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HUIXIN CHEN

System Identification Theory Approach to Cohesive
Sediment Transport Modelling

ABSTRACT

Two aspects of the modelling sediment transport are investigated. One is the univariate
time series modelling the current velocity dynamics. The other is the multivariate time

series modelling the suspended sediment concentration dynamics.

Cohesive sediment dynamics and numerical sediment transport model are reviewed and
investigated. The system identification theory and time series analysis method are de-
veloped and applied to set up the time series model for current velocity and suspended

sediment dynamics.

In this thesis, the cohesive sediment dynamics is considered as an unknown stochastic
system to be identified. The study includes the model structure determination, system
order estimation and parameter identification based on the real data collected from rele-
vant estuaries and coastal areas. The strong consistency and convergence rate of recursive
least squares parameter identification method for a class of time series model are given
and the simulation results show that the time series modelling of sediment dynamics is

accurate both in data fitting and prediction in different estuarine and coastal areas.

It is well known that cohesive sediment dynamics is a very complicated process and
it contains a lot of physical, chemical, biological and ocean geographical factors which are
still not very well understood. The numerical modelling techniques at present are still
not good enough for quantitative analysis. The time series modelling is first introduced in
this thesis Lo sel up cohesive sediment transport model and the quantitative description
and analysis of current velocity and suspended sediment concentration dynamics, which
provides a novel tool Lo investigale cohesive sediment dynamics and to achieve a better

understanding of its underlying character.
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Chapter 1

Introduction

This research has focused upon the mathematical modelling of cohesive sediment trans-
port problem in two areas: one is the current velocity dynamics and the other is suspended
particulate matter (SPM) concentration or suspended sediment concentration (SSC) dy-

namics.

The ability to set up mathematical models of estuarine and coastal sediment dynamics is
very important for many research and economic reasons. First, monitoring and control
of siltation for the need of navigable harbours and waterway. Second, due to industri-
alisation and urbanisation, the monitoring and prevention of accumulation of pollutants
in close proximity to estuarine and coastal environments becomes a more interested sub-
ject. Third, the possibility of global sea level rise has a direct effect on the estuarine and
coastal environment. If all sediment transport process can be realistically modelled then

predicting the consequences of such an event would be made considerably easier.

Since the most widely used sediment transport flux models are so-called cu-integral (con-
centration times velocity integral) type of models. Therefore suspended sediment concen-
tration and current velocity are two very important process to model when considering
sediment transport.

This thesis is arranged as follows:

The basic concepts and some useful kinds of time series modelling are introduced and



the prediction technique of using time series modelling is shown in Chapter 2.

In Chapter 3, the theoretical background of system identification theory are given. The
recursive least squares identification method and its strong consistency and convergence
rate are given for different kinds of system or time series model, which is one of the main
theoretical contribution of the thesis.

The order determination problem is discussed in Chapter 4 and a new order determination
test called minimum eigenvalue ratio test (MERT) is given. The analysis, comparison and
simulation results show that it is an improved method for traditional determinant ratio
(DR) test.

The description and characteristic properties of cohesive sediment dynamics and its hy-
draulic numerical modelling are reviewed in Chapter 5.

Chapter 6. gives one layer time series model for current velocity and SPM concentration
dynamics in the Holderness Coast, England based on the system identification theory.
In the Chapter 7., the multi-layer time series model for current velocity profile and SPM
concentration profile in the Rufiji Delta, Tanzania is described based on the system iden-
tification theory.

Finally, conclusions, discussions and suggestions for the further work complete the inves-

tigation are presented in the last chapter.



Chapter 2

Time Series Models

2.1 Introduction

A time series is a collection of observations made sequentially in time. (Chatfield 1980,
Box and Jenkins 1976, Harvey 1981 and Enders 1995). Typically it consists of a set of
observations on a variable y taken at equally spaced interval over time. Examples occur
in a variety of fields, ranging from economics, engineering to sediment dynamics. Some

general references on the subject are listed in the references section.
1. Examples

We begin with some examples of the sort of time series which arise in sediment dy-

namics.
(a) Time Series of SPM concentration

A major part of land ocean interaction in the coastal zone consists of the transport
of suspended particulate matter (SPM). Here SPM means the mass of the fine solid ma-
terial in the water with a grain diameter less than 20 um and greater than 0.4 gm. SPM
in the North Sea consists of microflocs of mineral particles and organic matter (mainly
detritus) in SPM is about 20 % (Schréder 1988). According to (Eisma & Kalf 1987) in

January 1980 about 85 % of the mineral mass was smaller than 20 um peaking between 2



and 5 pm (Sundermann 1994). Its mass balance is determined by the input from rivers,
atmosphere and adjacent seas, by advective and diffusive fluxes, and by deposition and
resuspension at the sea bottom. Fig 2.1 shows the time series of SPM concentration in
the Tamar Estuary during the high water slack.

(b) Time Series of Current Velocity

The most complete technique for estimating suspended sediment (or SPM) transport is
to multiply a current velocity profile by a profile of suspended sediment (or SPM) con-
centration and integrate the result over the water depth. So current velocity is a very
important variable in sediment transport and hydrodynamics, also it is comparatively
easy to observe and measure. Fig 2.2 shows the time series of current velocity in the

Tamar Estuary during the high water slack.




Suppose one observes such a time series, denoted by y, for the value at the time period
t, over the period from ¢ = 0 up to ¢ = n, where n means now. In time series forecasting
we are interested in making statements about what value the series will take at some
future time period n +h, where h means hence. Thus the k represents the number of time
periods into the future the forecast is looking. If h = 1, then the one-step forecasts are
being made. For example (see Fig 2.1), if y, represents the SPM concentration in minute
t, this series might be observed over a 6 hours period, t=0,1,2,...,300, starting from 10:30
and ending 16:30, and one may want to forecast the values taken by this series for 17:00
(h = 25) and 22:00 h = 325 of the same day. As the reasons for the change of SPM
concentration are so complex, the series y, may be considered to be a sequence of random
variables. In particular, when standing at time n and contemplating the value that will
occur at time n + ki, one has very little reason to suppose it possible to forecast this value
with perfect accuracy, except by incredible luck. Thus yn+4 is a random variable, when
viewed at time n, and so should be characterised in probabilistic terms. In particular, one
could talk about its distribution which will be conditional, given the information available

at time n upon which a forecast is based.

Figure 2.3 shows the situation being considered. To fully characterise y,44, the value
to occur at time n + h, one needs a complete probability density function, so that state-
ments such as Pr(0.016 < yn4n < 0.085) = 0.65 can be made, for any interval. It will
generally be quite impossible to completely determine the shape of the density function
without making some very strong and highly unreal assumptions about the form of this
function. A rather less ambitious procedure is to try to place confidence intervals about

the forthcoming value yn 44, so that a statement of the form
Pr(B < yoen < A)=0.95

can be made. The points A and B are shown in Fig 2.3 and enable the forecaster to put
limits on the value being forecast with a reasonably high degree of confidence of being
correct. An example of such a forecast interval is to say, “I believe the SPM concentration
will be in the 0.016 g/l - 0.036 g/l range at 22:00 today, with probability 0.95.” If your
forecasting procedure were a good one and a whole sequence of such forecasts were made,
you would expect thal the true SPM concentration or whatever would be outside the
stated intervals only about 5% of the time. If you can go through life being wrong
only 5% of the time, things should turn out very well for you. Such intervals are called

interval forecasts. Confidence intervals are sometimes given in practice, although much

less often than they should be, bul forecasters are usually content with providing just a




a single guess for y,44 that in some way well represents the whole distribution of possible
values. An obvious candidate for such a value is an average, such as the mean shown in

[ig 2.3 and in this thesis, the word forecast always means the point forecast.

Y, A+
. Mx
W B .
——Time ;
Observalion 1=L_l='r_|+h
= period w

Fig 2.3 lllustration of forecast

2.2  Analysing, Modelling and Forecasting Time Se-

ries

2.2.1 Objective of time series modelling

The main reason for setting up a time series model is to enable forecasts of future values
to be made. The movements in y, are explained in terms of its past, or by its position in
relation to time. Forecasts are then made by extrapolation.

The statistical approach Lo forecasting is based on the construction of a model. The
model defines a mechanism which is regarded as being capable of having produced the
observations in question. Such a model is almost invariably stochastic. If it were used to
generale several sets of observations over the same time period, each sel of observations.
would be different, but they would all obey the same probabilistic laws.

Our objective will be Lo derive models possessing maximum simplicity and the minimum

number of parameters consonant with representational adequacy. Obtaining such models



number of parameters consonant with representational adequacy. Obtaining such models

1s important because:

o They may tell us something about the nature of the system generating the time

series;
¢ They can be used for obtaining optimal forecasts of future values of the series;

e When two or more related time series are under study, the models can be extended

to represent dynamic relationships between the series;

e They can be used to derive optimal control policies showing how a variable un-
der one’s control should be manipulated so as to minimise disturbances in some

dependent variable.

‘The ability to forecast optimally, to understand dynamic relationships between variables
and to control optimality is of great practical importance.

The approach adopted is, first to discuss a class of models which are sufficiently flexible
to describe practical situations. In particular, time series are often best represented by
nonstationary models in which trends and other pseudo-systematic characteristics which
can change with time are treated as statistical rather than as deterministic phenomena.
Furthermore, sediment dynamic time series often possess marked seasonal or periodic
components themselves capable of change and needing (possibly nonstationary) seasonal
statistical models for their description.

The process of model building, which is next discussed, is concerned with relating such a
class of statistical models to the data at hand and involves much more than model fitting.
Thus identification techniques designed to suggest what particular kind of model might
be worth considering, are developed first.

The fitting of the identified model to a time series using recursive least squares or extended
least squares method to estimates of the model parameters.

When forecasts are the objective, the fitied statistical model is used directly to generate
optimal forecasts by simple recursive calculation. In addition, the fitted model allows
one Lo see exactly how the forecasts utilise past data, to determine the variance of the
forecast errors, and to calculate limits within which a future value of the series will lie with
a given probability. When the models are extended to represent dynamic relationships, a

corresponding iterative cycle of identification, fitting and diagnostic checking is developed



to arrive at the appropriate transfer function. Stochastic models developed earlier are
employed in the construction of feed-forward and feedback control schemes.

In this thesis, we shall present methods for building, identifying models for time series and
dynamic systems. The methods discussed will be appropriate for discrete (sampled-data)
systems, where observation of the system and an opportunity to take control action occur
at equally spaced intervals of time. Here we suppose that observations are available at

discrete, equi-spatial intervals of time.

2.2.2 Basic Concepts

A time series model is said to be a univariate one when only one time series (scalar or
vector) and noise series are considered. A time series model is said to be multivariate one
if more than one time series (scalor or vector) and noise series are considered. A time
series is said to be conlinuous when observations are made continuously in time. The
term continuous is used for series of this type even when the measured variable can only
take a discrete set of values. A time series is said to be discrefe when observations are
taken only at specific times, usually equally spaced. The term discrete is used for series
of this type even when the measured variable is a continuous variable as in Figs 2.1 and
2.2.

In this thesis we are mainly concerned with discrete time series. Discrete time series can
arise in several ways. Given a continuous time series, we could read off the values at
equal intervals of time to give a discrete series called a sampled series. Another type of
discrete series occurs when a variable does not have an instantaneous value but we can
aggregate (or accurmnulate) the values over equal intervals of time. For example, current
velocity and SPM concentration are very important in dealing with sediment transport
and observations. A series of T observations will be denoted here by v, ..., yr irrespective
of whether they refer to a current velocity or SPM concentration.

There are two aspects to the study of time series analysis and modelling. The aim of
analysis is Lo summarise the properties of a series and to characterise its salient features.
This may be done either in the time domain or in the frequency domain. In the time
domatn, attention is focused on the relationship belween observations at different points
in time, while in the frequency domain it is cyclical movements which are studied. The
two forms of analysis are complementary rather than competitive. The same information
is processed in different ways, thereby giving different insights into the nature of the time

series. Here, we focus on time series modelling and analysing in the time domain.



It is the modelling of time series as stochastic processes that are primarily of concern
here. The sediment dynamic variables such as current velocity and SPM concentration
are each taken as a stochastic process and each observation in the stochastic process is a
random variable. The observations evolve in time according to certain probabilistic laws.
Thus the stochastic process may be defined as a collection of random variables which are

ordered in time.

2.3 Some Useful Kinds of Time Series Models

2.3.1 White Noise

Before consideration of how a time series is analysed and forecast, it is necessary to
introduce to a few simple but important models, that is methods by which a series can
be generated. The simplest possible model gives a purely random series, otherwise known
as white noise. This second name is taken from engineering and cannot properly be
explained without entering the environment of a method of analysis known as spectral
analysis, so no explanation will be attempted. A series is white noise if it has virtually
no discernible structure or pattern to it. If such a series is denoted by w,, for all values
of ¢, the formal definition is that this series is white noise if the sequence W, Weoy, -.. IS
independent and from a fixed distribution which having mean zero and constant variance
otie FEw, =0, FEww, = §,0? where §, = 1,t = s and bes = 0,8 # 5. In the
case that w, is a vector sequence, w; is a white noise series means that Ew, = 0 and

Eww] = 6, .0%I, where 0 is a zero vector and [ is an unit matrix.

2.3.2 Backshift Operator and Difference Operator

1. The backshift operator

The backshift operator, z7!, plays an extremely useful role in carrying out algebraic

manipulations in time series analysis. I is defined by the transformation

f'yl = Yia (2-1)



Applying z=! to y,—, yields z7'y;_1 = yi—2. Substituting from (2-1) gives z71(2"y,) =

z"%y, = y,_, and so, in general,
z-kyt = Yi-k, k= 112:3) (22)

It is logical to complete the definition by letting z° have the property z%, = y, so that
(2.2) holds for all non-negative integers.
The backshift operator can be manipulated in a similar way to any algebraic quantity.
Consider a class of so called coloured noise ¢, driven by the white noise w,;, which can be
represented as following:

€ =w + Wiy + ... + Wi, (2.3)

where ¢, ¢y, ..., ¢, are constants. The model can also be written in the form:

€ = (1 + Cl‘Z'_1 + 622_2 + ...+ C-PZ-P)UJg (24)

2. The first difference operator

The first difference operator A (sometimes called the forward difference operator), can
be maripulated in a similar way to the backshift operator, since A = 1 — z='. The

relationship between the two operators can often be usefully exploited. For example,
Azyg = (1 _— Z_l)zyt = (]. - 22_1 + Z—z)yl =Y — 2yt—1 + Yi-2-

‘The main types of times series model we used in sediment dynamics here are: Autoregres-
sive Model (AR), Autoregressive-moving average Model (ARMA), Autoregressive-Moving
Average Exogenous Model (ARMAX) and Multi-input Single Output Model (MISO).

2.3.3 Autoregressive Models (AR Models)

A stochastic model which can be exiremely useful in the representation of certain prac-
tically occurring series is the so called autoregressive model. In this model, the current
value of the process is expressed as a finite, linear aggregate of previous values of the pro-
cess and a white noise series w;. Let us denote the values of a process at equally spaced

times ¢, — 1,t — 2, ... by vy, ye-1,¥(-2, ..., then

Yot a1 + aya + ..+ Y-, = wy (2.5)

10




1s called an autoregressive (AR) process of order p denoted AR(p). If we define an au-

toregressive operator of order p by

A(z") =14az ' +az7 2 4... + apz” "
then the autoregressive model can be written economically as
Az )y = w, C o (2.6)

In this case, p starting values are required, z;,7 = 0,1, ..., p, and then together with the
white noise series w; the value of y, are calculated iteratively.
If this model arises and its coefficients are known, it is again easy to use to form forecasts.

Yn+1 Will be generated by
Yni1 = (@1¥n + ... + QpYu—pi1) + Wop

the last term of which is not knowable at time n, so the optimum one-step forecast f,  is
far=ayn+ ..+ ApYn—p+1

similarly, yn4+2 will be generated by
Ynt2 = Q¥Yn1 + (@2Yn + .. + CpYn_pt2) + Woio

The last term is not knowable, the term in parentheses is entirely known at time n, and

the first term is forecast by a, f,.1, so the optimum two-step forecast f,»

fn,2 = alfn,l + (a-z!ln + ...+ apyn—p+2)

It is obvious how further forecasts are formed: One simply writes down the generating
mechanism for the value to be forecast, with everything that is known part of the forecast
and everything that is not known replaced by its optimum forecast so that we can get the

optimum k-step forecast fnx,k =1,2,... based on the values y,, y_1, ...

2.3.4 Autoregressive-moving Average Models (ARMA Mod-
els)

To achieve greater flexibility in fitting of actual time series, it is sometimes advanta-
geous Lo include coloured noise series driven by the white noise series. This leads to the

auloregressive-moving average model of order p, ¢ denoted ARMA(p, q).

Yot aryi-r + @y + oo+ @pliop = Wt Qwiny + Qwis ..+ Grwe, (2.7)

11




or, set

AN =14+a1z7 " +apz"?+ ... + apz""?
Clz =14z 4z +...4+c2""

then the (2.7) is equivalent to the following:

AG™)y = C ey
A specific example is the ARMA(1,1) generating process

ye = 0.5y, + w¢ + 0.3w,

so that given a starting value for yo and the white noise sequence wy, Y, 1s formed itera-
tively.

Forecasting is straightforward by just using the rules given in the previous {wo sections,
so that in the ARMA(1,1) example y,4, is formed by

Ynt1 = 0.5yn + wn41 + 0.3w,
Then
fag = 0.5yn + 0.3w, = 0.5yn + 0.3(yn ~ fr1.)
by noting that the one-st.eﬁ forecast error is
€n1 = Wny
so
Wy, =€p_11 = Yn — fn—l.l
Further, y,42 is given by
Ynt2 = 0.5Yn41 + Wiz + 0.3wnyy
Both of the last terms are best forecast by their mean values, which are taken as zero,
Joz =0.5fn,

and so forth.

Although the ARMA model appears complicated and their statistical properties are dif-
ficull to derive, they are of real importance in practice. One reason for this is that there
are good theoretical reasons for believing that the ARMA model is the most likely to be
found in the real world (Granger, 1980).
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2.3.5 Autoregressive Moving Average Exogenous Models (AR-
MAX Models)

Let y, and u, be scalar signals and consider the model structure

A(z7 Yy = B(z"Yu + C(z7Nw, ‘ (2.9)
where .

Az ) =14az 4. +a2?

Bz =1+4bz7 4 ... +b27¢

ClzV)=1+¢qz"+..4¢cz"
The model (2.9) can be written explicitly as the difference equation

Yo+ aryi—r + oo @pye—p = i + o F bu g+ we F winy + .+ cwe-, (2.10)

but the form (2.9) using the polynomial formalism will be more convenient. The model
(2.9) is called an ARMAX(p, ¢,7) model, which is short for an ARMA(p, ¢) model (au-
toregressive moving average) with an exogenous signal (i.e. an input variable wu,).

Fig 2.4 gives block diagrams of the model (2.9).

C(="1)

N ]
!

B(z™) 1 A
Uy Y

Fig 2.4 Block diagram of an ARMAX model

There are several important special cases of (2.9):

o An auloregressive (AR) model is obtained when ¢ = r = 0 (Then a pure time series

is modelled as (2.5), i.e. no input signal is assumed Lo be present.)
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© an autoregressive moving average (ARMA) model (2.7) is obtained when ¢ = 0.
When A(z7') is constrained to certain the factor 1 — z=' the model is called au-
togressive integrated moving average (ARIMA). The model is useful for describing

drifting disturbances.

Although the ARMAX model seems to be more complicated than the AR and ARMA
model, it can study more than one time series and represent the dynamic relationships be-
tween the series. It has a wider application in engineering and economics. The generation

process and forecast process are very similar to the AR model and ARMA model.

2.3.6 Multi-Inputs Single-Output Models (MISO Models)

If the system shown in Fig 2.4 contains more than one input variables, we can consider
the MISO model as follows:

Az Dya = Z Bi(z Y, + €, (2.11)

=1

where ¢, = C(z7")w, is the system noise and

AR =1+ Az 4+ .+ AP
B,‘(Z_l) =14 B.-lz"' + ...+ B,'ql_z-q"
ClzN)=14+Ciz7'+...+C,z".

The model (2.11) can also written explicitly as the difference equation

Yn = a1¥Yn- + a2Yn_2 + ...+ QpYn—-p
+b11‘lt1n_| + blzuln_z + ...+ blqluln_ql

TP NS R N
+€, (2.12)

It is easy to see that if s = 1, (2.11) is a ARMAX model. The MISO model can be used
in describing and predicting the suspended sediment concentration and the more detail

about that will be given in Chapter 6.
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Chapter 3

System Identification Theory

3.1 Introduction

Almost without exception, real dynamical systems are subject to random disturbance.
In some circumstances such systems can be approximated by deterministic ones by ne-
glecting the random effects. However, to consider them as truly stochastic systems is not
only very attractive from a theoretical point of view but it is in fact necessary in order
to improve the performance of a system in an engineering context, (Han-fu Chen 1985,
Séderstrom 1989, Hsia 1977).

In order to describe and understand a stochastic system, one first has to construct its
mathematical model, which is known as system identification.

System characterisation and system identification are very fundamental problems in sys-
tem engineering practice. System characterisation is concerned primarily with setting
up mathematical models to represent system variable relationships. On the other hand,
system identification deals with the choice of a specific model for a class of models which
1s mathematically equivalent to a given system.

The application of system identification technology goes beyond the boundaries of en-
gineering and physical sciences. Many other fields of study, such as biological sciences,
medicine, and economics, can also benefit by employing system identification method to
establish quantitative models for the system arising in these areas. Recently, P.C.Young
et al. (1994) successfully applied the system identification technique to the rainfall-flow

dynamical analysis. However, as far as this author knows, there are few applications in
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sediment dynamics and sediment transport.

A variety of techniques have been devised over the years for system identification. In
general the identification techniques are derived from the optimisation and estimation
theories. The purpose of this thesis is to focus on the on-line least squares recursive
method as a basic solution to the system identification problem since the least squares
method is a classical method frequently practised among scientists in various fields and
the other motivation for focusing on the least squares method is that other popular iden-
tification methods, such as maximum likelihood, Kalman filtering, instrumental variables
and stochastic approximation, can be easily related to the least squares algorithm. There-
fore a basis of some degree of integration and unification of many system identification

methodologies is introduced.

3.2 Main Concepts of Probability Theory

In this section some basic facts are given from probability theory and random processes.
No proofs are given here, they are given in the references (Doob 1953, Lipster and
Shiryayev 1977, Loeve 1960, Wang 1965, Chow 1965, Hall 1980 and Han-fu Chen 1985).

3.2.1 Probability Space, Random Variables and Mathematical

Expectation

Let (2, F, P) denote a probability space and w denote a point of ) which is also called an

elementary event. F is the o—algebra of subset in £ (i.c., F has the following properties):

1. QerF.
2. The complementary set A of A belongs to F, if A € F.
U AieFifAeF,i=1,2...

From here it follows immediately that
o0
n AieF
i=1

if we notice that (72, A:))° = [J2, A
A set A € F is called a random event. P is called the probability measure on (2, F). It
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is a function defined on F with the properties

1. P(A)>0,VA € F.

2. P(Q) =1.

3 P(UZ, A) =2, P(A) ,if A; € F,and A; N A; = B,Vi # 5.
P(A) is called the probability of the random event A.

Let B be any subset of a set A € F , where A is of probability zero. Then we as-
sume that B € F and that it also has probability zero. The probability space with such
an extended o-algebra is called a complete probability space. In the sequel we shall only
consider complete probability spaces.

We shall always denote the I-dimensional random Euclidean space by R! and its Borel
o-algebra by B'. By a Borel g-algebra on a topological space we mean the smallest -
algebra containing all the open sets of the topology. A measurable function ¢ = é(w)
defined on (2, F) and valued in (R!, B') is called the [-dimensional random vector.

Let £, 1 be two l-dimensional random vectors. We say that £ is equal to 5 with probability

one, or almost surely, and denote this by
E=1n a.s.

if
PE#n)=0

Let £ be a one-dimensional nonnegative random variable and set
Ani = {w 27" << (14 1)27"}

The mathematical expectation E{ of nonnegative random variable ¢ is defined as the

integral

n—oo | £
=1

n2"
E€ = / &dP = lim l:ZiQ-HP/lm' +11P(‘f > 71) s
Q

which may be infinite.

For an arbitrary random variable £, define
€+ = maz(€,0), £ =maz(~¢,0)

These are both nonnegative and hence E£* and E€~ are well defined. Notice that
E=¢-¢,
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so it is natural to define

BE = E€* - B¢

if at least one of E£* and E£~ is finite.
If E|l(] = B¢t + E£~ < oo, then £ is said to be integrable or to have finite expectation.
Let "

¢=1¢ ... €T

be an [-dimensional random vector. By its distribution function, we mean the function

defined by
Fe(z!,...,z') = Ple! < 2!,..., €' < .

If there is a function fe(z',...,z') such that

Q(x',...,x')zf ] Fe(l, ., ADdAYdX,

then fe(z',...,z') is called the density of the distribution of ¢ or simply the density of £.
When ¢ is one-dimensional, then its distribution function and density are denoted by
Fe(z) and fe(z), respectively. Notice that the mathematical expectation of a random
variable £ can be written as a Lebesgue-Stielijes iniegral with respect to its distribution

function:

B¢ =L§dp = /_: zdFy(z).

3.2.2 Convergence Theorems

The convergence of a sequence of random variables &, to its limit £ can take place in

several different ways:

1. Convergence with probability one or almost surely means that, with the possible

exception of a set of probability zero, for any w € 2, £,(w) — £(w), that is,
P{én — €) =1

For this type of convergence, we often write
€ — € a.s.
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2. Convergence in probability means that for any ¢ > 0
lim Pl — €] > ¢ — 0

and this is denoted by
€ — € p

3. Convergence in distribution or weak convergence means that for any = where Fe(z) is

continuous
im fe, (z) = Fe(z),
n—oo
and it 1s denoted by
lim é, = ¢ w.
n=—cd
4. Convergence in the mean square sense means that
lim Elé, — € = 0.
=00

The following diagram explains the relationship of these convergence types

convergence a.s. = convergence p. = convergence w.

fr

convergence in the mean square sense.

Let E)¢,] < co. We now give conditions for lim,_., ££, = EE.

Theorem 3.1 (Monotone Convergence Theorem).

[ T&(nlE) as and BET < oo (E&f < o0), then EE, T EE (E&n 1 EE).

Theorem 3.2 (Fatou Lemma).

If there ezists an integrable random variable n such that 3 < £,, (én < 1), then

Einf lim €, <inf lim B¢ (sup lim £, < Esup lim &,).
n—oo n—oo n—oo n—oo

Theorem 3.3 (Dominated Convergence Theorem).

If  limp_uén = € a.s. and there czisls an inlegrable random variable n such that
€] <, then

lim E£|¢, — €] =0.
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3.2.3 Independence

Let A; € F,i=1,2,.... If for any set of indices {1y, ...,%}

3 k
P 4 =[] PAs;.
i=1 i=1

then random events are called mutually independent. '
We say that F, is a sub-o-algebra of 7 if A € F, implies A € F and F, itself is a o-
algebra of sets in 2. Sub-o-algebras F;,7 = 1,2, ... of F are called mutually independent

if any index set {i;,...,1x}, the random events A, ..., Ay are mutually independent when
AJ' € .7'-.'1- for ] =1,...,k.
Let 5 be an I-dimensional random vector. Denote by F7 the smallest o-algebra containing

all sets of form
{w=n""(B), Beb'}
and call it the o—algebra generated by 7.

Random vectors n;,¢ = 1,2,... are called mutually independent if o— algebras F™ are
mutually independent.

If {7:} are mutually independent and identically distributed with E|)n;|| < oo, then

1 n
li - i= DLy as.
m n;’] o a.s

n—oo

This is called the strong law of large numbers.

Theorem 3.4 (Borel-Cantelli Lemma).

Let Ay, A,, ... be random_events.

1 If 352, PA; < oo, then P2, UJ°°=‘ A; =0.

2. If the events {A;} are mutually independent and 3 ;2. PA; = oo, then
Pn?:l U;i. Aj=1.

The set (2, U2, A; is usually denoted by lim;_,A; and it consists of all w which

appear in an infinite number of A;.

3.2.4 Conditional Expectation

The relationships between any two quantities in the sequel always permits the failure of

that relationship on a set with probability zero. This point will not be mentioned every
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time. For example, lim,—., {» = £ means convergence with probability one, but we shall
frequently omit to write a.s., similarly, the quantifier Vw € J corresponds to “all w in J
with the possible exception of a set J with zero Probability.”

We always denote by 74 the indicator of a set A:

1 weA
Ia =
{0 wg A

and define
f £dP = EfI,
A

If on F, besides the probability measure P, there is another measure Q such that for
A€ F,PA =0 implies QA = 0, then @ is called absolutely continuous with respect to
P and this fact is denoted by Q <« P.

Theorem 3.5 (Radon-Nikodym).
If @ <« P, then there exists a nonnegative random variable £ such that for any A € F

Q(A) = /A ¢dp

and £ is defined uniquely in the sense that if there is another nonnegative random variable

n with the property
Q(A):/ndP VA e F,
A

“then P(£ £ 7) =0.

This kind of uniqueness is called to within stochastic equivalence, and € is the Radon-
Nikodym derivative (or the densily of one measure (P) with respect to the other (Q),
denote by

=%
$=ap

Let F; C F be a sub-g-algebra and P! be a probability measure on F; defined simply
by setting

PP (A) = P(A). YA€ F.
Let 7 be a nonnegative random variable and define

Q(A) = /Aqdpz jAudP" VAE Fy. (3.1)
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Clearly, Q is a measure on ¥ and is absolutely continuous with respect to P71, hence by

Theorem 3.5 there exists an F; —measurable nonnegative random variable ¢ such that

Q) = [ ear™ = [ car. (3.2)

Comparing (3.2) with (3.1), we find that there is a nonnegative random variable ¢ such
that '

/'qu = / ¢dP, VAe F.

A A

€ is called conditional expectation of ¢ given F; and is denoted by
E=E(n/F) or EM.

By Theorem 3.5, E(n/F,) is unique to within stochastic equivalence.
For the general random variable n (not necessarily nonnegative) if £n exists (i.e. at least
one of Ent and En~ is finite), then define

E(n/Fi) = E(n™[F) - E(m™ [ F).
The conditional expectation E(§/7) of ¢ given a random vector 7 is defined by
E(/n) = E(§/F7).
Assume E||¢{]| < oo, E|||| < oo. The conditional expectation has the following properties:

1. EF1(a€ + by) = a B¢ + bET 1, where a, b, are constants.

2. Let £ be a random vector. There exists a Borel measurable function f(-) such that

E(/¢) = f(¢)
3. Let EEF ¢ = E¢

4. If £ is F-measurable.
ENE=¢ (3.3)

5 Eh (7€ = (TETE, il € is Fy—measurable and E)¢7E|| < oo.
6. If 7, and F; are sub-g-algebra with 7} C F, C F , then

ET1ET¢ = EFg
7. If £ and (¢ are independent, then

£(£/¢) = E¢. (3.4)




8. If 71 = (R, ¢), then

E"¢ = E¢
The conditional probability PP'A or P(A/F,) of A € F given F, is defined by
P71 (A) = E(14/F), '

and if Fy is the o-algebra F7 generated by 5, then P(A/F7) is called the conditional
probability of A given n and is denoted by P"A or P(A[7). Clearly,

PRI (A) >0, PTYQ)=1,

and

P (G A:‘) = ipﬂ(/‘i)

=1

if A;(A; = ¢,Vi# 3.
Theorems 3.1-3.3 can be extended from expectation to the conditional expectation.

