A CONVERSATIONAL SKILLS

APPROACH TO PERSONAL

 RECONSTRUCTION : LONGITUDINAL STUDIES USING THE REPERTORY GRID
REID, FRASER

http://hdl.handle.net/10026.1/1859
http://dx.doi.org/10.24382/3258
University of Plymouth

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.

F. [8:

A CONVAHEATOMAL SKHILS AbMEACH TO PPEMONAL. RECONSTrat MIION VOL. III

Pho. 1 D. 7

Part 4

Interpersonal modelling

Chapter 4.1. The ageregate gria.

Chapter 4.2. The reciprocal insight grid.

Chapter 4.3. Sumrary.

Chapter 4.1.

The aggregate grid
4.1.1. Stages in the development of the aggregate grid procedure
4.1.2. Stage 1: The rationale of the agigregate grid
4.1.3. Stage 2: Defining transformations and outcomes
4.1.4. Stage 3: Developing reflective strategies
4.1.5. Sunmary
4.1.1. Stages in the develoment of the aggregate grid procedure-
4.1.1.1. The preceding chapters, in focusing on developing interactive procedures, have examined the nature of a single user's interaction with a procedure. The task of this and the following chapter is to extend the rationale of these proceaures to an interpersonal context, and to adapt procedures for use by two or more participant users. Such an adaptation would clearly lend itself to couples counselling, and it was with this context in mind that the aggregate grid procedure was devised. Essentially, the aggregate grid represents the collective modelling of a common domain. By agaregating constructs from two (or more) participants, changes in their functional properties for individual and assregate domains may be observed. Development of the agjregate grid method in this chapter may be traced through three stages, each of :hhich is summarised belo:r.
4.1.1.2. Stage 1: The rationale of the afgregate grid.

Step (i) An outline of the nature of aodelling transactions in relationships.

Step (ii) The development and pilot application of the aggregate grid method.
4.1.1.3. Stage 2: Defining transformations and outcomes:

Ster (iii) An outline of ageregate gric outcomes.

```
Step (iv) A.classification of the status of individual and aggregate grid domains.
Step (v) Development of Level 3 transformations.
4.1.1.4. Stage 3: Develoning reflective strategies.
Step (vi) Application of aggregate grid procedure to explore the nature of Level 3 reflective strategies.
```


4.1.2. Stage 1: The rationale of the aggregate Erid.

4.1.2.1. Research into the development of relationships in dating couples has led to the view that the process of research and counselling frequently merge (Rubin \& Mitchell, 1976), and that methodological issues are raised when questionnaire surveys give rise to unintended outcomes in the relationships studied (e.g. increase in disclosure between respondents, shifts away from traditional vievs on sex-roles, etc). These considerations lead Rubin and litchell to view couples research as a counselling process focusing respondents' attention to issues in the relationship, encouraging the exchange of feelines between partners, anc developine problem-solvine skills to resolve conflicts. Such an activity is viewed by the authors as raisiñ ethical issues:
> "Do we, as researchers, have the right to intervene in our respondents' relationships?.....Are the definitions that we help our narticipants to arrive at in fact accurate definitions?.....These questions......have not eenerally been raised in connection with research on close relationships."

Rubin a :itchell (1976, p.22).
which may only be clarified by definine their role as mediating between respondents. As the development of procedures is intended to rarallel this role, a consideration of the objectives of mediation is necessary.
4.1.2.2: The procedures that are developed in the following chapters seek to enhance the nature of the participants' shared model of their relationship by mediating in a specialised and restricted way (Fig.75). This entails that the procedures do not intervene into joint modelling activity, but engage the participant users in secarate modelling activity wich is then superimposed in a way that reveals only the functional consequences of each participant's responses to the other. This methodology may be contrasted with the 'double dyad grid' method (ryile \& Breen, 1972) which requires the joint construction of a dyad erid, and the prediction of the partners' responses in this grid. Instead,

Figure 75.
separate interactions with the procedure are expected to facilitate the transaction of a shared nodel of self and partner ($A B_{a, j}$). To discuss the parameters of this procecure, the nature of this model ane the conditions in which it is transacted require clarification.
4.1.2.j. Keily (1955) argues that a similarity oi attitude between two persons is reither a suificient nor necessary condition
for either of them to play a constructive role towards the other in a social encounter. Thus, Kelly's sociality corollary:
"to the extent that one person construes the construction processes of anotiner, he may play a role in a social process involving the other person."

Kelly (1955, p.95).
suggests that persons may enter into effective joint activity even though they disagree in their outlook, provided each is able to construe that a disagreement exists between them. Even the absence of this understanding does not prevert joint activity of some sort from occurring. For example, conflict may be riewed as a joint sociai activity in wich absence of understanding is a precondition. Similarly, the understanding by one person. of the construction processes of another need not be reciprocated, yet still joint social activity may ensue. Extendiñ this example still fuxther, suppose each person assumes an understanding of the other winilst grossly in error; each person applies an interpretation on benaviour within the social encounter which is at odds with the interpretation of the other, yet the relationship muades along more or less harmoniously.

What then are the distinctive features of the modelling transaction? The most far-reaching contribution to an analysis of this process is to be found in i:eac's interactionism, anc Blumer's eloquent summarisacion:

Abstract

"Symbolic interaction involves interpretation, or ascertaining the meaning of the actions or remarks of the other person, and definition, or conveying indications to another person as to how he is to act..... The fitting together of lines of conduct is done through the aual process of definition and interpretation.....(which)operates both to sustain established patterns of joint conduct and to open them to transformation.the established patterns of group life just do not carry on by themselves but are dependent for their continuity on recurrent affirmative definition. Let the interpretations that sustain then be undermined or disrupted by change definitions from others and the patterns can quickly collapse.....In the flow of group life there are innumerable points at which the participants are redefining each other's acts. Redefinition imparts a formative character to human interaction, Eiving rise at this or that point to new objects, new conceptions, new relations, and new types of behaviour".

Blumer (1971, p.13).

The possibilities for eifective interaction would then seem straightforvard; provicing I know whether or not I ascee with another person, I can safely and constructively participate with hine in a social encounter. But how may I be sure that I understand his vievs? How can I be sure he understands mine? In instances of disafreement, dilemmes of this sort are inevitable, and certainty in social encounters falters. Persons facing this dilema begin to eneafe in a spiraliing roocess:

[^0]> that they both understand that they differ in its interpretation......However, often in human affairs where there is a disagreement there is also a misunderstanding and failure of realization of misunderstanding"•

Laing, Pnillipson \& Lee (1966, p.12-13).

Misunderstanding and failure of realisation lead to behaviour based on conflicting or contradictory assumptions, behavicur that jars, seems out of place, inconsistent or bizarre.
4.1.2.4. This is not the only area in winch social encounters may be problematic. Laing et al goint out that acting on one's own experience of the other introduces a secend, and more profound, area of confusion:

> "(Frojection is) one of a class of actions whose primary object is not the other's experience of me, but ryy. experience of the other.....If I cannot induce you to see me as I wish, I may act on my experierce of you rather than your experience of me. I can invent your experience of me......Another way of putting that is that - one experiences the perceptual world in terms of one's phantasy system, winout realising that one is doing this".
(p.15-17).

In summary, Laing and his colleagues identify two sources of confusion in social reiaitionshins, namely disjunctive interpretive systems (failures of understanding and/or of realisation), and
the projection of phantasised constructions, confounding experience of self and other.

When either or both types of mismatch occur in established relationships, the reference frame through which the particimants articulate their relationship is jeopardised. The former represents a failure to articulate the modelling transaction at appropriate levels, whilst the latter reflects the occlusion of a participant's mocel of his partner by his self-model. Thus, to enhance conversational skill in a two-person relationship requires the develorment oí a procedure capable of :-

1) sezarately exteriorising each yarticipant's model of self and partner;
2) identifying and displaying predicates central to each model;
3) identifyinz and displaying disjunctions between particigarts' modelling of self and partner;
4) identifying and displaying change in modelling contingent upon modelling transactions between participants.
4.1.2.5. Devisinc a procedure to achieve these objectives reg̣uires that modelling interactions with the procedure occur outside the refornce frane of the reletionshig. If joint modelinge activity were called for, the nodels each particinant exteriorises would be
confounded by the interpersonal reference frame the activity seeks to reveal. Consequently, a dominant partner may steer the modelling transaction towards his owm objectives.

Consider this point within the framework of construct elicitation. It has been suggested that a more direct method of displaying interpersonal disjunctions might be to adopt one of the following grid procedures:-
(i) A and B individually produce a set of constructs, pool them and negotiate which of those in the combined set are relevant to interpersonal concerns.
(ii) A and B produce a set of constructs directly in negotiation.
(iii) A and B individually produce a set of constructs, and eroceed to explain their constructs to the other in:order that the other may come to apply them in.a similar way.
(iv) A and B individually produce a set of constructs, exchange them without explanation, and oroceed to apply them as each anticipates the other would apply them.

Each of these procedures involves, at some stage, A and B being cognizant that their constructs will be subsequently or immediately made known to the other. The effect of this lno:nledge is quite clear, namely, that during the process of elicitation A and B are
aware that the felt meanings they attempt to exteriorise will be evaluated and appraised by the other. Such an awareness may clearly bias and distort the nature of the modelling conversation towards those felt meanings that are anticipated as being consistent with the existing reference frame of the relationship. It becomes essential, then, to develop procedures that exteriorise and display modelling in such a way as to circumvent these restraints.
4.1.2.6. The nethodology developed to enable participants to engage in separate modelling activity, and to superimpose this modelling activity without jeopardising its personal quality, may be termed the aggregate grid method.

Both participants produce a series of grids based on a common set \therefore of personal acquaintances with whom each meets fairly frequently, and with whom each maintains relationships held to be personally relevant and significant. In addition, each participant includes in this set the elements SEJF and PARTNER. From these grids, three separate analyses are performed and displays derived:-

Individual	Aggregate	Individual
grid (A)	grid $(A+B)$	grid (B)

However, the displays-made available to each jarticipant comprise only his or her predicates, classified according to their functional properties in the aggregate grid. Consequently, participants may observe the extent and form of their contribution to their shared frane of reference without necessarily revealing the content of their modelling activity to each other. Oî course, they may choose to disclose this to each other, but the methodology does not insist that they do so.

A preliminary apolication to the aosregate grid method to a series of six grids compleied by two friends over a period of two months revealed that the method offered two forms of reflective feedbacl. Firstly, it enabled each particivant to identify the coupling ietween their modelling activity and events in the reiationsinip. Seconaly, it enabled the participants to explore the interdependence between their resnonses to these events.
4.i.2.7. The pilot application comprised a series of six grids based on a fixed set of common eiements including the elements SELF and PANTEER. On each of the six occasions, the two participants separately and simulianeously completed their grids. At the end or the series all constructs from both participants were pooled to form the aggregate grid and a single FCA solution vas obtained. After identifying significant components by the zethod of representation, the variance of each component was simultaneously partitioned by computing root mean square loadings for each component, each particicant, and each occasion. Then these data were presented to the participants in craph form for their coments, a number of
interesting points emerged. When only those components which vere, at some stage in the series, salient components for both participants were plotted (Fig. 76), it became evident that during the series both participants shifted their attention to and from one class of predicates (component I) to another class of predicates (component III), and that these shifts always occurred for one participant (A) prior to the other (B). These two components were found to refer to a dimension alone which A and B distinguished themselves from each other (component I), and a dimension by which they collectively distinguished two nutual friends (X and Y). When the participants were invited to comment on the shifis on occasions. 4,5 and 6 , episodes with shich they micht have been associated were readily identified. In addition, it was found that A and B had discussed this episode with \dot{X} at some length, and that this might account for B 'shadciring' A.
4.1.2.3. It became evident from this pilot application that the aggregate srid provided a method for summarising modelling activity, and that it might be developed to provide systematic prompts of the kind discussed in previous chapters. The aggregate nay tinen yield information concerning:-
(i) the class or classes of predicates that rarticiฆants coljectively employ to define thenselves and each other;
(ii) predicate classes that define the relationshin exclusive to one or other zariicinant;
-524-

Component I (3\%)

Component III (18\%)

Fipure 76 Afrregate component representation over a series of six erids.
(iii). changes in the salience of these predicate classes over a period of time;
(iv) the interdependence of changes in the salience of predicate classes between the participants.
4.1.3. Stage 2: Defining transformations and outcomes.
4.1.3.1. The information yielded by the aggregate grid method was considered to be compatible with the transformations developed in the core and reconstruction grid procedures. Deriving displays from aggregate grid analyses thus provided an additional dimension to the procedures discussed in previous chapters by mediating between the modelling activity of participant users (Fig. 77) in a way which reflected the frame of reference of their relationship. Thus, thilst separate interactions with the procedures produces personal records of modelling activity in the individual grids (IG) and personal displays ($D_{i_{E}}$) based on appropriate transformations

($T_{i g}$), the combination of these records in the aggregate grid (AG) give rise to transformations (T_{ag}) and displays (D_{ag}) based on the functional properties of construing by both participants in the relationship.

In fact, the transformations developed for each level of display in the core grid procedure may be applied to the aggregate grid, but with additional possibilities, namely that the functional properties of the same predicate may be composed in the context of the individual conversational domain (IG) or the aggregate conversational domain (AG). For examile, the functional attribute:of predicate centrality may be tested for a single construct in both IG and AG, Eiving rise to the four outcomes:-

each with the following rationale:-

Outcome 1: two possibilities arise for a matching of the individual and aggregate outcomes, namely (i) that B does not contribute to the class of predicates rithin $A G$ that features A as a centrai element, indicating an instance of disjunction between $A^{\prime \prime}$ s and $\mathrm{B}^{\prime} \mathrm{s}$ interpretive systems, or (ii) that B does sontribute to the class
of predicates that features A as a central element, indicating an instance of conjunction between $A^{\prime} s$ and $B^{\prime} s$ interpretive systems.

Outcome 2: the sole possibility of this mismatch arises from B contributing to a class of predicates comprising constructs of A's winch feature A as a central element, with the exception that $B^{\prime} s$ constructs do not feature A as a central element. This outcome arises because FCA seeks patterns of variation amongst all elements rated on a set of constructs, irrespective of the origin of those constructs. Thus, if B produces constructs. whose patterns of ratirgs are similar to A's constructs in every respect with the : exception of element A, both sets of constructs will lcad strongly: on a single component. However, constructs contributed by B will effectively reduce the centrality of element'A on that component. This outcome would then indicate a specific disjunction between A's and B^{\prime} 's interpretive systems.

Outcome j: folloring the rationale of outcome 2, this mismatch arises from B contributing to a class of predicates comprising constructs of $A^{\prime} s$ which do not feature A.-as a centralemement, with the exception that $B^{\prime} s$ constructs feature A as a central elenent. This outcone also indicates a specific disjunction.

Outcome 4: following the rationale of outcome 1, two possibilities arise for outcone 4 , nameiy (i) that B does not contribute to the class of predicatès withïn AG that features A as an incidentai element, indicatine disjunction, or (ii) that B does contribute to that component featuring A as ineidental, inaicating conjunction.

