Atmospheric transport of microplastics during a dust storm

Abbasi, S

http://hdl.handle.net/10026.1/18688

10.1016/j.chemosphere.2021.133456
Chemosphere
Elsevier BV

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Atmospheric transport of microplastics during a dust storm

Sajjad Abbasi a,b *, Mahrooz Rezaei c,d, Farnaz Ahmadi d, Andrew Turner e

a Department of Earth Sciences, College of Science, Shiraz University, Shiraz 71454, Iran
b Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin 20-031, Poland
c Meteorology and Air Quality Group, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
d Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
e School of Geography, Earth and Environmental Sciences, University of Plymouth, PL4 8AA, UK

* Corresponding author. Department of Earth Sciences, College of Science, Shiraz University, 71454, Shiraz, Iran.
E-mail address: sajjad.abbasi.h@gmail.com; sajjad.abbasi@shirazu.ac.ir

https://doi.org/10.1016/j.chemosphere.2021.133456
Accepted 25 December 2021
Graphical Abstract
Abstract

Dust storms are common events in arid and semi-arid regions that have a wide range of impacts on the environment and human health. This study addresses the presence, characteristics and potential sources of microplastics (MPs) in such events by analysing MPs deposited with dust particles in the metropolis of Shiraz, southwest Iran, following an intense storm in May 2018. At 22 locations throughout the city, MP concentrations on a number basis ranged from 0.04 to 1.06 per g of dust (median = 0.31 MP g⁻¹). Particles were mainly fibrous, with a mean diameter of about 20 µm and > 50% under 100 µm in length, and polymer makeup was dominated by nylon, polypropylene and polyethylene terephthalate. Examination of selected MPs by scanning electron microscopy revealed varying degrees of weathering and contamination by extraneous geogenic particles amongst the samples. Using published MP concentrations in urban dusts and remote, arid soils, we estimate that between about 0.1 and 5% of MPs deposited by the dust storm are derived from local sources within the metropolis, with the remainder arising from more distant sources. HYSPLIT modelling, satellite imagery and published geochemical signatures of regional dust particles suggest that the deserts of Saudi Arabia constitute the principal distal and transboundary source. Dust storms may represent a significant means by which MPs are transported and redistributed in arid and semi-arid environments and an important source of MPs to the oceans.

Keywords: Microfibres; Weathering; Deposition; Source; Flux; Iran
1. Introduction

Dust storms are intense suspensions of geogenic silt- and clay-sized particulates that may last for several hours to several days. These events result from strong and turbulent winds acting on loose, sparsely vegetated soils and lithological units in arid and semi-arid regions, and in particular in inland drainage basins, and have the propensity to transport airborne particles over long distances (Tan et al., 2012; Srivastava et al., 2018; van der Does et al., 2018; Rashki et al., 2021). Dust storms have many and varied impacts on weather, climate and the environment. For example, high dust loadings may affect air temperature, cloud formation and convectional activity (including hurricane intensity) and are believed to play a major role in the delivery of iron and other nutrients to the oceans (Goudie, 2009). Dust storms also have significant adverse impacts on agriculture, urban infrastructure, solar power production, the economy, and human health and safety (Rashki et al., 2021). Regarding the latter, high loadings of suspended geogenic particles are directly responsible for transport accidents and respiratory complaints, cardiovascular diseases and other illnesses (Pauley et al., 1996; Tam et al., 2012), while the presence of associated materials or chemicals, like bioaerosols, heavy metals and radionuclides, may pose additional allergenic or chronic health risks (Ogorodnikov, 2011; Behrooz et al., 2020; Soleimani et al., 2020).

