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Abstract: Currently, the design of floating offshore wind systems is primarily based on mid-fidelity
models with empirical drag forces. The tuning of the model coefficients requires data from either
experiments or high-fidelity simulations. As part of the OC6 (Offshore Code Comparison Collab-
oration, Continued, with Correlation, and unCertainty (OC6) is a project under the International
Energy Agency Wind Task 30 framework) project, the present investigation explores the latter option.
A verification and validation study of computational fluid dynamics (CFD) models of the DeepCwind
semisubmersible undergoing free-decay motion is performed. Several institutions provided CFD
results for validation against the OC6 experimental campaign. The objective is to evaluate whether
the CFD setups of the participants can provide valid estimates of the hydrodynamic damping co-
efficients needed by mid-fidelity models. The linear and quadratic damping coefficients and the
equivalent damping ratio are chosen as metrics for validation. Large numerical uncertainties are
estimated for the linear and quadratic damping coefficients; however, the equivalent damping ratios
are more consistently predicted with lower uncertainty. Some difference is observed between the
experimental and CFD surge-decay motion, which is caused by mechanical damping not considered
in the simulations that likely originated from the mooring setup, including a Coulomb-friction-type
force. Overall, the simulations and the experiment show reasonable agreement, thus demonstrating
the feasibility of using CFD simulations to tune mid-fidelity models.

Keywords: CFD; validation; free decay; offshore wind; semisubmersible; uncertainty; OC6; IEA
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1. Introduction

Offshore wind energy is still a largely untapped source of renewable energy. One
major barrier to the further utilization of offshore wind energy is the additional cost of
the substructure supporting the wind turbine. This is especially the case in deep-water
turbine farms when multiple floating substructures are required. Further cost reduction is
necessary to make offshore wind energy economically competitive, and one way to achieve
lower costs is through continued design optimization of the platform that supports the
floating offshore wind turbine (FOWT). Presently, optimization is still mainly performed
with computationally efficient mid-fidelity engineering models, such as the OpenFAST
tool developed by the National Renewable Energy Laboratory (NREL) [1]; however, such
tools require a priori knowledge of platform hydrodynamic characteristics to tune the
model coefficients. Traditionally, the required information is obtained through wave-
basin experiments with physical models. While generally reliable and efficient in terms
of test scope, the wave-basin experiments are not well-suited to accommodate the rapid
design changes common to optimization processes. It is therefore advantageous also to
be able to obtain the necessary hydrodynamic properties through alternative means, such
as high-fidelity computational fluid dynamics (CFD) simulations. This is one focus of the
Offshore Code Comparison Collaboration, Continued, with Correlation, and unCertainty
(OC6) project.

Previously in OC6 Phase I, we focused on using CFD to obtain estimates of the
wave diffraction loads on the OC6-DeepCwind semisubmersible in a fixed condition,
especially the nonlinear, low-frequency loads that potentially excite the surge and pitch
resonance motion of a semisubmersible FOWT [2–4]. Tuning the engineering models
also requires knowledge of the motion-damping characteristics of the floater, which are
strongly influenced by viscous effects (see [5]); therefore, we now focus on the validation of
CFD simulations of the free-decay motion of the OC6-DeepCwind semisubmersible. The
primary objective is to evaluate whether the CFD setups adopted by the various OC6 Phase
I participants for free-decay simulations can provide reasonable estimates of the calm-water
hydrodynamic damping coefficients for tuning mid-fidelity engineering models. To this
end, the numerical results from the OC6 participants are compared with each other and
against experimental measurements for validation.

Because of the engineering importance of hydrodynamic damping in the design of
floating offshore structures, extensive research exists on this subject, including studies
that are based on the same DeepCwind semisubmersible design used in the Offshore
Code Comparison Collaboration Continuation (OC4 [6]), Offshore Code Comparison
Collaboration, Continued with Correlation (OC5 [7,8]), and OC6 projects [9,10] (Note that
across these projects, the geometry of the semisubmersible has not changed, but the mass
and inertia properties were modified to address small changes in the design of the wind
turbine it supported).

Tran and Kim [11,12] carried out fully coupled aero-hydrodynamic simulations of
the OC5-DeepCwind semisubmersible with a wind turbine using CFD and a catenary
mooring solver. The results were compared with the OC5 experimental data [7,8]. Both
free-decay and regular-wave-excited motions were investigated. It was observed that the
surge-decay motions from CFD simulations with both the shear stress transport (SST) k-ω
turbulence model and the Spalart–Allmaras model were in excellent agreement with those
obtained without a turbulence model. On the other hand, the standard k-ε model resulted
in excessive damping when compared to the other numerical solutions. Tran and Kim [12]
also obtained good predictions of the motion response amplitude operators (RAOs) of
the OC5-DeepCwind platform in regular waves; however, large errors were found in the
mooring-line tension when compared to the OC5 experiment [7,8], demonstrating the
difficulty with modeling the catenary mooring system.

More recent investigations paid more attention to the estimation of numerical uncer-
tainties in the CFD results. Burmester et al. [13] investigated three representative problems
in ocean engineering with increasing complexity, including the surge decay of the OC5-
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DeepCwind semisubmersible, with a special focus on quantifying the uncertainties in
the numerical solutions. The numerical results were validated against the experimental
measurements from the OC5 campaign [7,8]. Three different methods for estimating the
discretization uncertainties were adopted and compared in an extensive convergence study.
The least-squares approach of Eça and Hoekstra [14] was found to produce more conser-
vative (larger) discretization errors in most cases compared to the other approaches. We
therefore adopted this same approach for the present investigation. It was also found
that direct uncertainty estimations for the damping coefficients led to excessively large
uncertainty ranges; therefore, the uncertainty estimation was instead performed for the
maximum (positive) and minimum (negative) surge displacements of the platform over
the second surge period and the oscillation range (i.e., the difference between the max-
imum and the minimum). Burmester et al. recommended that numerical uncertainties
should be estimated for quantities requiring as little postprocessing as possible to minimize
uncertainties introduced by the postprocessing itself [13].

Wang et al. [15] performed CFD simulations of the OC5-DeepCwind semisubmersible
undergoing pitch decay and compared the numerical solution to the OC5 experimental
campaign [7,8]. Very small discretization uncertainties on the order of 1% were estimated
for the maxima in floater motion and motion period based on the grid convergence index;
however, substantial differences in the resulting linear and quadratic damping coefficients
between the simulation and experiment were observed. Some important factors that
potentially contributed to this discrepancy are the complex catenary mooring used in the
experiment, the drag force on the mooring lines, the influence of a power cable attached to
the model, the aerodynamic damping from the wind turbine and tower mounted on top of
the model, and the three-degrees-of-freedom (3DoF) motion assumed in the CFD simulation
rather than the full six-degrees-of-freedom (6DoF) motion in the experiment. In a follow-
up study, Wang et al. [16] carried out a formal uncertainty analysis for the numerically
predicted linear and quadratic pitch damping coefficients. An interesting approach was
adopted where the numerical discretization uncertainties were first estimated for the floater
motion time series and were subsequently propagated to the estimated linear and quadratic
damping coefficients. It was again observed that the incorporation of a dynamic mooring
model for the catenary mooring lines significantly improves the CFD predictions, especially
in terms of the pitch period. Overall, successful validation was reported for the pitch
period and the linear pitch damping coefficient; however, the quadratic damping was
underpredicted [16].

Li and Bachynski-Polić [17] investigated the low-frequency radiation characteristics of
the OC6-DeepCwind floater [9,10] by simulating free-decay motions and forced oscillation
in surge, heave, and pitch. The heave and pitch decay from the CFD simulations were
generally consistent with the experimental measurements, but the surge decay showed
substantial differences, with the OC6 experiment having much faster decay. The increased
damping was attributed to additional mechanical damping in the experimental mooring
setup. (In this article, further analysis of the mechanical damping in the experimental setup
is presented with an attempt to quantify and separate out at least part of the effect.) In
contrast, similar issues were not found with forced oscillation, and the surge-damping
coefficients obtained from the experiment and the CFD simulation showed good agreement
in this case [17]. It was also concluded that at the low natural frequencies of the platform,
the wave-radiation damping is generally negligible compared to the viscous damping.
Because of viscous effects, the heave added mass estimated from the CFD results was also
found to be substantially higher than potential-flow predictions [17].

Other examples of CFD investigations on this topic include those of Burmester et al.
that investigated the surge-decay motion of the DeepCwind FOWT platform [18,19] with
a focus on the effects of the various computational settings. In addition to quantifying
formally the numerical discretization uncertainties with independent grid and time step
convergence studies [18], the effects of various other aspects of the numerical setup, in-
cluding different numerical schemes, the inclusion of a free surface (in comparison to
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double-body simulations), motion coupling, scaling effects, the computational domain
configuration, the inclusion of a wave-absorption zone, the choice of turbulence models,
and the catenary-mooring-line models, were all investigated [19]. It was discovered that
the inclusion of a wave-absorption zone improves the appearance of the flow field but has
very limited effects on the hydrodynamic damping of the structure. On the other hand, the
parameters of the dynamic mooring-line model, more specifically the line weight and the
transverse drag coefficient, have a strong impact on the motion of the structure, and proper
tunning is required to achieve good agreement with the experiment.

Wang et al. simulated the motion of the DeepCwind platform in regular waves using
CFD [20]. Good agreement with the experiment in terms of the surge RAO was achieved,
whereas the heave and pitch RAOs were underpredicted by the CFD simulations. The errors
in the heave and pitch RAOs were again attributed to the lack of a satisfactory nonlinear
mooring model (In [20], the mooring loads were modeled using a linearized stiffness
matrix). A follow-up study by Wang et al. [21] also formally estimated the numerical
discretization uncertainties in the motion RAOs with a successful application of the least-
squares method of [14].

Bozonnet and Emery performed CFD simulations of the forced oscillation and free-
decay motion of a vertical cylindrical column with a thin heave plate, a common component
of semisubmersible FOWT platforms [22]. The intention was to derive the relevant drag and
damping coefficients that can be used with mid-fidelity potential-flow-based engineering
models. For this purpose, extensive CFD simulations were performed to investigate the
effects of motion amplitude, frequency, and geometric dimensions on the effective drag
coefficient of the heave plate. As with [17], it was also noted that the added mass from
the CFD simulations can be higher than the potential-flow predictions due to viscous
effects [22], which can impact the resulting motion period.

Zhang and Kim [23] carried out fully coupled aero-hydrodynamic CFD simulations of
the DeepCwind semisubmersible with the NREL 5-MW baseline wind turbine and com-
pared their CFD results against the experimental measurements from the OC5 project [7,8].

The present investigation continues the research into the low-frequency damping
characteristics of the DeepCwind offshore wind semisubmersible with the following key
features aimed at addressing some of the limitations of prior studies:

(1) The CFD simulations are validated against the measurements from a new experimen-
tal campaign from OC6 Phase Ia [9,10] specifically designed to minimize uncertainties
in the experiment and to focus on the hydrodynamic problem better. The new cam-
paign used a simplified linear taut-spring mooring system instead of the catenary
mooring system in the prior OC5 project [7,8], which was frequently identified as one
of the major obstacles preventing a successful validation [15,19,20]. The linear-spring
mooring setup was developed to provide approximately the correct natural periods
of floater motion while greatly reducing the uncertainties and difficulties associated
with the numerical modeling of the mooring lines. The wind turbine and tower
in the OC5 experiment were also replaced with a rigid bar and a block mass with
similar inertial properties to minimize the effects of wind loading and tower flexibility.
Compared to the OC5 experiment, the new design of the OC6 experimental campaign
minimizes potential physical differences between the experimental and the numerical
CFD setups to facilitate validation.

(2) All CFD simulations in the present investigation have a full 6DoF floater motion. Effort
was made to replicate the motion of the floater in the experiment in all directions,
including the ones not directly relevant to the estimation of damping coefficients.

(3) The uncertainty analysis for the numerical solutions is directly based on the linear and
quadratic damping coefficients and the equivalent linear damping ratios estimated
from the free-decay motion of the structure. This is different from prior investigations,
which typically examined the uncertainty of more basic quantities, such as the maxima
in the displacement of the structure. While these basic quantities are less affected by
postprocessing and thus are better-suited for uncertainty analysis, it is nevertheless
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important to attempt to obtain uncertainty estimates for the more generalized hydro-
dynamic properties of the system such as damping coefficients and damping ratios,
because they are of the most practical value for mid-fidelity engineering models.