These comparisons between IG and ΛG° outcomes may be carried out at the three levels of display incorporated into the core grid procedure. In addition, reflective strategies may be based on disjunctive outcomes to encourage modelling of the shared reference frame of the participants. In the folloring sections an exploratory application of the aggregate grid vith an unnarried couple is reported. In this study transformations and reflective strategies are developed to exhibit to the couple the feature of centrality of nredication in their modelling activity. Jowever, a number of procedural issues require clarification prior to this exercise.

4.1.3.2. Identifyins significant comzonents.

The method employed for isolatine significant components from components attributable to error variance in individual grids nay be readily applied in the analysis of aggregate grids. That is, constructs are assigned to those components on which they ootain the highest loading, and unrepresented components are discarded. Component ioadings were chosen (rather than: eigenvectors) for a single reason: eigenvectors on each component-are'normalised coefficients, reflecting the contribution of each construct to the total variance accounted for by each component, irrespective of the contribution of that component to the total variance of the grid. By contrast, loadings are derived from the product of construct eigenvectors and the magnitude of the component lateni root (eigenvalue). Thus, leadings do not solely reflect the salience of a construct for a single convonent, they also reflect that construct's contribution to the total variability within the
grid. In short, assigning a construct to a single most representative component is equivalent to indicatine which of $n-1$ variates maximally accounts for that construct's variability, and may be justified by the assertion that knowledge of this construct's loading on the most representative variate leads to greater accuracy in reproducing original ratings then lnowledge of loadings on any other single component;
"Knouledge of our S's scores on the m principal components, together with knowledge of the coefficients defining each PC, would be sufficient to reproduce the s's scores on the original variables perfectly. Just as the PCs are defined as linear combinations of the original variables, so the original variables can be defined as linear combinations of the PCS. In fact, the coefficients which must be used to generate X_{j} in the equation
$X_{j}=C_{j, 1} P_{1}+c_{j, 2} \mathrm{PC}_{2}+\ldots .+c_{j, m^{P C}}^{m}$
are simply the weights j receives in the various linear compounds which define the PCs, that is $c_{j, k}=b_{j, k}$ for all K, j. Since we can reproduce the score made by each S on each orisinal variable, we can, a fortiori, reproduce any measure or set of measures defincd on the original variables".

Ferris (1975, こ.153).

Thus, analysis of the agsreegate grid obtains construct definitions relating to the nighest eigenvector on the highest eigenvalue which, combined with element eigenvectors on that component, enable na:inal rating reproducibility whilst satisiyine the procedural
requirement of construct assignment without replacement.

4.1.3.3. Identification of core components.

Chapter 3.4. discussed two forms of centrality measure with distinct functions, namely, a discontinuous measure establishing a criterion for directing the user's attention to signiricant events (Level 3) and a continuous measure providing feedback for refining user discrimination of construing processes (Level 1). However, e:anination of the sanple grid series reveals that in some cases the discontinuous 50% variance criterion for identifying core components (in winch the element SELF must be located in the first 50% of a component's variance) may not be satisfied by any component in the solution. A solution to this problen is ready to hand, namely, to successively relax the variance threshold (to an upper limiti) until at least one core component is identified. This procedure is accentable, provided it is borne in mind that the likelihoods established for core constructs in Chapter 3.2. were derived ircn sample grids analysed according to the 50% variance criterion. The implications of a relaxed.criterion for the computation of posterior probabilities may be summarised as follows:-
(a) the prior probability distributions for core constructs remain unchanged, since prior belief is based on the proportion of sampie constructe satisfying the aggregate operational definition described in 3.2.3.
(b) relaxing the criterion to maintain the number of core constructs
identified distorts the likelihood ratios associated vith the transformation. In fact, as the threshold is relaxed, the likelihood associated with the classification 'core' should properly fall, and that associated with the classification 'peripheral' should rise. Maintaining a fixed likelinood ratio then leads to underjustified certainty for the classification 'core', and over-justified certainty for the classification 'peripheral'.
(c) under the 50% variance criterion 72.5% core constructs and 60.2% peripheral constructs were successfully identified in the test sample. Provided the ratio of these proportions is not modified under the relawed criterion, the ratio of rates of change . of posterior probabilities over successive observations will be a linear tiansformation of those obtained by the marginal procedures. The result will be that under the relased criterion core and peripneral classifications would be made with greater certainty after fever observations.

4.1.j.4. The status of principal components in indivicual and aperepate Erids.

Within any single grid, principal components analysis ensures that principal components satisfy two simuitaneous conditions:-
(a) that each successive component represents a pattern of maximal variability contained in the residual variation;
(b) that each successive component is maximally orthogonal
to preceding components.

In satisfying these conditions, any PCA solution is unique since it is tied to the observed variation in the sample grid. Consequently, components derived from separate grids are logically incommensurable. However, it is possible to derive estimates of component similarity between separately analysed grids when the sane elenent sample is used, simply by comparing the ordering of elenent eigenvectors on all components in one grid with all components in the other. This procedure reveals components that are functionally equivalent, as may be seen in the correlations obtained for the Husband's grid (H) and the Vife's (V) grid in a second pilot study (Table 44).

	PC_{1}^{4}	$\cdots \mathrm{PC}_{2}^{\mathrm{H}}$	$\mathrm{PC}_{3}^{\mathrm{H}}$	$\mathrm{PC}_{4}^{\mathrm{V} /}$
$\mathrm{PC}_{1}^{\mathrm{H}}$. 050 *	. 017	-. 225	-. 053
$\mathrm{PC}_{2}^{\mathrm{H}}$. 517	-. 417	-. 183	-. 285
$\mathrm{IC}_{j}^{\mathrm{H}}$. 033	. 550	-. 433	-. 017
$\mathrm{IC}_{4}^{\mathrm{F}}$	-. 033	. 550	. 150	-. 150
$\mathrm{CC}_{5}^{\mathrm{H}}$	-. 017	-. 550	$-.735^{* *}$	-. 517

(N.B. **: .O1>p (one-tailed)).

TABLE 44 SDearman rho correlations between element eicezvectors for Husbend's and life's simificant comonents.

On the basis of these data we might tentatively assert a functional equivalence $\mathrm{PC}_{1}^{\mathrm{W}} \equiv \mathrm{PC}_{1}^{\mathrm{H}}$, and $\mathrm{PC}_{3}^{\mathrm{W}} \equiv \mathrm{PC}_{5}^{\mathrm{H}}$, irrespective of sign.

When both grids are combined to form the aggregate grid, the FCA solution once again is logically unique and incomensurable with the individual solutions. New and unique patterns of variation may be located in the aggregate grid, but it is clear that if both persons contribute similar patterns of ratings to the aggregate grid, these patterns will appear as dominant and will account for the greatest proportion of sample variation. Should one person contribute an exclusive pattern, this pattern is nost likely to be absorbed into dominant patterns or discarcied. as error variance unless it is particularly dominant in the individual gric. In short, the agEregate FCA solution will tend to isolate areas of agreement and enphasis in hieher-order components, whilst lower-orcier components will tend to be unshared or de-emphasised. This aspect of the aggregate PCA may be seen in Table 45, from which the following functional equivalences may be asserted:-

		$\mathrm{PC}_{1}^{\mathrm{VH}}$	$\mathrm{PC}_{2}^{\mathrm{V} / \mathrm{H}}$	$\mathrm{PC}_{\frac{1}{3}}^{1 / \mathrm{H}}$	$\mathrm{PC}_{4}^{\mathrm{V} / \mathrm{H}}$	$\mathrm{PC}_{5}^{\mathrm{TH}}$
Hushand's	$\mathrm{PC}_{1}^{\mathrm{H}}$	-983**	. 133	-. 033	-. 083	-. 067
PCA	$\mathrm{PC}_{2}{ }^{\mathrm{H}}$. 367	-.850**	. 133	-. 367	-. 050
	$\mathrm{PC}_{3}^{\mathrm{H}}$. 133	. 333	.617*	-. 400	. 100
	$\mathrm{PC}_{4}^{\mathrm{H}}$	-. 167	. 250	. 267	. 200	-.333**
	$\mathrm{PC}_{5}^{\mathrm{H}}$	-. 050	-.133	-. 567	-.367**	-. 167
Vife's	$\mathrm{PC}_{1}^{\mathrm{CH}}$	-967**	-. 133	-. 017	-. 050	-. 100
PCA						
	$\mathrm{PC}_{2}^{\mathrm{l}}$	-. 067	. 583	. 567	. 217	-. 333
	$\mathrm{PC}_{3}^{\mathrm{W}}$	-. 100	-. 017	. 267	-900**	. 017
	$\mathrm{PC}_{4}^{\mathrm{W}}$	-. 017	. 050	-. 117	. 150	. 517

(N.B. ** : . $01>\mathrm{p}$ (one-tailed); : $.05>\mathrm{p}$ (one-tailed)).

TABLE 45 Spearman rho correlations between element eigenvectors for individual and agrregate grids.

$$
\begin{array}{lllll}
\mathrm{PC}_{1}^{\mathrm{V} / \mathrm{H}} & \equiv & \mathrm{PC}_{1}^{\mathrm{H}} & \equiv & \mathrm{PC}_{1}^{\mathrm{U}} \\
\mathrm{PC}_{4}^{\mathrm{i} / \mathrm{H}} & \equiv & \mathrm{PC}_{5}^{\mathrm{H}} & \equiv & \\
& \equiv & \mathrm{PC}_{3}^{\mathrm{H}}
\end{array}
$$

both of which confirm the equivalences located in the individual grids comparison. Thus, $\mathrm{FC}_{1}^{\mathrm{V} / \mathrm{H}}$ and $\mathrm{PC}_{4}^{\mathrm{WH}}$ are those components which are shared and emphasised and which renresent dominant patterns of variability in the acgregate grid.

Ho:Never, it is evident that individual and unshared components emerge in the aggregate crid, namely,

$$
\begin{aligned}
& \mathrm{FC}_{2}^{\mathrm{WH}} \equiv \mathrm{PC}_{2}^{\mathrm{H}} \\
& \vdots \\
& \mathrm{PC}_{3}^{\mathrm{WH}} \equiv \mathrm{PC}_{3}^{\mathrm{H}} \\
& \mathrm{FC}_{5}^{\mathrm{WH}} \equiv \mathrm{FC}_{4}^{\mathrm{H}}
\end{aligned}
$$

and that $\mathrm{PC}_{2}^{\mathrm{V}}$ and $\mathrm{PC}_{4}^{\mathrm{H}}$ are lost entirely, and not represented by the absregate analysis. It is quite clear that any patterns of variation that are under-emphasised in individual grids and unshared must compete with variation from shared and emphasised sources. The aggregate grid, as a result, dees not display all rossible constructions of the two individual grids combined, but only those patterns which are more likely to be shared between the two grids.

This may be sumnarised by the observation that 12 functionally equivalent constructs equally divided between two person's grids have as great an effect on the agsregate grid as 12 runctionaily equivalent constructs swecific to one person's érid.
4.1.3.5. The illustrative case stuay in the following section seeks to develop reflective strategies compatible with Level j information arising from the ageregate grid. Level 3 transformations developed in preceding chapters are wholly appronriate fot the acgregate, but additional comparisons are made available
by the ageregate which require classification.

Firstly, the existing transformations for contrasting successive observations may be applied to both IG and AG analyses, obtaining two comparisons for each participant (Fig. 78a). Thus, posterior probabilities deriving from the application of Level 3 transforations to the first of a series of individual $g r i d s\left(I G_{1}^{A}\right.$ and $I G_{1}^{B}$) may be compared (via the comparator symbol) with outcomes in a subsequent grid ($I G_{2}^{A}$ and $I G_{2}^{B}$). In addition, however, the same transformations applied to the ageregate grid give rise to posterior probabilities in the aggrepate context for A's constructs (AG (A) ${ }_{1}$) and B^{\prime} s constructs ($A G(B){ }_{1}$), winich may then be compared with the: subsequent ageregate grid ($A G(A)_{2}$ and $A G(B)_{2}$). If A's constructs obtain aisjunctive outcomes in the AG comrarison whilst not obtaining disjunctive outcomes in the IG comparison, it may be observed that B's modelling activity has so changed the nature of the aggregate. grid that the function of A's constructs in the ageregate domain has changed.

Secondly, havine applied the transformations, comparisons, may be made directly between outcomes for each construct in IĢ and AG anelyses (Fig. 78b). Each participant may thus dra:r conclusions concerning the nature of their partner's contrioution to the aggregate donain. The classes of IG-AG disjunction that may be ooserved have already been discussed (4.1.2.1.).

The case study that follows is a pilet anolication of these procedures focusing on the feature of construct centrality, with the objective
of developing reflective strategies and displays for Level 3 information.

Figure73a Successive comnarisons.

Figure 78b IG-ig cutcome comrarisons.

4.1.4. Stage $3:$ Developing reflective strategies.

4.1.4.1. A young unmarried couple Jack and Jill, volunteered to use the procedures for a period of two months. Over this period, they each completed five individual grids. Both of them had expressed at the outset that problems existed in their relationship, and hoped that the study might enable them to come to terms with each other. As it happened, the study coincided with a number of episodes in the relationship, culminating in a series of crises. Happily, Jack and Jill were reconciled and married some time later.

At the time of the study Jack and Jill had been living together for a year. Jill had been working as an office secretary for some time, but Jack had recently taken a job as a teacher. Because of Jack's ne: job they had moved into a new neighbourhood, and in a preliminary intervie:, Jack expressed resentment for being separated. from his friends and tied dom to a domestic life rith Jill.

> Jack: I feel cut off, really. Cut off and lonely. I don't seen to see: any of my friends any more. (bause) iThat I get from our relationship isn't enough. I'r not bored with you, it's just, vell, I'm bored. vith myseli, at not being aile to do anything except get up, go to work, come hone, and go to: sleen.

$j i l l$ had explained that in the last Eix months their relationship had often been at the point of breaking up, and suggested the cause to de Jack's infidelity;

Jill: You ran out on me, I know it was only for a day, but you ran out on me and dragged me through all that, for nothing. I mean, what did you get out of it? Nothing. You fell for some other chick hook, line and sinker, and all the time you didn't see she was using you. That's where the trouble is. I don't know whether I can ever trust you again. .

Whilst Jill felt certain that this was putting a strain on the relationship, Jack asserted that their greatest problem was his isolation, both at work and at home.

Jack: It's this job really. It's alright for you. You meet tons of people, men especially and that makes me jealous. How do I know what you get up to all day long? I don't know anybody at this college. The students avoid me. Nobody on the staff talks to me. How else am I supposed to feel?

Jill seemed reluctant or unable to express her feelings to Jack, and as a result Jack blamed her for holding things back.

Jack: I find it difficult to get things out of you. You hide it all fromme, and then say that you're doing it so as not to make me feel guilty. Jill: I do tell you things, but you stojp me. You don't listen. Remember that time I was trying to tell you what I saw happening at R's house the other night? You said you had gut-ache and rolled over and went to sleep.