In the recent literature, the role of the atmosphere in the long-range transportation of microplastics (MPs) has been highlighted (Allen et al., 2019; Liu et al., 2020; Roblin et al., 2020). Thus, MPs, and in particular fibrous MPs that have relatively high aspect ratios (and surface area–to–volume ratios) and low settling velocities (Brahney et al., 2020; Wright et al., 2020), can be transported 100s or 1000s of km from their point of origin before undergoing dry or wet deposition (Liu et al., 2019; Abbasi and Turner, 2021; González-Pleiter et al., 2021). Because of their small size and persistence, MPs in the atmosphere are a concern from a human health perspective (Prata, 2018),
while their deposition in soils, lakes and the ocean represents a means by which MP may be moved
between ecosystems and exert impacts on a wide range of organisms (Arias-Andres et al., 2019;
Sobhani et al., 2021). With dust storms capable of shifting significant quantities of loose soils, and
MPs known to be dispersed amongst soils remote from any urban, industrial and agricultural
sources (Feng et al., 2020; Abbasi et al., 2021a), it is hypothesized that storm events may act as a
vehicle for transporting considerable quantities of fine, resuspendable MP. Accordingly, the
present study involves the opportunistic sampling of dust deposited throughout the metropolis of
Shiraz, Iran, immediately after a particularly intense dust storm in May 2018. MPs were isolated
from the deposited dust particles, and quantified and characterized by established techniques in
order to gain an insight into the significance of dust storms in Iran, and more generally, to the
global atmospheric dispersion and redistribution of plastics.

2. Methods

2.1. Study area and sample collection
Shiraz is the largest city of Fars province and southwestern Iran, with a population of about 1.6
million contained within an area of 240 km² and lying about 1500 m above sea level. The region
is arid in summer and rainy and mild in winter, with an annual average temperature and rainfall of
18°C and 337 mm, respectively, and predominantly southeasterly and easterly winds. The air
quality of Shiraz has declined over recent years because of the rapid growth in population, traffic
volume and industrialization (Gharehchahi et al., 2013), coupled with an increased incidence of
dust storms (Alizadeh-Choobari et al., 2015). The frequency of dust “events” in Shiraz appears to
be between 1 and 3% (Alizadeh-Choobari et al., 2015) but on May 13th 2018, a particularly intense
dust storm occurred in the region that involved the transboundary transportation of geogenic material originating in Saudi Arabia across the Persian Gulf (Abbasi et al., 2021b).

Settled dust particles from the storm were collected opportunistically from parked cars, an approach adopted by Bergmann et al. (2019) for the sampling of MPs in fresh European snow. Twenty-two locations (encompassing urban, residential and commercial areas) within different municipal sectors of Shiraz (Figure 1 and Table 1) were visited within six hours after the dust storm by three operators, and five to ten cars at each location were selected from bays with restricted (i.e., not long-term) parking. Sampling involved the careful but rapid retrieval of material from the central regions (about 40 x 40 cm) of windscreens or back windows using a pre-cleaned wooden brush with horsehair bristles and a stainless steel dustpan by an operator wearing cotton clothing. Composite samples from each location were stored in 300 mL glass jars and the brush and pan were washed several times with filtered water between sampling locations. The general atmospheric conditions in Shiraz at this time of year require car windows to be regularly cleaned while driving and we assume, therefore, that the majority of material collected from the windows arose largely from the storm and not from more general, ambient urban deposition.
Figure 1: Sampling locations within the metropolis of Shiraz, southwest Iran.

2.2. Sample treatment and microplastic extraction

Dust samples were transferred to individual, 600-mL glass beakers using a stainless steel spoon before being dried for 24 h at 25°C. Dried samples were then sieved through a 5-mm stainless steel mesh, with 50 g of each weighed into individual clean beakers on a Libror AEL-40SM balance (Shimadzu, Kyoto). The contents of each beaker were oxidized with 200-300 mL of 35% H₂O₂ (Arman Sina, Tehran) at room temperature until bubble formation ceased. Remaining particulate matter was washed with filtered, deionized water through a 150 mm diameter S&S filter paper (blue band, grade 589/3, 2 µm pore size) housed in a glass-ceramic vacuum filtration kit before being dried in a sand bath at 60°C for 2 h.
To isolate MPs, each dried, digested sample was transferred to a saturated 300 mL solution of ZnCl₂ (Arman Sina, Tehran; density 1.6 – 1.8 g cm⁻³) in a series of clean glass beakers, and the decanted contents were subsequently centrifuged at 4000 rpm before supernatants were vacuum-filtered through S&S filter papers. This process was repeated twice, with resulting filters air-dried for 48 h at 25 °C under laminar flow and transferred to glass Petri dishes for physical and chemical characterization.