(4) The present collaborative validation study includes numerical solutions provided by
many different organizations participating in the OC6 CFD investigation. Different
software and CFD setups were used to produce these solutions, enabling a cross-
verification study to obtain a qualitative sense of the variability that can be expected
from the CFD predictions.

The rest of this article is organized as follows: the physical setup of the problem,
including the geometry of the structure and the mooring configuration, is described in
Section 2. The CFD setup is summarized in Section 3 with a detailed description of the
baseline numerical setup adopted by NREL, which was used as a reference by the other OC6
CFD participants. A preliminary comparison of the free-decay motion from the experiment
and the numerical simulations is presented in Section 4. The procedures for estimating the
damping coefficients and equivalent linear damping ratios (the key metrics for validation)
from the floater motion are given in Section 5. Section 6 documents the uncertainty
analysis for selected CFD results, and Section 7 compares the numerical predictions and
experimental measurements for verification and validation. Finally, Section 8 summarizes
conclusions drawn from the study.

2. Overview of the Physical Problem

The present investigation is based on the OC6 Phase Ia model-scale validation cam-
paign carried out at the Concept Basin of the Maritime Research Institute Netherlands
(MARIN) within the framework of the MaRINET2 project [24]. Measurements from this
campaign were previously used to validate engineering-level tools in the OC6 Phase
Ia project [9], and we are now comparing them to CFD simulations. The experiments
were performed with a simplified version of the OC5-DeepCwind FOWT, called the OC6-
DeepCwind FOWT, with the wind turbine replaced by a rigid tower and block mass,
allowing the turbine/floater system to be treated as a single rigid body. The motion of the
floater was recorded in all 6DoF with an optical tracking system. The model was placed
in the basin about 40 m (model scale) from the wave maker (which was disabled for the
free-decay cases) and in the center of the basin widthwise. For reference, the MARIN
Concept Basin is 220 m long, 4 m wide, and 3.6 m deep.

Three different load cases (LC) were considered: calm-water free-decay motions in
surge, heave, and pitch, labeled LC 4.2, LC 4.4, and LC 4.6, respectively, in the OC6 Phase
Ia project. Both the experiment and CFD simulations were performed at 1:50 scale (the
NREL simulations were equivalently performed at full scale but with increased viscosity to
match the model-scale Reynolds number), but all geometric dimensions and results are
presented at full scale based on Froude scaling for comparison and analysis.

The floater (at equilibrium) and the adopted coordinate system for the CFD simulations
and analysis are illustrated in Figure 1. The primary components of the floater include
three outer columns having a diameter of 12 m and a height of 14 m below the still water
level arranged to form an equilateral triangle. The center-to-center distance between two
outer columns is 50 m. Below each outer column, a heave plate having a diameter of
24 m and a height of 6 m is attached, resulting in a total draft of 20 m. A main column with
a diameter of 6.5 m and a draft of 20 m is also present at the center of the triangle. The
various columns and heave plates are connected to each other with pontoons and braces,
collectively referred to as cross members. A complete description of the floater geometry
can be found in [6]. The origin of the earth-fixed coordinate system coincides with the
center of the main-column waterplane area at equilibrium. The upstream outer column is
centered on the −x-axis.
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Table 1. Principal full-scale dynamic properties of the OC6-DeepCwind FOWT. 

Parameters Value Unit 
Displaced Volume, ∀ 1.392 × 104 m3 

Vertical Center of Buoyancy, VCB (from SWL 1) −13.17 m 
Vertical Center of Gravity, VCG (from SWL) −7.53 m 

Mass, m 1.407 × 107 kg 
Roll Moment of Inertia, 𝐼  about CG 2 1.2898 × 1010 kg-m2 
Pitch Moment of Inertia, 𝐼  about CG 1.2851 × 1010 kg-m2 
Yaw Moment of Inertia, 𝐼  about CG 1.4189 × 1010 kg-m2 

Figure 1. The OC6-DeepCwind floating offshore wind turbine (FOWT) semisubmersible.
(a) The geometry of the floater and the adopted coordinate system. The surge, sway, and heave
motions are along the x-, y-, and z-directions, respectively. The roll, pitch, and yaw motions are
also about the x-, y-, and z-axes, respectively. (b) Setup of the free-decay experiment in the MARIN
Concept Basin (photo by Amy Robertson, NREL).

Wind loading is not considered; however, the inertial properties of the wind tur-
bine and tower are included and combined with those of the floater by treating the tur-
bine/floater system as a single rigid body. Important full-scale dynamic properties of
the combined turbine/floater system are summarized in Table 1. The model-scale water
density is 998.6 kg/m3, but a full-scale density of 1025 kg/m3 is assumed when computing
full-scale quantities. The dynamic viscosity of water at model scale, which determines the
Reynolds number, is 8.89 × 10−4 Pa·s.

Table 1. Principal full-scale dynamic properties of the OC6-DeepCwind FOWT.

Parameters Value Unit

Displaced Volume, ∀ 1.392 × 104 m3

Vertical Center of Buoyancy, VCB (from SWL 1) −13.17 m
Vertical Center of Gravity, VCG (from SWL) −7.53 m

Mass, m 1.407 × 107 kg
Roll Moment of Inertia, Ixx about CG 2 1.2898 × 1010 kg-m2

Pitch Moment of Inertia, Iyy about CG 1.2851 × 1010 kg-m2

Yaw Moment of Inertia, Izz about CG 1.4189 × 1010 kg-m2

1 SWL = still water level. 2 CG = center of gravity.

The mooring system consists of three taut-spring mooring lines. In the experiment,
each thin mooring line was redirected by a pulley at an equivalent anchor point under water
to a mechanical spring above water [10]. This means the mooring lines can be effectively
treated as linear springs between the fairleads and the equivalent anchor points in the
CFD simulations. The positions of the fairleads with the structure at equilibrium and the
equivalent anchor positions are provided in Table 2. Each mooring line has an unstretched
length of 55.432 m (measured from the equivalent anchor point) and a spring constant of
48.9 kN/m full scale based on the OC6 model-scale validation campaign [10]. In the present
numerical simulations, a small adjustment is consistently made to the spring constant to
match the surge-decay period better (see Section 3.5 for details).

In the OC6 free-decay experiments, the floater was manually pushed to an initial offset
position and subsequently released to oscillate freely. Because of practical limitations in the
experimental setup, the initial floater displacement could not be precisely controlled, and
the exact point in time that the floater was released could not be recorded. For the CFD
simulations, we assume that the floater was released at the first peak/trough in the recorded
motion time history, and we used the position and velocity of the floater at this time instant
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as the initial condition for the CFD simulations. In this fashion, the initial offsets and
velocities of the floater in all 6DoF for the three free-decay load cases were estimated and
are listed in Tables 3 and 4. The translational offsets are defined by the displacement of
the center of gravity. Note that in the experiment, nonnegligible initial displacements
and/or velocities were sometimes present in directions other than the primary direction
of interest. For example, a sizeable initial offset in the sway direction was recorded in the
surge free-decay experiment (LC 4.2).

Table 2. Geometry of the mooring lines at equilibrium.

Lines End Points x (m) y (m) z (m)

1
Fairlead (FL1) −40.87 0.00 −14.0
Anchor (AC1) −105.47 0.00 −58.4

2
Fairlead (FL2) 20.43 −35.39 −14.0
Anchor (AC2) 52.73 −91.34 −58.4

3
Fairlead (FL3) 20.43 35.39 −14.0
Anchor (AC3) 52.73 91.34 −58.4

Table 3. Initial displacements in all six degrees of freedom (6DoF) from the selected free-decay
experiments.

Load Case Surge
(m)

Sway
(m)

Heave
(m)

Roll
(deg)

Pitch
(deg)

Yaw
(deg)

4.2—Surge Decay −5.1 0.9 0.0 0.1 0.7 0.3
4.4—Heave Decay 0.1 −0.3 −2.2 0.2 0.3 0.1
4.6—Pitch Decay −2.1 0.1 −0.1 −0.1 −5.7 0.0

Table 4. Initial velocities in all 6DoF from the selected free-decay experiments.

Load Case Surge
(m/s)

Sway
(m/s)

Heave
(m/s)

Roll
(deg/s)

Pitch
(deg/s)

Yaw
(deg/s)

4.2—Surge Decay 0.0 0.0 0.0 0.0 0.0 0.0
4.4—Heave Decay 0.0 0.0 0.0 −0.1 0.0 0.0
4.6—Pitch Decay −0.2 0.0 0.0 0.0 0.0 0.0

3. Numerical Setup

Several organizations participating in the present OC6 collaborative validation study
carried out CFD simulations of some or all three free-decay load cases and provided
numerical solutions for validation. The numerical setups, including mesh resolution, time
step, numerical schemes, and turbulence models, differed among the CFD participants
depending on the capabilities of the software used and the experience of the participants.
For brevity, only the baseline numerical setup developed by NREL for the CFD software
STAR-CCM+ is described in detail in Sections 3.2–3.4. This baseline setup was shared
with the OC6 participants at the beginning of the investigation as a reference. Selected
aspects of the numerical setups adopted by the OC6 participants are briefly summarized in
Appendix A (see Tables A1–A4). Finally, tuning of the mooring spring constant for the CFD
simulations is discussed in Section 3.5. The mooring spring constant was tuned to match
the experimental surge period better and was uniformly adopted by all the participants
with all load cases for consistency.

Participants in this study include the American Bureau of Shipping (ABS), National
Renewable Energy Centre, ClassNK, Technical University of Denmark, Dalian University
of Technology, IFP Energies nouvelles, MARIN, NREL, Delft University of Technology,
the University of Plymouth, and the University of Strathclyde. All CFD results presented
are based on the finite-volume method with the volume-of-fluid formulation as outlined
in Section 3.1; however, several different software packages were used, including STAR-
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CCM+ [25], OpenFOAM [26], and ReFRESCO [27]. The complete floater geometry, in-
cluding all the cross members, are included in all the CFD simulations. Additionally, the
Hamburg University of Technology (TUHH) provided simulation results from a time-
domain three-dimensional lower-order panel method, panMARE [28], which solves the
potential flow field and free-surface elevation at each time step. In the TUHH model,
the columns and the heave plates are discretized into panels, and the contributions from
Morison drag are included. Empirical drag forces in the heave direction are also evaluated
and applied to the faces of the heave plates. The cross members are modeled with the
Morison equation only [29].

While the baseline numerical setup was shared with all CFD participants at the
beginning of the project, a subgroup of participants comprising ABS, MARIN, and NREL
underwent closer coordination with a frequent cross-comparison of results to ensure the
physical problems were implemented in the numerical simulations as consistently as
possible. Therefore, the results from this subgroup tend to be somewhat more consistent
with each other compared to those of the rest of the participants, who performed the
simulations more independently.

3.1. Mathematical Formulation

All CFD simulations in the present study are based on the finite-volume method and
the volume-of-fluid model for multiphase flows [30]. Both water and air are treated as
incompressible Newtonian fluids; therefore, the flow is described by the incompressible
Reynolds-averaged Navier–Stokes equation and continuity equation:

∇·u = 0, (1)

∂(ρu)
∂t

+∇·(ρuu) = −∇
(

p +
2
3

ρk
)
+∇·[(µ + µt)(∇u + (∇u)T)] + ρg, (2)

where u is the flow velocity vector; p is pressure; and g is gravitational acceleration. The
turbulence eddy viscosity is given by µt, and the term involving the turbulent kinetic
energy k might be neglected with certain turbulence models, such as the one-equation
Spalart–Allmaras model. The local fluid density and dynamic viscosity, ρ and µ, are given
by the volume-of-fluid model [30]:

ρ = (1− αw)ρa + αwρw, (3)

µ = (1− αw)µa + αwµw, (4)

where the subscripts a and w denote air and water, respectively. The volume fraction of
water, αw, is given by the following scalar transport equation:

∂αw

∂t
+∇·(αwu) = 0. (5)

Depending on the implementation and numerical setting, an additional interface
compression term of the form ∇·[urαw(1− αw)] might be included on the left-hand side
of Equation (5) to help maintain a sharp water-air interface, with ur being an artificial
velocity field aligned with the normal to the interface [31]. Note that this compression
term is nonzero only when close to the interface with 0 < αw < 1. This additional
interface compression term was not used by all participants. For instance, the STAR-CCM+
simulations performed by NREL do not make use of artificial interface compression.