Jack: Well I dia! It wasn't an excuse. I felt terrible. Jill: Yes, okay; I suppose so. But it's happened so many times before.
4.1.4.2. After producing a set of practice constructs on trial elements, Jill and Jack decided on a sample of names of close acquaintances with whom they both felt to have significant relationships. These names were recorded on numbered cards, and to the set were added the elements JACK and JILL. On each of the five occasions Jack and Jill each elicited four constructs by the Full Context method, and on the second and subsequent occasions proceeded to reapply all constructs from preceding occasions. Elements were ranked on constructs, and these rankings were recorded by E on grid forms.

Thus, on the fifth ocoasion, their grids each comprised 20 constructs, 4.elicited and 16 reapplied. However, over all 5 occasions Jack and Jill each produced 60 sets of element rankings (i.e. $4+8+$ $12+16+20)$. The entire duration of the cycle, between the first and the fifth occasion was 60 days. However, the intervals. between each occasion was irregular. The interval between the first and the second occasion, (1 day) was reduced to a minimum to give both Jack and Jill the opportumity to formulate in a short time 8 constructs to describe their relationships. Thereafter; the periods varied according to the frequency with which Jack and Jill met the people they had chosen as elements.

The sequence was then as follows:-

Day $1 \quad$ Elicit 4 constructs.
Day $2 \quad$ Elicit 4 and reapply 4 constructs

Das 5
Elicit 4 and reapply 8 constructs

Day 28
Elicit 4 and reapply 12 constructs

Day 60
Elicit 4 and reapply 16 constructs

Although reflective strategies had not been sufficiently developed to provide the couple with feedback during the sessions, after the series was complete Level 3 transformations were applied to their individual and aggregate grids, and a set of simplified tabular displays assembled to exhibit the disjunction classes discussed in 4.1.2. Jack and Jill readily responded to the prompts that were derived from these displays and freely discussed events that had occurred over the intervening period. Posterior probabilities obtaining for both participants' constructs for IG and AG outcomes are listed in Appendix H .
4.1.4.3. Successive comparisons.

Significant changes in the functional properties of either participant's constructs may reflect alterations in the nature of their modelling of self and partner. Moreover, such changes may reveal the attempts by one or either participant to influence the collective definition of themselves that the paricipants come to formulate. To display these changes in function, significant disjunctions in construct outcomes over the 60 day period have been listed in Table 46. In addition to recording the degree of certainty attached to the classification of each construct (either core, e , or peripheral, P), the table records the source of the disjunction
(IG, AG, or both) and the rank positions of self and partner on each disjunctive construct. For example, on Day 28 Jill's construct TOLERANT reversed its function from peripheral to core to her self-definition. To what might this reversal of function be attributed? Putting questions of this kind to the participants will clarify the form that reflective strategies might take in the fully developed procedure.

Both participants readily respond to these queries. For example, it was suggested to Jill that her constructs TOLERANT v. COMPETITIVE and PUT YOU IN PLACE v. FREER had become central to her. self-definition, and that shift was misrored in both her own and Jack' ${ }^{\prime}$ grids:-

> Jill: What I know about Jack is that he can be warm and loving, but he always follows other people......what other people say he should be......I need him to give and take like me......I've got to feel comfortable in a relationship, and I want to know what to expect. I mean, it's no good for me if I don't know from one day to the next what he's going to do.

It is evident that Jill is beginning to take issue with Jack in a way that she might not have previously, and to articulate the extent to thich she can afrord to be TOLERANT ("I need him to give and take like me") whilst retaining her sense of proportion oy being able to PUT YOU IN FLACE when necessary ("I've got to feel comfortable in a relationship, and I want to know what to expect"). This ability to assert herself in a more effective was was frequently stressed in Jill's discussions with Jack:-
$-544-$

TABLE 46 Significant disjunctions for Jack's and Jill's constructs.

Jill: I felt much better after that telk we had:
I felt you understood me more, and I got a lot off my chest.....I probably upset you, in fact I know I did, but it had to be said......you had to be told about this sex thing, and what I saw happening to you six months ago, because I got so depressed. You knew what I was going through for months and months but you didn't know why.

Jack: Yes, but now I feel guilty for doing it.

Jill: Well, I'm sorry that you do......I can't help that. You're supposed to feel guilty, but I don't want you to......It just can't be helped. When I was doing the grid I realised you had to be told what I felt......that I'd been holding it back for so long, and it wasn't doing either of us any good.

Jack: O.K., but what could I do? I didn't know what to do about it,

Jill: Well, that's too bad......

Similarly Jack was able to pursue the observed disjunctions on his constructs. For example, on the third occasion the constructs , REMOTE v. PRESENT and INHIBITED v. OPEN both acquire an unexpected; importance to Jack's self-definition:-

Jack: Everybody was telling me that I wasn't being myself, and what I was capable of but not doing. They all said I was pretending to be......you know, like I am, and that inside me things were different. I suppose it got to the point where I saw that this could be right, and I thought it was everybody, including you that were holding me back. What I.wanted was to.let my inside out and see what differences it made. What I found was that people laughed at me.....or played with me, used me, you know. But then I was using other people too, but in a different way......Flirting with other women made me feel good, you know, boosted my ego and made me feel important. But they weren't really important to me, you know what I mean? They were just......just conquests, reelly.

Jack's flirtations may be seen as attempts to combat his sense of
remoteness ("What I wanted was to let my inside out and see what differences it made ${ }^{\text {II }}$ which were not successful in the terms that he anticipated ("What I found was that people laughed at.me").

Similarly, viewing himself as CAUTIOUS (C12) had come to acquire greater importance in his and Jill's definition of Jack:-

Abstract

Jack: This relates to something I see mainly in myself, although I'm not sure where I stand. Some people are scared of taking risks with themselves because their ideas about themselves are so fragile. They're very good at concealing themselves.....they're.people who could be but never are.....sometimes they blane people around them for not letting them be themselves. They can talk themselves out of anything, you know do a disappearing trick. The others seem reckless......reckless to the point of carelessness. But at least they're honest.

Here it is plain that Jack discovers conflicting views of himself; he sees himself as INHIBITED, but desires to attain the goal of being CARELESS as being "reckless to the point of carelessness" also implies being "honest". Whilst recriminating Jill for her actions (CAREXESS) he also acknowledges that Jill is the kind of person he wishes to be like. However, Jack also comes to employ the dimension DEFENDABLE v. UNRELLABLE to delineate himself (DEPENDABLE) from Jill (UNRETIAARLE):-

> Jack: I didn't know you would do that. I knew you had made up your mind about Sally, and I knew you felt sorry for Bob......but at the same time I thought Sally was too intellectual to get into cooking and housckeeping. I didn't think you could get on with her......and get into
cooking that meal. I was out with Bob, wasn't I? Cutting wood all day, and walking in the fields. I was surprised to come back and find you getting on like that......I didn't think you would go off to Jim like that. It was a complete surprise......you didn't have anything in common with him.

Jill: I had no alternative. You'd disappeared with Joan. I didn't want to but I had to.

Jack: You didn't have to. You were only getting your own back on Joan.

Jill: No, I wasn't. Anyway, look what you're doing. You're saying I should have stayed at home all wifey, waiting for you to come home after you'd been out screwing : Joan all day, aren't you? That's just it. You expect me to put up with your indecision......thy should I?

The use of successive comparisons as a means to prompt further modelling activity by the couple appeared to enable the identification of conflicts and differences in their definitions of themselves and each other. It should be noted that this information was made available to both Jack and Jill at the same time, and frequently provoised discussion. However, it was considered essential to display successive comparison independently to each participant, enabling thell to choose to discuss whatever concerned them. This consideration suggested that reflective strategies developed in the core grid procedure be employed in future, comprising displays which were assembied separately by each participant.
4.1.4.4. IG - AG comparisons.

A comparison of outcomes for each construct in the individual and aggregate domains may reflect the nature of each participant's contribution to collective definitions in the relationship. Thus, Jack may observe that constructs central to his self-definition in his own grid are peripheral to an aggregate definition of himself. On the basis of this observation he may speculate about tine way in thich Jill defines him that differs from his own views, and engage in a modelling transaction with Jill to ascertain and negotiate their differences.

It was thus of great interest to both Jack and Jill to note that no disjunctions obtained on Jill's constructs between any IG-AG analysis, (see Appendix H), whilst several large and consistent disjunctions ; obtained for Jack. This strongly suggested that over this period of 60 days the aggregate definition of Jill was not undergoing reformulation of any kind. To investigate whether this stability arose from Jack's reluctance to contribute to Jill's self-definition over this period, Fig. 79 plots the mean loadings of Jill's and Jack's constructs elicited on each occasion on the first AG component, namely that component that most positively identifies Jill. At the outset, it is clear that Jack contributed to Jill's selfdefinition, but that as time progresses his contributions declined. This deciine, however, was not sufficient to suggest that jack did not concur with Jill's definition of herself, but simply that his attention during construing was redirected to other attributes.

Figure 79 Relative contributions to Jill's self-definition.

AG Component III

Root
mean
square
loading

Figure 80 Relative contributions to Jack's self-definition.

What attributes was Jack focussing upon? The numerous disjunctions between constructs which he employed to define himself in his IG and which appear nct to be self-defining in AG do suggest that Jack was attempting to operate upon his self-definition in the relationship.' Additionally, patterns of predications which were core to Jack's self-definition in the AG analysis were frequently not core in his IG analysis. That disjunctions between Jack and Jill in their definition of Jack did arise was a feature of the relationship that Jack recognised:-

Jack: The entire thing from start to finish was about me, I suppose......about my adjustment to a permanent sexual scene with you. It was a reaction I was going through, and I suppose sex was at the centre of it all. . You were just keeping up......biding your time, waiting for it all to blow over.

Jill: But I couldn't know it was going to blow over. He could have broken up for good.

Jack: Yes, it was a test. I didn't intend it to be a test but that's the way it seems now......I was trying to see what......what difference other people could make to me, not just to screw lots of other women. Niaybe it's quite natural.

The shift of Jack's attention towards self-defining aitributes is strikingly evident in the couple's contribution to the third AG component, which most positively defined Jack (Fig. 80). By Day 5, Jack's constructs were contributing to his selfdefinition at almost the same level as his contributions to Jill's self-definition, a feature that was not reciprocated in Jill's
construing. This development of concern for Jack's self-definition was also evident in the overall contribution of the couple's constructs to the first and third AG components (Fig. 81).

Figure 81 Relative contributions to AG components I and III.

Here it may be seen that a collective increase in attention to particular attributes provided an increasingly positive identification of Jack within the relationship.

A more detailed examination of the areas of disjunction with regard to Jack's self-definition is obtained by listing significant within-occasion discrepancies (Table 47). Although there were a
number of transient disjunctions (e.g. C5, C13, C15) the three most striking for their consistency were the constructs GARBI.ED v. ARTICULATE and GUSHING v. ABSORBANT which Jack consistently employed as core constructs which were peripheral in the aggregate domain, and IMPRESSIONABLE v. DEVIODS wnich Jack consistently employed as a peripheral construct but which was core to his self-definition in the aggregate domain. This last construct is evidently the keystone to the dispute between the couple, and Jill viewed events within the relationship as indicating Jack's gullibility;

Jack: Well, something must have upset you, because you got all moody and bitchy.

Jill: Yes of course it would It was what you and Mary were up to. You talked to her all night without a word to me: After all, we had got through to each other the day before, hadn't we? You even said you knew what you did with other women.....And then you did it all over again. She had you wound round her little finger..... just to make me jealous. And you couldn't even see it.

Clearly, the predicate IMPRESSIONABLE was salient to Jill's view of Jack ("sine had you wound round her little finger"), but Jack was slow to acknowledge how important this feature of his behaviour was to his relationship with Jill:

Jack: Yes, well it showed me how I felt swallowed up by you. I mean you've got such a strong personality. You don't leave any room for me.....especially with your friends. I feel obliged to make friends with your friends.....I have to be the person you've made me out to be.

Jill: But aren't you forced to feel that?

Jack: Why?

Jill: Well, because your friends keep telling you what to think of me.

Similarly, Jack insisted that a central component of his problem is that his feelings were GARBLED and that he was unable to defend himself, whilst Jill readily contends this:-

Jack: Well, it didn't work out like either of us thought, did it?. I mean I knew what vas happening, what led up to it, what it was all about......or I thought I did; that ghastly scene, I think it blew both of us out. You know what went wrong.....I'd blown it into something completely false, out of all proportion.....and I couldn't stop, it just ran away with me, and got bigger and bigger.

Jill: I know, but it was just as bad for me......it was an accident. I literally can't stand Jim because he's so spineless and weak. What I.like about you is that you can be strong when you want to be......It's. just that you let yourself get into the same state as Phillip and Mary......always ai odds with each other and never believing themselves. But I'm not pleased with myself for what I did.

Again, the couple were able to observe the ways in which their views of each other differed, and this immediately led then to engage in a modelling transaction with Jack's self-definition as its iocus.

Day		Constructs	Day 1 IG AG	Day 2 IG. AG	Day 5 IG AG	Day 28 IG AG	Day 60 IG AG
1	C5	GARBLED	C P	$\begin{array}{ll} \mathrm{C} & \mathrm{P} \\ \mathrm{C} & \mathrm{P} \end{array}$	C P	C P.	C P
2		DEPENDABLE					
5	C9	GUSHING			C P	C P	C P
	C10	IMPRESSIONABLE			P C	P C	P C
28	C13	RIGHTEOUS				C \mathbf{P}	
	C15	SCAPEGOAT				P C	
	C16	BITCHY					C P
60	C19	IMPATIENT					C \mathbf{P}

TABLE 47 Significant IG-AG disjunctions on Jack's constructs.
4.1.4.5. This brief exploratory application of information, deriving from the aggregate grid method has served to identify a number of features of a reflective strategy appropriate to Level 3 displays:-
(i) although aggregate grid outcomes reflect areas of conjunction and disjunctions between the couples' views of each other, this information should properly be displayed to each participant independently. Äs was pointed out in 4.1.1.5. the objective of the aggregate grid is to exhibit the nature of the shared reference frame in the relationship by encouraging personal modeling of self and partner, and this may be confounded by processes within the relationship that it seeks to display.
(ii) one class of comparisons arising from the aggregate grid, namely successive comparisons, provide feedioack concerning changes in function of predicates in the aggregate domain. Reflective strategies appropriate to these comparisons have been developed for individual grids in the core grid procedure, and consist of the assembly of displays mapping together predicted and observed outcomes. Discrepancies may be readily identified and provide directed prompts for further modelling activity.
(iii) a second class of comparisons, unique to the aggregate grid method, is also available, and consists of construct-by-construct comparisons of predicate function within the individual and aggregate conversational domains. Each participant observes these comparisons for his or her constructs alone, and differences of function between domains are attributable to the effect of constructs contributed by the partrier to the aggregate domain. An appropriate reflective strategy would consist of assembling a display in which AG and IG outcomes are simultaneously classified, and disjunctions identified. These disjunctions may then provide directed prompts, namely speculations concerning the partner's contribution to the aggregate domain.
4.1.5. Summary.

