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We report on the first proof-of-concept system demonstrating how one can control a qubit with mental activity.
We developed a method to encode neural correlates of mental activity as instructions for a quantum computer.
Brain signals are detected utilising electrodes placed on the scalp of a person, who learns how to produce the
required mental activity to issue instructions to rotate and measure a qubit. Currently, our proof-of-concept runs
on a software simulation of a quantum computer. At the time of writing, available quantum computing hardware
and brain activity sensing technology are not sufficiently developed for real-time control of quantum states with
the brain. But we are one step closer to interfacing the brain with real quantum machines, as improvements in
hardware technology at both fronts become available in time to come. The paper ends with a discussion on some
of the challenging problems that need to be addressed before we can interface the brain with quantum hardware.

I. INTRODUCTION

In a recent perspective paper [1], we proposed the concept
of Quantum Brain Networks (QBraiNs) as an emerging inter-
disciplinary endeavour, integrating knowledge and methods
from neurotechnology, artificial intelligence (AI), and quan-
tum computing (QC). The objective of QBraiNs is to establish
direct communications between the human brain and quan-
tum computers. We foresee the development of highly con-
nected networks of wetware and hardware devices, process-
ing classical and quantum computing systems, mediated by
Brain-Computer Interfaces (BCI) and AI. Such networks will
involve unconventional computing systems and new modali-
ties of human-machine interaction.

This paper introduces a first attempt at controlling a qubit
with mental activity. We developed a proof-of-concept sys-
tem, which demonstrates how a person can rotate and measure
a qubit using brain signals.

However, due to limitations imposed by currently available
quantum computing hardware and brain sensing technology,
our proof-of-concept runs on a software simulation of a quan-
tum computer. Nevertheless, we are one step closer to in-
terfacing the brain with real quantum machines, as improve-
ments in hardware technology at both fronts become available
in time to come.

We invented a method to encode neural correlates of mental
activity as instructions for a quantum processor. Brain data are
read utilising electrodes placed on the scalp of a person, who
learns how to produce the required mental activity to issue
instructions to rotate and measure a qubit.

By way of previous related work, Kanas et al. [2] hinted at
the possibility of interfacing the brain with quantum comput-
ers. Other speculative propositions were put forward by Pesa
and Zizzi [3] and Musha [4]. However forward-thinking

∗ Email: eduardo.miranda@plymouth.ac.uk

as these works may sound, none of them present a concrete
experiment or demonstration to support their cases. To the
best of our knowledge, the first ever practical demonstration
of BCI using quantum computing was reported by Miranda
[5].

The goal of our research is to go a step beyond using quan-
tum computing to analyse brain signals for controlling de-
vices, such as a robot, a vehicle, or a musical instrument, as
introduced in [5]. Rather, here we envisage the possibility of
forging deeper connections between brains and quantum com-
puters. The ultimate goal is to be able to affect the states of
quantum computers with the mind.

II. CODES OF BRAIN ACTIVITY

The Homo sapiens’ brain is one of the most complex sys-
tems known to science. It has circa one hundred billion neu-
rones forming a network of quadrillions of connections [6].
The amount of information that circulates through this net-
work is, although probably bounded, immense. Essentially,
neurones are electrical entities. They communicate with one
another through action potentials and chemical neurotransmit-
ters. These action potentials are often referred to as spikes.

There exists technology nowadays to record neural com-
munication at various levels: from the microscopic level of
neurone-to-neurone communication, to higher levels of com-
munication between networks of neurones. Unfortunately,
most of this technology is impractical for deployment outside
highly specialised research laboratories. At the same time, the
engineering to develop sensors made with bioelectronics and
nanomaterials is progressing fast to improve this scenario [7].

Even though sensing technology is becoming increasingly
sophisticated, the understanding of the meaning of sensed sig-
nals remains very problematic. We may be able to detect neu-
ral signals fairly accurately nowadays, but we would not nec-
essarily know what they mean. For instance, it is not hard to
render sequences of spikes as sequences of binary numbers
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for a digital computer to process. But we would have very lit-
tle clues about what the neurones are communicating to each
other. Of course, AI can provide solutions here, as is the case
of the machine learning (ML) algorithms for neural decoding
introduced in [8].

A widely used method for reading electrical brain activity is
to use electrodes placed on the scalp of a person (Fig. 1). This
recording is called the electroencephalogram, or EEG [9].
There is a plethora of different EEG recording systems com-
mercially available. They are of varying reliability; the low-
cost ones usually relay more spurious signals than actual EEG.
It is also possible to record electrical brain activity with elec-
trodes surgically implanted under the skull, on the surface of
the cortex, or deep inside the brain; e.g., electrocorticography
(ECoG) [10]. Surgically implanted electrodes provide sub-
stantially better signals to work with than scalp electrodes.
But brain implants are not routinely used in research with hu-
mans at present for obvious health and safety reasons1.

