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H U I X I N C H E N 

System Identification Theory Approach to Cohesive 
Sediment Transport Modelling 

A B S T R A C T 

Two aspects of the modelling sediment transport are investigated. One is the univariate 

time series modelling the current velocity dynamics. The other is the multivariate time 

series modelling the suspended sediment concentration dynamics. 

Cohesive sediment dynamics and numerical sediment transport model are reviewed and 

investigated. T h e system identification theory and time series analysis method are de

veloped and applied to set up the time series model for current velocity and suspended 

sediment dynamics. 

In this thesis, the cohesive sediment dynamics is considered as an unknown stochastic 

system to be identified. The study includes the model structure determination, system 

order estimation and parameter identification based on the real data collected from rele

vant estuaries and coastal areas. T h e strong consistency and convergence rate of recursive 

least squares parameter identification method for a class of time series model are given 

and the simulation results show that the time series modelling of sediment dynamics is 

accurate both in data fitting and prediction in different estuarine and coastal areas. 

It is well known that cohesive sediment dynamics is a very complicated process and 

it contains a lot of physical, chemical, biological and ocean geographical factors which are 

still not very well understood. The numerical modelling techniques at present are still 

not good enough for quantitative analysis. The time series modelling is first introduced in 

this thesis to set up cohesive sediment transport model and the quantitative description 

and analysis of current velocity and suspended sediment concentration dynamics, which 

provides a novel tool to investigate cohesive sediment dynamics and to achieve a better 

understanding of its underlying character. 
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Chapter 1 

Introduction 

This research has focused upon the mathematical modelling of cohesive sediment trans

port problem in two areas: one is the current velocity dynamics and the other is suspended 

particulate matter (SPM) concentration or suspended sediment concentration (SSC) dy

namics. 

The ability to set up mathematical models of estuarine and coastal sediment dynamics is 

very important for many research and economic reasons. First , monitoring and control 

of siltation for the need of navigable harbours and waterway. Second, due to industri

alisation and urbanisation, the monitoring and prevention of accumulation of pollutants 

in close proximity to estuarine and cocistal environments becomes a more interested sub

ject. Third, the possibility of global sea level rise has a direct effect on the estuarine and 

coastal environment. If all sediment transport process can be realistically modelled then 

predicting the consequences of such an event would be made considerably easier. 

Since the most widely used sediment transport flux models are so-called cu-integra! (con

centration times velocity integral) type of models. Therefore suspended sediment concen

tration and current velocity are two very important process to model when considering 

sediment transport. 

This thesis is arranged as follows: 

The basic concepts and some useful kinds of time series modelling are introduced and 



the prediction technique of using time series modelling is shown in Chapter 2. 

In Chapter 3, the theoretical background of system identification theory are given. The 

recursive least squares identification method and its strong consistency and convergence 

rate are given for different kinds of system or time series model, which is one of the main 

theoretical contribution of the thesis. 

The order determination problem is discussed in Chapter 4 and a new order determination 

test called minimum eigenvalue ratio test ( M E R T ) is given. The analysis, comparison and 

simulation results show that it is an improved method for traditional determinant ratio 

( D R ) test. 

The description and characteristic properties of cohesive sediment dynamics and its hy

draulic numerical modelling are reviewed in Chapter 5. 

Chapter 6. gives one layer time series model for current velocity and S P M concentration 

dynamics in the Holderness Coast, England based on the system identification theory. 

In the Chapter 7., the multi-layer time series model for current velocity profile and S P M 

concentration profile in the Rufiji Delta, Tanzania is described based on the system iden

tification theory. 

Finally, conclusions, discussions and suggestions for the further work complete the inves

tigation are presented in the last chapter. 



Chapter 2 

Time Series Models 

2.1 Introduction 

A time series is a collection of observations made sequentially in time. (Chatfield 1980, 
Box and Jenkins 1976, Harvey 1981 and Enders 1995). Typically i t consists of a set of 
observations on a variable y taken at equally spaced interval over time. Examples occur 
in a variety of fields, ranging from economics, engineering to sediment dynamics. Some 
general references on the subject are listed in the references section. 

1. Examples 

We begin with some examples of the sort of time series which arise in sediment dy-
naimics. 

(a) Time Series of SPM concentration 

A major part of land ocean interaction in the coastal zone consists of the transport 
of suspended particulate matter (SPM), Here SPM means the mass of the fine solid ma
terial in the water with a grain diameter less than 20 /xm and greater than 0.4 /xm. SPM 
in the North Sea consists of microflocs of mineral particles and organic matter (mainly 
detritus) in SPM is about 20 % (Schroder 1988). According to (Eisma & Kalf 1987) in 
January 1980 about 85 % of the mineral mass was smaller than 20 fim peaking between 2 



and 5 fim (Sundermann 1994). Its mass balance is determined by the input from rivers, 
atmosphere and adjacent seas, by advective and diffusive fluxes, and by deposition and 
resuspension at the sea bottom. Fig 2.1 shows the time series of SPM concentration in 
the Tamar Estuary during the high water slack. 

(b) Time Series of Current Velocity 

The most complete technique for estimating suspended sediment (or SPM) transport is 
to multiply a current velocity profile by a profile of suspended sediment (or SPM) con
centration and integrate the result over the water depth. So current velocity is a very 
important variable in sediment transport and hydrodynajnics, also it is comparatively 
easy to observe ajid measure. Fig 2.2 shows the time series of current velocity in the 
Tamar Estuary during the high water slcick. 



Suppose one observes such a time series, denoted by xjt for the value at the time period 
over the period from t = 0 up to i = n, where n means now. In time series forecasting 

we are interested in making statements about what value the series wi l l take at some 
future time period n - f / i , where h means hence. Thus the h represents the number of time 
periods into the future the forecast is looking, li h ^ 1, then the one-step forecasts are 
being made. For example (see Fig 2.1), if yi represents the SFM concentration in minute 
t, this series might be observed over a 6 hours period, t=0,l,2,...,300, starting from 10:30 
and ending 16:30, and one may want to forecast the values taken by this series for 17:00 
{h = 25) and 22:00 h = 325 of the same day. As the reasons for the change of SPM 
concentration are so complex, the series yt may be considered to be a sequence of random 
variables. In particular, when standing at time n and contemplating the value that wi l l 
occur at time n + / i , one has very l i t t le reason to suppose i t possible to forecast this value 
with perfect accuracy, except by incredible luck. Thus yn+h >s a random variable, when 
viewed at time n, and so should be characterised in probabilistic terms. In particular, one 
could talk about its distribution which will be conditional, given the information available 
at time n upon which a forecast is based. 

Figure 2.3 shows the situation being considered. To fully characterise yn+hi the value 
to occur at time n + / i , one needs a complete probability density function, so that state
ments such as Pr(0.016 < yn+h < 0.085) = 0.65 can be made, for any interval. I t wi l l 
generally be quite impossible to completely determine the shape of the density function 
without making some very strong and highly unreal assumptions about the form of this 
function. A rather less ambitious procedure is to try to place confidence intervals about 
the forthcoming value yn+h, so that a statement of the form 

P r { B < yn+h < A ) = 0.95 

can be made. The points A and B are shown in Fig 2,3 and enable the forecaster to put 
limits on the value being forecast with a reasonably high degree of confidence of being 
correct. An example of such a forecast interval is to say, " I believe the SPM concentration 
wil l be in the 0.016 g/1 - 0,036 g/1 range at 22:00 today, with probability 0.95." If your 
forecasting procedure were a good one and a whole sequence of such forecasts were made, 
you would expect that the true SPM concentration or whatever would be outside the 
stated intervals only about 5% of the time. If you can go through life being wrong 
only 5% of the time, things should turn out very well for you. Such intervals are called 
interval forecasts. Confidence intervals are sometimes given in practice, although much 
less often than they should be, but forecasters are usually content with providing just a 



a single guess for y^+h that in some way well represents the whole distribution of possible 
values. An obvious candidate for such a value is an average, such as the mean shown in 
Fig 2.3 and in this thesis, the word forecast always means the point forecast. 

Time 
Obscfvalion 

period 
l=n+h 

Fig 2.3 Illustralion of forecast 

2,2 Analysing, Modelling and Forecasting Time Se

ries 

2.2.1 Objective of time series modelling 

The main reason for setting up a time series model is to enable forecasts of future values 
to be made. The movements in yt are explained in terms of its past, or by its position in 
relation to time. Forecasts are then made by extrapolation. 
The statistical approach to forecasting is based on the construction of a model. The 
model defines a mechanism which is regarded as being capable of having produced the 
observations in question. Such a model is almost invariably stochastic. I f i t were used to 
generate several sets of observations over the same time period, each set of observations 
would be different, but they would all obey the same probabilistic laws. 
Our objective wil l be to derive models possessing maximum simplicity and the minimum 
number of parameters consonant with representational adequacy. Obtaining such models 



number of parameters consonant with representational adequacy. Obtaining such models 
is important because: 

• They may tell us something about the nature of the system generating the time 
series; 

• They can be used for obtaining optimal forecasts of future values of the series; 

• When two or more related time series are under study, the models can be extended 
to represent dynajnic relationships between the series; 

• They can be used to derive optimal control policies showing how a variable un
der one's control should be manipulated so as to minimise disturbances in some 
dependent variable. 

The ability to forecast optimally, to understand dynamic relationships between variables 
and to control optimality is of great practical importance. 

The approach adopted is, first to discuss a class of models which are sufficiently flexible 
to describe practical situations. In particular, time series are often best represented by 
nonstationary models in which trends and other pseudo-systematic characteristics which 
can change with time are treated as statistical rather than as deterministic phenomena. 
Furthermore, sediment dynamic time series often possess marked seasonal or periodic 
components themselves capable of change and needing (possibly nonstationary) seasonal 
statistical models for their description. 

The process of model building, which is next discussed, is concerned with relating such a 
class of statistical models to the data at hand and involves much more than model fitting. 
Thus identification techniques designed to suggest what particular kind of model might 
be worth considering, are developed first. 

The fitting of the identified model to a time series using recursive least squares or extended 
least squares method to estimates of the model parameters. 
When forecasts are the objective, the fitted statistical model is used directly to generate 
optimal forecasts by simple recursive calculation. In addition, the fitted model allows 
one to see exactly how the forecasts utilise past data, to determine the variance of the 
forecast errors, and to calculate limits within which a future value of the series will lie with 
a given probability. When the models are extended to represent dynamic relationships, a 
corresponding iterative cycle of identification, fitting and diagnostic checking is developed 



to arrive at the appropriate transfer function. Stochastic models developed earlier axe 
employed in the construction of feed-forward and feedback control schemes. 
In this thesis, we shall present methods for building, identifying models for time series and 
dynamic systems. The methods discussed wil l be appropriate for discrete (sampled-data) 
systems, where observation of the system and an opportunity to take control action occur 
at equally spaced intervals of time. Here we suppose that observations are tivailable at 
discrete, equi-spatial intervals of time. 

2.2,2 Basic Concepts 

A time series model is said to be a univariate one when only one time series (scalar or 
vector) and noise series are considered. A time series model is said to be multivariate one 
if more than one time series (scalor or vector) and noise series are considered. A time 
series is said to be continuous when observations are made continuously in time. The 
term continuous is used for series of this type even when the measured variable can only 
take a discrete set of values. A time series is said to be discrete when observations are 
taken only at specific times, usually equally spaced. The term discrete is used for series 
of this type even when the measured variable is a continuous variable as in Figs 2.1 and 
2.2. 

In this thesis we are mainly concerned with discrete time series. Discrete time series can 
arise in several ways. Given a continuous time series, we could read off the values at 
equal intervals of time to give a discrete series called a sampled series. Another type of 
discrete series occurs when a variable does not have an instantaneous value but we can 
aggregate (or accumulate) the values over equal intervals of time. For example, current 
velocity and SPM concentration are very important in dealing with sediment transport 
and observations. A series of T observations wil l be denoted here by t / i , . . . , i / r irrespective 
of whether they refer to a current velocity or SPM concentration. 

There are two aspects to the study of time series analysis and modelling. The aim of 
analysis is to summarise the properties of a series and to characterise its salient features. 
This may be done either in the time domain or in the frequency domain. In the time 
domain, attention is focused on the relationship between observations at different points 
in time, while in the frequency domain i t is cyclical movements which are studied. The 
two forms of analysis are complementary rather than competitive. The same information 
is processed in different ways, thereby giving different insights into the nature of the time 
series. Here, we focus on time series modelling and analysing in the time domain. 



It is the modelling of time series as stochastic processes that are primarily of concern 
here. The sediment dynamic variables such as current velocity and SPM concentration 
are each taken as a stochastic process and each observation in the stochastic process is a 
random variable. The observations evolve in time according to certain probabilistic laws. 
Thus the stochastic process may be defined as a collection of random variables which are 
ordered in time. 

2.3 Some Useful Kinds of Time Series Models 

2.3.1 White Noise 

Before consideration of how a time series is analysed and forecast, it is necessary to 
introduce to a few simple but important models, that is methods by which a series can 
be generated. The simplest possible model gives a purely random series, otherwise known 
as white noise. This second name is taken from engineering and cannot properly be 
explained without entering the environment of a method of analysis known as spectral 
analysis, so no explanation will be attempted. A series is white noise if i t has virtually 
no discernible structure or pattern to i t . I f such a series is denoted by Wt, for all values 
of i , the formal definition is that this series is white noise if the sequence is 
independent and from a fixed distribution which having mean zero and constant variance 

i.e. Ewt = 0; EwtWs — <̂ (,s<7̂  where St^^ = 1,^ = 5 and St^s = Q^t s. In the 
case that wt is a vector sequence, wt is a white noise series means that Ewi = 0 and 
Ewiwl = 6(,5a^/, where 0 is a zero vector and / is an unit matrix. 

2,3.2 Backshift Operator and Difference Operator 

1. T h e backshif t operator 

The backshift operator, plays an extremely useful role in carrying out algebraic 
manipulations in time series analysis. I t is defined by the transformation 

z~^yt = Vt-i (2-1) 



Applying z ^ to yields = yt-^- Substituting from (2.1) gives ^ " * ( 2 ~ ^ y , ) = 
^~^yt = yt-2 and so, in general. 

z~'yt = yt-k. -̂ = 1,2,3,... (2.2) 

I t is logical to complete the definition by letting have the property z%t = yt so that 
(2.2) holds for all non-negative integers. 

The backshift operator can be manipulated in a similar way to any algebraic quantity. 
Consider a class of so called coloured noise Ct driven by the white noise which can be 
represented as following: 

Ct = Wt-\- ciwt^i -f . . . -f CpWt-p (2.3) 

where c i , C 2 , - . - , C p are constants. The model can also be written in the form: 

= (1 + ciz-^ + C 2 ^ - ^ + ... + c^z-'')wt (2.4) 

2. T h e f i r s t d ifference operator 

The first difference operator A (sometimes called the forward difference operator), can 

be manipulated in a similar way to the backshift operator, since A = 1 — ^ ~ ^ The 

relationship between the two operators can often be usefully exploited. For example, 

A^yt = (1 - z - ' )V = (1 - 2z-' -f z-'')yt = yt - 2yt-i + yt-2-

The main types of times series model we used in sediment dynamics here are; Autoregres-

sive Model (AR), Autoregressive-moving average Model ( A R M A ) , Autoregressive-Moving 

Average Exogenous Model (ARMAX) and Multi-input Single Output Model (MISO). 

2.3.3 Autoregressive Models (AR Models) 

A stochastic model which can be extremely useful in the representation of certain prac

tically occurring series is the so called autoregressive model. In this model, the current 

value of the process is expressed as a finite, linear aggregate of previous values of the pro

cess and a white noise series tU(. Let us denote the values of a process at equally spaced 

times i , i - l,i - 2,... by yt,yt-},yi-2,then 

yi + aiyi-i -h a2yi~7 + --- + o.pyt-p = (2.5) 

10 



is called an autoregressive (AR) process of order p denoted AR(p). If we define an au-
toregressive operator of order p by 

then the autoregressive model can be written economically as 

A{z-')yt = wt (2.(5) 

In this case, p starting values are required, X j , j = 0,1,,..,p, and then together with the 
white noise series Wi the value of yt are calculated iteratively. 

If this model arises and its coefficients are known, i t is again easy to use to form forecasts, 
t/n+i will be generated by 

y n + i = (ai j /n + •• -!- apyn^p+i) + Wn+l 

the last term of which is not knowable at time n, so the optimum one-step forecast / ^ ^ i is 

/ n . l = aiVn + . . . H- G p y n - p + l 

similarly, yn+2 wil l be generated by 

yn+2 = fllj/n+l + ( a 2 y n + + apy„_p+2) + Wn+2 

The last term is not knowable, the term in parentheses is entirely known at time n, and 
the first term is forecast by a i / n , i , so the optimum two-step forecast / „ ^ 2 

fn.2 = fll/n.I + {<^2yn + + OpJ/^.p+z) 

I t is obvious how further forecasts are formed: One simply writes down the generating 
mechanism for the value to be forecast, with everything that is known part of the forecast 
and everything that is not known replaced by its optimum forecast so that we can get the 
optimum k-step forecast = 1,2,... based on the values y „ , y „ _ i , . . , . 

2.3.4 Autoregressive-moving Average Models ( A R M A Mod
els) 

To achieve greater flexibility in fitting of actual time series, i t is sometimes advanta
geous to include coloured noise series driven by the white noise series. This leads to the 
autoregressive-moving average model of order p, 7 denoted ARMA(p , g). 

Vt + a^yt-i -\- a2yt-2 + --• + CLpVt-p = tû  - f CiWi-i - f C 2 t O ( _ 2 + 4- CrWt^r (2.7) 
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or, set 

A{z-^) = 1 + aiz~' + a2^"^ + ... + ajyZ'^ 

C(Z'^) = 1 + C i 2 - ' + C 2 2 - ' + ... 4- CrZ-' 

then the ( 2 . 7 ) is equivalent to the following: 

Aiz-')yt = C{z-')wt ( 2 , 8 ) 

A specific example is the A R M A ( 1 , 1 ) generating process 

yt = 0 . 5 y i - i + u>( + 0 .3 iO(_ i 

so that given a starting value for yo and the white noise sequence wi, yi is formed itera-
tively. 

Forecasting is straightforward by just using the rules given in the previous two sections, 
so that in the A R M A ( 1 , 1 ) example yn+i is formed by 

Then 

fn.i = 0.52/n + 0.3u;n = 0 . 5 y „ + 0 .3 (yn - / „ - i . i ) 

by noting that the one-step forecast error is 

en.i = yJn+i 

so 

Further, j/n+2 is given by 

yn+2 = 0 . 5yn+ i H- + 0.3uy„+i 

Both of the last terms are best forecast by their mean values, which are taken as zero, 

/ n . 2 = 0 . 5 / n . l 

and so forth. 

Although the ARMA model appears complicated and their statistical properties are dif
ficult to derive, they are of real importance in practice. One reason for this is that there 
are good theoretical reasons for believing that the ARMA model is the most likely to be 
found in the real world (Granger, 1 9 8 0 ) . 
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2.3.5 Autoregressive Moving Average Exogenous Models (AR-
M A X Models) 

Let yt and ut be scalar signals and consider the model structure 

A{z-')yt = B{z-')ut + C{z'')ujt ' (2.9) 

where 

/ l ( 2 - ' ) = l + a i 2 ' ' + -.- + ap2-P 

^ ( ^ - ' ) = 1 + 6 , 2 - ^ + . . . + 6 , 2 - ' 

C ( 2 - ' ) = l + c , 2 - * + . . . + C r 2 - " 

The model (2.9) can be written expHcitly as the difference equation 

yt + aiyt-i + ... + Cpyt-p = 6iU(_i + ... + bgUt-^ + to, + CiWt-i + ... + CrWt-r (2.10) 

but the form (2.9) using the polynomial formalism will be more convenient. The model 
(2.9) is called an ARMAX(77, q-, r ) model, which is short for an ARMA(p , 9) model (au
toregressive moving average) with an exogenous signal (i.e. an input variable Ut). 
Fig 2.4 gives block diagrams of the model (2.9). 

Wt 

C ( 2 - ) 

1 

Fig 2.4 Block diagram of an A R M A X model 

There are several important special cases of (2.9): 

o An autoregressive (AR) model is obtained when q = r = 0 (Then a pure time series 

is modelled as (2.5), i.e. no input signal is assumed to be present.) 
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o an autoregressive moving average (ARMA) model (2.7) is obtained when q = 0. 
When A{z~^) is constrained to certain the factor 1 — z~^ the model is called au-
togressive integrated moving average ( A R I M A ) . The model is useful for describing 
drif t ing disturbances. 

Although the A R M A X model seems to be more complicated than the A R and A R M A 
model, i t can study more than one time series and represent the dynamic relationships be
tween the series. I t has a wider application in engineering and economics. The generation 
process and forecast process are very similar to the AR model and A R M A model. 

2.3.6 Multi-Inputs Single-Output Models (MISO Models) 

If the system shown in Fig 2.4 contains more than one input variables, we can consider 
the MISO model as follows: 

s 
>l(z~')j/n = ^ 5 , ( ^ - ' K „ + f n (2.11) 

where = C(z~^)wn is the system noise and 

A{z-') = 1+Aiz-'+ Apz''' 

Bi{z-') = l-^Bi,z-'-^... + Bi^^z-'^ 

C ( ^ " M = l + C l ^ - * + . . . - | - a z - ^ 

The model (2.11) can also written explicitly as the difference equation 

yn = ^ l y n - l + CL2yn-2 + •-- + apl/n-p 

+ 

4-e„ (2.12) 

It is easy to see that if s = I , (2.11) is a ARMAX model. The MISO model can be used 
in describing and predicting the suspended sediment concentration and the more detail 
about that will be given in Chapter 6. 
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Chapter 3 

System Identification Theory 

3.1 Introduction 

Almost without exception, real dynamical systems are subject to random disturbance. 
In some circumstances such systems can be approximated by deterministic ones by ne
glecting the random effects. However, to consider them as truly stochastic systems is not 
only very attractive from a theoretical point of view but it is in fact necessary in order 
to improve the performance of a system in an engineering context, (Han-fu Chen 1985, 
Soderstrom 1989, Hsia 1977). 

In order to describe and understand a stochastic system, one first has to construct its 
mathematical model, which is known as system identification. 
System characterisation and system identification are very fundamental problems in sys
tem engineering practice. System characterisation is concerned primarily with setting 
up mathematical models to represent system variable relationships. On the other hand, 
system identification deals with the choice of a specific model for a class of models which 
is mathematically equivalent to a given system. 

The application of system identification technology goes beyond the boundaries of en
gineering and physical sciences. Many other fields of study, such as biological sciences, 
medicine, and economics, can also benefit by employing system identification method to 
establish quantitative models for the system arising in these areas. Recently, P.C.Young 
et al. (1994) successfully applied the system identification technique to the rainfall-flow 
dynamical analysis. However, as far as this author knows, there are few applications in 
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sediment dynamics and sediment transport. 

A variety of techniques have been devised over the years for system identification. In 
general the identification techniques are derived from the optimisation and estimation 
theories. The purpose of this thesis is to focus on the on-line least squares recursive 
method as a basic solution to the system identification problem since the least squares 
method is a classical method frequently practised among scientists in various fields and 
the other motivation for focusing on the least squares method is that other popular iden
tification methods, such as maximum likelihood, Kalman filtering, instrumental variables 
and stochastic approximation, can be easily related to the least squares algorithm. There
fore a basis of some degree of integration and unification of many system identification 
methodologies is introduced. 

3,2 Main Concepts of Probability Theory 

In this section some basic facts are given from probability theory and random processes. 
No proofs are given here, they are given in the references (Doob 1953, Lipster and 
Shiryayev 1977, Loeve 1960, Wang 1965, Chow 1965, Hall 1980 and Han-fu Chen 1985). 

3.2.1 Probability Space, Random Variables and Mathematical 
Expectation 

Let ( n , ^ , P) denote a probability space and u denote a point of ft which is also called an 

elementary event. is the a-algebra of subset in H (i.e., JF has the following properties): 

1, n e r . 

2. The complementary set A"" of A belongs to A ^ JT. 

3- \JT=i Ai^J", i f> \ . - 6 JF , 1 = 1,2,.... 
From here it follows immediately that 

1=1 

if we notice that (H^, AiY = \J^, 

A set yl G ^ is called a random event, P is called the probability measure on {Q,,J^). I t 
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is a function defined on T with the properties 

1. p{A) > oyA e ^ . 

2. P{Q) = 1. 

3. PiUZi ^0 = J:Z^ ^i^i) » if e ^ , and / I , f ) A,- = 0, ^ j . 
P{A) is called the probability of the random event A. 

Let B be any subset of a set A ^ ^ where A is of probability zero. Then we as
sume that B ^ T and that i t also has probability zero. The probability space with such 
an extended a-algebra is called a complete probability space. In the sequel we shall only 
consider complete probability spaces. 

We shall always denote the /-dimensional random Euclidean space by and its Borel 
a-algebra by B^. By a Borel a-algebra on a topological space we mean the smallest a-
algebra containing all the open sets of the topology. A measurable function ^ = ^{u>) 
defined on ( f l , ^ ) and valued in {R\B^) is called the /-dimensional random vector. 
Let ^ , T / be two /-dimensional random vectors. We say that ^ is equal to J; with probability 
one, or almost surely, and denote this by 

i = i] a,s. 

if 

^ V) = 0 

Let ^ be a one-dimensional nonnegative random variable and set 

>ln. = { u ; : z 2 - " < ^ < ( i + l ) 2 - " } 

The mathematical expectation of nonnegative random variable ^ is defined as the 
integral 

E^= f ^dP = l i r m 
oo 

n2" 

Y,i2-^PA^i + nP{i>n) 
1=1 

which may be infinite. 

For an arbitrary random variable ^, define 

=7nax(e ,0) , r =7nax ( - ^ ,0 ) . 

These are both nonnegative and hence and Ei~ are well defined. Notice that 
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so i t is natural to define 

= Ei^ - EC 

if at least one of Ê "*" and E^ is finite. 

If = Ê "*" + E^ < CO, then ^ is said to be integrable or to have finite expectation. 
Let 

be an /-dimensional random vector. By its distribution function, we mean the function 
defined by 

F^{x\...,x') = P[e <x\...,(' <x']. 

If there is a function / ^ ( x \ r e ' ) such that 

F,{x\...,x')= r ... f MX\...^')dX\..dX', 

then / ( ( I ' j . . . ,x ' ) is called the density of the distribution of ^ or simply the density of ^. 
When ^ is one-dimensional, then its distribution function and density are denoted by 
F^{x) and / ^ ( i ) , respectively. Notice that the mathematical expectation of a random 
variable ^ can be written as a Lebesgue-Stieltjes integral with respect to its distribution 
function: 

E^ = J ^^^ = j xdF^{x). 

3,2.2 Convergence Theorems 

The convergence of a sequence of random variables to its l imit ^ can take place in 
several difl^erent ways: 

1. Convergence with probability' one or almost surely means that, with the possible 

exception of a set of probability zero, for any t j E SI, ^n{i^) —* ^{f^), l-fia-^ is, 

For this type of convergence, we often write 

{„ ( a.s. 
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2. Convergence in probability means that for any c > 0 

Hm P [ | ^ „ - ^ | > e ] - . 0 
n-*oo 

and this is denoted by 

3. Convergence in distribution or weak convergence means that for any x where F^{x) is 
continuous 

lim F<„(x) Fi{x), 

and it is denoted by 

lim = ^ 
n-*oo 

4. Convergence in the mean square sense means that 
lim E\i„ - = 0. 

n—CO 

The following diagram explains the relationship of these convergence types 

convergence a.s. convergence p. =i> convergence w, 
it 

convergence in the mean square sense. 

Let E\^n\ < oo. We now give conditions for limn_oo = EC-

Theorem 3.1 (Monotone Convergence Theorem). 

Uin]LUnlO a.s. and < oo {E(t < oo), then E^n E^ {E^n I E^-

Theorem 3 . 2 (Fatou Lemma). 

If there exists an intcgrable random variable ?/ such that i] < (Cn ^v)) then 

Einf lim ^ i ^ i / lim E(n (-sup lim E^n ̂  Esup lim ̂ n). 
n—»co n—00 n—*oo n-*oo 

Theorem 3 . 3 (Dominated Convergence Theorem). 
/ / lim„^oofn = ^ and there exists an integrable random variable i] such thai 
1̂1 < V. tfien 
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3.2.3 Independence 

Let Ai E = 1,2,.... If for any set of indices { i i , 

j=i j=i 
then random events are called mutually independent. 
We say that J^i is a sub-a-algebra o( \( A E implies A € ^ and itself is a cr-
algebra of sets in Q. Sub-cr-algebras = 1,2,... of ^ are called mutually independent 
if any index set { z i , i j b } , the random events Ai,...^Ak are mutually independent when 

Let v be an /-dimensional random vector. Denote by the smallest a-algebra containing 
all sets of form 

and call it the cr—algebra generated by 
Random vectors Tji^i = 1,2,... are called mutually independent if cr— algebras are 
mutually independent. 
If { T ; , } are mutually independent and identically distributed with ii^||v.lt < oo, then 

1 " 
lim — y 7]i = Eiji a.s. 

1=1 

This is called the strong law of large numbers. 

Theorem 3 . 4 (Borel-Cantelli Lemma). 
Let A\^Ai^... be random events. 

1. If E ~ i P^i < oo, then P U ^ ^ = 0. 
2. If the events [Ai] are mutually independent and PAi = oo, then 

The set n.=i Ui l i -^ i >s usually denoted by lirrij^^Aj and it consists of all u) which 
appear in an infinite number of Aj. 

3.2.4 Conditional Expectation 

The relationships between any two quantities in the sequel always permits the failure of 
that relationship on a set with probabihty zero. This point will not be mentioned every 
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time. For example, l i m n ^ o o ^ n = ^ means convergence with probability one, but we shall 
frequently omit to write a.s.j similarly, the quantifier € J corresponds to "all u in J 
with the possible exception of a set J with zero Probability." 
We always denote by I A the indicator of a set A: 

^ _ f 1 LOG A 
^~ [0 Lu^A 

and define 

A 

If on besides the probability measure there is another measure Q such that for 
A € TyPA = 0 implies QA — 0, then Q is called absolutely continuous with respect to 
P and this fact is denoted by Q < P. 

Theorem 3 . 5 (Radon-Nikodym). 

/ / Q <C P, then ihtrc exists a nonnegaiive random variable ^ such that for any AG T 

Q{A) = [ idP 
J A 

and ^ is defined uniquely in the sense that if there is another nonnegative random variable 
f] with the property 

Q{A) = J i]dP VA € J ,̂ 
then P{( 7^ 7?) = 0. 

This kind of uniqueness is called to within stochastic equivalence, and ^ is the Radon-
Nikodym derivative (or the density of one measure (P) with respect to the other (Q), 
denote by 

^ dP 

Let Ti C T he a. sub-a-algebra and be a probability measuie on J-'i defined simply 
by setting 

Let t ; be a nonnegative random variable and define 

Q{A) = J ijdP = J vdP^' V/leJF,. (3.1) 
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Clearly, Q is a measure on T\ and is absolutely continuous with respect to P^^, hence by 
Theorem 3.5 there exists an .T î—measurable nonnegative random variable ^ such that 

Q{A) = I idP^^ = f idP. (3.2) 
J A J A 

Comparing (3.2) with (3.1), we find that there is a nonnegative random variable ^ such 
that 

A 

^ is called conditional expectation of f given T\ and is denoted by 

i = E{rilT,) or E^^v-

By Theorem 3.5, E{i]l!F\) is unique to within stochastic equivalence. 
For the general random variable rj (not necessarily nonnegative) if Evf exists (i.e. at least 

one of Et]'^ and Et]' is finite), then define 

E{rjlT,) = E{ii^lT,)-E{rlT,). 

The conditional expectation E{^/i]) of ^ given a random vector T; is defined by 

Assume < oo, E\{i]\\ < oo. The conditional expectation hcis the following properties: 

1. E^'{a^ + bri) = aE^'i H- bE^'i], where a, 6, are constants. 
2. Let ^ be a random vector. There exists a Borel measurable function / ( • ) such that 

E{iK) = / ( C ) . 

3. Let EE^'i = Ei 

4. If ^ is ^1-measurable. 

E^'^i^i (3.3) 

5. E^'Ci = CE^'(. if ^i-measurable and £:||C'^|| < oo. 
6. If !Fi and are sub-cr-algebra with T\ C T2 C T , then 

E^'E^^i = E^'C 

7. If ( and ( are independent, then 

m o = E(. (3.4) 

22 



8. If JFi = {n,4>), then 

E^'i = Ei 

The conditional probability P^'A or P{AIT^) oi A ^ T given Tx is defined by 

P''^{A) = E{UIT,\ 

and if !F\ is the cr-algebra T"^ generated by T / , then P{A/!P^) is called the conditional 
probability of A given v and is denoted by P^A or P{A/T]). Clearly, 

P^'{A)>0, P^'{n) = l, 

and (CO \ oo 
[ j A , =y:P^^{A^) 
i=i / . = 1 

if Air[Ai = <l>yi^j. 

Theorems 3.1-3.3 can be extended from expectation to the conditional expectation. 

Theorem 3.6. 

UCn]^ UnlO a.s. andE^- <<x> (E^^ < oo), i/ien 

E^^Cn]E^^C {E^^UiE^^i) a.s. 