Abstract

4.1.5.1. This chapter has adapted procedures developed in preceding chapters for use in the context of couples counselling. The objective of this adaptation, namely the aggregate grid, is to enhance the nature of modelling transactions in relationship through separate, but mediated, interactions with each participant. The development of this procedure may be briefly summarised as six steps.

4.1.5.2. Step (i) outlined the role of proceaures in couples counselling as mediating between participants by reflecting the functional consequences of their models of self and partner for each other. This role was operationally defined as entailing independent interactions with participants to enable each to exteriorise their modelling of self and partner, the identification of the functional: properties of modeiling predicates within their separate conversational domains, the superimposition of participants models to reveal alterations in function of predicates in the collective conversational domain, and the identification of changes.in predicate function contingent on events in the relationship.

Abstract

4.1.5.3. Step (ii) developed the aggregate grid method for mediating between participants' modelling activity, and a pilot application of the method revealed four classes of information gielded by the method; (a) overlap and sharing of models of self and partner; (b) exclusive and disjunctive models of self and partner; (c) alterations over time in the salience of models of

self and partner; (d) the interdependence of the alterations in (c) above in subsequent modelling activity by the participants.
4.1.5.4. Steps (iii) and (v) outlined classes of outcomes obtained by contrasting predicate function in individual and aggregate conversational domains, and step (iv) discussed the status of transformation outcomes deriving from the aggregate grid. It was concluded that significant components in the aggregate FCA solution may be identified by applying the representation method, that core components may be identified by the procedures developed in the core grid, that if necessary the core component criteria may be relaxed, and the consequences of doing so were enumerated. Finally, the inccmmensurability of aggregate and individual PCA solutions was discussed, but in the analysis of an example data set it: was found that dominant patterns of variation were consistently located by the aggregate grid method.
4.1.5.5. Step (vi) applied the transformations and procedures so far developed to a case-study of an unmarried couple, to explore the form that Level 3 reflective strategies might take. It was. concluded from this study that (a) displays deriving from the aggregate grid transformations should be separately presented to participants; (b) that successive aggregate grid outcome displays may be assembled by each participant in the manner developed in the core grid; (c) that a display combining individual and aggregate grid outcomes may be assembled by each participant to simultaneously classify the function of each of their predicates, and to identify disjunctions for further modelling activity.

Chapter 4.2.

The reciprocal insight grid
4.2.1. Modelling self and partner.
4.2.2. Primary nodelling activities.
4.2.3. Secondary modelling activities.
4.2.4. Transformation procedures.
4.2.5. Ruth and Isaac; an illustrative case-study.
4.2.6. Evaluating the procedures.
4.2.7. Summary.

4.2.1. Modelling self and partner.

4.2.1.1. The aggregate grid procedure developed in the preceding chapter may now be incorporated into the algorithm of activities developed in Chapter 3.4. and formally tested in the context of the modelling transactions of a married couple. The complete algorithm will, however, be simplified to focus on a single feature of grid-based modelling conversations, namely predicate centrality, and the class of activities incorporated by the algoritim will be referred to as the reciprocal insight grid.

Predicate centrality in the reciprocal insight grid assumes an added dimension when centrality is defined as relevant to the modelling of self and partner. In an enduring relationship, a marriage for example, there is every reason to expect participants to have evolved a system of description defining their partner as well as, or separately from, themselves. These descriptions in such a relationship will not be merely casual characterisations of the partner, but will serve to regulate expectations of and behaviour directed towards the partner. It may be-argued that constructs core to a relationship are not simply those that offer functional and durable referents for the definition of self, but are those that do so by articulating self against partner. The subject is not defining himself in isolation, nor in relation to a generalised other, but is defining himself in a central relationsinip with the particular other.
4.2.1.2. The reference frame of the relationship is formed by the
interlocking interpretive systems of the participants. Constructions that are core to the maintenance of each participant's selfdefinition within the relationship will be those that articulate self in the context of the partner. Thus, constructs may be generally classified in four ways, according to the location of elements SETF (S), PARTNER (P) and particular others (A, B) on construct dimensions:-
(i) $\quad S-A-P$; here SELF and PARTNER are delineated by their location at opposite poles.
(ii) $\quad S P$ - $A-B ;$ here SElF and PARTNER are identified with each: other by their location at the same pole.
(iii) $\quad S-P-A ; \quad h e r e ~ S E L F ~ i s ~ d e l i n e a t e d ~ a g a i n s t ~ a n ~ e l e m e n t ~$ other than PARINER. Although a core construct for self-definition, it is not functional within the $\dot{S}-\mathrm{P}$ relationships.
(iv) $\quad P-S-A ; \quad h e r e ~ P A R T N E R$ is delineated against an element other then SELF. Although a core construct for partner-definition, it is not functional within the $S-P$ relationship.

These four classes define the range of functional definitions of self and partner, although only classes (i) and (ii) are functional in the context of the self-partner relationship. It is important to bear in mind that the criterion of functional equivalence between constructs is defined by the extent to which two or more constructs display similar element distributions along their dimensions. Thus,
participants may each produce construcṭs which are functionally equivalent in all respects with the exception of the location of self and/or partner. Section 4.1.3. discussed this feature in more detail, and it was concluded there that one class of disjunctions may arise between participants as a result of both employing a similar construction which for one participant provides a core definition of SELF, whilst for the other does not provide a core definition of PARTNER, as in the following diagram:-

In this diagran, the two constructs would be taken to be functionally equivalent, as of the 19 elements. 18 are located at identical points on the two scales. However, $A^{\prime} s$ construct is clearly SELFPARTNER delineating (class i). B^{\prime} s construct is identical in every respect except that element A is located at the neutral mid-point of the scale. B's construct is, however, self-defining, but not in the context of $B^{\prime} s$ relationship with A (class iii). Both A and B contribute a functionally equivalent construction to the aggregate domain, but differ in the importance each assigns to this construction for defining A. These constructs illustrate one of several classes of disjunction that may arise in the contribution of participants to the reference frame of their relationship.
4.2.1.3. As it is a variant of the insight grid, the reciprocal insight grid procedure closely follows the design outlined in

Chapter 3.4. There are a number of procedural differences, however, and these differences arise from the introduction of the aggregate grid (AG) described in Chapter 4.1. When two participants engage in simultaneous modelling activity, three analyses are thus obtained: (i) solutions arising from $A^{\prime} s$ IG; (ii) solutions arising from $B^{\prime} s$ IG and (iii) solutions arising from AG, or the combination of $A^{\prime} s$ and B^{\prime} s IG.

The introduction of these additional analyses and their associated displays and reflective strategies entirely parallels the activities devised in the core grid procedure with one exception, namely that ? comparisons may be made between $A G$ and IG solutions. The design of the procedure thus comprises two isomorphic classes of activity, the one reflecting a participant's private conversation, the other reflecting his conversation in the context of his partner's.

The design of the reciprocal insight grid procedure is summarised in Fig. 82 , and comprises three transformation classes (T) giving rise to displays (D) at each of the three levels of modelling. As transformations are applied to both individual,grids (IG) and aggregate grids (AG), displays are duplicated for each of these domains. The displays and reflective strategies are intended to encourage secondary modelling activity (M) at each level. Taking each level in turn, the transformations and displays may be summarised.

Figure 82 The reciprocal insight grid procedure
4.2.1.4. Level 1.
(i) Individual grid.

Transformation; derivation of PCA solution for IG, identification of significant components and computation of core construct score in 3.4.1.

Disulay; assembly of an array comprising two ordinal coordinates; participant's anticipated ordering of constructs, and constructs ordered by magnitude of core construct score in IG.

Reflective strategy; participant requested to anticipate ordering of constructs on basis of centrality; significant discrepancies in display are located and participant requested to furnish explanation for discrepancies.
(ii) Aggregate grid.

Transformation; derivation of PCA sclution for AG, identification of significant components, computation of core construct.scores for participant's subset of constructs.

Display; assembly of an array comprising two ordinal coordinates; participant's anticipated ordering of constructs in the context of

partner's modelling, and constructs ordered by magnitude of core construct score in AG.

Reflective strategy; participant requested to anticipate ordering of constructs on basis of centrality in context of partner's modelling; significant discrepancies in display are located and participant requested to speculate as to nature of partner's modelling in AG.

4.2.1.5. Level 2.

(i) Individual grid.

Transformation; derivation of PCA solutions for IG, identification of significant components by application of the method of representation and elements central to significant components.

Display; assembly of component display comprising representative constructs for each significant component.

Reflective strategy; participant requested to furnish description of each component.
(ii) Aggregate grid.

Transformation; (a) derivation of PCA solution for AG, identification of significant components by method of representation and elements central to each component; (b) derivation of posterior
probabilities for $H_{c c}$ and $H_{p c}$ for each construct in both IG and AG contexts.

Display; (a) assembly of AG component display comprising participant's subset of constructs; (b) assembly of an array comprising two nominal coordinates, namely centrality outcomes and associated posterior probabilities in IG and AG analyses.

Reflective strategy; (a) participant requested to furnish description of each AG component; (b) participant requested to identify discrepancies in AG-IG outcomes display, and to furnish explanations for discrepancies.
4.2.1.6. Level 3.
(i) Individual grid.

Transformation; derivation of IG PCA solution and classification of construct centrality outcomes in IG and derivation of posterior probabilities.

Display; assembly of array comprising two nominal coordinates, namely classification of constructs by density of belief deriving from previous observations, and classification of constructs by observed outcome.

Reflective strategy; participant requested to locate constructs exhibiting significant functional change, and to furnish explanation
for this change.

(ii) Aggregate grid.

Transformation; derivation of AG PCA solution, classification of centrality outcomes in context of partner's modelling and derivation of posterior probabilities.

Display; assembly of array comprising two nominal coordinates, namely classification of participant's subset of constructs by their function in AG according to density of belief deriving from previous observations, and classification of constructs by observed function in AG.

Reflective strategy; participant requested to locate constructs exhibiting significant functional change, and to furnish explanation for this change.
4.2.1.7. These three levels of activity were incorporated into the reciprocal insigint grid procedure and applied in the context of a merried couple over four sessions, each session lasting 3-4 hours as follows:-

SESSION 1

SESSION 2

Production of grid Formulation of subjective predictions

Feedback displays

SESSION 3	Identification of significant events
	Production of grid
	Formulation of subjective predictions
SESSION 4	Feedback displays

The algorithm of activities comprises three parallel sets of procedures, nemely primary modelling activities, secondary modelling activities, and transformation procedures. Uithin each set of procedures, activities are organised as modules; seven modules (a to G) in the primary modelling activities, four modules (α to
∂) in the secondary modelling activities, and five nodules (I to V) in the transformation procedures. The sequencing and interrelationships between modules is represented in Fig. 82. Eefore examining the performance of the procedures, details of each class of activities are reported in the following three sections.

SECONDARY MODELLING ACTIVIPIES

PRIMARY
MODELLING
ACTIVITIES
TRANSFORMATION FRCCEDUPES

Cont/

Figure 83 Reciprocal insight grid activities.

4.2.2. Primary modelling activities.

The following sections detail the instructions and activities of the reciprocal insight grid procedure as it was applied ir the context of the married couple, Isaac and Ruth. Details of their responses are listed in Appendix I.
4.2.2.1. Module A; in two of the fowr sessions, the major model-: ling activity was the production of the repertory grids. Seaied around a table, E introduced Ruth and Isaac to the grid activities in the following way:
> "The insst exercise is an opportunity for you to express in your owl words, and for your own use, your views of the important people in your life, including of course, yourself and your partner. To do this, you will first of all need to nominate the people whom you both consider to be important to yourselves and your partner and your relationship, and with winom you both meet fairly frequently. Please work together to produce a list of between 15 and 20 such persons, including on the list your own name and your partner's name. To maintain confidentiality, can you aecide on pscudonyms for the people you choose. When you have done this will you number the names on your list. Now each take a set of blank cards, and write each name with its number on a separate card. liake sure you agree on the numbers assigned. You should each now have a conplete set of "person cards'".

Isaac and Kuth had no difficulty in nominating 16 percons, inciuding themselves, and arew on their families, who lived nearby, and friends and neighbours to complete their list which was transferred
to a pack of $6^{\prime \prime} \times 4^{\prime \prime}$ cards. E then introduced them to the method for eliciting constructs with a number of practice element cards:-
> "The next stage is to formulate your views about these persons. To illustrate how this is done, I have prepared two practice sets of person cards on which are written the names of six well-known premiers; Indira Ghandi, Richard Nixon, Edward Heath, Charles de Gaulle, Idi Amin and Lyndon Johnson. Take the cards and arrange them face up on the table. Looking over the cards, can you find two premiers who arc in some respect complete opposites? If you can, remove those cards from the others and place them in front of you, one on your right hand side and one on your left. Now take a blank construct card. You will notice that it is divided into two halves. First write number one ai the top left hand corner. Now can you decide in what way the two premiers are different, what is it about each of them that you see as opposite? For example, you may ihink that one premier is right-wing, winilst the other is left-ving, or maybe that one is a hawk and tine other a pacifist. When you have decided, note down in a word, phrase or sentence on the left half of the card the characteristics of the premier on your left, and on the right half the opposite characteristics of the premier on your right. Make sure you note down these characteristics in your own terms since this is not a test and no-one but you is going to read what you have written. However, it is important that you describe these characteristics fully and clearly for yourself, so that when you refer to this card again you will remember what you meant".

Isaac and Ruth, working on their own, simultaneously producea their first practice construct. Afier they had completad noting down their descriptions, they were introduced to the rating method:-
"The next step is to apply the idea you have formed to the other cards. You will see that I have arranged for each of you on the table a series of cards numbered from 1 on the left to 7 on the right. Imagine these seven cards represent a scale consisting of seven boxes. Now take your construct card and put it at the top over the numbered cards. The seven boxes now represent degrees of the characteristic you have named, running from box 1 which represents the most extreme example of your lefthand definition, to box 7 which represents the most extreme example of your right-hand definition. Taking the first of your premier cards, can you decide in which of the seven boxes that person best fits your construct scale. Remember that box number 4 represents a neutral or a nonapplicable category, that you may have as many cards as you wish in any of the boxes and, if necessary, empty boxes".

Having arranged the elements on the construct dimension, Isaac and Ruth were then advised to check that their construct descriptions were still appropriate:-
"First make sure you are happy with your arrangement of the cards, moving any that you feel are wrongly placed. You may sometimes find that in arranging the cards on the scales, you slightly redefine the meaning of your constructs. Please check that your construct descriptions are appropriate, if necessary changing what you have written down to suit the meaning as you now see it. Finally take a blank grid form, write your name and date at the top, and note down in the first row, which corresponds to your first construct, the box numbers for each of the premiers cards".

Isaac and Futh then went on to produce, rate and record two more practice constructs using the practice set of element cards.