The baseline setup uses the Spalart–Allmaras detached-eddy simulation (SA-DES) [32]
to compute the eddy viscosity with the improved delayed detached-eddy simulation
(IDDES) formulation [33], all-y+ wall treatment [25], and low-Re correction [34]. With the
all-y+ wall treatment of STAR-CCM+, the wall shear stress is computed as in laminar flows
when the near wall mesh is fine enough to resolve the viscous sublayer with y+ around
unity or less and is estimated with boundary-layer modeling when the mesh is coarse with
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y+ values of near wall cells in the log-law layer (y+ > 30). The all-y+ wall treatment also
produces reasonable results when y+ values of near wall cells fall within the intermediate
buffer layer with the help of blended wall functions [25]. With the baseline mesh described
in Section 3.3, we intended to achieve a y+ value of unity or less; however, higher y+ values
in the buffer-layer range were occasionally encountered, especially near the sharp corners
of the floater. Therefore, the all-y+ treatment should be used.

3.2. Numerical Domain, Initial Conditions, and Boundary Conditions

The baseline numerical domain is shown in Figure 2 with each boundary labeled.
The exact locations of the boundaries are listed in Table 5 along with the corresponding
boundary conditions, which are specified following the STAR-CCM+ setup. While the free-
decay motion is expected to generate negligible radiated waves [17], wave-damping zones
50 m wide are nevertheless included next to the upstream and downstream boundaries.
The depth and width of the numerical domain match the physical basin exactly; therefore,
the side walls are treated as free-slip walls, and no wave-damping zone is employed next to
the side boundaries. Compared to the cylindrical domains used in prior investigations that
are intended to model open water [16], the rectangular domain used in the present study is
better suited to model the narrow wave basin in which the experiment was performed. The
flow field is initialized with calm water, and the floater is released from the estimated initial
offset position (see Table 3) with the estimated initial velocity in the CFD simulations.
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Table 5. Baseline domain boundary locations and conditions for the computational fluid dynamics
(CFD) simulations.

Boundary Location Type Velocity Pressure Phase Fraction

Floater N/A Wall No slip Zero normal gradient Zero normal gradient
Upstream x = −200 m Velocity Inlet Zero Zero normal gradient z > 0 : air; z ≤ 0: water

Downstream x = +200 m Velocity Inlet Zero Zero normal gradient z > 0 : air; z ≤ 0: water
Sides y = ±100 m Wall Free slip Zero normal gradient Zero normal gradient

Bottom z = −180 m Velocity Inlet Zero Zero normal gradient Water only
Top z = +180 m Pressure Outlet Extrapolated backflow dir. Atmospheric Air only
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3.3. Computational Grid

The computational grid for the free-decay simulations was designed based on the
expected characteristics of the flow. The Keulegan–Carpenter (KC) number for surge free
decay (LC 4.2) can be estimated as

KC = 2π
A
D

, (6)

where D is the diameter of the member, and A is the initial surge offset. For the offset
columns with a diameter of 12 m, the KC number is 2.7 and half that for the larger-
diameter (24 m) heave plates. The KC number based on the diameter of the central
main column, 6.5 m, is higher at 4.9. The cross members should experience significant
flow separation with a KC number of approximately 20; however, the contribution to the
global loads is likely limited because of their small diameter of just 1.6 m. The relatively
low KC numbers, especially for the larger offset columns and heave plates, suggest that
viscous drag associated with the wall boundary layer can potentially have nonnegligible
contributions to the total surge damping [35]; therefore, it is important to resolve the shear
layer on the floater surface properly with an adequately fine prism-layer mesh. Flow
separation from the corners of the heave plates also contributes to the surge damping by
exerting a transverse drag force on the thick heave plates. This conjecture is supported by a
preliminary round of grid sensitivity study, which shows that the mesh resolution near the
corners has a strong influence on the surge-damping characteristics of the floater; therefore,
fine mesh resolution near the sharp corners of the floater is also necessary. The fine mesh at
the corners should also benefit the prediction of the viscous damping during heave and
pitch decay, which is likely dominated by flow separation on the heave plates rather than
any viscous effect on the upper columns.

Further, because of the long surge and pitch natural periods, the radiated waves are
likely to be extremely small for surge and pitch free decay; we believe it is neither feasible
nor necessary to resolve the radiated waves. The heave free-decay motion might generate
slightly more radiated waves, but heave damping is dominated by the viscous drag on
the large heave plates. We therefore anticipate wave radiation to play a very limited, if
not negligible, role for the selected free-decay scenarios, and the mesh resolution near
the free surface was designed simply to have a reasonably sharp water-air interface. The
expectation of negligible radiation damping is also supported by [17].

Based on a preliminary grid sensitivity study, a baseline grid was developed. For
convenience, a reference cell size of h = 6 m full scale is used to describe the grid resolution.
In the far-field boundaries, a maximum isotropic cell size of 2 h is targeted. Near the free
surface, three mesh-refinement zones spanning the full length and width of the domain
are used to resolve the interface better. The refinement zones along with the targeted
cell sizes in all three directions are listed in Table 6. The extents of the refinement zones
are defined using the coordinate system of Figure 1. In each zone, the aspect ratio of
the cells is maintained at ∆z/∆x = 0.5 to minimize wave-dispersion error based on the
recommendation of [36], even though the surface waves are expected to play a very limited
role in the present investigation.

Table 6. Free-surface mesh-refinement zones with target cell sizes as fractions of h.

Refinement Zones ∆x/h ∆y/h ∆z/h

z ∈ [−5 m, 5 m] 1/4 1/4 1/8
z ∈ [−40 m, 20 m] 1/2 1/2 1/4
z ∈ [−80 m, 30 m] 1 1 1/2

Several box-shaped mesh-refinement zones are employed to better resolve the flow
near the floater. Table 7 lists the extent of each refinement zone, when the floater is at the
equilibrium position (see Figure 1), and the targeted isotropic cell sizes. The target patch
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size of the floater surface mesh is h/16; however, much smaller patch sizes are allowed
where the geometry is complicated, such as at the joints between members.

Table 7. Box-shaped mesh-refinement zones with target cell sizes as fractions of h.

Refinement Zones x Range (m) y Range (m) z Range (m) (∆x,∆y,∆z)/h

Near Floater [−60, 46] [−50, 50] [−40, 20] 1/4
Main Column [−7, 7] [−4, 4] [−22, 12] 1/16

Upstream Col.—Heave Plate [−45, −13] [−14, 14] [−23, −11] 1/16
Starboard Col.—Heave Plate [−2, 30] [11, 39] [−23, −11] 1/16

Port Col.—Heave Plate [−2, 30] [−39, −11] [−23, −11] 1/16
Upstream Col.—Upper Part [−38.5, −19.5] [−7, 7] [−11, 12] 1/16
Starboard Col.—Upper Part [5, 24] [18, 32] [−11, 12] 1/16

Port Col.—Upper Part [5, 24] [−32, −18] [−11, 12] 1/16
Floater Surface Mesh N/A N/A N/A 1/16

Finally, to achieve even higher grid resolution near the corners of the heave plates and
the bottom of the main column, three cylindrical or ring-shaped mesh refinement zones
are defined. The extents of these refinement zones, expressed in terms of the ranges of the
radial distance, R, measured from the column centerlines and ranges of the z coordinate,
are listed in Table 8 along with the targeted isotropic cell sizes.

Table 8. Corner mesh-refinement zones with target cell sizes as fractions of h.

Refinement Zones R Range (m) z Range (m) (∆x,∆y,∆z)/h

Bottom of the Main Column [0, 4.25] [−21, −13] 1/64
Top Edge of Heave Plates [10.75, 13.25] [−15.25, −12.75] 1/64

Bottom Edge of Heave Plates [10.75, 13.25] [−21.25, −18.75] 1/64

A prism-layer mesh with a total thickness of 0.48 m full scale divided into 15 layers
with a first layer thickness of 2 mm is generated from the floater surface. This configuration
resulted in a near wall y+ below 1.5 in most places. Higher y+ values were occasionally
encountered locally at the sharp corners of the floater or at the seams where the various
pontoons and braces meet.

The baseline mesh built with the trimmer meshing tool of STAR-CCM+, which gen-
erates mostly hexahedral elements, has 12.9 million cells. A y-plane cross section of this
mesh is shown in Figure 3. The increased mesh resolution near the structure, especially
near the corners of the heave plates and the bottom of the main column, can be seen.
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3.4. Numerical Schemes and Settings

The baseline setup uses second-order discretization schemes in both time and space.
More specifically, time integration is based on a second-order implicit backward-differencing
scheme. The momentum advection terms are discretized in space using the hybrid upwind
and bounded central-differencing scheme, and the second-order hybrid Gauss-LSQ method
with Venkatakrishnan’s limiter is used for gradient reconstruction. The advection of the
phase volume fraction is based on the High-Resolution Interface-Capturing scheme.

Based on a preliminary sensitivity study, a time step of T/∆t = 400 was chosen
where T is the motion period, i.e., the period of the surge, heave, or pitch free-decay
motion. This baseline temporal resolution is already twice as fine as the time resolution of
T/∆t ≈ 200 used in [12], which was found to produce converged unsteady solutions for a
similar problem. Pressure-velocity coupling is achieved with the semi-implicit method for
pressure-linked equations (SIMPLE) with 20 iterations per time step. The under-relaxation
factors for velocity and pressure are 0.8 and 0.4, respectively. The maximum number of
iterations of the 6DoF rigid-body motion solver is also 20 per time step. The sensitivity
of the results to the number of iterations is investigated in Section 6.1. To accommodate
the motion of the floater, b-spline mesh morphing is used [25]. With an implicit algorithm
for fluid-structure coupling, the mesh morphing is updated at each iteration [25]. Each
morphing operation starts from the same initial mesh with the floater at the equilibrium
position to avoid gradual deterioration of the mesh quality over time.

3.5. Model Parameter Tuning

Due to the uncertainties in the experimentally measured model parameters [10], it
is sometimes necessary to tune the floater/tower and mooring dynamic properties used
in the CFD simulations slightly. In the present investigation, the mass of the floater and
the mooring spring constant were adjusted simultaneously to achieve the target design
draft and the surge free-decay period measured in the experiment. In the end, a final
combined floater/tower mass of 1.4046 × 107 kg (a 0.2% decrease) and a mooring spring
constant of 52.32 kN/m were consistently used in all numerical simulations. The adjusted
mooring stiffness represents a 7% increase from the experimentally measured value of
48.9 kN/m. This adjustment is partially justified by the fact that there is approximately a
±10% uncertainty in the experimental mooring spring constant [10]. All other dynamic
properties of the floater/tower system and the mooring system used in the CFD simulations
are consistent with those from the experiment [10] with no further adjustments.

4. Comparison of the Floater-Motion Time Series

The instantaneous position of the center of gravity in the earth-fixed coordinate system
is used to define the translational motion of the structure in all three directions. The positive
direction for each rotation is given by the right-hand convention.

As a preliminary step towards formal validation, the free-decay motion time series of
the floater from the numerical simulations are compared to the experimental measurements
(EXP) in Figure 4. The NREL CFD solutions shown are obtained with the baseline numerical
configuration described in Section 3.

In Figure 4a, most CFD solutions (colored curves) show a qualitatively consistent
surge decay motion; however, the experimentally measured surge motion decays visibly
faster especially towards the end of the time series when the motion amplitude is small.
The potential-flow solution of TUHH, on the other hand, significantly underpredicts the
damping compared to the CFD solutions. Both issues are further explored in subsequent
analyses.

With heave and pitch decay, the CFD solutions and the TUHH potential-flow solu-
tion agree with the experiment visually for the most part. Some CFD solutions slightly
underpredict the heave and pitch periods, resulting in a small phase shift relative to the
experiment after several periods toward the end of the time series. Despite the phase shift
however, the periods of the decaying motion, as predicted by the CFD simulations, are
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all very close to the experiment. A detailed comparison of the periods is presented in
Section 7.1, which shows that all motion periods from the numerical simulations are within
±2% of the experiment.
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Overall, it appears that all numerical solutions capture the decaying motion reasonably
well. In the rest of this article, further validation is carried out based on the damping
coefficients and equivalent linear damping ratio estimated from the motion time series.
These parameters are of practical engineering interest and are more sensitive to minor
changes in the time history, leading to a more stringent validation.

5. Method of Analysis

The methods for computing the linear and quadratic damping coefficients and the
equivalent linear damping ratio—key metrics for validation—from the motion time series
are presented in this section.