Theorem 3.7. 

Suppose that rf is an intcgrable random variable, 
i- Uv<in {in <^). then 

E^Hnf lim ^„ < inf lim E^'in (sup lim E^^^n ^ E^^sup lim ^n] as. 
n—'OO n—•oo \ n—'OO n—'OO / 

2. / / l^nl < »? and l i = ^ a.s., then 

l i m £ ; ^ ' | e n - ^ | = 0 a.s. 
n-*oo 

Random vectors ^ and r/ are called conditionally independent given ( if 
< x.V < y) = P^{( < x)P^(7, < y) , Vx,y, 

where the inequality ^ < x between vectors should be understood as inequalities between 
their components. 
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3.2.5 Stochastic Processes 

Let T = [0, oo) and Let B{T) be the a-algebra of Borel sets on T. A function defined 
on ( f l X T, ^ X B(T)) and taking values in (/?',^') is called an /-dimensional continuous 
time stochastic process. If it[^) is only defined at discrete times t = 0,1,2,..., then it is 
called a discrete time (parameter) stochastic process or a random sequence. 
For fixed w,^((a;) is a function of to and is called a trajectory of the stochastic process. 
If for any Borel set B 

{ ( a ; , 0 : 6 (^ ) € G J F x 6 ( r ) , 

then {((u>) is called a measurable stochastic process. 
We often omit u and denote a process simply by 

Theorem 3 . 8 (Fubini). 

if it '5 a measurable stochastic process, then almost all of its trajectories are Borel mea
surable functions of i. In addition, if E(t exists Vi 6 T, then it is also a measurable 
function. Further, if 

j E\\i,\\dt < oo 

then 

J \\(t\\dt < oo U.S. 

and 

E J j t d t ^ J^E^.dt 

where S is any measurable set in T, Two stochastic processes and rjt are called stochas
tically equivalent if 

P ( e , ^ t ? , ) = o V < G T , 

and in this case it{r}t) is called a modification of »7((̂ (). 
If for all u; G n , with the possible exception of a set of zero probability, the trajectories of 

are continuous (left-continuous or right continuous), then is called continuous (left-
continuous or right-continuous, respectively) process. A left- or right-continuous process 
is measurable. 
Let be a family of nondecreasing a-algebras (i.e., Ts Q Tt, Vs < 0 - 6 *s J^r 
measurable for any t G T , then we say that (^t is J^i-adapted and write {it^!Ft)-
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If (̂ is a measurable process, < oo, € T and { ^ J is a nondecreasing family of 
a-algebra, then in the equivalence class E(^t/^t) a modification can be chosen to be J^t 
measurable. In the sequel, we always assume that E{^t/Tt) is so chosen. 

3.2-6 Martingales 

Definition 3.1. 

Let be adapted to a nondecreasing family of a-algabras {!Fi} with E\^t\ < oo. {^t,^t) 
is called a martingale if 

Definition 3.2. 
Let be adapted to a nondecreasing family of a-algabras [Tt] with E\^i\ < oo. {^ti^t) 
is called a supermartingale if 

B{iiiJ',)<is v s < i , s , t G r 

Definition 3.3. 
Let ^( be adapted to a nondecreasing family of cj-algabras {Tt} with E\E,t\ < oo. {^yJ^t) 
is called a submartingale if 

E{itlJ's)>is V 5 < i , s.ieT 

The above three mentioned definitions also hold for a discrete-time process. 

Example 3.1. 

Suppose T / i , * = 1.2,... to be a mutually independent random sequence with Era = 0, Vz. 
Denote 

n 

t = l 

where denotes the a-algebra generated by T ? i , . . . , 7 / n - We know E{^m/^m) = (m by 
(3.3) and £;(E?=m+, V./^m) = E ^1=^+, Vi = 0 by (3.4) for any m < n. Hence 

mj^m) = E{u + ''•/^•") = ^-^ 
i=m+1 

and (^n,^u) is a martingale. 

25 



Theorem 3.9. 

Assume (^m^n) l-o be a submartingale (supermar ting ale) and supnE^^ < oo {supnE^~ < 

oo). Then converges to a finite limit ^ a.s. as n oo and E^'^ < oo (E^~ < oo)). 

Corollary 3.1. 

U ( ^ n , ^ n ) t 5 a nonpositive (nonnegative) submartingale (supermartingale), then con
verges to a finite limit as n ^ oo. 

Corollary 3.2. 

(in.J'n) is a martingale, then E\^n\ = + = ^^(n ~ = 2 £ ^ + - E^i. Hence 
for martingale supnE^^ < oo (or supnE^~ < oo) is equivalent to supnE\^Ti\ < oo. 
^f Uny^n) is a martingale, then { z „ } defined by x i = ^ i , . . . , x „ = ^„ — ^ n - i is called 
a martingale difference sequence. The following two theorems are concerned with local 
convergence of martingales. 

Theorem 3.10. 

Let Xn = — ^ n - i j - ^Xi = be a martingale difference sequence, then ^„ converges a.s. 
to a finite limit on A, where 

1=2 

/[|x.|<a.] + |3^.|^/[|r,i>a,]) 
< OO 

and ai are constants with ft,- > c > 0. 

As a consequence of Theorem 3.10, we obtain: 

Theorem 3.11 
converges to a finite limit a.s. on A where 
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3.3 Strong Consistency of Least Squares Identifica
tion 

3,3.1 Introduction 

Given a physical system 5, in order to predict its evolution, one first has to construct its 
mathematical model. In some circumstances one can derive it theoretically starting from 
relationships provided by physics or mechanics; an example is the equations of motion 
of a satellite in its orbit. However, the mathematical model obtained in such a way may 
contain a certain number of unknown parameters, for example, the motion equations of 
a plane derived from the mechanical relationships may include some unknown dynamic 
coefficients. In many cases one cannot obtain a model of the system from physics and 
mechanics at all. Consider, for example, the process arising in a complicated chemical 
reaction. Hence it is of great importance to define the mathematical model for a system 
based on its inputs and outputs. For example, for an aircraft in flight the change of its 
rudder angle may be regarded as an input and the three co-ordinates of its position in 
space may be viewed as the output of the system; for a chemical reaction the product 
depends on the levels of, say, a temperature, pressure, and a catalytic agent, these can be 
viewed as system inputs and the product as the system output; for sediment transport 
process, the suspended sediment concentration depends on the current velocity, pressure, 
salinity which can be viewed as the inputs of system and suspended sediment concen
tration can be viewed as the output of the system. The task of system identification is 
to find the equations of the system. Since the measured data are usually corrupted by 
random noise, the identified system is a system under random influences. Several aspects 
must be considered in identification of a stochastic system. 

1. Selection of Model Set M{e). M{0) is parameterized by some parameter 6 to be 
selected. The true system 5 may lie in M{0), but for most cases S does not belong to 
M{0). Thus 0 has to be chosen such that M(0) approximates 5 as well as possible. 

2. Parameter Estimation. With M{0) having been selected and with input-output data 
having been obtained, the next step is to construct the estimate ^ of ^ such that M{d) is 
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consistent with true data as well as possible. 

3. Properties of the Parameter Estimate. Having specified the parameter estimate 0, 
one has to determine its properties. It is usually desirable that 0 , has at least the follow
ing property: if 5 € M{0) then 6 asymptotically converges to the true parameter 0 as the 
data increases. This is the so-called consistency problem. In addition, one also wishes to 
obtain the convergence rate of the estimate, its asymptotic distribution, the eflSciency of 
the estimate, and other related properties. 
The consistency problem is discussed here. For the case with the coloured system noise 
for the least squares identification, both strong consistency and converge rate are given 
by using the stochastic Lyapunov function series method. (Chen and Ruan, 1987; Chen 
et al. 1996). 

Results are presented here are suitable for time series analysis since the dynamic model 
considered here is nothing but the ARMAX, bilinear and MISO model in the time series 
analysis. 

3.3.2 Review of Convergence Analysis 

The strong consistency of parameter estimation has always been one of the main problems 
in systeni identification theory. There are many identification algorithms in linear time-
invariant stochastic systems which have strong consistency (Ljung et aL 1983, Han-fu 
Chen 1981a, Han-fu Chen 1981b, Han-fu Chen and Guo 1985). Han-fu Chen (1982) has 
studied the problem for linear time-invariant stochastic systems. A sufficient condition 
for strong consistency of the least squares identification algorithm has been presented for 
a white noise model. The convergence rate was also given. 

For discrete-time stochastic systems with coloured noise, the strong consistency of the 
parameter estimates of least squares identification and adaptive control has been studied 
for various conditions, but the convergence rate of the parameter estimates was not given. 
The results were extended in Chen and Ruan (1987) for the multivariable input-output 
ARMAX model. The strong consistency of the coefficient matrix and a better convergence 
rate were described for conditions weaker than the persistent excitation condition. 

In recent years, there has been much study of the identification problem of bilinear sys-
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tems. Many practical system models are bilinear, and the realisation of general non-linear 
problems can be attained by bilinear systems (Kroner 1975). Many identification meth
ods, such as recursive least squares, extended least squares, recursive auxiliary variable 
and recursive prediction error algorithms, have been used in bilinear systems. Simulation 
studies have been undertaken (Fnaiech and Ljung 1987). The precision of the estimate of 
parameters is not ideal, since estimates often have large errors. It is necessary Co study the 
conditions needed to guarantee the consistency. The identification algorithms discussed 
in Ahmed (1986) and Wang and Lu (1987) have yielded good simulation results, but they 
did not give conditions for consistency and theoretical proofs. 

The strong consistency of the coefficient matrix and the noise covariance matrix were 
given in Zhang (1983), but the model class considered did not include the multiplicator 
of input and output. The single-input single-output non-linear system is more general 
than bilinear systems, but its noise model is linear and does not include the multiplicator 
of noise and input. Although the analysis indicated the convergence analysis of least 
squares identification, the convergence rate was not studied. Also the restrictions to the 
noise series and persistent excitation are rather strict requirements. 

In Chen et al (1996), identification problems for a class of discrete-time bilinear stochastic 
systems are discussed. We remove certain strict requirements and do not need the noise 
series to be stationary or quasi-stationary. Also the conditional expectation of the variance 
of the noise series is allowed to be unbounded for all stochastic variables and time. A 
simple condition is presented to guarantee the least square identification to have strong 
consistency in the case of systems with coloured noise. In order not to make the problem 
too complicated, we consider here only the single-input single-output case. The results are 
easily extended to the multivariable input-output case or more generally to the ARMAX 
model (Billings and Voon 1984) and the non-linear model with linear parameters. We 
consider a condition which is weaker than the persistent excitation condition given by 
Han-fu Chen and Guo (1985) and Ljung and Soderstrom (1983) for white and coloured 
noise. The strong consistency of the parameter estimate using extended least squares, 
and the convergence rate are proved. 
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3,3.3 Least Squares Theory 

Least squares theory was first proposed by Karl Gauss for carrying out his work in orbit 
prediction of planets. Least squares theory has since become a major tool for parameter 
estimation from experimental data. Although there are several other estimation meth
ods available, such as maximum likelihood, Bayes method and so on, the least squares 
method continues to be the most well known among engineers and scientists. The reason 
for its popularity is that the method is easier to comprehend than others and does not 
require a knowledge of mathematical statistics. Furthermore, the least squares method 
may provide solutions even in cases when other methods have failed. 

Estimates obtained by the least squares method also have optimal statistical proper
ties: they are consistent, unbiased and efficient. It also turns out that many estimation 
algorithms that are used for system identification can be interpreted as least squares pro
cedures. Therefore, it is possible to unify many identification techniques in the framework 
of least squares theory. 

The least squares technique provides us with a mathematical procedure by which a model 
can achieve a best fit to experimental data in the sense of minimum-error-squares. Sup
pose there is a variable y that is related linearly to a set of variables x = ( x i , X 2 , X n ) , 

that is 

y = OiXi -h O2X2 + ... + OnXn (3.5) 

in which 0 = (<?i,^2,..-,^n) is a set of constant parameters. We assume here that 
are unknown and we wish to estimate their values by observing the variables y and x at 
different times. 

Let us assume that a sequence of m observations on both y and x has been made at times 
tiyt2, ...,tmy and we denote the measured data by y{i) and x i { i ) , ...,Xm{i)yi = l , . . . ,m . 
Now we can relate these data by the following set of rn linear equations: 

y{i) = 0 , x , ( i ) -f 02X2{i) + . . . + OnXn(il ^ = 1,2, .. ,m (3.6) 

In statistical literature, equation (3.6) is called a regression function, and 0; are the re
gression coefllicients. 

The system of equation (3.6) can be conveniently arranged into a simple matrix form 

y = XO (3.7) 
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wher 

( y( i ) ^ ( ^.(1) • • a;„(l) \ 

y = 
y(2) 

x = 
x,(2) . • x„(2) 

\ ) \ zi(m) . • x„{m) J 
0 = 

( 0, \ 

To be able to estimate the n parameters it is necessary that m > n. I f m.= n, then 
we can solve 6 uniquely from equation (3.7) by 

(3.8) 

provided that X"^ , the inverse of the square matrix X , exists. 0 denotes the estimate of 0. 
However, when m > n, it is generally not possible to determine a set of (?, exactly satisfying 
all m equations (3.6) because the data may be complicated by random measurement noise, 
error in the model, or a combination of both. The alternative then is to determine 6 on 
the basis of least-error-squares. 
Define an error vector c = ( c j , e ^ ) ' ^ and let 

(3.9) 

(3.10) 

£ = y - X<? 

Now we will choose 0 in sucii a way that, the criterion J 
m 

1=1 

is minimised. To carry out the minimisation, we express 

J = (y - X^?)^(y - X ?̂) 

Differentiate J with respect to 0 and equate the result to zero to determine the conditions 
on the estimate 0 that minimises J. Thus 

go\e=0 - - 2 X > + 2X^X0 = 0 

This yields 

X'XO = X > 

from which 0 can be solved as 

0 = {X'Xy^X'y 

(3.11) 

(3.12) 
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This result is called the least squares estimator (LSE) of 0, Equation (3-11) is referred to 
as the normal equation and e is called the residual in statistical literature. 

The above result is derived based on a criterion J that weights every error e,- equally. 
We often refer to this result as ordinary least squares. This formulation can be gener
alised, however, to allow each error term to be weighted differently. Let W be the desired 
weighting matrix. Then the weighted error criterion becomes 

= (y - X(?)^W(y - X^) 

Here W is restricted to being a symmetric positive definite matrix. Minimisation of Jw 
with respect to 0 yields the weighted least squares estimator (WLSE) of 

0^ = ( X ^ W X ) - ^ X ^ W y (3.13) 

It is easy to see that when W is chosen as an identity matrix I , reduces to 0. 

1. Statistical Properties of Least Squares Estimators 

In here, we examine the qualities of the least squares estimators derived above. To 
facilitate the discussion, we wish to focus on the model equation (3.7) in which the vector 
e is included to account for the measurement noise or model error. Thus we have the 
noise-disturbed system equation 

y = X ^ - f e (3-14) 

We assume here that c is a stationary random vector with zero mean value, that is, 
E[e] = 0. Furthermore, e is uncorrelated with y and X. Based on these assumptions 
about t, we wish to know just how good, or how accurate, are the parameter estimates 
given by equation (3.12) and (3.13). 

In general, ^ is a random variable. Its accuracy can be conveniently measured by a 
number of statistical properties such as bias, error covariance, efficiency, and consistency. 
First we show that 0 is unbiased, meaning that EO = 0. Substituting equation (3.12) into 
equation (3.14), we have 

^ = 6?H-(X"X)-^X^G (3.15) 
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Taking the expectation on both sides of the equation (3.15) and applying the property 
E[e] = 0, we obtain the desired result 

E[e] = E[0] H- E[(X"X)-^X"]E[e] = 0 (3.16) 

The covariance matrix corresponding to the estimate error ^ — ^ is 

* = E{{e-o){e-oY} 
= £;{((X^X)-^X^el[(X"X)-^X^£r} 

= (X"X)-^X^E{ee"}X(X^X ) -V 

Define the covariance matrix of the error vector e to be 

R = E[e€"], (3.17) 

^ is reduced to 

* = ( X " X ) - ^ X " R X ( X " X ) - \ (3.18) 

Following the same procedure, we can also show that the error covariance of ^ — ^ is 

* w = ( X ^ W X ) - ^ X ^ W R W ^ X ( X ^ W X ) - V (3.19) 

At this point, it is interesting to point out that "̂ ^w can be greatly simplified if we let 
the weighting matrix W be W = R"^, 

<D'w(W = R-^) = (X"R-^X) -^ = * M V . (3-20) 

The corresponding estimator ^vv is 

^ w ( W = R-^) = (X"R-^X)-^X"R -V = ^ M V . (3.21) 

The error covariance * M V in equation (3.20) has a very important property: that is, 
* M V is a minimum error covariance matrix in the sense that for any other choice of 
weighting matrices W 

* M V < * w (3.22) 

By definition, a positive definite matrix * M V is less than or equal to * w if the difference 
* M V — * W is non-negative definite. The subscript MV in ' ^ ' M V and ^ M W denotes the 
minimum variance property. The proof of ^ M V ^ is somewhat involved, and inter
ested readers can see Deutsch (1965). The estimator ^ M V in equation (3.21) is called the 
minimum variance estimator, or Markov estimator. Thus we see that ^ M V is the best 
linear unbiased estimator. 
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Now let us examine another interesting case. When the noise c{i),I = 1,2,..., are iden
tically distributed and independent with zero mean and variance C 7 ^ , the covariance R 
becomes 

R = E[eJ] = (3.23) 

In this case, both * and ' ^ ' M V are identical: 

* = * M V = ^ ^ ' ( X ^ X ) - ^ (3.24) 

This implies that the corresponding LSE <? is a minimum variance estimator. 0 is called 
an efficient estimator. 

Last, we wish to show that the LSE 6 is also a consistent estimator. Rewrite the error 
covariance matrix ^ in the form (assume R = cr^I) 

= ( ( X ^ X ) - i ) = ^ ( ^ ^ ( X ^ X ) ^ (3.25) 

in which m is the number of equations in the vector equation (3.14). Assume that 
hmm-.oo[(l/»7i)X'"X]"* = r , where F is a non-singular constant matrix. Then 

lim * = lim — (X^X) ) = 0 (3.26) 

Zero error covariance means that ^ = ?̂ at m —> oo. This convergence property indicates 
that ^ is a consistent estimator. 

We have shown that the LSE in the presence of white noise is unbiased efficient, and 
consistent. Finally, we wish to note that the LSE 0 is also identical to the maximum 
likelihood estimator (MLE) when the noise e is Gaussian-distributed. This important 
property is examined in (Hsia, 1977). Thus we see that the least squares technique does 
indeed have many advantages. 

2. Recursive Least Squares Estimation 

We derive a recursive algorithm from the basic least squares solution in equation (3.14). 
The need for a recursive solution arises when fresh data continuously in supply and we wish 
to improve our parameter estimates by making use of this new information. With a recur
sive formula, the estimates can be updated step by step without repeatedly computing the 
matrix solution of equation (3.7), in which the matrix inversion is quite time-consuming. 
This recursive solution procedure is often referred as on-line identification. 
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Recall that the vector equation (3.7) consists of a set of m equations. Let us introduce m 
as a subscript to y and X in equation (3.7). We have 

y u i = X m ^ 

Furthermore, denote 0 in equation (3.12) as ^(ni) 

d{m) = (X[„X,„)- 'xr„y„ , 

Suppose we have obtained a new equation, the (m + l)th, as 

y{m + 1) = OiXr{7n - f l ) + 02X2im - f l ) + ... + OnXn{m + 1). 

Define 

x"(m + 1) = [x,(m + 1), X2{m - f 1), . . . ,Xn (m + 1) . 

We then have 

y ( m + l ) = x"(m4-1)^ 

Now the system of m -|- 1 equations can be written as 

in which 

Ym+l = 

y(2) 
; ym 

. y(m + 1) y(in + 1) 

x . ( l ) 

: ; 

I l ( 7 7 l ) Xn{m) — 

xi(m +1) .̂ •n(m + I) X'"(77l4- 1) 

The new least squares estimator is 

^(m + 1) = (Xr„+iX,„+i)-ixr„+iy...+i 
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(3.32) 
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(3.36) 



t is apparent that to obtain ^(m -f-1), we must invert an nxn matrix. The obvious ques
tion here is whether or not we can calculate ^(m + 1) by simply updating the previous 
estimate ^(m) without matrix inversion. The answer is yes, and we derive the updating 
algorithm below. 

The following well-known matrix inversion lemma is introduced as follows: 

Lemma 3.1 (Astrom, 1968) 

Let A ,C , and A + B C D be non-singular square matrices; then the following matrix iden
tity holds: 

(A + BCD)-^ = A-^ - A-^B(C-^ - f - D A - ^ B j - ^ D A " ^ (3.37) 

Define the matrix P(m) as: 

P(m) = (X[„X„0~' (3.38) 

Therefore 

P(m + l ) = (Xr„+iX,.,+i)-^ 

Substituting equation (3.35) and applying the matrix inversion lemma, P(m + 1) can be 
rewritten as follows: 

P(m + 1) = {P(m)-»+x(m-hl )x"(m- | - l ) l -^ 

= P(m) - P (772 )x (m+1) 

x [ l + x"(m -f l)P(m)x(m + l)]-*x^(m + l)P(m). (3.39) 

In view of equation (3.36), we can see that 

^ ( jn+1) = P ( m - I - l ) [ X ; y ^ + x ( m + l ) y ( m + l ) ] 

= P(m)X^„y„, - P(m)x(m + 1)(1 + x^(m + 1) 

xP(m)x(m-|- l ) ] - ' x ^ ( m + l)P(m)X;;,y,n 

-f-P(77i)x(7n + l)y(7n + 1) - P(77i)x(7n -f- 1) 

X ( l + X^(77l 4- 1)P(7?I)X(T72 + 1)]"' 

xx"(77i + l)P(m)x(7n + 1)1" V ( m + 1) (3.40) 

We can rearrange the last two terms in the form of 

P(77l)x(77l + 1)[1 + X^(T71 + 1 )P(77l)x(77l -f l))"* 

X ( l + X^(77l-1- l)P(77l)x(t7l-i- I ) - X ' ' ( 7 7 1 + 1 )P(77l)x(?7l + l))y(77l + l ) 

= P(77l)x(77l + 1)(1 + X^(777 + l)P(77l)x(77l + l ) ] " V ( " l + 1) (341) 
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But we recognise from equations (3.28) and (3.36) that 

^'(m) = P(7n)X;,,y,„ 

Thus ^(m-f 1) can finally be simphfied to the form 

^(m + 1) = ^(7n) + P(m)x(m + l ) [ l + x ^ ( m + l)P(m)x(m + l ) ] - ^ • 

x[y("^ + 1) - x"(m + l)d{m)] (3.42) 

The result above simply shows that the new estimate is given by the old estimate plus a 
correction term. The matrix P(77i) in the correction term can be updated by the recursive 
formula in equation (3.39). It is clear that in both formulas we have completely eliminated 
the necessity of matrix inversion (we note that the term [1 + x^(m + l)P(m)x(m + 1)] 
is a scalar) and therefore that the computational efficiency is dramatically improved for 
updating the estimate 6. 
The recursive equation (3.42) has a very strong intuitive appeal. We notice that the 
correction term is proportional to the quantity y(??i + l ) — x^(m + l)^(m), which represents 
the error of fitting the previous estimate ^(771) to the new data y(7?i -i- 1) and x'"(772 + !)• 
The vector P(7n)x{m + 1)[1 + x (̂77i + l)P(m)x(77z + l))"* determines how the fitting 
error is weighted in the correction of ^(771). Another interesting fact is that P(77i) can 
be related to the error covariance matrix ^ defined by equation (3.18). It shows that 
P(77i) = *(777)/a^, which means that P(77i) is a direct measure of the error covariance at 
each 771. As we have shown in equations (3.26) and (3.38), P(77i) = 0 at the limit 771 —• 0 0 . 
We have shown in this section that recursive least squares estimation can be easily carried 
out by the following recursive algorithm: 

(̂771 + 1) = (̂77l) + 7(777 + l)P(777)x(77l + l)[y(77l + 1) - X (̂77l + 1)̂ (772)] (3,43) 

P(m + 1) = P(77i) - 7(771 + l)P(77i)x(77i + l)x (̂777 -f I)P(m) (3.44) 

where 

7(777 + 1) = 1/[1 + P(77l)x(77l + 1)X̂ (777 + l)P(m)l. 

Therefore, by starting with an initial estimate 6{0) and the corresponding P(0), we can 
recursively update 0 while new observations are continuously obtained. 
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3,3.4 Extended Least Squares Identification and Its Conver
gence Analysis of A R M A X Model 

1. Statement of the problem 
We cLSsume that the system to be identified is a discrete multivariable inputs and multi-
variable outputs (MIMO) ARMAX Model and that it can be represented b}' 

A{z'')yn = B{z-')ur,+en (3.45) 

where = C{z~^)tUn is the system noise and 

B{z'') = B,z-' + ^22-" + ... + B^z-\ 

C{z-') = + Cxz-' + -1- (3.46) 

and t;n,Un,io„ are m—, /— and m— dimensional vectors respectively and where z~^ is a 
unit delay operator, >4,-, Bj^ Ck are nixm^ m x 1,77i xrn unknown matrices to be estimated. 
Im is an m X m unit matrix. 
Set 

0^ = [-Au..-,'-A,,Bu...,B,,Cu..^.Cr] (3.47) 

< = [y:-,,. - •, y:-p. < - i : • - •, <-i.-'-. <-r] (3-4S) 

en = yn- Olx^ (3,49) 

where On is the estimate of 0 at time n. 
It is easy to see that the relation (3.45) can also be written as 

= O'x^ + C(e-' )iu„ + en - C{z-' )e„ (3.50) 

Two representations (3.45) and (3.50) of the system are equivalent but can be used dif
ferently. 

Definition 3.4 

A d' dimensional vector x = ( i i , . . . , XdY, the mode of x is defined as = (X^f_, a;?)? = 
(x^x)K 
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Definit ion 3.5 

An m X n matrix A, the mode of A is defined as ||i4|| — {Kiaxi^'^A))^. 

where Xmax{') denotes the maximum eigenvalue of the matrix. 
We define 

n 

Tn = r„_i + l l x n i l ' , ro = 1, i . e . , = 1 + ^ | | x . | | ' ( 3 . 5 1 ) 
1=1 

and 

Tn = a{wi : i < n}. ( 3 . 5 2 ) 

which is the a-algebra generated by {wi : i < 7i}. 
We assume that the system noise is driven by a martingale difference sequence {wn} 
that is, 

tUn = 0, 71 < 0, 

E{wJTn-i) = 0, Eixo'wJTn-i) < f o r L i , > 0; 0 < /t < 1. ( 3 . 5 3 ) 

where (fo > 0 a,s.) denotes a random variable which depends on u) but is independent 
of Ji, h is a constant and 

ICQ = Eio < oo, ( 3 - 5 4 ) 

where '̂o is a constant. We assume that £J(||u„|(^) < oo. 

2 . The extended least squares algorithm 

In order to identify the system parameter matrix 0, we make use of the following re
cursive algorithms: 

^n+l = '̂n + Kn^livU, " < + , ^ n ) , ( 3 . 5 5 ) 

/ W , = RnXn+l/{l-hxl^,RnXn+l), ( 3 . 5 6 ) 

/2n+i = ( V r f - / w . < + , ) / ^ n ( 3 . 5 7 ) 

where Xi and OQ are any deterministic vector and matrix respectively, HQ = dld^ Id is a 
d X d unit matrix and d = mp + + 77ir . 
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The recursive algorithm (3.55)-(3.57) are called the extended least squares method (ELSM) 
when the regression vector Xn is determined by (3.4S)-(3.49). 

3. Convergence Theorem 

The convergence theorem are given as follows and the proofs of them are given in Chen 
et al. (1987), 

Theorem 3.12 
For the system and the algorithm defined above, let the following conditions Tla, T i b 
and T i c be satisfied: 

(T l a ) The transfer matrix C-^{z-^) - /m/2 is strictly positive. 
(i.e., zeroes of det C(z) are outside the closed unit disk and 

C~^exp{iu) + C^expi-iio) - > 0, a; e [0,27r].) 

( T i b ) There exists a constant Ic2 > 1, such that 

limr;;(/o5r„)^VA:;.„=0 
n—'CO 

where A^^^, AJJ,,̂  denote respectively the maximum and minimum eigenvalues 
of the matrix R~\ where h is given by (3.53). 

( T i c ) limn_oo^n=oo a.s. 

Then 

I ) lim„_o=,<?n = 0 a.s. 

^Om=o(r';^(logr^)'^/Xl,^y^\ 

The proof of Theorem 3.12 see Chen et al. (1987) and more results of special cases 
are given as the following corollaries: 

Corollary 3.3. 
// the condition T i c of Theorem 3.12 is not satisfied, then the conclusions of Theorem 
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S.12 should be modified as follows: 

I ) l im„_oo^n = 0 a.s. on {w : r„ -> oo). 

/ / ; ll^'nll = o(ri(/opr„)^VA;;..nV^^ as. on {a; : - ex.}. 

Corollary 3.4. 
// the condition T i b o} Theorem 3.12 is replaced by 

KnaxIKnin ^ ^2 

where 2̂ (̂ 2 > 0 a.s.) is a random variable and E^2 < oo , then 
I)]\mn^^Or, = 0 a.s. 

lf)m=o{r';,-\logrn)'^y^' 

Corollary 3.5. 

If Ihe restriction on {wi} given by (3.53) is replaced by the following conditions, i.e., 

Wn = 0, n < 0; E{wJJ^n~i) = 0, E{wlwJJ'n-i) < A:o, n > 0, 
Then 

(fl)\\mn^^0n = 0 a.s. 

fn\\On\\ = o{(logr^)''^/X-^,J^^' 

3.3.5 Least Squares Identification and Its Convergence Anal
ysis of Bilinear Time Series Model 

1. Statement of the problem 

The special types of bilinear system are considered in here. 
/ m 

A{z-')yn = B{z-')un-d + C{z-')wn + ^ a.>yn_.-Un_j_rf (3.58) 
. = 1 > = 0 

where 2~* is the unit backshift operator, d < 1 is a time delay, {xon} is a noise sequence, 
A{z~^), B{z~^) and C(z~^) are the polynomials 

A(z-') = 1 - a , 2 - * -ap2-P 
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C{z-') = l + c , 2 - * + - . . + c . 2 - ' ( 3 . 5 9 ) 

and 

Set 

= ( a i , . . . ,ap,6o, . . . , 6 , , C i , . . . ,Cr,Q:io, . . a i m , 020, • • • , a / m ) ^ 
and 

. . . , t y n - r , y n - » W n _ d , 

. . . ,J/n-lWn-m-d)yn-2Wn-d, • • • , J/n-Z^^n-m-d ) • 

System ( 3 . 5 8 ) can then be written as 

Vn = O^xl + Wn ( 3 . 6 0 ) 

2. The extended least squares algorithm 

The Extended Least Squares Method is applied to estimate the unknown parameter 0 , 
and On represents the estimate of 6 at time n. The Recursive Algorithm is the same as 
that presented by Chen ei al ( 1 9 9 6 ) : 

Kn = FU-vxJ (1 + xlR^.,Xn) ( 3 . 6 1 ) 

Rn = Rn-l -KnxlRn-X ( 3 . 6 2 ) 

On = On-x + Kn ( y „ - xlOn-i) ( 3 . 6 3 ) 

^n = yn~xlOr, ( 3 . 6 4 ) 

where Xn is constructed by using Cn-i instead of w^-i in xJJ, i = 1 , . . . ,r , and Cn = 0 when 
n < 0. The dimensions of the parameter vector 0 and regression vector x° are / i , and 
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/ i = p + 9 + 1 + /(771 -f- 1) + r . Lei Ro = hh, OQ = 0. We may choose T̂o to be any h th 
order positive definite matrix and OQ to be any /i-dimensional vector. 

In this thesis, the norm of the vector x is defined as = y/x'^x. Set 
n 

ro = Tr R^' , r, = TQ + ^ . (3.65) 
1=1 

then r„ = r ^ . j -f ||a;n||^ (n = 1,2,...). The set Fn is the a-algebra set generated by 
{ws, s < n), i.e. Fn = (^{ivsi s < n}; and [wn] is assumed to be a martingale difference 
sequence. For all 77 = 2,3,... the following properties hold: 

E{wJFn-^) = 0 a.s. V f > l , F o = { ^ , n } (3.66) 

E{wl/Fn-i)<^orUi a.s. > 1 , 0 < < oo , 0 < e < 1. (3.67) 

Here E{w'^lF^-i) may be unbounded with respect to u and T I . Additionally, the input 
Un is F„-measurable and 

E{ul)<oo , 71 = 0,1,2,... (3.68) 

If Un is a deterministicsignal, then £^(|u„P) = |u„|^ < oo. Let 6n = e „ — a n d l9„ = 0—$n. 

3 . Convergence Analysis 

Here, we study the strong consistency and the convergence rate of the Extended Least 
Squares Identification for systems (3-58). 

