di Pisa et al. 1993;
Cruciani et al. 2015) as suggested by granulitized relics of
eclogite-facies metabasite embedded within the migmatite.
Metamorphic ages are available only for the granulitic event that
is constrained at ~350 Ma (Giacomini et al. 2005) or younger at
~330 Ma (Palmeri et al. 2004). Southwards, the L–MGMC, made
up of lower Palaeozoic metasedimentary rocks intruded by
Ordovician metagranitic bodies, crops out (Carmignani et al.
1994, 2001). The metasedimentary rocks consist of greenschist- to
amphibolite-facies micaschists and paragneisses characterized by
an increasing Barrovian metamorphic grade from south to north
(Franceschelli et al. 1982, 1989; Cruciani et al. 2015). The metamor-
phic zoning in the L–MGMC comprises, moving northward, a
garnet þ albite zone, garnet þ oligoclase zone, staurolite þ
garnet þ biotite zone, kyanite zone and sillimanite zone
(Franceschelli et al. 1982, 1989; Carmignani et al. 2001; Cruciani
et al. 2015). Close to the sheared contact between the two metamor-
phic complexes, the Barrovian isograds are very tight (Carosi &
Palmeri, 2002; Carosi et al. 2005). The boundary between the
HGMC and L–MGMC is represented by the PAL. The PAL
(Fig. 1) is a nearly 150 km long and 10–15 km wide dextral trans-
pressive shear belt crossing the whole of northern Sardinia from
Asinara island in the NW to the Posada River Valley in the NE
(Cruciani et al. 2015). This structure is variably oriented (Fig. 1)
from E–W to NW–SE and steeply dips to the south in the NE part
(Carosi & Palmeri, 2002). The PAL was originally interpreted as a
strike-slip shear zone active in Late Carboniferous time (Elter
et al. 1990), and later as a wide transpressional shear zone
(Carosi & Palmeri, 2002; Iacopini et al. 2008; Carosi et al. 2009;
Frassi et al. 2009). Cappelli et al. (1992) interpreted the PAL as
an oceanic suture zone between Armorica and Gondwana because
of the occurrence of amphibolitic boudins aligned along it. The
amphibolites show a normal mid-ocean ridge basalt (N-MORB)
geochemical signature and locally preserve relics of eclogite facies
(Oggiano&Di Pisa, 1992; Cortesogno et al. 2004). Recent geochemi-
cal constraints attributed the HGMC to the northern margin of
Gondwana, confirming the PAL as an intracontinental orogen-
parallel shear zone (Giacomini et al. 2006). In situ Ar–Ar dating
of white mica (Di Vincenzo et al. 2004) and U–(Th)–Pb dating
ofmonazite (Carosi et al. 2012) constrained the age of the transpres-
sional shearing to between∼300Ma and 320Ma. These authors rec-
ognized the presence of two main deformation phases associated
with the Variscan tectonic evolution: a regional D1 phase associated
with the collisional stage recognizable all across the whole of
Sardinia, and a later orogen-parallel D2 phase linked to the trans-
pressive activity. Based on pseudosection calculations, a prograde
HPmetamorphic signature (1.8 GPa and 460–500 °C) has been rec-
ognized by Cruciani et al. (2013) for the D1, allowing the linking of

1900 R Graziani et al.

. https://doi.org/10.1017/S0016756820000138
Downloaded from https://www.cambridge.org/core. IP address: 92.238.190.127, on 14 Feb 2022 at 14:25:04, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms

https://doi.org/10.1017/S0016756820000138
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


this phase to progrademetamorphism related to underthrusting and
nappe stacking. The age of the D1 is ~330–340 Ma (Di Vincenzo
et al. 2004; Carosi et al. 2012). The transition between D1 and
D2 represents a change in metamorphic conditions from high pres-
sure to lower pressure with increasing temperature during decom-
pression (Carosi & Palmeri, 2002; Cruciani et al. 2013, 2015)
followed by decompression and cooling.

2.c. Study area (Baronie Region)

The study area is located within the northern sector of the
L–MGMC and comprises part of the garnet þ plagioclase zone
and the garnet þ staurolite þ biotite zone, a few kilometres south
of the boundary with the HGMC (Fig. 2) where a detailed geologi-
cal and structural map (at the scale of 1:5000) was compiled.

The structural setting is dominated by N–NE-verging regional-
scale isoclinal folds with axial planes striking N20–90° and dipping
20–80° to the SE (Fig. 2b). In the core of the antiforms an
orthogneiss body crops out with a protolith age of 456 ± 14 Ma
(Helbing & Tiepolo, 2005). It is composed of granodioritic
orthogneiss (Fig. 3a) at the base, surrounded by granitic augen
orthogneiss (Fig. 3b). The northern area and the cores of the syn-
forms expose Pre-Cambrian (?) to Cambrian micaschist (Fig. 3c, d)
with paragneiss and quartzitic lenses (Carmignani et al. 1994). In
the southern area themicaschist is affected by a low- (garnetþ albite)
tomedium-(garnetþoligoclase)grademetamorphism.Themedium-
grade metamorphic conditions in the micaschist, cropping out in the
northern area, are evident from the garnet þ staurolite þ biotite
metamorphic assemblage.

3. Deformation history and structural analysis

On the basis of geological mapping, as well as of detailedmeso- and
microstructural analyses, five ductile deformation phases, followed
by brittle tectonics, have been identified. All microstructural obser-
vations have been conducted on thin-sections cut perpendicular to
the main foliation and parallel to the mineral lineation to better
approximate the XZ section of the finite strain ellipsoid.

The first deformation phase is recognizable mainly at the
microscale and it is poorly expressed at the mesoscale. It is
represented by a relict foliation, S1, within D2 microlithon
domains and by internal foliations, Si, within garnet, staurolite
and plagioclase intertectonic porphyroblasts. This phase is related
to the syn-kinematic growth of white mica, biotite, feldspar and
garnet in the micaschist.