FIG. 1. Brain activity can be read using electrodes strategically
placed on the human scalp.

A. The electroencephalogram

For this project, we adopted scalp EEG. We used an afford-
able off-the-shelf mid-range device manufactured by g.tec,
Graz, Austria2. It consists of a cap furnished with electrodes
and a transmitter that relays the EEG wirelessly to a computer.

The standard scheme for positioning electrodes on the scalp
is shown in Fig. 2. The terminology for referring to the posi-
tioning of the electrodes uses letters to indicate a brain re-
gion and a number: Fp (pre-frontal), F (frontal), C (central),
T (temporal), P (parietal) and O (occipital). Odd numbers are
for electrodes on the left side of the head and even numbers

1 Other technologies for brain scanning include functional Magnetic Res-
onance Imaging (fMRI), near-infrared spectroscopy (NIRS), and magne-
toencephalography (MEG). However, these are prohibitively expensive,
less portable, and (by the time of writing) offer inadequate time-resolution
for BCI purposes.

2 https://www.unicorn-bi.com/

for those on the right side; the letter “z” stands for the central
region. For this project, we used eight electrodes (i.e., eight
EEG channels) positioned at F8, F7, Cz, Pz, C4, C3, T6 and
T5, respectively.

FIG. 2. Widely used scheme for positioning electrodes for EEG
recording.

Power spectrum analysis is a popular method to extract
information from EEG. This method breaks the EEG signal
into different frequency bands and reveals the distribution of
power between them. Power spectrum analysis is widely used
in BCI research because it reveals patterns of brain activity
that can be recognised automatically and translated into com-
mands for a system. Research exploring the mental corre-
lates of EEG usually considers spectral components up to 40
Hz [11]. There are four recognised spectral frequency bands,
or EEG rhythms, each of them associated with specific mental
states (Table I).

Frequency Bands Rhythms Mental States
f < 4 delta Sleep

4 ≤ f < 8 theta Drowsiness
8 ≤ f < 15 alpha Low arousal; unfocused; relaxed
15 ≤ f < 40 beta High arousal; focused; excited

TABLE I. Typical EEG rhythms and associated mental states. Frequency
bands are expressed in Hertz (Hz).

B. Encoding method

We developed a simple method to encode EEG as instruc-
tions to rotate a qubit. The method takes into account two
mental states: low arousal (a.k.a. relaxed) and high arousal
(a.k.a. excited). However, to control the qubit, we need at
least four different instructions. As the number of instructions
is greater than the number of mental states, we sequentially re-
layed instructions to the system through unique ‘brain codes’.
These are Morse-like binary codes.

As shown in table II, there is a unique brain code associated
with each instruction, where 0 and 1 correspond to relaxed
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and excited mental states, respectively. The instructions are
as follows:

• {0, 1}: This is the instruction to start the program,
which initializes the connection with the quantum sys-
tem. None of the other instructions would work without
this initialization.

• {1, 1}: This instruction increases the angle of rotation,
by a pre-defined amount.

• {0, 0}: This instruction decreases the angle of rotation,
by a pre-defined amount.

• {1, 0}: This instruction has two functions. When it oc-
curs for the first time, it changes the axis of rotation on
the Bloch sphere (Figure 3), from z (vertical axis) to y
(horizontal axis), and vice-versa. Then, when it occurs
for the second time, the system measures the qubit.

Command Brain Code Description

Start program {0, 1}

A relaxed state followed by
an excited state. This
initializes the connection
with the quantum computer.

Increase angle {1, 1}
An excited state followed by
another excited state. This
increases the angle of rotation.

Decrease angle {0, 0}
A relaxed state followed by
another relaxed state. This
decreases the angle of rotation.

Change axis or
measure {1, 0}

An excited state followed by
a relaxed state. On its first
occurrence, it shifts the axis
of rotation. On its second
occurrence, it measures the
qubit.

TABLE II. Different instructions passed to the quantum computer through
unique brain codes.

III. MACHINE LEARNING

Section II already hinted that the task of establishing what
brain signals mean is a fiendish problem. And the fact that the
EEG signal is very noisy makes this even more complicated.