After mahing sure that they understood the procedures, E introduced them to the main exercise:-
"Now that you are familiar with the grid procedures, you are more or less on your own. Your task is to take the 16 person cards you have produced, a blank grid form, and each of you, on your own, formulate, rate and record ten constructs by following exactly the same steps that you used to produce your practice constructs. Always focus on the first idea that occurs to you when you produce constructs, but do try to look at the people you have named in as many different ways as possible. Remember that your construct aescriptions are for your eyes only, and so try to be as honest with yourself as you can. If you get stuck, don't hesitate to ask questions. There is no hurry, so take as long as you wish on this exercise".

Completing ten constructs in this way took Isaac and Futh about two hours. Finally, after completing ten constructs of their own devising, two additional whole-figure constructs were suppiied: IIKE RUTH IN CHARACIER and LIKE ISAAC IN CHARACTER. Isaac and Puth noted these on cards and rated them as for the previous ten constructs. The purpose of introducing these constructs was to provide a means for Isaac and Puth to project their salient interpretations of themselves and each other onto a single dimension which might then provide a referent for assessing the contribution of other constructs tc their self and partner definiticns.

Similar procedures were involved in session ihree, with the
exception that only 6 additional constructs were produced, followed by the re-application of the 12 constructs produced on the first session. The aim in both sessions was to sample construct dimensions that were salient to Isaac and Ruth in their modelling of themselves and their close acquaintances, rather than to induce them to elaborate less familiar or less habitual construct dimensions. The predicates produced in the grid may then be viewed as a base-line on which basis further modelling might proceed. In all, Isaac and Ruth each produced 30 element sorts, 12 of which were replications. In reapplying the 12 constructs, it was emphasised that Isaac and Ruth should respond in terms of their current interpretation of elements, rather than seek to reconstruct their original ratings.
4.2.2.2. Module B; following both grid production modules, Isaac and Kuth proceeded to formulate subjective anticipations concerning the outcomes of transformation procedures applied to their grid predicates. In contrast to the insight grid design outlined in $3.4 .$, a single grid outcome was featured in the reciprocal insight grid, namely, peripheral ∇s. core constructs. However, this outcome was predicted for each construct in both the individual (IG) and the aggregate (AG) grid analyses. It is important to bear in mind that Isaac formulated predictions for his constructs alone, and Ruth for hers alone. Thus, each predicts the outcome for half of the constmicts in the $A G$ analysis, and for all of the constructs in each of their IG analysis.

These two exercises were introduced with the folloving instructions:
"Take up your construct cards and lay them all on the table face up. From the cards pick out that construct which you think is most important to your definition of yourself as you have described in your grid. Place that card on the table to your left. Now from the remaining cards pick out the construct which you view as next most important to your definition of yourself, and place that to the right of the first. Continue until you have arranged all the cards in a sow from the most important on the right to the least important on the left".
2. AG Outcomes.
"Take up ail your construct cards and lay them face up on the table. Now imagine that your partner used each of your constructs to produce an arrangement of person cards similar to your own. Which construct would he/she find most important in his/her definition of you? Take out the card which you thirk would be most important to his/her definition of yourself, and place it on the table to your left. Now from the remaining cards pick out the construct which you think he/she would find next most important and place it to the right of the first. Continue until you have arranged all the cards in a row from the most important to the right to the least important on the left".

Each of the raukings produced by Isaac and Ruth were recorded by E on Frediction-Outcome forms.
4.2.2.3. ! Module C; each of the two feedback sessions began with the assembiy of IG and AG Level 2 component displays, the former
being completed by Isaac and Ruth working alone, the latter completed by their working in conjunction. The three displays were based on the principal components analysis of each IG and the AG (modules I and II), and comprised oniy those componenis that were identified as signiricant by the representation method. The three displays were assembled in response to the following instructions:-

Abstract

"The next activity is to construct a display wich groups your constructs together according to their contribution to underlying ideas expressed in your grids. As each of you have produced several underlying ideas, we will consider each group in turn, from the most important to the least important. You will notice that I have arranged in front of you a ε eries of cards numbered from 1 onwards, each of which represents a column to be filled by your construct cards. Take up your construct cards and I will read out the constructs to be located in the first column. The order in which I read out construct numbers is important, as the first construct is most representatative of the underlying idea and the last construct least representative. Make sure that the cards are arranged in the column with the most representative construct at the top".

[^1]
Abstract

"Now take up your person cards and arrange the following cards numbered......to the left of the column. These cards are those persons who are best represented by the lefthand descriptions of the constructs in the first column. The following cards numbered.....should be placed on the right, as they are best represented by the right-hand descriptions of the constructs in the first column".

The display was complete when all construct cards had been located in the appropriate columns.

Element cards were then removed, and representative constructs and element displays for the remaining significant components assembled. Assembling the AG display entailed the same procedure, with the exception that both Isaac's and Ruth's constructs were incorporated into the component columns.
4.2.2.4. Module D; following the component displays Isaac and Puth proceeded to assemble displays which incorporated their anticipated IG and AG outcomes formulated in module B in the preceding session, and observed outcomes derived from transformation procedures applied to their grids. The latter procedures entailed the derivation from each construct of a core construct score (module III) reflecting the extent to which each construct contributed overall to the self-definitions of Isaac and Ruth. These scores were ranked from the highest (core) to the lowest (peripheral) core construct score. The display took the form of a two dimensional array, one axis representing Isaac's or Ruth's anticipated rank ordering, the other axis the observed rank ordering:-

Most
important
of myself

Isaac and Ruth each began to assemble their displeys by locating their construct cards in the appropriate positions, in response to the following instructions:-

[^2]the observed importance of constructs in your grids. You will see that the numbered cards form a kind of table, in which your constructs may be placed. The column of numbers on the left represent the level of importance for your self-definition that you assigned to constructs. The line of numbers at the bottom represents the level of importance of constructs for your self-definition as defined by the table of numbers on your grid form. Your task is to locate each construct card on the appropriate row and column, as if you were playing bingo, as I call out your predicted level and the observed level of importance".

This procedure was repeated for the AG display, and care was taken to expiain the difference between the two displays, namely that the AG display reflected the participants' predictions of the importance of their constructs to their self-definitions in the context of their partner's constructs.
4.2.2.5. Module E; incorporates a direct cosparison of observed outcomes in the IG and AG analyses, and reflects areas of agreement and disagreement between participants. Each observed outcome is qualified by a value which reflects the degree of certainty associated with the classification of each construct as core or as peripheral (module IV) to participants' self-definitions, namely the posterior probability derived in transformation module V. When this probability is expressed as a percentage, it provides a readily meaningful qualification for IG-AG comparisons. Isaac and futh each assembled their own displays, in response to the following instructions:-
"The next display reflects the extent of agreerent or disagreement between your own self-definition and your partner's definition of you. The analysis I have described permits the classification of your constructs according to their function in your own grid and in the combination of yours and your partner's grid. This classification is, however, tentative and so we have devised a way of representing the certainty with which each of your constructs are classified. I have arranged on the table a number of cards, which provide a tabular display".

Your own grid

Combined grids
"You will see that the cards on the left classify your constructs by their importance in your own grid, whilst the cards on the bottom classify your constructs by their importance in the combined grid. Your task is to place each construct in one of the four joxes as I read out their numbers and their classifications".

Abstract

4.2.2.6. Module F; appearing in the third session only, this module was concerned with providing a record of Isaac's and Ruth's perception of recent events as significant to their modelling of the persons in that element sample. To guide their identification of events, 'significant' was defined loosely as any event that might confirm or disconfirm their opinions of that person, and a construct-element was assembled to systematically direct their attention to each person in turn:-

> "Will you now try to remember if over the period since you produced your first grid you have experienced any significant event or interchange with the persons you heve named; by significant is meant events that have led you either to change your opinion of the person concerned, or to become more certain of the opinion you originally held. To help you in this task iirst. arrange all your constructs in numerical order as a column on the table on your left. Now take a blank Grid Form, and the first of your person cards. Place that person against each construct in turn and try to think if any event has confirmed or disconfirmed your view of that person in terms of that construct. If you can identify such an event, insert a ' + in the . appropriate square on the Grid Form if that was confirmatory, a '-' if it was disconfirmatory, then leave it blank if no such event has occurred. After working down the column of constructe, take up the second person card and repeat the process until you have considered everybody in terms of every construct. When you have completed this task, take a sheet of blank paper and note down details of the events you have identified in your orm words for future reference".
4.2.2.7. Module G; this final display incorporated the posterior probabilities associated with classifications derived for the 12 constructs in the first grid (module V) expressed as prior probabilities, and construct classifications deriving from the same 12 constructs in the second grid. The purpose of this display was to direct the participants' attention to constructs whose self-defining function had changed from being instrumental tio to self-definition (core) or redundant (peripheral), and to employ these changing functions either to validate events identified as significant in module F, or to identify previously misperceived or omitted events winch might account for changes in observed construct outcomes. Displays were assembled for both IG and.AG outcomes for each participant in response to the foliowing instructions:-
"The purpose of the final display is to locate constructs thich have changed their importance to your self-definition in your grids. Each construct was classified as important or not important on the basis of your first grid, and these classifications were expressed as expectations of classification of the same constructs when re-applied. in your second grid. I have arranged on the table a number of cards which provide a tabular display of these expectations and observed outcomes".

Expected

Observed

> "You will see that the cards on the left classify your constructs by their expected importance, whilst those at the bottom classify your constructs by their observed importance. Your task is to locate each of ycur constructs in one of the four boxes as I read out their numbers and their classifications".

The procedure was repeated for AG posterior or probabilities and outcomes.
4.2.3. Secondary modelling activities.
4.2.3.1. Module α; deriving from the displays of module C, the activities of this module may be termed 'meta-construction', as this task involves identifying similarities and differences between individual and groups of constructs. Essentially, this activity is intended to focus the participants' attention to the groupings of constructs and elements obtained by the analyses of modules I and II:-

Abstract

"Now that the display comprises all your constructs, can you try to describe in your own terms what fundamental idea each column of cards conveys to you. To do this it is often useful to scan down all the construct descriptions on the left-hand side of each column, and then the righthand descriptions. Also consider the differences between the constricts in separate columns, as this may cast light on the meaning of each column. Now take a blank card for each column and briefly describe in a sentence or phrase the meaning each group of constructs expresses".

The same procedure was repeated for the AG component display with the exception that, since Isaac's and Ruth's constructs were involved, they conferred and negotiated a satisfactory description of component meanings.
4.2.3.2. Module β; the curpose of this module was to orient the participants tio cues arising during construct elicitation by identifying discrepancies between anticipated and observed outcomes in module D, and to encourage additional modelling activity to
account for these discrepancies:-
"If your predictions concerning the importance of constructs to your self-definition had coincided completely with the observed importance of constructs, all of your cards would lie on a diagonal running from top-right to bottom-left of the display. Rather than concern ourselves with perfect accuracy, however, it is more useful to pick out particular constructs which display the greatest discrepancy, or greatest distance from the diagonal. A useful guideline here is to select those constructs that are discrepant by half the number of constructs frcm the diagonal, and remove all other construct cards. Now take a blank Query Form and note down the numbers of the discrepant constructs in the boxes provided on the lefthand margin. Consider each construct in turn. Can you think of any reason why you considered each construct at the time to be more/less important than it appears actually to be? If you can, jot down your explanations in the space provided adjacent to the construct's number on the Query Form. Now do the same for all other discrepant constructs".

The same procedure was repeated for the assembled AG display of module D, where it was emphasised that to increase accuracy of prediction it was essential for participants to anticipate the effect of their partner's constructs on the importance of their own constructs.
4.2.3.3. Module Y; the purpose of this module was to orient the participants to disjunctions existing between their definitions of each other and their definitions of themselves. In particular, emphasis vas placed on constructs which obtained core (important
to self) or peripheral (unimportant to self) classifications in IG analysis, and opposite clessifications in the AG analysis. These classifications were derived from modules IV and V and assembled in the module E displays. Participant's attention was focussed on these disjunctions in module E display:-

> "If both you and your partner were in complete agreement over a definition of you, all of your construct cards would fall into either top-right or bottom-left boxes of the display. That is, those constructs which you considered important in your own grids would be corroborated in your partner's constructs in the combined grid, and constructs you considered less important would also emerge as less important in the combined grid. But if your partner were to disagree on the importance of some of your constructs, these would not be corroboratea and would be assigned to either the top-left or bottomright boxes in the display. Now take a blank Query Form and note down all the numbers of the discrepant constructs in the boxes provided on the left-hand margin. Consider each construct in turn. What are the consequences of your partner ordering each of those constructs as more/ less important to you than you do yourself? Jot down your views of the consequences in the space provided adjacent to each construct's number on the Query Form. How do the same for all other discrepant constructs".
4.2.3.4. Module ∂; the purpose of this module was to orient
the participants to unexpected changes in the self-defining
function of constructs replicated in the second grid. Expected.
functions are based on posterior probabilities derived in modules.
IV and V applied to the first grid, and outcores on module IV. .
epplied to the second grid. These data were assembled and dis-
played in module G. The participants' task was to identify changes of construct function and to employ these as directed prompts in locating significant inter-personal events to add to Module F:-
> "If your usage of the first 12 constructs had not changed in any way in your second grid, then all those constructs which were important to you then would be so now, and all those which were unimportant to you would be unimportant to you now. All your constructs would then fall in the top-right and bottow-left boxes of the display. If, however, events had occurred to change your usage of some constructs, these constructs would be assigned to the top-left box if they have become less important to you, and the bottom-right box if they have become more important. Now take a blank Query Form and note down the numbers of the constructs in these boxes in the space provided. Consider each construct in turn. Can you think of any recent event which might have resulted in the changes of function you have identified? If you can, make a brief note of it in the space provided adjacent to each construct's number on the Query Form. Now do the same for all other discrepant constructs".

This procedure was repeated for the AG display, in which it was emphasised that changes in construct function might be attributable to changes in the partner's grid as well as in the own, and thus explanations mast incorporate pcssible events perceived by partner but not by self.
4.2.4. Transformation procedures.