In the study area the prominent deformation event is the
second deformation phase (D2), associated with the development
of isoclinal folds (F2). The F2 folds have similar geometry (Ramsay,
1967); they are non-cylindrical, trending N080–090° with axes
showing variable plunge, from horizontal in the western area to
30–40° to the east in the eastern area (Fig. 2a). The F2 axial planes
(Ap2) strike mostly N080–090°. In the eastern sector they strike
N010–020°. The Ap2 dips 70–80° to the south in the northern sec-
tor of the area, and 10–20° to the south in the southern sector
(Fig. 2b). This variation is owing to the presence of late deforma-
tion events (D4 and D5) deforming their original attitude (see
below). The main foliation of the study area, S2, shows a
mylonitic fabric. Within the orthogneiss, the S2 foliation is a dis-
crete spaced schistosity, marked by the alternation of mica-rich
cleavage domains and quartz-feldspathic microlithons. Within
the micaschist, S2 varies from a continuous to a spaced foliation.
In domains of spaced foliation, the S2 is characterized by

anastomosing biotite- and white mica-bearing lepidoblastic layers
alternated with lenticular microlithon domains (Fig. 4a, b), where
S1 relics are present.

The D2 mylonitic fabric is well recognizable at all scales. Shear
sense indicators have been observed only on sections parallel to the
XZ plane of the finite strain ellipsoid (i.e. perpendicular to the S2
foliation and parallel to mineral lineation) and they have not been
detected on YZ and XY sections.

S-C-C 0 structures, mica fishes (mainly of groups 1, 2 and 3
according to the classification of ten Grotenhuis et al. 2003),
asymmetric strain shadows around porphyroblasts and oblique
foliations point to a dextral sense of shear consistent with the
top-to-the-W/NW direction of tectonic transport associated with
the PAL (Fig. 4a–e). Elongation of feldspar, garnet and staurolite
crystals on the S2 planes form a sub-horizontal L2 mineral/grain
and aggregate lineation (average plunge 0–10° to the E).

The M2 metamorphism is related to the syn-kinematic growth
of the main mineral assemblages (biotiteþ white micaþ garnetþ
plagioclase þ quartz in the southern sector and biotite þ white
micaþ garnetþ stauroliteþ quartz in the northern sector). A late
syn-kinematic growth of chlorite on the late shearing planes
(mainly C 0 planes and shear bands), in the strain shadows around
garnet (Fig. 4d, e) and filling fractures in garnet and staurolite has
been recognized. This retrogression is present in the studied tran-
sect and highlights a progressive decrease in metamorphic grade
during D2, starting from lower amphibolite to greenschist facies.
Interlobate to ameboidal grain boundaries in quartz ribbons are
consistent with grain boundary migration (GBM) recrystallization
(Stipp et al. 2002a,b; Law, 2014).

The presence of finer equigranular quartz grains along the grain
boundaries suggests superposition of subgrain rotation (SGR)
recrystallization, which heterogeneously reworks and overprints
the GBM microstructures in all the studied samples (Fig. 5a–c).
Although SGR occurs in all of the study area, in the N–S transect
the intensity of SGR varies from incipient in the southern sector
(Fig. 5a) to pervasive in the northern sector, where core andmantle
structures (Fig. 5b) or nearly complete recrystallization (Fig. 5c) are
present.

The D3 phase is characterized by a heterogeneous deformation
localized in E–W-trending lenticular domains developed at the
hectometric scale. Here an S3 crenulation cleavage (Fig. 3e, f),
linked to centimetric- to hectometric-scale F3 similar folds
(Ramsay, 1967) occurs (Fig. 4f). F3 axial planes (Ap3) and S3 foli-
ation are parallel to S2 mylonitic foliation. F3 folds have a non-
cylindrical geometry, and the plunge of the A3 axes varies from
sub-vertical to a few degrees to the east. The parallelism between
the S2 and S3 foliation planes, and the scattering of the A3 axes
along the S2 great circle (Fig. 2a) on the stereographic projection,
point to a similar geometry and kinematics of deformation during
the D2 and D3 phases. At the microscale, the S3 is a crenulation
cleavage characterized by pressure solution and by a shape pre-
ferred orientation (SPO) of quartz aggregates (Fig. 5d). Pressure
solution and quartz deformation mechanisms acting during the
D3 phase suggest shallower conditions with respect to the
D2 phase.

The D4 deformation event is detectable only at the map scale by
the occurrence of gentle kilometric folds. The F4 folds cause the
variation of S2 strike from N080–090° up to N000–010°
(Fig. 2a). The F4 axial planes (Ap4) strike about N135°/55° NE
while the A4 axes trend N105°, plunging 35° to the SE. No axial
plane foliation is observed parallel to the F4 axial planes.
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The D5 deformation phase is characterized by meso- to map-
scale folds. The F5 folds have a gentle to close geometry with a
sub-horizontal axial plane and N88°-trending axes slightly plung-
ing to the east. The variation in the dip of the S2 mylonitic foliation

is due to later F5 folds producing type 3 interference structures
when overprinting the F2 folds (Fig. 2b). Foliations and lineations
related to the D5 phase have not been detected in the study area.
This observation, coupled with the absence of mineral growth or

Fig. 2. (Colour online) (a) Geological map of the study area. The central granodioritic orthogneiss antiform separates micaschist with different metamorphic assemblages:
garnet þ plagioclase þ biotite in the southern portion and garnet þ staurolite þ biotite in the northern area. Lower hemisphere stereographic projections for L2: mineral
and object lineations related to D2; A3: fold axes related to F3 folds; S2: poles to the main foliation, S2. (b) N–S geological cross-section of the studied area (see trace A–Aʹ
in Fig. 2a). The main deformation style is characterized by N-verging F2 isoclinal folds with steeply S-dipping axial planes in the northern area, and a more gentle S-dipping
in the southern area. In the northern area a crenulation belt, related to the D3, is highlighted.