We assume that X"^^^ and AJĴ ĵ  are the maximum and minimum eigenvalues of the matrix 
R-\ then 

n ) 
( A : j ' ' < d e i y ? ; ' < ( A ; ; , , J ' ' (3.69) 

From (3.34), we have 

< K... <-n< (3.70) 

As for the linear time-invariant case, in order to get strong consistency, we need 

7n —> oo as 77 —* oo a.s. (3.71) 
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to guarantee the strong convergence of ^n, for all values of OQ . Otherwise even if the 
limit of On exists, it may depend on the initial value of OQ. For a sufiiciently large positive 
number x, we set 

log k{x) - log log iQg(â ) 

k times 
and ioT 8 > I 

Li{x) = log X log 2x . . . log {k - l)(x)(log k(x)Y, 

Theorem 3.13 

Suppose that the noise and input of the system (3.58) satisfy the conditions (3.66)-(3.67)j 
and the recursive algorithm (3.61)-(S.64) is used to estimate the parameter vector. If the 
following conditions are met 

(T2a) C"'(2~*) — 1/2 is strictly positive real and the zeros of C{z) are all outside the 
unit circle 

(T2b) r„ meets the condition (3.71) and there exists a natural number k and constant 
c > 6 > i such that 

Jim r^i^^.(r„)/A:;;„=0 a.s. , (3.72) 

then 

lim On = 0 a.s. (3.73) 

ll̂ ^nll = O (/^^^MTA^) a.s. (3.74) 

and 

1 " 
lim — = 0 a.s. (3.75) 

The proof of Theorem 3.13 see Chen ci al. (1996). 

Corollary 3.6. 

Under the assumptions of Theorem 3.13, if we alter (3.72) to the stricter inequality 

KU^L. < «i , a.s. Vn > 1 , 1 < < cxD , (3.76) 
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then (3.73) and (3.15) still hold, and relation (3.74) can be improved to become 

\\h\\ = o(^ylr^-^Ll{rn)^ a.s. (3.77) 

Corollary 3.7. 
Under the conditions of Theorem 3.13, suppose the inequality (3.67) is changed to 

E{wl/Fn-i) < 6 a.s. > 1 , 0 < 6 < oo, (3.78) 

Since (3.78) is stricter than (3.67), we can get a faster convergence rate; (3.73) and (3.75) 
still hold and 

\\k\\=o[yjLl{r^)IXl,,}j a.s. (3.79) 

3.3,6 Extended Least Squares Identification and Its Conver
gence Analysis of M ISO Model 

1. Statement of the problem 

For 5 different input time series, a MISO system can be written mathematically in the 
form: 

yn + Myn-\ + . . - + A^yn-p = - ^ l i ^ ^ l n - i + + ^ I n - , , 

+ - - f Bs„_^u^^_^^ 

+ C^XOn-X + ... + CrWn-r (3.80) 

yn and u,„(n = 1,2,3,...) are the output and i-th input of the system respectively, p is 
the order of the system; { i i J „ } , ( 7 i = 1,2,3,...) is a noise series and the restriction on it 
is the same as the equations (3.66)-(3.67) and Ai, Bj^ and Ci{i ~ i , . , . y p ; j = l,...s;^' = 
l> - j<5fji(^j ^ P)'J = 1,—J*.) are unknown parameters to be estimated. 
Let is a unit delay operator and 

A(z~') = 1 + A,z-' + ... -f V " " (3-Sl) 

Bi{z-') = Bi,z'' + . . . ^ B i ^ . y ' \ i = 1 ,2 , . . . ,5 (3.82) 
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C{z-') = 1 + Cxz-' + ... + Cr^-' (3.83) 

The equation (3.80) can be written as follows: 
s 

>i(^"')y-. = E ^ - ( ^ " ' ) " - + ^" (3.84) 
1 = 1 

where = C{z~^)wn is the system noise and set 

^^ = ( - A , , . . . , - / l p , j 5 , . , . . . , ^ ^ . , i ? 2 . , . . . , 5 . , , , C , , . . . , a i (3.85) 

xl = [ j / n - l , . . . , y r ; - p , U i „ , . . . , U i „ , , ^ , U 2 „ , . . . , " * n - , , i e n _ , , . . . , e n - r ] (3-86) 

en = yn - Olxn (3.87) 

d = p + r + J2^i (3.88) 
1 = 1 

here 0 is the true parameter matrix, Xn is the regression vector consisted of the information 
of input, output and the estimation of system noise, e„ is the estimation of Wn and On is 
the estimate of 0 at time n . It is easy to see that (3-80) or (3.84) also can be written as 

Vn = O^xn -f C{z-')wn + e„ - C(^-^)en (3.89) 

The first term of the right side of equation (3.89) can be considered as the estimation of yn 
(since we do not know the true 0, yn is estimated by 0]^Xn) and the remaining terms on the 
right hand side can be considered as a kind of filter of system noise. In order to identify 
the system parameter vector 0, we make use of the recursive algorithms (3.61)-(3.63). d 
is given by (3.88) and the regression vector Xn is determined by (3.86). 

Remark 3.1. In order to prove the strong consistency of the (RLSM) easily, we set 
/?o = did. In fact, RQ may be any d* d positive definite matrix. 

Theorem 3.14 

Suppose that the noise and input of the system (3.80) satisfy the conditions (3.66)-(3.67), 
and the recursive algorithm (3.6i)-(3.64) is used to estimate the parameter vector. If the 
following conditions are met. 

(T3a) C~^{z~^) — ~Ijn is strictly positive real and the zeros of C{z~^) are all outside 
the unit circle 
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(T3b) 7'n meets the condition (3.71) and there exists a natural number k and constant 
c > <5 > 1 such that 

hm r;L^.(7-,)/A;;,i„ = o, (3.90) 
n—00 

then 

hm On = 0 (3.91) 

ll^'.ll = O (v/'-^i^.(r„)/A;^„) (3.92) 

and 

lim ^ | : i | 6 . i r = 0 . (3.93) 

Some lemmas and their proofs are given before we prove the Theorem 3.14. 

Lemma 3.2. 

^07* the conditions (3.66) and (3.67), the Identification Algorithm (3.61)-(3.64) of srjstem 
(3.80) has the following properties, for 7i = 1,2, 3,... 

r„ = Tr(y?„-') (3.94) 

r„ < oo , E{\\y,,f) < oo , E(||(?„|n < oo , £;( | |e„f)) < CXD a.s. (3.95) 

E{\\d4^) < oo , £;(||6„in < oo a.s. (3.96) 

d„ = 0„_, - /?„_,z„(/),. + w„) (3.97) 

xlR^x^ = (det/?-' - c l e tR ; l , ) /de t , / t ; ' (3.98) 

C(2- ' ) i„ = Olx„ (3.99) 

Proof: The steps are outlined below. 
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(i) Using induction, from (3.61)-(3.64) and the Inverse Matrix Lemma, (3.94) can easily 
be shown to hold. 

(ii) Since the initial conditions of j/n and e„ are finite and also is the ||xo|| = 0, ||^|| < oo, 
ll̂ ôll < oo from the system (3.80) and RLSM (3.61)-(3.63), we can obtain (3.95) for 
all 71 = 1,2,3,.... 

(iii) The first inequality of (3.96) obviously holds, and from (3.95) we get 0 < fo^'n < oo 
a.s. So we have 

E{\\wn\\') = EiEiWw^WyPr,^,)) < Eiior'n-i) <oo ^ Vu > 1 (3.100) 

and (3.96) holds. 

(iv) From (3.61)-(3.64), we deduce that On = On-\ 4- Rn-xXn^n^ and from 0^ — 0 — On 
and Cn = + w n̂, (3.97) is obtained. 

(v) Equation (3.98) can be deduced by considering the determinant of the block matrix 

( 1 xl 

(vi) From (3.87), (3.89) and 6„ = e„ - (3.99) is obtained. 

Lemma 3.3. 

i455ume that Lemma 3.2 and condition (3.71) hold. Then there exists a natural number 
N{k) such that for any natural number k and d, the dimension of the parameter vector, 

d\ogk{rn) > \ogk{deiR-') Vn > A^(^) (3.101) 

Lemma 3.4. 

Under the conditions of Lemma 3.3., for any natural number k and some positive number 
6 > I, there exists N(k) such that 

oo 

xjRiXi/Ll{ri)<oo (3.102) 

Lemma 3.5. 

Under the conditions of Lemma 3.3, for any natural number k and some natural number 
N{k) and positive number 6 > i, let 

K. = TiielR-'d^)lrlLi{r^) , Vn > N{k) (3.103) 
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where e is given by (3.67). Then 

+ E(xld„ixld„ - 26„)/F„.,)/<L^.(r„), Vn > N{k) (3.104) 

The proofs of Lemmas 3.2.-3.5. are similar to those in Chen, Zinober and Ruan (1996) 
and Chen and Ruan (1987). Before proving Theorem 3.14 we make a few comments. 

Remark 3.2. If in system (3.80), C(z"') = 7^, i.e. 9 = 0, then the conditions (3.66), 
(3.67) and (T3a) are met. Whether the conclusion holds depends on the conditions (T3b). 
The result of Theorem 3.14 can be extended to the case of the system with white noise. 

Remark 3.3. If l im^-cw sup„<yv('n/AO < 0 0 , then (3.93) is equivalent to 

1 = 1 

Proof: 

From (T3a), there are two positive constants kx and '̂2 such that 

5n = xYOi ic-^'iz-') - A h + /:2 > 0 , Vu > N(k) (3 .105) 

Sn = - (H^) { ̂  ll̂ ^̂ 'll'l + ^2 > 0 , Vn > A'(A;) (3 .106) 

Let 

in = Vn -h ^SnlvMrn) , Vn > A'(^) (3 .107) 

then in is a non-negative Fn-measurable stochastic sequence and from ( 3 . 1 0 4 ) , (3 .106) 

and (3 .107), we get 

where 

= 2 C o x I + , / ? n + . x « + , / L t ( r „ + 0 (3.10S) 

and 

C„ = k,E {\\xlj,.^,f IF,) hU,Li{rn+,) (3.109) 
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are non-negative stochastic sequences, and also are Fn-measurable, from Lemma 3.5. We 
know that 

CO 

Vn < OO. 
n=N(k) 

By using the Almost Supermartingale Theorem (Robbins and Siegmund, 1971) we get 

(3.110) 

Since C~^{z~^) is a stable transform function, from (3.105), (3.109) and (3.110) we have 
OO 

E{\\bn^,f/Fn)K^,Li{rn+r) < OO (3.111) 
n=N{k) 

and 

lim = ^ < OO and Cn < 
n—oo ii—/ 

n=A'(Jt) 

OO 

E ^ ( l | t n + . l l V < + , i t ( ' - n + . ) ) < 0 O . 

n=Nik) 

Set 

^ ^ n = ^ ( | | 6 . > , | | ^ - ^ ; ( | | 6 . + , | | 7 / ^ 0 ) M + i ^ ' ( r . ^ V 7 z > A ^ ( ^ ) 
i=N(k) 

then ( C n , F „ ) is a martingale, and from ( 3 . 1 1 2 ) and ( 3 . 1 1 3 ) , we get 
CO 

sup E\C„\<2 ^;(||6.+,||Vv[+,Lf.(r.>.)) <oo 

According to the Martingale Convergence Theorem, we have 

l]mCn= {\\bi^^\\'-E{\\b,^,\\yF.))/rU,n^^^^^ 
i=N{k) 

and from ( 3 . 1 1 1 ) and ( 3 . 1 1 4 ) , 
OO 

E M'KLiirn) < CX). 
n=N(k) 

From the Kronecker Lemma, and (3.115) 

1 
(VTT 

i=N{k) 
n k\ n/ - M f . ^ 

(3.112) 

(3.113) 

(3.114) 

(3.115) 

(3.116) 
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So (3.93) can be easily deduced since rn > r ^ L f . ( r n ) . Similarly to the proof of (3 .116) , 

from (3.109) and (3.110) we get 

i i - ^ r ^ T ) E l l - r ^ ' . i r = 0 (3.117) 

From the Schwarz Inequality and (3.106) 

( \ 

Then, making use of (3.117) and (3.118) 

l im SnKLi(r^) = Q (3.119) 
n—•oo 

From (3.107), (3.110) and (3.109) we obtain 

l im Vn = V <oo (3.120) 
n—oo 

Since Tr{elRz'k) > X^^MW from (3.103) 

P'nll^ < V ; < L l ( r „ ) / A : ; , , „ (3.121) 

Then (3.91) and (3.92) can be deduced from (3.90), (3.120) and (3.121) and c> 8. 

Coro l l a ry 3.8. 

Under the assumptions of Theorem 3.14f if use alter (3.90) to the stricter inequality 

K^JKnin < 6 , V n > 1 , 1 < 6 < OD , (3.122) 

then (3.91) and (3.93) still hold, and relation (3.92) can be improved to become 

I I M = o ( ^ / r r * / 4 - K ) ) . (3.123) 

Coro l l a ry 3.9. 

Under the conditions of Theorem 3-14, suppose the inequality (3.67) is changed to 

£ ( | K | | V F n . , ) < 6 V n > l , 0 < 6 < o o (3.124) 

Smce (3.124) is stricter than (3.67), we can get a faster convergence rate; (3.91) and 
(3.93) still hold and 

||<?„|| = C? J L t ( M / A : i . . . (3.125) 
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3.4 Conclusion 

In this chapter, some theoretical background of system identification and recursive least 
squares method are introduced. The so called extended least squares method (ELSM) for 
the different systems (MIMO ARMAX, Bilinear System and MISO system) and its strong 
consistency and convergence rate are derived and presented. As we all know, the least 
squares estimation is an old statistical method, but i t is still investigated and applied 
by many statisticians due to its simplicity and practical importance. The convergence 
results obtained within mathematical statistics cannot be directly applied to system iden
tification, since the design matrix is no longer deterministic in constrast to the classical 
situation. However, the least squares method has been analyzed and applied to the sys
tem identification problem for a long time. Obviously, the problem of the convergence of 
the least squares estimates in the system identification must be treated specifically. 

The consistency of least squares estimates for white noise is discussed in (Han-fu Chen, 
1985), but in general, i t is inconsistent for coloured noise as we mentioned earlier in this 
chapter. Here, we modify the design matrix by using a new regression vector (3.64) and 
leaving the algorithm (3.61-3.63) invariant. The strong consistency and convergence rate 
at the condition (3.90) which is weaker than the well known persistent excitation condition 
are obtained by constructing a new series of stochastic Lyapunov functions for the special 
coloured noise case. These results provide the theorectical guarantee for the time series 
modelling the current velocity and SPM concentration dynamic system presented later in 
Chapters 6 and 7. 
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Chapter 4 

M o d e l Val idat ion and Order 
Determinat ion 

4.1 Introduction 

III system identification both the determination of model structure and model validation 
are important aspects. An overparametrized model structure can lead to unnecessarily 
complicated computations for finding the parameter estimates and for using the estimated 
model. An underparametrized model may be very inaccurate. The purpose of this chapter 
is to present a basic method that can be used to find an appropriate model order. 
In practice one often performs identification for an increasing set of model orders (or more 
generally, structure indices). Hence one must know when the model order is appropriate, 
i.e. when to stop. Needless to say, any real-life data set cannot be modelled exactly by 
a linear finite-order model. Nevertheless such models often give good approximations of 
the true dynamics. However, the methods for finding the 'correct' model order are based 
on the statistical assumption that the data come from a true system within the model 
class considered. 

When searching for the 'correct' model order one can raise different questions, which are 
discussed as follows: 

o Is a given model flexible enough? 

o Is a given model too complex? 

53 



• Which model structure of two or more candidates should be chosen? 

Note that such questions are also relevant to model reduction. 

The question that is cisked in this section can also be phrased as: "Is the model structure 
large enough to cover the true system?" There are basically two ways to approach this 
question; 

Use of plots and common sense. 

• Use of statistical tests on the prediction errors (residuals) 

< M = E ( 2 / . - y . - r = Ee? (4.1) 
i= l 1 = 1 

where yn is the real data, yn is the model output and c\ is the prediction error at time n 
respectively. 

We concentrate on the latter aspect here. There are several statistical tests on the predic
tion errors e(^yv)- The prediction errors evaluated at the parameter estimate Ot^ are often 
called the residuals. To simplify the notation, the residuals will frequently be written as 
just t{Q). Several statistical tests on the prediction errors are given in section 4.2 and 
an approach to order determination, minimum eigenvalue ratio test (MERT) is given in 
section 4.3. 

4.2 Some Useful Tests 

The methods for model structure determination based on tests of the residuals in practice 
are tied to model structures and identification methods where the disturbances are explic
itly modelled. We assume that e„ is a zero mean white noise. The tests are formulated 
for single output system. For multivariable systems the tests have to be generalized. This 
can be done in a fairly straightforward manner, but the discussion will be confined to the 
scalar case to avoid cumbersome notation. The statistical properties of the tests wil l be 
analyzed under the null hypothesis that the model assumptions actually satisfy. Thus all 
the distribution results presented below hold under a certain null hypothesis. 
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4.2.1 An Autocorrelation Test 

This test is based on assumption that is a zero mean white noise. If is white noise 
then its covariance function is zero except at r = 0: 

r.ir) = 0 

First construct estimates of the covariance function as 

r 
1=1 

Under the assumption that in is a zero mean white noise, it can be deduced that 

f , ( r ) 0,T / 0; f ,(0) ^ = Eel A' ^ oo. 

To get a normalized test quantity, consider 

' - r . ( 0 ) 

According to (4.4) one can expect Xr to be small for r / 0 and N to be large provided 
cj^ is white noise. However, what does 'small' mean? To answer that question a more 
detailed analysis is necessary. Define 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

1 

1 = 1 
(4.6) 

where, for convenience, the inferior limit of the sums was set to 1 (for large N this will 
have a negligible effect). From Soderstrom et al (1989), r is asymptotically Gaussian 
distributed. 

where the covariance matrix is 

P = l im Err'^ 
N—oo 

The ( i , j ) element of P, { i j = l , . . . ,m) can be evaluated as 

Hence 

P = A"/ 

(4.7) 

(4.8) 

55 



The result (4.7) implies that 

Hence 
m 

It should be stressed once more that the distribution of the statistics presented above 

holds under the null hypothesis HQ (asserting that is white). The typical way of using 

the test statistics for model validation may be described as follows. Consider the test 

quantity Nr^r/r^(0). Let x denote a random variable which is distributed with m 

degrees of freedom. Define X'o("^) 

a==Pix> x l M ) (4.9) 

for some given a which typically is chosen between 0.01 and 0.1. Then, if 

Nr'^r/r'^{0) > x^(7n) reject HQ (and thus invalidate the model) 

Nr^r/rl{0) < X'^("i) accept HQ (and thus validate the model). 

Evidently the risk of rejecting HQ when HQ holds (which is called the first type of risk) 

is equal to a. The risk of accepting HQ when it is not true depends on how much the 

properties of the tested model differ from HQ. The second type of risk cannot, in general, 

be determined for the statistics introduced previously, unless one restricts considerably 

the class of alternative hypotheses against which HQ is tested. Thus, in applications the 

value of a (or equivalently, the value of the test threshold) should be chosen by considering 

only the first type of risk. When doing so i t should, of course, be kept in mind that when 

a decreases the first type of risk also decreases, but the second type of risk increases. A 

frequently used value of a is Q = 0.05. 

Remark 4-1 

The number m in the above autocorrelation test could be chosen from 5 up to A'/4. 
(see Soderstorm et al (1989)). 

4.2.2 The Parsimony Principle and the F-test 

1. T h e Pars imony Pr inc ip le 
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The parsimony principle is a useful rule when determining an appropriate model order. 
This principle says that out of two or more competing models which all explain the data 
well, the model with the smallest number of independent parameters should be chosen. 
Such a choice: 'Do not use extra parameters for describing a dynamic phenomenon if they 
are not needed'. The parsimony principal is discussed in Box and Jenkins (1976) and a 
theoretical justification is given in Soderstorm et al. (1989). 

2. The F-test 

The so called F-test can be used to compare two or more model structures. For such 
comparisons a discriminating criterion is needed. When the model structure is expanded 
so that more parameters are included in the parameter vector, the minimal value of loss 
function ct^{0) naturally decreases since new degrees of freedom have been added to the 
optimization problem, or, in other words, the set over which optimization is done has been 
enlarged. The comparison of model structures can be interpreted as a test for significant 
decrease in the minimal values of the loss function associated with the (nested) model 
structures in question. 

Let Ux and ZY2 be two model structures, such that Ui C U2 (^1 is a subset of for 
example, U\ corresponds to a lower-order model than U2). In such a case they are called 
hierarchical model structures. Further let Vf^ = e'^(^) ^̂ ^̂  structure Ui {i = 1,2) and 
let Ui have 7;,- parameters. We take 

, = A , ] ^ L ^ (4.10) 

as a test quantity for comparing the model structures Ui and U2. If x is Marge' then we 
conclude that the decrease in the loss function from to VyJ is significant and hence the 
model structure ^ 2 is significantly better than Ui. On the other hand, when x is 'small', 
the conclusion is that Ui and U2 are almost equivalent and according to the parsimony 
principle the smaller model structure^! should be chosen as the more appropriate one. 
The discussion above leads to a qualitative procedure for discriminating between Ui and 

To get a quantitative test procedure i t is necessary to be more exact about what is 
meant by saying that x is 'large' or 'small'. This is done in the following. 
First consider the case when Ui is not large enough to include the true system. Then the 
decrease — in the criterion function will be 0(1) (that is, i t does not go to zero as 
A' —> 0 0 ) and therefore the test quantity x, (4.10), will be of magnitude A^ 
Next assume that ZY| is large enough to include the true system, then i t is possible to 
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prove that (see Soderstorm et at. 1989) 

X = N ^ —> x {P2 - Pi) (4.11) 

The result (4.11) can be used to conceive a simple test for model structure selection. At 
a significance level a (typical values in practice could range from 0.01 to 0.1) the smaller 
model structure Ui is selected over U2 i f 

x<xl{P2~Pi) (4.12) 

where Xo(p2 ~ Pi) >s defined by (4.11). Otherwise U2 is selected. 

3. A I C and F P E C r i t e r i a 

Another approach to model structure selection consists of using a criterion for assess
ment of the model structures under study. Such a criterion may for example be obtained 
by penalizing in some way the decrease of the loss function ejsj{0) with increasing model 
sets. The model structure giving the smallest value of this criterion is selected. Two forms 
of criterion are given in the following: 

(i) AIC Criterion (Akaike's Information Criterion) 

AIC = Nlog C N ( ^ N ) + 2p (4.13) 

where p is the number of the parameters in the model. 

(ii) The FPE Criterion (Final Prediction Error Criterion) 

FPE = e ^ { d ^ ) \ ± ^ (4.14) 

It should be pointed out that model structure determination and model validation are 
very important step in system identification. For the determination of an appropriate 
model structure, i t is recommended to use a combination of statistical tests. 

4.3 An Approach to Order Determination 

The specific and important problem of time series model order estimation has received 
considerable attention for many years and there are now a number of quite sophisticated 
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systematic procedures which appear to work quite well: (see e.g Box and Jenkins (1976); 
Astrom and Eykhoff (1971); Akaike (1970, 1972, 1974); Young ei ai (1980)). Of these, 
the final prediction error (FFE) and the information criterion (AIC) suggested by Akaike 
for purely stochastic processes are probably the most interesting in the present context. 
But unfortunately all these criteria may give more than one minimum, and may depend 
on assumptions constrained in the data and sometimes indicate too many 'parameters. 
Thus they should be used only as guides (Chatfield, 1980). 

In practice, the time-series analyst often requires a simple yet robust procedure which is 
of a more general nature and emerges naturally during the time series analysis. Such a 
procedure has been suggested by Wellstead (1978) who develops an instrunnental form of 
the determinant ratio test for model order based on the ^instrumental product-moment 
matrix' ( IPM). He surveys previous related work on model order identification and shows 
that his approach is a natural development of previous order tests based on the product-
moment matrix. I t is however, less vulnerable to distortion i f there is noise on the time-
series data. Young et ai (1980) observed that a particular IPM occurs naturally in 
instrumental variable estimation. As a result, the procedure for generating the matrix 
suggested by Wellstead (1978) can be replaced by a more systematic but computationally 
more expensive procedure in which the instrumental variable sequence is obtained directly 
from the 'auxiliary model' used in the IV (instrumental variable) estimation. Alterna
tively, order estimation can be based on the inverse of the I P M , which occurs naturally in 
the I V algorithm and is directly related to the covariance matrix of the estimation errors. 
This interpretation provides an intuitively pleasing statistical explanation of the proposed 
order estimation procedure and it leads to the definition of a comprehesive model order 
identification procedure which is applicable to a wide variety of different models. 
However, as i t is well known, one of the fastest and simplest of the approximate order 
evaluation tools is based upon the product moment matrix of observed input/output data. 
The condition is induced by the linear constraint which defines the underlying system and 
hence provides a means of determining the system order. When estimating the order of 
unknown system prior to a parameter estimation, i t is necessary to develop some useful 
methods to access roughly the order using a computationally simple and rapid algorithm. 
An improved estimate as well as verification of the underlying system order can then be 
obtained by combining some more sophisticated systematic procedures mentioned in the 
early part of this section. 

The approximate order evaluation tool based upon the product moment matrix of ob
served data is originally due to Lee (1964), who pointed out that a simple rank condition 
exists for this matrix. The condition is induced by the linear constraint which defines the 
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underlying system and hence provides a means of determining the system order. Wood-
side (1971) exploited this rank condition to formulate a series of order determination 
algorithms. Subsequently other authors, notably Chow (1972); Tse and Wiener (1973) 
have applied this idea to autoregressive, moving average processes and the more challeng
ing problems associated with structure determination of multivariable systems, 
A major disadvantage of order tests based upon the product moment matrix is that the 
rank condition only applies to exactly observed data. In the presence of extraneous noise 
the condition for overparameterization is that the product moment matrix is ^almost 
singular'. 

The aim of this subsection is to indicate an alternative simple and efficient test to en
sure the rank condition has the meaning of mathematical expectation, and also to do this 
without significant additional computation or prior knowledge of the statistical properties 
of the system noises. The product moment matrix is then used by so-called minimum 
eigenvalue ratio test (MERT) in place of the normal determinant ratio test (DRT) sug
gested in Woodside (1971) to overcome both the expensive computational procedure and 
the effects of the system noise. Some examples and simulation results that are given in 
section 4 show that MERT is a simple and efficient test both in the linear system and 
in a class of nonlinear system. Also in the same section some comparisons between DRT 
and MERT are given. 

4,3.1 Product Moment Matrix 

The approach to model order estimation described here can be applied to most time-
series models with both deterministic and stochastic input or 'exogenous' variables. To 
illustrate the method, let us first consider the discrete-time linear model for single input-
single output (SISO) system which is the simpler form of A R M A X model in chapter 3 as 
follows: 

A{z-')y„ = Biz-')u„ (4.15) 

where yn and ti^ are the observed system input and output sequence respectively and 

u„ = Un + r„ x„ = j/„ -h e„ (4.16) 

where Vn and Xn are input and output data; and are zero mean uncorrelated se
quences with variances and respectively which are the source of all stochastic dis
turbances to the system; and A(z~^)^ B(z~^) are nth order polynomials in the backward 
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shift operator z * i.e-

/l(z->) = l + f l , 2 - > + . . . + a,2-" 

j5(2- i ) = 6,2-' + . , . - t -6„z ' " (4.17) 

Here all the polynomials are set equal to the order n of the characteristic polynomial 

A both for notational simplicity and to emphasise that the order of the characteristic 

polynomial A{z~^) is the 'dynamic' order of the system (i.e. the order of the state space 

associated with the deterministic part of the system). In all that follows, we shall refer 

to 7 1 CIS the 'true' model order and denote the estimated model order as h. 
Our interest is to determine the integer k which characterises the order of the system in 

the presence of and e/;. In the normal product moment formulation this is done by 

checking the rank of the l{k + 1) x %k -f 1) matrix Vu defined by: 

r,.(u,t/) = n r ( u , y ) n t ( u , y ) (4.18) 

wlier<_ 
r 

ut . . . uo yu yo 
(4.19) 

xLfsj . . . ui^-k yN • •. yN-k 

and A' is the number of observations. 

If Ck and Tk are zero, the equation (4.19) gives an exact linear constraint on the data, the 

rank of rn(t^,x) equals zero. Thus the system order is found by increasing the integer 

k until r „ ( v , x ) becomes singular. In practice, however, the extraneous disturbance r/. 

and Ck will almost always be non-zero, such that the exact linear dependence in n/:(u,r/) 

required for rank collapse cannot be set up. The practical consequence is that for A; > n , 

the minimum eigenvalue or determinant of Tu{u,y) falls to some lower bound determined 

by the statistical properties of the disturbances ejt and r^. From (4.17)-(4.19), 

E[V,{u,y)] = £ ; ( Q , K x ) + n , . (r ,e)nn,(7; ,x) + n , (r ,e ) ) 

= E[Tk(y,x)] + Ru{r,e) (4.20) 

where «fc(r ,e,u,x) = E{Vk{r,e) Q.k{v,xynk{r,e) + nk{r,eYQ.k{v,x)\. 

4.3.2 Minimum Eigenvalue Ratio Test 

Theorem 4 . 1 . 

/ / A ts a non-negative symmetric matrix, the following conditions are equivalent: 
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(OA. is a singular matrix 
(II) det A=0 

(HI) Xr„in(A) = 0 

where del A and Amm(A.) denote the detenninant and the minimum eigenvalue of matrix 
A respectively. 

Theorem 4.2. 
/ / A is a nth order non-negative symmetric matrix, there exists an orthogonal matrix T 
such that: 

T'AT = diag{K,...,\,) (4.21) 

where > A ^ - i > • • • ̂  A] arc n eigenvalues of matrix A and T'" is the transpose matrix 
ofT. 

Theorem 4.3. 

// A and B are two symmetric matrices, then 

A m i n ( ^ ) + ><min{B) < Xmin{A + B) < Xmin{A) + Xmar{B) 

(see Suda ei ai (1973)). 
Theorem 4.4 

(i) //"{rjt} and {et} are white noise disturbances and independent of {vk} and {xb] then 
Rk{r, e, x) = diag{<j1,..., a^, a^,,.., c]) 

*̂ + 1 k^Y 
(ii) If {rfc} and {ck] are white noise disturbances, independent of {vk} o-nd {xk] and 
crl^al, then Rk{r,e,v,x) = diag{a^,... ,a^) and 

Xmin{Er,{u,y)) = Xrr^iniET.iv.x)) + (4.22) 

(Hi) If {r/f} and {e/..} are white noise disturbances and aj, ^ aj, then 

XminiBVuiu.y)) = A^i„(£;rfc(u,i)) + R^, 

min{(7l,a^) < Rk < 7nax{al,a^) (4.23) 

(iv) / / { r ^ } , {ck} are coloured noise series and there exists a constant C such that: 

Xmar{Rb{r,c,x,v)) < C, k= 1,2,... (4.24) 

then 

A„, .„ (Er , (u ,y) ) = X^,n(E[\(v,x)) + R,, R, < C. (4.25) 
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Proof: 
(i) The proof of this follows from the assumption that and rjt are uncorrelated white 

noise series and independent of [vk] and {x/.-}. 

(ii) Since Er(xL^y) is a non-negative symmetric matrix, from Theorem 4.2, there exists a 
orthogonal matrix T , such that 

T^ETuiv, x ) T = diag[\,,..., A^O (4-26) 

where A; is the 7-th eigenvalue of the matrix ETk{v^x). So 

T^£ ; r , . ( u ,y )T = T'EVu{v,x)T^-diag{al...,al). 

= < f i a ^ ( A , - f - a ^ . . . , A 2 t + <r,') (4.27) 

Therefore (4.22) holds. 

A ^ , „ ( ^ r , ( u , y ) ) ^ A ^ , „ ( £ ; r , - i ( u , y ) ) 
A^.-,(^r,,+,(tz,y)) - XminiEV.iu.y)) 

^ Kin{Er,{v,x)) - Xmin{Er,^,{v,x)) 
Xmin{Er,^r{v,x))-X^in{Er,{v,x)) ^ ' ^ 

Since EVkiv.x) = 0,(^• > n) and Ert,{v,x) ^ 0,{k < Ji), (14) become infinite. 

(iii) According to Theorem 4.3, (4.23) holds. 

If fc = n , \ininErf:(v,x) = 0, tlieu XjninErf,{u,y) is limited its range being between 
and ag. In practice, 

XminErK-{u,y)- R, ^ ' ^ 

should be very large. Since we cissume that and are usually very small and the 
differences oi Ri,i = k — l,k,k + I are also very small, 

An..„(Er<..(tt,y)) - Xmi„{Erk-iiu,y)) 

( A ^ . „ g r ^ _ i ( u , y ) - - {KinErkiu,y) - Rk) 
{X,ninErk{u,y) - R k ) - (XminEVk+i (« , y) - Rk+l ) 
An . ,„(£rt(t; ,a:)) - A^ .„ (gr t_ , ( t ; , x)) 
A „ . „ ( £ r , + , (v, x)) - A ^ , „ ( £ ; r , ( t , , x)) ^ • 

should be comparatively large since Erkiv,x) = 0,(k > n) and Erk{v,x) ^ 0,{k < n). 

It is noticed that (4.30) is equivalent to (4.28). 

(iv) This is proved in a similar fashion to ( i i i ) . Theorem 4.4 is thus established. 