5.1. Estimation of the Linear and Quadratic Damping Coefficients Using PQ Analysis

The linear and quadratic damping coefficients, B1 and B2, can be estimated from
the motion time series using the PQ method [37], which is briefly summarized here. For
the weakly damped free-decay motions, we define the amplitude decrease over a half-
cycle as ∆Ai = Ai − Ai+1, where Ai and Ai+1 are, respectively, the positive amplitudes
of the ith peak (trough) at time t = ti and the immediate next trough (peak) at ti+1 in
the surge-, heave-, or pitch-motion time series. The mean motion amplitude over the ith
half-cycle is approximated as Ai = (Ai + Ai+1)/2. The energy loss over the ith half-cycle,
Li, (neglecting other nonlinear damping) is given by

1
2

k
(

A2
i − A2

i+1

)
= Li =

∫ ti+1

ti

(B1
.
x(t)2 + B2

.
x2∣∣ .

x
∣∣)dt, (7)

where k is the total stiffness of the system for the mode of motion of interest, and
.
x

is the instantaneous translational or angular velocity of the floater. With the following
approximation over the ith half-cycle:

.
x(t) ≈ ±Aiω sin(ω(t− ti)), (8)

where ω is the angular frequency of the motion, the following relation can be derived from
Equation (7):

∆Ai

Ai
= ∆Ai = P + QAi, (9)

which states that the normalized amplitude decrease ∆A is a linear function of the mean
amplitude A. The y-intercept, P, and slope, Q, which can be determined from linear
regression, are related to B1 and B2 by the following relations:

B1 =
2k

πω
P and B2 =

3k
4ω2 Q. (10)

Because P and Q are directly proportional to B1 and B2, we use them as surrogates
of the actual linear and quadratic damping coefficients in the subsequent analysis and
sometimes refer to them as such for brevity. When performing the above analysis, the
motion of the floater center of mass was used; however, very similar results were also
obtained if the motion of a body-fixed origin at the center of the calm-water plane was
used. In Sections 5.1.1–5.1.3, example results from the PQ analysis are shown. The relation
in Equation (9) generally describes the surge-decay and heave-decay motions from the
simulations well; however, the presence of surge-pitch coupling, which is not considered
in the PQ method [37], results in poor linear regression for the pitch-decay motion (see
Section 5.1.3 for details). Nevertheless, we believe the PQ analysis can still provide a
meaningful characterization of the pitch-decay time series that enables comparisons across
different results.
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5.1.1. Surge Free Decay

Examples of the application of Equation (9) to the surge free-decay motion of the
platform are given in Figure 5a. The CFD simulations performed by ABS, MARIN, and
NREL are shown. Note that the NREL simulation is based on the baseline numerical setup
of Section 3. The first half-period of surge oscillation was consistently excluded from the
PQ analysis to minimize any start-up effect. The experimental surge free-decay motion
shows poor linear regression when the standard PQ method of Equation (9) is applied. As
illustrated in Figure 5b, the data points from the measurement show increased ∆A when
the mean amplitude A is small, which cannot be described by the linear-plus-quadratic
damping model. This behavior suggests the presence of a Coulomb-friction-type damping
force of constant magnitude B0 opposite the surge velocity in the experimental setup.
To obtain an estimate of this force, the standard PQ method can be modified by adding
an additional term in the form of B0

.
x2/

∣∣ .
x
∣∣ to the integrand on the right-hand side of

Equation (7). With this addition, Equation (9) becomes

∆Ai =
O
Ai

+ P + QAi, (11)

where O = 2B0/k. The additional term O/A leads to increasing ∆A as A→ 0 as is
observed with the experimental surge-decay motion. By multiplying Equation (11) on both
sides by Ai, a quadratic fit with ∆Ai as a function of Ai,

∆Ai = O + PAi + QA2
i , (12)

can be carried out to determine the constants O, P, and Q. The resulting best fit in the
form of Equation (11) shows good agreement with the experimental results as shown in
Figure 5b. The magnitude of the friction-like force based on this analysis is 2.2 kN at full
scale or only 0.017 N at model scale. This additional force, which likely originated from the
pulley system placed under water, acts as a small external mechanical damping force when
the floater is moving in the surge direction.
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Figure 5. Regression analyses extracting the surge-damping coefficients from (a) the CFD simulations
performed by ABS, MARIN, and NREL (note that the NREL simulation is based on the baseline
numerical setup of Section 3) and (b) the experimental measurement. The symbols are the data
points from the surge free-decay motion of the platform, and the lines or curve are the best fits of
the data points. In (a), the fits are of the form given by Equation (9), which only considers linear
and quadratic damping. In (b), the fit is given by Equation (11), which also includes a constant
Coulomb-friction-like damping force.



Energies 2022, 15, 389 16 of 38

To verify the modified PQ analysis with Equation (11) further and investigate the effect
of B0, MARIN repeated the surge-decay CFD simulation by applying an additional force
of B0 = 2.3 kN full scale to the floater center of gravity in the ±x-direction opposing the
floater surge velocity. The results from this additional simulation are labeled MARIN-B0 to
distinguish from the MARIN solution without B0. Note that for consistency, all numerical
results in this article other than MARIN-B0 were performed without B0 to focus just on the
hydrodynamic damping. A comparison of the MARIN CFD solutions with and without B0
and the experimental measurements are shown in Figure 6.
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Figure 6. Comparison of the MARIN CFD solutions for surge decay (LC 4.2) with and without
B0 = 2.3 kN full scale. The experimental measurement (EXP) is included for reference. (a) Surge time
series and (b) regression analysis for extracting the surge-damping coefficients.

In Figure 6a, the MARIN CFD solution with added B0 decays much faster, espe-
cially toward the end of the simulation when the motion amplitude is small, showing
improved agreement with the experiment. The regression analyses for estimating the
surge-damping coefficients are shown in Figure 6b. With the added B0, the MARIN-B0
solution is also showing a higher normalized decrease in surge amplitude as the mean
surge amplitude approaches zero; the best fits for the MARIN-B0 solution and the exper-
iment show good agreement in this region. More importantly, the modified regression
analysis with Equation (12), when applied to the MARIN-B0 solution, recovers the value
of B0 = 2.3 kN prescribed in the CFD simulation, thus demonstrating the validity of the
modified PQ analysis. The MARIN solution without B0 is well-described by the linear
regression with Equation (9). Interestingly, the estimated linear and quadratic damping
coefficients of the MARIN-B0 solution are slightly different from those without B0; how-
ever, this difference might not be physical and is likely just a consequence of the slightly
different behaviors exhibited by the linear fit with Equation (9) and the quadratic fit of
Equation (12). See Section 7.2 for further comparison and discussion. Finally, note that
the experimental setup might also have additional mechanical linear damping; however,
unlike the Coulomb-friction-type damping of B0, it is not possible to separate out the
linear mechanical damping from the hydrodynamic contribution based on the motion time
history alone.

5.1.2. Heave Free Decay

With heave free decay, no clear indication of the presence of a Coulomb-friction-like
damping force is observed with the experimental measurements; therefore, Equation (9)
is consistently used for the experiment and all numerical simulations. Heave damping is
strongly influenced by the vortex shedding from the corners of the heave plates, which
leads to strong flow-memory effects. As a result, the first few periods of heave oscillation
generally do not follow the linear trend given by Equation (9). To avoid this issue and to
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minimize the effects of the mismatch in the initial conditions between the experiment and
the numerical simulations, the first 3.5 periods of the heave oscillation were consistently
discarded from the computation of the damping coefficients. In general, reasonable linear
fits are observed with the numerical results of heave free-decay motion. Examples are
shown in Figure 7a. The experiment, on the other hand, shows more scatter (see Figure 7b).
It is not possible to determine exactly what is causing the heave-decay motion from the
experiment to show slightly more scatter about the fitted linear relation compared to the
CFD results. The normalized decrease in motion amplitude is highly sensitive to subtle
changes in the motion time series, and any minor perturbations, such as minor nonideal
behaviors displayed by the pulley-spring mooring system in the experiment, can cause the
increased scatter. Nevertheless, the linear fit in Figure 7b still describes the trend of the
experimental data reasonably well, and the resulting estimates of the linear and quadratic
damping coefficients should be physically meaningful.
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Figure 7. Regression analyses extracting the heave-damping coefficients from (a) the CFD simulations
performed by ABS, MARIN, and NREL (note that the NREL simulation is based on the baseline
numerical setup of Section 3) and (b) the experimental measurement. The symbols are the data points
from the heave free-decay motion of the platform, and the lines are the best fits given by Equation (9).

5.1.3. Pitch Free Decay

With pitch free decay, we typically observe poor linear regression with Equation (9).
This is primarily caused by the coupling from the low-frequency surge motion during
the pitch-decay test. As shown in Table 3, the pitch-decay load case also has a relatively
large initial offset in surge, and the presence of surge motion, through motion coupling,
leads to an irregular pitch-decay time history that is not well described by Equation (9),
which is derived based on a single-degree-of-freedom motion as explained in Section 5.1.
The poor linear regression is simply a consequence of the limitation of the postprocessing
technique, the PQ analysis, rather than any issue with the experimental measurements or
the numerical solutions. To avoid this problem in future investigations, care must be taken
to minimize unwanted surge motion during pitch-decay experiments.

Nevertheless, because effort was made to replicate, in the CFD simulations, the surge
motion present in the pitch free-decay experiment, the scatter of the data points in Figure 8
caused by the coupling from surge is qualitatively consistent between the experiment and
the CFD solutions. In this article, we continue to use Equation (9) to characterize the pitch
decay despite the poor linear regression in the hope that the effect of surge coupling cancels
out over multiple periods. As with surge free decay, the first half-period of pitch oscillation
was discarded when performing the PQ analysis for pitch free decay.
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performed by ABS, MARIN, and NREL (note that the NREL simulation is based on the baseline
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from the pitch free-decay motion of the platform, and the lines are the best fits given by Equation (9).

5.2. Equivalent Linear Damping Ratio

By matching the energy loss from the full linear and quadratic damping model with an
equivalent linear damping model with damping coefficient Be, the linear equivalent damp-
ing ratio ζ = ωBe/(2k) can also be computed from P and Q using the following expression:

πζ = P + FA·Q, (13)

where the motion-amplitude scaling factor, FA, is given by

FA =
∑n

i=m A3
i

∑n
i=m A2

i

, (14)

with m and n being the numbers of the first and last peaks/troughs, respectively, used in
the PQ damping analysis. Note that we are only interested in the hydrodynamic damping;
therefore, the Coulomb-friction-like forces estimated from the experimental surge decay
and that prescribed in the MARIN-B0 simulation are not included when computing ζ.

Alternatively, ζ can be estimated from the logarithmic-decrement method. To be
consistent with the PQ method, a separate damping ratio should be computed for each
half-cycle using the logarithmic-decrement method followed by an A2-weighted averaging.
In the absence of the Coulomb-friction-like force, this approach was found to produce
very similar estimates of ζ compared to those from Equation (13), even with pitch decay
where the linear regression of the PQ method works poorly, lending more confidence to
the estimated damping ratios.

The linear and quadratic damping characterized by P and Q obtained using the PQ
method as well as the equivalent linear damping ratio ζ are used to evaluate numerical
convergence in Section 6 and for validation against the experiment in Section 7.

6. Estimation of Numerical Uncertainty

The numerical error in the CFD solutions primarily consists of the discretization error
associated with finite temporal and spatial resolutions and the iterative convergence error
coming from a segregated and iterative solution of the relevant equations at each time step.
With double-precision computation, the truncation error can be neglected [38]. To estimate
the resulting numerical uncertainty, convergence studies were performed, but were limited
to only the surge-decay and heave-decay motions that show good linear regression with
the PQ analysis. The pitch-damping coefficients estimated using the PQ method likely
contain substantial uncertainties from the linear regression itself; therefore, the estimation
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of numerical uncertainty is omitted for pitch decay. The modeling uncertainty in the
solution associated with the choice of turbulence models was also briefly investigated. The
uncertainty analysis was performed for the NREL CFD solutions only.