1902 R Graziani et al.

. https://doi.org/10.1017/S0016756820000138
Downloaded from https://www.cambridge.org/core. IP address: 92.238.190.127, on 14 Feb 2022 at 14:25:04, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms

https://doi.org/10.1017/S0016756820000138
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


related microstructures, suggests that D5 took place at shallow
structural levels. The D5 phase has been associated with the late
exhumation related to the final collapse of the Sardinian
Variscan Belt (Carmignani et al. 1994).

Evidence of brittle deformation is poorly represented in the study
area. In the southeastern portion of the study area (Fig. 2a), conju-
gated normal faults have been detected. They strike N045° and
N155° and steeply dip, respectively, to the NW and NE (Fig. 2a).

4. EBSD analysis and quartz petrofabric

4.a. Methods

Of the 39 rock specimens (Fig. 6) used for the microstructural
analysis, ten representative samples of the main lithotypes were
selected to investigate the rheological behaviour of quartz during
the deformation. On these samples we performed image analyses
using the software ImageJ (ver: 1.47v by Wayne Rasband).

For each specimen, several statistics images away from quartz
ribbon areas (Fig. 7) were processed to estimate the amount of
quartz in the matrix. All the analysed samples show a modal abun-
dance of quartz in the matrix ranging between 24 % and 81 %
(Fig. 8; Table 1). Following a microstructural analysis on the com-
plete dataset and the modal estimates, three quartz-rich samples
were selected for the CPO study.

These samples contain polycrystalline quartz ribbons recrys-
tallized during the D2 phase (Fig. 8). The analysed samples were
selected at different distances from the high-strain zone (Fig. 7)
within the three main lithotypes occurring in the study area:
SCB006R from the garnet þ plagioclase zone (southern area);
OGO026R from the augen orthogneiss zone (central area);
and SGR031R from the garnet þ staurolite þ biotite zone
(northern area) (Fig. 6). The electron backscatter diffraction
(EBSD) analysis was performed on selected areas representative
of the SGR recrystallization domains, related to the late D2
phase, in order to better constrain the late-D2 deformation
event (Fig. 8).

EBSD analysis was performed on carbon-coated polished thin-
sections using a JEOL 6610 scanning electronmicroscope (SEM) at
the Plymouth University Electron Microscopy Centre, with the
following working conditions: acceleration voltage of 20 kV, high
vacuum and 70° sample tilt. EBSD patterns were acquired on
rectangular grids ~6–9 mm2 in size (Fig. 8), with an electron beam
step-size of 3.5–5.0 μm.

The bulk CPO data have been represented with pole figures of
the main crystallographic elements of quartz: c axis<0001>, a axes
{11–20} and m planes {10–10}. The orientation data have been
plotted as one point per grain. The EBSD results have also been
shown as inverse pole figure (IPF) crystallographic maps to
visualize the spatial distribution of the CPO domains (Fig. 9).

Fig. 3. (Colour online) Main lithotypes in the study area.
(a) Biotite-rich granodioritic orthogneiss (coin for scale is
2.3 cm diameter). (b) Augen orthogneiss with K-feldspar
porphyroclasts (pencil tip for scale is 3 cm long). (c)
Garnetþ plagioclase-bearingmicaschist (hammer for scale
is 32 cm long). (d) Garnet þ staurolite þ biotite-bearing
micaschist (fingernail for scale is ~1.2 cm wide). In some
specific areas, S3 crenulation cleavage is affecting, respec-
tively, (e) orthogneiss (compass for scale: visible upper side
is ~3.2 cm long) and (f) micaschist (hammer for scale is
30 cm long).
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Fig. 4. (Colour online) Microstructures associated with
the main deformation events present in the study area
from the (a–c) early D2 stage to the (d–e) late D2 stage
and (f) D3 phase. (a) S-C fabric in garnet þ plagioclase-
bearing micaschist with S planes composed of biotite
and white mica. Dextral sense of shear, corresponding to
a top-to-the-W and -NW sense of shear in the field (mylo-
nitic foliation steeply dips to the south) (crossed nicols).
(b) Biotite and white mica foliation fish in garnet þ stauro-
lite þ biotite-bearing micaschist (crossed nicols). (c) Mica
fishes (group 1 and 2) in a quartz-rich matrix (ten
Grotenhuis et al. 2003) (crossed nicols). (d) Garnet porphyr-
oclast in garnetþ plagioclase-bearing micaschist with syn-
D2late growth of chlorite in fractures and strain shadows
(parallel nicols). (e) Cʹ plane with syn-kinematic growth
of chlorite in garnetþ plagioclaseþ biotite-bearing micas-
chist (parallel nicols). (f) F3 centimetre fold in the grano-
dioritic orthogneiss. Furthermore, it is also possible to
note how the D3 event is associated with pressure solution
as the main deformation mechanisms (parallel nicols).
Mineral abbreviations: Grt – garnet; Qtz – quartz;
Wm –white mica; Chl – chlorite; Bt – biotite.