From Theorems 4.1-4.4, we can easily show that the minimum eigenvalue of the product 

63 



moment matrix is very sensitive to its singularity. This is one main reason that we choose 
the minimum eigenvalue ratio test for estimating the order of the system. Also let us 
illustrate the reason that we choose the eigenvalue ratio rather than the determinant 
ratio test of Woodside (1971) by following simple examples: set a matrix 

.2 (4.31) 

When n is sufficiently large, we can say M„ is *nearly singular' due to its minimum 
eigenvalue e""^ being very very small. But unfortunately, 

deiMn = 1. 

So the singularity information can not be found just from the deteminant in this case. 
Let 

Meanwhile from M n , we can easily see that the minimum eigenvalue of Ad^n is a much 
more sensible variable to reflect its singularity than the determinant of M„. Let 

MPRfLA - -^mm(Mfc-i) - XminjM,,) 
Ml.K(k) - A . ,„ (M, . ) -A^,„(M,+ . ) 

e-("-^) '( l - e - ( 2 " - ' ) ) 

e -n^( l _ e-(2"+i)) 
.2 

Some more discussion and examples will be given in the next subsection. In practice, 
the minimum eigenvalue of r/;(u,y) will almost always be non-zero, it is expected that 
for k > n the minimum eigenvalue of rk{u,y) falls to some lower bound range controlled 
by the noise covariance matrix. The minimum eigenvalue ratio test is used in place of 
the determinant ratio test for the nearly singularity of the product matrix. The so called 
minimum eigenvalue test is as follows: 

' " ' " '^^^^ - A . . - 4 r . ( u , y ) ) - A . . . ( r . . . ( . , y ) ) -

The quantity MER(k) forms a normalized order test quantity, such that when k = n, 
MER(k) increase rapidly. In practice, we increase k one by one and if MER(A:) reaches 
its maximum, we can consider k = h as the estimate of n. From (4.28), we can see 
that MER(n) means comparatively large differences between Pf i_i(Ti ,T/) and rn{u,y) and 
small differences between r,-;(u,y) and r ,i+i(tz ,y) which also occurs in the behaviour of 
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linu.-oo Amm ( r / : ( t t , t / ) ) = 0 or A„i,-n(rfc(u,t/)) approaches to its lower bound range. Now 
we consider a more general case i.e. a kind of bilinear system introduced by Chen et ai 
(1996) and we only consider a simpler form of bilinear system as follows: 

A(z-')yr, = B{z-')un + C{z-')u^yn (4.33) 

where and u„ are the observed system input and output sequences respectively and 

= U „ + Tn X n = J/n - f Gn (4-34) 

Vn and Xn are input and output data; e„ and are zero mean uncorrelated sequences 
with variance al and respectively are the sources of all stochastic disturbances to the 
system; and A{z''^), B{z~^) and C{z~^) are nth order polynomials in the backward shift 
operator z~^ i.e. 

Set: 

>l(2-*) = l + a i 2 - ' - l - , . . + a,2-" 

B ( 2 - » ) = 6,2-* + . . . + 6„z-" 

C ( 2 - ' ) = c ,2-^ + . . . + C n 2 - " . 

r,{u,y) = ai{u,y)n,{u,y) 

(4.35) 

(4.36) 

where 

^k{u,y) 

y^o yk yo UkVk 

u/sj . . . UAf_t ypj ... yfs!_f. u,vi/A' 

and N is the number of observations. Set: 

^N-kVN-k 

(4.37) 

0 0 

0 0 

0 UArCjl- + XkTk 

0 Vf^Cfy.' + Xfsjr/^ 

voeo + xô o 

V/s!-kGN-k + X A ^ . j t r y v - J t 

(4.38) 

EVkiu.y) = -E(f2fc(t;,x)-f-Q;t(r,e)-f A,.(t;,x,r,e))^(n,.(i;,x) + n , ( r , e ) 

+A/:(v ,x , r ,e)) = ATj t ( i ; ,x ) - f /?(7; ,x,r,e) (4.39) 

w here 

^ ( u , x , r , e ) = £;(nfc(t.,x))^(n,-(r,e) +Afc(u ,x , r ,e) ) 

H^k{r.e) + A,{v,x,r,e)yn,{v,x)). (4.40) 
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Theorem 4.5. 

(i) If {j'it} and {ejt} are white noise disturbances and independent of {v^} and {xk}, then 

Rf:{r,e,v,x) = diag{al,. ^., cr^j^l, • -j , <^l,f^<^l, • ^..olal). 

-̂ + 1 A: + 1 •̂ + 1 
(""V U { ^ f c } > { 6 f c } ^ ' '6 coloured noise series and there exists a constant C such that: 

Amax(^fc(r,e,a:,t;)) < a\ '̂ = 1,2,... (4.41) 

then 

Xmin{Ert:{u,y)) = X^iniEV kiv, x)) + Rk, Rk < C (4.42) 

The proof of the Theorem 4.5 is similar to that of those in Theorem 4.4. I t is natural 
that the MERT can also be used in the bilinear system. 

4.3.3 Examples 

Three examples are presented here to illustration how the MERT works for the linear and 
bilinear system with white noise and coloured noise respectively. 

First we consider the example given by Weilstead (1978) whereby we can compare Wood-
side's DRT . 

Example 4 . 1 . 

We consider the system as follows: 

?/n+i - 1.5j/n + 0.7y„_, = u„ -f Q.bun-i - f Cn+i (4-43) 

where Ck is white noise with variance <7̂  and is independent of Uk and in here for simplicity 

we assume r^ = 0. Table 4.1 shows the variation in the determinant ratios (DR) and the 

minimum eigenvalue ratio (MER) of the product moment matrix for various orders, and 

based upon 500 data points and the Uk is a white noise series with Euk = 0 and = 1. 
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T A B L E 4 . 1 . The Comparison of order estimate test o f D R and M E R 

a = 0 a = 0.01 a = 0.05 a = 0.1 a = 0-2 

DR(1) 3.51297 3.51359e-0S 3.50S82e-08 3.49439e-08 3.50009e-OS 
DR(2) 44276.1 0.0114784 0.000388697 0.000122614 3.22383e-05 
DR(3) 141572 0.0115572 0.000391872 0.000123378 3.29072e-05 
DR(4) 217848 0.0117354 0.000400107 0.000126035 3.33166e-05 

M E R ( l ) 4.39868 4.39864 4.38944 4.39958 4.36695 
MER(2) 1.07078e+12 270243 8204.94 2858.12 638.784 
MER(3) 2.38109 2.076311 2.40435 2.30346 3.080796 
MER(4) 1.92904 2.6573 1.9434 2.019417 2.25812 

Figure 4.1.1 shows the variation in the determinant ratios (DR) of the product moment 
matrix for various orders. Note that as the variance of et is increased the change in the 
product moment determinant ratio is blurred. 

Figure 4.1.2 shows the variation in MER method of the product moment matrix for var
ious orders. Note that as the variance of is increased the change in the MER version 
retains, to a certain extent, its discriminatory power. 

Example 4.2. 

We consider the system with the coloured noise as follows: 

T/„+, - 1.5j/n + 0.7y„_i = + 0.5u„_, + e„+, - 0.5en (4.44) 

Table 4.2 shows the variation in the determinant ratios (DR) and the minimum eigenvalue 
ratio (MER) of the product moment matrix for various orders, and based upon 500 data 
points and the Uk is a white noise series with Euf. = 0, and = 1. 
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T A B L E 4.2. The Comparison o f order est imate test o f D R and M E R 

0- = 0 0- = 0.01 a = 0.05 a = 0.1 cr = 0.2 

DR(1) 2.1956e-05 2.192176-05 2.19444e-05 2.14101e-05 2.108536-05 
DR(2) 6.70777e+07 0.239791 0.0101751 0.00249238 0.000546805 
DR(3) 7.83125e+07 0.284344 0.0122996 0.00286875 0.000665293 
DR(4) 1.04709e+0S 0.303033 0.0129332 0.00293136 0.000697109 

M E R ( l ) 4.3986S 4.4041 4.44528 4.60215 5.26181 
MER(2) 2.17086e-M3 112292 19590.5 789.234 132.171 
MER(3) 0.0844448 0.128343 0.0416726 0.544485 0.256149 
MER(4) 1.22852 5.14429 1.62926 3.047697 1.2321 

Figures 4.2.1-4.2.2 show the similar results as Figures 4.1.1-4.1.2. 

Example 4.3. 

We consider a bihnear system similar to that of Chen ct al. (1996) as follows: 

i/„+i - 1.57/„ -f 0.7yn_i 

= xLr, -I- 0.5un-i - 0.2ynt^n + 0.1y„_,Tin-i + ^n+i + 0.2e„ (4.45) 

Table 4.3 shows the variation in the determinant ratios (DR) and the minimum eigenvalue 
ratio (MER) of the product moment matrix for various orders, based once again upon 
500 data points and the Uk is a white noise series with Eu^ = 0, and = 1-

T A B L E 4.3. T h e Comparison of order estimate test of D R a n d M E R 

a = 0 (7 = 0.01 (7 = 0.05 a = 0.1 o- = 0.2 
DR(1) 1.4945e-09 L49625e-09 1.526286-09 1.480446-09 1.45691e-09 
DR(2) 4862.63 3.24106e-05 1.49464e-06 2.99Se-07 7.22596e-08 
DR(3) 7534.74 3.44451e-05 1.56957e-06 3.11026-07 7.537566-08 
DR(4) 34410.4 3.49498e-05 1.612736-06 3.18014e-07 7.78108e-08 

MER( l ) 6-52662 6.52863 6.553 6.71938 7.83037 
MER(2) 4.45992e-fl2 6269178 307.595 60.3803 13.06294 
MER(3) 0.280472 3.23657 3.083804 2.96004 2.55572 
MER(4) 0.621848 2.27728 2.66296 2.42319 2.35324 
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Figures 4.3.1-4.3.2 show the similar results as Figures 4.1.1-4.1.2. 
From Tables 4.1.-4.3. and Figures 4.1.1-4.3.2, we deduce the following: 

• When there are no disturbances {a = 0), both DRT and MERT work very well. 

When a 7̂  0, MERT works very well but not DRT, even if the variance of the 
is very small. 

• The sensitivity of MERT decreases as a increases, but considering the ratio of 
signal/noise S = 10 x logau/a, the high noise (S=16, i.e. a = 0.2) case, the 
MERT looks reasonably good. 

• The MERT works well both in bilinear and linear system with coloured and white 
noise disturbances. 

From three examples presented here, we deduce that the MERT is a very practical method 
to estimate the order of linear and nonlinear system prior to parameter identification 
which can overcome both insensitivity of the system noise and computationally expensive 
procedures. 

4.4 Conclusion 

Some useful model validation and order determination tests and techniques are reviewed 
and the minimum eigenvalue ratio test of product moment matrix introduced in this 
chapter is a natural extension of the deterministic system. The purpose of presenting 
here is to provide a straightforward way to estimate approximately the order of unknown 
system as a complement of some popular methods reviewed in the first two sections of 
the chapter. The MERT method has the advantage of a crisp asymptotic rank condition 
which is not influenced by the observed input/output data disturbances and provide a 
simply and direct way to estimate the approxiamate order of a unknown system by using 
input/output data set. Moreover, this method can be extended to a first stage estimate 
on more complicated structures of the model as well as the order of a wide range system 
model. For the system with significant disturbance about the observed input/output 
data, more statistical reliability analysis should be carried out and it is suggested that 
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the method supposed to be carefullly used or combined with the comparatively mature 
methods reviewed in the chapter. 
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Chapter 5 

Review of Cohesive Sediment 
Transport Processes and Associated 
Mathematical ModeHing 

5.1 Introduction 

Sediments form a crucial link in estuarine processes. Suspended sediment concentrations 
are generally high, the particles are fine, cohesive, and prone to flocculate, and they are 
richly organic. The prediction of movements of very fine sediments is of major impor
tance in many coastal areas or estuaries, as these sediments cause nuisances which require 
costly solutions: siltation in navigational channels and harbour docks, degradation of wa
ter quality. Cohesive sediments are also a vehicle for pollution, due to their faculty for 
absorption of heavy metals, pesticides and radionuclides (Teisson, 1991). 
Large efforts have been undertaken to analyse extremely complex mechanism of transport, 
deposition and erosion of cohesive sediment as reported by Mehta (1986). So sediment 
transport in coastal and estuarine regions is an important topic which is receiving in
creasing attention by environmental researchers. The description of cohesive sediment 
transport process is given in section 5.1, and the review of some numerical modelling of 
cohesive sediment transport is given in section 5.2. 
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5.2 Cohesive Sediment Transport Process 

Due to the interparticle forces, cohesive sediments and especially the very fine clay par
ticles (d < 2mm.) form loose aggregates or floes when the concentration of sediment 
in suspension increases, particularly in a saline environment. As floes are formed, the 
settling velocity increases by several orders of magnitude compared to the individual clay 
particles. However, above a certain concentration, the particle aggregates start to hinder 
each other and the settling velocity decreases rapidly. When the floes finally reach the 
bed, they form a dense fluid mud layer with strongly non-Newtonian rheological prop
erties. Due to continuing deposition, the mud layer which initially was a loose fragile 
structure, gradually collapses under its increasing weight. The interstitial pore water is 
expelled; the weight of mud layer is progressively supported by the interparticle reaction 
forces. This process is called self-weight consolidation. The mud layer can be eroded due 
to fluid shear caused by currents or waves and induced turbulence. 

In practice the prediction of cohesive sediment transport is intimately tied to the knowl
edge of these physical processes (Teisson, et al. 1993), which has encouraged extensive 
studies on these processes. 

But cohesive sediments appear like a "water-sediment" complex, and the behaviour under 
flow action can be modified by the physico-chemical properties of the fluid (temperature, 
ionic composition,.,.) or by the sediment nature itself (mineralogic composition, organic 
content,...). Thus, for engineering applications, studies have usually been empirical and 
site specific, with the development of well known laws relating the rate of the sediment 
processes to "lumped" parameters (Mehta, 19S9a; Delo 1988). These global parameters, 
such as bed density and mean flow velocity, do not account for the basic nature of particle-
particle or flow-particle interaction (Mehta l9S9a). This inhibited the intercomparison of 
data or even methodology, and the list of parameters to characterize mud. So there is a 
need to standardize the parameters, which aims at a better description of mud properties 
and understanding the basic cohesive sediment transport process. 

Understanding the process of cohesive sediment, and quantifying them in terms of en
gineering parameters has, until recently, depended mainly on laboratory testing. Ex
periments focused on one isolated process (deposition, or erosion, or consolidation) and 
most usually under steady conditions. However, in marine environments, tides impose 
cyclic conditions and the processes of deposition at slack waters, partial consolidation, 
and resuspension at higher flow velocities are interrelated. Moreover, laboratory exper
iments cannot account for the complexity of the field. To enlarge the useful empirical 
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relationships derived from laboratory experiments for the processes in steady conditions 
(Mehta, 1988), there is a need to investigate some of the processes in unsteady conditions 
in laboratory experiments (Van Leussen and Winterwerp, 1990) or directly in the field 
(Van Leussen and Cornelisses, 1992). 

Classical relationships describing the processes, although very useful, lack general ap
plicability because the physics of the salient processes is hidden behind the "lumped" 
parameters. This is the case for instance for flow sediment interaction: classical soils the
ories applied to consolidation or two-phase flow models applied to turbulence show that, 
behind the diversity of behaviour or approaches, there must exist some f i rm relationships 
which can help in defining and then estimating the governing parameters. 

5.2.1 Deposition 

The process of deposition of cohesive sediment depends on a combination of different 
factors, including the size, settling velocity and strength of the settling particles. These 
particles may be single or, more likely, aggregates or floes which may be loosely or strongly 
bound together. The floes have dimensions and settling velocities of the primary particles. 
A review of the aggregation processes is given by Van Leussen (1988). A number of 
mechanisms can be responsible for the aggregation of the sediment particles, including 
salt flocculation, organic aggregation, bioflocculation, pelletization. Large fragile floes 
may result, which are easily destroyed into smaller units, for example by shear force. 
It may be hypothesised that the deposition of the floes is controlled by the stochastic 
turbulent processes in a zone near the bed. Only floes that are strong enough to resist 
the bed shear stresses will settle to the bed. Floes of which the strength is too low wil l 
be broken up into two or more smaller units and re-entrained into the suspension by the 
hydrodynamic l i f t forces. 

Several researchers have formulated models for deposition, either for a uniform sediment 
or for a distributed sediment with different sized particles having a range of strengths 
and settling velocities (Mehta and Partheniades, 1975; Mehta and Lott , 1987; Verbeek 
ct al. 1993; Krishnappan, 1991). Most of this work has been developed from laboratory 
tests where sediment is contained in a closed system. For application to field situations 
the models should be based on input also determined from the field. The field data 
recorded in the Mersey Estuary was used to test and compare a simple deposition model 
for uniform sediment and a second model for distributed sediment. The models were first 
test on laboratory data, and the sensitivity of the models to the input parameters was 
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also investigated (Ockenden, 1993). 

For the simple uniform sediment model, deposition rate on to the bed, d, was modelled 
according to Krone (1962) by the equation: 

= (1 - n/Td)wsC, n < rd. (5.1) 

Time histories of bed shear stress, r^, critical shear stress for deposition Td , settling 
velocity Ws and suspended sediment concentration, c, were prescribed during a tide. The 
model was then modified to allow for a distributed sediment according to Mehta and Lott 
(1987). This model assumes that the sediment is divided into classes, each having a 
unique settling velocity, concentration, c,- and critical shear stress for deposition, r ,̂-. 
The total sediment deposited rate on the bed £?, is given by the sum of the individual 
amounts deposited from each class: 

D = i:wsilcic{l-nlui) (5.2) 

where /c,- is the proportion of the total concentration in sediment class i , and sediment 
class i only deposits \i u < Trf,-. 

Both models gave a reasonable fit to the measured data for each of the monitored tides 
(Teisson, 1992). One noticeable feature (which occurs in each of the tides) is that the 
predicted deposition (from both models) occurs earlier than the measured deposition, 
showing a delay between the low shear stresses and the actual deposition on the bed. 
This delay is consistent with a flow-sediment hysteresis efTect, as described by Costa and 
Mehta (1990), where for the same mean horizontal velocity, values of the Reynolds stress 
and turbulent variances were higher during decelerating flow than accelerating flow. 
The distributed sediment model includes an improved representation of the differential 
settling of aggregates. However, for the application of field data, the uniform sediment 
model gives as good a f i t to the data as the distributed sediment model. 
The predicted deposition (and corresponding drop in concentration in suspension) over 
high water corresponds well with the measured drop in concentration recorded over this 
period (Ockenden, 1993), indicating that it is only a local effect. However, at other periods 
of the tide, i t can be shown in the field data that sediment has been advected in from 
somewhere outside the region. By comparing the predicted and measured concentrations 
it should be possible to separate the local effects from the advected effects (Dyer, 19S8). 

77 



5.2.2 Erosion 

The mechanics of mud erosion has been reviewed by Mehta et al. ( 1 9 8 9 ) . Three modes 
of erosion have been identified according to the magnitude of the bed shear stress and 
the nature of the deposit. Visualisation of these processes with detailed picture of eroded 
beds can be found in (Migniot, 1968) and (Perigaud, 1983) . This includes: 

• Re-entrainment of stationary suspensions, where an undulation in the interface ap
pears which is gradually accentuated, increasingly deforming the layer of sediment. 
In the end the sediment is carried away in the form of mud streaks and diluted in 
the current water. 

• Surface erosion of consolidating beds where the eroded surface creases and the sur
face film is torn. The mud is eroded in the form of flakes which are more or less 
diluted. In this case, Migniot defined the mud as plastic. 

• Mass erosion of fully consolidated deposits, which requires very large bottom ve
locities ( 1 m/s or more) to be eroded. Mud pebbles are formed and not easily 
diluted. 

By analysing bed samples with a Brookfield viscometer, (Migniot, 1989) fixed the l imit 
between fluid and plastic mud at a yield value of 3 N/j7i^ and that between plastic and 
fully consolidated muds at 75 N/ni^, 

From the hydrodynamic point of view, bursts of turbulence near bed appeal* to play 
a dominant role in the erosion process (Winterwerp, 1989) . Hydrodynamic forces are 
balanced by cohesion forces which are influenced by a large number of chemical and 
biological factors. There is no established theory for calculating the rate of erosion of 
mud deposits, instead i t is necessary to rely upon site specific studies including laboratory 
flume tests or field measurements. 

Many empirical laws for the erosion rate, j E , have been proposed in the literature from 
deposited bed flume experiments. The simplest is expressed as (Ockenden ei al. 1989) : 

E = AUt - T , ) ( 5 . 3 ) 

with Mc = a constant, r = bed shear stress estimated in clear water, and = shear 
strength of tlie deposit. 
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Me and are functions of the mud deposit and the depth. The determination of the 
critical shear stress TC is discussed in Berlamon et al. (1993). Based on the concept of 
floe erosion rate, Parchure and Mehta (1985) have proposed a more complex expression 
where two additional parameters are used including the floe erosion rate Ej: 

E = Efexp{a{T - r j * ) . (5.4) 

(Kujiper et al, 1989) have performed experiments in a recirculating straight fliime and an 
annular flume with kaolinite and have analysed the results following Parchure's method
ology. Two important conclusions have been drawn up from this study: ( i ) the larger 
number of parameters to be set facilitates the tuning of the equation to provide reason
able results. This tuning would be a cumbersome (or even unreliable task) for practical 
cases, (ii) the proposed formula is very sensitive to the bed shear stress which is very 
difficult to estimate in practical cases. 

For practical applications, erosion formulae derived from steady state laboratory experi
ments are often used in tidal conditions. However, i t is commonly observed in the field 
that during decreasing currents concentrations are higher than during increasing currents; 
likewise, sediment concentrations often lag hydrodynamic force (Costa and Mehta, 1990). 
This feature is known as flow-sediment hysteresis (Dyer, 1988). 

Van Leussen and Winterwerp, (1990) conducted annular flume experiments under tidal 
conditions and showed the dominant role of the top layer of the bed, which develops under 
the successive phases of deposition and erosion. Costa and Mehta, (1990) also illustrated 
the difiiculty of predicting suspended sediment concentration during a t idal cycle with 
a simple description of erosion/deposition processes that arose from laboratory experi
ments. 

Long term simulation of suspended sediment transport in the Loire estuary performed by 
(Fritsch ei al. 1989) has shown very little dependence on the erosion law, but the correct 
estimations of the critical shear stress was very important in this case. 

5.2.3 Consolidation 

During a deposition phase, floes or individual particles settle on the bottom and form 
new sediments that can concentrate and consolidate. The stifl^ness of this fresh mud 
increases progressively and consequently its erodibility is reduced. Thus cohesive sediment 
transport modelling requires knowledge of the surficial sediment shear strength which has 
to be deduced from a consolidation model or measured in laboratory or field tests. A 
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parameter which quantifies the erodibility of a sediment is its erosion threshold, i.e. the 
bottom shear stress which is needed to resuspended i t . 

In the present work, investigations about self-weight consolidation have been conducted 
in four directions: 

• synthesis of previous fundamental research, especially that drawn from soil mechan
ics; 

• compilation of existing laboratory settling experiments and identification of required 
new tests; 

« development of mathematical models for consolidation, and coupling wi th sediment 
transport models; 

• validation with field measurements, both in terms of density evolution and shear 
strength variation. 

As indicated in a review by Alexis ci al. (1992), two families of models can be distin
guished: 

• The "sedimentation" models express mass conservation of the solid particles, wi th 
vertical exchanges represented by the settling fluxes. A common assumption of this 
approach is the unique dependence of the settling velocity on the local suspension 
density (Kynch, 1952), due to hindered settling processes; 

• The so called "consolidation" models account for mass conservation of pore water 
and relate its expulsion between particles to the pressure vertical gradient by means 
of permeability, assuming Darcy's law. From the dynamics point of view, the stresses 
within the soil can be split into effective stresses on the grains and pore pressure on 
the fluid: only the latter forces the water movement. This concept is the ba^is of 
geotechnicians' approach. When combined with water mass conservation, it leads 
to Gibson's equation (Gibson el ai 1967), assuming constitutive relationships for 
permeability and efl"ective stress as functions of the void ratio. 

The former models seem to be more appropriate for suspensions and the latter convenient 
for dense mixtures; both are consistent as they consider the relative movement between 
the solid and fluid phases. Their analog}' when efi'ective stress is negligible has been shown 
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by Been, 1980. On the other hand, the possible reduction of settling velocity by effective 
stress can be introduced in a sedimentation model (Toorman and Berlamont, 1993). In 
fact, a real two phase flow approach should be more suitable when dealing with a large 
range of concentrations, enabling total continuity between deposition and consolidation 
processes. 

Despite its theoretical basis, Gibson's equation does not represent a general formulation 
for consolidation, as it relies on restrictive assumptions. By not assuming Daxcy's law and 
accounting for the fluid compressibility (partially filled voids for unsaturated soils. Alexis 
et al. (1992) proposed an extended formulation of the consolidation equation which is 
very similar to the settling formulation by Toorman and Berlamont, (1993). 
It should be noted that all these theories do not deal with bed shear strength and require 
a relationship between concentration and erosion threshold for parameterizing the sedi
ment erodibility. Besides, they only consider vertical processes, although some horizontal 
movement can interfere, especially when mud is fluidized by wave motion. 

5.2.4 Turbulence 

Turbulence is the factor which maintains sediment in suspension by opposing the settling 
flux. The vertical distribution of sediment results from these antagonistic actions and has 
been thoroughly described under varying hydrodynamic forcing (Mehta, 1989b). How
ever, our knowledge is still hampered by the complex interactions between the sediment 
and the flow field, especially at large concentrations or near the bottom. 
Some attempts have already been made to account for the influence of sediment in these 
two areas: 

(i) The vertical structure of the concentration profile in highly concentrated areas and the 
presence of so-called lutoclines — zones of high gradient of concentration and minimum 
of mixing — has been described and mathematically modelled by (Wolanski ct al. 1988; 
Ross and Mehta, 1989; and Smith and Kirby, 1989). In these models, sediment is mixed 
vertically by an eddy difl*usivity approach. However, through a Richardson number de
pendency, sediment-induced density effects inhibit vertical mixing. These models enable 
satisfactory reproduction of the generation and evolution of lutoclines. 

(ii) The other domain of interest is how the presence of sediment can affect the bottom 
shear stress and the bottom processes. (Sheng and Villaret, 1989) performed numerical 
test with a turbulent IDV model including investigation of the influence of the suspen
sion on the turbulent flow and bed shear stresses. This model has been applied further 
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by (Huynh-Thanh el al. 1991). Gust, (1976) verified the turbulent draft reduction in a 
clay suspension in a small flume and found in the field that the shear velocity u' could 
be reduced by as much as 40%. 

Classically, the variation of sediment concentration c along the vertical axis is written as: 

dc dw.c dw'c 

where w is the vertical velocity of the flow, the overbar sign is the time-average value, Ws 
is the settling velocity of particles, possibly a function of concentration and c\w' are the 
fluctuation of c and w respectively. 

The turbulent flux is usually modelled by a first gradient approximation: 

w'd = ~I<dc/dz (5.6) 

and the effect of concentration (density) on turbulence is generally not represented, lead
ing in steady condition to the well known Rouse equilibrium profiles. 
For the boundary condition at the bottom, exchange with the bed (erosion and sedimen
tation) is empirically related to a mean flow velocity. 

In low turbidity environments, these models are acceptable and have been widely ap
plied, but they present two inadequacies for a more fundamental approacli: to rely on 
a crude approximation of turbulence, and to relate processes occurring near the bed to 
lumped parameters. In essence, they cannot represent accurately the processes very close 
to the bottom when large concentrations are experienced, and flow sediment interac
tion becomes important. Neither can they describe thoroughly the balance or imbalance 
between turbulent and settling fluxes. Consequently, laboratory studies have been con
cerned with providing deposition and erosion rate expression in relation with the level 
of mathematical modelling, with less than adequate emphasis placed on the evolution of 
the vertical structure (Mehta, 1988). Application of classical erosion/deposition laws in 
high concentration environments has revealed itself of limited ut i l i ty due to complex near 
bed interactions and has suggested the need for an improvement in turbulence modelling 
(Costa and Mehta, 1990). 

Today, a new generation of models , such as Reynolds stress models and two-phase flow 
(sediment and fluid) models has become available in the industrial domain experts have 
tried to apply and the most recent ideas and concepts to cohesive sediment laden flow. 
The philosophy is to represent the hydrodynamics, turbulence and flow sediment interac
tion in the most accurate way, and, if possible, to get a new understanding of the physical 
processes in return. 

82 



5-3 Numerical Modelling 

The implementation of these processes into numerical models has started i n the 1970's 

wi th Odd and Owen, 1972 and Ar ia thura i , 1974. A t that t ime , use of three-dimensional 

(3D) models was impossible due to computing costs and capacity: morphological evolu

tions are very slow in the f ie ld and require t ime consuming long t e r m s imula t ion . 

Several numerical models have been developed in recent years. These models range f r o m 

one-dimensional vertical profile formulations (e.g. De Vantier and Narayanaswamy, 1989; 

Hagatun and Eidsvik, 1986) via two-dimensional vertical or depth integrated models (e.g. 

Van R i j n , 1987 and references therein; Teisson and Frisch 1988; Veeramachaneni and 

Hayter, 1988) to quasi- or f u l l three-dimensional formulat ions (Sheng and Bul te r , 1982; 

Van R i j n and Meijer , 1988; O'Connor and Nicholson, 1988; Eidsvik and Utnes 1991; Utnes 

1993;Utnes and Ren, 1995) and others. 

For engineering applications, the sediment transport model is generally coupled wi th a 

hydrodynamic model, to get information on flow velocities. A l l above mentioned mod

els are based on the conventional Reynolds averaging of the incompressible Navier-Stokes 

equation including the continuity equation, turbulence model and advection-difFusion con

centration equation. The model equations are obtained by a conventional Reynolds av

eraging of the incompressible Navier-Stokes equations including the con t inu i ty equation. 

The governing equations of some models wi l l be given later. 

The equations which govern the dis t r ibut ion of the mean flow quanti t ies are dealt w i t h 

in this section and therefore form the basis of the so-called f ield methods. T h e origin of 

these equations are the conservation laws for mass, momentum and suspended sediment 

concentration. For incompressible flows, these laws can be expressed in tensor notat ion 

as follows. A short introduction to tensor notation is given as Append ix 5 .A. 

M a s s c o n s e r v a t i o n : c o n t i n u i t y e q u a t i o n : 

g = 0, z = 1,2,3 (5.7) 

M o m e n t u m c o n s e r v a t i o n : N a v i e r - S t o k e s e q u a t i o n s : 

dt ^dxj pdxi dxidxj 
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S e d i m e n t c o n c e n t r a t i o n c o n s e r v a t i o n : 

Where Ui are the instantaneous velocity component in the direction x,-, P is the instan

taneous static pressure, C is the instantaneous suspended sediment concentrat ion, Sc is 

a source te rm expressing tl ie mass generation due to chemical or biological reactions, i / , A 

are the kinematic viscosity and difFusivity of C respectively, p is the flow density tha t is 

assumed as constant and p,- is the gravitat ional acceleration in direct ion x , . 

R e y n o l d s ' t i m e - a v e r a g i n g p r o c e d u r e 

Reynolds's applied the Navier-Stokes equations to turbulent flow by in t roduc ing a t ime-

averaging procedure. Each instantaneous variable is represented as a t ime-mean value 

plus a fluctuating value. Thus: 

Ui = u.- + i' = 1,2,3 C = c - f c', P = p + p ' (5.10) 

Ui are the time-mean velocity components in the direction x,-, and u | are the fluctuation 

velocity component in the direction of x,-. p, are the time-mean and fluctuation static 

pressure respectively and c, d are the time-mean and fluctuation suspended concentration 

respectively. 

The mean values are defined by: 

f = ^ j ^ F { t ) d t (5.11) 

in which T is time-averaging period. This period T should be larger than the dominant 

turbulence scale, but small than the long periodic effects such as the t i d a l scale ( T between 

2 to 5 minutes is a good choice). 

5.3.1 Three Dimensional Model 

The governing 3D model equations are usually obtained by a conventional Reynolds av

eraging of the incompressible Navier-Stokes equations including the con t inu i ty equation 

as follows: 
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M o m e n t u m E q u a t i o n s : 

C o n t i n u i t y e q u a t i o n : 

1̂  = 0. 2 = 1,2,3 (5.13) 

The suspended sediment concentration is computed f r o m the t ransport equation as fo l 

lows: 

di dxi dxiGcdxi dxi ^ ^ 

Here the overbar sign means the t ime average value and u-u- is the tu rbu len t Reynolds 

stress tensor. 

The Reynolds stress is modelled by use of the Boussinesq assumption 

dui duj 

dTj 'd^i' 3 
= ^ < ( ^ + ^ ) - i / : ^ 0 (5.15) 

where 

i^t=C^— (5.16) 

is the eddy viscosity, 

l^=l(^ + ^ + ^ ) (5.17) 

is the mean turbulent kinetic energy, e is the turbulent energy dissipation rate and Sij is 

the Kronecker delta. 