6.1. Iterative Uncertainty

First, the iterative convergence of the surge free-decay simulation was checked by
repeating the simulation with 5, 10, 20 (baseline), and 40 SIMPLE iterations per time
step using the baseline grid and time step described in Section 3. For consistency, the
maximum number of iterations of the 6DoF motion solver was also set to the same number.
To illustrate the influence, the final unnormalized root-mean-square residual of the x-
momentum equation at the end of each time step, as computed by NREL using STAR-
CCM+, is shown in Figure 9. A significant reduction in the residual is achieved when
increasing the number of iterations from 5 to 10, whereas doubling the number of iterations
from 20 to 40 does not result in a meaningful further reduction in the residual.
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Figure 9. Unnormalized root-mean-square (RMS) residual of the x-moment equation at the end of
each time step.

The time series of the surge and heave free-decay motions obtained with different
numbers of iterations shown in Figure 10 corroborate the behavior of the residual shown in
Figure 9. In Figure 10a, the surge-decay motion obtained with only 5 iterations shows large
differences with the other results, whereas the solutions obtained with 10, 20 (baseline), and
40 iterations per time step are almost identical to each other. The heave-decay simulation is
only repeated twice: once with the baseline setup of 20 iterations per time step and once
with 40 iterations per step. The two solutions are visually identical to each other.
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Figure 10. Time series of (a) the surge-decay motion and (b) the heave-decay motion obtained from
the CFD simulations with different numbers of SIMPLE iterations per time step.

In terms of the damping coefficients and damping ratio, summarized in Table 9,
the simulation with only 5 iterations per step shows poor iterative convergence, while
10, 20, and 40 iterations all provide similar results. The linear damping coefficient is the
most sensitive to the number of iterations. As it is no longer feasible to reduce the residuals
meaningfully beyond those of 40 iterations, we simply estimate the iterative uncertainties
in the damping coefficients and the equivalent linear damping ratio as the difference
relative to the results obtained with 40 iterations. This is the same procedure adopted
in [39]. The iterative uncertainties in the heave-damping coefficients and damping ratio
are similarly estimated and provided in Table 10. Based on the observed changes, the
baseline of 20 iterations per time step appears to be a cost-effective choice, leading to an
uncertainty of 0.4% in ζ due to iterative convergence. Assuming the pitch-decay simulation
shows a similar iterative convergence as surge and heave, we expect 20 iterations per step
to provide reasonable predictions for pitch damping as well.

Table 9. Variation in surge-damping coefficients and equivalent linear damping ratio with the number
of iterations.

No. Iter.
P = πωB1

2k Q = 4ω2B2
3k ζ

Value Difference Value (m−1) Difference Value Difference

5 0.112 97% 0.0327 20% 6.06% 45%
10 0.064 12% 0.0265 3.5% 4.32% 2.9%
20 0.059 3.4% 0.0269 2.0% 4.22% 0.4%
40 0.057 N/A 0.0274 N/A 4.20% N/A

Table 10. Variation in heave-damping coefficients and equivalent linear damping ratio with the
number of iterations.

No. Iter.
P = πωB1

2k Q = 4ω2B2
3k ζ

Value Difference Value (m−1) Difference Value Difference

20 −0.0039 6% 0.170 0.8% 2.306% 0.4%
40 −0.0041 N/A 0.171 N/A 2.313% N/A

6.2. Discretization Errors and Uncertainties

To estimate the discretization error, the surge- and heave-decay simulations were
repeated four times with different mesh resolutions and time steps. As both temporal and
spatial discretization schemes are formally second order, the time step and cell size were
simultaneously adjusted following the same refinement ratio during the convergence study.
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Further, to maintain the geometric similarity of the mesh as much as possible, the mesh
was refined and coarsened globally by simply adjusting the reference size h. The details are
listed in Table 11, in which the baseline case is considered to have a refinement ratio of 1.
Based on the iterative convergence analysis, 20 SIMPLE iterations per time step were used
throughout the grid and time-step convergence study.

Table 11. Numerical configurations for convergence study.

Case Refinement
Ratio, λ

Reference
Cell Size, h

Number of
Cells Time Step, ∆t No. Iter.

Very Coarse 4/3 8 m 6.7 million T/300 20
Coarse 7/6 7 m 8.6 million T/343 20

Baseline 1 6 m 12.9 million T/400 20
Fine 3/4 4.5 m 25.6 million T/533 20

In Figure 11, an informal comparison of the motion time series obtained from the CFD
simulations with the four different levels of numerical refinement described in Table 11 is
shown. The time series are visually very consistent with each other despite the wide range
of refinement levels considered, indicating a degree of numerical convergence.
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the CFD simulations with the four different levels of numerical refinement described in Table 11.

In the rest of this section, a more formal estimation of the discretization uncertainties
is carried out for the damping coefficients and damping ratios using a least-squares ap-
proach, which involves fitting a suitable convergence trend to the available data from the
convergence study and extrapolating the solution to an infinite numerical resolution. The
difference between the extrapolated and the actual numerical solutions provides a measure
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of the discretization error, which can be used to construct a discretization uncertainty
interval.

For any given scaler quantity of interest, φ, we define φi as the numerical solution of
φ from the simulation with the ith grid size and time step. The hypothetical numerical
solution of φ with infinite numerical resolution, i.e., with λ→ 0 , is given by φ0. The
discretization error associated with φi is defined as εi = φi − φ0. With the simultaneous and
consistent refinement of cell size and time step, the convergence error εi can be assumed to
follow the standard power-law error estimator (Richardson extrapolation) [38]:

εi = αλ
p
i , (15)

where λi is the refinement ratio associated with the ith time step and cell size (see Table 11).
The constant coefficient α, the apparent order of convergence p, and the value of φ0 can
be determined if φi from, at a minimum, N = 3 simulations with different cell size/time
step are available; however, it is more reliable to have N > 3 simulations and solve for the
three unknowns in the least-squares sense. More specifically, the values of α, p, and φ0 are
estimated by minimizing the standard deviation [38]:

σ =

√√√√∑N
i=1

[
φi −

(
φ0 + αλ

p
i

)]2

N − 3
. (16)

The resulting minimized value of σ also provides a gauge of how well the convergence
follows the assumed trend of Equation (15). If σ is too large, the error estimate should
be considered invalid, and an alternative approach should be adopted. On the other
hand, if σ is small and the apparent order of convergence is in the range 0.95 < p < 2.05
(assuming formally second-order schemes), a corresponding discretization uncertainty can
be developed based on the estimated discretization error, εi, with the help of a suitable
safety factor, FS [40]:

Ui = FS·|εi|+ σ. (17)

Finally, if the apparent order of convergence from the least-squares fit is greater than
the theoretical order of 2, say, p > 2.05, the error estimates might be under-conservative;
therefore, we simply set the value of p to 2 in this case when performing the least-squares fit,
and an additional lower bound of FS·∆M can be imposed on the discretization uncertainty
where ∆M is the range spanned by φi across all cell sizes and time steps investigated [40]. If
σ is small, the widely adopted value of FS = 1.25 from the literature can be used (see [38,40]).

While, in principle, the above technique for estimating discretization uncertainty
can be applied to any scaler quantity, it is generally better to apply it to quantities that
require as little postprocessing as possible, such as the force/moment on the structure, or
the instantaneous displacement of the floater. In this way, the errors are mostly coming
from the numerical discretization rather than postprocessing itself [13]. Quantities such
as P, Q, and ζ are therefore not preferred candidates for the estimation of discretization
uncertainty. From the point of view of practical application however, the primary goal
of performing the CFD simulations is to obtain estimates of the generalized damping
characteristics that can be used in the mid-fidelity engineering models; therefore, it is more
important to obtain uncertainty estimates for P, Q, and ζ rather than quantities that are
specific to a particular realization of free-decay motion. We therefore attempt to estimate
the discretization uncertainties directly for the damping coefficients and damping ratio
in the present article, while fully acknowledging that they are not best suited for this
type of analysis. In addition to the use of heavily postprocessed quantities, several other
factors also complicate the estimation of the discretization errors. The unstructured mesh
generated with the trimmer meshing tool does not guarantee full geometric similarity
between grids with refinement, violating the assumption of the Richardson extrapolation.
The mesh could also influence the behavior of the SA-DES turbulence model; therefore, the
change in the solution is not due to the discretization error alone. Despite these problems,
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we still believe the least-squares method is the most robust way to obtain estimates of the
discretization uncertainty, and we applied it in the present study whenever possible.

The values of P, Q, and ζ for surge free decay obtained from the CFD simulations
with the four different refinement ratios in Table 11 are shown in Figure 12. The fitted
convergence trends based on Equation (15) are also included, along with the estimated
discretization uncertainties for each CFD simulation. For all three damping parameters,
the best-fitting apparent order of convergence, p, is greater than 2.05; therefore, the least-
squares fits shown are based on p = 2 instead, and the lower bound of FS·∆M is imposed on
the estimated discretization uncertainties as in [40]. In general, the fitted convergence trends
describe the actual CFD solutions reasonably well, even with the value of p constrained to
2, lending confidence to the estimated discretization uncertainties.

Energies 2022, 15, x FOR PEER REVIEW 25 of 40 
 

 

   
(a) (b) (c) 

Figure 12. Convergence of (a) the linear damping coefficient, (b) quadratic damping coefficient, and 
(c) equivalent linear damping ratio in surge with simultaneous time-step and grid refinement. The 
crosses are the CFD solutions computed with the four different refinement ratios in Table 11, and 
the estimated discretization uncertainties are shown as symmetric uncertainty bands attached to the 
crosses. 

The estimated percentage discretization uncertainties in 𝑃, 𝑄, and 𝜁 of the four re-
peated simulations in Table 11 are listed in Table 12. Large uncertainties are found for 𝑃, 
which is proportional to the linear damping coefficient. This is consistent with Figure 12a, 
which shows a substantial decrease in 𝑃 as the simulation is refined. Even with the finest 
simulation, the discretization uncertainty in 𝑃 can be as high as ±48%. On the other 
hand, the value of 𝑄 , which is proportional to the quadratic damping coefficient, in-
creases with the refinement (Figure 12b). The uncertainty in 𝑄  is more moderate at ±19% with the finest simulation. Interestingly, the effect of the decreasing 𝑃 is approx-
imately balanced by the increase in 𝑄 with refinement, resulting in a more consistent 
equivalent linear damping ratio, 𝜁, which only has a discretization uncertainty of ±10% 
for both the baseline and fine simulations. 

The uncertainties in Table 12 are the combined spatial and temporal discretization 
uncertainties. To obtain a measure of the relative importance of the temporal and spatial 
discretization errors, the surge-decay simulation was repeated one more time with the 
baseline mesh but a smaller time step of 𝑇/600, leading to a temporal resolution even 
finer than that of the fine case in Table 11. The resulting values of 𝑃, 𝑄, and 𝜁 are 0.058, 
0.0270 m−1, and 4.2%, respectively. Compared to the baseline solution in Table 12, the 
changes are much smaller than those between the fine and the baseline cases, which 
means that the limited spatial resolution is the primary contributor to the discretization 
error, and the temporal discretization error is secondary. 

Table 12. Discretization uncertainties of the surge-damping coefficients and the equivalent linear 
damping ratio. 

Cases 
𝑷 = 𝝅𝝎𝑩𝟏𝟐𝒌  𝑸 = 𝟒𝝎𝟐𝑩𝟐𝟑𝒌  𝜻 

Value Discretization 
Uncertainty 

Value (m−1) Discretization 
Uncertainty 

Value Discretization 
Uncertainty 

Very Coarse 0.075 ±60% 0.0235 ±38% 4.5% ±16% 
Coarse 0.071 ±50% 0.0244 ±29% 4.4% ±13% 

Baseline 0.059 ±47% 0.0269 ±21% 4.2% ±10% 
Fine 0.055 ±48% 0.0276 ±19% 4.1% ±10% 

The discretization uncertainties in the heave-damping coefficients were estimated 
following a similar procedure. The uncertainties along with the best-fitting error estima-
tors are shown in Figure 13. Note that only the convergence of 𝑃 and 𝑄 are shown, for 
which the error estimator of Equation (15) describes the convergence trends well. For 

Figure 12. Convergence of (a) the linear damping coefficient, (b) quadratic damping coefficient,
and (c) equivalent linear damping ratio in surge with simultaneous time-step and grid refinement.
The crosses are the CFD solutions computed with the four different refinement ratios in Table 11,
and the estimated discretization uncertainties are shown as symmetric uncertainty bands attached
to the crosses.