2.3. Quality assurance and control

Appropriate measures were taken to minimize MP contamination in the laboratory. Thus, benches were cleaned with ethanol using cotton cloths, laboratory clothing was cotton-based and all reagents and solutions were vacuum-filtered through S&S blue band filters (< 2 µm) before being used. All glassware was washed with phosphate-free soap, double rinsed with filtered (< 2 µm) water and soaked in 10% Merck Suprapur HNO₃ for 24 h before being rinsed twice with double-distilled water and air-dried at room temperature in a clean room. Where possible, containers were protected by covering or wrapping in aluminium foil. Controls, consisting of empty beakers that were processed as above, revealed no detectable airborne MP contamination throughout sample processing and storage.

2.4. Microplastic identification

MPs on filters were identified and quantified according to thickness and cross sectional properties, shininess, hardness, surface structure and reaction to a hot, 250 µm stainless steel needle under a binocular microscope (Carl-Zeiss) at up to 200 x magnification and with the aid of ImageJ software. Particle size, with a lower limit of about 20 to 50 µm depending on shape and colour,
was estimated along the length of the longest axis, L ($L \leq 100 \, \mu m$, $100 < L \leq 250 \, \mu m$, $250 \leq L < 500 \, \mu m$, $500 \leq L < 1000 \, \mu m$, $L \geq 1000 \, \mu m$), and colour was grouped as black-grey, yellow-orange, white-transparent, red-pink or blue-green. Shape was classified as film, fragment, spherule-granule or fibre, with the latter defined as having a length to diameter ratio of at least three and diameter estimated to the nearest 5 µm with the aid of TCapture software.

The polymeric composition of a selection of MPs from different locations and of different colours, sizes and shapes ($n = 39$) was determined using a micro-Raman spectrometer (LabRAM HR, Horiba, Japan) with a laser of 785 nm, a Raman shift of 400-1800 cm$^{-1}$ and acquisition times between 20 and 30 s. Surface morphology was determined on 21 of these samples, after they had been mounted on microscope slides and gold-coated, using a high vacuum scanning electron microscope (SEM; TESCAN Vega 3, Czech Republic) operated with a resolution of 2 nm at 20 kV and equipped with an energy-dispersive X-ray microanalyzer (EDX).

2.5. Trajectory calculations

The origins of air masses and potential source range of material from the dust storm was evaluated from 48-h back trajectories for 13th May 2018, calculated using the National Oceanic and Atmospheric Administration online software, Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) v4, and Global Forecast System (0.25 degree global) meteorological data. Trajectories were calculated at six-hour intervals at a height of 500 m above ground level and a resolution of 1 degree, and were integrated as frequency distributions.

3. Results and Discussion

3.1. Distribution and characteristics of microplastics
The number and distribution (by size and shape) of the MP identified in the present study are shown for each location sampled in Table 1. Overall, 485 MP were recorded that were dominated by fibres \((n = 448\) or \(~92\%)\). Small contributions arose from films \((n = 35)\) and fragments \((n = 2)\) but more regular spherules-granules were never detected. Regarding MP colour, \(> 50\%\) were white-transparent, \(23\%\) were red-pink, \(10\%\) were black-grey or yellow-orange, and \(< 5\%\) were blue-green; non-fibrous MP were dominated \((\sim 90\%)\) by white-transparent films. The total number of MP at each location ranged from 2 to 53, with concentrations on a number basis ranging from 0.04 to 1.06 MP per g of dust. Overall, mean and median concentrations were 0.44 and 0.31 MP g\(^{-1}\), respectively, and 25\(^{th}\) and 75\(^{th}\) percentiles were 0.21 and 0.65 MP g\(^{-1}\), respectively.