These are the equations governing the mean-flow quantities u,-,p and c. T h e equations 

are also exact since no assumptions have been introduced in der iv ing t hem; but they no 

longer form a closed set due to the nonlinearity of (5.8) and (5.9). The averaging pro

cess has introduced unknown correlations between fluctuating velocities, u'-u'-, and scalar 

fluctuations u'-c. Physically, these correlations, mult ipl ied by the density p, represent the 

transport of momentum and mass due to fluctuating (i.e. tu rbu len t ) mo t ion . ~pu\u- is 

the transport of xi- momentum in the direction Xj (or vice versa); i t acts as a stress on 

the f lu id and is therefore called turbulent or Reynolds stress. ~pu\c is the t ranspor t of the 
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scalar quant i ty c in the direction and is therefore a turbulent mass flux. I n most flow 

regions, the turbulent stresses and fluxes are much larger than their laminar counterparts 

i / f ^ and which are of ten negligible (Rodi , 1979). 

Equations (5.12)-(5.14) can be solved for the mean values of velocity, pressure and sedi

ment concentration only when the turbulence correlations u'^u- and u\c can be determined 

in some way. In fact, the determination of these correlations is the main p rob lem in cal

culat ing turbulence flows. Exact transport equations can be derived for u\u - and u\c tha t 

w i l l be given later, but these equations contain turbulence correlations of the next higher 

order. Therefore, closure of the equations cannot be obtained by resorting to equations for 

correlations of higher and higher order; instead, a turbulence model must be introduced 

which approximates the correlations of a certain order in terms of lower order correlations 

and mean-flow quantities. The laws described by a turbulence model s imulate the aver

aged character of real turbulence; these laws are expressed i n diflterential and algebraic 

equations which together w i t h the mean flow equation (5.12) to (5.14) f o r m a closed set. 

5.3.2 The Standard High Reynolds Number {k - e) Model 

rate of change convective transport diffusive t ransport 
dui duj dui ut dc 

^dxj dxi dxj at dxi 

P = production by shear / destruction G = buoyant product ion 

dxj dxj 

c = viscous dissipation 

rate of change convection diffusion generation-destruction 

and the conventional model constants are (Rodi , 1979): 

cu = 1.44, C2c = 1.92, C3c = 0.8 = 1.0, a, = 1,3 

a, = 1.0 /? = 10, R^ = -GI{P-\rG), 
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The deposition, erosion and consolidation information are usually included in the bound

ary conditions. 

5.3,3 Reynolds-Stress Equations 

The first suggestion to determine u-n^ f r om a transport equation was made already in 

(Keller and Friedmann, 1924). These authors showed how (under certain assumptions) 

equations for u-w^ can be derived, but they did not give the equations expl ic i t ly . (Chou, 

1945) was the first to derive and present the exact u'-Uj equation given below: 

duiU- -du-u. d ,-r-r-r. I .du-p du-p 

dxi dxi ' ' p^ dxj dxj 

rate of change convective transport diffusive t ransport 

-r-iduj -T—rdui — — 
''''''d^i ~ ^'^'d^i ~ P^^jy-jC^ gj^f-jC) 

P-i = stress production = buoyancy produc t ion 

^ P^pi^du^ - 2 . | ^ (5.20) 
p^dxj dxi oxidxi ' ' 

^ V ' 

TT.y = pressure strain ~ viscous dissipation 

The contraction of this equation, that is when the 3 equations for the 3 normal stresses 

(i = j — 1,2,3) are assumed up, yields the exact turbulent kinet ic energy equation (5.18) 

presented already (note that k = -u-^u'i^). The physical meaning of the ind iv idua l terms 

of the A:-equation was described and equivalent terms appear in equation (5.20) which 

represent the rate of change, convective and diffusive transport , stress- and buoyancy-

product ion, and viscous destruction of u|Uj-. Equation (5.20) contains an addi t ional t e rm 

denoted "pressure-strain" te rm because i t involves correlation between fluctuating pres

sure and strain rates. This term is absent in the ^-equation (5.18) so that i t contributes 

nothing to the total energy balance; i t only acts to redistribute the energy among its 

components (when i = j ) and to reduce shear stresses (when i ^ j ). T h i s te rm tends 

therefore to make the turbulence more isotropic. 
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5.3.4 Two Dimensional Depth-integrated Model 

In case of flow in a large-scale area in which the water depth is small compared w i t h the 

horizontal dimensions of the area concerned, i t is allowed to neglect the accelerations in 

the vertical plane. This leads to dp/dz = —pg, g iving a hydrostat ic pressure d i s t r ibu t ion 

(p = —pgz). A def in i t ion sketch is given in Fig 5.1. 

X 

Fig 5.1 Symbol definitions 

Depth-integrated models therefore appeared very at tract ive in well mixed situations, and 

numerous two-dimensional horizontal (2DH) models were developed, for example are those 

of (Hayter and Mehta 1982, Cole and Miles 1983, Thomas and M c A n a l l y 1985, and Teisson 

and Lat teux 1986). A l l these models are based on a time-average con t inu i ty equation, 

Reynolds stresses equation, k — t turbulence model and the well known advection-diffusion 

equation. The equations of motion in x and y direction can be integrated over the water 

depth, yielding (/> = constant): 

Cont inui ty equation: 

Momentum equations: 

dhu ' '>'-2 

(5.21) 

dt ax ay ox p 

pox pdy p p 
(5.22) 
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dhv dlw^ dhuv ,d{li-hzb) 1 

at ay ax ay p 

- - 4 - ( K y + f^I<yy) " ~^U^r,y + f^^<^y) ~ -^cy - " S F , = 0 (5-23) 

pay P^x p p 

Advection-diffusion equation: 
dc dc dc I d dc, I d dc, S , ^ , 

in which 

/ i = water depth 

5 = source-sink te rm 

c = ~ f^^ cdz = depth-integrated concentration of suspended load 

u = ^ J^^ udz = depth-averaged velocity in x-direction. 

V = ^ f'^ vdz — depth-averaged velocity in j / -direct ion. 

Zs = vertical coordinate of water surface above a horizontal plane 

zi, = vertical co-ordinate of bo t t om above a horizontal plane 

^ c i , ^cy = body force per un i t area due the earth rotat ion (coriolis force) i n x and y 

direction 

Fx.Fy = external d r iv ing forces (wave-induced, wind induced) per un i t area 

Tbxf'^hy = bo t tom shear stress in x-direction and y- direction 

^xy = ^ / /^ ' {2 /? i / ( | ^ + 1^) - py^']<^^ = depth-average shear stress 

^xx = ^ Izb^'^^^J^ ~ P'^^''^'}^^ = depth-average normal stress 

^vv — Iz^i'^P'^^ — pv'v']dz = depth-average normal stress 

A^xy = — ^ J^^ piu — u){v — v)dz = dispersion coefficient 

~ / / j P^ ~ ^)(^ ~ u)dz = dispersion coefficient 

/vj,y = — i J^^ p{v — v){v — v)dz = dispersion coeflicient 

A'r , A'y = effective dispersion coefficient 

Usually, the depth-averaged stresses and the dispersion components ( in t roduced by the 

depth-averaging procedure) are related to local velocity gradients as fo l lowing: 

+ / i A ' „ ) + — ( A T . , + hK^y) = A ' . ( ^ + ^ ) (5.25) 

| ^ ( / t a , , + hK,,) + ^{hr^, + hK^,) = A',(g + 0) (5.26) 

k — c m o d e l f o r d e p t h - a v e r a g e c a l c u l a t i o n s 
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I t is assumed that the local depth-average state of turbulence can be characterised by 

the energy and dissipation k and c. The variation of k and c is determined f r o m the 

fol lowing transport equations: 

dk dk d . u t d k . d .i^tdk. ^ _ , 

dx dy dx^okdx' dy^a^dy 

dx dy dx^a^dx' dy^a^dy' k k 

where 

is the production of A: due to interactions of turbulent stresses w i t h horizontal mean 

velocity gradients, k, I and ut are not s t r ic t ly depth-average values ( they ai'e defined by 

the above equations), but the k- and I- equation (5.27) and (5.28) can s t i l l be considered 

cis depth-averaged forms of three-dimensional equations (5.18) and (5.19) as can a l l terms 

originat ing f rom non-uni formi ty of vertical profiles which are assumed to be absorbed in 

the source term Puv and P^^. The main contr ibut ion to these terms stems f r o m significant 

vertical velocity gradients near the bot tom of the water body. By interact ion w i t h the 

relatively large turbulent shear stresses in this region these gradient produce turbulence 

energy, which is in addi t ion to the production Ph due to horizontal velocity gradients and 

which depends strongly on the bo t tom roughness. Rastogi and Rodi , (1978) related the 

additional source te rm Puv and to the f r i c t ion velocity u* by w r i t i n g 

and determined xC f r o m the usual quadratic f r ic t ion law 

u = y/cf{u''-\-v^) (5.31) 

where C/ is a f r i c t ion coefficient. The empirical constants ĉ - and were determined f r o m 

undisturbed normal channel flow 

1 . . C2< 
cc = 3 . 6 ^ ^ / c ; (5.32) 

c / 

The adaptation of the k — e model for depth-averaged calculations is cer ta inly of a rather 

empirical nature, but the calculations performed so far (Rastogi and Rod i , 1978; M c G u i r k 

and Rodi, 1978; and Hassain, 1980) show encouraging results; I t should be emphasised 

that the model described here does not account for the dispersion terms appearing in 

equation (5.22) to (5.24). 
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5.3.5 One Dimensional Two-phase Flow Model 

I t is assumed tha t the sediment concentration c is small so tha t the interact ion effects 

between particles are negligible. The response t ime of the particles is assumed to be small 

compared to the characteristic t ime to the mean flow so that , except for a sj^stematic fa l l 

velocity, the particles follow the mean flow. The waves and currents are main ly oriented 

along one direction characterised by the co-ordinate x. W i t h these s implif icat ions, the 

conservation equations for mean momentum and suspended mass become: 

( - ) 

= §;[ivTla, + v,)^^] + P^-G-e (5.34) 

g = ^ ( ( « r M + t ; L ) § ] + [c , (P + G) - c,e]'- (5.35) 

Here the force funct ion is the pressure gradient dp/dx. The mass average density is 

^ = (1 — c)pf -\- cps and /?/,/?s are the density of sediment and flow respectively and 

A /9 = Ps—Ps is the density difi'erence between the sediment and the flow. The mass average 

velocity u is given by ^ = (1 — c)pjUf -\-cpsUs. The set t l ing velocity Wg <x {I — C ) " , T I ? S 4 

(Sleath, 1984), UTI^L are the turbulent and molecular viscosity respectively, k is the 

turbulent kinetic energy, e is the turbulent dissipation, P = UTidujdzY is the mechanical 

energy product ion, G — g{Ap/p){i/T/crc)dc/dz is the buoyant energy produt ion , and 

Ci,C2,<Tc,ae,<7^- are parameters (Rodi 1979). A t the free-surface, the net flux of suspended 

sediments are assumed to be zero. A t the bot tom, the net upward flux of suspended 

sediments is the difl*erence of erosion rate E and the deposition rate D, 
i-y_ 

w,c-i'^ + u[^)^ = E - D (5.37) 
(Tc OZ 

The particular forms of erosion and deposition rates are based on extensive l i terature 

survey and model testing w i t h the field and laboratory data. 

Various numerical models mentioned above, have been developed over the last decade 

to reproduce cohesive sediment transport. A t the moment, these models supply interest

ing bu t only qual i ta t ive results; predictive results are far f r o m being reached and the use 
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of models is of ten restricted merely to sensitivity analysis. This relative fa i lu re in gaining 

quant i ta t ive results is not due to the numerical techniques but rather to the incomplete 

knowledge of basic processes such as deposition, erosion and consolidation. Re l iab i l i ty in 

model predictions w i l l increase wi th a better insight into these physical processes. 

The unsatisfactory' predictions of numerical models may also come f r o m a possible dis

crepancy between specifications of physical laws, issued of laboratory experiments, and 

prototype behaviour. There is a trend to investigate in the field factors cont ro l l ing phys

ical processes, namely format ion and size distr ibution of mud floes (Van Leussen, 1988), 

deposition (Delo, 1988). Erosion, consolidation, wave effects are also s tudied in the field 

(Teisson, 1991). 

In our view, the cohesive sediment dynamics is a very complicated system which de

pends on the site, season, weather condition and a lot of processes which are s t i l l not 

very clearly known and are rapidly changing. Also since a lot of factors t h a t effect the 

cohesive sediment dynamics are very stochastic, we should pay more a t ten t ion in the real 

field data to use the on-line modelling to trace the sediment dynamics and t ry to find 

some suitable models for i t . This is wh}' we use the t ime series model to t r y to find 

the answer in the cohesive sediment dynamics based on the real data col lect ing and give 

more accurate description and prediction of i t . The background and appl icat ion of t ime 

series models is given in earlier chapters and the description and predict ion the mean flow 

quantities are given in chapters 6 and 7. I t wi l l be shown that this k ind of model is good 

for the description, prediction and adaptation in sediment dynamics based on the in situ 

data collected. 

Appendix 5.A. Introduction to Tensor Notation 

Tensor notation is used in this chapter because i t allows most equation to be wr i t t en in a 

considerably more compact form than is possible w i th the conventional no ta t ion . A short 

introduction is provided as follows. 
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a:3 
U3 

Fig 5 . A . I . Cartesian coordinate system 

In cartesian tensor notat ion, vector quantities are wr i t t en by at taching an index to the 

symbol denoting the quanti ty, for example 

space vector x, = { x i , X 2 , X 3 } 

velocity vector Ui = {Ui.U^.Uz} 

The three components of the vector in a cartesian system (Figure 5 . A . I . ) are obtained 

by setting the index (here i) equal to 1,2, and 3, respectively. 

A quant i ty w i th 2 indices (e.g. i and j ) is called a tensor and has 9 components which 

can be obtained by pemutation of the 2 indices f rom 1 to 3: 

a n ai2 ai3 

a,; = a2\ a22 ^23 

\ ^31 ^32 ^33 

The stresses r , j appearing in the momentum equations (5.22) and (5.23) are an example 

of such a tensor; here the first index denotes the surface ( ± to x, ) on which the stress 

acts and the second index the direction of the stress. The (diadic) product o f two velocity 

vectors also yields a tensor: 

/ U,U^ U1U2 U1U3 

UiUj = U2U^ U2U2 U2U3 

\ U3U1 UzV2 U3U3 

When the (/'s are the fluctuating velocities and the average of the products is taken ( i n 

dicated by an overbar), this is the Reynolds stress u|w^ tensor introduced in (5.15). T h e 
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tensors appearing in this chapter are all symmetric, that is T{j = Tj{ and u\uj = u'jU- so 

that they have only 6 different components. 

A particular tensor is the Kronecker delta Sij which has the components 

1 0 0 

0 1 0 

0 0 1 

so that Sij = 1 for i = j and Sij =• 0 (or i j . 

One aspect of tensor notation remains to be explained which is par t icu lar ly effective 

in making equations more compact. This is the summation convention which implies tha t 

whenever the same index is repeated in a single expression, the sum over a l l 3 directions 

has to be taken, thus 

3 

UiUi = J2 =fJlVl+ fJ2U2 + U3U3 

The continuity equation (5-7) may be cited here as fur ther example: 

dUi ^ dUi dUi . dU2 . dUz 
dxi ^ dxi dxi dx2 5x3 

and the second te rm on the left hand side of the momentum equation (5.8) reads in f u l l : 

U , ' ^ , ± U , S i . U . ' 4 ! ^ ^ U , ' J ^ ^ U , ? ; ^ (5.38) 
~ ^ ^^1 ^ ^ 2 dxz 
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Chapter 6 

Time Series Modell ing for Sediment 
Dynamics On the Holderness Coast 

6.1 Introduction 

Sediment transport i n the coastal region is a topic which is receiving increased a t tent ion 

due to its importance to flow environment. Among the main problems is the t ransport 

of pollutants which adhere to suspended sediments. In order to gain more knowledge 

of such process, several numerical models have been developed in recent years that t r y 

to predict the transport of sediment. These models range f r o m one dimensional vertical 

profile formulations (e.g. De Vantier and Narayanaswamy, 1989; Hagagun and Eidsvik , 

1986) via two dimensional vertical or depth integrated models (e.g. Van R i j n , 1987 and 

refs therein; Teisson and Frisch, 1988) to quasi or f u l l y three dimensional formulat ions 

(e.g. Sheng and Bul ter , 1982; Van R i j n and Meijer , 1988; O'Connor and Nicholson, 1988; 

Eidsvik and Utnes, 1991; Utnes, 1993 and others). 

In the above mentioned papers, the Navier-Stokes Equation and its average f o r m , t u r b u 

lence closure models combined wi th some physical, chemical and rheological properties 

are used. Bu t as is well known, sediment transport is a very complicated process. W i t h i n 

the cohesive sediment transport process, there are many piiysical, geographical, chemical 

and microbiological processes that are st i l l not very well understood (Dyer 1989). 
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Recently some papers have been published that study ocean models and water move

ment in unsaturated soils used the data to estimate some parameters of the model based 

on the concept of inverse modelling. Copeland et al. (1991) presented a mathemat i 

cal box model of a theoretical 'ocean' in which the field of water velocity, turbulence 

and tracer concentrations are all known and together 'perfect ly ' satisfy a steady-state 

advective-diffusive equation, Mous (1993) used nonlinear regression techniques to esti

mate the unknown parameter in his model but i t appears to be non-identif iable, which 

results in non-unique solutions. Bagchi and ten Brummelhuis (1996) applied parameter 

identif ication technique to t ida l models w i th uncertain boundaries and they considered 

a simultaneous state and parameter estimation procedure for t i da l models w i t h random 

inputs, which is formulated as a minimizat ion problem. There is, however, no t r ad i t ion 

for our type of t ime series modelling in sediment dynamics. 

In this chapter, stochastic t ime series models are set up to describe the concentrat ion 

of S P M and current velocity respectively. The recursive least squares ident i f icat ion al

go r i thm is used to ident i fy the unknown parameters of the model. T h e simulations are 

given to show the good approximation of the in situ data collected f r o m the Holderness 

Coast by Joanna Blewett , Ins t i tu te of Marine Science, Universi ty of P l y m o u t h . 

The aims of the chapter are: 

( i ) To describe and prove the accuracy of the t ime series model for current velocity and 

suspended sediment concentration dynamical system based on the data f r o m the field. 

( i i ) To use the model to predict the sediment transport dymamics 

6.2 Site Description and Data Collecting 

The coastline of Holderness Cliff's which extend 61 .5Km f r o m Flamborough Head in the 

Nor th to the sand and shingle spit of Spurn Head in the south, takes the plan shape of a 

zeta curve (Pringle, 1985). The clifi"s are largely composed of Pleistocene glacial t i l l and 

are renowned for their rapid rate of erosion, calculated by Pringle (1985) and Hardisty 

(1986) at 1.7 and 1.75myr-l respectively. The result is that one mi l l i on iii^ of high qua l i ty 

agricultural land is lost to the North Sea each decade. The c l i f f material provides sand 

and coarser sediment for beach replenishment whilst the si l t and clay is carried away in 

suspension b}^ the waves and currents. Maximum cl i f f and beach erosion is thought to 
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occur dur ing s torm events, but the magnitude of the storm largely controls the amount 
of material being washed offshore. 

In order to test the t ime series models, point measured observations of the appropriate 

parameters, i.e. current velocity, suspended sediment concentration and pressure variation 

are required over a t ime scale of weeks. The data set chosen to test the models is taken 

f r o m 29th June to 15 July, 1995, at the inner site ( N l , Figure 6.2.1). F igure 6.2.2 shows 

the resultant t ime series of S P M concentrations taken at 0.4m above the seabed by the 

lower OBS sensor, longshore current velocity component, again at 0.4m above the seabed, 

and pressure variance which indicates the presence of waves and storms, al l the data were 

used as input parameters to test the models. The average water dep th at the inner s tat ion 

is about 10 meters. A grab sample taken just before the deployment, revealed that the 

surface sediment comprised of fine s i l t clay material overlaying more coarse sand. 

Dur ing the t ime series (Figure 6.2.2), there were three d is t inc t storms. Signif icant wave 

heights was calculated to be at 0.8m during these events, w i t h a peak period o f between 8 

and 9 seconds. The t ime series of SPM concentrations indicates several scales o f variabil i ty. 

In response to the spring/neap t idal cycle, background concentrations are higher dur ing 

springs. The t ida l response to S P M , comprises two components. T h e first is a semi-diurnal 

horizontal flux component arising f rom the advection of a horizontal t u r b i d i t y gradient of 

fine material past the mooring site. Peaks in suspension arise when the t i d a l displacement 

has reached its maximum extent towards the north west at low water slack. Conversely 

min imum concentrations arise when this advective material reaches its m a x i m u m extent 

towards the south east on flood. This advective signal dominates the spr ing cycle and 

dur ing storm conditions. 

The second t idal response, seen clearly at neaps (run 120 - 170), is a quarter d iurnal ver

tical flux component, driven by local resuspension of a more coarse material at max imum 

tidal streaming on both stages of the tide. The dip between the peaks is i n phase wi th 

slack water, which suggests that material resuspended on flood is given t ime a t slack water 

to settle out, only to be resuspended again on the reverse phase of the t ide , g iv ing rise to 

the second peak. Al though, local resuspension is likely to occur d u r i n g spr ing tides, its 

signal appears to have been swamped out by the stronger advective signal. 

The presence of storm waves increases the amplitude of the t ida l ly -vary ing concentrations, 

and w i l l suspend both coarse and fine material into the water co lumn. However whereas 

the coarse material settles out rapidly, there is a dist inct t ime lag for the fine sediment 
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fract ion to settle out of suspension-after the storm. I t is evident f r o m the t i m e series that 

the concentration of this fine material takes a few days to reach pre s torm background 

levels again. For any model to successfully predict these conditions ofF the Holderness 

Coast, i t must not only take into account the different t idal processes, but i t must also 

take into account this t ime lag memory aspect of the background sediment concentration 

in response to storms. (Chen, Blewett et al 1997). 

6.3 Current Velocity Model 

In this section we focus on modelling the current velocity dynamics. T h e one reason we 

investigate the current velocity dynamics is that the most widely used sediment transport 

models are so-called cu-integral (concentration times velocity integra;!) type of models. 

The other reason is current velocity dynamics plays an very impor t an t par t in sediment 

transport numerical model as we mentioned in Chapter 5. So current velocity is a very 

impor tant variable to model when considering sediment t ransport . F rom Chapter 5, 

we know that the current velocity mainly is a funct ion of its derivatives relavent to the 

direction {x^y^z) and some parameters, so in this section, the univariate model for current 

velocity profile is presented. 

Disturbance e(0 

Outpu t 
System 

Outpu t 
System 

Fig 6.3.1 A Dynamic system wi th ou tpu t u{i) and disturbance e(<) where i denotes t ime. 

The dist inguishing feature of a univariate t ime series current velocity model tha t no at

tempt is made to relate u{t) to other variables except the uncontrollable disturbance 

The variation in u{i) assumed here is 'explained' solely in terms of its own past, although 

of course i f u{l) is dependent on space. The forecasts are then made by ext rapola t ion . 

The statistical approach to forecasting is based on the construction of a model . T h e 

model defines a mechanism which is regarded as being capable of having produced the 

observations in question. Such a model of course when applied to the environment is 
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invariably stochastic. 

We assume that the t ime series model here that describes the current velocity is a discrete 

one variable stochastic linear system and can be represented by the fo l lowing A R ( p ) and 

A R M A ( p , 9 ) model. 

6.3.1 A R Model 

1. M o d e l D e s c r i p t i o n 

First , we assume that the current velocity profile model is a one variable A R ( p ) model as 

follows: 

A{z'')un = wn (6.1) 

where Wn is the system noise and the restriction on i t are given in equations (3.66)-(3.67). 

A{z-') = 1 + a,z-' + ... + a^z-P (6.2) 

Un is the current velocity at the t ime n , 2 M s a unit delay operator and a,-,(2 = l , . . . , p ) 

are p unknown parameters to be estimated. Set 

^ ^ = ( - a , , . . . , - a p ] (6.3) 

xl = K - i , . . . , t / „ - p ] (6.4) 

here On is the estimate of 0 at t ime n and i t is easy to see tha t (6.1) also can be wr i t t en 

by 

Un = 0^ Xn 4- lOn (6.5) 

The recursive least squares algori thm of Chapter 3 (3.61-3.63) is used to ident i fy the 

parameter vector 0. 
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2. O r d e r de terminat ion 

Def in i t ion 6.1. 

<7^ is defined CLS variance of one-step prediction error of t ime series model as follows: 

1 = 1 

where tin = — is the real data and u„ = x^On-i is the one-step predict ion of the 

t ime series model at t ime n respectively. 

Def in i t ion 6.2. 

MPE= max \un\ (6.7) 

is defined the max imum one-step prediction error ( M P E ) of the t ime series model . 

Def in i t ion 6.3. 

MPV = max l 9 . | (6.8) 
{l<n<A^}U{l<»<rf} 

is defined the max imum parameter variation ( M P V ) , wiiere is the i t h component of 0 

at t ime n. 

The approach in our paper is to fit the model of progressively higher order, to calculate 

variance of one-step prediction error for each value of order 77, as well as to consider the 

M P E and M P V . The criterion is that i f the addit ion of ex t ra parameter matrices gives 

l i t t l e improvement, we do not choose a higher order model. 

The so-called 7^-test method (Soderstrom 19S9) is used here to determine our model 

structure and the F-test results for our model candidates according to (4.11) and (4.12) 

are given 3 5 fol lowing in Table 6.3.1: 

T A B L E 6.3.1. T h e order comparison of one var iable c u r r e n t ve loc i ty mode l 

M P E M P V 

p = 2 0.187765 0.050108 0.00100255 

p=3 0.152344 0.0667977 0.000913569 

p=4 0.153519 0.07542 0-000906986 
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From the data of Table 6.3.1, the model order selection procedures are as follows: 

( i ) Let AR{2)=Ui , A R ( 3 ) = i / 2 

Xao5(l) « 3.84 and x = 266 x ^"^'"g'c^g^a'^^'""^^ = 25.9082 > 3.84 reject A R ( 2 ) 

( i i ) Let AR{3)=Ui , A R ( 4 ) = i / 2 

X = 266 X ° ° ^ ' ^ a ^ 9 s f ° * ' ' ' ^ = 1-93066 < 3.84 choose A R ( 3 ) 

The A I C (4.13), F P E (4.14) and M E R T (4.32) order determinat ion test results are also 

given in the fol lowing Table 6.3.2.: 

T A B L E 6.3.2. T h e order determinat ion of one var iab le c u r r e n t ve loc i ty 

mode l in different tests 

Model Order A I C F P E M E R T 

p = 2 -1853.5 0.00101757 7.21259 

p = 3 -1869.5 0.000934254 152.907 

p = 4 -1862.44 0.00934575 2.333 

I t is shown in Table 6.3.2, that the AR(3) model is the best choice in a l l the three above 

mentioned order test methods in this case which is consistent w i t h the F-test shown be

fore. For simplici ty, we jus t make use of F-test for our model order de terminat ion later 

in the thesis. 

3. S i m u l a t i o n 

According to the results of the model order determination, we choose fo l lowing A R ( 3 ) 

model: 

Set as: 

0'^ = [a,,a2,a3 

(6.9) 

(6.10) 
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(6.11) 

For solving equation (6.9), the E L S M (3.61)-(3.63) is used (substi tute for y„ in (3.63)). 

From (6.2), p = 3. The t ime scale in here is one hour per run . Since the i n i t i a l value is 

needed, the first three data as our in i t ia l value we really start the model at n = 4 and we 

take R3 = 3/3. The computat ion procedure of E L S M is as follows: 

( i ) Construct Xn according to (6.11). 

( i i ) Select in i t i a l values of O3 and 7^3, 

( i i i ) Calculate Kn, Rn 
and Uji according to (3.61)-(3.63) based on the I<n-uRn-i , Or^-l 

and Xn {n > 3). 

The simulat ion results are given as following: 

( i ) T A B L E 6.3.3. T h e P a r a m e t e r E s t i m a t i o n of A R ( 3 ) M o d e l 

Parameter Mean Standard Deviat ion 

ai 1.37709 0.01222716 

a2 -0.39324 0.00640278 

^3 -0.328613 0.00S16693 

( i i ) The comparison of model wi th the data set is given in Figure 6.3.2 which shows the 

A R ( 3 ) model presented here has a good description of the model and data fitting. 

( i i i ) The parameters variation is shown in Figure 6.3.3. From Figure 6.3.3 and Table 

6.3.3, all three parameters of AR(3) can be considered as t ime-invariant parameter and 

have good convergence properties which means the model s tructure we chose is qui te re-

seanable to describe the current velocity dynamics. 

( iv) The model prediction or forecasting technique which we mentioned i n subsection 

2.3.3 is used here for long term prediction of AR(3) current velocity dynamic model. Un

der the assumption that we don' t know the current velocity data u^ , n > 223, and let the 

white system noise series Wn meet the conditions Ewn = 0, Ew^ = 0.00083. We give the 

op t imum k-step prediction /222,fc, ̂ ' = 1,2, ...,48 based on the current velocity data 
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w„,n < 222 and Wn- The model prediction results given in the Figure 6.3.3. which shows 

the AR(3) model presented here coincides wi th both the periodical and trend appearance 

of the current velocity data set very well. 

6.3.2 A R M A Model 

1. M o d e l D e s c r i p t i o n 

In last subsection, we set up a AR(p) model for current velocity dynamics which assumed 

the current velocity dynamic system is disturbed by white noise series ( i .e . = Wn). I n 

this subsecton, we t ry to consider more general kind of model {i.e. A R M A ( ; ; , g) model) 

for the current velocity dynamics and assume that the current velocity dynamic system 

is disturbed by the colored noise {i.e Cn = lOn + C\Wn-\) instead of whi te noise in A R ( p ) 

model. For simplici ty, we set ^ = 1 and A R M A ( p , 1) model is represented as fo l lowing: 

> 1 ( 2 ~ * ) U „ + 1 = Wn+l + C i l U n (6-12) 

where Un is the current velocity, Wn is the system noise and the restr ict ion on i t are given 

in equations (3.66)-(3.67). 

A{z-') = 1 + ayz-' + . . . + a p 2 - ' ' (6.13) 

is a uni t delay operator, a,-,(r = l , . . . , p ) and C | are p + 1 unknown parameters to 

be estimated. Set 

^ ^ = [ - a . , . . . , - a „ c , ] (6.14) 

xl = [ i i „_ i , . . . , i i „ - p , e „ _ , ) (6.15) 

here 0,^ is the estimate of 0 at t ime n, C n = Un — 0]^Xn as the est imation o f i o „ and i t is 

easy to see that (6.12) also can be wri t ten by 

U n = O'^Xn + lOn + C , ( t t J „ _ , - e „ _ i ) (6.16) 
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The recursive least squares algori thm of Chapter 3 (3.55-3.57) is used to iden t i fy the 

parameter vector 0. 

2. O r d e r d e t e r m i n a t i o n 

The order determimation here is similar to the last subsection i.e. to f i t the model 

of progressively higher order, to calculate variance of one-step predict ion error cr̂  for each 

value of order p, as well as to consider the M P E and M P V . The cri ter ion is tha t i f the 

addit ion of ext ra parameter matrices gives l i t t l e improvement, we do not choose a higher 

order model. 

The F-test results for our model candidates according to (4.11) and (4.12) are given as 

following in Table 6.3.4: 

T A B L E 6.3.4. T h e o r d e r c o m p a r i s o n o f A R M A ( p , l ) c u r r e n t v e l o c i t y m o d e l 

M P E M P V 

p = l 0.283617 0.121979 0.0067109 

p = 2 0.145547 0.0669972 0.000898962 

P=3 0.152792 0.0787776 0.000919854 

( i ) Let A R M A ( 1 , 1 ) = ^ , , ARMR(2,1)=ZY2 

X2.05(l) ^ 3.84 and x = 266 x ^ ^ ^ G n M s p e ? = 1719.73 > 3.84 reject A R M A ( 1 , 1 ) . 

( i i ) Let A R M A ( 2 , I ) = ^ , , A R M A ( 3 , l ) = ^ / 2 

^ = 266 X " " " " ^ ^ g g g - ^ T ' " ' ' " = -6-041472 < 3.84 choose A R M A ( 2 , 1 ) . 

3. S i m u l a t i o n 

In here, we choose which is a simpler form model of (6.12) as fo l lowing A R M A ( 2 , 1 ) 

model f rom our model order selection: 

(6.17) 
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Set as: 

0^ = [ a i , a 2 , c , (6.18) 

(6.19) 

To solve equation (6.17), the E L S M (3.61)-(3.64) is applied (subst i tute t/„ f o r ^„ ) in (3.63) 

and (3.64)). From (6.17), p = 2 and the time scale in here is one hour per r u n . Since the 

in i t ia l value are need, the first two data as our in i t i a l value we really s tar t the model at 

n=3 . 

The computat ion procedure of ELSM is as follows: 

( i ) Construct x „ according to (6.19) and (3.64), (n > 2). 

( i i ) Select i n i t i a l values of O2 and R2. 

( i i i ) Calculate K^, Rn and On according to (3.61)-(3.63) based on the Kr,-i,Rn-\ , ^ n - i 
and Xn {n > 2) . 

The simulation results are given as follows: 

( i ) T A B L E 6.3 .5 . T h e P a r a m e t e r E s t i m a t i o n o f A R M A ( 2 , 1 ) M o d e l 

Parameter Mean Standard Deviat ion 

a, 1.7239 0.01282S7 

-0.977191 0.0075229 

C i -0.383821 0.00781896 

( i i ) The comparison of model wi th data set is given in in Figure 6.3.4. which shows the 

A R M A ( 2 , 1 ) model presented here is reasonably good both in data f i t t i n g and system 

description. 