All transformation and analysis procedures involved in the reciprocal insight grid have been reported in earlier chapters, but with the introduction of the aggregate grid, it is useful here to summarise the procedures.
4.2.4.1. Module I; the numerical content of the grid forms obtained in module A in the first and third sessions were processed by the program PREFAN (Slater, 1974), solutions are listed in Appendix H. This program locates an ordered series of components or sources of variation in the grids from the largest to the smallest, until all variance is exhausted. All constructs are represented on each latent variate by their loadings and similarly for elements. This compcrent analysis is performed three times after the two grid production sessions on Isaac's, Ruth's and their combined grids. Horeover, subsequent analysis of srids produced on the third occasion is cumalative, incorporating all construct soris up to and including those produced on that occasion. The scheme of grid analysis is then as follows:-

The number of components listed to exhaust the total variance of the grids was as follows:-

$$
\begin{aligned}
& I G_{1}^{I, R}=12 \quad\left(\text { where } n_{c}=12\right), \\
& \left.A G_{1}, I G_{2}^{I}, R, A G_{2}=15 \quad \text { (where } n_{c}-1=15\right) .
\end{aligned}
$$

4.2.4.2. Module II; from the component listings of each grid, significant components were identified by locating for each consiruct the highest loading, irrespective of sign, over all components. That is, components are selected that best represent the variance contributed by each construct. An equivalent procedure would be to trace the amount of variation accounted for by extracting each component from each construct, and to note the greatest reduction in residual variation. These methods are logically compatible, and enable constructs to be assigned to the minima number of components without replacement. Non-represented components may then be discarded as error variance, and the procedure rarely dis-: cards more than 20% of total variation as error. The listings obtained by this procedure may be directly employed in the component display of module C, and were derived in both IG analysis and $A G$ analysis.
4.2.4.3. Module ijif; in order to produce continuous data concerning the relevance of constructs tc self-definition, the core construct score was obtained for all constructs as described in 3.4. Having identified significant components in wodule II, the eigenvectors of the element SELF were listed for each component. This,
of course, reflects the meaningfulness of each component as a description of SELF; if the eigenvector is large, SEIF accounts for a large proportion of the component variation, and is thus sytematically located towards the extremes of constructs representative of that component. All construct eigenvectors on:' that component are then multiplied by the SELF eigenvector, obtaining higher products for highly representative constructs and low products for unrepresentative constructs. The products then reflect the extent to which constructs contribute to the self-definition offered by that component. This process is repeated for each of the significant components in turn, and the products summed for each construct in the grid. The final sum reflects the overall relevance of each construct to the participant's self-definition, and these sums may be raniked from the highest (core) to the lowest (peripheral). These sums, termed the core construct score, were obtained for each construct in both the IG and the AG analyses for each participant, as in the following diagram:-

Isaac
Isaac's constructs
IG core construct scores
Ruth's constructs
AG core construct scores

Once ranked-ordered, these scores were employed in the displays of module D.
4.2.4.4. Module IV; for the purpose of classifying outcomes into discontinuous classes for the application of the probabilistic model of Bayes' theorem, core constructs and central elements were identified in the IG and AG analyses following the operational steps described in 3.2. Having identified significant components, element eigenvectors were squared to achieve normalisation, ordered from the largest vector to the smallest, and cumulatively summed irrespective of sign. Those elements which contributed to the first 50% of the variation on each significant component were denoted as 'central'. That is, they were elements which were most defined by each component. Those components, then, in which the element SEdF is central by this definition may be considered 'core components', since SELF is one of those elements maximally defined. All constructs representative of that component may, ipso facto, be termed core constructs. These operations do not yield transformations for direct use, but are instead qualified by the procecures of module V. However, these operations are applied both to the IG and $A G$ analyses. It is important to note that in the $A G$ analysis the centrality of two elements, namely Isaac and Ruth is important. Thus, AG components are examined for the centrality of either elements ISAAC or RUTH. Components may hence be termed 'core to Isaac', 'core to Ruth', 'core for Isaac and Ruth', or 'peripheral for both Isaac and Ruth'. In addition, eigenvectors for these two elements may be identically signed; indicating whether as a core componert it serves to identify Isaac with Ruth or to delineate Isaac from Ruth.
4.2.4.5. Module V; finally, the constructs classified by module IV as core or peripheral are qualified in terms of the certainty with which these classifications may be made. This is achieved by applying Bayes' theorem employing the terms identified in Chapter 3.2. for core constructs, namely:-
(a) prior probabilities of outcomes,

$$
\begin{aligned}
& p\left(H_{c c}\right)=0.359 \\
& p\left(H_{p c}\right)=0.641
\end{aligned}
$$

(b) likelihoode associated with procedures for identifying core and peripheral constructs,

$$
\begin{aligned}
& \mathrm{p}\left(\mathrm{D}_{\mathrm{cc}} / \mathrm{H}_{\mathrm{cc}}\right)=0.725 \\
& \mathrm{p}\left(\mathrm{D}_{\mathrm{cc}} / \mathrm{H}_{\mathrm{pc}}\right)=0.398 \\
& \mathrm{p}\left(\mathrm{D}_{\mathrm{pc}} / \mathrm{H}_{\mathrm{cc}}\right)=0.275 \\
& \mathrm{p}\left(\mathrm{D}_{\mathrm{pc}} / \mathrm{H}_{\mathrm{pc}}\right)=0.602
\end{aligned}
$$

Posterior probabilities $\left(p\left(\mathrm{H}_{\mathrm{i}} / \mathrm{D}_{\mathrm{k}}\right)\right.$) associated with observed outcomes are obtained for each construct by inserting those terms which are applicable into Bayes' theorem. The probaoilities obtained may then be expressed as prior probabilities of construct outcomes for the subsequent grids, and these priors are employed in modules E and G. It is important to note that the
probabilities listed above are identical for both IG and AG outcomes. Each construct, however, may obtain different posterior probabilities in the IG and AG analyses if their self-definitive function differs between the two domains.
4.2.5. Ruth and Isaac: An illustrative case-study.

Abstract

4.2.5.1. To examine the modelling activity in which the couple, Isaac and Ruth, engaged, the coupling between primary and secondary modelling in the following modules will be reported:-

(i) Module C Level 2 component displays and Module \propto component descriptions;
(ii) Module D Level 1 displays and Module β prompts and explanations;
(iii) Module E IG-AG Level 2 and Mocule γ prompts and explanations;
(iv) Module Fidentification of significant events, Module C Level 3 displays and Moaule ∂ prompts and explanations.

As a preamble to the case-study, Isaac and Ruth had been married nine years and had two young children. Isaac and Ruth first met as students at university, and at the time of the study Isaac was a teacher whilst Ruth devoied all her time at home with the children. Both expressed curiosity in the procedures, but on the other hand had some misgivings as to its effect on their relationship. Some time, therefore, was spent in discussion of the likely results of the methods prior to the exercises, and it was stressed that complete confidentiality was to be observed throughout, and that each of them should retain all confidential waterials, and not be required to reveal or discuss them with their
partner.

The focus of Isaac's and Ruth's concern appears to be their relationships with their relatives, many of whom lived in the same neighbourhood. The sessions spanned a three-month period, over which period Isaac and Ruth met all the persons nominated in their element sample. In addition they noted brief character sketches of the elements, extracts of which are sumarised in Appendix I. A point of interest emerging from these characterisations was Ruth's emphasis on the dominant-submissive and intellectual aspects of her relationships and Isaac's emphasis on depth of character, and social attitudes.

4.2.5.2. Module C; Level 2 component displays.

To illustrate the assembled Level 2 component displays, the IG and AG displajs for Isaac's and Ruth's first 12 constructs are snow in Figs. $84 \mathrm{a}, 84 \mathrm{~b}$ and 84 c .
(i) Individual grid displaye.

Examining the individual grid analyses first, it was evident that Isaac obtained 4 significant components whilst Ruth obtained 3, and their attention was directed to the figures that denoted component 'salience' (namely, the percent variance accounted for by each component). Isaac was then able to observe that his first component aione accounted for half of his predications, whilst his second, third and fourth components were warkediy less salient.

In contrast, Ruth's first two components were both fairly salient (41% and 35%). Thus, although Isaac refers to four themes in his grid, only one was emphasised, whilst Ruth gave almost equal emphasis to two themes.

Isaac's and Kath's attention was also directed to distinctions that were made between persons by each theme, and in particular whether they or their partner figured as central to these distinctions. For example, Isaac observed that his first component was anchored on the distinction he had constructed between Ruth on the one hand, and his brother, his father, and Joan's husband on the other. Although he was approx imately located at the same pole as Ruth, he was not central to that distinction. In contrast, Ruth's first two themes succeeded in first polarising Isaac and Paul from Isaac's sister-in-law and secondly Jack's wife and herself from Isaac's brother. Ruth, it appears, had constructed separate dimensions for describing herself and Isaac.

A third noteworthy feature in Isaac's analysis was that his second and third components obtained anchoring elements that accounted for half the component variance at one pole only. This was taken to indicate that these distinctions were essentially one-sided; whilst he was certain that his mother and Jack were both DEEP DONN SPRONG AS A PERSON, he could not assert with certainty any, other person in particular was DESP DONN WEAK AS A PERSON. Similarly, whilst he mignt comait himself to the statement that Ruth's father, ker mother aid his father were NOT HYSICAILY ATTPACITVE, no-one wae carticularly PHYSICAILİ ATPRACTIVE.

First Component (41%)

ISAAC*	TENSE	RETLAXED	ISAAC'S SISTER-IN-LAW
PAUL*	LIKE ISAAC	NOT IITKE ISAAC	
$\begin{aligned} & \text { PAUL'S } \\ & \text { WIFE } \end{aligned}$	OUTGOING, SPARKIING	WITHDRAUR	ISAAC'S MOTHER
	INTETIECTUAL	NON-INTELTECTUAL	
	DOMINANT	SUBMISSIVE	RU'TH'S FATHER
	DISCONTENTED WITH JUST DORESTICITY	EAPEY WITH DOMESTICITY ALONE	

Second Component (39%)

$\begin{aligned} & \text { JACK'S* } \\ & \text { WIFE } \end{aligned}$	$\begin{aligned} & \text { I THINK I CAN TELL } \\ & \text { WHAT THEY'RE } \\ & \text { FEEHNG } \end{aligned}$	DON'T KNOW 'NHAT THEY'RE FEELIIG	ISAAC'S* BROTHER
RUTH*	LIKE RUTM	NOT LIKE RUTH	JOAil'S HUSBAND
JACK	HAPFY AND CONIENTED IN GENERAL	DISCONTENTED	ISAAC'S
			ISAAC'S BROTHER- IN-IAK'
	PLACID	EXCITABIE	
	CONCERNED ABOUT PEOPIE FOR THEIR OWH SAKE	CONCERNED ABOUT WHAT PEOPLE THITK OF HIM/HER	

Third Component (8%)

$\begin{aligned} & \text { RUTH ' } S^{*} \\ & \text { FATHER } \end{aligned}$	APPRECIATES NATURE	DOESA'T APPRECIATE NATURE	ISAAC'S* SISTER- IN-LAW
JOAN'S*			
			TSAAC'S
QuTH ${ }^{\text {S }}$			SISTER
MOTHER			
		\cdots	PAU'S WIFE

(N.B. indicates central element)

Figure $84 a$ Ruth's first modulc C IG component display (84%).

First Component (50\%)

RUTH*	WARM \& LOVING	COLD \& DISTANT	ISAAC'S*
$\begin{aligned} & \text { PAUL'S } \\ & \text { WIFE } \end{aligned}$	PERSON I LOVE BECAUSE OF THE PERSON HE/SHE IS	PERSON I DON'T LOVE bECAUSE OF THE PERSON HE/SHE IS	ISAAC'S* FATHER
ISAAC	PROGRESSIVE IN SOCIAL AITITUDES	REACTIONARY IN SOCIAL ATTITUDES	JOAN'S* HUSBAID
	CULTURALIY SOPHISITCATED	CUTMRALLY NAIVE	
	INTELUIGENT	UNINTELUIGENT	
	LIKE RUTH	NOT LIKE RUTH	
	LIKE ISAAC	NOT LIKE ISAAC	
	LIVELY \& STIITULATING	PASSIVE AND NOT STIMULATING	

Second Component (16\%)

ISAAC'S* MOTHER	DEED DO:IN STRONG AS A PreRSON	DEEP DOWN WEAK AS A PERSON	ISAAC'S BROTHER
JACK ${ }^{*}$			PAUL
RUTH			PAUL'S WIFE

Third Component (13\%)

JOAN'S HUSBARD	FHYSICALLY ATTRACTIVE	NOT PHYSICALLY ATTRACTIVE	RUTH'S* FATHER
ISAAC'S		ISAAC'S* SISTER-	
IN-LAU		FATHER ISAAC'S	
BROTHER			RUTH'S* NOTHER

Fourth Component (8\%)

JACK*	GENUINELY FEELS FOR NATURE	REAILY RATHER A TOWNY	ISAAC'S MOTHER
JOAN'S* HUSBAND	PERSON I DON'T LOVE AT ALL BECAUSE OF THE RELA'TIONSHIP HE/ She does not have to me	PERSON I LOVE BECAUSE OF THE RELATIONSHIP HE/SHE HAS TO ME	ISAAC'S
			BROTHER
RUTH'S			
FATHER			ISAAC'S

(N.B. * indicates central element)

Figure 84b Isaac's first module C IG component display (87\%).

First Component (40\%)

Second Component. (25%)

Third Component (9\%)

(N.B. * indicates central element).

Figure 34c First module C AG dispiay (74\%).

Having pointed out these features of the distinctions conveyed in the displays, the participants were directed to note the constructs which constituted these distinctions, in particular the first two or three major components. Isaac, for example, observed that his most salient distinction grouped together PEOPLE I LOVE with PROGRESSIVE IN SOCIAL ATTITUDES, CULTURALLY SOPAISTICAGED, LIVELY \& STMMULATING, and INTELLIGENT, conveying a marked intellectnal tone in his construction of himself and Ruth. His second component, comprising the construct DEEP DOWN STRONG AS A PERSON contrasts with this, however, but is only weakly represented.

Ruth's first component parallels Isaac's in its emphasis on intellect, and cheracterises persons like Isaac, TENSE, OUTGOINE, SPARKIING, INTELLECTUAL, DOMINANT, and DISCONTENTED with DOMESTICITY. Yowever, Ruth does not seem to employ this dimension to describe herself. Instead, her self-definition is formed by a dimension of persons similar to herself in that she THINKS I CAN TELJ WHAT THEY'RE FEELING, who are HAPPY \& CONTENTED IN GENERAL, PLACID and CONCERNED ABOUT PDOPLE FOR THEIR OWN SAKE.

[^3]Isaac and Ruth did not find elaborating descriptions for these components an easy task, but settled for the following:-

Isaac:	I	"warm and progressive"
	II	"calm, cool, strength of character"
	III "body beautiful"	
. "boring, reactionary relations"		

Here we may note Ruth's equation of "career interests" with DISCONPENTED WITH JUST DONESTICITY and INTEILECTUAL, and Isaac's conflicting comment "warm and progressive" reflecting the functional equivalence of WARM \& LOVING and PROGRESSIVE IN SOCIAL ATTITUDES.

(ii) Aggregate grid display.

Examining the AG display provoked a number of interesting observations. Firstly, it was noted that the first component served to identify Isaac with Ruth and to delineate both from Isaac's brother, father, and Joan's husband. The second component, however, featured Ruth as one of five central elements. It then appeared that Ruth was defined by both corponents, and Isaac by the first alone.

Moreover, it was observed that the first conponent comprised nearly
equal numbers of constructs from both participants (Ruth, 6; Isaac, 9) in contrast to the second component (Ruth, 5; Isaac, 1), and that this suggested the latter to be a more salient concern for Ruth than for Isaac. This second component reflects a definition of Ruth as HAPPY VITH DOMESTICITY ALCNE, RETAXED, SUBriISSIVE, PLACID, DEEP DOWN STRONG AS A PERSON, a definition which incorporates constructs that were not particularly definitive of Ruth in her own grid analysis.