Theorem 3.6,
T8 (6al&) as. and B <oco (E€} < o0), then

ENE T BT (EPE, | EFE)  as.

Theorem 3.7.
Suppose that n is an integrable random variable.
L Ifn <& (6 <), then

EFvinf lim én <inf lim E71¢, (sup lim EF1¢, < E7'sup lim fn) a.s.

2. If |ba] < m and lim, .0 & = € a.s., then
lim EX'|¢, — €l =0 a.s.

Random vectors £ and 7 are called conditionally independent given ¢ il
PUE<x,p<y)=PYE<X)P(n <y), Wx,y,

where the inequality £ < x between vectors should be understood as inequalities between

their components.
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3.2.5 Stochastic Processes

Let T' = [0, 00) and Let B(T') be the o-algebra of Borel sets on T". A function £,(w) defined
on (2 x T, F x B(T)) and taking values in (R, B) is called an I-dimensional continuous
time stochastic process. If £,(w) is only defined at discrete times ¢t = 0,1,2,..., then it is
called a discrete time (parameter) stochastic process or a random sequence. '

For fixed w, §(w) is a function of w and is called a trajectory of the stochastic process.

If for any Borel set B
{(w,t):  &(w)€ B} € F x B(T),

then &(w) is called a measurable stochastic process.

We often omit w and denote a process simply by &,.

Theorem 3.8 (Fubini).

if £ ts a measurable stochastic process, then almost all of its trajectories are Borel mea-
surable functions of t. In addition, if B, ezists Vi € T, then it is also a measurable
function. Further, if

fﬂmW<m
)

then

/ll{,"dt <00 aws.
S

and
E/{tdt =/E§¢a’£
S S

where S ts any measurable set in T. Two stochastic processes € and 1, are called stochas-

tically equivalent if
Ple#n)=0 VLeT,

and in this case () is called a modification of n(¢,).

If for all w € 2, with the possible exception of a set of zero probability, the trajectories of
§i are continuous (left-continuous or right continuous), then £, is called continuous (left-
continuous or right-continuous, respectively) process. A left- or right-continuous process
is measurable.

Let F; be a family of nondecreasing g-algebras (ie., 7, C F,, Vs <) . I & is Fy-
measurable for any ¢t € T, then we say that & is F,-adapted and write (&y Fr).
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I & is a measurable process, E||§|] < oo, Vi€ T and {F}isa nondecreasing family of
o-algebra, then in the equivalence class £(£,/F;) a modification can be chosen to be Fq

measurable. In the sequel, we always assume that E(£,/F,) is so chosen.

3.2.6 Martingales

Definition 3.1.
Let £ be adapted to a nondecreasing family of g-algabras {#,} with E|¢,| < oo. (&, F2)

is called a martingale if
E(€/F.)=€ Vs<t, steT

Definition 3.2.
Let £ be adapted to a nondecreasing family of o-algabras {F,} with E|&| < oo. (&, F)

is called a supermartingale if
E(l/F,)<¢& Vs<t, s,teT

Definition 3.3.
Let & be adapted to a nondecreasing family of o-algabras {F,} with E|&,| < oco. (ée, F0)

is called a submartingale if
E(&/F)>¢& Vs<t, sieT

The above three mentioned definitions also hold for a discrete-time process.

Example 3.1.
Suppose 7;,1 = 1,2, ... to be a mutually independent random sequence with Fn; =0, V..

Denote

n

én =Zn;, Fo=F]

=1
where 77 denotes the o-algebra generated by 7, ...,7,. We know E(¢n/Fn) = €n by
(3:3) and E(3 . 0/ Fm) = E i=m41 M = 0 by (3.4) for any m < n. Hence

E(ﬁn/}—m) = E('fm + Z 7]!'/}_m) =&mn

t=m41

and (€., ) is a martingale.




Theorem 3.9.
Assume (€n, Fy) Lo be a submartingale (supermartingale) and sup, EfF < oo (supaBED <
o). Then €, converges to a finite limit € a.s. as n — co and Eft <oo (B < 0)).

Corollary 3.1.
If (€n, Fu)is a nonpositive (nonnegative) submartingale (supermartingale), then £, con-

verges to a finite limil as n — oo.

Corollary 3.2.

(§n, Fu) is a martingale, then E|¢,| = EEF + EE; =2E¢Y — EE = 2E¢F — E¢,. Hence
Jor martingale sup, E€} < oo (or sup, E€; < 00) is equivalent to sup, Eléa| < oo,

If (€, F2) is a martingale, then {z,} defined by z, = £&,...,z, = En — €n-1 s called
e martingale difference sequence. The following two theorems are concerned with local

convergence of martingales.

Theorem 3.10.
Let zn = &n — €n—1,..., 21 = & be a martingale difference sequence, then £, converges a.s.

lo a finite limit on A, where

= : (IIEIQIHI.‘ISG.‘] + '$i|21[|1:;|>a.'])
A= {Z E [ i < 00

=2

and a; are constants with a; > ¢ > 0.

As a consequence of Theorem 3.10, we obtain:

Theorem 3.11

én converges Lo a finite imit a.s. on A where

oo I-'Eip
A={ZE(%)<OO , 1<p<2
=2
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3.3 Strong Consistency of Least Squares Identifica-

tion

3.3.1 Introduction

Given a physical system S, in order to predict its evolution, one first has to construct its
mathematical model. In some circumstances one can derive it theoretically starting from
relationships provided by physics or mechanics; an example is the equations of motion
of a satellite in its orbit. However, the mathematical model obtained in such a way may
contain a certain number of unknown parameters, for example, the motion equations of
a plane derived from the mechanical relationships may include some unknown dynamic
coefficients. In many cases one cannot obtain a model of the system from physics and
mechanics at all. Consider, for example, the process arising in a complicated chemical
reaction. Hence it is of great importance to define the mathematical model for a system
based on its inputs and outputs. For example, for an aircraft in flight the change of its
rudder angle may be regarded as an input and the three co-ordinates of its position in
space may be viewed as the output of the system; for a chemical reaction the product
depends on the levels of, say, a temperature, pressure, and a catalytic agent, these can be
viewed as system inputs and the product as the system output; for sediment transport,
process, the suspended sediment concentration depends on the current velocity, pressure,
salinity which can be viewed as the inputs of system and suspended sediment concen-
tration can be viewed as the output of the system. The task of system identification is
to find the equations of the system. Since the measured data are usually corrupted by
random noise, the identified system is a system under random influences. Several aspects

must be considered in identification of a stochastic system.

1. Selection of Model Set M(08). M(0) is parameterized by some parameter ¢ to be
selected. The true system § may lie in M(6), but for most cases S does not belong to
M(0). Thus 0 has to be chosen such that M(8) approximates S as well as possible.

2. Parameler Estimation. With M(0) having been selected and with input-output data

having been obtained, the next step is to construct the estimate 0 of € such that Al(é) is
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consistent with true data as well as possible.

3. Properties of the Parameter Estimale. Having specified the parameter estimate 0,
one has to determine its properties. 1t is usually desirable that § , has at least the follow-
ing property: if $ € M(0) then § asymptotically converges to the true parameter 0 as the
data increases. This is the so-called consistency problem. In addition, one also wishes to
obtain the convergence rate of the estimate, its asymptotic distribution, the efficiency of
the estimate, and other related properties.

The consistency problem is discussed here. For the case with the coloured system noise
for the least squares identification, both strong consistency and converge rate are given
by using the stochastic Lyapunov function series method. (Chen and Ruan, 1987; Chen
el al. 1996).

Results are presented here are suitable for time series analysis since the dynamic model
considered here is nothing but the ARMAX, bilinear and M1SO model in the time series

analysis.

3.3.2 Review of Convergence Analysis

The strong consistency of parameter estimation has always been one of the main problems
in system identification theory. There are many identification algorithms in linear time-
invariant stochastic systems which have strong consistency (Ljung et al. 1983, Han-fu
Chen 1981a, Han-fu Chen 1981b, Han-fu Chen and Guo 1985). Han-fu Chen (1982) has
studied the problem for linear time-invariant stochastic systems. A sufficient condition
for strong consistency of the least squares identification algorithm has been presented for

a white noise model. The convergence rate was also given.

For discrete-time stochastic systems with coloured noise, the strong consistency of the
parameter estimates of least squares identification and adaptive conirol has been studied
for various conditions, but the convergence rate of the parameter estimates was not given.
The results were extended in Chen and Ruan (1987) for the multivariable input-output
ARMAX model. The strong consistency of Lthe coefficient matrix and a better convergence

rale were described for conditions weaker than the persistent excitation condition.

In recent years, there has been much study of the identification problem of bilinear sys-
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tems. Many practical system models are bilinear, and the realisation of general non-linear
problems can be attained by bilinear systems (Krener 1975). Many identification meth-
ods, such as recursive least squares, extended least squares, recursive auxiliary variable
and recursive prediction error algorithms, have been used in bilinear systems. Simulation
studies have been undertaken (Fnaiech and Ljung 1987). The precision of the estimate of
parameters is not ideal, since estimates often have large errors. It is necessary fo study the
conditions needed to guarantee the consistency. The identification algorithms discussed
in Ahmed (1986} and Wang and Lu (1987) have yielded good simulation results, but they

did not give conditions for consistency and theoretical proofs.

The strong consistency of the coefficient matrix and the noise covariance matrix were
given in Zhang (1983), but the model class considered did not include the multiplicator
of input and output. The single-input single-output non-linear system is more general
than bilinear systems, but its noise model is linear and does not include the multiplicator
of noise and input. Although the analysis indicated the convergence analysis of least
squares identification, the convergence rate was not studied. Also the restrictions to the

noise series and persistent excitation are rather strict requirements.

In Chen et al. (1996), identification problems for a class of discrete-time bilinear stochastic
systems are discussed. We remove certain strict requirements and do not need the noise
series Lo be stationary or quasi-stationary. Also the conditional expectation of the variance
of the noise series is allowed to be unbounded for all stochastic variables and time. A
simple condition is presented to guarantee the least square identification to have strong
consistency in the case of systems with coloured noise. In order not to make the probiem
too complicated, we consider here only the single-input single-output case. The results are
easily extended to the multivariable input-output case or more generally to the ARMAX
model (Billings and Voon 1984) and the non-lincar modet with linear parameters. We
consider a condition which is weaker than the persistent excitation condition given by
Han-fu Chen and Guo (1985) and Ljung and Séderstrém (1983) for white and coloured
noise. The strong consistency of the parameter estimate using extended least squares,

and the convergence rate are proved.
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3.3.3 Least Squares Theory

Least squares theory was first proposed by Karl Gauss for carrying out his work in orbit
prediction of planets. Least squares theory has since become a major tool for parameter
estimation from experimental data. Although there are several other estimation meth-
ods available, such as maximum likelihood, Bayes method and so on, the least squares
method continues to be the most well known among engineers and scientists. The reason
for its popularity is that the method is easier to comprehend than others and does not
require a knowledge of mathematical statistics. Furthermore, the least squares method

may provide solutions even in cases when other methods have failed.

Estimates obtained by the least squares method also have optimal statistical proper-
ties: they are consistent, unbiased and efficient. It also turns out that many estimation
algorithms that are used for system identification can be interpreted as least squares pro-
cedures. Therelore, it is possible to unify many identification techniques in the framework

of least squares theory.

The least squares technique provides us with a mathematical procedure by which a model
can achieve a best fit to experimental data in the sense of minimum-error-squares. Sup-
pose there is a variable y that is related linearly to a set of variables x = (1,22, ..., Z4a),
that is

y= 012:1 + 02.‘.':2 + ...+ 0,,.1',1 (35)

in which § = (6,,0,,...,0,) is a set of constant parameters. We assume here that 0;,
are unknown and we wish to estimate their values by observing the variables y and x at

different times.

Let us assume that a sequence of m observations on both y and x has been made at times
ti,t2,.;tm, and we denote the measured data by y(i) and z,(¢), ...,z (i),7 = 1,...,m.

Now we can relate these data by the following set of m linear equations:
y(2) = Ozo () + O222(2) + ... + Onz0(3), i=1,2,...m (3.6)

In statistical literature, equation (3.6) is called a regression function, and 8; are the re-

gression coefficients.

The system of equation (3.6) can be conveniently arranged into a simple matrix form

y =X0 (3.7)
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where

y(1) (1) ... z.(1) 0,
y = y(:2) 1 X — zl.(2) . xn:(Z) , 0 0‘2
y(m) zi(m) ... z.(m) 0,

To be able to estimate the n parameters 0;, it is necessary that m > n. If m.= n, then

we can solve § uniquely from equation (3.7) by
=Xy (3.8)

provided that X~1, the inverse of the square matrix X, exists. § denotes the estimate of 8.
However, when m > n, it is generally not possible to determine a set of 8; exactly satisfying
all m equations (3.6) because the data may be complicated by random measurement noise,
error in the model, or a combination of both. The alternative then is to determine 8 on
the basis of least-error-squares.

Define an error vector € = (¢1,...,€m)" and let
e=y-X08 (3.9)

Now we will choose § in such a way that the criterion J

m

I=> e=ce (3.10)

=1
is minimised. To carry out the minimisation, we express
J = (y-X0)(y - X0)
= yy—-0Xy-y'X040X" X0
Differentiate J with respect to 8 and equate the result to zero to determine the conditions

on the estimate § that minimises J. Thus

%;‘lm = —2X"y 4+ 2X"X0 =0
This yields
X'X0=X"y (3.11)

from which 0 can be solved as

0=(X"X)" X"y (3.12)
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This result is called the least squares estimator (LSE) of 8. Equation (3.11) is referred to

as the normal equation and ¢ is called the residual in statistical literature.

The above result is derived based on a criterion J that weights every error ¢; equally.
We often refer to this result as ordinary least squares. This formulation can be gener-
alised, however, to allow each error term to be weighted differently. Let W be the desired

weighting matrix. Then the weighted error criterion becomes
Jw = €We
= (y-X0)"W(y - X9)

Here W is restricted to being a symmetric positive definite matrix. Minimisation of Jw
with respect to ¢ yields the weighted least squares estimator (WLSE) of Ouw:

0w = (X"WX)"1X"Wy (3.13)

It is easy to see that when W is chosen as an identity matrix I, 8y reduces to 6.

1. Statistical Properties of Least Squares Estimators

In here, we examine the qualities of the least squares estimators derived above. To
facilitate the discussion, we wish to focus on the model equation (3.7) in which the vector
€ is included to account for the measurement noise or model error. Thus we have the

noise-disturbed system equation
y=X0+c¢ (3.14)

We assume here that ¢ is a stationary random vector with zero mean value, that is,
Ele] = 0. Furthermore, ¢ is uncorrelated with y and X. Based on these assumptions
about ¢, we wish to know just how good, or how accurate, are the parameler estimates
given by equation (3.12) and (3.13).

In general, 0 is a random variable. Its accuracy can be conveniently measured by a
number of statistical properties such as bias, error covariance, efficiency, and consistency.
First we show that § is unbiased, meaning that £ = 0. Substituting equation (3.12) into

equation (3.14), we have

0=0+(X"X)"'X"¢ (3.15)
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Taking the expectation on both sides of the equation (3.15) and applying the property

Ele] = 0, we obtain the desired result
Ef] = E{0) + E[(X"X)"!X")E[¢) = 0 (3.16)
The covariance matrix corresponding to the estimate error  — 8 is

T = E{(0-0)0-0)}
= E{[(X"X)'X"((X"X)"!X"¢"}
= (X'X)‘IX’E{ee'}X(XTX)_I-

Define the covariance matrix of the error vector € to be

R = E[e€7], (3.17)
¥ is reduced to

¥ = (X"X)"IX"RX(X"X)™1. (3.18)
Following the same procedure, we can also show that the error covariance of § — 0 is

Tw = (X"WX) I X"WRW X (X"WX)™ L (3.19)

At this point, it is interesting to point out that $w can be greatly simplified if we let
the weighting matrix W be W = R-1,

Tw(W=R1)=(XR'X)! = opyy. (3.20)
The corresponding estimator w is
w(W =R™1) = (X’R!X) ' X"R™ 1y = dpv. (3.21)

The error covariance Wy in equation (3.20) has a very important property: that is,
¥MvV is a minimum error covariance matrix in the sense that for any other choice of

weighting matrices W
¥mv < Tw (3.22)

By definition, a positive definite matrix ¥ pv is less than or equal to Wy if the difference
Ynmv — Ww is non-negative definite. The subscript MV in ¥pv and Opgw denotes the
minimum variance property. The proof of ¥y < ¥y is somewhat involved, and inter-
ested readers can see Deutsch (1965). The estimator fpgv in equation (3.21) is called the
minimum variance estimator, or Markov estimator. Thus we see that Opv is the best

linear unbiased estimator.
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Now let us examine another interesting case. When the noise €(i),f = 1,2, ..., are iden-
tically distributed and independent with zero mean and variance o2, the covariance R,

becomes

R = ElecT] = oI (3.23)
In this case, both ¥ and ¥y are identical:

U ="pmy =oi(XX)™! (3.24)

This implies that the corresponding LSE 0 is a minimum variance estimator.  is called
an efficient estimator.
Last, we wish to show that the LSE 8 is also a consistent estimator. Rewrite the error
covariance matrix ¥ in the form (assume R = o?])

T =0((X"X)!) = il (i(xfx))—l (3.25)

m m
in which m is the number of equations in the vector equation (3.14). Assume that
limp—eo[(1/m)X7X]~! =T, where I is a non-singular constant matrix. Then
ot /1 -!
lim ¥ = lim — (—(X’X)) =0 (3.26)
m=—+00 m—od 1M m

Zero error covariance means that § = # at m — co. This convergence property indicates

that 0 is a consistent estimator.

We have shown that the LSE in the presence of white noise is unbiased efficient,, and
consistent. Finally, we wish to note that the LSE @ is also identical to the maximum
likelihood estimator (MLE) when the noise ¢ is Gaussian-distributed. This important
property is examined in (Hsia, 1977). Thus we see that the least squares technique does

indeed have many advantages.
2. Recursive Least Squares Estimation

We derive a recursive algorithm from the basic least squares solution in equation (3.14).
The need for a recursive solution arises when fresh data continuously in supply and we wish
to improve our parameter estimates by making use of this new information. With a recur-
sive formula, the estimates can be updated step by step without repeatedly computing the
matrix solution of equation (3.7), in which the matrix inversion is quite time-consuming.

This recursive solution procedure is often referred as on-line identification.

34



o |

Recall that the vector equation (3.7) consists of a set of m equations. Lel us introduce m

as a subscript to y and X in equation (3.7). We have

Yim = Xm0 (3.27)
Furthermore, denote 6 in equation (3.12) as 0(m)

B(m) = (X7, Xm) "X}y Y  (3.28)

Suppose we have obtained a new equation, the (m + 1)th, as

y(m+1) = Oiza(m + 1) + Orza(m + 1) + ... + Opzo(m + 1). (3.29)
Define
x(m+ 1) = [z1(m + 1), z2(m + 1), ...,z (m + 1)). (3.30)

We then have
yim+1)=z"(m+1)0 (3.31)

Now the system of m + 1 equations can be written as

Ym+1 = X0 - (3.32)
in which
y(1) [ -
y(2)
Ymsr = : = (3.33)
y(m)
| y(m+1) | y(m+1) |
Ymi1 = X0 (3.34)
[ 2.(1) za(1) | T ]
: : Xm
X1 = zy(m) z,(m) = (3.35)
zi(m+1) xo(m+ 1) ] | x"(m + 1) |

The new least squares estimator is
O(m + 1) = (X1 Xme1) " X g Yine (3-36)
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t is apparent that to obtain d(m + 1), we must invert an n x n matrix. The obvious ques-
tion here is whether or not we can calculate d(m + 1) by simply updating the previous
estimate 0(m) without matrix inversion. The answer is yes, and we derive the updating
algorithm below.

The following well-known matrix inversion lemma is introduced as follows:

Lemma 3.1 (Astrém, 1968)
Let A,C, and A-+BCD be non-singular square matrices; then the following matriz iden-
lity holds:

(A+BCD)!'=A"1-AlB(C! + DA"IB)"IDA! (3.37)
Define the matrix P(m) as:

P(m) = (X[, Xm)™? : (3.38)
Therefore

P(m +1) = (Xf;31 Xme1) ™

Substituting equation (3.35) and applying the matrix inversion lemma, P(m + 1) can be

rewritten as follows:
Pm+1) = [P(m)™ +x(m+ 1)x"(m+ 1)]7!
= P(m) - P(m)x(m+1)
X[1 4+ x"(m + 1)P(m)x(m + 1)]~'x"(m 4 1)P(m). (3.39)

[n view of equation (3.36), we can see that

~

d(m+1) = P(m+1)[X]ym+x(m+1)y(m+ 1)]
= P(m)XLym — P(m)x(m+1){1 + x"(m + 1)
xP(m)x(m + 1)]7'x"(m + 1)P(m) X", ym
+P(m)x(m + l)y(m + 1) — P(m)x(m + 1)
x[1 4+ x"(m + 1)P(m)x(m + 1)]~!
xx'(m+ 1)P(m)x(m + 1)) 'y(m +1) (3.40)

We can rearrange the last two terms in the form of

P(m)x(m + 1)[1 + x"(m + 1)P(m)x(m 4 1)]™"
X[1+x"(m + 1)P(m)x(m + 1) — x"(m + 1)P(m)x(m + 1))y(m + 1)
=P(m)x(m + 1)1 + x"(m + 1)P(m)x(m + 1)]'y(m +1) (3.41)
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But we recognise from equations (3.28) and (3.36) that
0(m) = P(m)X7,¥m

Thus §(m + 1) can finally be simplified to the form

~

Om+1) = d(m)+ P(m)x(m + 1)1 + x"(m + 1)P(m)x(m + 1)) -
X[y(m+1) = x"(m + 1)6(m)) : (3.42)

The result above simply shows that the new estimate is given by the old estimate plus a
correction term. The matrix P(m) in the correction term can be updated by the recursive
formula in equation (3.39). It is clear that in both formulas we have completely eliminated
the necessity of matrix inversion (we note that the term [1 4 x"(m + P (m)x(m + 1)]
is a scalar) and therefore that the computational efficiency is dramatically improved for
updating the estimate 4.

The recursive equation (3.42) has a very strong intuitive appeal. We notice that the
correction term is proportional to the quantity y(m+1) —x"(m+ I)ﬁ(nz), which represents
the error of fitting the previous estimate (m) to the new data y(m+1) and x"(m + 1).
The vector P(m)x(m + 1)[1 4+ x"(m + 1)P(m)x(m + 1))~! determines how the fitting
error is weighted in the correction of (). Another interesting fact is that P(m) can
be related to the error covariance matrix ¥ defined by equation (3.18). It shows that
P(m) = ¥(m)/o?, which means that P(mn) is a direct measure of the error covariance at
cach m. As we have shown in equations (3.26) and (3.38), P(m) = 0 at the limit m — oo.
We have shown in this section that recursive least squares estimation can be easily carried

out by the following recursive algorithm:

O(m +1) = 6(m) + y(m + 1)P(m)x(m + 1)[y(m + 1) — x"(m + 1)d(m)) (3.43)

P(m +1) = P(m) — y(m + 1)P(m)x(m + 1)x"(m + 1)P(m) (3.44)
where
7(m + 1) = /[l + P(m)x(m + 1)x"(m + 1)P(m)).

Therefore, by starting with an initial estimate §(0) and the corresponding P(0), we can

recursively update & while new observations are continuously obtained.



-

3.3.4 Extended Least Squares Identification and Its Conver-
gence Analysis of ARMAX Model

1. Statement of the problem
We assume that the system to be identified is a discrete multivariable inputs and multi-
variable outputs (MIMO) ARMAX Model and that it can be represented by

A(z™ Yyn = Bz uq + (3.45)
where ¢, = C(27")w, is the system noise and

Alz)=Tn+ Az 4+ 4 4,277,

B(z7')=Biz7 ' + Bz 4 ... 4+ B,z 7,

Cz)=In+Ciz7 ' 4+ .. +Cz". (3.46)
and yn, un,w, are m—, [~ and m- dimensional vectors respectively and where z~! is a
unit delay operator, A;, B;, Cy are m xm,m x I, m xm unknown matrices to be estimated.

I is an m x m unit matrix.
Set

0" =[-Ay,...,—Ay By,.... By, Ch, ..., Cl (3.47)
.‘E; = [y:;-la s yl:—pi u;-]a < au;_qu c;r;_l 3o gc:_,.] (348)
en = Y — 020 (3.49)

where 0,, is the estimate of @ at time n.

It is easy to see that the relation (3.45) can also be written as
Un = 0"z, + C(z7"wn + €n — C(27 Ve, (3.50)

Two representations (3.45) and (3.50) of the system are equivalent but can be used dif-

ferently.

Definition 3.4

A d- dimensional veclor z = (zy,...,24)7, the mode of z is defined as llz]| = (Z}i:] z?)t =

(z'a:)%.
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Definition 3.5
An m x n matrix A, the mode of A is defined as |JA|| = (Anaz(ATA))%.

where A..z(-) denotes the maximum eigenvalue of the matrix.
We define

ro=rtao1 +[all’ To=1, ie, ra=14Y |zl (3.51)
i=1

and
Fo=ocf{w;: i<n} (3.52)

which is the o-algebra generated by {w,: i< n).
We assume that the system noise ¢, is driven by a martingale difference sequence {wn}
that is,

w, =0, n<0,
E(wa/Fa1) =0, Eww./Fn)<bort,, n> 0; 0<h<l. (3.53)

where §o (§o > 0 a.s.) denotes a random variable which depends on w but is independent

of n, h is a constant and
.ICQ = E€0 < O0. (3'54)

where ko is a constant. We assume that E(||u,||?) < co.
2. The extended least squares algorithm

In order to identify the system parameter matrix 0, we make use of the following re-

cursive algorithms:

0n+l =0, + [\,n+l(y:+| - I;-Hou): (355)
]"n-i-] = Iiﬂxn.;.l /(1 + 'T:;+l ann-i-l ), (356)
Ry = (14— Kayiz) 4 ) Ra (3.57)

where z, and g are any deterministic vector and matrix respectively, Ro = dly, I4 is a

d x d unit matrix and d = mp + lg + m»r-.
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The recursive algorithm (3.55)-(3.57) are called the extended least squares method (ELSM)
when the regression vector z, is determined by (3.48)-(3.49).

3. Convergence Theorem

The convergence theorem are given as follows and the proofs of them are given in Chen
et al. (1987).

Theorem 3.12
For the system and the algorithm defined above, let the following conditions Tla, T1b
and T1lc be satisfied:

(T1a)  The transfer matrix C~'(z7!) — 1,,/2 is strictly positive.

(i.e., zeroes of det C(z) are outside the closed unit disk and

Clezp(iw) + Clezp(~iw) — [, >0, wE (0,27].)

(T1b)  There exists a constant k; > 1, such that

lim v (logr,)*2 /A", =0

min
where A7 ., AL, denote respectively the maximum and minimum eigenvalues

of the matrix R;', where & is given by (3.53).

(T1c) limp—oo ™ = 00 a.s.
Then
I) limpoo 0, =0 a.s.

I1) 10all = o(rh(logra)* fAm )2,

The proof of Theorem 3.12 see Chen et al.  (1987) and more results of special cases

are given as the following corollaries:

Corollary 3.3.

If the condition T1c of Theorem 3.12 is nol salisfied, then the conclusions of Theorem
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3.12 should be modified as follows:
) limy_ 00, =0 a.s. on {w:r, — oo}.

1) |0l = o(rE(logra) 2 fAn, )12, as. on {w:r, — 0o}

Corollary 3.4.
If the condition T1b of Theorem 3.12 is replaced by

AzlﬂI/A:ll.n S 62
where €3 (§&2 > 0 a.s.) is @ random variable and E€; < oo , then

I)Iim,_.8,=0 a.s.
1) 10all = o(rh=(logry)t)!12

Corollary 3.5.
If the restriction on {w;} given by (8.53) is replaced by the following conditions, i.e.,

wo=0,n<0; L(w,/Fno1)=0, B(wwa/Fnu_1) < kg, n>0,

Then
(IT) im, .0, 0, = 0 a.s.

1) 18]l = o{(logra)*s/ Az, )2

mn

3.3.5 Least Squares Identification and Its Convergence Anal-

ysis of Bilinear Time Series Model

1. Statement of the problem

The special types of bilinear system are considered in here.

! m
Az Yy = Bz uuea + CzYwn + ) D Gijynmittusjug (3.58)
i=1 ;=0
where 27" is the unit backshift operator, d < 1 is a time delay, {wn} is a noise sequence,

A(27'), B(z7') and C(z7!) are the polynomials

Az™")y = 1—apz7' —... —@qp2?
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B(z™") = bo+biz7 4 ... 4 bz

C(z™") = 14z +.. .. +ez™” (3.59)
and

Un = Ynid = Wnya =0, VI <O
Set

0= (al,...,ap,bo,...,bq,cl,...,c,,am,...,a-lm,a-go,...,a,m)T
and

o _

Ly = (yn_l‘l < Yn-pyUn-dy-- -y Un—g—d, Wn1,

vy Whory, Yn—iUn—d,

s Yn=1Un_m—dy Yn-2Un—ds .+ ; Yn—tUn—m—d )T
System (3.58) can then be written as

yn = 0722 + w, . (3.60)

2. The extended least squares algorithm

The Extended Least Squares Method is applied to estimate the unknown parameter 0 |
and 0, represents the estimate of @ at time n. The Recursive Algorithm is the same as
that presented by Chen et al. (1996):

Kn=Ru_1zaf (1 + 2L Rusy ) (3.61)
R.= Ry — KuxTR,_, (3.62)
On = 0ny + Ky (yn — 270.-4) (3.63)
en = Yo — 21 0y (3.64)

where z, is constructed by using e,_; instead of w,_; in z2,2=1,...,r, and e, = 0 when

n < 0. The dimensions of the parameter vector # and regression vector z? are h, and
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h=p+qg+1+1lm+1)+r. Let Rg = hly, 0o =0. We may choose Ry to be any hth

order positive definite matrix and 0y to be any h-dimensional vector.
In this thesis, the norm of the vector z is defined as ||z|| = VzTz. Set
n
ro=Tr Ry' , rie=ro+ Y |z’ © o (3.65)
1=1

then r, = roy 4 ||lza]l> (n = 1,2,...). The set F, is the o-algebra sct generated by
{ws, s <n},ie F, =0{w,, s <n}; and {w,} is assumed to be a martingale difference

sequence. I'or all n = 2,3, ... the following properties hold:

E(w./Foc1) =0 as. VE>1, Fp={¢0} (3.66)
EBwlfFo ) <&rf, as. Yi>1, 0<é<oo, 0<e<l. (3.67)

Here E(w?/F,_;) may be unbounded with respect to w and n. Additionally, the input

#, 15 F,,-measurable and
E(x®) < oo, n=20,12,... (3.68)

If u, is a deterministic signal, then E([un|?) = [u,|? < co. Let b, = ¢n—w, and 8, = 0—9,,.
3. Convergence Analysis

Here, we study the strong consistency and the convergence rate of the Extended Least

Squares Identification for systems (3.58).