( i i i ) The parameters variation is shown in Figure 6.3.5. A l l the three parameters in 

A R M A ( 2 , 1 ) model have good convergence and t ime-invariant properties which means the 

model we chooscd here is a good one to describe the current velocity dynamics near the 

Holderness Coast, England. 
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( iv ) The model peridiction method given in subsection 2.3.4. is used here for long te rm 

predict ion of A R M A (2,1) current velocity dynamic model. Under the assumption tha t 

we don ' t know the current velocity data Un,n > 224, and the noise series Wn is the 

same as that we used in last subsection long te rm prediction in A R ( 3 ) mode l . We give 

the o p t i m u m k-step prediction f27ZM^ — 1,2, ...,48 based on the current velocity data 

u„ , J i < 223. The model prediction results are also given in the Figure 6.3.5, which shows 

the A R M A ( 2 , 1 ) model presented here works very well in 48 hours predict ion compared 

wi th data set. 

6.3.3 Comparison of AR(3) Model with ARMA(2,1) Current 
Velocity Models 

I n last two subsections, we present two kinds of t ime series current velocity model which 

both work very well as shown in the simulations. T h e comparison of model fitting, pa

rameter variation and long term prediction of AR(3) and A R M A ( 2 , 1 ) are discussed in this 

subsection. In order to compare the different kinds of models, the fo l lowing definit ions 

are given. 

D e f i n i t i o n 6.4 

The mean of long term prediction error ( M L P E ) , the standard deviat ion of long term pre

dic t ion error (SDLPE) and the maximum prediction error ( M P R ) are defined respectively 
as follows: 

^ 2 ^ U n , i - - « n + A | (6.20) 
/t— 1 

SDLPE= 
1 

- ^ j y U k - u ^ ^ u Y (6.21) 

^ ^ ^ ^ = ,max^ 1/n.JL- - Wn+JL-I (6.22) 

T h e simulat ion results of the two k ind of t ime series current velocity models are presented 

in Table 6.3.6. 
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T A B L E 6.3.6. C o m p a r i s o n of C u r r e n t Ve loc i ty M o d e l s 

M P E M P V M L P E S D L P E M P R 

A R ( 3 ) 0.152344 0.0667977 0.000913569 0.0940563 0.0597524 0.220193 
A R M A ( 2 , 1 ) 0.145547 0.0669972 0.000898962 0.051567 0.0368606 , 0.138268 

From Table 6.3.6, al l the items of A R M A ( 2 , 1 ) are smaller than those of A R ( 3 ) except tha t 

the M P V of A R M A ( 2 , 1 ) is nearly same as the one of A R ( 3 ) . I t is shown t h a t A R M A ( 2 , 1 ) 

has better s imulat ion results than AR(3) especially in the case of long t e r m predic t ion. 

This is because the A R M A ( 2 , l ) takes advantage of the more imforma t ion f r o m the model 

error. I t is also shown that the consideration of the coloured system noise has improved 

the model on the whole and suggested the A R M A ( 2 , 1 ) is a more reasonable choice in this 

special case. 

6.4 Suspended Sediment Concentration Model 

6.4.1 Introduction 

A series of models has been produced to simulate these processes using t i m e series ob

servations. For processes in the Southern Nor th Sea, Jago and Jones (1993) formula ted 

a conceptual model , which combined resuspension and advection components superim

posed on a background concentration. The model assumed horizontal homogeneity for 

the resuspension component and a negligible sett l ing rate for the background component. 

Hence, the resuspension component is a simple funct ion of current speed, and the advec

tion component is a funct ion of t idal displacement. The model however, provided l i t t l e 

insight into the physical processes of SPM resuspension. I t simulated condit ions most 

successfully in the upper water layers, but because the resuspension cr i te r ion depended 

on current volocity and wi thout a threshold shear stress, i t was not ent i re ly successful 

in its representation of particle entrainment f r o m the seabed. However, t h i s l i m i t a t i o n 

became less serious higher up in the water column, where vertical d i f fus ion , rather than 

bed erosion rate became dominant. Wha t became clear f r o m these results is tha t a more 

physically orientated and complex model is required to accurately simulate the near-bed 

region. 
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Further investigations for the Southern Nor th Sea led Jago et al. (1993) to produce o f a 

one-dimensional turbulence model for particle resuspension and flux which incorporated 

the effects of both horizontal advection of a prescribed concentration and ver t ica l d i f fus ion . 

Their model is based on a hydrodynamic model presented by Simpson and Sharpies (1991) 

and simulations were run w i t h both an unl imi ted and a l i m i t e d supply of resuspendable 

material assuming tha t a l l the available material is already i n suspension at ihd s tart of the 

model run (at max imum t idal streaming), produced results which agreed w i t h observation 

in both phase and fo rm (Jago ei al. 1993). This type of model however, could not predict 

horizontal concentration gradients of the finer material and would need t o include t i d a l 

advection of prescribed horizontal gradients (Jones et al. 1994). 

What is ignored in both these models, is the influence of wave ac t iv i ty and s torm events 

on the resuspension processes. Recent work by Green et al (1990) s imulated enhanced 

bed shear stress in a wave/current flow wi th observations f r o m a coastal site in the South

ern Nor th Sea, and showed that the peak wave stress may be signif icant ly increased by 

non-linear interaction w i t h the t idal current even under small waves, and increased resus

pension of bed mater ia l due to wave enhancement of bed stress was apparent. Observa

tions taken off the Holderness Coast in the Southern N o r t h Sea, show that s t o rm ac t iv i ty 

acts to enhance the background levels of fine material in the water co lumn. Whereas the 

coarse material settles ou t rapidly, the fine material exhibi ts a d is t inc t t ime lag, persist ing 

in the water column days after the storm has passed. 

In this section, the suspended sediment dynamics is taken as a unknown stochastic system 

and a new model is developed to simulate both horizontal advection, local resuspension 

and the effects of waves and storms. The model considers and includes the fo l lowing as 

stochastic processes; current velocity, wave variation, t ida l displacement and suspended 

sediment concentration. The first three are set as inputs to the system model , and the 

last one is considered as the ou tpu t of the system model. System Ident i f ica t ion theory 

is applied in the model to ident i fy the unknown parameters of the model , based on in 

si tu data collected in the study area. In this case, the system ident i f ica t ion technique is 

applied to the Holderness field data collected in July, 1995 by Blewet t to i l lus t ra te the re

lationship between suspended sediment concentration, current velocity, t ida l displacement 

and varying wave conditions. The aim is to show that this par t icular theory is sui tabl 

for matching known data sets, and this wi l l be achieved by ensuring al l the parameter 

remain v i r tua l ly constant when tackling future data sets. By operat ing the model in t h i 

way, the results obtained should simulate the data w i th some degree of accuracy. 
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Chen and Dyke (1995) have already presented a single variable t ime series model ( A R M A 

model) for the current velocity and suspended particulate mat ter ( S P M ) concentration 

for the Tamar Estuary and i t shows very good agreement w i t h the data collected f r o m 

the Tamar Estuary dur ing the high water slack by Fennessy et ai (1994). I n Chen and 

Dyke (1996), a mult ivariable stochastic t ime series model (mul t ivar iab le A R M A Model) 

is set up to describe the suspended sediment concentration and current velocity over a 

depth profi le respectively. T h e recursive least squares ident i f ica t ion a lgo r i t hm is used t o 

ident i fy the unknown parameter matrices of the model and the simulat ions are given to 

show the a good approximation to real data collected f r o m the R u f i j i Del ta , Tanzania by 

Fisher (1994). 

In the models of Chen and Dyke (1995) and Chen and Dyke (1996) the suspended sediment 

concentration variation is assumed to depend on its own past values and uncontrollable 

system noises. By contrast, in here, the suspended sediment concentration is assumed to 

be related to the current velocity, t idal displacement and wave var iat ion in addi t ion to its 

own past values, in order to produce a more physically based model . These model results 

are compared wi th those f r o m a conventional mult iple regression model using the same 

external input variables but not including past SPM values. T h e s imula t ion results show 

that the new model developed produces good agreement w i t h the real data collected f r o m 

the Holderness Coast, England, whilst the simple regression model generally gives poor 

agreement. 

6.4.2 Multiple Input Single Output (MISO) Models 

c{t) Disturbance 

Inpu t 

wi(0,..-,w,(0 
System 

Outpu t 

3/(0 

Fig 6.4.1. A Dynamic system with inputs wi(Oi—JWS(0» output y{i) and disturbance c{i) 

where denotes time. 

Figure 6.4.1 shows a schematic of the type of predictive model under discussion. M u l t i p l e 

input t ime series, Ui(Oi "̂ (Oi produce a single output t ime series, y{i) through a system 

box which receives disturbance (noise), so that the relationship between input and 
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output is stochastic. The characteristics of the system are assumed to be t ime- invar iant 

and linear, and the system output can depend upon earlier values of both i n p u t and ou tpu t 

t ime series. Such a system is known as a mul t i - input single-output ( M I S O ) model . In the 

present case, the output t ime series is the suspended sediment concentration measured by 

the Boundary Layer Intelligent Sensor System (BLISS) t r ipods, and the i n p u t t i m e series 

are the current velocity, the t idal displacement of water along the coast (a t i m e integral of 

the alongcoast veloci ty) , and the wave intensity (each of which is shown in Figure 6.2.2). 

For s different input t ime series, a M I S O system can be w r i t t e n mathemat ica l ly in the 
form: 

y „ - f - a , y n - l + - . . + ap2/n-p = ^ l , W l n - l + •-- + ^ n - , , " i n - , , 

i-Wn + CiWn-i 4- . . . -\~ CrWn_r (6.23) 

yn and u,-„(n = 1,2,3,-..) are the output and i - t h input of the system respectively. 

p is the order of the system and Wn,{n = 1,2,3,...) is a noise series and ai ,6 j^ and 

c/(z = 1,...,7^;7 = l , . . . s ; ^ = 1, ...,<7j; (^fj <p)\l= l , . . . r . ) are unknown parameters to be 

estimated. 

Let is a un i t delay operator and 

A ( z ' ' ) = 1 -haiz-' -h ...-J-ap^"" (6.24) 

Bi{z'') = bi,z-' -\-... + bi^^z~'^ (6.25) 

(6.26) 

(6.27) 

C ( ^ - ' ) = l + C l 2 - ' + ... + C ^ - ^ 

The equation (6.23) can be wri t ten as follows: 

5 

i * = I 

where Cn = C{z~^)wn is the system noise and set 

= ( - a , , „ . , - a p , 6 , , , . . . , 6 , , , , / > 2 , , . „ , 6 , , ^ , c , , , . . , c . l (6.2S) 

= [ 2 / n - i , - - , J / n - p , " u , . M « i „ - „ , W 2 . , - - , « , „ _ , ^ , e „ _ , , . . . , e n _ r l (6.29) 

113 



e„ = j/n - Olxn (6.30) 

s 

d = p + r + Y^qi (6.31) 
1=1 

here 0 is the true parameter ma t r ix , Xn is the regression vector consisted of the i n f o r m a t i o n 

of input , ou tput and the estimation of system noise, e„ is the est imation o f Wn and On is 

the estimate of B at t ime n . I t is easy to see that (6.23) or (6.27) also can be w r i t t e n as 

y„ = O'^Xn + C{z-')Wr, + en - C ( 2 - * ) C n . (6-32) 

The first t e rm of the r ight side of equation (6.32) can be considered as the es t imat ion of 

j/n (since we do not know the true 0, t/„ is estimated by O^x^) and the remaining terms 

on the r ight hand side can be considered as a k ind of filter of system noise. 

6.4,3 Order Determination 

For s implici ty , we choose a M I S O t ime series model which is a simpler f o r m of (6.27), 

using the fol lowing MISO(p) model for whole process: 

7/„ = a , y „ _ , - f - . . . + apVn-p + 6u^_, + cTn-i + fTn.^ Wn-i + Wn. (6.33) 

The appropriate fo rm of equation (6.28) and (6.29) then becomes: 

^^ = [ a , , . . . , a p , 6 , c , / l (6.34) 

x ^ = [ 7 / „ _ i , . . . , y n _ p , u ^ _ , , T „ - , , r „ _ i M V i l (6.35) 

where, t/n is suspended sediment concentration (m/1) , u „ is the current veloci ty ( m / s ) , T„ 

is the along-coast t idal displacement (km) and is the wave elevation variance at t ime 

n respectively. I n equation (6.33), the resuspension signal is modelled by the t e rm i n u^ , 

and the t idal advection effect is modelled by two terms, one simply propor t iona l to the 

t ida l displacement and a second t e rm mul t ip ly ing the displacement by the wave variance, 

to simulate the increase in the advection signal dur ing storms. 

To solve equation (6.33), the recursive least squares a lgor i thm (3.61-3.63) is used. From 

(6.31), where qi = l , i = 1,2,3., r = 0 and = p + 3 and the t ime scale here is one hour 

per run . Since the in i t i a l values are required, we used the first p data as our i n i t i a l values 

and therefore start the model process at TI = /; - f 1. 
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The approach in our paper is to f i t models of progressively higher order, to calculate 
variance of one-step prediction error (the residua! sum of squares (RSS) in traditional l in
ear regression model) for each value of order p, as well as to consider the M P E and MPV. 
The criterion is that if the addition of extra parameter matrices gives lit t le improvement, 
we do not choose a higher order model. * 

The F-iest results for our model candidates according to (4.11)-(4.12) are given in Tables 
6.4.1-6.4.3: 

T A B L E 6.4 .1 . T h e Order Comparison in W h o l e Pe r iod (0 < n < 271) 

Order MPE (7^ M P V 

P = l 4.36456 0.573506 2.59355 
p=2 3.87259 0.485172 2.84562 
p - 3 5.42097 0.518003 2.9651 

Let MiSO{i)=Ui , MISO(2)=ZY2 

XaosCl) « 3.84 and x = 268 x •̂̂ ^^g .̂'ŝ .̂'̂ f = 49.7941 reject M I S O ( l ) . 

Let MIS0{2)=U, , MISO(3)=^/2 
Xo.o5(l) ^ 3.84 and x = 268 x ""^^^^-g^'^^" = -16.9858 choose MIS0(2) . 

T A B L E 6.4.2. The Order Comparison in C a l m Per iod (110 <n< 170) 

Order MPE M P V 

p = l 1.072314 0.1268888 0.947681 
p=2 0.771115 0.068666 0.435191 
p=3 0.596783 0.0649163 0.341153 

Let M]SO{l)=Ui , MISO(2)=Z^2 

xio5( l ) ^ 3.84 and x = 57 x " ' ^ ^ ^ " ^ ^ ^ ^ = 49.179 reject MISO( l ) . 

Let MIS0(2)= i / , , M\SO{3)=U2 

Xlodl) ^ 3.84 and x = 57 x ^-"^^-g,^^^ '^^ = 3.29244 choose MIS0(2) . 
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T A B L E 6.4.3. The Order Comparison in S t o r m Pe r iod (171 < n < 270) 

Order MPE MPV 

P = l 3.88889 2.77873 2.91095 
p=2 2.97176 0.523499 1.2119 
p=3 4.73119 2.84352 2.89949 

Let M I S O ( l ) = i / i , MlSO{2)=U2 
Xaos(l) « 3.84 and x = 97 x 2.77873-0.523499 

0.523499 = 417.876 reject MISO( l ) 

Let MlS0{2)=Ui , MISO(3)=i/2 

Xlosi^) « 3.84 and x = 97 x " ""^^s^'^f = -79.1421 choose MIS0(2) . 

Thus, for all three time period a second order model is adequate at the 95% level. 

6.4.4 Parameter Estimation 

From order determination we choose MIS0(2) time series model for all three time periods 
in the following form: 

with 

^ ^ = [ a , , a 2 , 6 , c , / ] 

xl = [yn-uyn-2yn-uTr,-uTn-l\Vn-l] 

(6.36) 

(6.37) 

(6.38) 

Equation (6.36) is using the Recursive Least Square Method (3.61-3.63), where for order 
2, d=5, and the model simulation begin at n=3. 

In the recursive (also called on-line) identification method we used here, the parameter 
estimates are computed recursively in time similar to the ELSM presented in section 6.3. 
and the parameter estimation results are given as following: 
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T A B L E 6.4.4 The Parameter Es t ima t ion in W h o l e Pe r iod 

Parameter Mean Standard Deviation 

ai 0.915355 0.108976 

0.2 0.0310859 0.11581 
b 0.377286 0.2565 
c 6.55802 0.405544 
f 0.0468373 0.0415331 

6.4.5. The Parameter Es t ima t ion in C a l m 

Parameter Mean Standard Deviation 

ai 0.873825 0.0481795 
0.107592 0.0503243 

b -0.0780674 0.0950974 
c 1.96009 0.0643295 
f 0.674854 0.110728 

T A B L E 6.4.6. The Parameter Es t ima t ion in S t o r m Pe r iod 

Parameter Mean Standard Deviation 

a, 1.23308 0.117625 
as -0.278993 0.116848 
b 0.259172 0.122158 
c 8.17912 0.304354 
f -0.00410298 0.0293338 

Figures 6.4.2-6.4.4 show the comparison of the M1S0(2) suspended sediment concentra
tion models and data for the three time periods. 
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6.4,5 Comparison with Linear Regression Model ( L R ) 

The traditional linear regression model is as follows: 

y„ = a + 6T„ - f cul + fW^ * r „ (6.39) 

The fitted parameters with their standard deviation (shown in brackets) a j id the model 
comparison of all time periods are given in Table 6.4.7. and Table 6.4.8. respectively. 

T A B L E 6.4.7. The Fitted Parameters In the Regression Model 

Model a b c f 

Whole Process 8-08 (0.17) 0.34 (0.19) 6.02 (2.73) 66.21 (29.32) 

Calm Process 7.07 (0.09) 0.71 (0.26) 1.90 (2.04) -1148,5 (459.63) 
Storm Process 9.66 (0.30) 0.92 (0.31) 0.43 (3.9) 3.61 (39.24) 

T A B L E 6.4.8. The Model Comparison 

Model MlSO(Whole) LR(Whole) MlSO(Calm) LR(Calm) MlSO(Storm) LR(Storm) 

(RSS) 0.4852 3.1916 0.0687 0.1532 0.5235 3.4779 

From Tables 6.4.7-6.4.8. and Figures 6-4.2-6.4.4, i t is shown that the MISO time series 
model is much better than the linear regression model in data f i t t ing and prediction. 
This is because the MISO model takes advantage of the on-line identification method, 
allowing variation of suspended sediment concentration to depend on past values as well 
as concurrent hydrodynamic conditions. 

6,5 Discussion and Conclusion 

Overall the single variable AR, ARMA current velocity model presented here is seen to 
fi t the measured current velocity data ofT the Holderness coast very well. They provide a 
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novel modelling technique in current velocity. Since the recursive least square identifica
tion method is used, the model can be instantaneous response to change in hydrodynamic 
conditions and adaptive to the system variation. Thus the improvement of the model 
and model prediction are made. From the simulation results presented in Figures 6.3.2-
6.3.5, the parameters of the model have very good convergency in the whole period, which 
means both the model structure and description assumed here are very reasonable and 
the model has sound reliability of long term prediction. 

In the modelling of SPM concentration, the MISO model is also seen to fit the mea
sured variation of suspended sediment concentration off the Holderness coast very well. I t 
provides a major improvement on the more traditional linear regression (LR) model, be
cause i t relaxes the LR requirement of instantaneous response to changing hydrodynamic 
conditions. The improvement occurs for all time scales. MISO accurately follows the very 
significant tidal-averaged background concentration changes which appear to depend on 
both storm conditions and the spring-neap cycle: LR shows much smaller changes than 
observed. MISO gives good agreement with the changing amplitude of the semi-diurnal 
signal, though tending to overshoot at the extreme values, particularly minimum concen
trations; LR shows some of the observed variation, but at a lower level than observed. 
Finally MISO gets much closer to the observed quarter-diurnal concentration variation 
during the calm period, attributed to local resuspension. There is some evidence that 
the MISO model produces some spurious high frequency variation not seen in the obser
vations; time period 135-180 in Figure 6.4.2. is a particularly clear example, as is the 
tendency to overshoot the extremes. However the dominant features of the time series 
are vastly better predicted by the MISO model when compared to the LR model. 
One drawback of the MISO method is that, as a model-fitting exercise, i t is only strictly 
applicable to the condition fitted. It is clear from the results that the best-fit parame
ters differ significantly between the storm and the calm periods, and that the use of a 
parameter set for the whole period tends to produce poor prediction for the calm period. 
Nevertheless it is encouraging that the overall fit is good for most of the July data set, 
suggesting a certain robustness for the model over this summer period. Further work 
is in progress based on winter and spring data sets to assess the degree of variability of 
predictors over seasonal time-scales. 

The MISO model is, of course, based on statistical analysis to produce an optimum pre
diction, and is not primarily designed to elucidate processes. However i t is clear that the 
primary reason for its success is that i t allows for "memory" in the suspended sediment 
signal whereas the LR method expects instantaneous response to two comparing hydro-
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dynamic conditions. This "memory" is tlie result of suspended sediment taking longer to 
settle out of the water column than the time-scales of hydrodynamic variations, whether 
due to tides or storms. Prediction of these effect by fully process-based models wil l require 
much more sophistication than the simple LR or MISO models considered here. 

122 



Chapter 7 

Multivariable Time Series Models 
for Sediment Dynamics 

In this chapter, multivariable time series models of current velocity profile and suspended 
sediment concentration profile are presented. The current velocity and SPM dynamics 
are considered as unknown systems to be identified. The quantity relationships between 
them are investigated. The model structure, order determination problem are discussed 
and the model unknown parameter matrices are identified based upon the on-line recur
sive least squares identification method. The simulation results based on the real data 
collected from the Rufij i Delta, Tanzania show that these models are a good approach to 
data fitting and prediction. 

7.1 Field Description and Data Collecting 

The Rufiji delta in Tanzania contains the largest area of estuarine mangroves in East 
Africa: an area of 53000 hectares. The Rufiji river is located at latitude 7°50 '5 within 
the tropics, (see Figure 7.1.1). In the months December until Apri l the N-NE monsoon 
dominates causing abundant precipation, the S-SE monsoon is prevalent during May to 
October and causes significantly less precipitation. The deltaic plain formed at the Indian 
Ocean by the Rufiji river is approximately 23km wide and 70km long. Usual erosion and 
sedimentation patterns due to meander bend migration characteristic of deltaic estuaries 
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can be witnessed throughout the delta. Tidal range at the estuary is approximately 
4.3 meters and tidal observations show a symmetrical tidal curve at the river mouth. 
Sediments observed at the delta edge are sand, clays and silts varying in proportion and 
with high organic content and the data were collected by Fisher (1994). 

7.1,1 Current Velocity Measurements 

The current vane technique of Kjerfve and Medeiros (1989) was used and two current 
vanes were constructed using exactly the same materials and measurements described by 
Kjerfve and Medeiros, so that the same calibration equations could be used to correlate 
the vane deflection angles to current velocity. The vanes were lowered from the survey 
vessels on a graduated steel cable using a hand winch. Depth, deflection and current 
bearing were noted so that true depth (the vertical component of the measured depth) 
and longitudinal and lateral components of the current could be calculated. Deflection 
angles were kept within the recommended range for maximum accuracy by the use of 
interchangeable weights, so that the technique gives a 1% error in current velocity for a 
1** error in deflection. As with tidal measurements observations were visually averaged to 
negate the effects of swell. The error in current measurement is ± 3 % . Errors in estuarine 
depth are 0.02m arising from inaccurate deflection observations and 0.1m arising from 
line reading errors (Fisher, 1994). 

7,1.2 Suspended Sediment Sampling 

The water sample was processed through a vacuum filter pump using 47mm diameter 
filter papers with guaranteed 0.45//m pore spaces. During filtration the samples were 
continually agitated, to ensure that the sediment remained in suspension. The volume 
of sample processed was dependent on concentration, but W C L S typically in the range 50-
500 ml . Sediment was removed by treating the filter paper with hydrogen peroxide and 
perchloric acid in the ratio of 1:L The sediment was allowed to settle before the solution 
was decanted. The remaining sediment was then washed, dried and weighed. The use of 
this technique resulted in the destruction of organic matter within the sample, so that 
the resultant data is used for the calculation of transport of inorganic sediments only. I t 
was found that sediment samples taken from the Rufij i river contained between 17.0 and 
19.5% organics, with average of 17.8% (Pisher, 1994). 
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7.2 Current Velocity Model 

In this section we focus on modelling the current velocity dynamics. The one reason we 
investigate the current velocity dynamics is that the most widely used sediment transport 
models are so-called cu-integral (concentration times velocity integral) typq of models. 
The other reason is current velocity dynamics plays a very important part in sediment 
transport numerical model as we mentioned in Chapter 5 and Chapter 6- So current 
velocity is a very important variable to model when considering sediment transport. From 
Chapter 5, we know that the current velocity mainly is a function of its derivatives relevant 
to the direction {x.y^z) and some parameters, so in this section, the univariate model for 
current velocity profile is presented. 

sturbance 

Output 
System 

Output 
System 

U{i) 

Fig 7.2.1 A Dynamic system with output U{i) and disturbance c{i) where i denotes t i me. 

The distinguishing feature of a univariate time series current velocity model is that no 
attempt is made to relate U{i) to other variables except the uncontrollable disturbance 
e{i). The variations in U{i) are ^explained' solely in terms of its own past or by its time 
and surrounding value, although of course if U{i) is a vector dependent on space. The 
forecasts are then made by extrapolation. The statistical approach to forecasting is based 
on the construction of a model- The model defines a mechanism which is regarded as 
being capable of having produced the observations in question. Such a model of course 
when applied to the environment is of course invariably stochastic. 

A single variable model for Tamar Estuary is presented in Chen and Dyke, 1995 and 
for the Holderness Coast in Chapter 6. Here, the current velocity profile (i.e. current 
velocity at different water depth) is taken as the output of the system and the model 
works in a similar way to the one dimensional vertical current velocity model, which is 
more realistic and a better description for the real system. We assume that the time series 
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model here that describes the current velocity is a discrete multivariable time-invariant 
stochastic linear system and can be represented by the following AR(p) or ARMA(p, ^) 
model. 

7.2,1 A R Model 

1. Model Description 

First, we assume that the current velocity profile model is a multivariable AR(p) model 
as follows: 

A{z-')Un = U^n (7.1) 

where Wn is the system noise and the restriction on it are given in equations (3.66)-(3.67). 

A{z-') = 7^ + A,z-' H-... + Aj,z-^ (7.2) 

Un and Wn are m-dimensional vectors instead of scalar CLS in the chapter 6. z~^ is a 
unit delay operator and Ai, {i = 1, ...,p) is m x m unknown matrices to be estimated. 
is an m X m unit matrix. 
Set 

= [-Ai,...,-Ap]rnxd (7.3) 

: = [ f / J _ , , . . . , t / : _ p h , , (7.4) X 

d = mxp (7.5) 

here On is the estimate of 0 at time n and [.]mxd and [-jixd denote an m x d matrix and a 
<f—dimensional row vector respectively. 

It is easy to see that (7.1) also can be written as 

Un = O'^Xn + Wn (7.6) 
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We construct the vertical profile variable vector of suspended sediment concentration or 
current velocity as the system output and i t is a function of the water depth and time. 
Denote Un{k) as the current velocity at height h and time n (i.e. set water depth H , 
bottom h = H and surface h — 0). So 

f / J = ( f / n ( / i l ) , i / n ( / l 2 ) , / y n ( M i " - . ^ n ( / l m ) l l x m . where 0 < / l , < < < < H. 

The recursive least squares algorithm of Chapter 3 (3.55-3.57) is used to identify the 
parameter matrix 0. 

2. Order determination 

Definition 7.1. 
is defined as variance of one-step prediction error of the model as follows: 

^^'=^1:11^-11 ' (7-7) 
1=1 

where On = Un — On, Un is the real data and On = i j ^ ^ n - i is the one-step prediction of 
the model at time n respectively. 

Definition 7.2. 

MPVE^^^..JU4 ' (7.8) 

is defined the maximum one-step prediction vector error (MPVE) of the model. 

Definition 7.3. 

MPEE= max \Unj\ (7.9) 
{ l<n<yV}tJ{ l<j<m} ' ^ ^ 

is defined the maximum one-step prediction element error (MPEE) of the model, where 
Onj is the i—th component of On-

Definition 7.4. 

MPV = max | |^„| | (7.10) 
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is defined the maximum parameter variation (MPV) of the model. 

The approach in this chapter is to fit the model of progressively higher order, to calculate 
variance of one-step prediction error for each value of order p, as well as to consider 
the MPVE, MPEE and MPV. The criterion is that if the addition of extra parameter 
matrices gives lit t le improvement, we do not choose a higher order model. 
The F-test results for our model candidates according to (4.11) and (4.12) are given 
follows in Table 7.2.1: 

as 

T A B L E 7.2.1. The order comparison of multivariable current velocity model 

MPVE MPEE MPV a2 

p=4 0.0327049 0.0455715 0.0718552 3.39857e-05 
p=5 0.0326627 0.0456293 0.0508491 2.05273e-05 
p=6 0.0326586 0.0456616 0.0597631 2.09S84e-05 

(i) Let AR(4)=ZYi , AR(5)=i/2 

Xio5(100) « 128.84 and x = 365 x '•''^^|,o°3\;igf ̂ """^ = 239.306 

(ii) Let AR(5)=i / , , AR(6)=i/2 

X?.o5(100) « 128.84 and x = 365 x '""^rn°„t? °".^'-°' ' ' 2.098846-05 

reject AR(4) 

7.95074 choose AR(5) 

3. Simulation 

Here, we choose a multivariable time series model which is a simpler form of (7.1). I t 

follows the AR(5) model according to the order determination presented in Table 7.2.1: 

= AUn-l + BUn^2 + CUn-3 + DU^.^ + EUn-5 + 

Set as: 

0'^ =:^[A,B,C,D,E] 

(7.11) 

(7.12) 

(7.13) 

In traditional models that seek to simulate the behaviour of dissolved and suspended 
matter in estuaries, the hydrodynamic equations are solved. Closure is imposed by a 
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model of turbulence. These models, once straightforward and simple can now be highly 
complex. The fc — c turbulence models can be modified to include two phases (sediment 
and fluid) and biology (the interaction of plants and animals with sediment). However, 
these equations become at once complicated and controversial. Since the mathematical 
representation of such a set of equations is written in finite difference form, ultimately i t 
can be approximated to a difference equation (Bagchi and ten Brumelhuis, 1996) which 
would be similar to an equation such as (7.11). The fact that the so called 'constant ma
trices' in the equation do indeed remain constant is shown in the simulation that follow 
although they do show a very small variation with time (see Fig 7.2.12). These figures 
thus show the goodness of fit of the model to the data. 

Returning to solving equation (7.11), the ELSM (3.55)-(3.57) is used (substitute £/„ for 
j / n ) in (3.55). From (7.5), here p = 5,m = 10 and d = bO and the time scale in here is 3 | 
minutes per run. Since the initial value are needed, the first fifth data as our initial value 
we really start the model at n=6. 

The computation procedure of ELSM is as follows: 

(i) Construct Xn according to (7.13) (n > 6). 
(ii) Select initial values of Os and R^. 

( i i i ) Calculate Kn, Rn and On according to (3.55)-(3.57) based on the Kn-i.Rn-i , ^ n - i 
and Xn {n > 5). 