The estimated percentage discretization uncertainties in P, Q, and ζ of the four re-
peated simulations in Table 11 are listed in Table 12. Large uncertainties are found for P,
which is proportional to the linear damping coefficient. This is consistent with Figure 12a,
which shows a substantial decrease in P as the simulation is refined. Even with the finest
simulation, the discretization uncertainty in P can be as high as ±48%. On the other hand,
the value of Q, which is proportional to the quadratic damping coefficient, increases with
the refinement (Figure 12b). The uncertainty in Q is more moderate at ±19% with the finest
simulation. Interestingly, the effect of the decreasing P is approximately balanced by the
increase in Q with refinement, resulting in a more consistent equivalent linear damping
ratio, ζ, which only has a discretization uncertainty of ±10% for both the baseline and fine
simulations.

Table 12. Discretization uncertainties of the surge-damping coefficients and the equivalent linear
damping ratio.

Cases
P = πωB1

2k Q = 4ω2B2
3k ζ

Value Discretization
Uncertainty Value (m−1) Discretization

Uncertainty Value Discretization
Uncertainty

Very Coarse 0.075 ±60% 0.0235 ±38% 4.5% ±16%
Coarse 0.071 ±50% 0.0244 ±29% 4.4% ±13%

Baseline 0.059 ±47% 0.0269 ±21% 4.2% ±10%
Fine 0.055 ±48% 0.0276 ±19% 4.1% ±10%

The uncertainties in Table 12 are the combined spatial and temporal discretization
uncertainties. To obtain a measure of the relative importance of the temporal and spatial
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discretization errors, the surge-decay simulation was repeated one more time with the base-
line mesh but a smaller time step of T/600, leading to a temporal resolution even finer than
that of the fine case in Table 11. The resulting values of P, Q, and ζ are 0.058, 0.0270 m−1,
and 4.2%, respectively. Compared to the baseline solution in Table 12, the changes are much
smaller than those between the fine and the baseline cases, which means that the limited
spatial resolution is the primary contributor to the discretization error, and the temporal
discretization error is secondary.

The discretization uncertainties in the heave-damping coefficients were estimated
following a similar procedure. The uncertainties along with the best-fitting error estimators
are shown in Figure 13. Note that only the convergence of P and Q are shown, for which
the error estimator of Equation (15) describes the convergence trends well. For heave decay,
ζ does not show monotonic convergence, and Equation (15) fails to provide a valid fit;
therefore, the alternative range-based estimate of

U = FS·∆M, (18)

suggested by [40], was used to provide a discretization uncertainty for ζ. Because of the
reduced confidence associated with the range-based approach, an increased factor of safety
of FS = 3 was used [40].
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The damping coefficients and equivalent linear damping ratio along with the estimated
discretization uncertainties for heave decay are given in Table 13. The value of P is generally
very close to zero; therefore, the absolute uncertainties are shown instead of percentage
uncertainties. A slightly negative linear damping, P, is obtained with all but the finest CFD
simulation. This is likely just a consequence of convergence error because the uncertainty
ranges of P extend above zero in all cases. In contrast, the quadratic damping Q is always
positive. Similar to surge decay, P and Q again show opposite trends as the simulation is
refined. The contribution from the increasing P with finer numerical resolution is mostly
canceled by that from the decreasing Q, resulting in an almost constant equivalent linear
damping ratio, which only has a 7% discretization uncertainty. It appears that it is quite
challenging to obtain fully converged linear and quadratic damping coefficients, but the
resulting equivalent linear damping ratio is generally very consistent and not as sensitive
to the numerical setup. It can therefore be argued that the equivalent linear damping
ratios predicted by CFD simulations can be relied on with a higher degree of confidence
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compared to the separate linear and quadratic damping; however, the drawback is that ζ
does not provide information on the exact composition of linear and quadratic damping.

Table 13. Discretization uncertainties of the heave-damping coefficients and the equivalent linear
damping ratio.

Cases
P = πωB1

2k Q = 4ω2B2
3k ζ

Value Discretization
Uncertainty 1 Value (m−1) Discretization

Uncertainty Value Discretization
Uncertainty

Very Coarse −0.018 ±0.04 0.20 ±55% 2.28% ±7%
Coarse −0.007 ±0.04 0.18 ±51% 2.31% ±7%

Baseline −0.004 ±0.03 0.17 ±42% 2.31% ±7%
Fine +0.003 ±0.03 0.15 ±33% 2.26% ±7%

1 Discretization uncertainties of P are expressed in terms of actual values instead of percentages because P is very
close to zero.

The total numerical uncertainty can be obtained by combining the discretization
uncertainty and iterative uncertainty. In the present analysis, however, the estimated
discretization uncertainties in Tables 12 and 13 are generally an order of magnitude greater
than the estimated iterative uncertainty in Tables 9 and 10 for the baseline 20 iterations per
time step. We therefore neglect the contributions from iterative convergence and retain
only the discretization uncertainty.

6.3. Uncertainties from the Choice of Turbulence Models

In addition to the numerical iterative and discretization errors, the CFD solutions also
contain modeling errors. While there are many potential sources of modeling errors, we
only consider here those associated with the choice of, or a lack of, turbulence models.
The impact of the turbulence model was gauged by repeating the surge and heave free-
decay simulations with the baseline numerical setup but with different turbulence models
or no turbulence model activated. In addition to the SA-DES model [32] of the baseline
configuration, the commonly used Menter SST k-ω model [41] was also tried. It is important
to test the different turbulence models with both surge and heave free-decay motions
because the nature of the damping in surge and heave can be very different. Surge damping
contains a significant linear contribution coming from the viscous boundary layer, while
heave damping is dominated by the quadratic damping from the drag on the heave plates
(see Section 7). As a result, surge and heave decay could show different levels of sensitivity
to the turbulence model.

The results from this sensitivity study are presented in Table 14. The quadratic
damping Q in surge shows the most sensitivity to the choice of turbulence model, showing
an 8% increase with no turbulence model compared to the baseline solution with the
SA-DES model. In other cases, the variations in P and Q caused by the turbulence model
are at least an order of magnitude smaller than the discretization uncertainty. With ζ,
the impact of the choice of turbulence model is of the same order of magnitude as the
corresponding discretization uncertainty but still less than half in value. The relatively
weak influence from the turbulence models on the damping coefficients observed here is
consistent with [12].

Based on the above observations, we consider the uncertainty associated with the
turbulence model to be secondary to the discretization uncertainty; therefore, in the ensuing
comparison and discussion of the numerical solutions and the experimental results, we
only retain the discretization uncertainties for the NREL solutions, while acknowledg-
ing that the actual uncertainties in the CFD solutions could be slightly higher because
of other contributions, such as those from the iterative error and the turbulence model
investigated here.
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Table 14. Sensitivity of the damping coefficients and equivalent linear damping ratio to the choice of
turbulence models.

Surge Damping Heave Damping

P Q (m−1) ζ (%) P Q (m−1) ζ (%)

SA-DES 1 (Baseline) 0.059 0.0269 4.22 −0.004 0.170 2.31
SST 2 k−ω 0.061 0.0272 4.29 −0.001 0.169 2.38

No Turbulence Model 0.057 0.0290 4.34 −0.004 0.171 2.31
Max. Difference Relative to Baseline 3.3% 8.0% 2.9% 0.003 3 0.9% 3.1%

1 SA-DES = Spalart–Allmaras detached-eddy simulation. 2 SST = shear stress transport. 3 The maximum difference
in P is not given as percentages because P is very close to zero for heave decay.

7. Cross-Verification and Validation of the Numerical Results

In this section, a comparison of the damping coefficients P and Q, equivalent linear
damping ratio ζ, and the periods of the free-decay motions T from all numerical simulations
supplied by the OC6 participants and the experiment is carried out. Apart from the TUHH
solutions, which are based on a potential-flow model with empirical drag forces, all other
numerical solutions are based on finite-volume CFD simulations.

To compare the relative importance of the linear and quadratic damping directly,
characterized by the values of P and Q, respectively, Q is nondimensionalized by the
motion-amplitude scaling factor FA from Equation (14). For example, if P ≈ FA·Q, the
linear damping and quadratic damping contribute roughly equal energy dissipation. The
exact value of FA, of course, depends on the motion and varies slightly among the numerical
simulations and the experiment. For the sake of a consistent comparison of Q however,
we simply prescribe an approximated value of FA, denoted as F̃A, for each free-decay load
case that will be consistently applied across all solutions to normalize Q. More specifically,
we have F̃A = 2.8 m for surge decay (LC 4.2), 0.48 m for heave decay (LC 4.4), and finally
0.053 radian for pitch decay (LC 4.6). These prescribed values are representative of the
actual scaling factor FA observed with each CFD simulation or experimental measurement,
which falls within ±15% of F̃A. Note that the equivalent linear damping ratio ζ shown
in this section was computed using Equation (13) with the exact FA of each simulation or
experiment.

For validation against the experiment, the discretization uncertainties of the NREL
solutions estimated in Section 6.2 are included whenever available; however, we do not have
robust uncertainty estimates for the damping coefficients determined from the experiment.
The validation performed here should therefore be considered an informal one.

7.1. Motion Periods

The motion periods are first compared in Figure 14. All numerical solutions show
mostly consistent periods in the surge, heave, and pitch directions. With the increased
mooring spring constant, the surge periods from the numerical simulations also match
that of the experiment well. The system stiffness in heave and pitch, on the other hand,
primarily comes from the hydrostatic restoring force/moment with the mooring playing a
more limited role. The heave and pitch periods are also consistent between the numerical
solutions and the experiment, suggesting that the hydrodynamic added mass/moment of
inertia was successfully captured by the numerical simulations. Finally, the four repetitions
of the surge- and heave-decay simulations performed by NREL for the discretization
convergence study all show effectively identical motion periods. This means the periods
are not sensitive to the numerical setup and therefore only provide a weak check on
numerical convergence. In other words, other physical quantities, such as the damping
coefficients, could be far from convergence even if the motion period has already converged.
The two MARIN CFD results also show that the inclusion of B0 in the simulation has little
influence on the surge period. Overall, the agreement in the motion periods is deemed
satisfactory with most numerical predictions falling within ±2% of the experiment.
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Figure 14. Periods of free-decay motions in surge, heave, and pitch from the experiment (EXP), the
CFD simulations, and the potential-flow simulation (TUHH). For interpretation of the legends, which
denote different participants of the OC6 Phase Ia project, please refer to the caption of Figure 4. The
four NREL solutions correspond to the four different numerical setups used in the convergence study
listed in Table 11.

7.2. Surge Damping

With the periods of the free-decay motion validated, the damping coefficients and
the equivalent linear damping ratios are compared next. As already demonstrated in
Section 6, the damping coefficients are very sensitive to the adopted numerical setup; thus,
a comparison of the damping coefficients should provide a stronger check on the quality
of the numerical solutions. The damping coefficients are also the primary quantities of
interest that we would like to extract from the numerical simulations.

The damping coefficients and equivalent linear damping ratio in surge are compared
in Figure 15. We first compare the MARIN and MARIN-B0 solutions, which show that
the inclusion of the Coulomb-friction-type damping, B0, can lead to a slight decrease in
the estimated linear damping (from P = 0.066 to 0.045) and an increase in the estimated
quadratic damping (from F̃A·Q = 0.069 to 0.088). As discussed earlier, however, these
relatively small changes might not be physical and are likely just a consequence of the
slightly different behaviors exhibited by the linear fit with Equation (9) used for the MARIN
solution and the quadratic fit with Equation (12) used for the MARIN-B0 solution. To
demonstrate this, we repeated the analysis of the MARIN solution (without B0) using
the quadratic fit of Equation (12) instead of the linear fit with Equation (9) with the term
associated with B0 removed, in other words, with O forced to zero. This analysis results
in a reduced estimate of the linear damping of P = 0.055 and an increased quadratic
damping of F̃A·Q = 0.081, thus at least partially explaining the differences observed
between the MARIN and MARIN-B0 solutions shown in Figure 15. Interestingly, the two
MARIN simulations, despite having different linear and quadratic damping coefficients,
yield effectively the same equivalent linear damping ratio, thus demonstrating a level of
consistency between the analysis with Equation (9) and that with Equation (12). Again,
note that we did not include the contribution from B0 when computing ζ as shown in
Equation (13) to only focus on the hydrodynamic damping.