We assume that A7, and A7 are the maximum and minimum eigenvalues of the matrix

max min
R;', then
(Amin)® S det RT' < (An,0)" (3.69)

Irom (3.34), we have

A:‘lll’l S /\l':)ax S Tn S h'/\::lax (3'70)
As for the linear time-invariant case, in order to get strong consistency, we need
'™h =00 as n— 0o as. (3.71)
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to guarantee the strong convergence of ., for all values of 8, . Otherwise even if the
limit of 8, exists, it may depend on the initial value of 5. For a sufficiently large positive
number z, we set

log k(z) = log log...... log(z)

s

Lk times

and for § > 1
Li(z) = logzlog2z ... log (k — 1)(z)(log k(z))%.

Theorem 3.13
Suppose that the noise and input of the system (3.58) salisfy the conditions (3.66)-(3.67),
and the recursive algorithm (3.61)-(9.64) is used to estimate the parameter veclor. If the

Jollowing conditions are met

(T2a) C~'(27') —1/2 is strictly positive real and the zeros of C(z2) are all outside the

unit circle

(T2b) 1, meets the condition (3.71) and there exists a natural number & and constant
¢ > 6> 1 such that

lim riLi(r.)/ 0, =0 as. (3.72)
then

lim0,=0 as. _ (3.73)

16,0 = © (rstirm V) as. (3.14)
and ‘ ’

D G

— L= .S. T
Tim 1_n§b, 0 as (3.75)

The proof of Theorem 3.13 see Chen et al. (1996).

Corollary 3.6.
Under the assumptions of Theorem 3.13, if we aller (3.72) Lo the stricter tncqualily

Moax/ Amin S€, as. V21, 1<§ <00, (3.76)
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then (3.78) and (8.75) still hold, and relation (3.74) can be improved to become

1001 = © (/e gtra) ) s (3.77)

Corollary 3.7.
Under the conditions of Theorem 3.13, suppose the inequality (3.67) is changed to

E(wi/Fa1) <& as. V21, 0<§6 <oco . (3.78)

Since (3.78) is stricter than (3.67), we can get a faster convergence rate; (3.73) and (3.75)
stall hold and

1l = © (\/Lz.(r,.)/xr.,;.,) (3.19)

3.3.6 Extended Least Squares Identification and Its Conver-
gence Analysis of MISO Model

1. Statement of the problem

For s different input time series, a MISO system can be written mathematically in the

form:

Yo+ Aryna + oo+ Apynp, = Byug, + .+ By,
+B2,u2n_, + + an_n ‘ug"_ﬁ

’U,]rl_ql

+w, + Ciwn_y + ... + ¢;wp_, (3.80)

yn and u; (n = 1,2,3,...) are the output and ¢-th input of the system respectively. p is
the order of the system; {w,},(n =1,2,3,...) is a noise series and the restriction on it
is the same as the equations (3.66)~(3.67) and A;, B;, and Ci(i = 1,...,p;7 = 1, ..s;k =

. q5:(g; < p);1 = 1,...1) are unknown parameters to be estimated.

Let 27! is a unit delay operator and
Az =14+ A1z + ...+ AP (3.81)
Bi(z"")=Bi,z7'+ ..+ B, z7%, i=12,...,s (3.82)
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Clz)=14+Cz7'+...+C 2" (3.83)

The equation (3.80) can be written as follows:
Az yn = Z Bi(z7")ui, + €n (3.84)
=1

where ¢, = C(z7)w, is the system noise and set

0" =[-Ay,...—Ap, By, ... Bi,,, By, ., B, , C, .., G (3.85)

2T = [Yno1soos Ynops Ui, s Ulnig 3 U2ns o3 Usn_g 3y €l ooy Cncr) (3.86)

en = Y — 01, (3.87)

d=ptrta (3.89)
=1

here @ is the true parameter matrix, z,, is the regression vector consisted of the information
of input, output and the estimation of system noise, e, is the estimation of w, and 0, is

the estimate of 0 at time n . It is easy to see that (3.80) or (3.84) also can be written as
Yo = 0Tz, + C(27wn + e, — C(z7V)en (3.89)

The first term of the right side of equation (3.89) can be considered as the estimation of y,
(since we do not know the true 0, y, is estimated by 67z,) and the remaining terms on the
right hand side can be considered as a kind of filter of system noise. In order to identify
the system parameter vector 8, we make use of the recursive algorithms (3.61)-(3.63). d

is given by (3.88) and the regression vector z, is determined by (3.86).

Remark 3.1.  In order to prove the strong consistency of the (RLSM) easily, we set
Ro = dIy. In fact, By may be any d * d positive definite matrix.

Theorem 3.14
Suppose that the noise and inpul of the system (3.80) satisfy the conditions (3.66)-(3.67),
and the recursive algorithm (3.61)-(8.64) is used to estimate the parameler veclor. If the

Jollowing conditions are mel.

(T3a)  C~'(27') — 3/ is strictly positive real and the zeros of C(z~!) are all outside

the unit circle
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(T3b)  r, meets the condition (3.71) and there exists a natural number & and constant

¢> & > 1 such that

lim &L (ra) /A%, =0, | . (3.90)
then

lim 0, = 0 (3.91)

10.01 = © ((yfrsEatra) g (3.92)
and

g )
fim, - 2 Nt =0, (3.93)
Some lemmas and their proofs are given before we prove the Theorem 3.14.

Lemma 3.2.
For the conditions (3.66) and (3.67), the Identification Algorithm (8.61)-(3.64) of system
(3.80) has the following properties, forn =1,2.3,...

= Tr (R;") (3.94)

n

r, < 00 , E([|yn||2) <o, E(0.]*) <o, E(||enl|2)) <00 a.s. (3.95)

E(I0a]*) <00, E(llbnll’) < 00 aus. (3.96)
O0n = 00_y ~ Ru_yZa(by + wy) (3.97)
) Ruty = (det R7' — det R7',) [ det R (3.98)
C(z"", =0Tz, (3.99)

Proof: The steps are outlined below.
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(i) Using induction, from (3.61)~(3.64) and the Inverse Matrix Lemma, (3.94) can casily

be shown to hold.

(ii) Since the initial conditions of y, and e, are finite and also is the ||zo|| = 0, 1]l < oo,
l6o]] < oo from the system (3.80) and RLSM (3.61)-(3.63), we can obtain (3.95) for
alln=1,2,3,....

(iii) The first inequality of (3.96) obviously holds, and from (3.95) we get 0 < &orn < 0o

a.s. So we have
E([lwall?) = E(E(llwnll?/ Fa-1)) € E(fori_,) <00, Vn>1 (3.100)
and (3.96) holds.

(iv) From (3.61)-(3.64), we deduce tiwt 0n = 0,y + R,_1Tne,, and from 0, =0 -0,
and en, = b, + wy, (3.97) is obtained.

(v) Equation (3.98) can be deduced by considering the determinant of the block matrix

1 =T
z, R;?

(vi) From (3.87), (3.89) and b, = e, — wy, (3.99) is obtained.

Lemma 3.3.
Assume that Lemma 8.2 and condition (3.71) hold. Then there ezists a natural number

N(k) such that for any natural number k and d, the dimension of the parameter veclor,

dlog k(r,) > log k(det R7') Vn > N(k) (3.101)

Lemma 3.4.
Under the conditions of Lemma 3.3., for any natural number k and some posilive number
6 > 1, there ezists N(k) such that

> 2T R/ LE(r) < o0 (3.102)
i=N{k)

Lemma 3.5.

Under the conditions of Lemma 3.3, for any natural number k and some natural number
N(k} and posilive number § > 1, lel

Vi = Tr(0] R]'0.) /75 Li(ra) , V> N(k) (3.103)
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where ¢ is given by (3.67). Then

E(Vi/Fasi) £ Voo + 250:5:]2"3!1/‘5{-("")
+ E(xl00(25 00 — 2b,)/ Fuur)/re Li(ra), ¥n > N(k) (3.104)

The proofs of Lemmas 3.2.-3.5. are similar to those in Chen, Zinober and Ruan (1996)

and Chen and Ruan (1987). Before proving Theorem 3.14 we make a few comments.

Remark 3.2. If in system (3.80), C(z"!) = I, i.e. ¢ = 0, then the conditions (3.66),
(3.67) and (T3a) are met. Whether the conclusion holds depends on the conditions (T3b).

The result of Theorem 3.14 can be extended to the case of the system with white noise.

Remark 3.3. Iflimy_c supp<n(rn/N) < oo, then (3.93) is equivalent to

1 N
. 2 _
Aim _E_l I4:]]° = 0.

Proof:
From (T3a), there are two positive constants k, and &, such that

Sn= Y 70 (c-‘(z-') — (“;—"')Im) z(0;+k: >0, Ya>N(k)  (3.105)
i=N(k)

So= 3 aTha— (1E) ( > nz.-fé.-uﬂ) +h 20, Va2 N(E) (3.100)

i=N(k) i=N(k)

Let
bn = Vo + 25, /rLi(ra) , V> N(k) (3.107)

then ¢, is a non-negative F,-measurable stochastic sequence and from (3.104), (3.106)
and (3.107), we get

E(fn-}-l/Fn) S £n + 7]11 - Cﬂ.

where

n = 25013:4.1R—n+l-"'3u+l/Li("n+l) (3.108)
and

G = ki E (12T Basi P/ Fa) fris () (3.109)
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are non-negative stochastic sequences, and also are F,-measurable, from Lemma 3.5. We

know that

o0

Z Na < O0.

n=N(k)
By using the Almost Supermartingale Theorem (Robbins and Siegmund, 1971) we get
im & =6<o0  and Y (i<oo (3.110)
n=N(k)

Since C~1(27!) is a stable transform function, from (3.105), (3.109) and (3.110) we have

Z E ("bn+l "2/Fn)/r:z+l[‘f;(rn+l) <o (3.111)
n=N(k)
and
Z E (b1 1 /re 43 Li(rnsn)) < oo. (3.112)
n=N(k)
Set
= Z (o1l = E(fbiall?/F2)) frép Li(rinn) , V> N(k) (3.113)
t=N(k)

then (Cy, F,) is a martingale, and from (3.112) and (3.113), we get

sup E|Cq| <2 Z E (i1 frigs Li(resr)) < o0

n>N(k) i=N (k)

According to the Martingale Convergence Theorem, we have

lim C, = Z (Noiall? = B(15i41 17/ Fo)) [ria Li(ri1) < o0 (3.114)
i=N (k)
and from (3.111) and (3.114),
> 1ball?/rE LE(ra) < oo (3.115)
n=N(k)

From the Kronecker Lemma, and (3.115)

lim ———— Z 6] = 0. (3.116)

n—oo 1t L‘s
i=N(k)
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So (3.93) can be easily deduced since rn, > rSL{(r,). Similarly to the proof of (3.116),
from (3.109) and (3.110) we get

lim zTé:||2 = 0 3.117
n—oo rt L6( ) —%(:L) ( )

From the Schwarz Inequality and (3.106)

1/2 .
0SSaSha+ Yy aflibi <k + (( > =T Y ||b.-||2)) (3.118)

i=N(k) i=N(k) i=N(k)

Then, making use of (3.117) and (3.118)

lim S,/riLi(ra) = 0 (3.119)

n—oo

From (3.107), (3.110) and (3.109) we obtain

limV, =V < o (3.120)

n—oo

Since Tr(6T R710,) > A,

min

10a]1?, from (3.103)

16112 < V, r< L8 (ra) /A" (3.121)

min

Then (3.91) and (3.92) can be deduced from (3.90), (3.120) and (3.121) and ¢ > §.

Corollary 3.8.
Under the assumptions of Theorem 3.14, if we alter (3.90) to the stricter inequalily

max/’\mm = €l 1 Vn 2 1 3 1 S El < 00 1 (3122)

thern (8.91) and (3.99) still hold, and relation (8.92) can be improved to become
Iont =0 (ri Eitr) ). (3.123)

Corollary 3.9,
Under the conditions of Theorem 3.14, suppose the inequality (3.67) is changed to

E([lwa|?/Fa-i) <& ¥n21, 0<{¢ <oo (3.124)

Since (3.124) is stricter than (3.67), we can gel a faster convergence rate; (9.91) and
(3.93) still hold and

16,1 = © (\/Lz.(rn)/z\::,i..) | (3.125)
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3.4 Conclusion

In this chapter, some theoretical background of system identification and recursive least
squares method are introduced. The so called extended least squares method (ELSM) for
the different systems (MIMO ARMAX, Bilinear System and MISO system) and its strong
consistency and convergence rate are derived and presented. As we all know, the least
squares estimation is an old statistical method, but it is still investigated and applied
by many statisticians due to its simplicity and practical importance. The convergence
results obtained within mathematical statistics cannot be directly applied to system iden-
tification, since the design matrix is no longer deterministic in constrast to the classical
situation. However, the least squares method has been analyzed and applied to the sys-
tem identification problem for a long time. Obviously, the problem of the convergence of

the least squares estimates in the system identification must be treated specifically.

The consistency of least squares estimates for white noise is discussed in (Han-fu Chen,
1985), but in general, it is inconsistent for coloured noise as we mentioned earlier in this
chapter. Here, we modify the design matrix by using a new regression vector (3.64) and
leaving the algorithm (3.61-3.63) invariant. The strong consistency and convergence rate
at the condition (3.90) which is weaker than the well known persistent excitation condition
are obtained by constructing a new series of stochastic Lyapunov functions for the special
coloured noise case. These resulls provide the theorectical guarantee for the time series
modelling the current velocity and SPM concentration dynamic system presented later in
Chapters 6 and 7.
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Chapter 4

Model Validation and Order

Determination

4.1 Introduction

In system identification both the determination of model structure and model validation
are important aspects. An overparametrized model structure can lead to unnecessarily
complicated computations for finding the parameter estimates and for using the estimated
model. An underparametrized model may be very inaccurate. The purpose of this chapter
is to present a basic method that can be used to find an appropriate model order.

In practice one often performs identification for an increasing set of model orders (or more
generally, structure indices). Hence one must know when the model order is appropriate,
l.e. when to stop. Needless to say, any real-life data set cannot be modelled exactly by
a linear finite-order model. Nevertheless such models often give good approximations of
the true dynamics. However, the methods for finding the ‘correct’ model order are based
on the statistical assumption that the data come from a true system within the model
class considered.

When searching for the ‘correct’ model order one can raise different questions, which are

discussed as follows:

o Is a given model flexible enough?

o Is a given model too complex?
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¢ Which model structure of two or more candidates should be chosen?

Note that such questions are also relevant to model reduction.
The question that is asked in this section can also be phrased as: “Is the model structure
large enough to cover the true system?” There are basically two ways to approach this

question:

e Use of plots and common sense.

¢ Use of statistical tests on the prediction errors (residuals)

) N N
e(0n) = Z(yi - §i)’ = Z & (4.1)

where y,, is the real data, §, is the model output and é2 is the prediction error at time n
respectively.

We concentrate on the latter aspect here. There are several statistical tests on the predic-
tion errors e(éN). The prediction errors evaluated at the parameter estimate @y are often
called the residuals. To simplify the notation, the residuals will frequently be written as
just e(é) Several statistical tests on the prediction errors are given in section 4.2 and
an approach to order determination, minimum eigenvalue ratio test (MERT) is given in

section 4.3.

4.2 Some Useful Tests

The methods for model structure determination based on tests of the residuals in practice
are tied to model structures and identification methods where the disturbances are explic-
itly modelled. We assume that é, is a zero mean white noise. The tests are formulated
for single output system. For multivariable systems the tests have to be generalized. This
can be done in a fairly straightforward manner, but the discussion will be confined to the
scalar case to avoid cumbersome notation. The statistical properties of the tests will be
analyzed under the null hypothesis that the model assumptions actually satisfy. Thus all

the distribution results presented below hold under a certain null hypothesis.
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4.2.1 An Autocorrelation Test

This test is based on assumption that &, is a zero mean white noise. If ¢, is white noise

then its covariance function is zero except at 7 = 0:

r(r) =0 T#0 - (4.2)

First construct estimates of the covariance function as
1 N=7r
f(r) = N Z Eiyr€i (4.3)
1=1
Under the assumption that é, is a zero mean white noise, it can be deduced that
f(r) — 0,7 #£0; 7,(0) — \? = Eé2, N — co. (4.4)

To get a normalized test quantity, consider

_ 7e(7)

()

According to (4.4) one can expect z, to be small for 7 # 0 and N to be large provided

(4.5)

én is white noise. However, what does ‘small’ mean? To answer that question a more
detailed analysis is necessary. Define
1N €1 (1)
r= o Z : & : (4.6)
=1

€i—m 7:,(171)

where, for convenience, the inferior limit of the sums was set to 1 (for large N this will
have a negligible effect). From Sdderstrom et al. (1989), r is asymptotically Gaussian
distributed.

VNr 224 Ar(0, P) (4.7)
where the covariance matrix is

P = lim EreT (4.8)
The (z,7) element of P, (i,7 = 1,...,m) can be evaluated as

Pij = X6;
Hence

P =X
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The result (4.7) implies that
NrTpy = NrTr/rf(O) dist x2(m)
Hence
N SR = Wi Tr/(0) 5 32 (om)
1:?(0) i=1 ‘ ‘

It should be stressed once more that the distribution of the statistics presented above
holds under the null hypothesis Hy (asserting that é, is white). The typical way of using
the test statistics for model validation may be described as follows. Consider the test
quantity NrTr/#2(0). Let z denote a random variable which is x? distributed with m
degrees of freedom. Define x2(m) by

a = P(z > x*(m)) (4.9)
for some given a which typically is chosen between 0.01 and 0.1. Then, if

NrTr[2(0) > xZ(m) reject Hy (and thus invalidate the model)

NrTr[72(0) < x2(m) accept Hg (and thus validate the model).
Evidently the risk of rejecting Hy when Hj holds (which is called the first type of risk)
is equal to a. The risk of accepting Hy when it is not true depends on how much the
properties of the tested model differ from Hy. The second type of risk cannot, in general,
be determined for the statistics introduced previously, unless one restricts considerably
the class of alternative hypotheses against which Hy is tested. Thus, in applications the
value of a (or equivalently, the value of the test threshold) should be chosen by considering
only the first type of risk. When doing so it should, of course, be kept in mind that when

a decreases the first type of risk also decreases, but the second type of risk increases. A

frequently used value of a is o = 0.05.
Remark 4.1

The number m in the above aulocorrelation test could be chosen from 5 up to N/4.
(see Soédersiorm el al. (1989)).

4.2.2 The Parsimony Principle and the F-test

1. The Parsimony Principle
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The parsimony principle is a useful rule when determining an appropriate model order.
This principle says that out of two or more competing models which all explain the data
well, the model with the smallest number of independent parameters should be chosen.
Such a choice: ‘Do not use extra parameters for describing a dynamic phenomenon if they
are not needed’. The parsimony principal is discussed in Box and Jenkins (1976) and a

theoretical justification is given in Séderstorm et al. (1989).
2. The F-test

The so called F-test can be used to compare two or more model structures. For such
comparisons a discriminating criterion is needed. When the model structure is expanded
so that more parameters are included in the parameter vector, the minimal value of loss
function en(d) naturally decreases since new degrees of freedom have been added to the
optimization problem, or, in other words, the set over which optimization is done has been
enlarged. The comparison of model structures can be interpreted as a test for significant
decrease in the minimal values of the loss function associated with the (nested) model

structures in question.

Let &, and U, be two model structures, such that &, C U, (U, is a subsel of Uy; for
example, U, corresponds to a lower-order model than if;). In such a case they are called
hierarchical model structures. Further let Vi = €4,(0) in the structure (z =1,2) and

let U; have p; parameters. We take

Vi _ 2

N N

N

as a test quantity for comparing the model structures ¢; and U,. If z is ‘large’ then we
conclude that the decrease in the loss function from V}} to Vi is significant and hence the
model structure U, is significantly better than &;. On the other hand, when z is ‘small’,
the conclusion is that 2/ and U, are almost equivalent and according to the parsimony
principle the smaller model structure &, should be chosen as the more appropriate one.
The discussion above leads to a qualitative procedure for discriminating between U, and
Uy. To get a quantitative test procedure il is necessary to be more exact about what is
meant by saying that z is ‘large’ or ‘small’. This is done in the following.

First consider the case when U, is not large enough to include the true system. Then the
decrease Vy — Vi in the criterion function will be O(1) (that is, it does not go Lo zero as
N — 00} and therefore the test quantity z, (4.10), will be of magnitude V.

Next assume that U, is large enough to include the true system, then it is possible to
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prove that (see Séderstérm et al. 1989)

Vl - ‘/2 dis
z= Nt 25 (2 — ) (4.11)
N

The result (4.11) can be used to conceive a simple test for model structure selection. At

a significance level a (typical values in practice could range from 0.01 to 0.1) the smaller

model structure U, is selected over i, if

z < XalP2 —p1) (4.12)

where y2(p2 — p1) is defined by (4.11). Otherwise U, is selected.
3. AIC and FPE Criteria

Another approach to model structure selection consists of using a criterion for assess-
ment of the model structures under study. Such a criterion may for example be obtained
by penalizing in some way the decrease of the loss function en(6) with increasing model
sets. The model structure giving the smallest value of this criterion is selected. Two forms

of criterion are given in the following:
(i) AIC Criterion (Akaike’s Information Criterion)

AIC = Nlog en{fn) + 2p (4.13)

where p is the number of the parameters in the model.

(ii) The FPE Criterion (Final Prediction Error Criterion)

1+ p/N
1-p/N

It should be pointed out that model structure determination and model validation are

FPE = en(On) (4.14)

very important step in system identification. For the determination of an appropriate

model structure, it is recommended to use a combination of statistical tests.

4.3 An Approach to Order Determination

The specific and important problem of time series model order estimation has received

considerable attention for many years and there are now a number of quite sophisticated
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systematic procedures which appear to work quite well: (see e.g Box and Jenkins (1976);
Astrom and Eykhoff (1971); Akaike (1970, 1972, 1974); Young ef al. (1980)). Of these,
the final prediction error (FPE) and the information criterion (AIC) suggested by Akaike
for purely stochastic processes are probably the most interesting in the present context.
But unfortunately all these criteria may give more than one minimum, and may depend
on assumptions constrained in the data and sometimes indicate too many ‘parameters.
Thus they should be used only as guides (Chatfield, 1980).

In practice, the time-series analyst often requires a simple yet robust procedure which is
of a more general nature and emerges naturally during the time series analysis. Such a
procedure has been suggested by Wellstead (1978) who develops an instrumental form of
the determinant ratio test for model order based on the ‘instrumental product-moment
matrix’ (IPM). He surveys previous related work on model order identification and shows
that his approach is a natural development of previous order tests based on the product-
moment matrix. It is however, less vulnerable to distortion if there is noise on the time-
series data. Young ef al. (1980) observed that a particular IPM occurs naturally in
instrumental variable estimation. As a result, the procedure for generating the matrix
suggested by Wellstead (1978) can be replaced by a more systematic but computationally
more expensive procedure in which the instrumental variable sequence is obtained directly
from the ‘auxiliary model’ used in the IV (instrumental variable) estimation. Alterna-
tively, order estimation can be based on the inverse of the IPM, which occurs naturally in
the IV algorithm and is directly related to the covariance matrix of the estimation errors.
This interpretation provides an intuitively pleasing statistical explanation of the proposed
order estimation procedure and it leads to the definition of a comprehesive model order
idenlification procedure which is applicable to a wide variety of different models.
However, as it is well known, one of the fastest and simplest of the approximate order
evaluation tools is based upon the product moment matrix of observed input foutput data.
The condition is induced by the linear constraint which defines the underlying system and
hence provides a means of determining the system order. When estimating the order of
unknown system prior to a parameter estimation, it is necessary to develop some useful
methods Lo access roughly the order using a computationally simple and rapid algorithm.
An improved estimate as well as verification of the underlying system order can then be
obtained by combining some more sophisticated sysiematic procedures mentioned in the
early part of this section.

The approximate order evaluation tool based upon the product moment matrix of ob-
served data is originally due to Lee (1964), who pointed out that a simple rank condition

exists for this matrix. The condition is induced by the linear constraint which defines the

59



underlying system and hence provides a means of determining the system order. Wood-
side (1971) exploited this rank condition to formulate a series of order determination
algorithms. Subsequently other authors, notably Chow (1972); Tse and Wiener (1973)
have applied this idea to autoregressive, moving average processes and the more challeng-
ing problems associated with structure determination of multivariable systems.

A major disadvantage of order tests based upon the product moment matrix is that the
rank condition only applies to exactly observed data. In the presence of extrarieous noise
the condition for overparameterization is that the product moment matrix is ‘almost

singular’,

The aim of this subsection is to indicate an alternative simple and efficient test to en-
sure the rank condition has the meaning of mathematical expectation, and also to do this
without significant additional computation or prior knowledge of the statistical properties
of the system noises. The product moment matrix is then used by so-called minimum
eigenvalue ratio test (MERT) in place of the normal determinant ratio test (DRT) sug-
gested in Woodside (1971) to overcome both the expensive computational procedure and
the effects of the system noise. Some examples and simulation results that are given in
section 4 show that MERT is a simple and efficient test both in the linear system and
in a class of nonlinear system. Also in the same section some comparisons between DRT
and MERT are given.

4.3.1 Product Moment Matrix

The approach to model order estimation described here can be applied to most time-
series models with both deterministic and stochastic input or ‘exogenous’ variables. To
illustrate the method, let us first consider the discrete-time linear model for single input-
single output (SISO) system which is the simpler form of ARMAX model in chapter 3 as

follows:

Az Yy = Bz Yue (4.15)
where y, and u,, are the observed system input and oulpul sequence respectively and

Un S Un+ 7 To=Yu+ e (4.16)

where v, and z, are input and output data; e, and r, are zero mean uncorrelated se-
quences with variances o2 and o? respectively which are the source of all stochastic dis-

turbances to the system; and A(z~'), B(z™!) are nth order polynomials in the backward
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shift operator z7! i.e.

A Y =14az7' +.. . +a,z™"
Bz V) =bz"+ ...+ bz" (4.17)

Here all the polynomials are set equal to the order n of the characteristic polynomial
A both for notational simplicity and to emphasise that the order of the characteristic
polynomial A(z7") is the ‘dynamic’ order of the system (i.c. the order of the state space
associated with the deterministic part of the system). In all that follows, we shall refer
to n as the ‘true’ model order and denote the estimated model order as 7.

Our interest is to determine the integer & which characterises the order of the system in
the presence of ri and e;. In the normal product moment formulation this is done by
checking the rank of the 2(k + 1) x 2(k + 1) matrix I defined by:

Ci(u, y) = O (u, y)%(, ) | (4.18)
where
L7 Ug Ve --- Yo
Qu(u,y)=1 : ... 1 (4.19)
UN ... UN—k YN .- YN-k

and NN is the number of observations.

If ex and 7y are zero, the equation (4.19) gives an exact linear constraint on the data, the
rank of I'»(v,z) equals zero. Thus the system order is found by increasing the integer
k until T'y(v, z) becomes singular. In practice, however, the extraneous disturbance 7y
and e; will almost always be non-zero, such that the exact linear dependence in Qx(u,y)
required for rank collapse cannot be set up. The practical consequence is that for k£ > n,
the minimum eigenvalue or determinant of I't(u,y) falls to some lower bound determined

by the statistical properties of the disturbances e; and r¢. From (4.17)-(4.19),

Elk(u,y)] = E(Q(v,z) + Qu(r, e)) (v, z) + Qu(r, e))
= E[lx(v,z)]+ Ri(r,e) (4.20)

where Ri(r,e,v,z) = E[[r(r, e) + Qu(v,2)"U(r, €) + Qu(r, €)™ U (v, z)].

4.3.2 Minimum Eigenvalue Ratio Test

Theorem 4.1.

If A is a non-negalive symmelric malriz, the following conditions are equivalenlt:
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(1) A is a singular matriz

(11) det A=0

(I11) Anin (A)=0

where del A and Amin(A) denote the delerminant and the minimum cigenvalue of matriz

A respectively.

Theorem 4.2.
If A is a nth order non-negative symmelric malriz, there ezists an orthogonal matriz T

such that:
TTAT = diag(An,..., A) (4.21)

where Ay > Aoy 2> ... 2 Ay are n eigenvalues of malriz A and T7 is the lranspose matriz

of T.

Theorem 4.3.

If A and B are two symmetric malrices, then
/\min(A) =+ Aml'ﬂ(B) S )‘min(A + B) S /\min(A) + )‘mnx(B)
(see Suda et al. (1973)).

Theorem 4.4

(i) If {ri.} and {er} are while noise disturbances and independent of {v} and {z,} then
Ri(r,e,v,z) = diag(o?,...,02,02,...,0%)

k41l k+l
(i) If {ri} and {ex} are white noise disturbances, independent of {v} and {zi} and

o? = o}, then Ri(r,e,v,z) = diag(a?,...,0?) and

Amin(ETk(t, ¥)) = Amin(ETi(v, z)) + o7 (4.22)

2

r

(iii) If {ri} and {ei} are while noise disturbances and ¢? # o2, then

Amin(ETw(u,¥)) = Amin(ETk(v, z)) + R,
min(o?,0?) < R < maz(o?,0?) (4.23)

e r

(iv) If {ri}, {er} are coloured noise series and there ezists a constant C such thal: -
Amaz(Ri(r,e,z,v)) < C, k=12,... (4.24)
then

Amin( E'(1,9)) = Amin(ETe(v,2)) + Ry Ri < C. (4.25)
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Proof:

(i) The proof of this follows from the assumption that e; and r; are uncorrelated white
noise series and independent of {vi} and {z,}.

(i1) Since ET'(u,y) is a non-negative symmetric matrix, from Theorem 4.2, there exists a

orthogonal matrix T, such that
T Elk(v,2)T = diag(Ay, ..., Au) | ' (4.26)
where A; is the 7th eigenvalue of the matrix ETy(v, z). So
T"ET(u,y)T = TTEl(v,z)T + diag(c?,...,o?).
= diag(\ +02,...,  a +0?) (4.27)

Therefore (4.22) holds.

Amin(ECH(1,Y)) = Amin(ECt-1(x, y))
)‘min(EFk+l(ua y)) - Am-'n(E]--‘l.-('u'a y))
. Amin{( ETk(v, 2)) — Anin(ETw-1 (v, 2))
- Am;n(ETk.;.l('U, .'1:)) - /\m;n(EFk(v,:l:))

Since El(v,z) = 0,(k > n) and ETy(v,2) # 0,(k < n), (14) become infinite.

(4.28)

(iii) According to Theorem 4.3, (4.23) holds.

If & =n, ApinETi(v,z) = 0, then Anin ETk(u,y) is limited its range being between o?

r

and 2. In practice,

/\minErk-—l(ua y) - Rk-l
Amin ELk(u,y) — Ry

(4.29)

should be very large. Since we assume that ¢? and ¢? are usually very small and the

differences of Ri,i = k — 1,k,k 4+ 1 are also very small,

/\min(EF’-‘(ui y)) — Aml"'l(EF’~‘—l(u': y))

Amin(ET k41 (v, y)) — ’\min(EFk(u'n y))

(Amin ECk—1 (1, ) = Ba1) = Dmin ETi(u, y) — Ri)

(Amin ELk(u,y) = Ri) = (Amin ECri1 (¢, ¥) — Rigr)

_ Amin(ELt(v,z)) — Amin(ETk-1 (v, 7)) (4.30)
Amin(LTk41(v, 2)) — Amin(£Tk(v, z)) '

should be comparatively large since ETx(v,x) = 0,(k > n) and El(v,z) # 0,(k < n).

It is noticed that (4.30) is equivalent to (4.28).

(iv) This is proved in a similar fashion to (iii). Theorem 4.4 is thus established.