Similarly, the first component includes a number of Ruth's constructs in the joint definition of Ruth and Isaac which are not. definitive of Ruth in her own grid analysis; for example, INTEILECTUAL and OUTGOING, SPAKKIING. These outcomes again suggest a disjunction beitween Ruth's self definition and her collective definition within the relationship.
4.2.5.3. Module $D_{\text {; }}$ Level 1 displays.

Sessions two and four began with the assembly of a display that plotted the participants' ranking of constructs in terms of their 'importance to self-definition' (module B) against the observed importance of constructs as defined by their core constructs score (rodule III). Each participant assembled two displays on their own, namely anticipated and observed outcomes in their IG and AG analysis. Participants then isolated criterially discrepant constructs (i.e. those obtaining a rank error $\geqslant n / 2$) and proceeded to formulate explanations for these discrepancies. Tables 48, 49, 50 and 51 depict the prompt charts that were obtained for
both participants for IG and AG analysic on the two occasions.

Isaac and Ruth reported that they did not find this task easy, and whilst they noted a number of insights, they experienced some difficulty in recording the nature of these insights. As a result, Isaac's and Ruth's recorded observations do not fully convey the nature of the secondary modelling activity. However, a number of features are noteworthy in both the IG and AG displays.
(i) Individual grid displays.

Firstly, both Isaac and Ruth consistently underestimate or overestimate the importance of particular constructs to their selfdefinition. In Isaac's IG display (Table 48) this is revealea by his over estimation of the importance of PROGRESSIVE SOCIAL ATTITUDES in his first grid and his underestimation of it in the second. Whilst this construct decreases in importance to his self-definition, Isaac views it as increasingly important, a discrepancy which he believes to be associated with members of his family:-

```
"I thought my interest in politics and ideology had
waned, but perhaps it has nct.....it's to do with a
family crisis, I am drawn towards disliked, reactionary
merbers of the family. This probably resulted in social
at*itudes not being so important at that time, but having
been important for so long, maybe I wasn't aware they
were not so important at that time".
```

Constructs	SESSION THO modules		SESSION FOUR MODULES		
	B D	B-D β	B	D	$B-D \beta$
1 WARM \& LOVING	27	- 5	1	9	- 8
2 INTELITGENT	53	$+2$	9	14	- 5
3 PHYSICALLY ATTRACTIVE	79	- 2	17	13	+ 4
4 PROGRESSIVE ATTITUDES	91	+ 8 ?	2	16	-14 ?
5 FEELS FOR NATURE	86	$+2$	12	6	+ 6
6 PERSON I LOVE AS A PERSON	112	+ 9 ?	3	4	- 1
7 PERSON I LOVE FOR THE					
RELATIONSHIP	12: 12	0	15	18	- 3
8 DEEP DOWN STRONG AS A PERSON	310	- 7 ?	8	2	$+6$
9 LIVELI \& STIMULATING	48	- 4	6	1	$+5$
10 CULTURALLY SOHHSTICATED	105	$+5$	14	17	- 3
11 LIKE RUTH	$6 \quad 4$	$+2$	11	5	$+6$
12 LIKE ISAAC	111	-10 ?	10	7	$+3$
13 STRAIGFTFOR\%ARD			18	12	$+6$
14 PATHETIC \& DULL				11	+ 5
15 RELAXED				15.	-2
16 SENSE OF HUMOUR				8	- 1
17 BaCHANALLIAN:				8	-1
18 SERIOUS				3	

Constructs	SESSION TWO MODULES			SESSION FOUR MODULES			
		D	B-D β	B	D	B-D	β
1 CONCERNED ABOUT PEOPLE	4	9	- 5	5	11	- 6	
2 INTELLECTUAL	11	1	+10 ?	7	17	-10	?
3 HAPPY WITH LOMESTICITY	3	5	- 2	4	6	- 2	
4 APPRECIATES NATURE	6	7	- 1	8	7	$+1$	
5 RELAXED	10	11	- 1	10	1	+ 9	2
6 PLACID	5		- 1	11	2	+9	
7 CAN TEIL WHAT THEY'RE							
FEELING	12	3	+ 9 ?	3	4	- 1	
8 OUTGOING, SPARKLING	7	10	- 3	13	13	0	
9 DOMINANT	9	12	- 3	12	8	$+4$	
10 HAPPY \& CONTENTED	2	4	- 2	2	5	- 3	
11 LIKE RUTH	1	2	- 1	1	3	- 2	
12 LIKE ISAAC	8	8	0	6	14	-8	$?$
13 KIID \& LOVING				9	12	- 3	
14 ENJOYS CRUDE HUHOUR					10	+ 8	
15 LEFTISH					18	- 1	
16 creative				16	15	+1	
17 PUTS ON A FRONT				15	9	+ 6	
18 Makes Me feed at ease					16	- 2	

TARLE 49 Module D IG prompt chart for Ruth.

Similarly, in Ruth's IG display (Table 49) construct INTELLECTUAL decreases in importance to her self-definition whilst first she underestimates and then overestimates its importance:-
> "I didn't think this was important when considering myself on my own, but it is important to me when I compare myself with others......it is important to me when I compare myself with Isaac, but not with other people.....I have thought more about the similarity between us not just the differences."

In both of these cases, the participants fail to detect important changes in their self-modelling. In particular, Ruth reported that at the outset the construct INTELLECTUAL ∇. NON-INTELLECTUAL was a means of delineating herself from Isaac, in that she viewed herself as intellectually inferior to him. The modelling activities had, however, changed her views concerning this dimension, not in the sense that she now viewed herself as an intellectual equal to Isaac, but that the contrast ceased to be salient to her selfdefinition; she was beginning to think "more about the similarities between us and not just the differences": This is clearly related to her viev of Isaac as intellectually dominant and herself as submissive, especially in the company of Isaac's intellectual friends. Allied to this, her expressed wish to become involved in activities outside the home, perhaps to take a part-time job, reflected the difficulty she experienced in viewing herself as competent in other than domestic activities.

(ii) Aggregate grid displays.

To what extent was this definition of Ruth constructed by herself or was it a function of her relationship with Isaac? It is useful here to note Isaac's consistent overestimation of the importance to his collective self-definition of his construct INTELLIGENT ∇. UNINTELLIGENT in his AC display, (Table 50).

Similarly Ruth consistently overestimates the importance of her construct CONCERNED ABOUT PEOFLE FOR THEIR OHN SAKE V. COKCERTED ABOUT WHAT FEOPLE THINK OF HIM/HER, and underestimates the importance of OUTGOING, SPARKLIMG V. WITHDRAWN, (Table 51). These discrepancies suggest that whilst Ruth seeks to reduce the importance of dimensions reflecting intellectual ability (OUTGOING, SPARKIING, and INTELLIGENT) to her aggregate self-definition, Isaac continues to emphasise them in describing himself and Ruth. The following section describes these disjunctions in more detail.
4.2.5.4. Module E; Level 2 IG-AG displays.

In assembling the IG-AG outcomes displays, the participants were directly confronted with disjunctions in their contributions to definitions of themselves and their partner. Thus, in furnishing, or attempting to furnish, accounts of these disjunctions, each was, by necessity, construing the construction processes of the other. They were then able to locate areas of self-experience to which each attributed differing degrees of importance, Tables 52 and 53 list disjunctive and conjunctive outcomes for Ruth's

TABLE 50 Module D AG prompt chart for Isaac.

	SESSION TWO mODULES				SESSION FOUR MODULES			
Constructs	B	D		β	B	D	B-D	β
1 CONCERNED ABOUT feople	2	12	-10	$?$	3	14	-11	?
2 INTELLECTUAL	8		$+4$		9	11	- 2	
3 HAPPY WITH DOMESTICITY	12	9	+ 3		11	8	+ 3	
4 APPRECIATES NATURE	10	8	+ 2		10	1	+9	
5 PELAXED	5	10	- 5		12	5	+ 7	
6 PLACID	4	11	- 7	?	15	13	+ 2	
7 CAN TELL WHAT THEY'RE								
Feeling	6	6	0		4	10	- 6	
8 OUTGOING, SPARKIING	7	1	$+6$?	13	2	+11	$?$
9 dominant	11	9	$+2$		16	4	+12	?
10 HAPPY \& CONTENTED	3	7	- 4		7	3	+ 4	
11 LIKE RUTH	1	3	- 2		1	6	- 5	
12 LIKE ISAAC	9	2	$+7$?	6	7	- 1	
13 KIND \& LOVING					2	17	-15	?
14 EnJoys CRUDE HUMOUR					18	15	$+3$	
15 LEFTISH					17		+ 5	
16 CREATIVE					14		- 2	
17 PUTS ON A FRONT					8	18	-10	$?$
18 makes me feel at ease					5	9		

TABLE 51 Module D AG prompt chartfor Ruth.
and Isaac's constructs, and it was evident that on particular constructs diferent functions obtained bet-een the individual and aggregate grid analyses. These constructs were, for Ruth in particular, associated with areas of construing previously observed, namely her reluctance to base her self-definition on dimensions such as INTELLECTUAL v. NON-INTELLECTUAL, HAPPY WITH DCMESTICITY ALONE ∇. DISCONTENTED WITH JJST DOMESTICITY, RELAXED v. TENSE, OUTGOING, SPARKLING v. WITHDRAHN and DOMINANT v. SUBMISSIVE (see Table 52. Ruth observes:-
> "I don't think intellectuality is very important to me. I feel other things are more important. This is a construct which shows up a difference between Isaac and me. He obviously doesn't agree with me. Perhaps I an more aware of the conflict I feel between domesteicity and other interests outside the home. When I rate myself on these scales I tend to compare myself with Isaac, so I only rate myself as average, whereas Isaac tends to compare me with other people and so I come out higher on these things. He often says I underestimate myself. I tend not to think of myself as like Isaac in character. I concentrate on the differences, whereas Isaac concentrates on the similarities".

It was evident that Ruth experienced conflicting standards for herself in that whenever she employed Isaac as a referent she felt overshadowed and this undermined her confidence. In other company, however, she found greater confidence, and this encouraged her to pursue outside interests. This sense of Ruth's selfdefinition being overdetermined by Isaac's contributions is alsc reflected in the session four display, where the constructs EMJOY

Constructs	SESSION TTVO$\mathrm{IG}_{1}^{\mathrm{R}} \mathrm{AG}_{1} y$			SESSION FOUR $I G_{2}^{R} \quad A G_{2} y$		
1 CONCERNED ABODT PEOPLE	C	C		P	P	
2 INIELLLECTUAL.	P	C	?	P	P	
3 HAPPY WITH DOMESTICITY	P	C	?	P	C	$?$
4 APPRECIATES NATURE	P	p		C	C	
5 RELAXED	P	C	?	C	C	
6 PLACID	C	C		C	C	
7 CAN TELL WHAT THEY'RE						
FEELING	C	C		P	P	
8 OUTGOING, SPARKLING	P	C	$?$	P	P	
9 DOMINANT	P	c	$?$	P	P	
10 HAPFY \& CONTENTED	C	c		P	P	
11 LIKE RUTH	C	C		C	C	
12 LIKE ISAAC	P	C	?	P	P	
13 KIND \& LOVING				P	P	
14 ENJOYS CRUDE HUMOUR				P	C	$?$
15 LEFTISH		.		P	P	
16 CREATIVE				P	P	
17 PUTS ON A FRONT				C	C	
18 Makes me feel at ease				P	P	

(N.B. C = core outcome; $P=$ peripheral outcome).

TABLE 52 Module E prompt chart for Ruth.

Constructs	SES IG ${ }_{1}^{\mathrm{I}}$	ON TWO $A G_{1} y$	SES IG 2	${ }^{\text {AG }}$	$\begin{aligned} & \text { OUR } \\ & y \end{aligned}$
1 WARM \& LOVING	C	C	C	C	
2 INTELLIGENT	C	C	C	C	
3 PHYSICALLY ATTRACTIVE	P	P	C	P	$?$
4 PROGRESSIVE ATTITUDES	C	C	C	C	
5 FEELS FOR NATURE	P	c	C	C	
6 Person I LOVE AS A person	C	C	C	C	
7 PERSON I LOVE FOR THE					
RELATIONSHIP	P	P	P	P	
8 DEEP DOWN STRONG AS A person	P	P	C	P	?
9 LIVELY \& STIMULATING	C	C	C	C	
10 CULTURALIY SOPHISTICATED	C	C	C	C	
11 LIKE RUTH	C	C	C	C	
12 LIKE ISAAC	C	C	C	C	
13 STRAIGHTFORWARD			c	P	?
14 PATHETIC \& DULL		.	C	C	
15 RELAXED		.	C	P	$?$
16 SEISE OF HUMOÜ			C	P	$?$
17 BACHANALLIAN			C	c	
18 SERICUS			c	C	

(N.B. $C=$ core outcome; $P=$ peripheral outcome).

TABLE 53 Module E prompt chart for Isaac.

CRUDE HUMOUR and again HAPFY WITH DOMESTICITY ALONE emerge as core collective constructs but are de-emphasised in Ruth's own grid:-
> "Humour plays a more important part in Isaac's life than in mine, with the consequence that I occasionally get fed up with it. Also, I see the confict between my domesticity and outside interests. I feel I am different from other people in my grid, whom Isaac would rate highly on this".

In contrast to Ruth, disjunctions concerning Isaac's self-d:iinition centres primarily on his perception of his work-role and Ruth's perception of him at home (Table 53). In cormenting on the importance he attaches to the constructs STRAIGHTFORUARD, DEEP DOUN STROMG AS A PERSON, RELAXED and SENSE OF HOMOUR, Isaac notes:-

```
"(DEEP DO:N STRONG AS A PERSON) Most importent. Perhaps
I have worried about what I perceive as a lack in myself,
whereas Ruth does not do so. (STRAIGHTFORWARD, RELAXED)
Influence of work. Some people I perceive at work to
be obsessed by the need to manipulate others for their
own political ends, hence I perceive myself in that
kind of context. Ruth does not need to take that kind
of shit at home. Bringing home the work shit I find
tense-making, and worry about that. Maybe Ruth
doesn't see it quite that badly. (SENSE OF HUNOUR)
Mr. Silly. Humour makes relationships fun and covers
up or releases tension. Maybe tied in with STRAIGHTFOR-
WARD and RELAXED?"
```


4.2.5.5. Module G; Level 3 displays.

Session three began with the listing of interpersonal events perceived as significant by the participants in module F. These events, together with the predicted and observed outcomes are listed in Tables 54 and 55. Each event has been identified by the person in whose company it occurred, and qualified as to whether it confirmed (+) or disconfirmed (-) opinions concerning that person. Outcomes and prompts for Ruth's constructs are listed for both IG and AG analyses (Table 54); Isaac, however, obtained no prompts from the AG analysis since outcomes were consistent with predictions (Table 55).