Next, we compare all the numerical solutions in Figure 15 to the experiment for val-
idation. The NREL solutions show that the linear damping characterized by P tends to
decrease as the simulation is refined in space and time, with sizeable discretization uncer-
tainty even for the finest CFD solution. Substantial variation is also observed among the
other CFD solutions for the linear surge damping, suggesting a high degree of sensitivity to
the numerical setup. The linear damping from the experiment is mostly consistent with the
NREL CFD solutions, falling within the NREL discretization uncertainty ranges; however,
this agreement should be interpreted with care because the experimental linear damping
could potentially be influenced by two factors. First, the use of the quadratic fit with
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Equation (12) to accommodate the Coulomb-friction-type damping in the experiment could
potentially reduce the estimated linear damping as demonstrated by the two MARIN CFD
simulations. In other words, the linear damping obtained with an idealized experimental
setup without B0 using Equation (9) could be higher. Second, the experimental setup
might also exert additional mechanical linear damping on the structure, which cannot be
distinguished from the linear hydrodynamic damping based on the available information.
This means the actual hydrodynamic damping can also be lower than what the experiment
suggests.
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P and Q, respectively, and the equivalent linear damping ratio, ζ, from the experiment (EXP), the
CFD simulations, and the potential-flow simulation (TUHH). The P and Q values are calculated from
the motion time series using the PQ analysis discussed in Section 5 and are proportional to the linear
and quadratic damping coefficients, B1 and B2, respectively, following Equation (10). The equivalent
linear damping ratio, ζ, is calculated using Equation (13). The amplitude factor F̃A used to normalize
Q is 2.8 m. For interpretation of the legends, which denote different participants of the OC6 Phase
Ia project, please refer to the caption of Figure 4. The four NREL solutions correspond to the four
different numerical setups used in the convergence study listed in Table 11. The uncertainty bands
attached to the NREL solutions are the numerical discretization uncertainties estimated in Section 6.2.

The CFD simulations tend to provide more consistent estimates of the quadratic
damping characterized by Q. Furthermore, the Q value from the NREL simulations
gradually increases as the mesh and time step is refined; however, it is unclear whether
a fully converged CFD solution would agree with the experiment because the Q value
from the experiment falls just outside the discretization uncertainty ranges. Most of the
CFD solutions, except those from ABS and the University of Plymouth, also underpredict
the quadratic damping when compared to the experiment. One possible explanation
of this discrepancy is again provided by the two MARIN simulations, which show that
the use of the quadratic fit of Equation (12) can lead to a slightly higher estimate of
the quadratic damping. It is therefore possible that the actual hydrodynamic quadratic
damping estimated with an idealized experimental setup without B0 using Equation (9) is
lower than what is shown, reducing the gap between the experimental results and CFD
predictions. Overall, P and F̃A·Q are of comparable magnitude, meaning both the linear
and quadratic damping are important for the present surge free-decay load case.

Finally, the majority of the CFD solutions provide consistent estimates of the equiva-
lent linear damping ratio ζ between 4% and 5%, with the NREL, ABS, MARIN, and the
University of Plymouth solutions showing very good agreement with each other. This is ap-
proximately half of the 10% surge damping ratio derived from B1 = 0.2

√
k(m + µ), where k,

m, and µ are the surge mooring stiffness, floater mass, and surge added mass, respectively,
suggested by Bureau Veritas for semisubmersibles [42], which is not surprising because
surge damping can be very sensitive to the floater geometry and the motion amplitude.
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The low damping ratio encountered here is likely a consequence of the circular cross section
of the columns and heave plates and the relatively low KC number. The NREL solution
converges away from the experiment, with the experimental ζ falling outside the NREL
discretization uncertainty ranges, suggesting the presence of some mismatch between
the actual physical setup and the numerical setup, such as additional linear mechanical
damping in the experiment.

Whereas it would certainly be of interest to link the differences in the CFD solutions of
the various groups to the differences in the adopted numerical setups documented in the
appendix directly, it is generally not possible to do so with any degree of confidence because
the CFD configuration adopted by each group differs from the baseline setup and from each
other in multiple respects, and the effects of the different settings on the results can either
reinforce or cancel each other, further obscuring the influence of each individual aspect of
the numerical setup. Out of all the participants other than NREL, the MARIN setup is the
closest to the baseline setup described in Section 3, and some limited comparisons can be
made with the NREL baseline solution. Apart from the different software packages and
numerical discretization schemes (Table A1), the MARIN and NREL CFD setups are mostly
consistent with each other with the same formal order of convergence (Table A1), the same
SIMPLE pressure-velocity coupling scheme (Table A2), and a mostly similar computational
mesh and identical time step (Table A3). The primary differences are in the mesh resolution
near the corners of the heave plates and the bottom of the main column (h/64 in the NREL
baseline simulation and h/16 in the MARIN simulation as shown in Table A3), the level
of iterative convergence (the MARIN simulation likely has better iterative convergence
with up to 50 iterations per time step compared to the fixed 20 iterations per step used
in the NREL baseline setup as shown in Table A2), and the different turbulence models
(Table A4). As a result, it is unsurprising that the MARIN and NREL baseline solutions are
mostly consistent with each other as shown in Figure 15 with almost perfect agreement in
ζ. Based on the iterative convergence study and the turbulence-model sensitivity study
performed in Sections 6.1 and 6.3, the effects of iterative convergence and the choice of
turbulence model are likely not enough to explain the remaining differences between the
NREL and MARIN solutions in the linear and quadratic damping coefficients; therefore,
the differences are most likely caused by the different mesh resolutions near the corners of
the heave plates and at the bottom of the main column with possible contributions from
the different numerical schemes used by the different software packages as well.

The potential-flow result of TUHH mostly matches the quadratic damping from the
experiment and the CFD simulations by tuning the empirical transverse drag coefficient,
CD, on the structure (CD = 0.48 on the offset columns, 0.44 on the main column, 1.25 on
the heave plates, and 0.5 on the cross members); however, it shows negligible linear wave
damping, which is consistent with our expectation that wave radiation plays a negligible
role in the present surge free-decay load case. It also suggests that the linear damping
observed with the experiment and the CFD solutions is also caused by fluid viscosity.
The linear viscous damping associated with the boundary layer on the surface of the
structure typically becomes significant and comparable to the quadratic drag force for
circular cylinders when the KC number is small (estimated to be 2.7 based on the diameter
of the offset upper columns) and flow separation is weak; therefore, the original form of
the Morison equation [29] without a linear drag term is fundamentally incorrect [35]. In
this flow regime, potential-flow models with empirical drag forces need to either include
an additional global linear damping matrix or use an alternative generalized form of the
Morison equation with a linear drag term [35].

7.3. Heave Damping

The heave-damping coefficients and damping ratio are compared in Figure 16. Unlike
surge damping, heave damping is dominated by the quadratic damping from the drag
force on the heave plates. This behavior is captured by most of the numerical solutions.
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The linear damping from wave radiation is again secondary, confirming our expectation
outlined at the beginning of Section 3.3.
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Figure 16. Comparison of the linear and quadratic damping in heave, characterized by the values of
P and Q, respectively, and the equivalent linear damping ratio, ζ, from the experiment (EXP), the
CFD simulations, and the potential-flow simulation (TUHH). The P and Q values are calculated from
the motion time series using the PQ analysis discussed in Section 5 and are proportional to the linear
and quadratic damping coefficients, B1 and B2, respectively, following Equation (10). The equivalent
linear damping ratio, ζ, is calculated using Equation (13). The amplitude factor F̃A used to normalize
Q is 0.48 m. For interpretation of the legends, which denote different participants of the OC6 Phase
Ia project, please refer to the caption of Figure 4. The four NREL solutions correspond to the four
different numerical setups used in the convergence study listed in Table 11. The uncertainty bands
attached to the NREL solutions are the numerical discretization uncertainties estimated in Section 6.2.

The P and Q values from the experiment both fall within the discretization uncertainty
ranges of the NREL CFD solutions, which gradually approach the experimental results
with more refinement; in fact, the extrapolated values of P = 0.013 and F̃A·Q = 0.055
as the refinement ratio λ→ 0 are both in good agreement with the experiment. This
observation suggests that the experiment and the CFD simulations are mostly consistent,
and unlike surge decay, no clear signs of a significant mismatch between the experimental
and CFD setups can be identified. In fact, we have several CFD solutions showing very
good agreement with the experiment in terms of the quadratic damping. Out of all the
CFD solutions, ABS and IFP Energies nouvelles are the closest to the experiment, matching
both the linear and quadratic damping coefficients well. The potential-flow solution from
TUHH, which was obtained with an empirical axial/normal drag coefficient of 4.8 for
the faces of the heave plates, is also mostly consistent with the experiment and the CFD
predictions. The same drag coefficient is also used by TUHH in the pitch-decay simulation
as well.

The equivalent linear damping ratios from the numerical simulations are mostly
consistent between 2% and 2.5%; quite a few predictions fall within the discretization
uncertainty ranges of the NREL solutions, whereas the experimental ζ, unfortunately, falls
just outside of the uncertainty ranges. It is possible that the less reliable range-based
estimate of Equation (18) underpredicted the discretization uncertainty, even with the
increased factor of safety of FS = 3. Other sources of uncertainty in the numerical solution
and the experimental uncertainties, which are not readily available, could also help explain
the disagreement. Nevertheless, the agreement among the numerical simulations and with
the experiment is deemed acceptable, suggesting that CFD simulations can, indeed, be
used to obtain meaningful estimates of the damping characteristics of the floating platform,
especially in terms of the equivalent linear damping ratio.

Interestingly, the dominating quadratic damping coefficients in heave from the MARIN
simulation and the NREL baseline simulation are highly consistent, more so than for surge
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decay, despite the vastly different mesh resolutions near the corners of the heave plates
and the bottom of the main column. The equivalent linear damping ratios are similarly in
excellent agreement. This observation suggests that the heave-damping coefficients might
be less sensitive to the mesh resolution in this region compared to the surge-damping
coefficients with the OC6-DeepCwind floater.

7.4. Pitch Damping

Finally, the damping coefficients and damping ratio in pitch are shown in Figure 17.
Because of the coupling from the surge motion, pitch decay generally shows poor linear
regression when the PQ analysis is applied (see Figure 8). We therefore relegate the
comparison to a qualitative one, without formal convergence and uncertainty analysis.
Interestingly, despite the poor linear regression, the numerical solutions generally show
good agreement with the experiment with several CFD simulations matching all three
damping parameters compared in Figure 17. As with heave damping, the pitch damping is
also predominantly quadratic, coming from the drag force on the heave plates, confirming
our initial expectation. The potential-flow model of TUHH also shows good agreement with
the experiment with the help of the empirical quadratic drag forces on the heave plates.
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Figure 17. Comparison of the linear and quadratic damping in pitch, characterized by the values of P
and Q, respectively, and the equivalent linear damping ratio, ζ, from the experiment (EXP), the CFD
simulations, and the potential-flow simulation (TUHH). The P and Q values are calculated from the
motion time series using the PQ analysis discussed in Section 5 and are proportional to the linear
and quadratic damping coefficients, B1 and B2, respectively, following Equation (10). The equivalent
linear damping ratio, ζ, is calculated using Equation (13). The amplitude factor F̃A used to normalize
Q is 0.053 radian. For interpretation of the legends, which denote different participants of the OC6
Phase Ia project, please refer to the caption of Figure 4.

8. Conclusions

As part of the OC6 Phase I project, a collaborative verification and validation study
for CFD simulations of the free-decay motion of the DeepCwind offshore wind semisub-
mersible was carried out. Three load cases focusing on the surge, heave, and pitch free
decay were investigated. Several organizations provided CFD results for some or all three
load cases to be validated against the corresponding experimental data obtained as part
of the OC6 Phase Ia experimental campaign. The motion periods, linear and quadratic
damping coefficients, and equivalent linear damping ratios were estimated from the exper-
imental and numerical floater motion time series using the PQ analysis and adopted as
metrics for validation. The present investigation has two unique features:

1. A constant Coulomb-friction-type mechanical damping force was identified from
the experimentally measured surge motion using a new modified PQ analysis that
also includes a constant damping force. The validity of the procedure was confirmed
numerically by repeating the surge-decay CFD simulation with an added constant
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damping force, which was then successfully recovered from the numerical motion
time series using the modified PQ method.

2. For selected CFD solutions, the discretization uncertainties were directly evaluated
for the linear and quadratic damping coefficients and the equivalent linear damping
ratio, which are the primary metrics that we would like to obtain from the CFD
simulations to support the engineering modeling effort. This contrasts with previous
efforts, which have typically focused on uncertainty estimates for more fundamental
physical quantities, rather than the heavily postprocessed quantities such as damping
coefficients.

