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State 2 0.05 2,500.0 0.8 
State 3 0.10 5,000.0 0.9 
State 4 0.40 10,000.0 1.1 

 

The state of each of the action dimensions is part of the perceivable context for the model. 
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action states are available to the model during the decision process. For each decision, the model 
independently determines the effect of each of the 12 available states. Explicit non-action options are 
not included among the available action options; nonetheless, the model can choose to remain passive 
by not altering the current states of the elements. Thus, three of the 12 calculated effects 
(corresponding to three action dimensions) allow the model to remain passive, and these values 
independently predict future sensation states for identical circumstances. The central assumption of 
the internal predictive consistency criterion is that there is no reason for these three predictions to 
differ substantially if the model has the opportunity to gather sufficient experience with the entire 
spectrum of actions and conditions. As an example, if the window opening level is 0.05m², the heating 
emission is 5000 kJ/h and the clothing value is 0.9 Clo in a decision situation, then the three 
independent predictions for maintaining these states should ideally be identical because a human 
actor would likely not make a distinction between these three non-action predictions. 

To measure the degree of similarity between the three non-action predictions, their standard 
deviation was calculated at each decision, and the frequency distribution of the standard deviation 
across one year for each type of sensation was used to compare different parameter runs. As in 
previous models, the time resolution was set to one hour such that the model makes one prediction 
per simulation hour. In total, each simulation ran three times over five years per parameter variation 
and only the results of the last year were considered for the study. The frequency distributions were 
averaged across the three simulation runs. 

Apart from numerical imprecision, a model should ideally be able to produce highly consistent non-
action predictions across the three dimensions, which would be in line with expectable human 
performance. This criterion is therefore considered to be both a relative criterion to compare the 
model performance with different parameter settings and an absolute criterion evaluating the 
absolute performance of the model. 

Impairment vs. improvement of thermal conditions in winter after action 
An additional criterion was introduced in case the first criterion does not yield unambiguous results. 
For this analysis, the thermal sensation after a decision was compared to the thermal sensation before 
a decision that was thermally elicited, and the results were separated into those decisions that led to 
an improvement and those that led to further impairment of the thermal conditions. The scope of this 
analysis was limited to the winter, during which appropriate means to counteract uncomfortable 
conditions are available to the model (specifically heating and clothing). Thus, this limitation restricts 
any effects that would result from a lack of appropriate action dimensions to counteract warm 
conditions during the summer, which would not be attributable to a lack of model performance. 

Though it is a plausible assumption that decisions resulting in improved conditions are indicative of 
effective model performance, whereas decisions that result in impaired conditions are indicative of 
poor model performance, this criterion is not used as an absolute measure of the quality of the model. 
A decision that yields impaired conditions could be due to a misprediction (a bad model decision); 
however, it might rather be the best possible result of an appropriate decision that avoids even worse 
conditions. The analysis revealed that the model sometimes made decisions without the explicit goal 
of improving the environment, but rather to avoid further impairment of conditions.  

Despite the restriction, this criterion was expected to be an appropriate supplementary indicator of 
the relative performance of the model. 
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Average and standard deviation of thermal conditions in winter 
One of the goals of the model is to establish neutral thermal conditions. Though a lack of a cooling 
system makes it impossible for the model to achieve this goal during conditions of hot external 
temperatures, the provided action space theoretically enables it to be successful during winter. A 
further means to evaluate the relative performance of the model is, therefore, its ability in winter 
conditions to achieve, on average, neutral conditions.  

3. Cognitive parameter study 
3.1 Similarity and relaxation 
3.1.1 Introductory theoretical considerations of the similarity parameter (SIM) and the relaxation 

factor (RF) 
Human perception of the environment can be considered an essential pre-condition for planning and 
determining appropriate actions. As described in Section 2.1, the action model uses the PMV to predict 
thermal sensation and a comparable concept for predicting IAQ. This approach is a simplification; both 
types of models aim to predict sensation on the aggregated level of a larger group and are therefore 
not understood as representations of individual sensations. Even more importantly, these models 
predict sensation with an unrealistic accuracy of multiple decimal places. Simply importing this type 
of model into the action model would enable it to discriminate sensation states to a degree that is not 
in line with human perceptive abilities, such as the discernment of temperature fluctuations of 0.1 K, 
and the model would, in turn, fine-tune its actions with an unrealistic degree of detail.  

The similarity parameter (SIM-value) accounts for realistic human perceptive abilities and is 
psychologically reducible to the concept of just noticeable difference (JND). First described by Weber 
[40], the JND describes the objective modality-specific difference between a reference stimulus and a 
comparison stimulus that can just be detected by a person. This concept includes the limitation that 
if two stimuli are too similar to each other, i.e., their difference is below the JND, they are usually no 
longer distinguishable, but rather are perceived as being identical. Consequently, such similar 
experiences must not be distinguished by the model during its interaction with the environment. 