Fibres were single straight, curled or coiled strands or, occasionally, multiple, intertwined strands, and diameters ranged from about 10 to 40 \(\mu m\) and averaged 18.7 \(\mu m\). Over 60\% of fibres were encountered in the smallest length category considered \((\leq 100 \mu m)\), with a similar distribution among size categories up to 1000 \(\mu m\) (10 to 15\%) but \(< 0.5\%\) of fibres present above 1000 \(\mu m\). The percentage in the finest fraction is subject to some uncertainty because of the existence of MPs below our size detection limit and the possibility that some larger fibres may fragment into smaller particles during centrifugation. Nevertheless, the percentage of fibres in this fraction is larger than that reported for deposited dust particles sampled in Shiraz throughout the year \(\text{(average} \sim 30\%)\) that had been processed and identified using the same methodology \(\text{(Abbasi and Turner, 2021).}\)

Based on a range of aspect ratios \((\beta)\) from 3 to 100, diameters \((d)\) as above and densities \((\rho)\) for the polymers shown in Figure 2 \((\text{from} 1.0 \text{ to} 1.4 \text{ g cm}^{-3})\), we estimate aerodynamic equivalent diameters \((d_a)\) from the following equation \(\text{(Wright et al., 2020)}:\)

\[
d_a = (\rho \ln2 \beta)^{1/2} d
\]
to range from about 13 to 130 µm for the fibres detected in the present study.

Table 1: Location of each sampling station in Shiraz (see Figure 1), along with a summary of the MP distribution by size and shape. Fibres are categorised according to length, \(L \), but other (remaining) MPs are not classified by shape or size. Concentration represents the number of MP per g of dust.

<table>
<thead>
<tr>
<th>Sample location</th>
<th>UTM coordinates</th>
<th>MP fibres ((L, \mu m))</th>
<th>Other MPs</th>
<th>Total</th>
<th>Concentration, MP g(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>Y</td>
<td>< 100</td>
<td>100<(L)<250</td>
<td>250<(L)<500</td>
</tr>
<tr>
<td>1</td>
<td>653872</td>
<td>3274271</td>
<td>28</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>650842</td>
<td>3278127</td>
<td>22</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>651261</td>
<td>3279474</td>
<td>10</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>647803</td>
<td>3279769</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>644147</td>
<td>3282014</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>642555</td>
<td>3284973</td>
<td>11</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>640747</td>
<td>3284072</td>
<td>13</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>641853</td>
<td>3279579</td>
<td>28</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>646509</td>
<td>3274962</td>
<td>9</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>652295</td>
<td>3272590</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>653768</td>
<td>3276225</td>
<td>9</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>648930</td>
<td>3277346</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>647860</td>
<td>3272117</td>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>642604</td>
<td>3275416</td>
<td>5</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>15</td>
<td>642800</td>
<td>3283128</td>
<td>12</td>
<td>0</td>
<td>28</td>
</tr>
<tr>
<td>16</td>
<td>641370</td>
<td>3289215</td>
<td>11</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>646854</td>
<td>3278154</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>647076</td>
<td>3276095</td>
<td>0</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>19</td>
<td>644418</td>
<td>3275928</td>
<td>23</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>643999</td>
<td>3272283</td>
<td>50</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>654777</td>
<td>3270363</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>656267</td>
<td>3273264</td>
<td>15</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>total</td>
<td></td>
<td></td>
<td>281</td>
<td>53</td>
<td>67</td>
</tr>
<tr>
<td>mean</td>
<td></td>
<td></td>
<td>12.8</td>
<td>2.4</td>
<td>3.0</td>
</tr>
<tr>
<td>min</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>max</td>
<td></td>
<td></td>
<td>50</td>
<td>17</td>
<td>28</td>
</tr>
</tbody>
</table>