From Theorems 4.1-4.4, we can easily show that the minimum cigenvalue of the product
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moment matrix is very sensitive to its singularity. This is one main reason that we choose
the minimum eigenvalue ratio test for estimating the order of the system. Also let us
illustrate the reason that we choose the eigenvalue ratio rather than the determinant

ratio test of Woodside (1971) by following simple examples: set a matrix

e 0
M, = 2 ' 4.31
[ ) ] (@31

e—ﬂ

When n is sufficiently large, we can say M, is ‘neatly singular’ due to its minimum

n

eigenvalue e~ being very very small. But unfortunately,

detM, = 1.

So the singularity information can not be found just from the deteminant in this case.
Let

det M,

DR(k) = del My,

n
f—

Meanwhile from M,, we can easily see that the minimum eigenvalue of MM, is a much

more sensible variable to reflect its singularity than the determinant of M,. Let

’\mfn(-nlk—l) - Aml'r:(ﬁa"k)

/\min(ﬂlk) - /\min(Mk+l)

6-("_1)2(1 — c-(2n—l))
e‘"’(l _ e—(2n+l))

n?

(&
=  eln-1)2 =

MER(k) =

Some more discussion and examples will be given in the next subsection. In practice,
the minimum eigenvalue of I't(u,y) will almost always be non-zero, it is expected that
for k& > n the minimum eigenvalue of I'y(u,y) falls to some lower bound range controlled
by the noise covariance matrix. The minimum eigenvalue ratio test is used in place of
the determinant ratio test for the nearly singularity of the product matrix. The so called

minimum eigenvalue test is as follows:

Amu'n(Fk-l(uty)) — ’\ml'ﬂ(rk(u) y))
/\m,‘n(rk(u, y)) - Amin(l-\k-{-l(u, y)) .

The quantity MER(k) forms a normalized order test quantity, such that when k& = 1n,

MER(k) =

(4.32)

MER(k) increase rapidly. In practice, we increase k one by one and if MER(X) reaches
its maximum, we can consider & = 72 as the estimate of n. From (4.28), we can sec
that MER(72} means comparatively large diflerences between [i-1(w,y) and Ci(u,y) and

small differences between I';(u,y) and Cay(u,y) which also occurs in the behaviour of
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imi—oo Amin (T (1, ¥)) = 0 or Amin(Fi(u,y)) approaches to its lower bound range. Now
we consider a more general case i.e. a kind of bilinear system introduced by Chen et al.

(1996) and we only consider a simpler form of bilinear system as follows:
A(z Ny, = B(z"Nun + C(z " Nuny, (4.33)
where y, and u, are the observed system input and output sequences respectively and
Uy = U, + T Tn = Yn+ e, ' (4.34)

vp and z, are input and output data; e, and r, are zero mean uncorrelated sequences
with variance o? and o? respectively are the sources of all stochastic disturbances to the
system; and A(z7'), B(z™') and C(z™") are nth order polynomials in the backward shift

e

operator z~
A(z“) =14aqz '+ ... +az"

B(z™") =byz7 4 . 4 bz

Clz N =cz7 '+ ...+ eaz ™. (4.35)
Set:
Cie(u,y) = Qi y)(u, y) (4.36)
where
Qk(“a y) =
Uup .. Ug Yi .. Yo ULyt - UoYo
: : (4.37)
UN .. UN_E YN .. UN-E UNYN ... UN_RUN—k

and N is the number of observations. Set:

Ap(v,z,r,€) =
0 ... 00 ... 0 wrepdxrre ... voeo + ZoTo
(4.38)
0 ... 00 ... 0 vsnen+2ZINTN ... UN_LCN—k + TN_kTN—F
ETlw(u,y) = E(QU(v,z)+ U(r,e) + Ar(v,z,7,e}) (v, 2) + Qu(r, e)
+Ak(v,z,7,e)) = ET(v,z) + R(v, 2,7, €) (4.39)
where
R(v,z,re) = E(Q(v,z)) (Uu(r ) + Ax(v, 2,7, ¢))
+(Q(r,e) + Ax(v,z,7,€)) Qi (v, 2)). (4.40)
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Theorem 4.5.

(i) If {r+} and {er} are while noise disturbances and independent of {v;} and {zi}, then

Ri(r,e,v,z) = diag(a?,..., 0% a7, ... ,az,gfaf, e ,ofcr;).
E¥1  kt1 k41
(i) If {r}, {er} are coloured noise series and there ezists a constant C such that:
)\mu(flk(r,e,m,v)) <o, k=1,2,... : (4.41)
then
Amin(ET4(1,9)) = Amin(ETi(v,2)} + Re,  Ri < C. (4.42)

The proof of the Theorem 4.5 is similar to that of those in Theorem 4.4. It is natural
that the MERT can also be used in the bilinear system.

4.3.3 Examples

Three examples are presented here to illustration how the MERT works for the linear and
bilinear system with white noise and coloured noise respectively.

First we consider the example given by Wellstead (1978) whereby we can compare Wood-
side’s DRT .

Example 4.1.

We consider the system as follows:
Yng1 — 15yn + O-7yu—l =u, + 0-51"-71—! + €n+1 (443)

where e, is white noise with variance o2 and is independent of u; and in here for simplicity
we assume 7y = 0. Table 4.1 shows the variation in the determinant ratios (DR) and the
minimum eigenvalue ratio (MER) of the product moment matrix for various orders, and

based upon 500 data points and the u, is a white noise series with Fu),=0and o, = 1.
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TABLE 4.1. The Comparison of order estimate test of DR and MER

c=0 c =0.01 o =0.05 c=10.1 =02
DR(1) 3.51297 3.51359e-08 | 3.50882¢-08 | 3.49439e-08 | 3.50009¢-08
DR(2) 44276.1 0.0114784 | 0.000388697 | 0.000122614 | 3.22383e-05
DR(3) 141572 0.0115572 | 0.000391872 | 0.000123378 | 3.29072¢-05
DR(4) 217848 0.0117354 | 0.000400107 | 0.000126035 | 3.33166e-05
MER(1) 4.39868 4.39864 4.38944 4.39958 4.36695
MER(2) | 1.07078¢+12 270243 8204.94 2858.12 638.784
MER(3) 2.38109 2.076311 2.40435 2.30346 3.080796
MER(4) 1.92904 2.6573 1.9434 2.019417 2.25812

Figure 4.1.1 shows the variation in the determinant ratios (DR) of the product moment
matrix for various orders. Note that as the variance of ey is increased the change in the
product moment determinant ratio is blurred.

Figure 4.1.2 shows the variation in MER. method of the product moment matrix for var-
lous orders. Note that as the variance of e is increased the change in the MER version

relains, to a certain extent, its discriminatory power.

Example 4.2.

We consider the system with the coloured noise as follows:

Ynt1 — LOyn + 0.7y, = u, + 0.59u, -y + epyy — 0.5e, (4.44)

Table 4.2 shows the variation in the determinant ratios (DR) and the minimum eigenvalue
ratio (MER) of the product moment matrix for various orders, and based upon 500 data

points and the wu; is a white noise series with Fux =0, and o, = 1.
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TABLE 4.2. The Comparison of order estimate test of DR and MER

c=10 =001 o =10.05 og=0.1 g =02
DR(1) 2.1956e-05 | 2.19217e-05 | 2.19444e-05 | 2.14101e-05 | 2.10853¢-05
DR(2) | 6.70777e+07 | 0.239791 0.0101751 | 0.00249238 | 0.000546805
DR(3) | 7.83125e¢+07 [ 0.284344 0.0122996 | 0.00286875 { 0.000665293
DR(4) | 1.04709e+08 | 0.303033 0.0129332 | 0.00293136 | 0.000697109
MER(1) 4.39868 4.4041 4.44528 4.60215 5.26181
MER(2) | 2.17086e¢+-13 112292 19590.5 789.234 132.171
MER(3) | 0.0844448 0.128343 0.0416726 0.544485 0.256149
MER(4) 1.22852 5.14429 1.62926 3.047697 1.2321

Figures 4.2.1-4.2.2 show the similar results as Figures 4.1.1-4.1.2.

Example 4.3.

We consider a bilinear system similar to that of Chen et al. (1996) as follows:

Yng1 — 15yn

able 4.3 shows the variation in the determinant ratios (DR) and the minimum eigenvalue

ratio (MER) of the product moment matrix for various orders, based once again upon

+ O.Tyn_]
= u,+ 0.5un_1 — 0.2ynun + O.Iyn_llf.n_] + Cn41 + 0.23"_

300 data points and the uy is a white noise series with Eux =0, and o, = 1.

TABLE 4.3. The Comparison of order estimate test of DR and MER

c=20 o =0.01 o =10.05 o=0.1 o=102
DR(1) 1.4945e-09 | 1.49625e-09 | 1.52628e-09 | 1.48044¢e-09 | 1.45691e-09
DR(2) 4862.63 3.24106e-05 | 1.49464¢-06 | 2.998e-07 | 7.22596e-08
DR(3) 7534.74 3.44451e-05 | 1.56957¢-06 | 3.1102e-07 | 7.53756e-08
DR{4) 34410.4 3.49498¢-05 | 1.61273e-06 | 3.18014¢-07 | 7.78108e-08
MER(1) 6.52662 6.52863 6.553 6.71938 7.83037
MER(2) | 4.45992¢+12 | 6269178 307.595 60.3803 13.06294
MER(3) 0.280472 3.23657 3.083804 2.96004 2.55572
MER(4) 0.621848 2.27728 2.66296 2.42319 2.35324
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Figures 4.3.1-4.3.2 show the similar results as Figures 4.1.1-4.1.2.
Irom Tables 4.1.-4.3. and Figures 4.1.1-4.3.2, we deduce the following:

o When there are no disturbances (¢ = 0), both DRT and MERT work very well.

¢ When o # 0, MERT works very well but not DRT, even if the variance of the noise

is very small.

* The sensitivity of MERT decreases as o increases, but considering the ratio of
signal/noise 5 = 10 x logo,/o, the high noise (S=16, i.e. o = 0.2) case, the
MERT looks reasonably good.

e The MERT works well both in bilinear and linear system with coloured and white

noise disturbances.

From three examples presented here, we deduce that the MERT is a very practical method
to estimate the order of linecar and nonlinear system prior to parameter identification
which can overcome both insensitivity of the system noise and computationally expensive

procedures.

4.4 Conclusion

Some useful model validation and order determination tests and techniques are reviewed
and the minimum eigenvalue ratio test of product moment matrix introduced in this
chapter is a natural extension of the deterministic system. The purpose of presenting
here is to provide a straightforward way to estimate approximately the order of unknown
system as a complement of some popular methods reviewed in the first two sections of
the chapter. The MERT method has the advantage of a crisp asymptotic rank condition
which is not influenced by the observed input/output data disturbances and provide a
simply and direct way to estimate the approxiamate order of a unknown system by using
input/output data set. Morcover, this method can be extended to a first stage estimate
on more complicated structures of the model as well as the order of a wide range system
model. For the system with significant disturbance about the observed input/output

data, more statistical reliability analysis should be carried out and it is suggested that
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the method supposed to be carefullly used or combined with the comparatively mature

methods reviewed in the chapter.
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Chapter 5

Review of Cohesive Sediment
Transport Processes and Associated
Mathematical Modelling

5.1 Introduction

Sediments form a crucial link in estuarine processes. Suspended sediment concentrations
are generally high, the particles are fine, cohesive, and prone to flocculate, and they are
richly organic. The prediction of movements of very fine sediments is of major impor-
tance in many coastal areas or estuaries, as these sediments cause nuisances which require
costly solutions: siltation in navigational channels and harbour docks, degradation of wa-
ter quality. Cohesive sediments are also a vehicle for pollution, due to their facuity for
absorption of heavy metals, pesticides and radionuclides (Teisson, 1991).

Large efforts have been undertaken to analyse extremely complex mechanism of transport,
deposition and erosion of cohesive sediment as reported by Mehta (1986). So sediment
transport in coastal and estuarine regions is an important topic which is receiving in-
creasing attention by environmental researchers. The description of cohesive sediment
transport process is given in section 5.1, and the review of some numerical modelling of

cohesive sediment transport is given in section 5.2.
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5.2 Cohesive Sediment Transport Process

Due to the interparticle forces, cohesive sediments and especially the very fine clay par-
ticles (d < 2mm.) form loose aggregates or flocs when the concentration of sediment
in suspension increases, particularly in a saline environment. As flocs are formed, the
settling velocity increases by several orders of magnitude compared to the individual clay
particles. However, above a certain concentration, the particle aggregates start to hinder
each other and the settling velocity decreases rapidly. When the flocs finally reach the
bed, they form a dense fluid mud layer with strongly non-Newtonian rheological prop-
erties. Due to continuing deposition, the mud layer which initially was a loose fragile
structure, gradually collapses under its increasing weight. The interstitial pore water is
expelled; the weight of mud layer is progressively supported by the interparticle reaction
forces. This process is called self-weight consolidation. The mud layer can be eroded due
to fluid shear caused by currents or waves and induced turbulence.

In practice the prediction of cohesive sediment transport is intimately tied to the knowl-
edge of these physical processes (Teisson, et al. 1993), which has encouraged extensive
studies on these processes.

But cohesive sediments appear like a “water-sediment” complex, and the behaviour under
flow action can be modified by the physico-chemical properties of the fluid (temperature,
ionic composition,...) or by the sediment nature itsell (mineralogic composition, organic
content,...). Thus, for engineering applications, studies have usually been empirical and
site specific, with the development of well known laws relating the rate of the sediment
processes to “lumped” parameters (Mehta, 1989a; Delo 1988). These global parameters,
such as bed density and mean flow velocity, do not account for the basic nature of particle-
particle or flow-particle interaction (Mehta 1989a). This inhibited the intercomparison of
data or even methodology, and the list of parameters to characterize mud. So there is a
need to standardize the parameters, which aims at a better description of mud properties
and understanding the basic cohesive sediment transport process.

Understanding the process of cohesive sediment, and quantifying them in terms of en-
gineering parameters has, until recently, depended mainly on laboratory testing. Ex-
periments focused on one isolated process (deposition, or erosion, or consolidation) and
most usually under steady conditions. However, in marine environments, tides impose
cyclic conditions and the processes of deposition at slack waters, partial consolidation,
and resuspension at higher flow velocities are interrelated. Moreover, laboratory exper-

iments cannot account for the complexity of the field. To enlarge the useful empirical
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relationships derived from laboratory experiments for the processes in steady conditions
(Mehta, 1988), there is a need to investigate some of the processes in unsteady conditions
in laboratory experiments (Van Leussen and Winterwerp, 1990) or directly in the field
(Van Leussen and Cornelisses, 1992).

Classical relationships describing the processes, although very useful, lack general ap-
plicability because the physics of the salient processes is hidden behind the “lumped”
parameters. This is the case for instance for flow sediment interaction: classical soils the-
ories applied to consolidation or two-phase flow models applied to turbulence show that,
behind the diversity of behaviour or approaches, there must exist some firm relationships

which can help in defining and then estimating the governing parameters.

5.2.1 Deposition

The process of deposition of cohesive sedimeni depends on a combination of different
factors, including the size, settling velocity and sirength of the settling particles. These
particles may be single or, more likely, aggregates or flocs which may be loosely or strongly
bound together. The flocs have dimensions and settling velocities of the primary particles.
A review of the aggregation processes is given by Van Leussen (1988). A number of
mechanisms can be responsible for the aggregation of the sediment particles, including
salt flocculation, organic aggregation, bioflocculation, pelletization. Large fragile flocs
may result, which are easily destroyed into smaller units, for example by shear force.
It may be hypothesised that the deposition of the flocs is controlled by the stochastic
turbulent processes in a zone near the bed. Only flocs that are strong enough to resist
the bed shear stresses will settle to the bed. Flocs of which the strength is too low will
be broken up into {wo or more smaller units and re-entrained into the suspension by the
hydrodynamic lift forces.

Several researchers have formulated models for deposition, either for a uniform sediment
or for a distributed sediment with different sized particles having a range of strengths
and settling velocities (Mehta and Partheniades, 1975; Mehta and Lott, 1987; Verbeek
el al. 1993; Krishnappan, 1991). Most of this work has been developed from laboratory
tests where sediment is contained in a closed system. For application to field situations
the models should be based on input also determined from the field. The field data
recorded in the Mersey Estuary was used Lo test and compare a simple deposition model
for uniform sediment and a second model for distributed sediment. The models were first

test on laboratory data, and the sensitivity of the models to the input parameters was
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also investigated (Ockenden, 1993).
For the simple uniform sediment model, deposition rate on to the bed, d, was modelled

according to Krone (1962) by the equation:
d= (1 —n/rq)wse, 7 <74 (5.1)

Time histories of bed shear stress, 7, critical shear stress for deposition 74 , settling
velocity w, and suspended sediment concentration, ¢, were prescribed during a tide. The
model was then modified to allow for a distributed sediment according to Mehta and Lott
(1987). This model assumes that the sediment is divided into N classes, each having a
unique settling velocity, w,;, concentration, ¢; and critical shear stress for deposition, 4.
The total sediment deposited rate on the bed D, is given by the sum of the individual

amounts deposited from each class:
D= Bw,.-fc.-c(l — Tb/Td,') (5.2)

where f¢; is the proportion of the total concentration in sediment class i, and sediment
class 7 only deposits if 1, < 74.

Both models gave a reasonable fit to the measured data for each of the monitored tides
(Teisson, 1992). One noticeable feature (which occurs in each of the tides) is that the
predicted deposition (from both models) occurs earlier than the measured deposition,
showing a delay between the low shear stresses and the actual deposition on the bed.
This delay is consistent with a flow-sediment hysteresis effect, as described by Costa and
Mehta (1990), where for the same mean horizontal velocity, values of the Reynolds stress
and turbulent variances were higher during decelerating flow than accelerating flow.

The distributed sediment model includes an improved representation of the differential
setiling of aggregates. However, for the application of field data, the uniform sediment
model gives as good a fit to the data as the distributed sediment model.

The predicted deposition (and corresponding drop in concentration in suspension) over
high water corresponds well with the measured drop in concentration recorded over this
period (Ockenden, 1993), indicating that it is only a local effect. However, at other periods
of the tide, it can be shown in the field data that sediment has been advected in from
somewhere outside the region. By comparing the predicted and measured concentrations

it should be possible to separate the local effects from the advected effects (Dyer, 1988).




5.2.2 Erosion

The mechanics of mud erosion has been reviewed by Mehta et al. (1989). Three modes
of erosion have been identified according to the magnitude of the bed shear stress and
the nature of the deposit. Visualisation of these processes with detailed picture of eroded
beds can be found in (Migniot, 1968) and (Perigaud, 1983). This includes: ,

¢ Re-entrainment of stationary suspensions, where an undulation in the interface ap-
pears which is gradually accentuated, increasingly deforming the layer of sediment.
In the end the sediment is carried away in the form of mud streaks and diluted in

the current water.

o Surface erosion of consolidating beds where the eroded surface creases and the sur-
face film is torn. The mud is eroded in the form of flakes which are more or less

diluted. In this case, Migniot defined the mud as plastic.

¢ Mass erosion of fully consolidated deposits, which requires very large bottom ve-
locities (1 m/s or more) to be eroded. Mud pebbles are formed and not easily
diluted.

By analysing bed samples with a Brookfield viscometer, (Migniot, 1989) fixed the limit
between fluid and plastic mud at a yield value of 3N/m? and that between plastic and
fully consolidated muds at 75 N/m?.

From the hydrodynamic point of view, bursts of turbulence near bed appear to play
a dominant role in the erosion process (Winterwerp, 1989). Hydrodynamic forces are
balanced by cohesion forces which are influenced by a large number of chemical and
biological factors. There is no established theory for calculating the rate of erosion of
mud deposits, instead it is necessary to rely upon site specific studies including laboratory
flume tests or field measurements.

Many empirical laws for the erosion rate, £, have been proposed in the literature from

deposited bed flume experiments. The simplest is expressed as (Ockenden et al. 1989):
E=M/(r-1) (5.3)

with M. = a constant, 7 = bed shear stress estimated in clear water, and 7, = shear

strength of the deposit.
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M, and 7. are functions of the mud deposit and the depth. The determination of the
critical shear stress 7. is discussed in Berlamon et al. (1993). Based on the concept of
floc erosion rate, Parchure and Mehta (1985) have proposed a more complex expression

where two additional parameters are used including the floc erosion rate E;:
E = Erexp(a{r — 7.)%) . (5.4)

(Kujiper et al. 1989) have performed experiments in a recirculating straight flime and an
annular flume with kaolinite and have analysed the results following Parchure’s method-
ology. Two important conclusions have been drawn up from this study: (i) the larger
number of parameters to be set facilitates the tuning of the equation to provide reason-
able results. This tuning would be a cumbersome (or even unreliable task) for practical
cases. (ii) the proposed formula is very sensitive to the bed shear stress which is very
difficult to estimate in practical cases.

For practical applications, erosion formulae derived from steady state laboratory experi-
ments are often used in tidal conditions. However, it is commonly observed in the field
that during decreasing currents concentrations are higher than during increasing currents;
likewise, sediment concentrations often lag hydrodynamic force (Costa and Mechta, 1990).
This feature is known as flow-sediment hysteresis (Dyer, 1988).

Van Leussen and Winterwerp, (1990) conducted annular flume experiments under tidal
conditions and showed the dominant role of the top layer of the bed, which develops under
the successive phases of deposition and erosion. Costa and Mehta, (1990) also illustrated
the difficulty of predicting suspended sediment concentration during a tidal cycle with
a simple description of erosion/deposition processes that arose from laboratory experi-
ments.

Long term simulation of suspended sediment transport in the Loire estuary performed by
(Fritsch et al. 1989} has shown very little dependence on the erosion law, but the correct

estimations of the critical shear stress was very important in this case.

5.2.3 Consolidation

During a deposition phase, flocs or individual particles settle on the bottom and form
new sediments thal can concentrate and consolidate. The stiffness of this fresh mud
increases progressively and consequently its erodibility is reduced. Thus cohesive sediment
transport modelling requires knowledge of the surficial sediment shear strength which has

to be deduced from a consolidation model or measured in laboratory or field tests. A
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parameter which quantifies the erodibility of a sediment is its erosion threshold. i.e. the
bottom shear stress which is needed to resuspended it.
In the present work, investigations about self-weight consolidation have been conducted

in four directions:

e synthesis of previous fundamental research, especially that drawn from soil mechan-

ics;

o compilation of existing laboratory settling experiments and identification of required

new tests;

¢ development of mathematical models for consolidation, and coupling with sediment

transport models;

e validation with field measurements, both in terms of density evolution and shear

strength variation.

As indicated in a review by Alexis et al. (1992), two families of models can be distin-

guished:

* The “sedimentation” models express mass conservation of the solid particles, with
vertical exchanges represented by the settling fluxes. A common assumption of this
approach is the unique dependence of the settling velocity on the local suspension

density (Kynch, 1952), due to hindered settling processes;

¢ The so called “consolidation” models account for mass conservation of pore water
and relate its expulsion between particles to the pressure vertical gradient by means
of permeability, assuming Darcy’s law. From the dynamics point of view, the stresses
within the soil can be split into effective stresses on the grains and pore pressure on
the fluid: only the latter forces the water movement. This concept is the basis of
geotechnicians’ approach. When combined with water mass conservation, it leads
to Gibson’s equation (Gibson et al. 1967), assuming constitutive relationships for

permeability and eflective stress as functions of the void ratio.

The former models seem to be more appropriate for suspensions and the latter convenient
for dense mixtures; both are consistent as they consider the relative movement between

the solid and fluid phases. Their analogy when effective stress is negligible has been shown
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by Been, 1980. On the other hand, the possible reduction of settling velocity by effective
stress can be introduced in a sedimentation model (Toorman and Berlamont, 1993). In
fact, a real two phase flow approach should be more suitable when dealing with a large
range of concentrations, enabling total continuity between deposition and consolidation
processes.

Despite its theoretical basis, Gibson’s equation does not represent a general formulation
for consolidation, as it relies on restrictive assumptions. By not assuming Darcy’s law and
accounting for the fluid compressibility (partially filled voids for unsaturated soils. Alexis
el al. (1992) proposed an extended formulation of the consolidation equation which is
very similar to the settling formulation by Toorman and Berlamont, (1993).

It should be noted that all these theories do not deal with bed shear strength and require
a relationship between concentration and erosion threshold for parameterizing the sedi-
ment erodibility. Besides, they only consider vertical processes, although some horizontal

movement can interfere, especially when mud is fluidized by wave motion.

5.2.4 Turbulence

Turbulence is the factor which maintains sediment in suspension by opposing the settling
flux. The vertical distribution of sediment results from these antagonistic actions and has
been thoroughly described under varying hydrodynamic forcing (Mehta, 1989b). How-
ever, our knowledge is still hampered by the complex interactions between the sediment
and the flow field, especially atl large concentrations or near the bottom.

Some attempts have already been made to account for the influence of sediment in these
Lwo areas:

(i) The vertical structure of the concentration profile in highly concentrated areas and the
presence of so-called lutoclines — zones of high gradient of concentration and minimum
of mixing — has been described and mathematically modelled by (Wolanski el al. 1988;
Ross and Mehta, 1989; and Smith and Kirby, 1989). In these models, sediment is mixed
vertically by an eddy diffusivity approach. However, through a Richardson number de-
pendency, sediment-induced density effects inhibit vertical mixing. These models enable
satisfactory reproduction of the generation and evolution of lutoclines.

(ii) The other domain of interest is how the presence of sediment can affect the bottom
shear stress and the bottom processes. (Sheng and Villaret, 1989) performed numerical
test with a turbulent 1DV model including investigation of the influence of the suspen-

sion on the turbulent flow and bed shear stresses. This model has been applied further
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by (Huynh-Thanh ef al. 1991). Gust, (1976) verified the turbulent draft reduction in a

clay suspension in a small flume and found in the field that the shear velocity u" could

be reduced by as much as 40%.

Classically, the variation of sediment concentration ¢ along the vertical axis is written as:
dée  Jw,c dw'c
ot e T e

where w is the vertical velocity of the flow, the overbar sign is the time-average value, w,

(5.5)

is the settling velocity of particles, possibly a function of concentration and ¢, w' are the
fluctuation of ¢ and W respectively.

The turbulent flux is usually modelled by a first gradient approximation:
w'c = —KJ¢/0z (5.6)

and the effect of concentration (density) on turbulence is generally not represented, lead-
ing in steady condition to the well known Rouse equilibrium profiles.

For the boundary condition at the bottom, exchange with the bed (erosion and sedimen-
tation) is empirically related to a mean flow velocity.

In low turbidity environments, these models are acceptable and have been widely ap-
plied, but they present two inadequacies for a more fundamental approach: to rely on
a crude approximation of turbulence, and to relate processes occurring near the bed to
lumped parameters. In essence, they cannot represent accurately the processes very close
to the bottom when large concentrations are experienced, and flow sediment interac-
tion becomes important. Neither can they describe thoroughly the balance or imbalance
between turbulent and settling fluxes. Consequently, laboratory studies have been con-
cerned with providing deposition and erosion rate expression in relation with the level
of mathematical modelling, with less than adequate emphasis placed on the evolution of
the vertical structure (Mehta, 1988). Application of classical erosion/deposition laws in
high concentration environments has revealed itself of limited utility due to complex near
bed interactions and has suggested the need for an improvement in turbulence modelling
(Costa and Mehta, 1990).

Today, a new generation of models , such as Reynolds stress models and two-phase flow
(sediment and fluid) models has become available in the industrial domain experts have
tried to apply and the most recent ideas and concepts Lo cohesive sediment, laden flow.
The philosophy is to represent the hydrodynamics, turbulence and flow sediment interac-
tion in Lthe most accurate way, and, if possible, to get a new understanding of the physical

processes in return.
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5.3 Numerical Modelling

The implementation of these processes into numerical models has started in the 1970’s
with Odd and Owen, 1972 and Ariathurai, 1974. At that time, use of three-dimensional
(3D) models was impossible due to computing costs and capacity: morphological evolu-
tions are very slow in the field and require time consuming long term simulation.
Several numerical models have been developed in recent years. These models range from
one-dimensional vertical profile formulations (e.g. De Vantier and Narayanaswamy, 1989;
Hagatun and Eidsvik, 1986) via two-dimensional vertical or depth integrated models (e.g.
Van Rijn, 1987 and references therein; Teisson and Frisch 1988; Veeramachaneni and
Hayter, 1988) to quasi- or full three-dimensional formulations (Sheng and Bulter, 1982;
Van Rijn and Meijer, 1988; O’Connor and Nicholson, 1988; Eidsvik and Utnes 1991; Utnes
1993;Utnes and Ren, 1995} and others.

For engineering applications, the sediment transport model is generally coupled with a
hydrodynamic model, to get information on flow velocities. All above mentioned mod-
els are based on the conventional Reynolds averaging of the incompressible Navier-Stokes
equation including the continuity equation, turbulence model and advection-diffusion con-
centration equation. The model equations are obtained by a conventional Reynolds av-
eraging of the incompressible Navier-Stokes equations including the continuity equation.
The governing equations of some models will be given later.

The equations which govern the distribution of the mean flow quantities are dealt with
in this section and therefore form the basis of the so-called field methods. The origin of
these equations are the conservation laws for mass, momentum and suspended sediment
concentration. For incompressible flows, these laws can be expressed in tensor notation

as follows. A short introduction to tensor notation is given as Appendix 5.A.

Mass conservation: continuity equation:

au;

dz;

Momentum conservation: Navier-Stokes equations:

0, i=1,2,3 (5.7)

ou; d 1 9P d*U;
En -+ U_,'%J-‘(U.') = ——z—+v

i 1,71 = 1,2, .
p 05 T Bz, +g 1,7 2,3 (5.8)
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Sediment concentration conservation:

oc _oc . &cC
o T Ve T A ania;

Where U; are the instantaneous velocity component in the direction i, P is the instan-

+S. (5.9)

taneous static pressure, C is the instantaneous suspended sediment concentration, S, is
a source term expressing the mass generation due to chemical or biological reactions, v, A
are the kinematic viscosity and diffusivity of C respectively, p is the flow density that is

assumed as constant and g; is the gravitational acceleration in direction z;.
Reynolds’ time-averaging procedure

Reynolds’s applied the Navier-Stokes equations to turbulent flow by introducing a time-
averaging procedure. Each instantaneous variable is represented as a time-mean value

plus a fluctuating value. Thus:
Ui=ui+vu;, i=123 C=c+c, P=p+yp (5.10)

u; are the time-mean velocity components in the direction z;, and u; are the fluctuation
velocity component in the direction of z;. p, p’ are the time-mean and fluctuation static
pressure respectively and ¢, ¢’ are the time-mean and fluctuation suspended concentration
respectively.

The mean values are defined by:

f= %/OT F(t)dt (5.11)

in which T" is time-averaging period. This period T should be larger than the dominant
turbulence scale, but small than the long periodic effects such as the tidal scale (T between

2 to 5 minutes is a good choice).

5.3.1 Three Dimensional Model

The governing 3D model equations are usually oblained by a conventional Reynolds av-
eraging of the incompressible Navier-Stokes equations including the continuity equation

as follows:
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Momentum Equations:

au, 1 dp g, Oui — _ .
N 8 (“ uj) = Y + 53;;("573:‘; —wui}+gi, 43 =123 (5.12)

Continuity equation:

du; '

— =0 r=1,2,3 5.13

aml H t t Bt} ( )
The suspended sediment concentration is computed from the transport equation as fol-
lows:

dc 0 d v e —, Ocw,

at + Jx; 5, (cw) = 3:1:. ;:3:::, we) + dxz; + 5 (5.14)

Here the overbar sign means the time average value and u:-u;- is the turbulent Reynolds
stress tensor.