The SIM-value is relevant for three aspects of the model: 1) the integration of a new chunk into the 
declarative memory based on its similarity with already existing chunks; 2) the process of spreading 
activation from the encountered context through the declarative memory based on the similarity with 
the slots of the memory chunk, and 3) the perception of the environmental changes provoked by an 
executed action. During the first two of these processes, instance slots are compared to find identical 
slots. Treating sensation as a continuous rather than discrete space and comparing sensation slots to 
the smallest decimal place would lead to the accumulation of an infinite number of seemingly different 
instances in memory, which would be not only computationally expensive but also unrealistic from a 
cognitive perspective. Applying the JND concept through a SIM-value treats sensation as a discrete 
(rather than continuous) state, which results in a significantly more efficient and realistic process. 
Consequently, a SIM-value need not be defined for instance-slots that are discrete by nature, such as 
the clothing value or the state of the window. In the third process, the model senses environmental 
changes between the pre-and the post-action sensation states and thus establishes context-action-
result contingencies. However, if the difference falls within the plus/minus range of SIM-value relative 
to the initial state, the environmental change is assumed to be undetectable and is therefore nullified.   
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predictions. Thus, the frequency of the standard deviation of 0.02 and below of 0.642 for a SIM-value 
of 0.45 represents the baseline for the remaining parametrization process of the model.  

Another obvious effect is that the performance was lower in the thermal dimension than in the air 
quality dimension, which was not unexpected because the window dimension is the sole action 
dimension that directly influences the sensation of the air quality; the model easily learns that clothing 
does not affect air quality and heating has very little effect (there is a small effect because changes of 
the internal temperature influence the buoyancy effect when the window is opened). Consequently, 
the uncertainty of the prediction relates only to the effect of the current window opening level. In 
contrast, all three action dimensions exert substantial influence on the thermal sensation, and the 
prediction in each dimension is thereby biased by some uncertainty. These uncertainties result in a 
greater deviation between predictions than in the case of air quality sensation. 

The decision quality (impairment vs. improvement) was not significantly affected by SIM-values and is 
therefore not presented here. 

Both the above-described experiments by Collins et al. [41] and by Natsume et al. [42] found that the 
groups of subjects established comparable average temperatures in the climate chamber irrespective 
of their ability to discriminate the temperature stimuli and the corresponding magnitude of the 
observable temperature amplitudes. Therefore, the average sensation and the standard deviation of 
the sensation established by the model for winter conditions were investigated for the analyzed SIM-
values. Fig 6 presents the results for the established thermal sensation, and it can be observed that 
there is only a slight dependence of the average thermal sensation on SIM-value, which is in line with 
the experimental data. Additionally, as represented by the standard deviation SD, the wider expanse 
of the established conditions corresponds well with increasing SIM-values, which is also in line with 
expectations.  

 

Fig 6: Comparison of established average thermal conditions and the corresponding standard deviations for all 
investigated SIM-values. 

Tests were also conducted using a SIM-value of 0.45 to measure the effect of a set of different 
relaxation factors RF in the range of RF 30 to RF 300 on the model performance. Fig 7 illustrates the 
effect of applying a RF on the consistency of non-action predictions (data-labeling refers to RF = 140). 
As indicated by the larger fraction in the 0.02- category compared to the simulation without RF (red 
columns), there was a slight tendency of the performance to improve with increasing RF-values; 
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however, the improvement was inconsistent and statistically not significant (F = 0.85/3.11, p = 0.54 
for thermal sensation). A one-sided t-test also revealed insignificant differences between the results 
achieved without relaxation vs. those yielded with an RF = 140 and an RF = 300 (p140 = 0.27, p300 = 0.12 
for thermal sensation, respectively).  

 

Fig 7: Comparison of the distribution of standard deviations of non-action predictions in the thermal and air quality 
sensation dimensions for different relaxation factors RF. 

The analysis of the decision quality in winter conditions reveals a slightly clearer picture. An RF of 140 
minimized the occurrence of situational impairment after a decision and maximized improvement 
accordingly, and the improvement was significant (p = 0.03) compared with the performance with no 
relaxation. In contrast, there was only a slight, insignificant improvement when using an RF of 300 
(p = 0.29). Based on these results, an RF of 140 was used for subsequent steps in the parametrization 
process.  

 

Fig 8: Effect of different relaxation factors on post-action impairment vs. improvement of thermal conditions in winter 
conditions. 
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yields 8000/4000 to 10,000/5000 (T/AQ) pieces of information stored in the memory, which results in 
an S ranging between ln(2000) = 7.6 (if n is considered to be the number of chunks) and ln(10,000) = 
9.2 (if n is considered to be the number of slots) for thermal instances and ln(1000) = 6.9 or ln(5000) 
= 8.5 for air quality instances. Based on these considerations and to allow for some variance in the 
maximal number of chunks, an adequate maximum associative strength was estimated to be around 
a value of S = 12. For the sake of simplicity, S is considered to be a general parameter, rather than a 
modality-specific parameter, and thus is applied to thermal instances as well as air quality instances. 