Overall, the present validation study indicates that the CFD simulations performed
by the OC6 participants can, in fact, produce meaningful estimates of the hydrodynamic
damping characteristics of a floating offshore wind semisubmersible, especially in terms of
the motion periods and equivalent linear damping ratios, that are mostly consistent with
each other and in reasonable agreement with the experiment; however, it is important to
pay attention to numerical convergence. The key conclusions derived from the convergence
study and uncertainty analysis for the selected CFD solutions are as follows:

1. In the present analysis, even with the finest mesh of 25.6 million cells and the smallest
time step of 533 steps per period, the estimated discretization uncertainty remains
substantial, especially for the separate linear and quadratic damping coefficients.

2. The grid resolution is the leading contributor to the discretization error, whereas the
temporal discretization error is secondary, at least for surge decay.

3. The numerical iterative errors and modeling uncertainties associated with the choice
of turbulence model were also estimated but were found to be secondary to the
discretization uncertainty for the load cases investigated and the numerical setup
adopted.

4. Interestingly, the linear and quadratic damping tend to show opposite trends as the
simulation is refined, resulting in a very consistent equivalent linear damping ratio.
This trend can also be observed when comparing across the CFD solutions of the
OC6 participants, with the equivalent linear damping ratio being the most consistent
across simulations.

5. As a result, the equivalent linear damping ratio is the preferred metric against which
mid-fidelity engineering models based on potential-flow theory and/or the Morison
equation should be tuned; however, it does not provide information on the exact
composition of the linear and quadratic damping.

Based on the numerical and experimental results presented in this study, we made the
following key observations regarding the behavior and characteristics of the hydrodynamic
damping of the DeepCwind semisubmersible:

1. With all three load cases investigated, wave radiation plays a negligible role in the
overall motion damping because of the low natural frequencies.

2. The damping in the heave and pitch directions is predominantly quadratic, most
likely coming from the drag force on the heave plates.

3. On the other hand, the surge damping can have comparable contributions from linear
and quadratic damping when the KC number is small, with the former primarily
coming from the viscous boundary layer.

The above observations on the characteristics of the hydrodynamic damping have
several important implications for the development and tuning of mid-fidelity engineering
models based on potential-flow theory and empirical drag forces, such as the panMARE
model of TUHH discussed in this paper:

1. Because wave-radiation damping is negligible compared to the viscous damping,
the accuracy of the mid-fidelity models in predicting free-decay motion is almost
exclusively determined by the tunning of the drag coefficients.
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2. The predominantly quadratic heave and pitch damping can be modeled satisfactorily
with a quadratic empirical drag force on the heave plates, as demonstrated by the
TUHH solution in the present investigation.

3. For surge decay, however, the conventional form of the Morison equation without a
linear drag term is fundamentally incorrect especially for low KC numbers. Either
additional linear damping or a generalized Morison equation with a linear drag term
should be used with mid-fidelity engineering models to model surge decay properly.

4. Apart from not being able to capture the linear damping in surge, the mid-fidelity
potential-flow model of TUHH generates mostly consistent predictions compared
to the CFD simulations and shows a similar level of agreement with the experiment.
The computing time, in terms of core hours, of a free-decay simulation using a
typical mid-fidelity model is approximately 1/105 that of the corresponding CFD
simulation. However, mid-fidelity potential-flow models are not fully predictive, and
their accuracy strongly depends on the empirical drag coefficients used, which need
to be tuned against some reference data. Therefore, to leverage the high efficiency of
the mid-fidelity models fully, it is crucial to be able to obtain valid reference data from
high-fidelity CFD simulations to help tune the model drag coefficients, especially
during the initial design stage when the floater design is subject to frequent changes.
This is, in fact, the primary goal of the present investigation.

In the future, we propose to leverage the observations made in the present investiga-
tion to determine how best to tune the engineering models of offshore wind turbines using
CFD simulations, especially for complex novel floater geometries during the preliminary
design phase. Another important question requiring further investigation is the applicabil-
ity of the damping coefficients obtained from calm-water free-decay motion in a wave-like
environment, because the ultimate goal is to predict the motion of the structure in realistic
sea states accurately.
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Appendix A

Key aspects of the CFD numerical setups adopted by the participants are summarized
in Tables A1–A4.

Table A1. CFD software and numerical discretization scheme.

Group CFD
Software Temporal Scheme Spatial Schemes Interface

Capturing Scheme

ABS OpenFOAM
Ver. 2006

VOF: Crank-Nicolson;
Others: 2nd order implicit

Gradient: Gauss linear; Divergence
(momentum/turbulence): Gauss

limitedLinear; Divergence (other): Gauss
linear; Laplacian: Gauss linear corrected

MULES

CENER OpenFOAM
Ver. 1812 1st order implicit

Gradient: cellLimited Gauss linear 1;
Divergence (momentum/turbulence): Gauss

linearUpwind; Divergence (other): Gauss
linear; Laplacian: Gauss linear corrected

MULES; Gauss
vanLeer

CLNK OpenFOAM
Ver. 2006 2nd order implicit

Gradient: cellLimited Gauss linear 1;
Divergence (momentum/turbulence): Gauss

linear; Divergence (other): Gauss linear;
Laplacian: Gauss linear corrected

MULES; Gauss
vanLeer

DTU OpenFOAM
Ver. 1912

Equal blending of first and
second order implicit

Gradient: cellLimited Gauss linear 1;
Divergence (momentum): Gauss vanLeer;
Divergence (turbulence): Gauss upwind;

Laplacian: Gauss linear corrected

MULES; Gauss
vanLeer

DUT STAR-CCM+
Ver. 14.06.013 2nd order implicit

2nd order hybrid-BCD for convection; 2nd
order hybrid Gauss-LSQ for gradient with

Venkatakrishnan’s limiter; 2nd order upwind
for turbulence quantities

HRIC

IFPEN OpenFOAM
Ver. 1812 1st order implicit

Gradient: Gauss linear; Divergence
(momentum/turbulence): Gauss upwind;

Divergence (other): Gauss linear; Laplacian:
Gauss linear corrected

MULES; Gauss
vanLeer

MARIN ReFRESCO
Ver. 2.7 2nd order implicit 2nd order harmonic TVD scheme of Van Leer;

Gaussian least-squares ReFRICS [43]

NREL 1 STAR-CCM+
Ver. 13.06.012 2nd order implicit

2nd order hybrid-BCD for convection; 2nd
order hybrid Gauss-LSQ for gradient with

Venkatakrishnan’s limiter; 2nd order upwind
for turbulence quantities

HRIC

TUD OpenFOAM
Ver. 2012 1st order implicit

Gradient: cellLimited Gauss linear 1;
Divergence: Gauss linear; Laplacian (LC4.2):
Gauss linear corrected; Laplacian (LC4.4/4.6):

Gauss linear limited 0.33

MULES; Gauss
vanLeer

UOP OpenFOAM
Ver. 1906 1st order implicit Turbulence quantities: Gauss linearUpwind;

Other quantities: Gauss linear
MULES; Gauss

MUSCL

UOS OpenFOAM
Ver. 4.0 1st order implicit

Gradient Gauss linear; Divergence: Gauss
limitedLinearV 1; Laplacian: Gauss

linear corrected

MULES; Gauss
vanLeer01

1 NREL setup follows the baseline setup described in Section 3.
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Table A2. Pressure-velocity coupling schemes.

Group Algorithm Number of PISO
Iterations Residual Tolerance Maximum Outer

Iterations

ABS PIMPLE 2 N/A 6
CENER PIMPLE 1 N/A 3
CLNK PISO 3 N/A N/A
DTU PISO 3 N/A N/A
DUT SIMPLE N/A N/A 20

IFPEN PISO 3 N/A N/A
MARIN SIMPLE N/A 10−4 50
NREL 1 SIMPLE N/A N/A 20

TUD PISO 3 N/A N/A
UOP PISO 3 N/A N/A
UOS PIMPLE 2 U: tol 10−9, relTol 10−3; p_rgh: tol 10−5, relTol 10−3 10

1 NREL setup follows the baseline setup described in Section 3.

Table A3. Time step and computational mesh (all dimensions at full scale).

Group Time Step 1

Cell Sizes at Free
Surface 2 as Fractions

of h = 6 m

Isotropic Cell/Patch Sizes Near the Floater as
Fractions of h = 6 m Prism Layers

∆x = ∆y ∆z Near
Floater 3

Columns
and

Heave
Plates 4

Heave-Plate
Corners and

Btm. of Main
Column 5

Floater
Surface

No. of
Layers

First
Layer

Total
Thickness

ABS T/250 1/6 1/15 1/4 1/8 1/32 1/16 6 0.04 m 0.45 m

CENER

Adaptive:
Co ≤ 15 at
interface,
Co ≤ 25

elsewhere

1/4 1/8 1/4 1/16 1/64 1/16 10 0.01415 m 0.48 m

CLNK
Adaptive:

Co ≤ 1
everywhere

1/0.6 1/10 1/4 1/40 1/40 1/40 5 0.145 m 1.22 m

DTU Adaptive:
Co<5 1/8 1/8 1/6 1/8 1/32 1/16 7 0.005 m 0.48 m

DUT T/400 1/4 1/8 1/4 1/16 1/64 1/16 15 0.002 m 0.48 m

IFPEN

Adaptive:
Co ≤ 0.5 at
interface,
Co ≤ 2.5

elsewhere

1/8 1/8 1/16 1/16 1/32 1/32 7 0.00566 m 0.185 m

MARIN T/400 1/4 1/8 1/4 1/16 1/16 1/16 15 0.002 m 0.48 m
NREL 6 T/400 1/4 1/8 1/4 1/16 1/64 1/16 15 0.002 m 0.48 m

TUD Adaptive:
Co ≤ 1.5 1/4 1/4 3/4 1/8 1/32 1/16 9 0.05 m 0.48 m

UOP T/600 to
T/750 1/8 1/8 1/4 1/64 1/64 1/64 No prism layers

UOS Tmin/600 1/4 1/8 1/8 1/8 1/16 1/16 8 0.02 m 0.4 m

1 Fixed time steps are expressed as fractions of the period, T, of the motion or as fractions of the heave period Tmin.
Adaptive time step is based on the Courant number, Co. 2 Approximately corresponds to the first mesh refinement
zone of Table 5. 3 Approximately corresponds to the first mesh refinement zone of Table 6. 4 Approximately
corresponds to the rest of the mesh refinement zones of Table 6. 5 Approximately corresponds to the mesh
refinement zones of Table 7. 6 NREL setup follows the baseline setup described in Section 3.
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Table A4. Numerical domain, floater motion, and other settings.

Group

Domain Size (Full Scale) Wave-Damping
Zone

(Upstream/
Downstream)

6Dof Motion Solver Parameters
Dynamic

Mesh Turb. Model
x (m) y (m) z (m) Half Domain

(y-Sym.)

Acceleration
Relaxation

(OpenFOAM)

Acceleration
Damping

(OpenFOAM)
DOF

ABS [−150, 190] [−145, 145] [−145, 145] No 72 m/100 m N/A (ABS
in-house)

N/A (ABS
in-house) 6 Overset (ABS

in-house) SST k-ω

CENER [−200, 200] [−100, 100] [−180, 180] No None 1.0 1.0 6 Morphing SST k-ω
CLNK [−200, 200] [−100, 100] [−180, 100] No 50 m/50 m 0.6 1.0 6 Morphing SST k-ω
DTU [−200, 200] [−100, 100] [−180, 180] No None 0.95 N/A 6 Morphing SST k-ω
DUT [−200, 200] [−100, 100] [−180, 180] No 50 m/50 m N/A N/A 6 Morphing Spalart–Allmaras DES

IFPEN [−210, 210] [−120, 120] [−180, 150] No None 1.0 1.0 6 Morphing RNG k-ε
MARIN [−200, 200] [−100, 100] [−180, 180] No 50 m/50 m N/A N/A 6 Morphing SST k-ω
NREL 1 [−200, 200] [−100, 100] [−180, 180] No 50 m/50 m N/A N/A 6 Morphing Spalart–Allmaras DES

TUD [−200, 200] [−100, 100] [−180, 180] No None 1.0 1.0 6 Morphing SST k-ω
UOP [−200, 200] [−100, 100] [−180, 180] No 50 m/50 m 0.7 1.0 6 Morphing Spalart–Allmaras DES
UOS [−200, 200] [−100, 100] [−180, 180] No 50 m/50 m 0.7 1.0 6 Morphing None

1 NREL setup follows the baseline setup described in Section 3.
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