The simulation results are given as follows: 
(i) The five parameter matrices are: 

A = 

^ 1.499 0.227 0.351 0.106 -0.105 -0.047 0.074 -0.090 -0.083 0.019 
0.289 1.260 0.331 0.065 0.091 -0.126 0.074 0.061 -0.084 -0.012 
0.234 0.187 1.185 0.153 -0.069 0.006 0.156 0.012 -0.044 0.106 
0.065 0.050 0.318 0.908 0.152 0.168 0.142 0.006 -0.008 0.148 

-0.116 0.117 0.108 0.131 1.250 0.143 0.124 -0.008 0.101 0.078 
-0.048 -0.114 0.191 0.092 0.125 1.312 0.250 0.100 -0.061 0.099 
-0.100 -0.045 0.223 0.004 0.045 0.216 1.297 0.303 0.055 -0.114 
-0.171 0,108 0.152 -0.022 -0.018 0.168 0.446 1.230 0.108 -0.070 
-0.071 -0.029 0-152 0.016 0.100 0.000 0.121 0.107 1.291 0.349 

^ -0.055 -0.100 0.155 0.112 0.017 0.078 -0.151 -0.089 0.258 1.668 / 
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B = 

/ -0.339 -0.441 
-0.446 -0.066 
-0.338 -0.290 
-0.143 -0.147 
0.022 -0-141 
0.019 
0.045 
0.100 
0.026 
0.034 

0.042 
0.006 

-0.048 
0.009 
0.055 

-0.298 
-0.267 
0.171 

-0.128 
0.035 
0.009 

-0.003 
-0.028 
0.003 

-0.041 

-0.137 
-0.155 
-0.196 
0.216 

-0.180 
-0.229 
-0.129 
-0.092 
-0.108 
-0.130 

0.068 
-0.091 
0.024 

-0.118 
0.072 

-0.119 
-0.098 
-0.105 
-0.171 
-0.074 

0.001 
0.057 

-0.056 
-0.169 
-0.151 
0.000 

-0.244 
-0.213 
-0.043 
-0.072 

0.042 
0-025 

-0-058 
-0.105 
-0.139 
-0.271 
-0.059 
-0.421 
-0.111 
0.148 

0.083 
-0.104 
-0.065 
-0.101 
-0.132 
-0.247 
-0.455 
-0.128 
-0.156 
0.166 

0.063 
0.040 

-0.011 
-0.077 
-0.169 
-0.026 
-0.064 
-0.106 
-0.059 
-0.389 

0-009 \ 
0.067 

-0.082 
-0.158 
-0.136 
-0.100 
0.145 
0.127 

-0.452 
-0.559 

D = 

/ -0.080 0.055 -0.003 0.025 0.100 -0.043 -0.054 0.001 0.044 -0.044 ^ 
0-025 -0.011 -0.053 0.008 -0.021 0.083 0.027 -0.084 0.060 -0.034 

-0.001 -0.019 0-021 -0-059 0,116 0.006 -0.056 -0.021 0.068 -0.064 
0.018 0.006 -0.073 0.075 -0-015 -0.054 -0.027 0.018 0.082 -0.048 
0.066 -0.087 0.065 -0.046 -0.107 -0.004 -0.002 0.063 0.034 0.010 

-0.019 0.064 -0.003 -0.074 0.013 -0.118 -0.029 0.039 0.150 -0.061 
-0.007 0.031 -0.038 0.012 0.065 0.016 -0.027 -0.059 0.025 -0-038 
0.048 -0.063 -0.033 0.051 0.099 0.056 -0-081 -0.041 -0.005 -0.051 

-0.012 -0.008 0.010 0.057 0.029 0.117 -0.054 -0.060 -0.061 -0.023 
\ 0.023 -0.006 -0.033 0.003 0.082 -0.024 -0.030 -0.023 0.061 -0.077 ̂  

/ -0.060 0.109 -0.001 0.059 0.015 -0.019 -0.021 -0.014 0-023 -0.021 \ 
0.078 -0-069 -0.021 0.063 0-019 0.003 -0.009 -0.011 0.036 -0.023 
0.052 0.043 -0.132 0.033 0,029 0.007 -0.022 0.005 0.037 -0.004 
0.031 0.030 -0.055 -0.049 0-006 0.008 0.000 0-025 0.039 0.012 
0.016 0.003 -0.032 0.031 -0.112 0.010 0-021 0.054 0-040 0-021 

-0.002 0.011 -0.052 0.055 0.001 -0.119 0-033 0.059 0.045 0-010 
0.002 -0-002 -0.062 0.045 0.033 0-030 -0-087 0.056 0.018 -0.012 
0.010 -0.039 -0.028 0.041 0-066 0.039 0-019 -0.060 0.014 -0.018 

-0.005 -0.004 -0.035 0.042 0-050 0.034 0.003 0-017 -0.092 0.064 
\ 0.000 0.004 -0.040 0.030 0.032 0.017 -0.011 -0.043 0.076 -0.026 J 
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-0.034 0.061 -0.098 0.068 -0.136 0.059 0.028 0.011 -0.101 0.073 
0.066 -0.140 -0.013 0.105 -0.045 -0.066 -0.032 0.116 -0.095 0.034 

-0.066 0.081 -0.276 0.104 -0.115 0.003 0.051 0.051 -0.087 0.073 
0.036 0.051 -0.050 -0.166 -0.017 0.013 0.047 0.049 -0.083 0.082 

-0.005 0.113 -0.147 0.072 -0.137 -0.010 0.056 0.004 -0.056 0.068 
0.035 0.003 -0.128 0.158 -0.008 -0.131 0.076 0.037 -0.148 0.084 
0.040 0.017 -0.075 0.035 -0.037 -0.033 -0.098 0.154 -0.080 0.055 
0.000 0.041 -0.008 -0.033 -0.034 -0.068 0.110 -0.037 -0.052 0.052 
0.056 0.040 -0.101 -0.056 -0.003 -0.117 0.092 0.096 -0.157 0.120 

-0.023 0.088 -0.063 0.003 -0.081 -0.001 0.078 -0.024 -0.031 0.013 J 

ii) 

T A B L E 7.2.2 T h e mode of the parameter matrices in A R ( 5 ) current velocity 
model 

A B C D E 
p=5 2.029754 0.955137 0.335718 0.239755 0.624578 

(iii) 

MPEE=0.0326627 m/s 
MPVE=0.0456293 m/s 

MPV=r0.0508491 
(7^=2.05273 e-05 

(iv) Figures 7.2.2-7.2.11 show the simulation of the current velocity dynamics at different 
depth and Figure 7.2.12. gives the norm of the parameter matrix error dynamics in the 
current velocity model. 

(v) The mode and the element of A, B are comparatively large and the ones of C , Z>, E 
are comparatively small which shows that the more recent the time, the more elTect is 
there on the current variation. 

(vi) Since A is strongly diagonally dominant, we can say that the larger the distance 
between given layers, the less effect is there on the layer variation. 
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Figure 7.2.2. Plot of AR(5) Current Velocity Model Error vs Data at h=0.05H 
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Figure 7.2.3. Plot of AR(5) Current Veloaly Model Error vs Data at h=0.10H 
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Figure 7.2.4. Plot of AR(5) Current Velocity Model Error vs Data at h=0.20H 
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Figure 7.2.5. Plot of AR(5) Current Velocity Model Error vs Data at h=0.30H 
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Figure 7.2.6. Plot of AR(5) Cuaent Velocity Model Eaor vs Data at h=0.40H 
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Figure 7.2.7. Plot of AR(5) Cuaent Velodty Model Error vs Data at h=0.50H 
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Figure 7.2.8. Plot of AR(5) Cuaent Velodty Model Error vs Data at h=0.60H 
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Figure 7.2.9. Plot of AR(5) Current Velocity Model Error vs Data at h=0.70H 
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Figure 7.2.10. Plot of AR(5) Current Velocity Model Error vs Data at h=0.80H 
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Flqure 7.2.11. Plot of AR(5) Current Velodly Model Error vs Data at h=0.90H 
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Figure 7.2.12. The variation of || || in AR(5) Cun-enl Velocity Model with time 
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7.2.2 A R M A Model 

In this section, the more general system with the correlated system noise is considered, 
i.e., the multivariable ARMA model for current velocity profile are constructed. 

1. Model Description 

Now, we assume that the current velocity profile model is a multivariable ARMA(7^, ̂ ) 
model as follows: 

A{z-')Un = C{z-')w^ (7.14) 

where io„ is the system noise and the restriction on it is given in (3.66) and (3.67). 

A{z-') = I^-\-A,z~'-\-...-i-ApZ-^ 

C{z~') = I^-\-CiZ-' + ... + C,z-^ 

Un and Wn are m-diniensional vectors, z~^ is a unit delay operator and A{^Cj{i = 

l»- 'j7^;i = 1) ••-)?) is 771 X m unknown matrices to be estimated. is an rn x m unit 
matrix. 
Set 

= [- '4i , . . . , -ylp,C,, . . . ,CJmxd (7.15) 

= [^^n-n->^rp.en-i>")e^-Jixd (7.16) 

d = mxp (7 17) 

en = Un~Oi,x^ (7.18) 

here 0^ is the estimate of 0 at time n and [.Jmxrf and (.]ixd denote an m x <i matrix and a 
rf—dimensional row vector respectively. 
It is easy to see that (7.14) also can be written as 

Un = ^^x„ + C{z-')w^ + e„ - C{z~')en (7.19) 

We construct the vertical profile variable vector of suspended sediment concentration or 
current velocity as the system output and it is a function of the water depth and time. 
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The C/n(/i) is defined as the last subsection and 

= [f/n(/ll),i/n(/l2),i/n(/^3),-..,t/n(/im)llxm- wheie 0 < ht < < < hm < H. 

In order to identify the system parameter matrix 0^ we make use of the recursive al
gorithms (3-55)-{3.57). 

2. Order determination 

The order determination method here is similar to that in the last subsection and the 
F-test results for our model candidates according to (4.11) and (4.12) are given as follow
ing in Table 7.2.3: 

T A B L E 7.2.3. T h e order comparison of current velocity model 

M P V E M P E E MPV 
p=2, q=l 0.0288694 0.0403688 0.00636337 2.91657e-05 
p=3, q=l 0.028119 0.0393385 0.0061354 1.77705e-05 
P=4, q=l 0.027965 0.0390262 0.00605504 l.S3553e-05 

(i) Let ARMA(2,l)=i/i , ARMA(3.1)=^^2 
Xo.o5(100) ^ 128.84 and x = 365 x ^^^^^^f^lg^^^^ = 234.0535 

(ii) Let ARMA(3,l)=i^i , ARMA(4,l)=l/2 

XaosClOO) « 128.84 and x = 365x ™ ^ ^ f | g ^ : ^ | p ^ = -11.6289 

reject ARMA(2,1) 

choose ARMA(3,1) 

3. Simulation 

According to the order determination presented in Table 7.2.3., we choose a dimensional 
multivariable time series model which is a simpler form of (7.14) as following ARMA(3,1) 
model: 

(7.20) 

Set as: 

(7.21) 
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(7.22) 

In order to solve equation (7.20), the ELSM (3.55)-(3.57) is used (substitute Un for j/^) 
in (3.55). From (7.20), here p = 3,9 = l . m = 10 and d = 40 and the time scale in here 
is 3 | minutes per run. Since the initial value are need, the first third data as our initial 
value we really start the model at n=4. 

The computation procedure of E L S M is as follows: 

(i) Construct according to (7.22) and (7.18) (n > 3). 
(ii) Select initial values of O3 and R3, 

(iii) Calculate K^, and On according to (3.55)-(3.57) based on the Kn-i>Rn~i , On~i 

and x„ (n > 3). 

The simulation results are given as follows: 
(i) The five parameter matrices are: 

0.989 0.249 0.147 0.061 -0-055 -0.076 0.039 -0.014 -0.035 0.033 
0.240 0.791 0.172 0.142 0.043 -0.029 0.039 -0.009 0.001 -0.053 
0,193 0.175 0-640 0.147 0.022 0.045 0.076 -0.043 0.032 0.028 
0.015 0.062 0.201 0.616 0.185 0.142 0.076 -0.058 0.041 0.054 

-0.109 0.056 0.081 0.254 0.805 0.132 0.112 -0.060 0.028 0.044 
-0.107 -0.051 0.109 0.230 0.139 0.726 0.197 0.064 -0.002 0.026 
-0.040 -0.039 0.095 0.062 0.093 0.201 0.747 0.267 0.041 -0.119 
-0.049 0.001 0.085 -0.042 0.043 0-148 0.345 0.768 0.064 -0.056 
0.010 -0.026 0.033 -0.027 0.045 -0.002 0.121 0.157 0.751 0.356 
0.035 -0.022 -0.056 -0.001 -0.046 -0.033 -0.055 -0-002 0.302 1.131 J 

^ 0.352 0.002 -0.012 0.038 -0-015 -0-021 0.023 -0-006 -0.018 0.026"̂  
0.008 0.352 -0.020 0.044 -0.022 -0.020 0-035 -0.024 -0.017 0.016 
0.008 -0.006 0.323 -0.001 0.001 0.001 0.043 -0.017 0.007 0.007 
0.005 -0.019 0.001 0-345 0.004 -0.018 0-034 -0.006 -0.005 0-004 

-0.019 0.007 -0.004 0.018 0-313 -0.012 0.046 -0.015 -0.018 0.013 
-0.017 0.014 -0.006 0.038 -0.015 0.313 0.026 -0.012 -0.006 -0.004 
-0.024 -0.017 0.005 -0.022 -0.002 0.002 0-341 0.002 -0.021 0.012 
-0.009 -0.005 0.038 -0-054 0.021 0.006 0.030 0.328 -0-018 0.024 
0.016 -0.011 0.013 -0.040 0.020 -0.002 0.012 0.006 0-301 0-028 

1^ -0.005 0.029 -0.007 0.044 -0.017 -0.002 0.030 -0.024 0.013 0-336^ 
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i i) 

^ -0.308 -0.285 -0.193 0.001 0.021 0.048 0.034 0.018 -0.023 -0-006'* 
-0.261 -0.106 -0.229 -0.069 -0.088 -0.010 0.050 -0.012 -0.034 0-080 
-0.164 -0.192 0.008 -0.155 -0.043 -0.059 -0-002 -0.009 -0.038 -0.024 
0.005 -0-094 -0.199 0.068 -0.191 -0-190 -0.0174 0.034 -0.057 -0.038 
0.091 -0.023 -0.083 -0.215 -0.167 -0.172 -0.033 0.015 -0.062 -0.009 
0.077 0.075 -0.124 -0.153 -0.178 -0.095 -0.151 -0.098 -0.006 -0.009 
0.061 0.045 -0.049 -0.087 -0.093 -0.196 -0.060 -0.264 -0.078 0.152 
0.048 -0.001 -0.011 -0.075 -0.016 -0.154 -0.298 -0.123 -0.115 0.093 
0.018 0.000 -0.013 -0.060 -0-008 -0.004 -0.083 -0.133 -0.145 -0.317 

^ -0.079 0.057 0.017 0.067 -0.015 0.012 0.112 -0.052 -0.297 -0.475y 
^ 0.604 0.064 0.091 -0.031 -0.063 -0.052 0.037 -0.026 -0.012 0.025'' 

0.059 0.521 0-112 0.029 0.013 -0.052 -0.027 -0.001 0.003 -0.039 
0.044 0.076 0.449 0.114 -0.037 0.036 0.035 -0.054 -O.OU -0-009 

-0.016 0.017 0.132 0.376 0.109 0.110 0.013 -0.103 0.003 0.000 
-0.064 0.022 0.023 0.105 0.577 0.011 0.022 -0.091 0.025 -0.010 
-0.025 -0.068 0.077 0.081 0.047 0.486 0-087 -0.029 -0.020 0.010 
-0.000 -0.048 0.021 0.004 -0.009 0.085 0.455 0.128 0.029 -0.067 
-0.002 -0.010 0.020 -0.040 -0.052 0.031 0-177 0.496 0.045 -0.022 
-0.013 0-018 -0-006 0.001 -0.009 -0.053 0.067 0.053 0.489 0.120 

^ 0.049 -0-016 -0.039 -0.026 0.004 -0.003 -0.039 -0.001 0-064 0.664 y 

T A B L E 7.2.4. T h e mode of the parameter matrices in A R M A ( 3 , 1 ) current 
velocity model 

A, A2 A3 Cr 
ARMA(3,1) 1.35035 0.417748 0.699889 0.752131 

( i i i ) 

MPEE=0.028119 m/s 
MPVE=0.0393385 m/s 

MPV= 0.0061354 
1.77705 e-05 
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Figure 7.2.13. Plot of ARMA(3.1) Current Velocity Model Error vs Data at h=0.05H 
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Figure 7.2.14. Plot of ARMA(3.1) Current Velodly Model Error vs Data at h=0.1 OH 
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Figure 7.2.15. Plot of ARMA(3,1) Current Velocity Model Error vs Data at h=0.20H 
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Figure 7.2.16. Plot of ARMA(3.1) Current Velocity Model Error vs Data at h=0.30H 

144 



o o 
> 
c 

O 

o 

CO 
o 

d 

o 
d 

Model Enror 

300 

Time 
Figure 7.2.17. Plot of ARMA(3.1) Current Velocity Model Error vs Data at h=0.40H 
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Figure 7.2.18. Plot of ARMA(3.1) Current Velodty Model Error vs Data at h=0.50H 
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Figure 7.2.19. Plot of ARMA(3.1) Current Velodty Model Error vs Data al h=G.60H 
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Figure 7.2.20. Plot of ARMA(3.1) Current Velodly Model En-or vs Data al h=0.70H 
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Figure 7.2.21. Plot of ARMA(3.1) Current Velocity Model Error vs Data at h=0.80H 
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Figure 7.2.22, Plot of ARMA(3.1) Current Velocity Model Error vs Data at h=0.90H 
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Figure 7.2.23. The varialion of || el || in ARMA(3.1) Current Velocity Model with time 
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( iv ) Figures 7,2.13-7.2.22 show the simulation of the current velocity dynamics at different 

depth and Figure 7.2.23. gives the norm of the parameter m a t r i x error dynamics in the 

current velocity model. 

(v ) The mode and the element of Ai, are comparatively large and the those o f A3 are 

comparatively small which shows that the more recent the t ime , the more effect is there 

on the current variation. 

( v i ) Since A j is strongly diagonally dominant , we can say tha t the larger the distance 

between given layers, the less effect is there on the layer var ia t ion. 

(v i i ) The variation of the mode of parameter error ma t r ix | |^n| | w i t h t ime is given in Figure 

7.2.23. I t is shown that the model parajneter matrices are nearly constant matrices which 

means the good description of the model. 

7.2.3 Model Comparison 

In last two subsections, two kinds of multivariable t ime series current veloci ty model are 

presented. The model comparison between AR(5) and A R M A ( 3 , 1 ) is given i n Table 7.2.5. 

T A B L E 7.2.5. T h e M o d e l C o m p a r i s o n 

Model M P E E M P V E MPV 

AR(5) 0.0326627 0.0456293 0.0508491 2.05273e-05 

ARMA(3,1) 0.028119 0.0393385 0.0061354 1.77705e-05 

From Table 7.2.5, all the M P E E , M P V E , M P V and of the A R M A model are smaller 

than those in A R model. I t is shown that the M P V of A R M A are much improved which 

means that the parameter matrices of A R M A t ime series model are ^nearly constant 

matrices'. Therefore the multivariate model presented here is better descript ion of the 

system, data f i t t i n g and prediction. This is because the A R M A model takes advantage 

of the informat ion f rom the model error and estimation of system noise as well as under 

the assumption that the system noise is coloured noise. I t is suggested tha t the A R M A 

Model is more suitable than A R Model in this special case. 

149 



7.3 Suspended Sediment Concentration Model 

The resuspension, transport and deposition of suspended par t icular mat te r ( S P M ) play a 

crucial part i n a range of marine processes, including benthic fluxes, biological product iv

i ty , biogeochemical cycling and pol lutant dispersal. There are, however, surprisingly few 

data sets enabling detailed investigation of S P M dynamics because i t has h i the r to been 

d i f f i cu l t to monitor particle concentration, composition and behaviour over appropriate 

t ime and length scales. So i t is very important to set up a proper S P M concentration 

model i n the process of sediment transport. 

In this section, two kinds of t ime series model are introduced. F i r s t , the univariate model 

similar to the current velocity model is used to describe the S P M concentrat ion profi le 

dynamics. Second, the mult ivariate model ( A R M A X Model) is used to describe the S P M 

dynamics. T h e simulat ion and model comparison show tha t the la t ter one has advantage 

over the former one both in statistical analysis and geophysical i l lus t ra t ion . Like the 

last section, the system identification technique is applied here to model l ing the t ime 

series dynamics for SPM concentration by measuring depth prof i le current velocity and 

SPM concentration in s i tu, which provides a detail data set. T h e S P M t ime series model 

provides comprehensive modell ing and prediction for S P M dynamics based on the data 

set. 

7.3.1 A R Model and A R M A Model 

In this subsection we focus on modelling the suspended sediment concentrat ion dynamics. 

Firs t of a l l , for simplici ty, the univariate model for suspended sediment concentration 

profile is presented. 

Dis turbance e{t) 

Outpu t 
System 

Outpu t 
System 

Fig 7.3.1 A Dynamic system wi th output Y{i) and disturbance c{t) where / denotes t i me. 
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Similar to the section 7.2, for simplicity, we first assume that the suspended sediment 

concentration variation Y{i) are 'explained' solely in terms of its own past or by its t ime 

and surrounding value and uncontrollable disturbance al though of course the Y{t) is 

also dependent on many other factors such as current velocity profi le dynamit lies. 

con We assume that the t ime series model here that describes the suspended sediment 

centration is a discrete multivariable time-invariant stochastic linear system and can be 

represented by the fol lowing AR(p ) or ARMA(7; , ^ ) model l ike current velocity model pre

sented in last section. 

I . A R M o d e l 

1 . M o d e l D e s c r i p t i o n 

First , we assume that the suspended sediment profile model is a mul t ivar iab le A R ( p ) 
model as follows: 

A(z~')V^ = Wn (7.23) 

where Wn is the system noise and the restriction on i t is presented in (3.66) and (3.67). 

A(z-') = + A,z~' + ... + A^z-^ (7.24) 

Vn and Wj, are m-dimensional vectors, z'^ is a uni t delay operator and Ai,{i = 1,...,/?) is 

in X m unknown matrices to be estimated. /„ , is an m x m un i t ma t r i x . 
Set 

0'^ = [-A,,..,,~A,]m^^ (7.25) 

^l = {yLi.'-.yLp]ixd (7.26) 

d = mx p (7 27) 
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here 0^ is the estimate of 0 at t ime n and and denote an m x m a t r i x and 

ff—dimensional row vector respectively. 

I t is easy to see that (7.23) also can be wr i t ten as 

Yn = O^x^ 4- (7.28) 

We construct the vertical profile variable vector of suspended sediment concentration as 

the system ou tpu t and i t is a funct ion of the water depth and t ime . Denote V„(/i) as the 

suspended sediment concentration at height h and t ime n ( i .e. set water dep th H , b o t t o m 

h = / / and surface h = 0) . So 

Y j = ( y n ( / i l ) , i ^ n ( / ^ 2 ) , V n ( M , - . ^ n ( / ^ m ) l l X m - w h e r C 0 < h, < < < < H. 

In order to ident i fy the system parameter mat r ix 0, we make use of the fo l lowing re

cursive algori thms (3.55-3.57). 

2 . O r d e r d e t e r m i n a t i o n 

The order determination technique is similar to the last section and the F-tesl results 

for our model candidates according to (4.11) and (4.12) are given as fo l lowing in Table 

7.3.1: 

T A B L E 7 . 3 . 1 . T h e o r d e r c o m p a r i s o n o f suspended s e d i m e n t c o n c e n t r a t i o n 

m o d e l 

M P V E M P E E M P V ^2 

p = 4 0.00S58969 0.0209755 0.0415207 L66488e-05 
p=5 0.00947416 0.0221978 0.0249716 8.22566e-06 
P=6 0.00948561 0.0222891 0.0322295 8.43719e-06 

( i ) Let A R ( 4 ) = i / , , A R ( 5 ) - i / 2 

Xlosim « 128.84 and a: = 365 x "'"^^.^."Is'ee-or'""'"' = 373.763 reject AR(4) 

( i i ) Let A R ( 5 ) = i / , , A R ( 6 ) = i / 2 

Xlosim « 128.84 and x = 365 x s.2256<^-06-8...37.0e-06 ^ _9.15097 AR(5 ) 
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3. S i m u l a t i o n 

According to Table 7.3.1, we choose a mult ivariable t ime series model which is a sim

pler f o r m of (7.23) as fol lowing an AR(5) model: 

Set : 

0'^ = lA,B,C,D,E] 

X n ~ [^n-I) ^'n-Si i'n-S -

(7.29) 

(7.30) 

(7.31) 

For solving equation (7.29), the E L S M (3.55)-(3.57) is applied (subst i tu te Yn for i/„) i n 

(3.55). From (7.27), we know p = 5 , m = 10,f/ = 50 and the t ime scale in here is 3 f 

minutes per run. Since the in i t ia l value are need, the first f i f t h data as our in i t i a l value 

we really start the model at n=6 . 

The computat ion procedure of E L S M is as follows: 

( i ) Construct Xn according to (7.31) ( n > 5). 

( i i ) Select in i t ia l values of Ot, and R^. 

( i i i ) Calculate K^, /?„ and On according to (3.55)-(3.57) based on the I<n-\,Rn-\ , ̂ n-i 
and Xn {n > 5) . 

The simulation results are given as follows: 

( i ) The five parameter matrices are: 

A = 

^ 1.542 0.237 0.297 0.008 -0.084 -0.104 0.048 -0.047 -0.105 0.061 
0.277 1.250 0.317 0.093 0.045 -0.064 0.010 0.014 -0.051 0.022 
0.173 0.147 1.185 0.225 0.074 0.095 0.145 -0.058 -0.089 0.039 
0.056 0.047 0.249 1.087 0.205 0.211 0.163 -0.043 -0.041 0.016 
0.004 0.017 0.075 0.225 1.252 0.179 0.215 -0.018 -0.001 0.021 

-0.010 -0.065 0.076 0.209 0.152 1.271 0.285 0.045 -0.066 0.056 
-0.002 -0.063 0.037 0.082 0.053 0.186 1.338 0.279 0.038 -0.035 
-0.017 0.008 0.001 -0.006 0.007 0.080 0.423 1.229 0.093 0,086 
-0.047 -0.005 0.003 0.069 0.114 -0.014 0.135 -0.021 1.232 0.428 
-0.008 -0.046 0.002 0.088 0.064 0.013 -0.105 -0-178 0.257 1.819 
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B = 

/ -0.406 

-0.428 

-0.257 

-0.084 

0.002 

0.045 

0.046 

0.044 

0.061 

-0.002 

( -O . I IO 

0.034 

0.014 

0.028 

0.010 

-0.008 

-0.038 

-0.022 

0.005 

-0.015 

D = 

-0.057 

0.068 

0.026 

-0.007 

-0.022 

-0.024 

-0.017 

-0.003 

-0.020 

-0.009 

-0.404 

-0.074 

-0.281 

-0.174 

-0.102 

-0.021 

-0.003 

-0.029 

0.027 

0.116 

0.090 

-0.015 

0.004 

0.012 

0.008 

0,049 

0.036 

-0.020 

-0.022 

0.009 

0.084 

-0.067 

0.065 

0.053 

0.045 

0.045 

0.040 

0.032 

0.008 

-0.032 

-0.258 

-0.269 

0.145 

-0.204 

-0.093 

-0.087 

-0.006 

0.015 

-0.025 

-0.054 

0.039 

-0.039 

0.022 

-0.054 

0.040 

-0.006 

-0.012 

-0.024 

-0.011 

-0.018 

0.041 

0.008 

-0.119 

0.001 

0.010 
-0.001 
-0.033 
-0.041 

0.000 
0.023 

-0.074 

-0.138 

-0.217 

0.182 

-0.218 

-0.198 

-0.051 

0.020 

-0.089 

-0.108 

0.044 

-0.010 

-0.064 

0.049 

-0.037 

-0.059 

0.009 

0.049 

0.002 

-0.007 

0.020 

0.013 

0.007 

-0.101 

0.010 

-0.001 

-0.025 

-0.024 

0.014 

0.034 

0.056 

-0.043 

-0.105 

-0.240 

0.041 

-0.176 

-0.118 

-0.029 

-0.123 

-0.082 

0.028 

-0.008 

0.028 

-0.046 

-0.071 

0.031 

0.043 

0.080 

0.013 

0.060 

-0.014 

0.006 

0.030 

0.038 

-0.092 

0.033 

0.031 

0.014 

0.036 

0.055 

0.071 

0.034 

-0.129 

-0.224 

-0.230 

0.027 

-0.258 

-0.162 

-0.053 

-0.048 

-0.045 

0.037 

-0.030 

-0.042 

0.001 

-0.063 

-0.004 

0.056 

0.071 

-0.028 

-0.030 

-0.007 

0.000 

0.016 

0.021 

-0.124 

0.020 

0.018 

0.009 

-0.005 

0.083 

0.016 

-0.085 

-0.149 

-0.200 

-0.306 

-0.006 

-0.400 

-0.010 

0.263 

-0.055 

0.043 

-0.021 

-0.017 

-0.029 

-0.035 

0.004 

-0.097 

-0.024 

0.015 

-0.001 

0.032 

0.011 

0.024 

0.015 

0.043 

-0.091 

0.038 

-0.034 

-0.082 

0.086 

-0.064 

-0.087 

-0.111 

-0.175 

-0.282 

-0.522 

-0.138 

-0.097 

0.184 

-0.035 

-0.037 

0.010 

0.030 

0.036 

0.050 

-0.064 

-0.029 

0.001 

0.009 

-0.063 

-0.016 

0.023 

0.029 

0.065 

0.103 

0.125 

-0.015 

0.011 

-0.089 

0.074 

-0.005 

-0.011 

-0.055 

-0.098 

-0.053 

-0.135 

-0.200 

-0.090 

-0.500 

0.060 

0.018 

0.068 

0.057 

0.056 

0,102 

0.012 

-0.002 

-0.060 

0.029 

0.030 

0.029 

0.039 

0.022 

0.036 

0.036 

0.041 

0.052 

-0.065 
0.121 

-0.056 \ 
0.052 

0.057 

-0.063 

0.061 

0.072 

0.167 

-0.014 

-0.478 

-0.659 

-0.046 ^ 

-0.030 

-0.002 

0.033 

0.035 

-0.032 

-0.001 

-0.039 

-0.002 

-0.096 

0.022 \ 

-0.027 

-0,049 

-0.057 

-0.077 

-0.102 

-0.095 

-0.059 

0.062 

0.025 
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i i ) 

/ 0.013 

0.064 

0.048 

0.010 

0.004 

-0.003 

0.007 

-0.017 

-0.018 

y 0.007 

-0.035 

-0.137 

0.078 

0.076 

0.069 

0.040 

0.041 

0.087 

0.082 

0.034 

-0.009 

0.037 

-0.254 

0.012 

-0.075 

-0.056 

-0.051 

-0.032 

-0.038 

-0.006 

-0.036 

0.010 

0.031 

-0.271 

0.008 

0.045 

-0.021 

-0.050 

-0.035 

-0.024 

-0.054 

-0.008 

-0,010 

0.072 

-0.101 

0.028 

0.043 

-0.017 

0.009 

-0.082 

0.070 

-0.041 

0.004 

-0.015 

-0.022 

-0.192 

-0.001 

-0.064 

-0.098 

-0.001 

0.133 

0.043 

0.079 

0.082 

0.057 

0.066 

-0.217 

0,113 

0.056 

0.033 

-0.067 

0.027 

0.056 

0.059 

0.070 

0.077 

0.178 

-0.085 

0.086 

0.027 

-0.124 

-0.046 

-0.033 

-0.002 

0.026 

-0.048 

0.072 

0.078 

-0.046 

0.088 

0.078 

0.025 
-0.030 
-0.048 
-0.056 
-0.011 
-0.059 
-0,018 
-0.012 
-0.094 I 

T A B L E 7.3.2. The mode of the parameter matrices in AR(5) suspended 
sediment concentration model 

A B C D E 

p = 5 2.004459 1.051542 0-266854 0.285625 0.398206 

( i i i ) 

MPEE=0.00947416 m g / l 

MPVE=0.00221978 m g / l 

M P V = 0.0249716 

(7^=8.22566 e-06 

( iv ) Figures 7.3.2-7.3.11 show the simulation of the suspended sediment concentration 

dynamics at different depth and Figure 7.3.12, gives the no rm of the parameter ma t r ix 

error dynamics in the A R ( 5 ) SPM concentration model . 

(v ) The mode and the element of A^ B are comparatively large and those o f C, Z?, E are 

comparatively small which shows that the more recent the t ime , the more effect is there 

on the current variation. 

(v i ) Since A is strongly diagonally dominant, we can say tha t the larger the distance 

between given layers, the less effect is there on the layer var ia t ion. 
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Figure 7.3.2. Plot of AR(5) SPM Concentration Model Error vs Data at h=0.05H-
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Figure 7.3.3. Plot of AR(5) SPM Concentration Model Error vs Data at h=0.10H 
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Figure 7.3.4. Plot of AR(5) SPM Concentration Model Error vs Data at h=0.20K 
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Figure 7.3.5. Plot of AR(5) SPM Concentration Model Error vs Data at h=0.30H 
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Figure 7.3.6. Plot of AR(5) SPM ConcenlraUon Model Error vs Data at h=0.40H 
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Figure 7.3.7. Plot of AR(5) SPM Concentration Model Error vs Data at h=0.50H 
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Figure 7.3.8. Plot of AR(5) SPM Concenlralion Model Error vs Data at h=0.60H 
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Figure 7.3.9. Plot of AR(5) SPM Concentralion Model Error vs Data at h=0.70H 
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Figure 7.3.10. Plot of AR(5) SPM Concentration IVlodel Error vs Data at h=0.86H 
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Figure 7.3,11. Plot of AR(5) SPM Concentration Model Error vs Data at ri=0.90H 
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I I . A R M A Model 

1. Model Description 

Now, we generalise the model structure and assume the S P M concentration dynamic 

system is dis turbed by correlated noise series that the suspended sediment prof i le model 

is a mult ivariable A R M A ( p , ^) model as follows: 

A{z-')Y^ = C{z-')wn (7.32) 

where Wn is the system noise and the restriction on i t presented in (3.66) and (3.67). 

A(z-') = I^-{-Aiz-'-\-... + ApZ-'' 

C•(^-^) = / „ . + C , ^ - ^ + . . . + C , ^ - ' 

Yna.ndwn are m-dimensional vectors, 2;"^ is a uni t delay operator and Ai,Cj{i = 

1,...,^) is m X m unknown matrices to be estimated. is an rn x m uni t ma t r i x . 