The Reynolds stress is modelled by use of the Boussinesq assumption

Ou; Ou; 2

wt; = ”‘(ax 3:1::) 3" (5.15)
where
=C, k—Q {5.16)
is the eddy viscosity,
k=-;—(u_?+u_?+u—? (5.17)

is the mean turbulent kinetic energy, ¢ is the turbulent energy dissipation rate and §;; is

the Kronecker delta.

These are the equations governing the mean-flow quantities u;,p and ¢. The equations
are also exact since no assumptions have been introduced in deriving them; but they no
longer form a closed set due to the nonlinearity of (5.8) and (5.9). The avera,ging pro-
cess has anoduced unknown correlations between fluctuating velocities, u;u;, and scalar
fluctuations ul-c. Physically, these correlations, multiplied by the density p, represent the
transport of momentum and mass due to fluctuating (i.e. turbulent) motion. —pTu} is
the transport of z;- momentum in the direction z; (or vice versa); it aclts as a stress on

the fluid and is therefore called turbulent or Reynolds stress. —]JI_L:-—C is the transport of the
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scalar quantity ¢ in the direction z; and is therefore a turbulent mass flux. In most flow
regions, the turbulent stresses and fluxes are much larger than their laminar counterparts
u%}} and ,\-597‘; which are often negligible (Rodi, 1979).

Equations (5.12)-(5.14) can be solved for the mean values of velocity, pressure and sedi-
ment concentration only when the turbulence correlations uTu;_- and u_:c can be determined
in some way. In fact, the determination of these correlations is the main problem in cal-
culating turbulence flows. Exact transport equations can be derived for E’: and 17;2 that
will be given later, but these equations contain turbulence correlations of the next higher
order. Therefore, closure of the equations cannot be obtained by resorting to equations for
correlations of higher and higher order; instead, a turbulence model must be introduced
which approximates the correlations of a certain order in terms of lower order correlations
and mean-flow quantities. The laws described by a turbulence model simulate the aver-
aged character of real turbulence; these laws are expressed in differential and algebraic

equations which together with the mean flow equation (5.12) to (5.14) form a closed set.

5.3.2 The Standard High Reynolds Number (k£ — ¢) Model

+ = —

_— UiT7— = I =—
o Jz; aIi(Uk 33:;)
N~ S— S —
rate of change convective transport  diffusive transport.
au; au,- 3u.' Vy ac
v + i—
+ ‘(aa:,- az;)az,- + Ay ot 0z;
P = production by shear / destruction G = buoyant production
c’)u.- 8u,-
— y— 1 5.18
az,- a:l:_,' ( )

€ = viscous dissipation

Je de 0 v Oe ¢ ¢?
7l + U."a—; = a_z.(Zﬁf,) +f:1¢E(P + G)(1 + cafy) — Cae (5.19)
S~ —— ——— —_ 7,

rate of change convection diffusion generation-destruction

and the conventional model constanis are (Rodi, 1979):

Cl¢ = 1.44, Cye = ]92, C3c = 0.8 g = 10, g, = 1.3
ge=10 B=10, R, =—G/(P+C),
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The deposition, erosion and consolidation information are usually included in the bound-

ary conditions.

5.3.3 Reynolds-Stress Equations

The first suggestion to determine u from a transport equation was made already in
(Keller and Friedmann, 1924). These authms showed how (under certain assumptions)
equations for u;u; can be derived, but they did not give the equations explicitly. (Chou,

1945) was the first to derive and present the exact u;u; equation given below:

Ouu; 4 u_;au,.u,. __ a Z"T) 1(8u 8u,-p)
al dz; dz; dz; Oz,
N—— N’ ~ —~

rate of change convective transport diffusive t transport
» ,3 i —Ou; — —
- mwgs “5“:5;’4 - @"“ifj’ gitie)
P.'j _ stress production G';; = buoyancy production
Jd H au' a vy 7]
+ P( %y 2y e’} (5.20)
3z, Ozx; ¥ 821 Oz
_,_/ —_—

mi; = pressure strain  €;; = viscous dissipation

The contraction of this equation, that is when the 3 equations for the 3 normal stresses
(i =7 =1,2,3) are assumed up, yields the exact turbulent kinetic energy equation (5.18)
presented already (note that & = —u 2y 2) The physical meaning of the individual terms
of the k-equation was described and equivalent terms appear in equation (5.20) which
represent the rate of change, convective and diffusive transport, stress- and buoyancy-
production, and viscous destruction of Tu;- Equation (5.20) contains an additional term
denoted “pressure-strain” term because it involves correlation between fluctuating pres-
sure and strain rates. This term is absent in the k-equation (5.18) so that it contributes
nothing to the total energy balance; it only acts to redistribute the energy among its
components (when ¢ = j) and to reduce shear stresses (when ¢ # j ). This term tends

therefore to make the turbulence more isotropic.
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5.3.4 Two Dimensional Depth-integrated Model

In case of flow in a large-scale area in which the water depth is small compared with the
horizontal dimensions of the area concerned, it is allowed to neglect the accelerations in
the vertical plane. This leads to dp/dz = —pg, giving a hydrostatic pressure dnst.nbutlon
{p = —pgz). A definition sketch is given in Fig 5.1.

Fig 5.1 Symbol definitions

Depth-integrated models therefore appeared very attractive in well mixed situations, and
numerous two-dimensional horizontal (2DH) models were developed, for example are those
of {Hayter and Mehta 1982, Cole and Miles 1983, Thomas and McAnally 1985, and Teisson
and Latteux 1986). All these models are based on a time-average continuity equation,
Reynolds stresses equation, k— ¢ turbulence model and the well known advection-diffusion
equation. The equations of motion in z and y direction can be integrated over the water
depth, yielding (p = constant):

Continuity equation:

oh 8, . 9, .
a’ + a—x(hlt) + @(hv) =0 (521)

Momentum equations:

ok . oha? N dhuv 4 ,a(h + z) 4 LT
L - r
al dz Jdy I Oz p b

10 10 1 1
= = (WTus + hhoe) = — o (hTey + hHzy) = ~Foz — ~SF; = 0 5.22
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dhv ohv®  dhuw + ha(h + 2z) + 1

I Ay vt tY dy ;Tby
10 19 1 1
—_ ;E;(’lﬁyy + h.[(yy) - ;'a—z(ll,?;y + Il[\’zy) -_ ;Fc,y - ;EFy = 0 (523)

Advection-diffusion equation:

gc oz & 189, 05 18, 0 S

TR + v@ = Ega;[h (IE_:—] EB—y[hKya_y] + n (5.24)
in which
h = water depth
S = source-sink term
5 ;‘ ** cdz = depth-integrated concentration of suspended load
u =+ f: udz = depth-averaged velocity in z-direction.
T = 1 [, vdz = depth-averaged velocity in y-direction.
Zs = vertical coordinate of water surface above a horizontal plane
2 = vertical co-ordinate of bottom above a horizontal plane
Fer, Fey = body force per unit area due the earth rotation (coriolis force) in z and y
direction
F;, F, = external driving forces (wave-induced, wind induced) per unit area
Tbz, Toy = bottom shear stress in z-direction and y- direction
Try = ;’{qu(g—: + g—: — pu'v'}dz = depth-average shear stress
Trz =+ /. z‘{2pug—‘:‘ — pu'u’}dz = depth-average normal stress
Ty =1 z'{2pua—" pv'v'}dz = depth-average normal stress
Kz = —'— o p(E = u)(v — v)dz = dispersion coefficient
Kz = f p(t — u)(¥ — u)dz = dispersion coefficient
Ky, = —'— ... p(® — v)(T — v)dz = dispersion coefficient
K., K, = eﬂectlve dispersion coefficient

Usually, the depth-averaged stresses and the dispersion components (introduced by the

depth-averaging procedure) are related to local velocity gradients as following:

2= 2=
aa (hT ez + hfinz) + —(h-r,,.y +hiK,,) = K (gz“ + gyi; (5.25)
a, _ , %% 0%
-a—y(hcrw + hK,,) -I— (h‘r,,y + hKz) =K (32:2 aTI?) (5.26)

k — ¢ model for depth-average calculations
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It is assumed that the local depth-average state of turbulence can be characterised by
the energy and dissipation i: and & The variation of k and ¢ is determined from the

following transport equations:

ok ok 9,0k 0, 0 0k

ua_I +‘U§5 = 3z a-a;) + %(;‘-a—y) + Prn+ P, — € (5.27)
oé dé d , i 0¢ d v O¢ é é? .
U Vg =5 (—5= a \_ o s Pcu— € .
Yoz +U@y dz o, 63:)+ é)y(acay)-*_cl kPh+ © k (5:28)
where
o9, v,  O0u v,
P, = u¢[2(ax) +2(3y) + (ay + a3:) ] (5.29)

is the production of & due to interactions of turbulent stresses with horizontal mean
velocity gradients. k, & and 7 are not strictly depth-average values (they are defined by
the above equations), but the k- and é- equation (5.27) and (5.28) can still be considered
| as depth-averaged forms of three-dimensional equations (5.18) and (5.19) as can all terms
| originating from non-uniformity of vertical profiles which are assumed to be absorbed in
the source term P, and P,,. The main contribution to these terms stems from significant
vertical velocity gradients near the bottom of the water body. By interaction with the
[ relatively large turbulent shear stresses in this region these gradient produce turbulence
| energy, which is in addition to the production P, due to horizontal velocity gradients and
which depends strongly on the bottom roughness. Rastogi and Rodi, (1978) related the

additional source term Fi, and P, to the friction velocity u™ by writing

3 4
u” u”
Pku = CkTa Pcu = cc_ll? (530)
and determined u* from the usual quadratic friction law
u” = /e (W +70?) (5.31)

where ¢; is a friction coefficient. The empirical constants ¢; and ¢, were determined from
undisturbed normal channel flow

1 C2¢
Cp = —— Ce = 36;'3W\/C_# (532)
!

The adaptation of the k — ¢ model for depth-averaged calculations is certainly of a rather

empirical nature, but the calculations performed so far (Rastogi and Rodi, 1978; McGuirk

; and Rodi, 1978; and Hassain, 1980) show encouraging results; It should be emphasised
that the model described here does not account for the dispersion terms appearing in
equation (5.22) to (5.24).
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5.3.5 One Dimensional Two-phase Flow Model

It is assumed that the sediment concentration ¢ 1s small so that the interaction effects
between particles are negligible. The response time of the particles is assumed to be small
compared to the characteristic time to the mean flow so that, except for a systematic fall
velocity, the particles follow the mean flow. The waves and currents are mainly oriented
along one direction characterised by the co-ordinate z. With these simplifications, the

conservation equations for mean momentum and suspended mass become:

T L ftor + ) (533
?a_ = (%[(W/a,r + v[,)%] +P4+G-—¢ (5.34)
O = 2 f(orfoe+ vi) el + [P+ G) ~ eadl (5.35)
2% e 2 (o, + (X L )] (5.36)

Here the force function is the pressure gradient Jp/0z. The mass average density is
7 = (1 —€pys +Tp, and py, p, are the density of sediment and flow respectively and
Ap = p;—py is the density difference between the sediment and the flow. The mass average
velocity @ is given by pu = (1 — €)psjuy + €psu,. The settling velocity w; o< (1 —€)*,n = 4
(Sleath, 1984), vr,v, are the turbulent and molecular viscosity respectively, k is the
turbulent kinetic energy, ¢ is the turbulent dissipation, P = vy(9%/8z)? is the mechanical
energy production, G = ¢(Ap/p)(vr/o.)0E/0z is the buoyant energy prodution, and
C1, €2, O¢, O, 0y are parameters (Rodi 1979). At the free-surface, the net flux of suspended
sediments are assumed to be zero. At the bottom, the net upward fAux of suspended

sediments is the difference of erosion rate &£ and the deposition rate D.

wsc — (gz + UL)g- =FE-D (5.37)

The particular forms of erosion and deposition rates are based on extensive literature

survey and modei testing with the field and laboratory data.

Various numerical models mentioned above, have been developed over the last decade
to reproduce cohesive sediment transport. At the moment, these models supply interest-

ing but only qualitative results; predictive results are far from being reached and the use
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of models is often restricted merely to sensitivily analysis. This relative failure in gaining
quantitative results is not due to the numerical techniques but rather to the incomplete
knowledge of basic processes such as deposition, erosion and consolidation. Reliability in
model predictions will increase with a better insight into these physical processes.

The unsatisfactory predictions of numerical models may also come from a possible dis-
crepancy between specifications of physical laws, issued of laboratory experiments, and
prototype behaviour. There is a trend to investigate in the field factors controlling phys-
ical processes, namely formation and size distribution of mud flocs (Van Leussen, 1988),
deposition (Delo, 1988). Erosion, consolidation, wave effects are also studied in the field
(Teisson, 1991).

In our view, the cohesive sediment dynamics is a very complicated system which de-
pends on the site, season, weather condition and a lot of processes which are still not
very clearly known and are rapidly changing. Also since a lot of factors that effect the
cohesive sediment dynamics are very stochastic, we should pay more attention in the real
field data to use the on-line modelling to trace the sediment dynamics and try to find
some suitable models for it. This 1s why we use the time series model to try to find
the answer in the cohesive sediment dynamics based on the real data collecting and give
more accurate description and prediction of it. The background and application of time
series models is given in earlier chapters and the description and prediction the mean flow
quantities are given in chapters 6 and 7. It will be shown that this kind of model is good
for the description, prediction and adaptation in sediment dynamics based on the in situ

dala collected.

Appendix 5.A. Introduction to Tensor Notation

Tensor notation is used in this chapter because it allows most equation to be written in a

considerably more compact form than is possible with the conventional notation. A short

introduction is provided as follows.




I3
Us

z2,U,

Ty, Ul
Fig 5.A.1. Cartesian coordinate system

In cartesian tensor notation, vector quantities are written by attaching an index to the

symbol denoting the quantity, for example

space vector z; = {z1, 22,23}
velocity vector U; = {Uy,U,, U3}

The three components of the vector in a cartesian system (Figure 5.A.1.) are obtained

by setting the index {(here i) equal to 1,2, and 3, respectively.

A quantity with 2 indices (e.g. 1 and j) is called a tensor and has 9 components which

can be obtained by pemutation of the 2 indices from 1 to 3:

a;; a2 a3
ai; = 491 @22 QA3
431 432 4z

The stresses 7;; appearing in the momentum equations (5.22) and (5.23) are an example
of such a tensor; here the first index denotes the surface ( L to z; ) on which the stress
acts and the second index the direction of the stress. The (diadic) product of two velocity

vectors also yields a tensor:

U] U] U1 U2 Ul U3
Ul'Uj = UzUj U2U2 U2U3
U3U1 U3U2 U3U3
When the U's are the fluctuating velocities and the average of the products is taken (in-

dicaled by an overbar), this is the Reynolds stress u:-u;- tensor introduced in (5.15). The
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tensors appearing in this chapter are all symmetric, that is 7; = 7;; and uu; = uju; so

that they have only 6 different components.

A particular tensor is the Kronecker delta §;; which has the components

6,'_7' =

o O =
[ T R o
0 O

so that §;; =1 for: =7 and §; =0 for i # 3.

One aspect of tensor notation remains to be explained which is particularly effective
in making equations more compact. This is the summation convention which implies that
whenever the same index is repeated in a single expression. the sum over all 3 directions

has to be taken, thus

3
UiU; = Z U Ui = UUy + U Uy + UsUs

=1

The continuity equation (5.7) may be cited here as further example:

aU, aUz aUs _
Bz, 'z c')x, Oz, 3552 N Oz3 0

and the second term on the left hand side of the momentum equation (5.8) reads in full:

_—U1—+U2 + Uss—

U ., U oU; au; aU;
Yide, 03:_, - g -3 dz, ("3‘:1:2 dz3 (5-38)
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Chapter 6

Time Series Modelling for Sediment

Dynamics On the Holderness Coast

6.1 Introduction

Sediment transport in the coastal region is a topic which is receiving increased attention
due to its importance to flow environment. Among the main problems is the transport
of pollutants which adhere to suspended sediments. In order to gain more knowledge
of such process, several numerical models have been developed in recent years that try
to predict the transport of sediment. These models range from one dimensional vertical
profile formulations (e.g. De Vantier and Narayanaswamy, 1989; Hagagun and Eidsvik,
1986) via two dimensional vertical or depth integrated models (e.g. Van Rijn, 1987 and
refs therein; Teisson and Frisch, 1988) to quasi or fully three dimensional formulations
(e.g. Sheng and Bulter, 1982; Van Rijn and Meijer, 1988; O'Connor and Nicholson, 1988;
Eidsvik and Utnes, 1991; Utnes, 1993 and others).

In the above mentioned papers, the Navier-Stokes Equation and its average form, turbu-
lence closure models combined with some physical, chemical and rheological properties
are used. But as is well known, sediment transport is a very complicated process. Within
the cohesive sediment transport process, there are many physical, geographical, chemical

and microbiological processes thal are still not very well understood (Dyer 1989).
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Recently some papers have been published that study ocean models and water move-
ment in unsaturated soils used the data to estimate some parameters of the model based
on the concept of inverse modelling. Copeland et al. (1991) presented a mathemati-
cal box model of a theoretical ‘ocean’ in which the field of water velocity, turbulence
and tracer concentrations are all known and together ‘perfectly’ satisfy a steady-state
advective-diffusive equation. Mous (1993) used nonlinear regression techniques to esti-
mate the unknown parameter in his model but it appears to be non-identifiable, which
results in non-unique solutions. Bagchi and ten Brummelhuis (1996) applied parameter
identification technique to tidal models with uncertain boundaries and they considered
a simultaneous state and parameter estimation procedure for tidal models with random
inputs, which is formulated as a minimization problem. There is, however, no tradition

for our type of time series modelling in sediment dynamics.

In this chapter, stochastic time series models are set up to describe the concentration
of SPM and current velocity respectively. The recursive least squares identification al-
gorithm is used to identify the unknown parameters of the model. The simulations are
given to show the good approximation of the in situ data collected from the Holderness

Coast by Joanna Blewett, Institute of Marine Science, University of Plymouth.

The aims of the chapter are:
(1) To describe and prove the accuracy of the time series model for current velocity and
suspended sediment concentration dynamical system based on the data from the field.

(i1) To use the model to predict the sediment transport dymamics

6.2 Site Description and Data Collecting

The coastline of Holderness Cliffs which extend 61.5Km from Flamborough Head in the
North to the sand and shingle spit of Spurn Head in the south, takes the plan shape of a
zeta curve (Pringle, 1985). The clifls are largely composed of Pleistocene glacial till and
are renowned for their rapid rate of erosion, calculated by Pringle (1985) and Hardisty
(1986) at 1.7 and 1.75myr-1 respectively. The result is that one million m? of high quality
agricultural land is lost to the North Sea each decade. The cliff material provides sand
and coarser sediment for beach replenishment whilst the silt and clay is carried away in

suspension by the waves and currents. Maximum cliff and beach erosion is thought to
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occur during storm events, but the magnitude of the storm largely controls the amount

of material being washed offshore.

In order to test the time series models, point measured observations of the appropriate
parameters, i.e. current velocity, suspended sediment concentration and pressure variation
are required over a time scale of weeks. The data set chosen to test the models is taken
from 29th June to 15 July, 1995, at the inner site (N1, Figure 6.2.1). Figure 6.2.2 shows
the resultant time series of SPM concentrations taken at 0.4m above the seabed by the
lower OBS sensor, longshore current velocity component, again at 0.4m above the seabed,
and pressure variance which indicates the presence of waves and storms, all the data were
used as input parameters to test the models. The average water depth at the inner station
is about 10 meters. A grab sample taken just before the deployment, revealed that the

surface sediment comprised of fine silt clay material overlaying more coarse sand.

During the time series (Figure 6.2.2), there were three distinct storms. Significant wave
heights was calculated to be at 0.8m during these events, with a peak period of between 8
and 9 seconds. The time series of SPM concentrations indicates several scales of variability.
In response to the spring/neap tidal cycle, background concentrations are higher during
springs. The tidal response to SPM, comprises two components. The first is a semi-diurnal
horizontal flux component arising from the advection of a horizontal turbidity gradient of
fine material past the mooring site. Peaks in suspension arise when the tidal displacement
has reached its maximum extent towards the north west at low water slack. Conversely
minimum concentrations arise when this advective material reaches its maximum extent
towards the south east on flood. This advective signal dominates the spring cycle and

during storm conditions.

The second tidal response, seen clearly at neaps (run 120 - 170), is a quarter diurnal ver-
tical flux component, driven by local resuspension of a more coarse material at maximum
tidal streaming on both stages of the tide. The dip between the peaks is in phase with
slack water, which suggests that material resuspended on flood is given time at slack water
Lo settle out, only to be resuspended again on the reverse phase of the tide, giving rise to
the second peak. Although, local resuspension is likely to occur during spring tides, its

signal appears to have been swamped out by the stronger advective signal.

The presence of storm waves increases the amplitude of the tidally-varying concentrations,
and will suspend both coarse and fine material into the water column. However whereas

Lthe coarse material settles out rapidly, there is a distinct time lag for the fine sediment
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fraction to settle out of suspension-after the storm. It is evident from the time series that
the concentration of this fine material takes a few days to reach pre storm background
levels again. I'or any model to successfully predict these conditions off the Holderness
Coast, it must not only take into account the different tidal processes, but it must also
take into account this time lag memory aspect of the background sediment concentration

in response to storms. (Chen, Blewett et al. 1997).

6.3 Current Velocity Model

In this section we focus on modelling the current velocity dynamics. The one reason we
investigate the current velocity dynamics is that the most widely used sediment transport
models are so-called cu-integral (concentration times velocity integral) type of models.
The other reason is current velocity dynamics plays an very important part in sediment
transport numerical model as we mentioned in Chapter 5. So current velocity is a very
important variable to model when considering sediment transport. From Chapter 5,
we know that the current velocity mainly i1s a function of its derivatives relavent to the
direction (z,¥, 2) and some parameters, so in this section, the univariate model for current

velocity profile is presented.

Disturbance | (1)

Output

u(t)

System

Fig 6.3.1 A Dynamic system with output u(f) and disturbance ¢(t) where ¢ denotes time.

The distinguishing feature of a univariate time series current velocity model that no at-
tempt is made to relate u(t) to other variables except the uncontrollable disturbance €().
The variation in u(t) assumed here is ‘explained’ solely in terms of its own past, although
of course if u(l) is dependent on space. The forecasts are then made by extrapolation.
The statistical approach to forecasting is based on the construction of a model. The
model defines a mechanism which is regarded as being capable of having produced the

observations in question. Such a model of course when applied to the environment is
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invariably stochastic.

We assume that the time series model here that describes the current velocity is a discrete
one variable stochastic linear system and can be represented by the following AR(p) and
ARMA(p, q) model.

6.3.1 AR Model

1. Model Description

First, we assume that the current velocity profile model is a one variable AR(p) model as

follows:

A(z7Nu, = wa (6.1)
where wy, is the system noise and the restriction on it are given in equations (3.66)-(3.67).

A Y =14+a2z7" +... +a,z7" (6.2)

1

u, is the current velocity at the time n, z7! is a unit delay operator and a;,( = 1,...,p)

are p unknown parameters to be estimated. Set

07 = [-ai, ..., —ap)] (6.3)

xg:-rl‘ = [u'n—la "'1un—p] (64)

here 0, is the estimate of @ at time n and it is easy to see that (6.1) also can be written
by

up = 07 2, + wy (6.5)

The recursive least squares algorithm of Chapter 3 (3.61-3.63) is used to identify the

parameter vector 0.




2. Order determination

Definition 6.1.

a? is defined as variance of one-step prediction error of time series model as follows:

1
0’2 = N '&,21 f (66)

1=1

where i, = un — 1in, un is the real data and i, = zX0,_, is the one-step prediction of the

time series model at time n respectively.

Definition 6.2.
MPE = max |t,] (6.7)
1<n<N

is defined the maximum one-step prediction error (MPE) of the time series model.

Definition 6.3.

MPV = max 6:..1 (6.8)
(1<neN}J(1<i<d)

is defined the maximum parameter variation (MPV), where 8;, is the ith component of 0
at time n.

The approach in our paper is to fit the model of progressively higher order, to calculate
variance of one-step prediction error o2 for each value of order p, as well as to consider the
MPE and MPV. The criterion is that if the addition of extra parameter matrices gives
little improvement, we do not choose a higher order model.

The so-called F-test method (Soderstrom 1989) is used here to determine our model
structure and the F'-lest results for our model candidates according to (4.11) and (4.12)

are given as following in Table 6.3.1:

TABLE 6.3.1. The order comparison of one variable current velocity model

MPE MPV o?

p=2 | 0.187765 | 0.050108 | 0.00100255
p=3 | 0.152344 | 0.0667977 | 0.000913569
p=4 | 0.153519 | 0.07542 | 0.000906986
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From the data of Table 6.3.1, the model order selection procedures are as follows:

(i) Let AR(2)=U; , AR(3)=lt;

X3.05(1) = 3.84 and z = 266 x 20UNIS-D I — 25.9082 > 3.84 reject AR(2)

(i) Let AR(3)=U, , AR(4)=l;

T = 266 x L000913569-0000906986 — | 93066 < 3.84  choose AR(3)

The AIC (4.13), FPE (4.14) and MERT (4.32) order determination test results are also
given in the following Table 6.3.2.:

TABLE 6.3.2. The order determination of one variable current velocity

model in different tests

Model Order | AIC FPE MERT
p=2 -1853.5 | 0.00101757 | 7.21259
p=3 -1869.5 | 0.000934254 | 152.907
p=4 -1862.44 | 0.00034575 | 2.333

It is shown in Table 6.3.2, that the AR(3) model is the best choice in all the three above
mentioned order test methods in this case which is consistent with the F-test shown be-
fore. For simplicity, we just make use of I*-test for our model order determination later

in the thesis.
3. Simulation

According to the results of the model order determination, we choose following AR(3)

model:

Up = A Un—q + A2Up_2 + A3lip_3 + W, (6.9)
Set as:

07 = [ay, az, as) (6.10)
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9::‘ = [un-hun—Q:un-G] (611)

For solving equation (6.9), the ELSM (3.61)—(3.63) is used (substitute u, for y, in (3.63)).
From (6.2), p = 3. The time scale in here is one hour per run. Since the initial value is
needed, the first three data as our initial value we really start the model at n=4 and we

take R3 = 3I3. The computation procedure of ELSM is as follows:

(1) Construct z, according to (6.11).

(i1) Select initial values of 03 and Hj.

(iii) Calculate K,, R, and 0, according to (3.61)—(3.63) based on the K,_1, Ru_1 , Ony
and z, (n > 3).

The simulation results are given as following:

(i) TABLE 6.3.3. The Parameter Estimation of AR(3) Model
Parameter | Mean | Standard Deviation
a 1.37709 0.01222716
as -0.39324 0.00640278
as -0.328613 0.00816693

(i1) The comparison of model with the data set is given in Figure 6.3.2 which shows the

AR(3) model presented here has a good description of the model and data fitting.

(iii) The parameters variation is shown in Figure 6.3.3. From Figure 6.3.3 and Table
6.3.3, all three parameters of AR(3) can be considered as time-invariant parameter and
have good convergence properties which means the model structure we chose is quite re-

seanable to describe the current velocity dynamics.

(iv) The model prediction or forecasting technique which we mentioned in subsection
2.3.3 is used here for long term prediction of AR(3) current velocity dynamic model. Un-
der the assumption that we don’t know the current velocity data u,,n > 223, and let the
white system noise series w, meet the conditions Fw, = 0, Ew? = 0.00083. We give the

optimum k-step prediction faa, k = 1,2,...,48 based on the current velocity data
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un,n < 222 and w,. The model prediction results given in the Figure 6.3.3. which shows
the AR(3) model presented here coincides with both the periodical and trend appearance

of the current velocity data set very well.

6.3.2 ARMA Model

1. Model Description

In last subsection, we set up a AR(p) model for current velocity dynamics which assumed
the current velocity dynamic system is disturbed by white noise series (i.e. €, = wy). In
this subsecton, we try to consider more general kind of model (i.e. ARMA(p,q) model)
for the current velocity dynamics and assume that the current velocity dynamic system
is disturbed by the colored noise (i.e €, = w, + ¢w,—y) instead of white noise in AR(p)

model. For simplicity, we set ¢ = 1 and ARMA(p, 1) model is represented as following:
A(z7 ) Upg1 = Woy1 + C1Wa (6.12)

where u, is the current velocity, w,, is the system noise and the restriction on it are given

in equations (3.66)-(3.67).

Az DW=14aqz '+ ... +a,z7? 6.13
P

271 is a unit delay operator, a;,(t = 1,...,p) and ¢, are p + 1 unknown parameters {o

be estimated. Set

OT = [—ala"')—a}hcl] (614)
3';1: = [U"_l PRLEE un—paen—l] (615)

here 8, is the estimate of @ at time n, ¢, = u, — 07z, as the estimation of w, and il is

easy to see that (6.12) also can be written by

Un = 07, + w0, + ¢ (Wt — €n_y) (6.16)
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The recursive least squares algorithm of Chapter 3 (3.55-3.57) is used to identify the

parameter vector 0.
2. Order determination

The order determimation here is similar to the last subsection i.e. to fit the model
of progressively higher order, to calculate variance of one-step prediction error o2 for each
value of order p, as well as to consider the MPE and MPV. The criterion is that if the
addition of extra parametler matrices gives little improvement, we do not choose a higher
order model.

The F-test results for our model candidates according to (4.11) and (4.12) are given as
following in Table 6.3.4:

TABLE 6.3.4. The order comparison of ARMA(p,1) current velocity model

MPE MPV o?

p=11]0.283617 | 0.121979 0.0067109
p=2| 0.145547 | 0.0669972 | 0.000898962
p=3 | 0.152792 | 0.0787776 | 0.000919854

(i) Let ARMA(1,1)=t, , ARMR(2,1)=l,
Xg.0s(1) 2 3.84 and z = 266 x 20067109-0.000898967 _ 17)9 .73 > 3.84 reject ARMA(1,1).
(i) Let ARMA(2,1)=U , ARMA(3,1)=U,

z = 266 x 2008200091984 — _(.041472 < 3.84 choose ARMA(2,1).

3. Simulation

In here, we choose which is a simpler form model of (6.12) as following ARMA(2,1)

model from our model order selection:

Unpt = AUy + oty + Wy + Cwy, (617)




Set as:

0T = [(11,0.2,C1] (6.18)

Tl = [tno1, Un-2, €n_1] (6.19)

To solve equation (6.17), the ELSM (3.61)-(3.64) is applied (substitute u, for ¥n)in (3.63)
and (3.64)). From (6.17), p = 2 and the time scale in here is one hour per run. Since the
initial value are need, the first two data as our initial value we really start the model at

n=3.
The computation procedure of ELSM is as follows:

(i) Construct z, according to (6.19) and (3.64), (n > 2).

(i1) Select initial values of 8, and R,.

(iii) Calculate K,, R, and 8, according to (3.61)-(3.63) based on the K,_q, Rn_y , Oncy
and z,, (n > 2).

The simulation results are given as follows:

(i) TABLE 6.3.5.  The Parameter Estimation of ARMA(2,1) Model
Parameter Mean Standard Deviation
a, 1.7239 0.0128287
dz -0.977191 0.0075229
a -0.383821 0.00781896

(ii) The comparison of model with data set is given in in Figure 6.3.4. which shows the
ARMA(2,1) model presented here is reasonably good both in data fitting and system

description.