Fig. 5. (Colour online) General overview of
syn-D2 quartz microstructures recognized in
the study area along samples collected at differ-
ent distances from the high strain zone of the
PAL (i.e. boundary between L–MGMC and
HGMC). (a) Southern sector of the study area:
quartz microstructures are dominated by GBM
recrystallization with incipient SGR. Sb repre-
sents the oblique foliation due to the shape pre-
ferred orientation (SPO) of quartz aggregates
(crossed nicols). (b) Central sector of the study
area: SGR microstructures are more developed
(crossed nicols). (c) In the northern sector of
the study area, close to the high strain zone,
the SGR process is pervasive and completely
obliterates GBM microstructures (crossed nic-
ols). (d) Plastic deformation in quartz within
the hinge zone of an F3 fold where the SPO of
quartz crystals is parallel to the S3 foliation
(crossed nicols).
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4.b. Crystallographic preferred orientation data

The distribution of the quartz c axes is similar for the three ana-
lysed samples. Both SCB006R and SGR031R have a type-1 crossed
girdle transitional to single girdle distribution (Fig. 9a, c) (Lister &
Hobbs, 1980; Schmid & Casey, 1986; Passchier & Trouw, 2005,
p. 104; Toy et al. 2008). OGO026R presents an incomplete c-axes
distribution owing the larger grain size compared to the other sam-
ples. Type-1 crossed girdle distributions suggest a plane strain
deformation (Lister & Hobbs, 1980; Schmid & Casey, 1986).
The asymmetry of the distribution points to a non-coaxial regime
(Law, 1990; Passchier & Trouw, 2005, p. 105) with a top-to-the-W
sense of shear, in agreement with independent kinematic indica-
tors (see above) and consistent with the D2 phase. Despite the
incomplete data, a type-1 crossed girdle distribution is still
recognizable.

The pole figures and the IPF maps are consistent with the dom-
inant activity of the rhomb<a> slip system, with a lesser contribu-
tion of prism<a> and basal<a> (Fig. 9a, b) (Toy et al. 2008; Fazio
et al. 2017; Hunter et al. 2018). These data, under typical geological
conditions for H2O content and geological strain rate, suggest a
deformation temperature in the upper greenschist facies (e.g.
Passchier & Trouw, 2005, p. 57; Toy et al. 2008). Deformation tem-
peratures (Td) have been estimated using the relationship between
Td and the opening angle (OA) of the c-axes distribution (Fig. 9c)
(Kruhl, 1998;Morgan&Law, 2004; Law, 2014) with themost recent,
pressure sensitive, calibration proposed by Faleiros et al. (2016):

Td ¼ 410:44 ln OAð Þ þ 14:22P� 1272

To estimate the Td with this relationship, an external pressure con-
straint (P) is necessary. In this work, the P constraint has been
obtained from the data of Carosi & Palmeri (2002), who estimated
a pressure of 0.7 GPa for the D2 peak. Moreover, considering that
the late recrystallized areas developed under retrograde greenschist
facies, the rocks deformed during the late D2 phase were likely
under lower pressure conditions compared to the peak conditions.
For this reason, a more realistic P of 0.5 GPa has been also assumed
(based on P–T paths of Carosi & Palmeri, 2002) for the calcula-
tions. The estimated temperatures at the corresponding P of
0.5 GPa for SCB006R and SGR031R are 400 ± 50 °C and
390 ± 50 °C, respectively. The estimations for OGO026R were
not possible owing to the incomplete nature of the c-axes distribu-
tion. These temperatures estimated using 0.5 GPa as the pressure
constraint do not present a significant deviation (less than 30 °C)
from those obtained at the corresponding pressure of 0.7 GPa.
These data do not show large variations from the Td values
obtained by the original Kruhl (1998), as modified by Morgan &
Law (2004), calibration. The results obtained by the different cal-
ibrations and pressure values are well within the error range of the
method (± 50°; see also Law, 2014). The Td data are consistent with
the estimated greenschist-facies conditions, and indicate a homo-
geneous deformation temperature in the study area along the N–S
transect, as also supported by the late syn-D2 greenschist minerals.

Fig. 6. (Colour online) Geological sketchmap of the Baronie region showing sample dataset and location of the samples selected for specific analyses (modified from Carosi et al.
2005). Abbreviations: Sil – sillimanite; Ky – kyanite; St – staurolite; Grt – garnet; Pl – plagioclase; Bt – biotite.
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4.c. Kinematic vorticity data

The kinematic vorticity represents the magnitude of the kinematic
vector, which the material lines tend to rotate around during flow
deformation (Xypolias, 2010 and references therein). The kin-
ematic vorticity number (indicated as Wn, for single deformation
increments) is identified by the cosine of the angle between the two
flow apophyses. Kinematic vorticity is an estimate of the relative
contribution of pure and simple shear components during the flow.

Quartz CPO data have been used to estimate the components of
simple and pure shear of the flow kinematic during the late D2
deformation increments (Wallis, 1995; Law et al. 2004, 2010,
2011, 2013; Xypolias, 2010). This estimate has been performed
by calculating the sectional kinematic vorticity number (Wn) on
recrystallized quartz domains using the β/δ method (Fig. 10) pro-
posed by Xypolias (2010) (see also Wallis, 1995), where:

Wn ¼ sin 2 δþ βð Þ½ �

In this equation, β is the angle between the main foliation and the
plane normal to the quartz c-axes distribution (Figs 9c, 10b), while
δ is the highest angle between the main foliation and the SPO

foliation of quartz aggregates (Fig. 10a, b). δ has been derived from
a range of angles measured via optical microscopy (Fig. 5a).

This method is based on the relationship between the simple
shear component and the angle between the flow apophysis, A2,
highlighted by the orientation of the quartz CPO and the instanta-
neous stretching axis, ISA2, represented by the oblique foliation.
Showing the main flow elements in the Mohr space (Fig. 9c),
the Wn can be obtained by the sine of the angle between A2

and ISA2. The kinematic vorticity estimations (Fig. 11) provided
Wn = 0.99–1.00 for SCB006R, Wn= 0.91–1.00 for OGO026R
and Wn = 0.99–1.00 for SGR031R. The obtained Wn values point
to very high components of simple shear for all samples.