Set 

= \~^u-, ~\,Cu-,C^]mxd (7.33) 

= [ in^n- . - iJ^n -p je^-n- ' -^eLj ixd (7.34) 

d = mxp (7 

Cn = yn - Olx^ (7.36) 

here On is the estimate of 0 at t ime n and [.]mxd and [ . ] ixd denote an m x d m a t r i x and a 

dimensional row vector respectively. 

I t is easy to see tha t (7.32) can also be wri t ten as 

Kn = O'^xn + C{z-' )wn + e„ - C(z-' )e„. (7.37) 

We construct the vertical profile variable vector of suspended sediment concentration as 

the system output and i t is a function of the water depth and t ime as we mentioned 

before. 
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In order to identify the system parameter matrix 0, we make use of the recursive algo
rithms (3.55-3.57). 

2. Order de t e rmina t ion 

The F-test results for our model candidates according to (4.11) and (4.12) are gi 
35 following in Table 7.3.3: 

ven 

T A B L E 7.3.3 The order comparison of suspended sediment concent ra t i 
model 

on 

MPVE MPEE MPV ^2 

P=2, q = l 0.00S7125S 0.0209343 0.00236536 1.06983e-05 
p=3, q = l 0.008S3307 0.0209273 0.00255276 7.8781e-06 
p=4, q = l 0.00881297 0.0207835 0.00263308 8.20009e-06 

(i) Let A R M A ( 2 , l ) = i / , , ARMA(3, l )=i /2 

Xio5(100) ^ 128.84 and x = 365 x '°' '^^°.i?|-?oG^"-°" = 130.663 reject ARMA(2,1) 

(ii) Let A R M A ( 3 , l ) = i / , , ARMA(4,1)=^Y2 

x l A m « 128.84 and x = 365x = _i4.3323 choose ARMA(3,1) 

3. S imula t ion 

According to the Table 7.3.3, the ARN4A(3,1) SPM concentration model is chosen 
follows: 

as 

Set >: 

(7.38) 

(7.39) 

(7.40) 

To solve equation (7.38), the RLSM (3.55)-(3.57) is used (substitute Y„ for j/„) in (3.55) 
and from (7.35), p = 3,? = l , m = 10, = 40. The time scale in here is 3 | minutes per 
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run. Since the initial value are need, the first third data as our ini t ia l value we really start 
the model at n=4. 

The computation procedure of ELSM is as follows: 

(i) Construct x„ according to (7.34) and (7.36) (n > 3). 
(ii) Select init ial values of O3 and R^. 

(i i i) Calculate K^, and Or, according to (3.55)-(3.57) based on the I<n-\,Rjx~i , ^ n - i 
and Xn {n > 3). 

The simulation results 
(i) The five parameter 

are given as following: 
matrices are: 

Ai = 

A7 = 

^ 0.914 0.291 0.222 0-007 -0-041 -0-108 0.026 -0.095 -0-043 0-089 ' 
0.308 0.655- 0.222 0.124 0.011 0-027 0.002 -0-066 0-006 0.024 
0.168 0.175 0.556 0.167 0.135 0.112 0.048 -0.012 -0.004 -0.041 
0.024 0.109 0.165 0.551 0.199 0.165 0.121 0.033 0.006 -0.094 

-0.008 -0.003 0.137 0.190 0.567 0.209 0.154 0-104 0.050 -0.071 
-0-103 0.033 0.099 0.180 0-220 • 0.560 0-236 0.112 0-039 -0.070 
-0.048 -0.043 0.008 0-122 0.185 0-215 0.530 0.165 0-148 0.043 
-0.044 -0.013 -0.022 0.052 0.150 0.103 0-205 0.532 0.158 0-169 
-0.036 0.057 -0.033 -0.016 0-043 -0.011 0-188 0-131 0-613 0.324 
0.053 0.032 -0.051 -0-114 -0-069 -0-100 0.127 0-135 0-311 0.947 J 

0.338 -0.010 0-055 -0.031 -0.033 -0-019 0-102 -0-059 -0.026 0-018 ^ 
0.016 0.317 0.021 0.002 -0.004 -0-012 0.035 -0.031 -0.027 0.012 
0.014 -0.016 0.343 0.014 -0-004 0-002 0.008 -0-010 0.007 0-003 
0.006 -0.011 0-001 0.335 0-019 -0.006 0.010 -0.015 0.000 0.007 
0.012 -0.032 0-008 0.007 0-338 0.019 -0.026 -0.013 0.029 -0.003 
0.000 0.012 -0.015 0.008 0-006 0.301 0.031 -0.014 0.009 -0.011 
0.013 -0.018 -0.033 0-015 0-021 0.006 0,304 -0.011 0-036 -0.018 

-0.003 0.031 -0-043 -0.003 0.039 o:o3o 0-033 0.315 0-011 -0.005 
-0.014 0.064 -0-028 -0-026 0-015 -0.056 0.087 -0.018 0.319 -0-010 
-0.022 0.032 0.016 -0.012 0.001 -0-039 0.086 -0.048 -0.022 0-340 
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-0.254 -0.332 -0.120 -0.074 -0.018 0.076 0.191 -0.013 -0.007 
-0.301 -0.042 -0.189 -0.125 -0.015 -0.044 0.079 0.019 -0.044 
-0.156 -0.219 0.120 -0.144 -0.148 -0.116 -0.039 -0.017 0.013 
-0.010 -0.133 -0.165 O.Ul -0.166 -0.185 -0.108 -0.069 -0.010 
0.042 -0.056 -0.118 -0,176 0.108 -0.175 -0.211 -0.136 0.001 
0.099 -0.010 -0.133 -0.164 -0.208 0.043 -0.170 -O.iiG -0.014 
0.093 0.016 -0.068 -0.085 -0.140 -0.202 0.080 -0.185 -0.070 
0.042 0.075 -0.070 -0.063 -0.078 -0.170 -0.145 0.092 -0.141 

-0.007 0.062 -0.030 -0.041 -0.015 -0.100 -0.009 -0.161 0.038 
V -0.105 0.029 0.076 0.083 0.062 0.015 0.042 -0.229 -0.340 
/ 0.523 0.118 0.101 -0.013 -0.026 -0.091 -0.005 -0.013 -0.015 

0.118 0.400 0.133 0.074 -0.033 0.015 -0.029 -0.049 0.015 
0.041 0.107 0.314 0.094 0.065 0.073 0.022 -0.023 -0.011 

-0.013 0.064 0.088 0.310 0.107 0.114 0.050 -0.011 0.003 
-0.012 -0.018 0.092 0.096 0.315 0.101 0.102 0.044 0.008 
-0.082 0.014 0.073 0.062 0.124 0.312 0.132 0.041 0.012 
-0.020 -0.028 -0.015 0.046 0.094 0.132 0.316 0.086 0.036 
-0.005 -0.041 -0.000 0.018 0.071 0.058 0.115 0-308 0.044 
-0.016 0.046 -0.023 -0.001 -0.000 -0.017 0.066 0.068 0.339 

V 0.076 0.034 -0.057 -0.089 -0.044 -0.053 0.025 0.119 0.145 

T A B L E 7.3.4. T h e mode of the parameter matrices in A R M A ( 3 , 1 ) S P M 

concentrat ion mode l 

Ax A2 A3 

ARMA(3,1) 1.30509 0.431542 0.65197 0.768769 

(i i i ) 

MPEE=0.00883307 mg/1 

MPVE=0.0209273 mg/l 

M P V = 0.00255276 

a^=7.8781 c-06 

-0.049 ^ 
0.020 
0.043 
0.109 
0.057 
0.059 

-0.076 
-0.183 
-0.331 
-0.241 

0-054 
-0.001 
-0.025 
-0.069 
-0.069 
-0.057 
-0.006 
0.080 
0.192 
0.566 
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Figure 7.3.13. Plot of ARMA(3.1) SPM Concentration Model Error vs Data at h=0.05H 
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Figure 7.3.14. Plot of ARMA(3.1) SPM Concentration Model Error vs Data at h=0.10H 
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Figure 7.3.15. Plot of ARMA(3,1) SPM Concentration Model Error vs Data at h=0.20H 
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Figure 7.3.16. Plot of ARMA(3.1) SPM Concentration Model Error vs Data at h=0.30H 
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Figure 7,3.17. Plot of ARMA(3.1) SPM Concentration Model Error vs Data at h=0. 
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Figure 7.3.18. Plot of ARMA(3.1) SPM Concentration Model Error vs Data at h=0.50H 
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Figure 7.3.19. Plot of ARMA(3,1) SPM Concentration Model Error vs Data at h=0.60H 
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Figure 7.3.20. Plot of ARMA(3.1) SPM Concentration Model Error vs Data at h=0.70H 
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Figure 7.3.21. Plot of ARMA(3.1) SPM Concentration Model Error vs Data at h=0.80H 
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Figure 7.3.22. Plot of ARMA(3.1) SPM Concentration Model En-or vs Data at h=0.90H 
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(iv) Figures 7.3.13-7,3.22 show the simulation of the suspended sediment concentration 
dynamics at different depth and Figure 7.3.23- gives the norm of the parameter matrix-
error dynamics in the SPM concentration model. 

(v) The mode and the element of Aj, are comparatively large and the ones of /42, are 
comparatively small which shows that the more recent the time, the more efl'ect there is 
on the current variation. 

(vi) Since Ai is strongly diagonally dominant, we can say that the larger the distance 
between given layers, the less effect there is on the layer variation. 

I I I . M o d e l Compar ison between A R ( 5 ) and A R M A ( 3 , l ) 

The model comparison between AR(5) and ARMA(3,1) is given in Table 7.3.5. 

T A B L E 7.3.5. The M o d e l Comparison 

Model M P E E M P V E MPV 

AR(5) 0-00947416 0.0221978 0.0249716 8.22566e-06 

ARMA(3,1) 0.00883307 0-0209273 0.00255276 7-8781e-06 

From Table 7.3.5, the MPEE, MPVE, MPV and of the A R M A model are better than 
those in AR model. It is shown that the MPV of ARMA are much improved which means 
that the parameter matrices of ARMA time series model are ^nearly constant matrices'. 
Therefore the ARMA mode! presented here has less parameter identification matrices 
than the AR(5) model because it is a better description of the system, for data fitting 
and prediction then the AR model. This is because the ARMA model takes advantage of 
the information from the model error and estimation of system noise as well as under the 
assumption that the system noise is coloured noise. 

7.3.2 A R M A X Model 

In this subsection, according to the ocean science and geoph^^sics, the suspended sediment 
concentration is closely related to the magnitude of the current velocity, so here the sus
pended sediment dynamics is taken as a unknown stochastic system. The current velocity 
profile is set as an input to the system model, and the suspended sediment concentration 
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is considered as the output of the system model. System Identification theory is applied 
in the model to identify the unknown parameter matrices of the model, based on in situ 
data collected in the study area. In this case, the system identification technique is ap
plied to the Rufiji Delta, Tanzania, the data collected by (Fisher 1994) in March I I , 1993, 
to illustrate the quantitative relationship between suspended sediment concentration and 
current velocity. The aim is to show that this particular theory is suitable for matching 
known data sets, and this will be achieved by ensuring all the parameter matrices remain 
virtually constant when tackling future data sets. By operating the model in this way, 
the results obtained should simulate the data with some degree of accuracy. 

The models in last subsection, used a suspended sediment concentration variation that 
was assumed to be dependent on is its own past through its temporal and spatial values 
as well as uncontrollable system noises. Here, the suspended sediment concentration pro
file is assumed to be related to the current velocity profile according to the physics and 
ocean geophysics. This appears more realistic and reasonable in an estuary environment. 
I t is conceded therefore that the parameter matrices we find may depend on times and 
positions where the physical, chemi<:al, microbiological and geographical processes remain 
not very well understood. The simulation results show the model developed has good 
agreement with the real data collected from the Rufiji Delta, Tanzania. The comparison 
of the multivariate model with univariate model is given to show that this type of model 
is a good one in as far as matching known data sets, and we shall show this by showing 
that all the elements of each matrix remain virtually constant when subjected to future 
data. This way, the model is shown to describe the data with accuracy and can be used 
for prediction. 

Disturbance e{l) 

Input Output Input 
System 

Output 

m 
System 

Y(i) m Y(i) 

Fig 7.3.24. A Dynamic system with input U{t), output Y{t) and disturbance c{t) where 
i denotes time. 
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We assume that the time series model here that describes the concentration of suspended 
sediment and current velocity is a discrete multivariable time-invariant stochastic linear 
system and can be represented by the following A R M A X ( p , ^ , r ) model: 

Aiz-')Yn + B{z-')Ur. = C{z-')wn • (7.41) 

where 

A{z~') = + Aiz-' -I- ... + Apz''' 

B{z-') = B,z-'^...-{-B,z'' 

C{z'') = + Ciz-' + ... + CrZ'^ (7.42) 

where Wn is the system noise and the restriction on i t presented in (3-66) and (3.67), 
YnjUn and iVji are m-dimensional vectors and z~^ is a unit delay operator and Ai,Bj and 
Ck(i = 1, - - i P l i = 1, -••9; *̂ = 1,2, . . . , r ) are m x m unknown matrices to be estimated. 
is an m x m unit matrix. 
Set 

= ( - / l , , . . . , - / l p , 5 i , . . . , ^ „ C i , . . . , a i m x d (7.43) 

xI = (rJ_,,...,C^,C/J_,,...,C/J_,,eLn-.^ (7.44) 

e„ = Yn - (7.45) 

d = mx{p + q-\-r) (7.46) 

here 0^ is the estimate of ^ at time n and [.]mxrf and [ . ] i x d denote an m x matrix and a 
<f—dimensional row vector respectively. 

It is easy to see that (7.41) also can be written by 

Yn = O^x^ + C{z-')xur. + e„ - C{z-')en (7.47) 

We construct the vertical profile variable vector of suspended sediment concentration cur
rent velocity as the s^'stem output and it is a function of the water depth and time. Denote 
Yn{h) and Un{h) as the suspended sediment concentration and squared current velocity 
at height h and time n respectively (i.e. set water depth bottom h = H and surface 
h = 0). So 
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where 0 < / i , < < ... < < H. 

hi order to identify the system parameter matrix 0, we make use of the recursive al
gorithms (3.55-3.57)-

2 . S imula t ion 

The simulations are consisted of two parts (i.e. order determination, and parameter 

identification). In here, we choose a multivariate time series model which is a simpler 

form of (7.41) as following ARMAX(p,9,1) model: 

Set: 

K = >l,K„_i + ... + /IpK-p -I- 5 i ( / n - l + . . . + B^Un-q + l/̂ n + CxXO^.x- ( 7 - 4 8 ) 

0'^ = [Au-.A^,Bu-^.BM ( 7 . 4 9 ) 

x ^ = [ K _ , , . . . , K _ p , £ / n _ , , . . . , i / , _ „ e „ . i ] ( 7 . 5 0 ) 

en = yn-Olx^. ( 7 . 5 1 ) 

2 . 1 . O rde r de te rmina t ion 

There is an identification of the model order problem here. The identification of a system 

order is a research branch in system identification which is very complicated. I t is usu

ally difficult to assess the order of the time series model. Some statistical methods and 

criteria are used to try to determine the order of the system, such as partial or inverse 

autocorrelation function and autocovariance function method, Akaike's final prediction 

error criterion, Akaike's information criterion and Parzen's autoregressive transfer func

tion criterion etc. But unfortunately, all these criteria and methods may give more than 

one minimum, depend on assuming that the data are normally distributed, and some

times indicate too many parameters (Chatfield 1 9 8 0 ) . Thus they should be used only as 

guides. So in this section we try to keep balance between the accuracy of the model and 

the number of parameters that need to be estimated. 

The approach is to fit the model of progressively higher order, to calculate variance 
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of one-step prediction error for each value of order (p, <?,r), as well as to consider the 

MPVE, MPEE and MPV. The criterion is that if the addition of extra parameter matrices 

gives lit t le improvement, we do not choose a higher order model. 

The so-called F-tesi method (Soderstrom 19S9) is used here to determine our model struc
ture and the F-iesi results for our model candidates according to (4.11) and (4.12) are 
given as following in Table 7.3.6: 

T A B L E 7.3.6. The Order Comparison of the A R M A X Model 

Model MPEE MPVE MPV 

ARMAX(3,2,1) 0.00860554 0-0200166 0.0022704 9.5S426e-06 

ARMAX(4,2,1) 0.00822247 0.0195851 0.00238675 6.792S2e-06 

ARMAX(4,3,1) 0.00794057 0.0187704 0.002442882 6.42447e-06 

Let ARMAX(3,2,1)=ZY, , ARMAX(4,2 , l )= i /2 

Xlosim ~ 128.84 and x = 365 x ^'""^'s'yg.y.Zof''""^ = 149.993 
reject ARMAX(3,2,1) 

Let ARMAX(4,2,1)=:Z^, , ARMAX(4,3 , l )= i /2 

xS.O5(100) ~ 128.84 and a: = 365 x "'"^"e^;g,^t-'o^'''°-°° = 20.9274 
choose ARMAX(4,2,1) 

2 . 2 . Parameter Estiination 

From order determination we choose ARMAX(4, 2, 1) time series model for the Rufij i 
Delta 8 5 follows: 

Set as: 

T 

(7.52) 

(7.53) 

(7.54) 

To solve equation (7.51), the RLSM (3.55)-(3.57) is used (substitute Y„ for y„) in (3.55) 
and from (7.51), here = 4,^ = 2,r = 1 and </ = 70 and the time scale here is 3.75 
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minutes per run. Since the initial values are needed, the first four data are taken as these 
init ial values, so we really start the model at n=5. 

The computation procedure of ELSM is as follows: 

(i) Construct Xn according to (7.54) and (7.51) (u > 4). 
(ii) Select initial values of O4 and R4. 
( i i i ) Calculate K^, Rn and 0^ according to (3.55)-(3.57) based on the Kn-\,Rn~i , 

and Xn (n > 4). 

The parameter estimation results are 
(i) The seven parameter matrices are: 

given as follows: 

0.926 0.203 0.139 0.048 0.036 -0.008 -0.008 -O.IIO -0.076 0.058 
0.228 0.654 0.225 0.176 -0.007 0.131 -0.030 -0.144 0.005 0.051 
0.128 0.203 0.493 0.199 0.152 0.177 0.014 -0.066 0.008 0.010 
0.013 0.104 0.146 0.590 0.198 0.183 0.145 -0.041 0.049 -0.035 
0.035 -0.055 0.167 0.264 0.389 0.207 0.320 0.056 -0.015 -0.014 

-0.090 0.052 0.111 0.191 0.156 0.535 0.307 0.107 0.006 0.001 
-0.013 -0.066 -0.024 0.125 0.231 0.254 0.516 0.203 0.109 0-031 
-0.017 -0.066 -0.004 0.068 0.093 0.133 0.269 0.559 0-076 0.187 
-0.059 0.038 0.021 O.O90 -0.009 0.007 0-198 0.084 0.630 0.292 
0.030 0.012 -0.019 -0.035 -0.029 -0.029 0.053 0.184 0.251 0.857 

0.273 -0.104 -0.044 -0.OG7 -0.015 0.062 0.026 -0.084 -0-041 0.028 
-0.055 0.237 -0.032 0.022 -0.051 0.054 -0.013 -O.HO -0.042 0-043 
-0.031 -0.032 0.223 0.023 -0.009 0.056 -0.036 -0.083 -0.015 0-028 
-0.022 -0.032 -0.029 0.308 -0.019 0.004 0.008 -0.106 -0.016 0.014 
0.011 -0.083 0.032 0.062 0.129 -0.004 0.106 -0.080 -0.051 0.015 

-0.026 -0.002 -0.014 0.011 -0.067 0.228 0.066 -0.045 -0.053 0.002 
0.033 -0.020 -0.061 -0.022 -0.002 0.006 0.214 -0.013 -0-024 -0-025 
0.041 0.010 -0.013 0.005 -0.048 -0.041 0.037 0.265 -0.059 -0.006 
0.003 0.028 -0.008 0.006 -0.082 -0.091 0.062 -0.067 0.267 0.001 
0.019 0.001 -0.012 -0-019 -0.038 -0-065 -0.034 -0.022 -0-040 0-311 
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0.060 
0.075 
0.044 
0.118 
0,096 
0.068 
0,030 

-0.059 
-0.136 
-0.131 

-0-002 
-0-070 
-0.008 
0.006 
0,001 

-0,020 
0.019 
0.001 
0.000 

-0.027 

178 



-0.052 0.058 0.026 0.114 -0.047 0.077 
0.023 -0.040 0.007 0.076 0.017 0.046 
0.009 -0.009 0.033 0.056 0.030 0.058 

-0.002 0.003 0.030 0.070 0-056 0.027 
0.030 0.003 -0.036 0.054 0.002 -0.008 
0-002 -0.023 -0.016 0.090 0.038 -0.021 
0.023 0.005 -0.081 0.136 -0.043 -0.072 
0.017 0.016 -0.101 0.067 0.048 -0.061 
0.036 0.021 -0.124 0.063 0.004 -0.049 
0.024 0.040 -0.130 0.066 0.036 0.026 

-0.046 
-0.189 
-0.144 
-0.056 
-0.094 
-0.140 
-0.078 
-0.040 
-0.036 
-0.120 

0.062 
0.107 
0.081 
0.011 
0.063 
0-097 
0.076 
0.100 
0.025 
0.073 

0.063 
0.032 
0.021 
0.060 • 
0.009 

-0.020 
-0.020 
-0.048 
0.022 

-0.025 

-0.004 
0.018 

-0.038 
-0.087 
-0,027 
0.003 

-0.020 
0.034 

-0.051 
-0.019 

0.526 0.087 0.058 -0.060 0.023 -0-071 -0.006 -0.060 -0.010 0.041 
0.087 0.361 0.144 0.042 -0.056 0.034 -0.061 -0.127 0.060 0.030 
0.028 0.116 0.272 0-070 0.065 0.050 -0.021 -0.055 0-011 -0.006 

-0.023 0.071 0.073 0.264 0.072 0.057 0.049 -0.032 0.028 -0.007 
0.018 -0.041 0.045 0.125 0.183 0.085 0.156 0.028 -0.030 -0.017 

-0.079 0.008 0.054 0-053 0.061 0.276 0.157 0.001 0-005 -0.009 
-0.001 -0.058 -0.065 0.059 0.103 0.103 0-276 0.070 0.052 -0.039 
0.026 -0,048 -0.013 0.003 0.028 0.051 0.148 0.299 -0.001 0.073 

-0.026 -0.003 -0.013 0.059 -0.033 -0.019 0.035 0.014 0.364 0-123 
0.040 -0.023 -0.044 -0.020 -0.066 -0-055 -0.025 0-088 0.131 0.485 ̂  

(ii) 

MPEE=0.00822247 mg/1 
MPVE=0.0195851 mg/1 

MPV=0.00238675 
a2=6.79282e-06 

(iii) Figures 7.3-25-7.3.34 show the simulation of the suspended sediment concentration 
dynamics at different depth and Figure 7.3.35. gives the norm of the parameter matrix 
error dynamics in the suspended sediment concentration model. 

(iv) Since Ax and Ai are strongly diagonally dominant^ i t is shown that the larger the 
distance between given layers, the less effect is there on the layer variation for suspended 
sediment concentration. 
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Figure 7.3.25. Plol of ARMAX(4.2,1) Model Error. Model Prediction vs Data at h=0.05H 
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Figure 7.3.27. Plot of ARMAX(4.2.1) Model Error, Model Prediction vs Data at h=0.20H 
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Figure 7.3.28. Plot of ARMAX(4.2.1) Model Error. Model Prediction vs Data at h=0.30H 
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Figure 7.3.29. Plot of ARMAX(4.2,1) Model Error, Model Prediclion vs Data at h=0.40H 
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Figure 7.3.30. Plot of ARMAX(4.2,1) Model Error, Model Prediclion vs Data at h=0.50H 
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Figure 7.3.31. Plot of ARMAX(4,2,1) Model Error. Model Prediction vs Data at h=0.60H 
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Figure 7.3.32. Plot of ARMAX(4.2.1) Model Error. Model Prediction vs Data at h=0.70H 
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Figure 7.3.33. Plot of ARMAX(4.2.1) Model Error, Model Prediction vs Data at h=0.80H 
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3. Long term prediction of A R M A X (4,2,1) 

The time series model we presented here not only can be used in data fitting and short 
time prediction as shown in last subsection but also can be used in comparatively long 
term prediction of the SPM sediment dynamics. If the time series model arises and its 
parameter matrices are known, it is easy to use to form predictions. Define as the 
optimum one-step prediction of In+i- Here, Yn+i will be generated by ARM'AX (4,2,1) 
model as follows: 

The noise term w^+i is unknown, so taking the expectation of both sides of the above 
mentioned equation and i^n is estimated b}' / n - i , i — Vn (if the Ki is unknown, / n - i , i is 
the estimate of Vn, so the estimate of Wn is zero.) the optimum one-step prediction /n,i is 

/n.i = 4 - + A,Yn-3 + B,Un + B^U^-x + C,(/„_, . i -

similarly, will be generated by 

The term to„+2 is unknown, where as the term in parentheses is entirely known at time 
n , and the first term is predicted by A i / n , i , so the optimum two-step prediction fna 

It is obvious how further predictions are formed: One simply writes down the generating 
mechanism for the value to be predicted, with everything that is known part of the 
prediction and everything that is not known replaced by its optimum prediction so that 
we can get the optimum *̂-step prediction /n,jt, k = 1,2,... based on the values y„, K - n 
The A R M A X (4,2,1) model in (7.52) are used here for long term prediction. We start at 
run n=307, under the assumption that we do not know the value of Y^^n > 307 and get 
the series f307.\, f307,2, ho7,G4 up to 64-step prediction (4 hour ahead prediction). The 
simulation results and comparison with the data set are shown in Figures 7.3.25-7.3.35. 
The simulation results show that the maximum estimate error is 

^max^ 11/307,/.- - )̂ n+307|| < 0.09. 

The predictions are within the reasonable range of the real data set which shows the very 
good long term prediction property of the ARMAX model. From Figures 7.3.25-7.3.35, 
the prediction can describe trends and variations of the different layer of SPM dynamics 
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quite well although there is a little bit of an underestimate of the down shots at about 
n=31S in the layers from h=0.05H to h=0.4H which start to make a large discrepancy 
with the data. The simulations here also shown that the shorter the time, the better the 
prediction in common with all other models. 

7,3.3 Comparison with the Univariate Model 

We have presented three different kinds of time series SPM concentration model in the 
last subsection. Two of them ( AR(5) and ARMA(3,1) ) are the univariate model and the 
multivariate model A R M A X (4,2,1). The model comparison between AR(5), ARMA(3,1) 
and A R M A X (4,2,1) is given in Table 7.3.7. 

T A B L E 7.3.7 The M o d e l Compar i son 

Model MPEE MPVE MPV 

AR(5) 0.00947416 0,0221978 0.0249716 8.22566e-06 
ARMA(3,1) 0.00SS3307 0.0209273 0.00255276 7.8781e-06 

ARMAX(4,2,1) 0.00822247 0.0195851 0.00238675 6.79282e-06 

From Table 7.3,7, the MPEE, MPVE, MPV and cr̂  of the A R M A X model are better than 
those in AR and ARMA model. Therefore the multivariate model presented here is the 
best description of the system, including data fit t ing and prediction. I t is confirmed that 
the SPM concentration profile dynamics do have dynamic relationships wi th the current 
velocity dynamics in the Rufij i Delta, Tanzania and the reason that A R M A X model works 
better than other models is due to the fact that i t takes advantage of the information from 
the current velocity profiles. 

7.4 Conclusion and Discussion 

What we have presented here is an alternative to traditional current velocity and sus
pended sediment dynamical models. The equations that describe the behaviour of the 
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sediment dynamics have been replaced by a time series model containing some parameter 
matrices. The reahty of the model is justified by using data to determine the parameters 
through a recursive time series procedure. To those famihar with traditional hydraulic 
modelling, i t may seem unusual that we use seven parameter matrices with many free 
parameters, but all of them turn out to be virtually constant. This shows that the model 
fits the data very well, and hence we contend that it contains a good representation of the 
physics within, in this case, Rufiji Delta, Tanzania from which the data were taken. I t is 
therefore a type of inverse modelling method. The models obtained by system identifica
tion here have the following properties, in contrast to traditional mathematical modelling: 

(a) The model parameters have limited validity (They are valid for a certain working 
point, a certain type of coast, certain season etc.), but the model structure seems good 
since i t fits the data very well. 

(b) They give l i t t le physical, chemical and biological insight since in most cases the pa
rameters of the model have no direct physical, chemical and biological meaning for the 
time being and the parameters are used here only as tools to give a good description of the 
dynamic system's overaJl behaviour. Further research is in progress to find relationships 
between our parameters and measurable quantities. 

(c) They are relatively easy to construct and use. 

(d) They have greater short term accuracy, especially for complex situation, than tradi
tional hydraulic models. 
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Chapter 8 

Conclusion 

Two kinds of the modelling of sediment transport processes have been studied. The 
system identification theory provides a background for the use of development of a satis
factory description of current velocity and suspended sediment concentration dynamics. 
The strong consistency and convergence rate of recursive least squares method for the uni
variate and multivariate one variable and multivariable model, especially for the coloured 
noise case derived from chapter 3, gives the theoretical guarantee for the model descrip
tion and accuracy. 

The distinguishing character of our time series model is that i t can be easily changed 
to an on-line or real-time identification method, i.e. If no new data collected, the model 
predictions can be used to describe the current velocity and SPM concentration dynam
ics and if there are new data collected, the new information is taken into the model for 
verifying and modifying the model parameter or parameter matrices and lets the model 
be adaptive to real dynamics in time. Since the natural world is always changing, storms, 
typhoons and other natural phenomenon are quite unpredictable in the long term. You 
can not expect an unchangeable model to work very well for a natural changing world in 
the long term. So i t is very important to take the latest information, updated data to 
revise and renew the model for adapting the real current velocity and SPM concentration 
dynamics. The time series modelling technique presented in this thesis provides a novel 
and practical method to modelling sediment transport dynamics. 

For current velocity modelling, from the results given in the chapter 6 and chapter 7, 
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the A R or ARMA model are suitable for description, data fitting and forecasting both 
in the estuary and nearshore regions. The models present a good periodical and trend 
character of the current velocity dynamics. 

For the suspended sediment concentration model presented in the chapter 6 and chapter 
7, more than one time series are considered in our model and the quantitative relation
ship are set up. The strong consistency and convergence rate of recursive least squares 
method given in chapter 3 provide the theoretical background for the model description 
of the system and guarantee the modelling work. Since the current velocity profile data 
are economic and easier to get, the ARMAX SPM concentration model we present here 
not only provides a novel method to describe the suspended sediment dynamics but also 
provides an economical and practical methodology to predict the SPM concentration dy
namics based on the current velocity, wave variation and pressure data. 

From the simulation results shown in Chapter 6 and Chapter 7, we know that the the 
multi-layer model presented in the Chapter 7 is better than tlie one-layer model described 
in Chapter 6. One of the main reason is that multivariable models take up the more infor
mation since the data set contains the ten different layers of information which gives more 
detail about the sediment profile dynamics. Another reason may be the time scale of the 
problem since the time scale in Rufiji data is 3.75 minutes and the one in Holderness Coast 
is one hour. The shorter the time scale, the more efficient is the observed information 
about the real current velocity and suspended sediment concentration dynamics. More 
factors such as biological, geophysical information should be considered in the Holderness 
Coast model if one seeks to improve i t . 

In this thesis, we consider the current velocity and suspended sediment concentration 
as stochastic processes which need to be identified. System identification theory is ap
plied in the model which has some unknown parameter matrices to be identified based 
upon real data collected from the field. It is the principal aim of this thesis to apply the 
system identification technique to flow and suspended sediment concentration in estuarial 
and coastal system. 

These parameters and parameter matrices will of course be capable of physical, chem
ical or biological interpretation, but this is not done here since these parameters and 
parameter matrices are used here only as tools to give a good description of the dynamic 
system's overall behaviour. We are content to show that this type of model is a good 
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one in as far as matching known data sets, and we have shown this by showing that all 
parameters and the elements of each matrix remain virtually constant when subject to 
future data. This way, the model is shown to describe the data with accuracy. 
As we all know, a considerable portion of the sediment transport in the estuary and coast 
is due to sediment which moves in suspension. I t is therefore necessary to develop models 
for current velocity and suspended sediment concentration dynamics which may in turn 
be combined with the sediment dynamics to give the transport rate. 

Now we turn to discuss and consider further research and future work. I t should be 
pointed out that identification is not a foolproof methodology that can be used without 
interaction from the user. The next steps we suggest are : 

(i) Construct a more appropriate model structure. This can be a difficult problem, in 
particular if the dynamics of the system are strongly nonlinear. 

(ii) There are certainly no 'perfect' data in real life. The fact that the recorded data 
are disturbed by noise must be taken into consideration. 

(i i i) The process may vary with time, for example possess natural periodicity or decay, this 
can obviously cause problems if an attempt is made to describe i t with a time-invariant 
model. 

(iv) I t may be difficult or impossible to measure some variables/signals that are of central 
importance for the model since the real cohesive sediment transport dynamics in estuary 
are still not fully understood. 

(v) Consider more variables in the time series model including salinity, temperature, 
chemical and biological activity. 

(vi) Design a three dimensional time series model which includes different stations with 
their vertical profile data set information and set up dynamical quantitative relationships 
between the important variables in the sediment transport process. 
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