The EEG signal captured by surface electrodes is severely
distorted by cortical fluids, the meninges3, the skull, skin and
hair; sometimes even the type of shampoo one uses to wash
their hair with can cause problems. The signal is unreliable,
even to identify only two different classes of mental states.
Hence, we use machine learning to harness the capability of
the system to identify them.

3 These are membranes that envelop the brain.

In order to teach the system to classify between two states
of mind, we need to compile a training set with labelled data
produced by the user.

First of all, the system has to be calibrated for the specific
user. And this person needs to train themselves how to pro-
duce EEG corresponding to relaxed and excited mental states,
respectively [12]. For instance, closing the eyes is one of the
easiest and most pragmatic ways to induce the brain to pro-
duce (‘relaxing’) alpha rhythms. Once the user has practised
how to achieve a relaxed state of mind, then this is effort-
lessly achievable with the eyes open. People who are trained
in meditation techniques (e.g., yoga) are able to produce alpha
rhythms with ease. Beta rhythms can be produced by imag-
ining, or remembering, a stressful situation. Mentally solving
a puzzle or a mathematical problem can induce the brain to
produce (‘exciting’) beta rhythms.

Once the user has rehearsed to switch between the two
states of mind, then samples of EEG signals corresponding
to the respective states are recorded to form a training data
set for the classifier. Next, we perform short-time fast Fourier
transform (FFT) analysis on each sample to calculate their av-
erage power in the alpha and beta frequency bands. These
values are used as features to teach the samples’ profiles to a
machine learning algorithm.

For the machine learning, we adopted the k-Nearest Neigh-
bors (kNN) method. We implemented this using the scikit-
learn Python library version 1.0.14. kNN is a supervised ma-
chine learning method widely used for classification and re-
gression [13]. In the case of classification, it is based on
assigning a class (or label) to a given sample, to which most
of its k neighbours (in a given metric space) belong to.

The sample data set was split into two subsets, a training
and a test set, respectively. The former is used for the calcu-
lation of distances (Eq. 1). And the latter is used to simulate
how the system would work in a real environment.

dij = ||xi − xj|| (1)

In particular, kNN calculates the distance from each sam-
ple in the test set to the samples of the training set. Then,
distances are ordered from smallest to largest, and the k clos-
est samples are selected. The next step involves querying the
labels of the selected k samples. As we are dealing with a
classification problem, a voting strategy is used to decide the
class of the test sample; i.e., the most voted label is used as
the selected class.

The degrees of similarity between the samples are calcu-
lated using Euclidean distance measurements. The algorithm
calculates all possible pairwise Euclidean distances between
them. Samples that are close to each other are assigned the
same label. Our assumption is that similar brain activities
have EEG profiles that are close to each other. Thus, kNN
enables the system to determine the label (or, ‘class’) of new
incoming EEG data using a distance criterion.

4 https://scikit-learn.org/stable/
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IV. PROOF-OF-CONCEPT SYSTEM

As explained in section II B, a user alters their mental states
to generate brain codes, or instructions, to rotate a qubit.
There is a metronome to synchronize the brain with the sys-
tem. It emits an audible ‘click’ every second. The system
builds the brain codes within a window of time lasting for
four clicks (i.e., four seconds). The flow diagram in Figure 4
illustrates how the system works.

FIG. 3. A snapshot of rotating the qubit using the brain code {1, 1}.

Initially, the system emits four clicks, which prompts the
user to be ready to start a session. Subsequently, the brain
activity detected during the following four clicks will corre-
spond to the first digit in the code. Similarly, the second digit
is established through the next four clicks. Then, a rest pe-
riod of four clicks is provided to enable the user to monitor
the output; that is, to see if the desired qubit rotation has been
achieved. Then, the cycles recommences, and so on. Figure
3 shows a snapshot of rotating the qubit with the code {1, 1}.
In this case, the system detected two consecutive excited men-
tal states in the EEG. This instructed the system to rotate the
qubit to the right by a given angle. As a convention, in the
context of Figure 3, to ‘increase the angle of rotation’ means
to move the state vector to the right side of the image. Con-
versely, to ‘decrease the angle of rotation’ means to move the
state vector to the left.

A video demonstration and programming code are available
at the ICCMR GitHub repository: https://github.com/iccmr-
plymouth/Quantum-BCI.

V. CONCLUDING DISCUSSION

A. Towards BCI with quantum hardware

Our proof-of-concept demonstration currently runs on an
IBM Quantum simulator5. In general, quantum simulators of-
fer more controllability than real quantum computers and, for
a small number of qubits, there would be no much difference
in performance. Currently, to use a real quantum computer, a

5 https://www.ibm.com/quantum-computing/services

FIG. 4. System flow diagram.

program needs to be sent to a machine through a cloud service
for batch processing. It is placed in a queue to be computed
at a later time. Then, the results are sent back to the client
computer. It is not uncommon to having to wait for dozens of
minutes until a queued job is processed. This is problematic
because our system needs real time access to a qubit.