4.d. Palaeopiezometry and strain rate

Following the pioneering analysis of Twiss (1977) it has been sug-
gested that the grain size of recrystallized grains is a primary func-
tion of the applied flow stress, representing the theoretical base of
palaeopiezometry (Behr & Platt, 2011, 2013, 2014; Menegon et al.
2011; Boutonnet et al. 2013). The grain-size distribution of the ana-
lysed quartz aggregates (Fig. 12a) was derived for each sample with
the aid of the EBSD data. These distributions have been used to
estimate the flow stress acting during the recrystallization process

Fig. 7. Examples of quartz (Qtz) modal analysis on rock speci-
mens homogeneously distributed along the studied transect. In
all the analysed samples, quartz (white in processed figures) rep-
resents an important volumetric phase in the rocks and it is typ-
ically distributed in interconnected granoblastic layers (see
Table 1 for the complete dataset and Fig. 6 for sample locations).
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related to the late D2 activity of the PAL. For this purpose, we used
the recrystallized grain-size palaeopiezometer for quartz proposed
by Stipp & Tullis (2003) for the recrystallization regime 2/3, where:

D ¼ 3631Δσ�1;26

With this relationship, the flow stress (Δσ) can be obtained from
the average recrystallized grain diameter (D). The calculated
values were: D= 34 ± 16 μm and σ= 41 ± 18MPa for SCB006R;
D= 25 ± 6 μm and σ= 53 ± 11MPa for OGO026R; and
D= 16 ± 4 μm and σ = 74 ± 16MPa for SGR031R, showing an
increase in flow stress moving from the southern to the northern
sectors of the study area, along a N–S transect of the PAL. The flow
stress data have been used to calculate the strain rate (ε̇) with the
wet-quartzite flow law:

ε̇ ¼ AΔσn fH2Oð Þm e�Q=RT

For the strain rate estimation, a temperature constraint (T) is nec-
essary. The T values used in this work have been obtained from the
opening angle of the c-axes distribution (Law, 2014) as described
above. A water fugacity (fH2O) of 12.25MPa was calculated
using the water fugacity coefficient listed in Tödheide (1972) for

T= 400 °C and P= 0.5 GPa. Different experimental calibrations
for the wet-quartzite flow law have been proposed in the literature
(see Table 2, where: A, n and m are experimentally calculated param-
eters that change for each calibration and R is the ideal gas constant),
and they led to dissimilar strain rate estimations (Menegon et al. 2011;
Boutonnet et al. 2013; Montomoli et al. 2018).

The results of the different calibrations used in this paper are sum-
marized in Figure 12b. Strain rate estimations cover a wide range,
spanning from 10−16 to 10−11 s−1 (including the uncertainties due
to the propagation of the error on temperature and flow stress).
Although the strain rates estimated using different flow laws are dif-
ferent, they coherently indicate an increasing trend of εmoving from
south to north (Fig. 12b). Among the different calibrations for the
quartzite flow law, the one proposed by Hirth et al. (2001) has been
selected since, according to Behr & Platt (2013, 2014), it is considered
the most realistic (see also Boutonnet et al. 2013 for a discussion
on this topic). The estimated strain rate values are in the range of
10−13 to 10−12 s−1 (Fig. 12b).

Comparable strain rate results have been reported for the mid
crustal shear zone from different areas such as the Betic Cordillera
of southern Spain (Behr & Platt, 2013), the Rodope Massif
in Greece (Fazio et al. 2018), the Kabilo–Calabride crystalline
basement in southern Italy (Ortolano et al. 2020) and the

Fig. 8. Localization of the acquired EBSDmaps on the analysed samples (crossed nicols). Black boxes indicate the representative maps chosen for Figure 9. White boxes indicate
the other areas where EBSD data have been acquired to reach a statistical number of points to build the pole figures in Figure 9.
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Fig. 9. (Colour online) (a) Quartz EBSD data
from the analysed samples (for sample locations
see Fig. 8). The colours of the example IPF fig-
ures on the left and the pole figures are in refer-
ence to the Z axis of the finite strain (pole of the
main foliation). Black lines are high-angle boun-
daries (misorientation >10°), fuchsia lines are
low-angle boundaries (misorientation 3–10°)
and red lines are Dauphiné twin boundaries
(misorientation of 60° around the c axis). The ori-
entation in the pole figures data has been plot-
ted as one point per grain. (b) Legend for the
quartz IPF map, showing the main quartz crys-
tallographic directions with different colours.
(c) Interpreted quartz c-axes <0001> patterns
of the studied samples. OA – opening angle;
β – angle between the mylonitic foliation and
the orthogonal plane of the quartz c-axes cen-
tral girdle.

Table. 1. Modal abundance of quartz along the study transect (see Fig. 6 for sample locations)

Sample Structural distance (km)* Lithotype Unit %Qtz

Ky 1.59 micaschist kyanite-bearing micaschist 24.7

PRQ034C 2.15 paragneiss garnet þ staurolite þ biotite-bearing micaschist 42.5

OGG030 3.05 orthogneiss granodioritic orthogneiss 39.4

PRQ022 3.65 paragneiss garnet þ plagioclase-bearing micaschist 81.1

OCCHI-2 4.96 orthogneiss augen orthogneiss 75.2

OCCHI-4 4.99 orthogneiss augen orthogneiss 79.7

OCCHI-6 5.01 orthogneiss augen orthogneiss 58.3

SCB003 5.93 micaschist garnet þ plagioclase þ biotite-bearing micaschist 72.9

12-6-3-6b 8.65 micaschist garnet þ plagioclase þ biotite-bearing micaschist 34.6

12-6-3-4 9.63 micaschist garnet þ plagioclase þ biotite-bearing micaschist 56.0

* The structural distance refers to the relative position with respect to the boundary between the HGMC and L–MGMC.