The distribution of selected MPs (\(n = 39 \)) from various locations by polymer type is shown in Figure 2, along with examples of Raman spectra for two fibres. About one half of the samples were constructed of nylon, with decreasing contributions from polypropylene, polyethylene terephthalate and polystyrene. Fibres (\(n = 31 \)) were represented by all polymer types detected and reflect the nature of plastics used in textiles and fabrics (Henry et al., 2019), but films (\(n = 6 \)) were constructed of only nylon and polypropylene and fragments (\(n = 2 \)) were constructed of nylon.
Figure 2: (a) Relative abundance of 39 MPs by polymer type (PET = polyethylene terephthalate), and Raman spectra for (b) a nylon fibre and (c) a polypropylene fibre.

SEM images of selected fibres and films are illustrated in Figure 3. Fibres are uniform in diameter, with the scale bars confirming that sample diameters ranged from about 10 to 40 μm. The images suggest varying degrees of weathering and contamination by adherent mineral particles, with EDX spectra of the latter (and in particular Al, Ca, Mg, Fe, Si and Ti) consistent with the geochemical signature of soils and lithological units in Saudi Arabia and southwest Iran (Abbasi et al., 2021b). Specifically, the fibres shown in Figures 3a and 3b exhibit smooth surfaces with very little evidence of weathering but contamination by extraneous material apparent in the latter case, while the fibres shown in Figures 3c and 3d exhibit contamination and considerable but heterogeneous
weathering. In Figure 3c, indentations and pits are indicators of mechanical weathering while flaking and granulation are more typical of photo-oxidation (Zbyszewski and Corcoran, 2011). In Figure 3d, we suspect that the almost parallel but irregular, circular fractures normal to the length of fibre result from shrinkage-expansion while exposed to extreme environmental temperatures. The plastic films illustrated in Figures 3e and 3f contrast the effects of intense photo-oxidation (granulation and flaking) and mechanical weathering (grooves and indentations) on the surface morphologies of thin, angular plastic films.
Figure 3: SEM images of six MP retrieved from material deposited in Shiraz after the dust storm.

(a) Green polypropylene fibre, (b) red polypropylene fibre, (c) white polyethylene terephthalate fibre, (d) green polypropylene fibre, (e) colourless polypropylene film, (f) purple nylon film.
3.2. Origin of dust and microplastics

The air mass trajectory frequencies for the period directly preceding the dust storm and calculated using HYSPLIT are shown in Figure 4a. These frequencies indicate dominant westerly and southwesterly components associated with the event, with satellite imagery (Figure 4b) and geochemical signatures reported in Abbasi et al. (2021b) confirming that the most important source of dust is the Arabian Peninsula, and in particular the Saudi Arabian deserts. Here, resuspension of material is favoured by extensive accumulations of fine sand and silt, scattered vegetation and variable terrain (Engelbrecht et al., 2017).

The MPs deposited in Shiraz following the dust storm may, therefore, have both distant (or remote) and more local origins. Distant MPs are carried by strong winds with geogenic material (e.g., silicates, aluminosilicates, carbonates) from the Arabian Peninsula, and may be augmented by entrainment of additional plastics in southwest Iran and, potentially, through breaking waves at sea (Allen et al., 2020) as air moves across the Persian Gulf. Local MPs are resuspended with natural soils (mainly silt and clay) and anthropogenic particulates within the urbanized region of Shiraz as the dust storm passes through the metropolis. Nematollahi et al. (2021) found a clear linear correlation between δ^{18}O and δ^{13}C isotopes measured in deposited dust particles in Shiraz arising from the dust storm reported here that was attributed to the mixing of two particle end-members: namely, an “anthropogenic” population and a less contaminated but more “geogenic” population. Likewise, it is proposed that MPs in deposited dust particles in Shiraz following the dust storm are derived from and can be modelled by two end-member mixing.
3.3. End-member microplastic mixing model