(iii) The parameters variation is shown in Figure 6.3.5. All the Lhree parameters in
ARMA(2,1) model have good convergence and time-invariant properties which means the
model we choosed here is a good one to describe the current velocity dynamics near the

Holderness Coast, England.
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(iv) The model peridiction method given in subsection 2.3.4. is used here for long term
prediction of ARMA (2,1) current velocity dynamic model. Under the assumption that
we don’t know the current velocity data u,,n > 224, and the noise series wy, is the
same as that we used in last subsection long term prediction in AR(3) model. We give
the optimum k-step prediction fyga, k = 1,2,...,48 based on the current velocity data,
un,n < 223. The model prediction results are also given in the Figure 6.3.5, which shows
the ARMA(2,1) model presented here works very well in 48 hours prediction’ compared

with data set.

6.3.3 Comparison of AR(3) Model with ARMA(2,1) Current
Velocity Models

In last two subsections, we present two kinds of time series current velocity model which
both work very well as shown in the simulations. The comparison of model fitting, pa-
rameter variation and long term prediction of AR(3) and ARMA(2,1) are discussed in this
subsection. In order to compare the different kinds of models, the following definitions

are given.

Definition 6.4
The mean of long term prediction error (MLPE), the standard deviation of long term pre-
diction error (SDLPE) and the maximum prediction error (MPR) are defined respectively

as follows:

48
1
MLPE = LZ:; | S = Unapi] (6.20)
1 48
? = | — L )2 .
SDLPE = ,| g( Sak — Unss) (6.21)
MPR = 12}%)58 | fak — wngr| (6.22)

The simulation results of the two kind of time series current, velocity models are presented
in Table 6.3.6.
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TABLE 6.3.6. Comparison of Current Velocity Models

MPE MPV o? MLPE SDLPE MPR

AR(3) 0.152344 | 0.0667977 | 0.000913569 | 0.0940563 | 0.0597524 | 0.220193
ARMA(2,1) | 0.145547 | 0.0669972 | 0.000898962 | 0.051567 | 0.0368606 4 0.138268

From Table 6.3.6, all the items of ARMA(2,1) are smaller than those of AR(3) except that
the MPV of ARMA(2,1) is nearly same as the one of AR(3). It is shown that ARMA(2,1)
has better simulation results than AR(3) especially in the case of long term prediction.
This is because the ARMA(2,1) takes advantage of the more imformation from the model
error. It is also shown that the consideration of the coloured system noise has improved
the model on the whole and suggested the ARMA(2,1) is a more reasonable choice in this

special case.

6.4 Suspended Sediment Concentration Model

6.4.1 Introduction

A series of models has been produced to simulate these processes using time series ob-
servations. For processes in the Southern North Sea, Jago and Jones (1993) formulated
a conceptual model, which combined resuspension and advection components superim-
posed on a background concentration. The model assumed horizontal homogeneity for
the resuspension component and a negligible settling rate for the background component.
Hence, the resuspension component is a simple function of current speed, and the advec-
tion component is a function of tidal displacement. The model however, provided little
insight into the physical processes of SPM resuspension. It simulated conditions most
successfully in the upper water layers, but because the resuspension criterion depended
on current volocity and without a threshold shear stress, it was not entirely successful
in its representation of particle entrainment from the seabed. However, this limitation
became less serious higher up in the water column, where vertical diffusion, rather than
bed erosion rate became dominant. What became clear from these results is that a more
physically orientated and complex model is required to accurately simulate the near-bed

region.
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Further investigations for the Southern North Sea led Jago et al. (1993) to produce of a
one-dimensional turbulence model for particle resuspension and flux which incorporated
the effects of both horizontal advection of a prescribed concentration and vertical diffusion.
Their model is based on a hydrodynamic model presented by Simpson and Sharples (1991)
and simulations were run with both an unlimited and a limited supply of resuspendable
material assuming that all the available material is already in suspension at the start of the
model run (at maximum tidal streaming), produced results which agreed with observation
in both phase and form (Jago et al. 1993). This type of model however, could not predict
horizontal concentration gradients of the finer material and would need to include tidal

advection of prescribed horizontal gradients (Jones et al. 1994).

What is ignored in both these models, is the influence of wave activity and storm events
on the resuspension processes. Recent work by Green et al. (1990) simulated enhanced
bed shear stress in a wave/current flow with observations from a coastal site in the South-
ern North Sea, and showed that the peak wave stress may be significantly increased by
non-linear interaction with the tidal current even under small waves, and increased resus-
pension of bed material due to wave enhancement of bed stress was apparent. Observa-
tions taken off the Holderness Coast in the Southern North Sea, show that storm activity
acts to enhance the background levels of fine material in the water column. Whereas the
coarse material settles out rapidly, the fine material exhibits a distinet time lag, persisting

in the water column days after the storm has passed.

In this section, the suspended sediment dynamics is taken as a unknown stochastic system
and a new model is developed to simulate both horizontal advection, local resuspension
and the effects of waves and storms. The model considers and includes the following as
stochastic processes; current velocity, wave variation, tidal displacement and suspended
sediment concentration. The first three are set as inputs to the system model, and the
last one is considered as the output of the system model. System Identification theory
is applied in the model to identify the unknown parameters of the model, based on in
situ data collected in the study area. In this case, the system identification technique is
applied to the Holderness field data collected in July, 1995 by Blewelt to illustrate the re-
lationship between suspended sediment concentration, current velocity, tidal displacement
and varying wave conditions. The aim is to show that this particular theory is suitable
for matching known data sets, and this will be achieved by ensuring all the parameters
remain virtually constant when tackling future data sets. By operating the model in this

way, the results obtained should simulale the data with some degree of accuracy.
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Chen and Dyke (1995) have already presented a single variable time series model (ARMA
model) for the current velocity and suspended particulate matter (SPM) concentration
for the Tamar Estuary and it shows very good agreement with the data collected from
the Tamar Estuary during the high water slack by Fennessy et al. (1994). In Chen and
Dyke (1996), a multivariable stochastic time series model (multivariable ARMA Model)
1s set up to describe the suspended sediment concentration and current velocity over a
depth profile respectively. The recursive least squares identification algorithm is used to
identify the unknown parameter matrices of the model and the simulations are given to
show the a good approximation to real data collected from the Rufiji Delta, Tanzania by
Fisher (1994).

In the models of Chen and Dyke (1995) and Chen and Dyke (1996) the suspended sediment,
concentration variation is assumed to depend on its own past values and uncontrollable
system noises. By contrast, in here, the suspended sediment concentration is assumed to
be related to the current velocity, tidal displacement and wave variation in addition to its
own past values, in order to produce a more physically based model. These model results
are compared with those from a conventional multiple regression model using the same
external input variables but not including past SPM values. The simulation results show
that the new model developed produces good agreement with the real data collected from
the Holderness Coast, England, whilst the simple regression model generally gives poor

agreement.

6.4.2 Multiple Input Single Output (MISO) Models

Disturbance | (1)

Input Output
System

w1 (L), ..., uy(t) y({)

Fig 6.4.1. A Dynamic system with inputs w;(t), ..., u,(¢), output y(t) and disturbance ¢(¢)

where ¢ denotes time.

Figure 6.4.1 shows a schematic of the type of predictive model under discussion. Multiple
input time series, u1(t), ..., u,(t), produce a single output time series, y(t) through a system

box which receives disturbance (noise), €(t), so thal the relationship between input and
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output is stochastic. The characteristics of the system are assumed to be time-invariant
and linear, and the system output can depend upon earlier values of both input and output
time series. Such a system is known as a multi-input single-output (MISO) model. In the
present case, the output time series is the suspended sediment concentration measured by
the Boundary Layer Intelligent Sensor System (BLISS) tripods, and the input time series
are the current velocity, the tida! displacement of water along the coast (a time integral of

the alongcoast velocity), and the wave intensity (each of which is shown in Figure 6.2.2).

For s different input time series, a MISO system can be written mathematically in the
form:
Yn + 4 Yn-1 + ...+ ApYn—p = bllul"_1 + ...+ bl“..,,l uln—ql
+b2|t£2n_l 4+ ...+ bzn_‘n Uz,

+bs, s, + ...+ by g, Uan_g,

twn + cywWnoy + ..+ W, (6.23)
yn and u; (n = 1,2,3,...) are the output and i-th input of the system respectively.
p is the order of the system and w,,(n = 1,2,3,...) is a noise series and ai, b;, and

alt=1,.,pm73=1,..5k = 1,...¢5(g; < p);l =1,...r.) are unknown parameters to be
estimated.

Let 27! is a unit delay operator and

Az =1+az7' +... +a,z7? (6.24)
Bi(z"Y=bi,z7 ' + ..+ bi 27" (6.25)
Cz)=14cz'+...+¢z". (6.26)

The equation (6.23) can be written as follows:
2 Yy = Z Bi(z™ )i, + €n (6.27)

where ¢, = C(z7")w, is the system noise and set

07. — [_al, ooy —dp, bl” ""blﬂ s bzl N ...,ba“,C[, ,C,-] (6.28)
zn = [yn—h"'ayn—p'lulnl"')uln_ql ,u2n1"':usn_q,)cﬂ—la'-')en—r] (629)
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en =tn — 012, (6.30)

d=p+r+) ¢ (6.31)

here & is the true parameter matrix, z, is the regression vector consisted of the information
of input, output and the estimation of system noise, e, is the estimation of w, and 0, is
the estimate of 8 at time n . It is easy to see that (6.23) or (6.27) also can be written as

Yn =0Tz, + C(z"w, + e, — C(z7Y)e,. (6.32)

The first term of the right side of equation (6.32) can be considered as the estimation of
Yn (since we do not know the true 0, y, is estimated by 07z,) and the remaining terms

on the right hand side can be considered as a kind of filter of system noise.

6.4.3 Order Determination

For simplicity, we choose a MISO time series model which is a simpler form of (6.27),

ustng the following MISO(p) model for whole process:
Yn = Q1Yn-1 + o F p¥Yn_p + bl | + cTusy + [Ty W,y + w,. (6.33)
The appropriate form of equation (6.28) and (6.29) then becomes:

07 = [ay,..., a5, b, ¢, f] (6.34)

IZ' = [yn—l: +ery Yn-p, u?;_laTn-laTn—l l/Vn-ll (635)

where, ¥, is ‘suspended sediment concentration (m/l), u, is the current velocity (m/s), T,
is the along-coast tidal displacement (km) and W, is the wave elevation variance at time
n respectively. In equation (6.33), the resuspension signal is modelled by the term in 2,
and the tidal advection effect is modelled by two terms, one simply proportional to the
tidal displacement and a second term multiplying the displacement by the wave variance,

to simulate the increase in the advection signal during storms.

To solve equation (6.33), the recursive least squares algorithm (3.61-3.63) is used. From
(6.31), where ¢; = 1,2 = 1,2,3., r=0 and d = p+ 3 and the time scale here is one hour
per run. Since the initial values are required, we used the first p data as our initial values

and therefore start the model process at n = p + 1.
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The approach in our paper is to fit models of progressively higher order, to calculate
variance of one-step prediction error (the residual sum of squares (RSS) in traditional lin-
ear regression model) for each value of order p, as well as to consider the MPE and MPV.,
The criterion is that if the addition of extra parameter matrices gives little improvement,

we do not choose a higher order model.

The F-test results for our model candidates according to (4.11)-(4.12) are given in Tables
6.4.1-6.4.3:

TABLE 6.4.1. The Order Comparison in Whole Period (0 <n<271)

Order | MPE o MPV
p=1 |4.36456 | 0.573506 | 2.59355
p=2 | 3.87259 | 0.485172 | 2.84562
p=3 | 5.42097 | 0.518003 | 2.9651

Let MISO(1)=l; , MISO(2)=Us
X%OS(]') =~ 3.84 and z = 268 x 0.573506-0.485172 _ 49.7941 reject MISO(I).

0.485172

Let MISO(2)=l, , MISO(3)=l,
Xp.0s(1) 7 3.84 and z = 268§ x Q488172-0518003 _ _ 16 9858 choose MISO(2).

0.518003

TABLE 6.4.2. The Order Comparison in Calm Period (110 < n < 170)

Order | MPE a? MPV
p=1 }1.072314 | 0.1268888 | 0.947681
p=2 | 0.771115 | 0.068666 | 0.435191
p=3 | 0.596783 | 0.0649163 | 0.341153 |

Let MISO(1)=t4, , MISO(2)=U,

Xbos(1) = 3.84 and z = 57 x 2:1208888-0.065666 . 49 )79 reject MISO(1).

Let MISO(2)=Y(, , MISO(3)=,

X60s(1) = 3.84 and z = 57 x Q0EEH66-0.0049163 _ 3 99944 choose MISO(2).
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TABLE 6.4.3. The Order Comparison in Storm Period (171 < n < 270)

Order | MPE o? MPV
p=1 | 3.88889 | 2.77873 | 2.91095
p=2 | 297176 | 0.523499 | 1.2119
p=3 | 4.73119 | 2.84352 | 2.89949

Let MISO(1)=l; , MISO(2)=U4,

X2.05(1) = 3.84 and z = 97 x LTBIS-DSTAN — 417 876 reject MISO(1).

Let MISO(2)=U,; , MISO(3)=U,
x20s5(1) ~ 3.84 and z = 97 x 2:323499-2.84352 _ _ 79 149) choose MISO(2).

2.84352

Thus, for all three time period a second order model is adequate at the 95% level.

6.4.4 Parameter Estimation

From order determination we choose MISO(2) time series model for all three time periods

in the following form:

Yn = @1Yn-1 + G2¥Yyn-2 + bui_l + Ty + [T aWosy +w, (6.36)
with

oT = [al,a?:b) c, f] (637)

IZ = [yn—layn—hu?‘_laTn-th—l‘Vn—l] (6.38)

Equation (6.36) is using the Recursive Least Square Method (3.61-3.63), where for order

2, d=5, and the model simulation begin at n=3.

In the recursive (also called on-line) identification method we used here, the parameter
cstimates are computed recursively in time similar to the ELSM presented in section 6.3.

and the parameter estimation resulis are given as following:

116



TABLE 6.4.4 The Parameter Estimation in Whole Period

Parameter Mean Standard Deviation
a 0.915355 0.108976
a; 0.0310859 0.11581
b 0.377286 0.2565
c 6.55802 0.405544
0.0468373 0.0415331

TABLE 6.4.5. The Parameter Estimation in Calm Period

Parameter Mean Standard Deviation
a; 0.873825 0.0481795
as 0.107592 0.0503243
b -0.0780674 0.0950974
c 1.96009 0.0643295
0.674854 0.110728

TABLE 6.4.6. The Parameter Estimation in Storm Period

Parameter Mean Standard Deviation
a 1.23308 0.117625
as -0.278993 0.116848
b 0.259172 0.122158
c 8.17912 0.304354
-0.00410298 0.0293338
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Figures 6.4.2-6.4.4 show the comparison of the MISO(2) suspended sediment concentra-

tion models and data for the three time periods.
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6.4.5 Comparison with Linear Regression Model (LR)

The traditional linear regression model is as follows:
yn=a+bT, +cul + fW, + T, (6.39)
The fitted parameters with their standard deviation (shown in brackets) and the model

comparison of all time periods are given in Table 6.4.7. and Table 6.4.8. respéctively.

TABLE 6.4.7. The Fitted Parameters In the Regression Model

Model a b c f
Whole Process | 8.08 (0.17) | 0.34 (0.19) | 6.02 (2.73) [ 66.21 (29.32)

Calm Process | 7.07 (0.09) | 0.71 (0.26) | 1.90 (2.04) | -1148.5 (459.63)
Storm Process | 9.66 (0.30) [ 0.92 (0.31) | 0.43 (3.9) | 3.61 (39.24)

TABLE 6.4.8. The Model Comparison

Model | MISO(Whole) | LR(Whole) | MISO(Calm) | LR(Calm) | MISO(Storm) | LR(Storm)

a? (RSS) 0.4852 3.1916 0.0687 0.1532 0.5235 3.4779

From Tables 6.4.7-6.4.8. and Figures 6.4.2-6.4.4, it is shown that the MISO time series
‘model is much better than the linear regression model in data fitting and prediction.
This is because the MISO model takes advantage of the on-line identification method,
allowing variation of suspended sediment concentration to depend on pa,st values as well

as concurrent hydrodynamic conditions.

6.5 Discussion and Conclusion

Overall the single variable AR, ARMA current velocity model presented here is seen to

fit the measured current velocity data off the Holderness coast very well. They provide a
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novel modelling technique in current velocity. Since the recursive least square identifica-
tion method is used, the model can be instantaneous response to change in hydrodynamic
conditions and adaptive to the system variation. Thus the improvement of the model
and model prediction are made. From the simulation results presented in Figures 6.3.2-
6.3.5, the parameters of the model have very good convergency in the whole period, which
means both the model structure and description assumed here are very reasonable and

the model has sound reliability of long term prediction.

In the modelling of SPM concentration, the MISO model is also seen to fit the mea-
sured variation of suspended sediment concentration off the Holderness coast very well. It
provides a major improvement on the more traditional linear regression (LR) model, be-
cause it relaxes the LR requirement of instantaneous response to changing hydrodynamic
conditions. The improvement occurs for all time scales. MISO accurately follows the very
significant tidal-averaged background concentration changes which appear to depend on
both storm conditions and the spring-neap cycle: LR shows much smaller changes than
observed. MISO gives good agreement with the changing amplitude of the semi-diurnal
signal, though tending to overshoot at the extreme values, particularly minimum concen-
trations; LR shows some of the observed variation, but at a lower level than observed.
Finally MISO gets much closer to the observed quarter-diurnal concentration variation
during the calm period, attributed to local resuspension. There is some evidence that
the MISO model produces some spurious high frequency variation not seen in the obser-
vations; time period 135-180 in Figure 6.4.2. is a particularly clear example, as is the
tendency to overshoot the extremes. However the dominant features of the time series
are vastly better predicted by the MISO model when compared to the LR model.

One drawback of the MISO method is that, as a model-fitting exercise, it is only strictly
applicable to the condition fitted. It is clear from the results that the best-fit parame-
ters differ significantly between the storm and the calm periods, and that the use of a
parameter set for the whole period tends to produce poor prediction for the calm period.
Nevertheless it is encouraging that the overall fit is good for most of the July data set,
suggesting a certain robustness for the model over this summer period. Further work
is in progress based on winter and spring data sets Lo assess the degree of variability of
predictors over seasonal time-scales.

The MISO model is, of course, based on statistical analysis to produce an optimurn pre-
diction, and is not primarily designed o elucidate processes. However it is clear that the
primary reason for its success is that it allows for “memory” in the suspended sediment

signal whereas the LR method expects instantaneous response to two comparing hydro-
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dynamic conditions. This “memory” is the result of suspended sediment taking longer to
settle out of the water column than the time-scales of hydrodynamic variations, whether
due to tides or storms. Prediction of these effect by fully process-based models will require
much more sophistication than the simple LR or MISO models considered here.
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Chapter 7

Multivariable Time Series Models

for Sediment Dynamics

In this chapter, multivariable time series models of current velocity profile and suspended
sediment concentration profile are presented. The current velocity and SPM dynamics
are considered as unknown systems to be identified. The quantity relationships between
them are investigated. The model structure, order determination problem are discussed
and the model unknown parameter matrices are identified based upon the on-line recur-
sive least squares identification method. The simulation results based on the real data
collected from the Rufiji Delta, Tanzania show that these models are a good approach to

data fitting and prediction.

7.1 Field Description and Data Collecting

The Rufiji delta in Tanzania contains the largest area of estuarine mangroves in East
Africa: an area of 53000 hectares. The Rufiji river is located at latitude 7°50'S within
the tropics, (see Figure 7.1.1). In the months December until April the N-NE monsoon
dominates causing abundant precipation, the S-SE monsoon is prevalent during May to
October and causes significantly less precipitation. The deltaic plain formed at the Indian
Ocean by the Rufiji river is approximately 23km wide and 70km long. Usual erosion and

sedimentation patterns due to meander bend migration characteristic of deltaic estuaries
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Figure 7.1.1.  Location of Rufiji River on East Afcican coast
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can be witnessed throughout the delta. Tidal range al the estuary is approximately
4.3 meters and tidal observations show a symmetrical tidal curve at the river mouth,
Sediments observed at the delta edge are sand, clays and silts varying in proportion and

with high organic content and the data were collected by Fisher (1994).

7.1.1 Current Velocity Measurements

The current vane technique of Kjerfve and Medeiros (1989) was used and two current
vanes were constructed using exactly the same materials and measurements described by
Kjerfve and Medeiros, so that the same calibration cquations could be used to correlate
the vane deflection angles to current velocity. The vanes were lowered from the survey
vessels on a graduated steel cable using a hand winch. Depth, deflection and current
bearing were noted so that true depth (the vertical component of the measured depth)
and longitudinal and lateral components of the current could be calculated. Deflection
angles were kept within the recommended range for maximum accuracy by the use of
interchangeable weights, so that the technique gives a 1% error in current velocity for a
1° error in deflection. As with tidal measurements observations were visually averaged to
negate the effects of swell. The error in current measuremert is +3%. Errors in estuarine
depth are 0.02m arising from inaccurate deflection observations and 0.1m arising from

line reading errors (Fisher, 1994).

7.1.2 Suspended Sediment Sampling

The water sample was processed through a vacuum filter pump using 47mm diameter
filter papers with guaranteed 0.45um pore spaces. During filtration the samples were
continually agitated, to ensure that the sediment remained in suspension. The volume
of sample processed was dependent on concentration, but was typically in the range 50-
500 ml. Sediment was removed by treating the filter paper with hydrogen peroxide and
perchloric acid in the ratio of 1:1. The sediment was allowed to setile before the solution
was decanted. The remaining sediment was then washed, dried and weighed. The use of
this technique resulted in the destruction of organic matter within the sample, so that
the resultant data is used for the calculation of transport of inorganic sediments only. It
was found thal sediment samples taken from the Rufiji river contained between 17.0 and
19.5% organics, with average of 17.8% (Fisher, 1994).
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7.2 Current Velocity Model

In this section we focus on modelling the current velocity dynamics. The one reason we
investigate the current velocity dynamics is that the most widely used sediment transport
models are so-called cu-integral {concentration times velocity integral) type of models.
The other reason is current velocity dynamics plays a very important part in sediment
transport numerical model as we mentioned in Chapter 5 and Chapter 6. So current
velocity is a very important variable to model when considering sediment transport. From
Chapter 5, we know that the current velocity mainly is a function of its derivatives relevant
to the direction (z,y, z) and some parameters, so in this section, the univariate model for

current velocity profile is presented.

Disturbance | ¢(¢)

Output

System

U()

Fig 7.2.1 A Dynamic system with output U(t) and disturbance €(t) where ¢t denotes time.

The distinguishing feature of a univariate time series current velocity model is that no
attempt is made to relate U(t) to other variables excepl the uncontrollable disturbance
€(t). The variations in U(t) are ‘explained’ solely in terms of its own past or by its time
and surrounding value, although of course if U(t) is a vector dependent on space. The
forecasts are then made by extrapolation. The statistical approach to forecasting is based
on the construction of a model. The model defines a mechanism which is regarded as
being capable of having produced the observations in question. Such a model of course

when applied to the environment is of course invariably stochastic.

A single variable model for Tamar Estuary is presented in Chen and Dyke, 1995 and
for the Holderness Coast in Chapter 6. Here, the current, velocity profile (i.e. current
velocily at different water depth) is taken as the output of the system and the model
works in a similar way to the one dimensional vertical current velocity model, which is

more realistic and a better description for the real system. We assume that the time series
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model here that describes the current velocity is a discrete multivariable time-invariant
stochastic linear system and can be represented by the following AR(p) or ARMA(p, q)

model.

7.2.1 AR Model

1. Model Description

First, we assume that the current velocity profile model is a multivariable AR(p) model

as follows:

A(z7Y, = w, (7.1)

where w, is the system noise and the restriction on it are given in equations (3.66)-(3.67).

Az Y =TI+ Az 4+ A,z7P (7.2)

U, and wn are m-dimensional vectors instead of scalar as in the chapter 6. 27! is a
unit delay operator and A;, (i = 1,...,p) is m x m unknown matrices Lo be estimated. I,,

15 an m X m unit matrix.

Set
0T = [— Ay, .., = Aplmxd (7.3)
zn = [Ui_1s - Ul lixa (7.4)
d=mxp (7.5)

here 0, is the estimate of # at time n and [)mxa and {.]1xa denote an m x d matrix and a
d—dimensional row vector respectively.

It is easy to see that (7.1) also can be written as

Un=0"2, +w, (7.6)
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We construct the vertical profile variable vector of suspended sediment concentration or
current velocity as the system output and it is a function of the water depth and time.
Denote Un(h) as the current velocity at height h and time n (i.e. set water depth H,
bottom A = H and surface h =0). So

UT = [Un(h1), Un(hz), Ua(hs), oy Un(hm)hixm- where 0 < by < hy < ... < h,, <H.

The recursive least squares algorithm of Chapter 3 (3.55-3.57) is used to identify the

parameter matrix 0.
2. Order determination

Definition 7.1.

o? is defined as variance of one-step prediction error of the model as follows:
. ) ‘
o’ =5 > 0l (7.7)

where (7,, =, — Un, U, is the real data and 0,, = :1:50,,_1 is the one-step prediction of

the model at time n respectively.

Definition 7.2.
MPVE = max ||Ual (7.8)
1<n<N

15 defined the maximum one-step prediction vector error (MPVE) of the model.

Definition 7.3.

MPEE = max |0n,-| (7.9)
(122N} J1<i<m)

is defined the maximum one-step prediction element error (MPEE) of the model, where

(3',1,. is the 7—th component of 0,1.

Definition 7.4.

MPV = lg}las,% [16.]| (7.10})

128



is defined the maximum parameter variation (MPV) of the model.

The approach in this chapler is to fit the model of progressively higher order, to calculate
variance of one-step prediction error 2 for each value of order p, as well as to consider
the MPVE, MPEE and MPV. The criterion is that if the addition of extra parameter
matrices gives little improvement, we do not choose a higher order model.

The F-test results for our model candidates according to (4.11) and (4.12) are given as
follows in Table 7.2.1:

TABLE 7.2.1. The order comparison of multivariable current velocity model

MPVE MPEE MPV o?
=4 | 0.0327049 | 0.0455715 | 0.0718552 | 3.39857¢-05
p=5 | 0.0326627 | 0.0456293 | 0.0508491 | 2.05273e-05
p=06 | 0.0326586 | 0.0456616 | 0.0597631 | 2.09884¢-05

(i) Let AR(4)=U, , AR(5)=l,

X3.05(100) ~ 128.84 and = = 365 x 33987e-08-2.0827-05 _ 939 30 reject AR(4)
(i) Let AR(5)=l; , AR(6)=lly
X5.05(100) =2 128.84 and z = 365 x 2.052e—05-2.09884¢=05 — _7.95074 choose AR(5)

3. Simulation

Here, we choose a multivariable time series model which is a simpler form of (7.1). It

follows the AR(5) model according to the order determination presented in Table 7.2.1:

Un=AUny + BUn_2 + CU,_3+ DUp_y + EU,_s + w,, (7.11)
Set as:

0T = (A, B,C, D, E) (7.12)

3:17:‘ = [Un-la Un—Z: Un—31 Un—4: Un—ﬁ] (7.13)

In traditional models that seck to simulate the behaviour of dissolved and suspended
maltler in esluaries, the hydrodynamic equations are solved. Closure is imposed by a
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model of turbulence. These models, once straightforward and simple can now be highly
complex. The & — ¢ turbulence models can be modified to include two phases (sediment
and fluid) and biology (the interaction of plants and animals with sediment). However,
these equations become at once complicated and controversial. Since the mathematical
representation of such a set of equations is written in finite difference form, ultimately it
can be approximated to a difference equation (Bagchi and ten Brumelhuis, 1996) which
would be similar to an equation such as (7.11). The fact that the so called ‘constant ma-
trices’ in the equation do indeed remain constant is shown in the simulation that follow
although they do show a very small variation with time (see Fig 7.2.12). These figures
thus show the goodress of fit of the model to the data.

Returning to solving equation (7.11), the ELSM (3.55)- (3.57) is used (substitute U, for
¥n) in (3.55). From (7.5), here p = 5,m = 10 and d = 50 and the time scale in here is 33
minutes per run. Since the initial value are needed the first fifth data as our initial value

we really start the model at n=6.
The computation procedure of ELSM is as follows:

(i) Construct z, according to (7.13) (n > 5).

(i1) Select initial values of 5 and Rs.

(iii) Calculate K, R, and 6, according to (3.55)-(3.57) based on the K,_y, Rn_y , 6,_,
and z, (n > 5).

The simulation results are given as follows:
(i) The five parameter matrices are:

( 1499 0.227 0351 0106 -0.105 -0.047 0.074 —0.090 —0.083 0.019 )
0.289 1260 0.331 0.065 0.091 -0.126 0.074 0061 -0084 —0.012
0234 0187 1185 0.153 —0.069 0.006 0.156 0.012 —0.044 0.106
0.065 0.050 0.318 0908 0.152 0.168 0.142 0.006 —0.008 0.148

A | “O116 0117 0108 0131 1250 0.143 0124 -0008 0.01 0.078
—0.048 —0.114 0.191 0092 0.25 1312 0250 0.100 -0.061 0.099
—0.100 -0.045 0.223 0.004 0.045 0216 1.297 0303 0055 —0.114
—0.171 0.108 0.152 —0.022 —-0.018 0.168 0.446 1.230 0.108 —0.070
—0.071 -0.029 0.152 0.016 0.100 0.000 0.121 0.107 1.291  0.349

\ ~0.055 —-0.100 0.155 0112 0017 007§ -0.151 —-0.089 0.258 1.668
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[ -0.339
~0.446
~0.338
~0.143
0.022
0.019
0.045
0.100
0.026

\ 0.034

[ —0.080
0.025
~0.001
0.018
0.066
—0.019
~0.007
0.048
~0.012

\ 0.023

( —0.060

0.078
0.052
0.031
0.016
~0.002
0.002
0.010
~0.005

\ 0.000

—-0.441
-0.066
—0.290
—0.147
—0.141
0.042
0.006
—0.048
0.009
0.055

0.055
-0.011
—-0.019

0.006
—0.087

0.064

0.031
—0.063
-0.008
—0.006

0.109
—0.069
0.043
0.030
0.003
0.011
—0.002
—0.039
-0.004
0.004

-0.298
-0.267
0.171
-0.128
0.035
0.009
-0.003
-0.028
0.003
—0.041

~0.003
—0.053
0.021
-0.073
0.065
--0.003
-0.038
-0.033
0.010
-0.033

—0.001
-0.021
-0.132
-0.055
—0.032
-0.052
—0.062
—0.028
~-0.035
—0.040

-0.137
—0.155
-0.196
0.216
-0.180
-0.229
-0.129
—-0.092
—-0.108
-0.130

0.025
0.008
-0.059
0.075
—0.046
-0.074
0.012
0.051
0.057
0.003

0.059
0.063
0.033
-0.049
0.031
0.055
0.045
0.041
0.042
0.030
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0.068
-0.091
0.024
-0.118
0.072
—0.119
-0.098
-0.105
-0.171
-0.074

0.100
-0.021
0.116
—0.015
-0.107
0.013
0.065
0.099
0.029
0.082

0.015
0.019
0.029
0.006
—0.112
0.001
0.033
0.066
0.050
0.032

0.001
0.057
—-0.056
-0.169
—-0.151
0.000
—0.244
-0.213
—0.043
—0.072

—0.043
0.083
0.006

—0.054

—0.004

—0.118
0.016
0.056
0.117

~0.024

-0.019
0.003
0.007
0.008
0.010

-0.119
0.030
0.039
0.034
0.017

0.042
0.025
—0.058
—0.105
-0.139
—-0.271
-0.059
-0.421
-0.111
0.148

—0.054
0.027
-0.056
—-0.027
—0.002
-0.029
—0.027
—0.081
—0.054
—0.030

—0.021
—0.009
—0.022
0.000
0.021
0.033
—0.087
0.019
0.003
—0.011

0.083
-0.104
-0.065
-0.101
-0.132
-0.247
-0.455
-0.128
—0.156

0.166

0.001
-0.084
-0.021

0.018

0.063

0.039
—0.059
—0.041
-0.060
-0.023

—-0.014
—0.011
0.005
0.025
0.054
0.059
0.056
~0.060
0.017
-0.043

0.063
0.040
—0.011
-0.077
-0.169
—-0.026
—0.064
—0.106
-0.059
-0.389

0.044
0.060
0.068
0.082
0.034
0.150
0.025
—0.005
—0.061
0.061

0.023
0.036
0.037
0.039
0.040
0.045
0.018
0.014
—0.092
0.076

0.009 )
0.067
—0.082
~0.158
—0.136
~0.100
0.145
0.127
~0.452
~0.559 |

~0.044 )
~0.034
—0.064
~0.048
0.010
~0.061
-0.038
~0.051
—0.023
~0.077

~0.021 )
~0.023
—0.004
0.012
0.021
0.010
~0.012
-0.018
0.064
—0.026




( ~0.034
0.066
—0.066
0.036
—0.005
0.035
0.040
0.000
0.056
\ —0.023

i)

TABLE 7.2.2 The mode of the parameter matrices in AR(5) current velocity

0.061
—-0.140
0.081
0.051
0.113
0.003
0.017
0.041
0.040
0.088

-0.098 0.068 -0.136
-0.013 0.105 -0.045
-0.276 0.104 -0.115
-0.050 -0.166 -0.017
-0.147 0.072 -0.137
-0.128 0.158 -0.008
-0.075 0.035 -0.037

—-0.008 -0.033 -0.034
-0.101 -0.056 -0.603

-0.063 0.