1908 R Graziani et al.

. https://doi.org/10.1017/S0016756820000138
Downloaded from https://www.cambridge.org/core. IP address: 92.238.190.127, on 14 Feb 2022 at 14:25:04, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms

https://doi.org/10.1017/S0016756820000138
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Chelmos Shear Zone in the External Hellenides (Xypolias &
Koukouvelas, 2001).

5. Discussion

5.a. Structural evolution

Our field, meso- and microstructural data document a complex
polyphase tectono-metamorphic evolution of the Sardinian
Variscan Belt after the collisional stage. The PAL activity is con-
firmed to be related to the D2 phase, during which micaschist
and orthogneiss are deformed under amphibolite-facies condi-
tions, coeval with a non-coaxial dextral transpressive shearing
(Carosi & Palmeri, 2002). The syn-kinematic growth of chlorite,
in strain shadows and along the C 0 planes (Fig. 4e), is consistent

with a metamorphic retrogression towards greenschist facies dur-
ing the evolution of the late D2 phase. The syn-kinematic growth of
chlorite during the D2 phase, at the expense of biotite and garnet,
supports the presence of H2O-rich fluids during this phase.

The D3 phase developed heterogeneously in the study area. The
parallelism of the structural elements between the D2 and D3
deformation phases allows the D3 to be interpreted as an evolution
of the D2 phase linked to the latest deformation increments of
the PAL. The D2–D3 transition could be related to a strain
hardening due to shallower metamorphic conditions with strain
localization and deformation concentrated in parallel crenulated
domains (Fig. 13).

The absence of metamorphic assemblages related to the D4 and
D5 phases points to a further T decrease associated with the defor-
mation of the L–MGMC at shallower structural levels.

Fig. 10. Schematic representation of the β/δ method
(Xypolias, 2009, 2010), applied in the current study, in order
to estimate the sectional kinematic vorticity number (Wn)
by studying the CPO and SPO of a deformed quartz ribbon.
(a) δ is the angle between the mylonitic foliation and the
maximum oblique foliation (Sb) in quartz aggregates
(microphotograph, crossed nicols, sample SGR031R), (b)
while β is the angle between the mylonitic foliation and
the orthogonal plane of the quartz c-axes central girdle.
(c) Representation of instantaneous and finite elements
of flow in Mohr space, with the stretching rate (s) as the
horizontal axis and the angular velocity (ω) as the vertical
axis; δ represents the angle between the foliation and the
instantaneous stretching axis ISA2 while β represents the
angle between the foliation and the flow apophysis A2
(modified from Xypolias, 2010).

Fig. 11. Comparison between kin-
ematic vorticity data obtained in this
work and previous estimates in the
same area (left, see Fig. 6 for sample
locations) and along the whole PAL
profile. Kinematic vorticity data,
resulting from the quartz CPO analysis
in this work, is higher than the pre-
vious data obtained by previous
authors both using the quartz-based
petrofabric (Frassi et al. 2009) and
other vorticity gauges (Carosi &
Palmeri, 2002; Carosi et al. 2005;
Iacopini et al. 2008).
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5.b. Quartz deformation

The important role of quartz in governing the rheology of the
analysed rocks is evidenced by the modal abundance of this phase.
The modal estimations show a quartz percentage range of 24 to 81
% (Table 1), reaching the minimum abundance (Fig. 7) to be
considered the strain-supporting phase in each specimen
(~20 % according to Handy, 1990). A quartz-dominated rheology

allowed us to consider the CPO analysis, performed on quartz
ribbons, reliable at the larger scale.

At fluid-present conditions and at geological strain rates (Law,
2014), microstructures in quartz related to GBM recrystallization
are generally indicative of dislocation creep deformation under
amphibolite-facies metamorphic conditions (Stipp et al. 2002a,b).
The transition from GBM to SGR can be related to several factors:

Fig. 12. (a) Quartz grain-size distributions for the selected sample. See Figure 6 for sample locations. The grain-size intervals used for palaeopiezometry have been picked out
from the total distribution, selecting the D2late new grains formed by SGR, which represent the finest population of grains for each sample. (b) Results of strain rate (s−1)
estimations from the analysed samples using the different quartz flow law calibrations in the dislocation creep regime. A consistent trend of increasing strain rates towards
the N (i.e. from sample SCB006R to sample SGR031R) is evident.

Table. 2. Available calibrations for the wet-quartzite flow law and associated experimentally derived flow law parameters*

Flow law calibration Q (KJ/mol) A (MPa−n/s) m n

Paterson & Luan (1990) 135 6.50E-08 0 3

Luan & Paterson (1992) 152 4.00E-10 0 4

Gleason & Tullis (1995) 223 0.00011 0 4

Hirth et al. (2001) 135 6.31E-12 1 4

Gleason & Tullis (1995) (corrected by Holyoke & Kronenberg, 2010) 223 0.00051 0 4