Consequently, the model performance was tested for a set of values for the maximum associative 
strength S ranging from S = 7 to S = 25.  Fig 9 presents the results for the non-action prediction 
consistency. For values of S = 25 and lower, the performance seems to have been slightly weaker in 
comparison with a maximum associative strength of S = 30. However, as expected, an ANOVA revealed 
no statistically significant differences between different S levels ranging from 12 to 30 for either type 
of sensation, nor did one-sided t-tests reveal any significant differences when S = 30 was paired with 
any of the other strengths between S = 12 and S = 25. 

In contrast, a maximum associative strength of S = 7 led to a substantial and significant (t-test, p < 0.01) 
performance impairment for thermal sensation in comparison with S = 30. This was also to be 
expected because the average ln(fan) for each of the slots is usually in the range of 6-7 in such cases, 
thus rendering the total spreading activation close to zero, which almost neutralizes the effect of 
context on activation. Consequently, with this parametrization, the model tends to choose its actions 
independent of the prevailing context. 

 

Fig 9: Comparison of the distribution of standard deviations of non-action predictions in the thermal and air quality 
sensation dimensions for different maximum associative strengths S. 

Fig 10 illustrates the results of an investigation of the decision quality in winter conditions based on 
thermal sensation for S-values ranging from 12 to 30, which compared the relative advantages of a 
maximum associative strength of S = 12 with those of higher values. Whereas an ANOVA revealed 
significant differences between the different parametrizations (F = 13.29/ 4.07, p < 0.01), a one-sided 
t-test indicated no significant advantage for S = 12 over S = 30.  
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is in line with the expectations and is not considered to be a model deficit, but rather representative 
of realistic, human-like performance. 

For an action of 0.8 Clo, partial matching produces results that coincide with the exact values, meaning 
that the thermal sensation conditions do not change by the action, which is also in line with plausible 
human abilities; however, the model erroneously also expects an action of 0.9 Clo to not affect 
thermal sensation. Again, this is not considered to be a model deficit; rather, two previously discussed 
effects can presumably be responsible for such a result. First, the exact changes of sensation 
calculated based on the PMV-algorithm are below the similarity threshold of 0.45 points on the 
sensation scale and hardly detectable for the model. Such negligible changes are below the JND and 
are therefore stored as zero changes to the memory. Second, due to the close numerical similarity 
between Clo values of 0.8 and 0.9, memory instances with clothing slots of 0.9 are not substantially 
penalized because they are considered to be sufficiently similar to the experienced context. Such 
situations thereby align with the Moses illusion and are not considered to be representative of a model 
deficit. 

3.4.2 Effect of partial matching on model performance 
Based on the results elucidated in the previous section, the effect of a maximum penalization ranging 
from 2 to 12 on the model performance was tested with deactivated base-level activation. 

 

Fig 15: Influence of partial matching on the model performance. 

For both criteria, namely non-action prediction consistency and decision quality in winter, partial 
matching with a maximum penalization of six produces the best results. In the case of thermal 
sensation, the percentage of non-action predictions with a standard deviation below 0.02 increases 
from 0.687 without partial matching to 0.848 with partial matching. Based on a one-sided t-test, the 
difference between the results without partial matching and those with a maximum penalization of 
six is significant (p = 0.04), whereas none of the other results with partial matching differs significantly 
from the version without partial matching. Again, the influence on the quality of the non-action 
prediction for air quality sensation is negligible and differences are not significant, presumably 
because the quality is already high without partial matching. Additionally, the quality of the decisions 
with partial matching based on thermal dissatisfaction in winter conditions is highest for a maximum 
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distributed across all three action dimensions. Therefore, 2.0 to 2.5 interactions occur per day per 
dimension, thus resulting in several interactions per action state ranging from around 1.25 (2.5/2, 
switching between one particular state and any of the other states) to 0.5 (2.0/4, switching through 
all states).  

Fig 17 presents an estimate of the base level activation for decay rates of d = 0.30 and 0.60 as a 
function of the number of actions per day (and the according activation) and the amount of time 
passed since the action was executed the last time. The comparison indicates that for most of the 
cases, a decay factor of d = 0.30 enables actions to remain activated even after they have not been 
executed for a week. In contrast, a decay rate of 0.60 leads to a rapid inhibition of actions within less 
than a day. Consequently, it was determined that a decay rate between these two values should be 
appropriate to model the observed lag in clothing behavior. 

 

Fig 17: Influence of the decay rate on base-level activation for different, evenly distributed frequencies of interactions 
ranging from 0.5 actions to 1.25 actions per 24h. 

3.5.2 Effect of base-level activation on model performance 
Based on the reasoning explicated in the preceding section, a set of decay parameters ranging 
between 0.30 and 0.60 was used to study the effect of base-level activation on the model 
performance. Performance improvements cannot be observed, which is in line with the assumption 