003 -0.081

0.059
—0.066
0.003
0.013
-0.010
-0.131
—-0.033
—0.068
-0.117
—-0.001

0.028
—0.032
0.051
0.047
0.056
0.076
—-0.098
0.110
0.092
0.078

0.011
0.116
0.051
0.049
0.004
0.037
0.154
-0.037
0.096
-0.024

model
A B C D E
p=5 | 2.029754 | 0.955137 | 0.335718 | 0.239755 | 0.624578

(iv) Figures 7.2.2-7.2.11 show the simulation of the current velocity dynamics at different

depth and Figure 7.2.12. gives the norm of the parameter matrix error dynamics in the

current velocity model.

(v) The mode and the element of A, B are comparatively large and the ones of C, D, E

arec comparatively small which shows that the more recent the time, the more effect. is

MPEE=0.0326627 m/s
MPVE=0.0456293 m/s
MPV=0.0508491
02=2.05273 e-05

there on the current variation.

(vi) Since A is strongly diagonally dominant, we can say that the larger the distance

between given layers, the less effect is there on the layer variation.
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Figure 7.2.2. Piot of AR(5) Current Velocily Model Error vs Data at h=0.05H
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Figure 7.2.3. Plot of AR(5) Current Velocily Model Error vs Data at h=0.10H
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Figure 7.2.5. Plot of AR(S5) Current Velocity Model Error vs Data at h=0.30H
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Figure 7.2.7. Plot of AR(S) Current Velocily Model Error vs Data al h=0.50H
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Figure 7.2.8. Plot of AR(5) Current Velocity Model Error vs Data at h=0.60H
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Figure 7.2.9. Plot of AR(5) Current Velocity Model Error vs Data at h=0.70H
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Figure 7.2.11. Plot of AR(S) Current Velocity Model Errbr vs Data at h=0.90H
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7.2.2 ARMA Model

In this section, the more general system with the correlated system noise is considered,

i.e., the multivariable ARMA model for current velocity profile are constructed.
1. Model Description

Now, we assume that the current velocity profile model is a multivariable ARMA(p, q)

model as follows:

A(z"Y, = C(zw, (7.14)

where w, is the system noise and the restriction on it is given in (3.66) and (3.67).

Az ) =Tn+ A1z ...+ A,z7P
Clz)=In+Ciz7 4+ ... + Cyz7

U. and w, are m-dimensional vectors, z~! is a unit delay operator and A;,C;(i =

L,...»;73 = 1,...,¢) is m x m unknown matrices to be estimated. I, is an m x m unit

matrix.

Set
0 = [~A1, . =Ap,Ch, oo, Colrmxa (7.15)
T = Ul UL el el Jixa (7.16)
d=mxp (7.17)
en=Un — 05z, (7.18)

here 0, is the estimate of 8 at time n and [-Jmxd and [.]ixa denote an m x d matrix and a
d—dimensional row vector respectively.

It is easy lo see that (7.14) also can be written as
Un =0Tz, + C(z™ ), + ea — C(z7 Ve, (7.19)

We construct the vertical profile variable vector of suspended sediment concentration or

current velocity as the system outpul and it is a function of the water depth and time.
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The Un(h) is defined as the last subsection and
Ul = [Un(hl),Un(hg),Un(h;,),...,Un(hm)],xm. where0 < hy < h, < ... < h,, < H.

In order to identify the system parameter matrix 0, we make use of the recursive al-
gorithms (3.55)—(3.57).

2. Order determination
The order determination method here is similar to that in the last subsection and the

F-test results for our model candidates according to (4.11) and (4.12) are given as follow-
ing in Table 7.2.3:

TABLE 7.2.3. The order comparison of current velocity model

MPVE | MPEE MPV |
P=2, q=1 | 0.0288694 | 0.0403688 | 0.00636337 | 2.91657¢-05
p=3, q=1 | 0.028119 | 0.0393385 | 0.0061354 | 1.77705¢-05
p=4, q=1 | 0.027965 | 0.0390262 | 0.00605504 | 1.83553¢-05

(i) Let ARMA(2,1)=l4 , ARMA(3,1)=U,
X5.05(100) = 128.84 and z = 365 x 221657e—05-1.77705e 05 _ 934 535 reject ARMA(2,1)

1.77705¢—-05

(i) Let ARMA(3,1)=l; , ARMA(4,1)=l4,
X3.05(100) = 128.84 and z = 365x LT7705c=05-1.83553¢=05 __ _ |} sogg choose ARMA(3,1)

1.83553¢-05

3. Simulation

According to the order determination presented in Table 7.2.3., we choose a dimensional

multivariable time series model which is a simpler form of (7.14) as following ARMA(3,1)

model:

Un = A\Unoy + AUn—z + AsUn_3 + wn + Crw,, (7.20)
Set as:

07 = (A, Aq, A3, C1] (7.21)
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zn = (U, UL, Ul_sel ). . (7.22)

In order to solve equation (7.20), the ELSM (3-55)-(3.57) is used (substitute U, for Yn)
in (3.55). From (7.20), here p = 3,¢ = 1,/m = 10 and d = 40 and the time scale in here
is 32 minutes per run. Since the initial value are need, the first third data as our initial

value we really start the model at n=4.
The computation procedure of ELSM is as follows:

(1) Construct z,, according to (7.22) and (7.18) (n > 3).

(ii) Select initial values of 05 and Rj;.

(iii) Calculate K., R, and 0, according to (3.55)~(3.57) based on the Koy, Ru_y | Ou_y
and z, (n > 3).

The simulation results are given as follows:
(i) The five parameter matrices are:

( 0989 0249 0.147 0.061 -0.055 —-0.076 0.039 —0.014 —0.035
0.240 0.791 0.172 0.142 0.043 -0.029 0.039 -—0.009 0.001
0.193  0.175 0.640 0.147 0.022 0.045 0.076 -0.043 0.032
0.015 0.062 0.200 0.616 0.185 0.142 0.076 -0.058 0.041
~0.109 0.056 0.081 0.254 0.805 0.132 0.112 -0.060 0.028

A= —0.107 -0.051 0.109 0.230 0.139 0.726 0.197 0.064 —0.002
—0.040 -0.039 0.095 0.062 0.093 0.201 0.747 0.267 0.041

—0.049 0.001 0.085 —0.042 0.043 0.148 0.345 0.768 0.064

0.010 -0.026 0.033 -0.027 0.045 -0.002 0.121 0.157 0.751

\ 0.035 -0.022 -0.056 —0.001 -0.046 -0.033 —0.055 —0.002 0.302

( 0352 0002 -0.012 0.038 -0.015 —0.021 0.023 —0.006 —0.018

0.008 0.352 -0.020 0.044 -0.022 —-0.020 0.035 —-0.024 —0.017

0.008 -0.006 0.323 -0.001 0.001 0.001 0.043 —0.017 0.007

0.005 -0.019 0.001 0.345 0.004 -0.018 0.034 -0.006 —0.005

Ay = —0.019 0.007 -0.004 0.018 0.313 -0.012 0.046 -0.015 —0.018

—-0.017 0.014 -0.006 0.038 -0.015 0.313 0.026 —0.012 -—0.006
—-0.024 -0.017 0.005 -0.022 -0.002 0.002 0.341 0.002 -—0.021
—0.009 -0.005 0.038 -0.054 0.021 0.006 0.030 0.328 -—0.018
0.016 -0.011 0.013 -0.040 0.020 -0.002 0.012 0.006 0.301
\ —0.005 0.029 -0.007 0.044 -0.017 —0.002 0.030 —0.024 0.013
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0.033\
-0.053
0.028
0.054
0.044
0.026
-0.119
—0.056
0.356
1.131/

0.026 )
0.016
0.007
0.004
0.013
—0.004
0.012
0.024
0.028
0.336




( -0.308 -0.285
—0.261 —0.106
~0.164 —0.192
0.005 —0.094
0.091 —0.023

Az =
0.077  0.075
0.061  0.045
0.048 —0.001
0.018  0.000

\ —0.079 0.057
[ 0604 0.064
0.059 0.521
0.044  0.076
~0.016 0.017
~0.064 0.022

C =
—0.025 —0.068
—0.000 —0.048.
~0.002 —0.010
~0.013  0.018

\ 0.049 —0.016

ii)

TABLE 7.2.4. The

(iii)

—0.193
—0.229
0.008
—0.199
—0.083
—0.124
—-0.049
—-0.011
-0.013
0.017

0.091
0.112
0.449
0.132
0.023
0.077
0.021
0.020
—~0.006
~0.039

0.001
—0.069
—0.155

0.068
-0.215
-0.153
—0.087
~0.075
—-0.060

0.067

—-0.031
0.029
0.114
0.376
0.105
0.081
0.004

—0.040
0.001

-0.026

0.021
—0.088
—0.043
-0.191
—0.167
—0.178
-0.093
-0.016
—0.008
—-0.015

—0.063
0.013
-0.037
0.109
0.577
0.047
—0.009
—0.052
—0.009
0.004

0.048
-0.010
—0.059
—-0.190
—-0.172
—-0.095
—0.196
—~0.154
—0.004

0.012

~0.052
-0.052
0.036
0.110
0.011
0.486
0.085
0.031
-0.053
—0.003

0.034
0.050
—0.002
-0.0174
-0.033
-0.151
~-0.060
—0.298
—0.083
0.112

0.037
—0.027
0.035
0.013
0.022
0.087
0.455
0.177
0.067
-0.039

0.018
~0.012
~0.009
0.034
0.015
~0.098
~0.264
~0.123
~0.133
~0.052

-0.026
—0.001
—-0.054
-0.103
-0.091
—-0.029
0.128
0.496
0.053
—0.001

-0.023
—0.034
—0.038
—-0.057
—0.062
~0.006
—0.078

~0.115

—0.145
—0.297

-0.012
0.003
~0.011
0.003
0.025
—0.020
0.029
0.045
(.489
0.064

mode of the parameter matrices in ARMA(3,1) current

velocity model

A

Az

Az

Gy

ARMA(3,1)

1.35035

0.417748

0.699889

0.

752131

MPEE=0.028119 m/s

MPVE=0.0393385 m /s

MPV= 0.0061354
a*=1.77105 e-05
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Figure 7.2.13. Plot of ARMA(3,1) Current Velocily Model Error vs Data at h=0.05H
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Figure 7.2.14. Plol of ARMA(3,1) Current Velocily Model Error vs Data at h=0.10H
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Figure 7.2.15. Plot of ARMA(3,1) Current Velocity Model Error vs Data at h=0.20H
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Figure 7.2.16. Plot of ARMA(3,1) Current Velocily Model Error vs Data at h=0.30H
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Figure 7.2.17. Plot of ARMA(3,1) Current Velocity Model Error vs Data at h=0.40H
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Figure 7.2.18. Plot of ARMA(3,1) Current Velocily Model Error vs Data at h=0.50H
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Figure 7.2.19. Plot of ARMA(3,1) Current Velocity Model Error vs Data at h=0.60H
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Figure 7.2.20. Plot of ARMA(3,1) Cumrent Velocity Model Error vs Data at h=0.70H
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Figure 7.2.22. Plol of ARMA(3,1) Current Velocity Model Error vs Data at h=0.90H
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(iv) Figures 7.2.13-7.2.22 show the simulation of the current veloci ty dynamics at different
depth and Figure 7.2.23. gives the norm of the parameter matrix error dynamics in the
current velocity model.

(v) The mode and the element of A,, are comparatively large and the those of A,, A5 are
comparatively small which shows that the more recent the time, the more effect is there
on the current variation. )

(vi) Since A, is strongly diagonally dominant, we can say that the larger the distance
between given layers, the less effect is there on the layer variation.

(vii) The variation of the mode of parameter error matrix |0, with time is given in Figure
7.2.23. It is shown that the model parameter matrices are nearly constant matrices which

means the good description of the model.

7.2.3 Model Comparison

In last two subsections, two kinds of multivariable time series current velocity model are
presented. The model comparison between AR(5) and ARMA(3,1) is given in Table 7.2.5.

TABLE 7.2.5. The Model Comparison

Model MPEE MPVE MPV o2
AR(5) 0.0326627 | 0.0456293 | 0.0508491 | 2.05273e-05
ARMA(3,1) | 0.028119 | 0.0393385 | 0.0061354 | 1.77705¢-05

I'rom Table 7.2.5, all the MPEE, MPVE, MPV and o2 of the ARMA model are smaller
than those in AR model. It is shown that the MPV of ARMA are much improved which
means that the parameter matrices of ARMA time series model are ‘nearly constant
matrices’. Therefore the multivariate model presented here is better description of the
system, data fitting and prediction. This is because the ARMA model takes advantage
of the information from the model error and estimation of system noise as well as under

the assumption that the system noise is coloured noise. 1t is suggested that the ARMA

Model is more suitable than AR Model in this special case.




7.3 Suspended Sediment Concentration Model

The resuspension, transport and deposition of suspended particular matter (SPM) play a
crucial part in a range of marine processes, including benthic fluxes, biological productiv-
ity, biogeochemical cycling and pollutant dispersal. There are, however, surprisingly few
data sets enabling detailed investigation of SPM dynamics because it has hitherto been
difficult to monitor particle concentration, composition and behaviour over appropriate
time and length scales. So it is very important to set up a proper SPM concentration

model in the process of sediment transport.

In this section, two kinds of time series model are introduced. First, the univariate model
similar to the current velocity model is used to describe the SPM concentration profile
dynamics. Second, the multivariate model (ARMAX Model) is used to describe the SPM
dynamics. The simulation and model comparison show that the latter one has advantage
over the former one both in statistical analysis and geophysical illustration. Like the
last section, the system identification technique is applied here to modelling the time
series dynamics for SPM concentration by measuring depth profile current velocity and
SPM concentration in situ, which provides a detail data set. The SPM time series model
provides comprehensive modelling and prediction for SPM dynamics based on the data
set.

7.3.1 AR Model and ARMA Model

In this subsection we focus on modelling the suspended sediment concentration dynamics.
First of all, for simplicity, the univariate model for suspended sediment concentration

profile is presented.

Disturbance | ¢(t)

Output

System

Y (1)

Fig 7.3.1 A Dynamic system with output ¥(¢) and disturbance ¢(t) where ¢ denotes time.
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Similar to the section 7.2, for simplicity, we first assume that the suspended sediment
concentration variation Y'(t) are ‘explained’ solely in terms of its own past or by its time
and surrounding value and uncontrollable disturbance €(t), although of course the Y(t)is

also dependent on many other factors such as current velocity profile dynamics.

We assume that the time series model here that describes the suspended sediment con-
centration is a discrete multivariable time-invariant stochastic linear system and can be
represented by the following AR(p) or ARMA(p, q) model like current velocity model pre-
sented in last section.

I. AR Model
1. Model Description

First, we assume that the suspended sediment profile model is a multivariable AR(p)
model as follows:

A(z™)Y, = w, (7.23)

where w, is the system noise and the restriction on it is presented in (3.66) and (3.67).

Az ) =Tn+ Az L Az7P (7.24)

Yo and w, are m-dimensional vectors, z~! is a unit delay operator and A;, (7 =1, D) is
m X m unknown matrices to be estimated. /., is an m x m unit matrix.
Set

07 = [—A1, e, — A mxa (7.25)
I: = D,nT—I: “eny YnT-p]le (7.26)
d=mxp (7.27)
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here 0, is the estimate of # at time n and [.},,xq and [.);x¢ denote an m x d matrix and a,
d—dimensional row vector respectively.

It is easy to see that (7.23) also can be written as
Y, =0Tz, + w, (7.28)

We construct the vertical profile variable vector of suspended sediment concentration as
the system output and it is a function of the water depth and time. Denote Y.(h) as the
suspended sediment concentration at height h and time n (i.e. set water depth H, bottom
h = H and surface A = 0). So

YT = [Ya(h1), Ya(h2), Ya(ha)y oy Ya(hm )1 xm. where 0 < by < he <..<h, <H.

In order to identify the system parameter matrix ¢, we make use of the following re-

cursive algorithms (3.55-3.57).
2. Order determination
The order determination technique is similar to the last section and the F-test results

for our model candidates according to (4.11) and (4.12) are given as following in Table
7.3.1:

TABLE 7.3.1. The order comparison of suspended sediment concentration
model

MPVE MPEE MPV o?
p=4 | 0.00858969 | 0.0209755 | 0.0415207 | 1.66488¢-05

p=5 | 0.00947416 | 0.0221978 | 0.0249716 | 8.22566e-06
”p=6 0.00948561 | 0.0222891 | 0.0322295 | 8.43719¢-06

(l) Let AR(4)=U1 , AR(5)=L{2

X6.05(100) =~ 128.84 and z = 365 x 106488e-05-8.22566e=06 _ 373 763 reject AR(4)

(i) Let AR(5)=U, , AR(6)=i4;

Xgos(lOO) =~ 128.84 and =z = 365 x 8.22566;—;:(:?1—986.13':;!93—06 = —9.15097 choose AR_(S)
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3. Simulation

According to Table 7.3.1, we choose a multivariable time series model which is a sim-

pler form of (7.23) as following an AR(5) model: ,
Vi=AYa 1 + BYa 2+ CYasa + DY,y + EYs + wy,. ) (7.29)
Set :
0" = |A,B,C, D, E] (7.30)
:CZ = [Y -1, )/n-Z: ,n.-31 }’;1—41 )/n—Sl- (7.31)

For solving equation (7.29), the ELSM (3.55)-(3.57) is applied (substitute ¥, for y,) in
(3.55). From (7.27), we know p = 5,m = 10,d = 50 and the time scale in here is 3%
minutes per run. Since the initial value are need, the first fifth data as our initial value

we really start the model at n=6.
The computation procedure of ELSM is as follows:

(i) Construct z, according to (7.31) (n > 5).

(ii) Select initial values of 05 and Rs.

(iii) Calculate K,, R, and 0, according to (3.55)-(3.57) based on the K,_y, Ra_y , On_,
and z, (n > 5).

The simulation results are given as follows:
(i) The five parameter matrices are:

( 1.542  0.237 0.297 0.008 —0.084 —-0.104 0.048 -0.047 -0.105
0.277  1.250 0.317 0.093 0.045 -0.064 0.010 0.014 -0.051
0.173  0.147 1.185 0.225 0.074 0.095 0.145 —0.058 -0.089
0.056  0.047 0.249 1.087 0.205 0.211 0.163 —0.043 —0.041
0.004 0.017 0075 0.225 1.252 0.179 0.215 -0.018 —0.001
—0.010 -0.065 0.076 0.209 0.152 1.271 0.285 0.045 -0.066
—0.002 -0.063 0.037 0.082 0.053 0.186 1.338 0.279  0.038
~-0.017 0.008 0.001 -0.006 0.007 0.080 0.423 1.229  0.093
—0.047 —-0.005 0.003 0.069 0.114 -0.014 0.135 -0.021 1.232
\ —0.008 -0.046 0.002 0.088 0.064 0.013 —0.105 —-0.178 0.257
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0.022
0.039
0.016
0.021
0.056
—0.035
0.086
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1.819 }




([ -0.406
-0.428
~0.257
~0.084
0.002
0.045
0.046
0.044
0.061
\ —0.002

[ —0.110
0.034
0.014
0.028
0.010

—0.008

—-0.038

—0.022
0.005

\ —0.015

[ —0.057
0.068
0.026

~0.007

—0.022

~0.024

~0.017
~0.003
~0.020

\ —0.009

—0.404
—0.074
—0.281
-0.174
-0.102
~0.021
—-0.003
—0.029
0.027
0.116

0.090
—0.015
0.004
0.012
0.008
0.049
0.036
—0.020
—0.022
0.009

0.084
—-0.067
0.065
0.053
0.045
0.045
0.040
0.032
0.008
~-0.032

-0.258
—0.269
0.145
-0.204
-0.093
—0.087
—0.006
0.015
—0.025
-0.054

0.039
-0.039
0.022
—0.054
0.040
—0.006
~-0.012
-0.024
—0.011
-0.018

0.041
0.008
-0.119
0.001
0.010
-0.001
-0.033
—0.041
0.000
0.023

-0.074
-0.138
-0.217
0.182
-0.218
-0.198
-0.051
0.020
-0.089
-0.108

0.044
—-0.010
—0.064

0.049
-0.037
—0.059

0.009

0.049

0.002
-0.007

0.020
0.013
0.007
-0.101
0.010
—0.001
—0.025
—0.024
0.014
0.034

154

0.056
—0.043
-0.105
-0.240

0.041
-0.176
—0.118
-0.029
-0.123
—0.082

0.028
—-0.008
0.028
-0.046
-0.071
0.031
0.043
0.080
0.013
0.060

-0.014
0.006
0.030
0.038

—-0.092
0.033
0.031
0.014
0.036
0.055

0.071
0.034
—-0.129
-0.224
—-0.230
0.027
—0.258
—-0.162
—0.053
-0.048

—0.045
0.037
—-0.030
~0.042
0.001
—0.063
-0.004
0.056
0.071
—0.028

—-0.030
-0.007
0.000
0.016
0.021
-0.124
0.020
0.018
0.609
-0.005

0.083
0.016
—0.085
—-0.149
—0.200
-0.306
—0.006
—0.400
-0.010
0.263

—-0.055
0.043
—-0.021
-0.017
-0.029
—0.035
0.004
~0.097
—0.024
0.015

-0.601
0.032
0.011
0.024
0.015
0.043

—-0.091
0.038

-0.034

—0.082

0.086
~0.064
-0.087
-0.111
-0.175
-0.282
—0.522
—0.138
—0.097

0.184

-0.035
-0.037
0.010
0.030
0.036
0.050
—0.064
—0.029
0.001
0.009

-0.063
-0.016
0.023
0.029
0.065
0.103
0.125
~0.015
0.011
—0.089

0.074
—0.005
-0.011
-0.055
—-0.098
—-0.053
-0.135
—0.200
-0.090
~-0.500

0.060
0.018
0.068
0.057
0.056
0.102
0.012
—0.002
—-0.060
0.029

0.030
0.029
0.039
0.022
0.036
0.036
0.041
0.052
—0.065
0.121

-0.056 \
0.052
0.057
-0.063
0.061
0.072
0.167
-0.014
—0.478
~0.659 }

~0.046 \
~0.030
—0.002
0.033
0.035
-0.032
~0.001
—0.039
~0.002
—0.096

0.022
-0.027
~0.049
~0.057
—-0.077
~0.102
—0.095
~0.059

0.062

0.025 /




([ 0013 -0.035 -0.009 —0.036 -0.054 0070 0.133 -0.067 —0.124 0.078 \
0.064 —0.137 0.037 0010 -0.008 -0.041 0.043 0.027 -0.046 0.025
0.048 0.078 -0.254 0.031 ~0.010 0.004 0.079 0.055 -0.033 —0.030
0010 0.076 0012 -0271 0072 -0.015 0.082 0.059 -0.002 —0.048
p- | 0004 0069 -0.075 0008 -0.101 -0.022 0.057 0.070 0.026 -0.056
—0.003 0.040 -0.056 0.045 0028 -0.192 0.066 0.077 —0.048 —0.011
0.007 0.041 -0.051 —0.021 0.043 -0.001 —0.217 0.178 0.072 —0.059
. —0.017 0.087 -0.032 —0.050 -0.017 —0.064 0.113 -0.085 0.078 —0.018
-0.018 0.082 -0.038 —0.035 0.009 -0.098 0.056 0.086 -0.046 —0.012

\ 0.007 0034 -0006 —0.024 -0.082 —0.001 0.033 0.027 0088 —0.094 |

ii)

TABLE 7.3.2. The mode of the parameter matrices in AR(5) suspended

sediment concentration model

(iii)

A

B

C

D

E

2.004459

1.051542

0.266854

0.285625

0.398206

MPEE=0.00947416 mg/|
MPVE=0.00221978 mg/|
MPV= 0.0249716
02=8.22566 €-06

(iv) Figures 7.3.2-7.3.11 show the simulation of the suspended sediment concentration
dynamics at different depth and Figure 7.3.12. gives the norm of the parameter matrix
error dynamics in the AR(5) SPM concentration model.

(v} The mode and the element of A, B are comparatively large and those of C, D, E are
comparatively small which shows thal the more recent the time, the more effect is there
on the current variation.

(vi) Since A is strongly diagonally dominant, we can say that the larger the distance

belween given layers, the less effect is there on the layer variation.
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Figure 7.3.2. Plot of AR(5) SPM Concentration Model Error vs Data at h=0.05H
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Figure 7.3.3. Plot of AR(5) SPM Concenlration Model Error vs Dala at h=0.10H
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Figure 7.3.4. Plot of AR(5) SPM Concentration Model Error vs Data at h=0.20H.
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Figure 7.3.5. Plot of AR(5) SPM Concentration Model Error vs Data at h=0.30H
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Figure 7.3.7. Plol of AR(5) SPM Concentration Model Error vs Data at h=0.50H
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Figure 7.3.9. Plot of AR(5) SPM Concenlration Model Error vs Data al h=0.70H
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Figure 7.3.10. Plot of AR(5) SPM Concentration Model Error vs Data at h=0.80H
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Figure 7.3.11. Plot of AR(5) SPM Concentration Model Error vs Data at h=0.90H
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Figure 7.3.12. The variation of || g, [| in AR(5) SPM Concentration Model with time
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II. ARMA Model
1. Model Description

Now, we generalise the model structure and assume the SPM concentration dynamic
system is disturbed by correlated noise series that the suspended sediment profile model
is a multivariable ARMA(p, ¢) model as follows:

A(z"Yo = C(27Yw, (7.32)

where wy, is the system noise and the restriction on it presented in (3.66) and (3.67).

A N=I,+ Az +... + Apz™?
Clz)=In4+CzV 4+ .. + Coz™9

Y: and wy, are m-dimensional vectors, z~! is a unit delay operator and A;,Cj(t = 1,...,p; 7 =
1,...,9) is m x m unknown matrices to be estimated. I,, is an m x rn unit matrix,
Set

07 = [~ Ay, ..., = Ap, C1y o, Clmxa (7.33)
o =¥, ., YnT-p: en_ysen e:—q]lxd (7.34)
d=mxp (7.35)
en = Y — 012, (7.36)

here 0,, is the estimate of # at time n and [Jmxd and [.Jixq denote an m x d matrix and a
d—dimensional row vector respectively.

It is easy to see that (7.32) can also be writlen as
Yo =0Tz, + C(z""Yw, + e — C(27")en. (7.37)

We construct the vertical profile variable vector of suspended sediment concentration as
the system outpul and it is a function of the water depth and time as we mentioned

before.
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In order to identifly the system parameter matrix 8, we make use of the recursive algo-
rithms (3.55-3.57).

2. Order determination

The F-test results for our model candidates according to (4.11) and (4.12) are given

as following in Table 7.3.3:

TABLE 7.3.3 The order comparison of suspended sediment concentration
model

MPVE MPEE MPV o’

p=2, q=1

0.00871258

0.0209343

0.00236536

1.06983e-05

p=3, q=1

0.00883307

0.0209273

0.00255276

7.8781e-06

p=4, q=1

0.00881297

0.0207835

0.00263308

8.20009¢-06

(i) Let ARMA(2,1)=/; , ARMA(3,1)=U,

XG.05(100) ~ 128.84 and z = 365 x L00983e-05-7.8781e-06 _ 3 553 reject. ARMA(2,1)
(i) Let ARMA(3,1)=t/; , ARMA(4,1)=Us,
X6.05(100) A 128.84 and x = 365 x LE781e-06-8.70009e-06 . _ 14 3393 choose ARMA(3,1)

3. Simulation

According to the Table 7.3.3, the ARMA(3,1) SPM concentration model is chosen as

follows:

Yi=AYoo + AsYas + AsYas + w, + Crw,, (7.38)
Set as:

oT = [AIJAZ'I A31 Cl] (739)

I: = [Y -1 /n—2a )/n-Sa cn-l] (740)

To solve equation (7.38), the RLSM (3.55)-(3.57) is used (substitute Y, for ¥r) in (3.55)
and from (7.35), p = 3,9 = 1,m = 10,d = 40. The time scale in here is 3;—’ minutes per
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run. Since the initial value are need, the first third data as our initial value we really start

the model at n=4.
The computation procedure of ELSM is as follows:

(i) Construct z, according to (7.34) and (7.36) (n > 3).
(ii) Select initial values of 83 and Ra.