* Q – activation energy; A –material parameter; m –water fugacity exponent; n – stress exponent.
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a variation in deformation temperature, a decrease in water content
or an increase in strain rate (Stipp et al. 2002a,b; Menegon et al.
2008, 2011; Law, 2014 and references therein). On the other hand,
assuming no significant variations in water content and strain rate,
SGR recrystallization (Fig. 5a–c) suggests a dislocation creep regime
under a lower deformation temperature with respect to GBM (Stipp
et al. 2002a,b; Passchier & Trouw, 2005; Law, 2014). The dextral
sense of shear, testified to by the orientation of the oblique foliation,
highlighted by quartz grains recrystallized by SGR fits well with the
dominant sense of shear during the activity of the PAL. The syn-
kinematic growth of retrograde assemblages, including chlorite
along the C 0 planes (Fig. 4c, e), suggests a continuation of the
PAL activity from higher to lower temperatures. This transition is
testified to also by the quartz c-axis opening angle that points to
lower temperatures compared to the peak conditions associatedwith
the D2 (see Carosi & Palmeri, 2002; Di Vincenzo et al. 2004). For
these reasons we infer that the superimposition of SGR is related
mainly to a syn-shearing temperature decrease. In this framework,
according to the structural and metamorphic evidence discussed
above, a complex (and long-lasting) evolution of the D2 phase
has been inferred. The D2 deformation phase is subdivided in
two stages: an early D2early stage associated with the thermal D2
peak, and a late D2late stage as part of the retrograde exhumation
path with decreasing temperatures. The variation in quartz disloca-
tion creep regime from GBM to SGR is linked to a temperature
decrease, and the acquisition of CPO data on the areas affected
by SGR recrystallization allowed the constraining of the conditions
of the D2late deformation increments. The temperature of nearly
400 °C, derived from the c-axes opening angle, is consistent with
the greenschist-facies metamorphism and suggests a thermal
homogenization during the late stages of D2.

The kinematic vorticity analysis performed on recrystallized
quartz aggregates resulted in highWn values (0.91–1.00) indicative
of a simple shear dominated flow (Fig. 11). Previous studies (Carosi
& Palmeri, 2002; Carosi et al. 2005) pointed out a pure shear domi-
nated flow in the same study area (Wm = 0.30–0.70), estimated
using the stable porphyroclasts method (Passchier, 1987; Wallis
et al. 1993; Xypolias, 2010). A possible explanation for these differ-
ent results could be found in the different methods applied to the
estimation of the kinematic vorticity values. It is necessary to take
into account the different strain memory of the quartz recrystalli-
zation with respect to the porphyroclasts (Wallis, 1995; Xypolias,
2009, 2010). Carosi & Palmeri (2002) and Carosi et al. (2005)
applied the stable porphyroclasts method using K-feldspar and
plagioclase porphyroclasts, crystallized before the D2 phase and

experiencing a rigid-clast behaviour during the PAL shearing.
Competency contrast could be responsible for strain partitioning
(Goodwin & Tikoff, 2002), so that some minerals, such as, for
example, K-feldspar, with a different viscosity than quartz, could
partition different kinematic (coaxial versus non-coaxial) and
rheological (brittle versus viscous) components of the bulk defor-
mation. On the other hand, quartz microstructures and CPO have
a shorter strain memory (Xypolias, 2009, 2010) and better record
the late deformation increments, especially in our case study,
where the later SGR recrystallization areas were selected for the
EBSD analysis. From the comparison of the data acquired by
the two different methods, likely related to different stages of
the transpression, it is possible to better reconstruct the kinematic
evolution of the PAL, which was dominated by pure shear during
the early deformation stages and by simple shear in the late
deformation increments (Fig. 13).

Other transpressive systems, showing a bulk non-coaxial defor-
mation, with a deformation regime evolving from a pure shear
dominated transpression to a simple shear dominated transpres-
sion, have been documented by Carreras et al. (2010).

5.c. Consideration of the exhumation mechanism

Shear zones are common features in deforming rocks and occur at
all scales from the millimetre scale to the kilometre scale (Fossen &
Cavalcante, 2017). Whereas most of the studies have focused on
metre- to hectometre-scale shear zones, comparatively fewer stud-
ies are available for regional-scale shear zones and on the conse-
quences on the P–T–t paths of the deformed rocks. In the
Himalayas, a regional-scale (thrust-sense) shear zone running
for more than 1000 km along-strike, the High Himalayan
Discontinuity (Montomoli et al. 2013, 2015), affected the tectonic
andmetamorphic evolution of themetamorphic core of the belt for
more than 10–15 Ma (Carosi et al. 2018).

Analogously, the PAL is an example of a (transpressive) crustal-
scale shear zone that affected the inner portion of the Variscan Belt
for several hundred kilometres (from Sardinia–Corsica and the
Maures massif up to the External Massifs of the Alps: Corsini &
Rolland, 2009; Simonetti et al. 2018 with references) for more than
c. 20 Ma (Carosi et al. 2012; Simonetti et al. 2018), and it efficiently
exhumed the deeper portions of the belt from medium-tempera-
ture up to low-temperature conditions, playing a primary role in
the tectonic end-metamorphic evolution of the Variscan Belt.
Considering the overall development of the PAL and its prosecu-
tion in the External Crystalline Massifs of the Alps, this first-order

Fig. 13. Simplified reconstruction of the structural evolution of the L–MGMC during the transpressive tectonics linked to the PAL. The transpression developed in a pure shear
dominated general flow during the D2early and evolved into a simple shear dominated flow during the D2late. The D2late deformation is characterized by an increasing strain
gradient moving towards the core of the PAL. During the D3 phase, the last deformation increments may have been accommodated by the development of crenulation cleavage,
and related plunging upright folds. For the D2early and the D2late events the position and the angle between the flow apophyses (A1 and A2) has been inferred from the kinematic
vorticity data. As the kinematic vorticity increases, the angle between the apophyses decreases.
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shear zone is a major zone of weakness in the crust, and it allowed
further localization of the deformation during the first stages of the
Alpine cycle (Bergomi et al. 2017; Ballevre et al. 2018).