In the present context, the end-members of MPs observed at a location impacted by a dust storm can be defined as those associated with geogenic material that are imported by the atmosphere with strong winds, and those already resident at the location but suspended by the event itself (and including any material sampled from car windows that was present before the dust storm). The two populations of MP may be different because of distinctly different sources, histories and ages, but are more likely to exhibit some similarities because of the global reach of plastic products and common means of generating MP, coupled with the mixing effects of previous dust events at the location of interest. Without characterizing the end-members themselves, it is not possible to establish any clear differences in these populations. However, SEM observations suggest that MPs imported from the Arabian deserts could exhibit distinctive weathering patterns (such as the shrinkage observed in Figure 3d), while a greater proportion of smaller, fibrous MPs observed in the present study compared with MPs in settled dust particles of Shiraz suggests that imported particles are relatively fine. Conversely, more general aerodynamic considerations and observations in the literature suggest that more rapidly settling, larger fibres and non-fibrous particles are likely to have a local origin (Brahney et al., 2020; Loppi et al., 2021). Nevertheless, and regardless of these characteristics, binary mixing can be considered numerically from MP concentrations representative of the end-member populations.

Thus, typical concentrations of MPs on a number basis in background settled urban dust particles from Shiraz are about 25 MP g\(^{-1}\) (Abbasi and Turner, 2021), which is similar to the median concentration of MP measured in street dusts from the industrialized city of Asaluyeh, western Iran (about 15 MP g\(^{-1}\); Abbasi et al., 2019), while concentrations in desert soils remote from any urbanization and derived from the dispersion of distal sources average about 0.02 MP g\(^{-1}\) (Abbasi...
et al., 2021a). Assuming that dust and MPs exhibit similar entrainments into the atmosphere, the fractional contribution, \(f \), of each end-member to the net concentration of MP observed in the dust storm, \([\text{MP}]_{\text{dust}}\), can be modelled as follows:

\[
[\text{MP}]_{\text{dust}} = f_{\text{rem}}[\text{MP}]_{\text{rem}} + f_{\text{loc}}[\text{MP}]_{\text{loc}} \tag{2}
\]

where subscripts rem and loc refer to remote and local sources, respectively. Substituting \(1-f_{\text{loc}}\) for \(f_{\text{rem}}\):

\[
[\text{MP}]_{\text{dust}} = [\text{MP}]_{\text{rem}} - f_{\text{loc}}[\text{MP}]_{\text{rem}} + f_{\text{loc}}[\text{MP}]_{\text{loc}} \tag{3}
\]

and rearranging yields:

\[
f_{\text{loc}} = ([\text{MP}]_{\text{dust}} - [\text{MP}]_{\text{rem}})/([\text{MP}]_{\text{loc}} - [\text{MP}]_{\text{rem}}) \tag{4}
\]

Using the typical or average end-member MP concentrations above for \([\text{MP}]_{\text{loc}}\) and \([\text{MP}]_{\text{rem}}\) of 20 and 0.02 MP g\(^{-1}\), respectively, and the median MP concentration in Table 1 as \([\text{MP}]_{\text{dust}}\) (0.31 MP g\(^{-1}\)) results in a value of \(f_{\text{loc}}\) of 0.015; using the lowest and highest MP concentrations in Table 1 for \([\text{MP}]_{\text{dust}}\) (0.04 and 1.06 MP g\(^{-1}\), respectively) results in values of about 0.001 and 0.05, respectively. Thus, the estimated range in contributions of MP that are local to Shiraz to the sampled dust particles is about 0.1 to 5%, with variations amongst the locations presumably reflecting differences in the proximity to or mobility of urban sources but displaying no clear relationship with particle characteristics (e.g., size, colour or shape). The majority of MP are, however, clearly imported from outside the region (and via Saudi Arabia and southwest Iran), with geochemical analyses of dust samples suggesting that the Arabian Peninsula provides the more significant, transboundary contribution (Abbasi et al., 2021b).
3.4. Wider implications

The numerical estimates of MP origin are subject to various assumptions, including processes involved in the suspension-transport-deposition that are similar for both geogenic material and MPs. Nevertheless, they highlight the importance of dust events to the redistribution of MP in arid and semi-arid regions and add to the growing body of evidence in the literature supporting the more general long-range and transboundary atmospheric transport of fibrous MP (Allen et al., 2019; Brahney et al., 2020; Evangeliou et al., 2020).