(iii) Calculate Ky, R, and 8, according to (3.55)-(3.57) based on the Ko Ry, 0
and z, (n > 3).

n—1

The simulation results are given as following:
(1) The five parameter matrices are:

( 0914 0291 0222 0.007 -0.041 —0.108 0.026 —0.095 —0.043 0.089 )

0.308 0.655. 0222 0.124 0011 0.027 0.002 —0.066 0006 0.024
0.168 0.175 0556 0.167 0.135 0.112 0.048 —0012 —0.004 —0.041
0024 0109 0165 0.551 0.199 0.165 0.121 0.033 0.006 —0.094
—0.008 —0.003 0.137 0.190 0.567 0.209 0.154 0.104 0.050 -0.071
—0.103 0.033 0099 0.180 0.220 - 0.560 0.236 0.112 0.039 —0.070
—0.048 —0.043 0.008 0.122 0.185 0215 0.530 0.165 0.148 0.043
—0.044 —0.013 —0.022 0.052 0.150 0.103 0.205 0.532 0.158 0.169
—0.036 0.057 -0.033 —0.016 0.043 —0.011 0.188 0.131 0613 0.324
\ 0053 0032 -0051 —0.114 —0.069 —0.100 0.127 0.135 0311 0.947 /

A1=

Ay

[ 0338 -0010 0055 =-0.031 —0.033 —0.019 0.102 —0.059 —0.026 0018 )
0.016 0317 0.021 0.002 -0004 —0.012 0.035 -0.031 —0.027 0.012
0014 —0.016 0.343 0.014 —0.004 0.002 0.008 —0.010 0.007 0.003
0.006 —0.011 0.001 0.335 0019 -0.006 0010 -0.015 0.000 0.007
0.012 -0.032 0.008 ~0.007 0.338 0019 -0.026 —0.013 0.029 —0.003
0.000 0.012 -0015 0.008 0.006 0.301 0.031 —0014 0009 —0.0i1
0013 -0.018 -0.033 0.015 0021 0.006 0304 —0011 0036 —0.018
—0.003 0.031 —0.043 —0.003 0.039 0030 0.033 0315 0.0i1 —0.005
—0.014 0064 ~0.028 —0.026 0.015 -0056 0.087 -—0.018 0319 —0.010
\ -0.022 0032 0016 -0.012 000f —0.039 008 -0.048 —0.022 0.340 )
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( ~0-254 -0332 -0.120 0074 -0.018 0.076 0.191 -0.013 —0.007 —g g0 \
~0.301 -0042 -0.189 —0.125 —0.015 ~-0.044 0.079 0019 —0.044 g.g9
0156 -0219 0120 —0.144 —0.148 -0.116 —0.039 —0.017 0013 0043
—0.010 —0.133 —0.165 0.111 -0.166 -0.185 -0.108 —0.069 —0.010 o109
0042 -0.056 -0.118 -0.176 0.108 =-0.175 —0.211 —0.136 0001 q.g57

As = 0.099 -0.010 -0.133 -0.164 —0.208 0.043 -0.170 -0.196 —0.014 0.059
0.093  0.016 -0.068 —0.085 —0.140 -0.202 0.080 —-0.185 —0.070 -0.076

0042 0075 -0.070 -0.063 —0.078 -0.170 —0.145 0.092 —0.141 -0 83

—0.007  0.062 —0.030 —0.041 -0.015 -0.100 —-0.009 —-0.161 0038 -0.331
\ —0.105 0.029 0076 0083 0062 0015 0042 —0.229 -0.340 —0.241)

( 0.523  0.118  0.101 -0.013 —0.026 -0.091 -0.005 -0.013 —0.015 0.054 )
0.118 0400 0.133 0.074 -0.033 0.015 -0029 —0.049 0015 -0.001

0.041  0.107 0314 0094 0065 0073 0022 -0.023 —0.011 —0.025

—0.013 0.064 0088 0310 0.107 0.114 0050 —0011 0003 —0.069

c,= | 0012 -0018 0092 0096 0315 0101 0102 0.044 0008 —0.069

—0.082 0014 0073 0062 0124 0312 0132 0.041 0012 -0.057
—0.020 —0.028 -0.015 0.046 0.094 0.132 0316 0086 0036 —0.006
=0.005 -0.041 -0.000 0.018 0.071 0.058 0.15 0.308 0044 0.080
~0.016 0.046 —0.023 -0.001 —0.000 —0.017 0.066 0.068 0.339 0192
\ 0076 0034 -0057 —0.089 —-0.044 —0.053 0025 0119 0145 0.566 )

ii)

TABLE 7.3.4. The mode of the parameter matrices in ARMA(3,1) SPM

concentration model

A A, Az Cy
ARMA(3,1) | 1.30509 | 0.431542 [ 0.65197 | 0.768769 |

(iii)

MPEE=0.00883307 mg/|
MPVE=0.0209273 mg/I
MPV= 0.00255276
a?=1.8781 c-06
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Figure 7.3.13. Plot of ARMA(3,1) SPM Concentration Model Error vs Data at h=0.05H
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Figure 7.3.14. Plot of ARMA(3,1) SPM Concentralion Model Error vs Dala at h=0.10H
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Figure 7.3.15. Plot of ARMA(3,1) SPM Concentration Model Error vs Data at h=0.20H
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Figure 7.3.16. Plol of ARMA(3,1) SPM Concentration Model Error vs Data al h=0.3CH
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Figure 7.3.17. Plot of ARMA(3,1) SPM Concentration Model Error vs Data at h=0.40H
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Figure 7.3.18. Plot of ARMA(3,1) SPM Concentration Model Error vs Data at h=0.50H
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Figure 7.3.20. Plot of ARMA(3,1) SPM Concentralion Model Error vs Data at h=0.70H
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(iv) Figures 7.3.13-7.3.22 show the simulation of the suspended sediment concentration
dynamics at different depth and Figure 7.3.23. gives the norm of the parameter matrix
error dynamics in the SPM concentration model.

(v) The mode and the element of A,, are comparatively large and the ones of A, Aj are
comparatively small which shows that the more recent the time, the more effect there is
on the current variation. '

(vi) Since A, is strongly diagonally dominant, we can say that the larger the distance

between given layers, the less effect there is on the layer variation.
III.  Model Comparison between AR(5) and ARMA(3,1)

The model comparison between AR(5) and ARMA(3,1) is given in Table 7.3.5.

TABLE 7.3.5. The Model Comparison

Model MPEE | MPVE MPV a?
AR(5) | 0.00947416 | 0.0221978 | 0.0249716 | 8.22566¢-06
| ARMA(3,1) | 0.00883307 | 0.0209273 [ 0.00255276 | 7.8781e-06 ||

From Table 7.3.5, the MPEE, MPVE, MPV and o2 of the ARMA model are better than
those in AR model. It is shown that the MPV of ARMA are much improved which means
that the parameter matrices of ARMA time series model are ‘nearly constant matrices’.
Therefore the ARMA model presented here has less parameter identification matrices
than the AR(5) model because it is a better description of the system, for data fitting
and prediction then the AR model. This is because the ARMA model takes advantage of
the information from the model error and estimation of system noise as well as under the

assumption that the system noise is coloured noise.

7.3.2 ARMAX Model

In this subsection, according to the ocean science and geophysics, the suspended sediment
concentration is closely related to the magnitude of the current velocity, so here the sus-
pended sediment dyramics is taken as a unknown stochastic system. The current velocity

profile is set as an input to the system model, and the suspended sediment concentration
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is considered as the output of the system model. System ldentification theory is applied
in the model to identify the unknown parameter matrices of the model, based on in situ
data collected in the study area. In this case, the system identification technique is ap-
plied to the Rufiji Delta, Tanzania, the data collected by (Fisher 1994) in March 11, 1993,
to illustrate the quantitative relationship between suspended sediment concentration and
current velocity. The aim is to show that this particular theory is suitable for matching
known data sets, and this will be achieved by ensuring all the parameter matrices remain
virtually constant when tackling future data sets. By operating the model in this way,

the results obtained should simulate the data with some degree of accuracy.

The models in last subsection, used a suspended sediment concentration variation that
was assumed to be dependent on is its own past through its temporal and spatial values
as well as uncontrollable system noises. Here, the suspended sediment concentration pro-
file is assumed to be related to the current velocity profile according to the physics and
ocean geophysics. This appears more realistic and reasonable in an estuary environment.
It is conceded therefore that the parameter matrices we find may depend on times and
positions where the physical, chemical, microbiological and geographical processes remain
not very well understood. The simulation results show the model developed has good
agreement with the real data collected from the Rufiji Delta, Tanzania. The comparison
of the multivariate model with univariate model is given to show that this type of model
is a good one in as far as matching known data sets, and we shall show this by showing
that all the elements of each matrix remain virtually constant when subjected to future
data. This way, the model is shown to describe the data with accuracy and can be used

for prediction.

Disturbance | €(t)

Input Output
System
u(t) Y()

Fig 7.3.24. A Dynamic system with input U(t), output Y(t) and disturbance ¢(t) where

l denotes Lime.
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We assume that the time series model here that describes the concentration of suspended
sediment and current velocity is a discrete multivariable time-invariant stochastic linear

system and can be represented by the following ARMAX(p, ¢,7) model:

Az + B(z""YW, = C(z7 " )w, . (7.41)
where

Az ) = Tn+ A1z o+ AP
B(z"YY=Byz7' + ... 4 B,z™?
Clz)=In+Ciz7 ' 4+ .. 4+C,z™" (7.42)

where wy is the system noise and the restriction on it presented in (3.66) and (3.67),
Y., U, and w, are m-dimensional vectors and z~! is a unit delay operator and A;, B; and
Ci(z=1,...,p;j =1,...¢;k = 1,2, ...,7) are m X m unknown matrices to be estimated. In
1s an m X m unit matrix.

Set

GT — [—A], ceey —Ap, B], ceny Bq, Cla . Cr]mxd (743)
551 = [}/nT—la AR )Inj-‘-pa UZ—] [ U,T_q, ez—l PR e:-q]lxd (744)
en=Y,— 07z, (7.45)
d=mx(p+q+r) (7.46)

here 0,, is the estimate of ¢ at time n and [.]mxa and [];xe denote an m x d matrix and a
d—dimensional row vector respectively.

It is easy to see that (7.41) also can be written by
Yo =0Tz, 4+ C(z7Ywn + en — C(z e, (7.47)

We construct the vertical profile variable vector of suspended sediment concentration cur-
rent velocity as the system output and it is a function of the water depth and time. Denote
Ya(h) and U,(%) as the suspended sediment concentration and squared current velocity

at height h and time n respectively (i.e. set water depth H, bottom h = H and surface
h =0). So

I%
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YnT = [)/n(hl)a }/n(hz), Yn(ha), aeey Y"(hm)][xm and Uz‘ = [Un.(hl), Un(h2)1 Un(ha), ceny Un(hm)]l)(m-
where 0 < h, < hy, < ... < h,, < H.

In order to identify the system parameter matrix 8, we make use of the recursive al-
gorithms (3.55-3.57).

2. Simulation
The simulations are consisted of two parts (i.e. order determination, and parameter

identification). In here, we choose a multivariate time series model which is a simpler
form of (7.41) as following ARMAX(p, ¢,1) model:

Yo=AYa+ .+ AV + BilUssy + oo+ ByUnoy + w, 4 Crton_y. (7.48)
Set:

0T= [A],...,AP,BI,...,Bq,Cll (749)

Zh = [Yacty s Yacps Unc1y oo Un—gs €ne1] (7.50)

en =Y, — 0:‘:1:,1. (7.51)

2.1. Order determination

There is an identification of the model order problem here. The identification of a system
order is a research branch in system identification which is very complicated. It is usu-
ally difficult to assess the order of the time series model. Some statistical methods and
criteria are used to try to determine the order of the system, such as partial or inverse
autocorrelation function and autocovariance function method, Akaike’s final prediction
error criterion, Akaike’s information criterion and Parzen’s autoregressive transfer func-
tion criterion etc. But unfortunately, all these criteria and methods may give more than
one minimum, depend on assuming that the data are normally distributed, and some-
times indicate too many parameters (Chatfield 1980). Thus they should be used only as
guides. So in this section we try to keep balance between the accuracy of the model and

the number of parameters that need to be estimated.

The approach is to fit the model of progressively higher order, to calculate variance
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of one-step prediction error o? for each value of order (p,¢,r), as well as to consider the
MPVE, MPEE and MPV. The criterion is that if the addition of extra parameter matrices
gives little improvement, we do not choose a higher order model.

The so-called F-test method (Séderstrom 1989) is used here to determine our model struc-
ture and the F-test results for our model candidates according to (4.11) and (4.12) are

given as following in Table 7.3.6:

TABLE 7.3.6. The Order Comparison of the ARMAX Model

Model MPEE MPVE MPV a?
ARMAX(3,2,1) | 0.00860554 | 0.0200166 | 0.0022704 | 9.58426¢-06
ARMAX(4,2,1) | 0.00822247 | 0.0195851 | 0.00238675 | 6.79282¢-06
ARMAX(4,3,1) | 0.00794057 | 0.0187704 | 0.002442882 | 6.42447e-06

Let ARMAX(3,2,1)=l, , ARMAX(4,2,1)=U1,
X3.05(100) =~ 128.84 and = = 365 x 25840290 5.79262¢-06 = 149.993
reject ARMAX(3,2,1)

Let ARMAX(4,2,1)=U; , ARMAX(4,3,1)=U,
X3.05(100) =~ 128.84 and z = 365 x $19282e=06-04M47e_06 _ 9() 9974
choose ARMAX(4,2,1)

2.2. Parameter Estimation

From order determination we choose ARMAX(4, 2, 1) time series model for the Rufiji

Delta as follows:

Y;, = Alyn—l + ...+ A4),"_4 + B|U -1 + BQUH_Q + w, + Cl‘lUn_] (752)
Set as:

oT = [AHA'Z:AC!, Afh Bl) BZ;CII (753)

-‘1:: = [)/ -15--0y ),11-—4) Un—-l ’ Un—?: Un——:}; en—l] (754)

To solve equation (7.51), the RLSM (3.55)-(3.57) is used (substitute ¥, for y,) in (3.55)
and from (7.51), here p = 4,4 = 2,r = 1 and d = 70 and the time scale here is 3.75
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minutes per run. Since the initial values are needed, the first four data are taken as these

initial values, so we really start the model at n=5.

The computation procedure of ELSM is as follows:

(1) Construct z,, according to (7.54) and (7.51) (n > 4).

(ii) Select initial values of 04 and R,.

(iii) Calculate K., R, and 0, according to (3.55)(3.57) based on the K —uRay , 0,

and z, (n > 4).

The parameter estimation results are given as follows:

(i) The seven parameter matrices are:

A

Ay

( 0.926

0.228
0.128
0.013
0.035
~0.090
~0.013
~0.017
~0.059
\ 0.030

( 0.273

~0.055
~0.031
—0.022
0.011
~0.026
0.033
0.041
0.003
\ 0.019

0.203
0.654
0.203
0.104
—0.055
0.052
—0.066
—0.066
0.038
0.012

-0.104
0.237
—0.032
-0.032
—0.083
—0.002
—0.020
0.010
0.028
0.001

0.139
0.225
0.493
0.146
0.167
0.111
~0.024
—-0.004
0.021
—-0.019

—0.044
—-0.032
0.223
—0.029
0.032
—0.014
—0.061
—0.013
—0.008
-0.012

0.048
0.176
0.199
0.590
0.264
0.191
0.125
0.068
0.090
—-0.035

—0.007
0.022
0.023
0.308
(4.062
0.011

—0.022
0.005
0.006

-0.019

177

0.036
-0.007
0.152
0.198
0.389
0.156
0.231
0.093
~0.009
—0.029

-0.015
-0.051
—-0.009
—0.019
0.129
—0.067
—0.002
—0.048
—0.082
—0.038

—0.008
0.131
0.177
0.183
0:207
0.535
0.254
0.133
0.007

—0.029

0.062
0.054
0.056
0.004
—0.004
0.228
0.006
—0.041
—0.091
—0.065

—0.008
—0.030
0.014
0.145
0.320
0.307
0.516
0.269
0.198
0.053

0.026
-0.013
—0.036

0.008

0.106

0.066

0.214

0.037

0.062
-0.034

r:

—-0.11¢
—-0.144
—0.066
—0.041
0.056
0.107
0.203
0.559
0.084
0.184

—0.084
—0.110
—0.083
~0.106
—0.080
—0.045
—-0.013
0.265
—0.067
—-0.022

—0.076
0.005
0.008
0.049

—0.015
0.006
0.109
0.076
0.630
0.251

—0.041
~0.042
~-0.015
-0.016
~0.051
-0.053
-0.024
~0.059
0.267
—0.040

1

0.058
0.051
0.010
—0.035
—-0.014
0.001
0.031
0.187
0.292
0.857

0.028
0.043
0.028
0.014
0.015
0.002
—-0.025
—0.006
0.001
0.311




( —0.093 -0216 —0.105 -0.002 -0.039 0128 0045 —0.065 0.005 0045 )

—0.152 —0.022 -0.170 -0.042 —0.030 0.030 0.036 -0.051 —0.067 0.054
—0.079 —0.163 0.043 -0075 —0.106 —0.016 -0.055 —0.091 —0.033 0.1
-0.029 -0.114 —0.128 0116 -0.140 —0.087 -0.057 —0.127 —0.069 0.039
-0.023 —0.085 —0.044 —-0.059 —0.040 —0.124 -0.029 —0.165 —0.063 0.019
0034 —0.015 ~0.066 —0.069 —0.179 0.033 -0.073 —0.122 —0.078 —0.016
0.022 0015 -0.054 —-0.084 -0.121 —0.120 0.038 —0.118 -—0.074 —0.042
—0.00L 0.032 -0.037 -0.025 —0.126 —0.134 —0.093 0.080 —0.089 —0.100
0.026 0012 —0.022 -0.035 —0.092 —0.110 0.027 —0.099 0.045 —0.134
\ 0.003 0003 0016 0027 0002 —-0.038 —0.027 —0.091 -0.151 0.006 /

( -0.037 ~0.053 —0.005 0.064 -0.060 0.143 —0.010 —-0.113 0007 0.060 )
0.073 —0.025 —0.I35 0003 0.049 0.038 0.085 0.00L -0.091 0.075
0072 -0.094 0.050 —0.002 —0.047 0.047 0.035 —0.012 0024 0.044
0.089 —0.043 —0.057 0.107 -0.078 —0.001 0.037 —0.0i1 —-0016 0..18
0018 0.033 0.044 0011 -0.003 —0.043 0.023 —0089 0051 0.096
0.044 0008 —0.019 0007 —0.104 0048 —0.004 —0.012 0.046 0.068
—0.023 0.079 0.051 0.005 -0.053 —0.048 0.066 —0.042 0020 0.030
~0.023 0.079 0.051 0.005 -0.053 —0.060 -0.045 0.069 0.027 —0.059
0.001 0.002 0005 0006 -0.000 —0.008 0.126 0.008 —0.028 —0.136
\ —0.076 —0.026 0.035 0087 0.078 0.042 0.054 —-0.058 —0.137 —0.131 )

[ —0.030 0020 -0014 0053 —0.098 0032 —0.133 —0.038 —0.050 —0.002)
-0.011 —0.025 0.006 0.065 —0.041 0071 —0.213 0.103 —0.017 —0.070
-0.012 —0.029 -0.004 0.015 -0.019 0.049 —0.167 0.060 —0.006 —0.008
0017 -0.051 —0.024 —-0.002 —0.053 —0.003 —0.088 0.015 0029 0.006
—0.010 —0.003 -0.060 0.036 0.008 -0.026 -0.077 0.088 0.002  0.001
0.052 —0.040 —0.075 0.023 0.027 -0.025 —0.102 0.128 —-0.002 —0.020
0012 -0.005 —0.120 0.147 0.034 -0.022 —0.055 0075 -—0024 0.019
0012 0.027 -0.099 0058 0.042 —0.081 —-0054 0.074 —0.0i6 0.001
0.004 0.026 —0.113 0.082 0.027 -0.021 —0030 0058 0.017 0.000

\ 0.022 0012 -0.116 0060 0016 -0.017 —0.069 0092 0.032 ~0.027 |
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0.023
0.009

0.030
0.002
0.023
0.017
0.036
\ 0.024

B2=

[ 0.526
0.087
0.028

~0.023

Gy

-0.079

(ii)

(iii) Figures 7.3.25-7.3.34 show the simulation of the suspended sediment concentration

dynamics at different depth and Figure 7.3.35. gives the norm of the parameter matrix

[ —0.052 0058 0.026

—0.04¢ 0.007
—0.009 0.033

—0.002 0.003

0.003

0.030
—0.036

-0.023 -0.016

0.005
0.016
0.021
0.040

0.087
0.361
0.116
0.071

0.018 -0.041

0.008

—0.001 -0.058
0.026 —0.048
—0.026 —0.003
\ 0.040 -0.023

—0.081
—0.101
—0.124
—0.130

0.114
0.076
0.056
0.070
0.054
0.090
0.136
0.067
0.063
0.066

0.058 -0.060
0.144 0.042
0.272  0.070
0.073  0.264
0.045  0.125
0.054 0.053
—0.065 0.059
—0.013 0.003
—0.013 0.059
—0.044 -0.020

-0.047
0.017
0.030
0.056
0.002
0.038

—-0.043
0.048
0.004
0.036

0.023
—0.056
0.065
0.072
0.183
0.061
0.103
0.028
—0.033
—0.066

0.077
0.046
0.058
0.027
~0.008
-0.021
—-0.072
—0.061
—0.049
0.026

-0.071
0.034
0.050
0.057
0.085
0.276
0.103
0.051

-0.019

—0.055

MPEE=0.00822247 mg/]

MPVE=0.0195851 mg/!

MPV=0.00238675
?=6.79282¢-06

error dynamics in the suspended sediment concentration model.

(iv) Since A, and A, are strongly diagonally dominant, it is shown that the larger the

distance between given layers, the less effect is there on the layer variation for suspended

sediment concentration.
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—0.046
—0.189
—0.144
—0.056
—0.094
—0.140
—0.078
—0.040
~0.036
-0.120

—0.006
—0.061
—0.021
0.049
0.156
0.157
0.276
(.148
0.035
—0.025

0.062
0.107
0.081
0.011
0.063
0.097
0.076
0.100
0.025
0.073

—0.060
-0.127
—-0.055
-0.032
0.028
0.001
0.070
0.299
0.014
0.088

0.063
0.032
0.021
0.060
0.009
—0.020

©—0.020

—0.048
0.022
-0.025

—0.010
0.060
0.011
0.028

-0.030
0.005
0.052

-0.001
0.364
0.131

~0.004 )
0.018
~0.038
—0.087
-0.027
0.003
—0.020
0.034
—-0.051
~0.019

0.041 )
0.030
—0.006
~0.007
—0.017
~0.009
—0.039
0.073
0.123
0.485
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Figure 7.3.27. Plot of ARMAX(4,2,1) Model Error, Model Prediction vs Data at h=0.20H
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Figure 7.3.28. Plot of ARMAX(4,2,1) Model Error, Model Prediction vs Data at h=0.30H
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Figure 7.3.29. Plot of ARMAX(4,2,1) Model Error, Model Prediction vs Dala at h=0.40H
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Figure 7.3.34. Plot of ARMAX(4,2,1) Model Error, Model Prediction vs Data at h=0.90H
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3. Long term prediction of ARMAX (4,2,1)

The time series model we presented here not only can be used in data fitting and short
time prediction as shown in last subsection bul also can be used in comparatively long
term prediction of the SPM sediment dynamics. If the time series model arises and its
parameter matrices are known, it is easy to use to form predictions. Definé fna as the
optimum one-step prediction of ¥;;,. Here, ¥,4, will be generated by ARMAX (4,2,1)

model as follows:
)/n+1 = A]Yu + ...+ A4}In_3 -+ B]Un + BQUn_] -+ Wy 41 -+ Clwn.

The noise term wy4; is unknown, so taking the expectation of both sides of the above
mentioned equation and w, is estimated by Jaoig — Yo (if the Y, is unknown, Sara 1s

the estimate of ¥, so the estimate of w, is zero.) the optimum one-step prediction fan is
far=AYa+ .+ AYas+ BiU, + BoU,_y + Ci(frn-10 — Y2)

similarly, ¥4, will be generated by
Yoer = AYosr + (AoYa + oo+ AdYasa + BiUass + BolUn + Ci(fa = Yog1)) + tngs

The term 10,4, is unknown, where as the term in parentheses is entirely known at time

n, and the first term is predicted by A, f,1, so the optimum two-step prediction f,,
foz = Avfag + (AYa + .+ AYaa + B, Uni1 + BoU,).

It is obvious how further predictions are formed: One simply writes down the generating
mechanism for the value to be predicted, with everything that is known part of the
prediction and everything that is not known replaced by its optimum prediction so that
we can get the optimum k-step prediction f, , &k = 1,2, ... based on the values Yo, Vi, ...
The ARMAX (4,2,1) model in (7.52) are used here for long term prediction. We start at
run n=307, under the assumption that we do not know the value of ¥,,n > 307 and get
the series f307,1, f307,2, ..., f307.64 up to 64-step prediction (4 hour ahead prediction). The
simulation results and comparison with the data set are shown in Figures 7.3.25-7.3.35.
The simulation results show that the maximum estimate error is

. . — Y < 0.09.
g8 Moo = Yosoorll < 0.09

The predictions are within the reasonable range of the real data set which shows the very
good long term prediction property of the ARMAX mode!. From Figures 7.3.25-7.3.35,

the prediction can describe trends and variations of the different layer of SPM dynamics

-
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quite well although there is a little bit of an underestimate of the down shots at about,
n=318 in the layers from h=0.05H to h=0.4H which start to make a large discrepancy
with the data. The simulations here also shown that the shorter the time, the better the

prediction in common with all other models.

7.3.3 Comparison with the Univariate Model

We have presented three different kinds of time series SPM concentration model in the
last subsection. Two of them ( AR(5) and ARMA(3,1) ) are the univariate model and the
multivariate model ARMAX (4,2,1). The model coinparison between AR(5), ARMA(3,1)
and ARMAX (4,2,1) is given in Table 7.3.7.

TABLE 7.3.7 The Model Comparison

Model MPEE MPVE MPV o? |
AR(5) 0.00947416 | 0.0221978 | 0.0249716 | 8.22566e-06
ARMA(3,1) | 0.00883307 | 0.0209273 | 0.00255276 | 7.8781e-06
ARMAX(4,2,1) | 0.00822247 [ 0.0195851 | 0.00238675 | 6.79252¢-06 ||

From Table 7.3.7, the MPEE, MPVE, MPV and o2 of the ARMAX model are better than
those in AR and ARMA model. Therefore the multivariate model presented here is the
best description of the system, including data fitting and prediction. It is confirmed that
the SPM concentration profile dynamics do have dynamic relationships with the current
velocity dynamics in the Rufiji Delta, Tanzania and the reason that ARMAX model works
better than other models is due to the fact that it takes advantage of the information from

the current velocity profiles.

7.4 Conclusion and Discussion

What we have presented here is an alternative to traditional current velocity and sus-

pended sediment dynamical models. The equations that describe the behaviour of the
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sediment dynamics have been replaced by a time series model containing some parameter
matrices. The reality of the model is justified by using data to determine the parameters
through a recursive time series procedure. To those familiar with traditional hydraulic
modelling, it may seem unusual that we use seven parameter matrices with many {ree
parameters, but all of them turn out to be virtually constant. This shows that the model
fits the data very well, and hence we contend that it contains a good represenia.t.ion of the
physics within, in this case, Rufiji Delta, Tanzania from which the data were taken. It is
therefore a type of inverse modelling method. The models obtained by system identifica-

tion here have the following properties, in contrast to traditional mathematical modelling:

(2) The model parameters have limited validity (They are valid for a certain working
point, a certain type of coast, certain season etc.), bui the model structure seems good
since i{ fits the data very well.

(b) They give little physical, chemical and biological insight since in most cases the pa-
rameters of the model have no direct physical, chemical and biological meaning for the
time being and the parameters are used here only as tools to give a good description of the
dynamic system’s overall behaviour. Further research is in progress to find relationships
between our parameters and measurable quantities.

(c) They are relatively easy to construct and use.

(d) They have greater short term accuracy, especially for complex situation, than tradi-

tional hydraulic models.
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Chapter 8

Conclusion

Two kinds of the modelling of sediment transport processes have been studied. The
system identification theory provides a background for the use of development of a satis-
factory description of current velocity and suspended sediment concentration dynamics.
The strong consistency and convergence rate of recursive least squares method for the uni-
variate and multivariate one variable and multivariable model, especially for the coloured
noise case derived from chapter 3, gives the theoretical guarantee for the model descrip-

tion and accuracy.

The distinguishing character of our time series model is that it can be easily changed
to an on-line or real-time identification method. i.e. If no new data collected, the model
predictions can be used to describe the current velocity and SPM concentration dynam-
ics and if there are new data collected, the new information is taken into the model for
verifying and modifying the model parameter or parameter matrices and lets the model
be adaptive to real dynamics in time. Since the natural world is always changing, storms,
typhoons and other natural phenomenon are quite unpredictable in the long term. You
can not expect an unchangeable model to work very well for a natural changing world in
the long term. So it is very important to take the latest information, updated data to
revise and renew the model for adapting the real current velocity and SPM concentration
dynamics. The time series modelling technique presented in this thesis provides a novel

and practical method to modelling sediment, transport dynamics.

For current velocity modelling, from the results given in the chapter 6 and chapter 7,
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the AR or ARMA model are suitable for description, data fitting and forecasting both
in the estuary and nearshore regions. The models present a good periodical and trend

character of the current velocity dynamics.

For the suspended sediment concentration model presented in the chapter 6 and chapter
7, more than one time series are considered in our model and the quantitative relation-
ship are set up. The strong consistency and convergence rate of recursive least squares
method given in chapter 3 provide the theoretical background for the model description
of the system and guarantee the modelling work. Since the current velocity profile data
are economic and easier to get, the ARMAX SPM concentration model we present here
not only provides a novel method to describe the suspended sediment dynamics but also
provides an economical and practical methodology to predict the SPM concentration dy-

namics based on the current velocity, wave variation and pressure data.

From the simulation results shown in Chapter 6 and Chapter 7, we know that the the
multi-layer model presented in the Chapter 7 is better than the one-layer model described
in Chapter 6. One of the main reason is that multivariable models take up the more infor-
mation since the data set contains the ten different layers of information which gives more
detail about the sediment profile dynamics. Another reason may be the time scale of the
problem since the time scale in Rufiji data is 3.75 minutes and the one in Holderness Coast
is one hour. The shorter the time scale, the more efficient is the observed information
about the real current velocity and suspended sediment concentration dynamics. More
factors such as biological, geophysical information should be considered in the Holderness

Coast model if one secks to improve it.

In this thesis, we consider the current velocity and suspended sediment concentration
as stochastic processes which need to be identified. System identification theory is ap-
plied in the model which has some unknown parameter matrices to be identified based
upon real data collected from the field. It is the principal aim of this thesis to apply the
system identification technique to flow and suspended sediment concentration in estuarial

and coastal system.

These parameters and parameter matrices will of course be capable of physical, chem-
ical or biological interpretation, but this is not done here since these parameters and
parameter matrices are used here only as tools to give a good description of the dynamic

system’s overall behaviour. We are content to show that this type of model is a good
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one in as far as matching known data sets, and we have shown this by showing that all
parameters and the elements of each matrix remain virtually constant when subject to
future data. This way, the model is shown to describe the data with accuracy.

As we all know, a considerable portion of the sediment transport in the estuary and coast
is due to sediment which moves in suspension. It is therefore necessary to develop models
for current velocity and suspended sediment concentration dynamics which may in turn

be combined with the sediment dynamics to give the transport rate.

Now we turn to discuss and consider further research and future work. It should be
pointed out that identification is not a foolproof methodology that can be used without

interaction from the user. The next steps we suggest are :

(i) Construct a more appropriate model structure. This can be a difficult problem, in

particular if the dynamics of the system are strongly nonlinear.

(ii) There are certainly no ‘perfect’ data in real life. The fact that the recorded data

are disturbed by noise must be taken into consideration.

(iii) The process may vary with time, for example possess natural periodicity or decay, this
can obviously cause problems if an attempt is made to describe it with a time-invariant

model.

(iv) It may be difficult or impossible to measure some variables/signals that are of central
importance for the model since the real cohesive sediment, transport dynamics in estuary

are still not fully understood.

(v) Consider more variables in the time series model including salinity, temperature,

chemical and biological activity.
(vi) Design a three dimensional time series model which includes different stations with

their vertical profile data set information and set up dynamical quantitative relationships

between the important variables in the sediment transport process.
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