The PAL has a sub-horizontal or gently plunging (L2) stretching
lineation and sub-vertical foliation, and the exhumation could be
expected to be driven by a nearly horizontal extrusion (e.g. Tikoff
& Fossen, 1993; Schulmann et al. 2003; Iacopini et al. 2008). On
the other hand, mylonite in a transpressive zone could be affected
by vertical movement of the rock flow. This case, where pure and
simple shear are active coevally during deformation, is typically
related to a vertical stretching lineation during the whole deforma-
tion history or caused by the flipping of an originally shallowly
plunging lineation to a vertical attitude (Tikoff & Fossen, 1993;
Schulmann et al. 2003; Iacopini et al. 2008). However, in simple
shear dominated transpression, in the case of vertical extrusion,
horizontal lineation can be preserved (Iacopini et al. 2008). It is
worth noting that in the study sector of the PAL, the kinematic flow
was dominated by simple shear only during the latest D2 incre-
ments. The L2 is marked by feldspars, quartz and syn-D2early
porphyroblasts of garnet and staurolite. During the D2early phase,
the kinematic flow was in general shear condition with a sub-
horizontally directed simple shear component (Carosi & Palmeri,
2002). A major component of pure shear is not compatible with
the development of a horizontal lineation in the case of vertical flow,
and for this reason the occurrence of a vertical extrusion during the
whole duration of PAL activity is unlikely. Considering the highWn
value, close to simple shear, recorded for the D2late phase, the hori-
zontal lineation related to this phase could be developed in both
horizontal or vertical extrusion regimes. The structural data relative
to the D2 phase are compatible with two different hypotheses of tec-
tonic evolution: (i) a constant horizontal or slightly oblique extru-
sion or (ii) a composite evolution with horizontal extrusion in the
D2early and vertical extrusion in the D2late phases.

5.d. Strain partitioning during the late D2 stage

As previously mentioned, the superposition intensity of SGR
(D2late) microstructures over the older GBM (D2early) fabric in
quartz aggregates increasesmoving from south tonorth in the study
area, reaching thehighest intensity approaching the core of thePAL.
Considering that the deformation temperature during D2late was
nearly homogeneous along the N–S study transect, as suggested
by syn-kinematic minerals and opening angle thermometry, the
increase in SGR intensity cannot be attributed to a
(significant) temperature variation. On the contrary, petrofabric
data suggest that the strain rate spatially increases moving to the
north from ~10−13 s−1 to ~10−12 s−1 according to the Hirth et al.
(2001) flow law (Fig. 12b). Thus, we can infer that strain rate
variationsplayed an important role in themicrostructural evolution
of quartz during SGR recrystallization in this area (Hobbs, 1985;
Passchier & Trouw, 2005).

The grain-size palaeopiezometry and strain rate estimates,
performed on the analysed samples, can be compared with other
data available in the literature for the Sardinian Variscan Belt
(e.g. Casini et al. 2010; Casini & Funedda, 2014; Montomoli et al.
2018). According to these authors, the strain rates increase moving
from south to north, ranging from ~1016 s−1 to ~10−15 s−1 in the
Foreland Zone to ~10−15 s−1 to ~10−13 s−1 in the Nappe Zone and
~1013 s−1 to ~10−11 s−1 in the Inner Zone.

The strain rate proposed in this work is closely comparable to
the results obtained by Casini et al. (2010) in the same area of the
orogen. These estimations also exceed the value of 10−14 s−1

proposed as a typical geological strain rate (Pfiffner & Ramsay,
1982; Passchier & Trouw, 2005). Nevertheless, it is worthwhile
to consider the discussion recently opened by Fagereng & Biggs
(2019) where they postulate on the underestimation of 10−14 s−1

as a typical strain rate value.

6. Conclusions

Data from geological mapping and structural analysis, at different
scales, allowed the constraint of the tectonic evolution of the
northern sector of the Variscan Belt in Sardinia within the
L–MGMC close to the PAL. The PAL is regarded as an orogen-
parallel transpressional shear zone that drove the exhumation
of the Sardinian metamorphic complexes. In the northern
L–MGMC, the shearing event is represented by the D2 phase,
which started to be active close to the metamorphic ‘peak’, under
amphibolite-facies conditions (D2early), and lasted up to greens-
chist-facies conditions during the D2late event. The transpressive
tectonics related to the PAL continued during the D3 phase under
even shallower crustal conditions. The shift in metamorphic
conditions caused strain partitioning along the mylonitic belt,
giving rise to shear zone-parallel discontinuous domains charac-
terized by the folding of S2 foliation (Fig. 13).

Quartz petrofabrics, together withmicrostructural data, suggest
that the transition from D2early to D2late has been characterized by:

(1) a nearly thermal homogenization at ~400 °Cwhere a shift in the
dynamic recrystallization mechanisms in quartz aggregates,
fromGBMtoSGR, isdocumented.TheSGRoverprintingmicro-
structures are incipiently developed in the southern area and
gradually becomemorepervasivemoving into thenorthern area;

(2) an increase in the simple shear component during deformation,
ranging from pure shear to simple shear dominated trans-
pression (Fig. 13).

Comparing the structural analysis data with the available kin-
ematic vorticity estimates, based on different vorticity gauges, it
is possible to infer that the PAL, in the study area, led to a tectonic
evolution characterized by horizontal extrusion or, alternatively,
by a horizontal extrusion occurring during the D2early phase
followed by a vertical extrusion coeval with the D2late phase.
With the present data it is not possible to verify the latter
hypothesis and to clarify the kinematics of the late mylonitic flow
of the PAL, and further investigations are needed.

The flow stresses and the strain rates suggest an increase in these
two parameters moving closer to the core of the PAL. This variation
is in agreement with the presence of the superimposition of the SGR
recrystallization mechanism in quartz in the northern sector.

The new data support a framework in which a single long-
lasting, crustal-scale shear zone, once formed at depth, is able to con-
tinue to localize deformation and to drive the exhumation of the
inner portions of the belt towards lower P–T conditions. This shear
zone, continuing in other portions of the Southern Variscan Belt,
was active until the end of the VariscanOrogeny and acted as a weak
zone reactivated during the later Alpine tectonics.
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