Although the mass of mobile dust involved in the storm under study does not appear to have been estimated, an earlier event occurring in the Arabian Peninsula and simulated by Jish Prakash et al. (2015) suggested that nearly 100 Mt of dust was emitted, with 73 Mt deposited over the broader region of study and including about 7 Mt deposited in the ocean. Assuming that the concentration of MP in the soils acting as a source of dust is about 0.02 MP g^-1 (Abbasi et al., 2021b), we estimate that such a storm could suspend about 2 x 10^{12} MP and deposit 1.5 x 10^{12} MP regionally, including 1.5 x 10^{11} MP in the ocean. Globally, it is estimated that about 2 billion tonnes of loose and poorly vegetated arid soil are transported in the atmosphere each year (Perkins, 2001; Tanaka and Chiba, 2006), with the main source regions associated with the Sahara desert and the deserts of Asia, the Middle East, North and South America and Australia (Wang, 2015). Assuming that the soil concentration of MPs employed in the present study is more generally applicable, dust storms could be responsible for the annual, atmospheric mobilization and transportation of about 4 x 10^{13} MP. For representative fibrous MPs of unit density and 250 μm in length and 10 μm in diameter, this is equivalent to about a tonne of MPs. Dust storms, therefore, represents a significant means
by which MPs are redistributed in the environment and, given the proximity of many dust sources
to the coastal zone, a potentially important, indirect source of MPs to the ocean. Moreover, with
the intensity and frequency of droughts predicted to increase (Srivasta et al., 2018), along with
increasing demands for water (Hoff, 2009) and plastic (Geyer et al., 2017), dust storms are likely
to be of increasing importance to the global flux and cycling of environmental MPs.

The current study is also significant in highlighting the presence of a type of contaminant
suspended in dust storms that has thus far been overlooked. The precise health impacts of airborne
MPs, and in particular those that are inhalable, are unclear (Wright et al., 2019; Rahman et al.,
2021), but any effects associated with dust storms should be considered along with those arising
from the presence of other materials and chemicals, including dust itself, allergenic particles, like
pollen and fungi, microbiological organisms, and heavy metals (Kellogg and Griffin, 2006).
Figure 4: (a) Frequencies of air trajectories crossing a given area and arriving at Shiraz (starred) for 8th to 12th May 2018 calculated at 500 m and from 48 h air mass back-trajectories using HYSPLIT, and (b) NOAA satellite image of the region during the dust storm.
This study is the first to document MPs associated with and transported by a dust storm. With respect to an intense event in the metropolis of Shiraz in May 2018, the majority of plastics isolated from deposited dust particles were fibrous, with concentrations on a number basis ranging from < 0.05 to about 1.1 MP g\(^{-1}\). MPs exhibited varying degrees of mechanical weathering, photo-oxidation and contamination by geogenic particulates, and the provenance of the latter, coupled with satellite imagery and HYSPLIT modelling, suggests that the majority of material brought into Shiraz originates from the Saudi Arabian Peninsula. Within the uncertainties and assumption of a two end-member MP mixing model, we estimate that > 90% of plastics in deposited dusts are derived from outside the city. Globally, dust storms could represent a significant means of MP transportation in the atmosphere and an important source of MPs to the ocean.

Acknowledgments
We thank Shiraz University for supporting this study (grant number: 99GRC1M371631). The comments of anonymous reviewers are greatly appreciated.

References

Ogorodnikov, B.I., 2011. A dust storm over the Ukraine and Belarus territory contaminated by radionuclides after the Chernobyl accident. Russian Meteorology and Hydrology 36, 613-623.