It is important to note, however, that even if current
providers of quantum computing hardware facilities would
grant us direct access to their machines, our system would
need a specific range of parameters that are not generally
available by the time of writing.

However, the fact that we used a simulator of a supercon-
ducting quantum processor does not bind our work to super-
conducting technology. In fact, our system would not work
well on superconducting quantum devices as we know them
today. The caveat is that the operational timescales of EEG
and superconducting qubits are orders of magnitude apart,
ranging from seconds (in the EEG domain), to microseconds
(in the qubits domain). In simpler words, the machine would
need to maintain qubits coherent for a prohibitively long time
until the brain produces a command. To rotate and measure
a qubit directly with human brain activity, we would need a
huge leap in qubit coherence time that cannot be afforded with
current superconducting technology6. It might be possible to

6 Coherence time is the length of time a qubit is able to hold quantum in-
formation. This requires physical qubits to remain highly isolated from
the surrounding environment. When a qubit is disrupted by external in-
terference (e.g., background noise from vibrations, temperature changes

https://github.com/iccmr-plymouth/Quantum-BCI
https://github.com/iccmr-plymouth/Quantum-BCI
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alleviate this problem with an operational system that would
facilitate countless classical-quantum iterations.

Fortunately, there are signs that quantum hardware plat-
forms that would be suitable for the types of systems that we
are interested in developing are already emerging in a num-
ber of academic research labs. For instance, qubits built with
spin pairs in diamond [14] seem to hold coherence for over
one minute, which would account for sequences of our brain-
generated rotation commands. At least theoretically, this spec-
ification matches the conditions required for our proof-of-
concept (Eq. 2), even before the optimisations discussed in
section V B below.

trot < tstep << tcoh (2)

where trot is the time it takes to produce a finite rotation in the
qubit, tstep is the time of each step realized by our protocol,
while tcoh is the total coherent time of the qubit. Moreover,
those qubits operate at room temperature [15], which, on the
long run, may enable the manufacturing of more accessible
workstations.

B. Looking Beyond EEG

Currently, the system takes four seconds to analyse and
classify the EEG signal to generate a digit for our brain code.
Thus, it needs eight seconds to compute a code. Obviously,
this is a far cry from ideal. There definitely are signal pro-
cessing techniques [16] [17] and other robust classification
methods to optimise this [18] [19].

Moreover, EEG correlates of states of mind other than the
EEG rhythms listed in Table I have been harnessed for BCI;
e.g., evoked potential [20] and motor imagery [21]. Thus,
there are additional alternatives to be explored.

For this project we used an affordable off-the-shelf mid-
range EEG device, using surface dry electrodes. There is EEG
technology that offers much higher fidelity than the fidelity of-
fered by our equipment. And electrodes surgically implanted
under the skull capture considerably better EEG signals than
surface ones.

Furthermore, brain scanning technology that offers more
precision than EEG, but which until recently were deemed
unsuitable for BCI, are important avenues to be explored.
These include Magnetic Resonance Imaging (MRI) [22] and
Magnetoencephalography MEG (MEG) [23]. For instance,
emerging wearable scanners based on non-cryogenic OPM-
MEG7 are promising new devices [24]. OPM-MEG technol-
ogy uses quantum sensors to measure magnetic fields gener-
ated by electrical activity within the brain.

Nevertheless, in addition to improving brain scanning fi-
delity and resolution, and the timing scale discrepancy men-
tioned above (section V A), we need to further develop mean-
ingful brain encoding schemes to communicate with quantum
states.

As a starting point, we proposed a Morse-like binary cod-
ing informed by the way in which the brain functions at all
levels. Excitatory and inhibitory processes pervade the func-
tioning of our brain, from the microscopic level of neurones
communicating with one another, to the macroscopic level of
interaction between larger networks of millions of neurones.
The encoding method introduced in II B works at the abstract
level of EEG rhythms: think of a high arousal (‘exciting’)
mental state as an excitatory neural process and low arousal
(‘relaxing’) as an inhibitory one.

A better understanding of the meaning of the spiking be-
haviour of neurones, and networks thereof, plus the ways in
which we might be able to control them - voluntarily or invol-
untarily - are sine qua non for progressing with our approach
to interfacing the brain with quantum computers.
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