It was notable first that many disjunctions between predicted and observed outccmes coincided with events that had been previously identified in module F. Ruth and Isaac note two major family events in their descriptions, namely a visit from Isaac's sister and brother-in-law who live overseas, and Ruth's father and mother who were moving house to their neighbourhood. These events brought both participants into interaction with members of their family whom either they avoided or from whom they were physically separated. In particular, Ruth's constructs CONCERNED ABOUT PEOPIE, I THINK I CAN TELJ WHAT THEY'RE FEEI.ING and HAPPY \& CONTENTED IN GENERAL emerged as peripherai in her IG analysis (Table 54) which she associated with her relationship with Isaac's brother:-

[^4]me......but now my feelings have softened and I don't feel the difference is so great. I think my relationship has improved with Isaac's brother, and I'm not so antagonistic".

The same constructs also changed their function to peripheral to her self-definition in the AG analysis:-
> "Since events have changed both Isaac's and my relationship to his brother, this has meant that my position on these constructs has become less extreme".

Constructs which have become core for Ruth's self-definition, APPRECIATES NATURE and RELAXED, seem to be associated with establishing a relationship with Jack and his wife, "in a close discussion evening, where we got.to know them better", who are seen as having "opted out of the rat-race......in favour of a peaceful life in the countryside enjoying their garden".

Similarly, Isaac observed that the construct DEEP DOWN STRONG AS A PERSON was increasingly important to him, (Table 55), especially following his sister's visit:-
> "I have clarified my own position on this construct, due to my sister's visit. I think it will lead to more confidence in my relationships generally, and a more relaxed relationship with Ruth in particular..... my sister......perhaps she has a hard-rock core of confidence.....but there's just a chance it's an act".

-	Module F	Modules (IG) $G \quad \partial$	Modules $(A G)$
1 CONCERIED ABOUT PEOPLE	ISAAC'S MOTHER (+) PAUL (+): ISAAC'S BROTHER-IN-LAW	C P ?	C P ?
2 INTELLECTUAL	ISAAC (+)	$\mathbf{P} \mathbf{P}$	C P
3 HAPPY WITH DOIFESTICITY		P P	C C
4 APPRECIATES NATURE	$\begin{aligned} & \text { RUTH'S FATHER (+) } \\ & \text { JACK }(+) \end{aligned}$	P C ?	PC ?
5 RELAXED		PC ?	C C
6 PLACID		C C	C. C
7 I THINK I CAN TELLL WHAT THEY'RE FEELING	RUTH'S MOTHER (+) ISAAC'S BROTHER- IIT-LAG (-) ISAAC'S SISTER (-)	C P ?	C P ?
8 OUTGOING, SPARKLING	RUTH'S FATHER (-)	P P	$C \mathrm{P}$?
9 DOMINANT	RUTH'S MOTHER (+)	P P	C P ?
10 HAPPY \& CONTENTED	JACK'S HIFE (-)	C D	C P ?
11 LIKE RUTH		C C	- C
12 LIKE ISAAC		$F \cdot ?$	C P ?

$$
\begin{aligned}
\text { (N.B. + } & =\text { confirming event; } & & \text { P }=\text { peripheral outcome; } \\
\text { - } & =\text { disconfirming event; } & & C=\text { core outcome; } \\
\text { ? } & =\text { query prompt). } & &
\end{aligned}
$$

TABLE 54 Module G prompt chart for futh.

	Module F	Modules (IG) G δ
1 WARM \& LOVING	ISAAC'S BROTHER- IN-LAW (- ; $\operatorname{ISAAC'S}$ SISTER (+)	C C
2 INTELLIGENT		C C
3 PHYSICALLY		PC ?
4 PROGRESSIVE SOCIAL ATTITTUDES	.	c C
5 FEELS FOR NATURE	RUTH'S FATHER (+); RUTH'S MOTHER (+)	PC ?
6 PERSON I LOVE AS A PERSON	$\begin{aligned} & \text { ISAAC'S BROTHER- } \\ & \text { IN-LAW }(-) \text {; } \\ & \text { ISAAC'S BROTHER }(+) \\ & \text { ISAAC'S SISTER }(+) \end{aligned}$	C C
7 PERSON I LOVE FOR THE RELATIONSHIP		$\cdot \mathbf{P} \mathbf{P}$
8 DEEP DOWN STRONG AS A PERSON	ISAAC'S SISTER (-)	PC ?
9 LIVELY \& STIMULATING	ISAAC'S BROTHER-IN-LAH	C C
10 CULTURALLY SOHISTICATED		c c
11 LIKE RUTH		C C
12 IIKE ISAAC		C C

$$
\begin{aligned}
\text { (N.B. }+ & =\text { confirming event; } & & P=\text { peripheral outcome; } \\
& =\text { = disconfirming event; } & & C=\text { core outcome; } \\
? & =\text { query prompt). } & &
\end{aligned}
$$

TABLE 55 Module G prompt chart for Isaac.

In summary, the directed prompts arising from the module G display. appeared to correspond to events previously identiried as producing changes in self and partner modelling. Other prompts, not ostensibly associated with these events, seemed to involve less secondary modelling activity. For example, when Isaac's attention was directed to the core function of the construct PHYSICALIY ATTRACTIVE, he cast around and answered:-
"Recent hot weather and consequent public deshabille has drawn my attention to this construct".

Clearly, much more may be associated with this change of relevance" to Isaac's self-definition but would have required additional prompting beyond the immediate scope of this procedure.

4.2.6. Evaluating the procedures

4.2.6.1. It is evident that the procedures described in this chapter have a number of drawbacks, for example a need in some cases for prompts of greater potency, a need for simplified, possibly self-administered transformation procedures, and a need for cooperative modelling activities. However, the procedures may be examined in terms of criteria derived from the rationale of the reciprocal insight grid. This examination focuses on three areas; (i) outcomes of primary modelling activities in the repertory grid, (ii) outcomes of secondary modelling activities, and (iii) participants' subjective reports'on the activities.

4.2.6.2. Outcomes of primary modelling activities.

Although the grid exercises revealed a variety of underlying themes to Isaac's and Ruth's modelling of their eelationships, the final AG solution (a PCA of all element sorts produced throughout the study) revealed only two components as exclusively defining the couple. These two components differed in their function, however, the first being descriptive of Isaac and the second of Ruth;

ISAAC DEFINING ATTRIBUTES (AG Component I)

KIND \& LOVING
CONCERNED FOR PEOPLE
PROGRESSIVE SOCIAL ATTITUDES
CULTURALIY SOFHISTICATED
(... $\left\{\begin{array}{l}\text { ISAAC'S BROTHER } \\ \text { ISAAC'S FATHER } \\ \text { ISAAC'S SISTER- } \\ \text { IN-IAW }\end{array}\right.$

ESTEEMED \& INIERESTING

RUTH DEFINING ATTRIBUTES (AG Component II)

HAPPY WITH DOMESTICITY	RUTH		
RELAXED	JACK		ISAAC'S
STRAIGHTFORNAED	ISAAC'S	VE.	BROTHER
PLACID	MOTHER		

SUBMISSIVE

These dimensions reflect the collective definitions of Isaac and Ruth within the relationship. In assessing the outcomes of primary modelling the following predictions derive from the rationale of reciprocal insight grid procedures:-
(a) That for both participants the modelling of self and partner becomes increasingly distinctive as they become aware of the functional properties of self- and partner-relevant predicates;
(b) That both participants display an increase in the frequency of interpersonal modelling conversations, which will be reflected in the increasing salience of partner-relevant predicates;
(c) That both participants display an increase in the specificity of self- and partner-relevant predicates.

These procedures had the following rationales and tests:-
(a) In discussing the role of introjection and projection in conversational competence (1.1.5.3.) it was pointed out that the constructions of self and significant others may be based on
distortions of social feedback. In particular, one consequence of introjection and projection is the loss of distinctiveness of:selfand other-constructions. As Laing et al note "if I cannot induce you to see me as I wish, I may act on my experience of you rather than your experience of me" (1966, p.15). If the reciprocal insight grid achieves its objective of increasing participants' ability to identify fünctional features of self- and partner-relevant predicates, one consequence would be an increase in the distinctiveness of these predicates. To test this the whole-figure constructs LIKE SELF IN CHARACTER and LIKE PARTNER IN CHARACTER, assumed to provide a context, for the projection of salient interpretations, were examined to discover whether they display an increase in independence between the first and second test occasions.
(b) If the reciprocal insight grid promotes interpersonal modelling between the participants a shift should be observed away from selfrelevant predicates towards partner-relevant predicates. This follows from the prediction above, namely thay a loss of distinctiveness of personal models is a result of distortions of social feedback and failures of realisation. As information concerning partner's constructions becomes available in the relationship participants attention should focus on medifying partner constructions. This was tested by examining the salience of the first 6 constructs elicited on the first occasion and the 6 elicited on the second occasion for the first two AG components. An increase in partner-relevant predication would be displayed by an increase in the magnitude of loadings of constructs from the second occasion on the partnerdefining component.
(c) Finally, another consequence of the first prediction is that as self and partner models become more distinct the two central components should display greater specificity. That is, these components should acquire greater precision and implicative potential, and polarise self and partner models. This was tested by examining the loadings of the two whole-figure constructs on central components on the two occasions. An increase in specificity would be exhibited by increases in the magnitude of the loadings of the LIKE SELF constructs on self-relevant components, and LIKE PARTNER on partner-relevant components, since their salient interpretations should approximate more closely to these underlying variates.

Firstly, as Figure 85a shows the constructs LIKE SELF and LIKE PARTNER display a significant increase in independence for Isaac ($r_{1}=.687, r_{2}=-.139 ; z=-2.51, p=.006$, one-tailed) but a significant decrease in independence for Ruth ($r_{1}=-.172, r_{2}=.761 ; z=2.99$, $\mathrm{p}=.001$, one-tailed). Moreover, it is clear that for Isaac LIKE SELF and LIKE PARTNER are significantly related at the outset ($r_{1}=.687$, $\mathrm{df}=15, \mathrm{p}<.005$) whilst for Ruth the two constructs are significantly related after the procedures $\left(r_{2}=.761, \mathrm{df}=15, \mathrm{p}<.005\right)$. Thus the findings for Ruth contraindicate the predictions concerning distinctiveness of self and partner models.

Secondly, Figure 85b depicts the salience of elicited constructs for the first two components for each occasion. Here it is evident that both participants increase the attention given during modelling to partner-relevant predicates. Both Ruth and Isaac relax their emphasis on self-defining attributes, although in neither case is. this effect significant (Ruth, Mann-Whitney $U(6 / 6)=9$; Isaac, $U(6 / 6)=$

Figure 85a Correlations between LIKE SELF and LIKE PARTNER constructs for both participants on the two occasions.

Figure 85b Construct salience for both participants on central AG components.
10). Both participants increase their emphasis instead on partnerdefining predicates, although this effect is significant for Isaac only (Ruth, $U(6 / 6)=13 ;$ Isaac, $U(6 / 6)=6, p=.032$, one-tailed). This differential emphasis is, however, more marked on the first occasion (Component I, $\mathrm{U}(6 / 6)=6, \mathrm{p}=.032$, one-tailed; Component II, $\mathrm{U}(6 / 6)=7, \mathrm{p}=.047$, one-tailed) than on the second (Component I, $U(6 / 6)=13$; Component $I I ; U(6 / 6)=15$. The most marked observation is that Isaac appears to formulate selfrelevant predicates on the first occasion almost to the exclusion of partner-relevant predicates $(U(6 / 6)=0, p=.001$, one-tailed).

Thirdly, Figures 86 and 87 depict the loadings obtained by the two whole-figure constructs on each component on the two occasions. It was predicted that increasing specificity of self-defining and partner defining attributes would be evident from increases in the loadings of the constructs LIKE SELF and LIYE PARTNER on their respective components. Neither participant displayed the former outcome. In fact, the construct LIKE SELF. obtained a significant decrement on self-relevant predicates for Isaac ($z=-2.734, p=.003$), and a near significant decrement for Ruth ($z=-1.459, \mathrm{p}=.072$). Similarly, Isaac. shows a decrement, though not significant, in the loading of the LIKE RUTH construct on partner-relevant predicates $(z=-.975, p=$.165). Although Ruth displays a small increment in the loading of the construct LIKE ISAAC on partner-relevant predicates, this effect is not significant $(z=.131, p=.448)$. Contrary to predictions, the LIKE SELF construct displays a significant increment on partner-relevant predicates for Isaac ($z=2.547$, $p=.005$), and a non-significant increment for Ruth ($z=1.234$, $\mathrm{p}=.109$) . One comparison is consistent with the prediction, however, in that the construct LIKE ISAAC does display a significant decrement

Figure 86 Loadings of ISAAC'S whole-figure constructs on

```
central components.
```


Figure 87 Loadinge of RUTH'S whole-figure constructs on
central components.
on self-defining predicates for Ruth ($z=-1.772, \mathrm{p}=.038$). Even here, this effect is not corroborated by Isaac, since he shows a slight, but nonsignificant increase in the loading of the construct LIKE RUTH on self-relevant attributes ($\mathrm{z}=.362$, $\mathrm{p}=.359$).

These findings required further explanation. Firstly, it was evident that Isaac began by identifying Ruth with himself but following the procedures was able to markedly differentiate himself from Ruth. The reverse was the case for Ruth. Secondly, the findings suggest that Ruth attempts to identify herself in terms she previously employed to define Isaac. Thirdly, Isaac appears to reciprocate this shift in Ruth's self-definition. Fourthly, Isaac appears himself to be shifting his self-definition towards those terms that he previously employed to define Ruth. Finally, both participants appear to have focussed their attention to partner-relevant attributes.

Some indication of the processes occurring here was available from other sources. Ruth, for example, observed that Isaac tended to look for similarities between himself and herself, and often stated that she undervalued her intellectual abilities and "culturai sophistication". The effect of the exchanges prompted by the procedures might then have been to direct Ruth to perceive positive intellectual qualities in herself:
> 'I didn't think this was important when considering myself on my own, but it is important to me when comparing myself with others....since having the feedback I have thought more about the similarities between us and not just the differences".

and for Isaac to appreciate her need to view herself in terms other than HAPPY WITH DOMESTICITY ALONE. That this shift was reciprocated
by Isaac indicates that those attributes normally associated with Isaac have become central to the couple's definition of Ruth. It is noteworthy that Ruth succeeded in securing a professional parttime job soon after the study, suggesting that this shift in Ruth's self definition was not transient. Secondly, Isaac appeared to be attempting to conceptualise himself in terms of those capacities that he normally associated with Ruth. Thus he sees himself as capable of assuming Ruth's supportive role in the family (HAPPY WITH DOMESTICITY, REIAXED, STRAIGHT-FORWARD, etc.).

Finally, the extent to which each participant's constructs alter in their functional properties through the series of interactions with the procedures also suggests that both Isaac and Ruth attempted to remodel their definition of Ruth, but that Isaac's attempts to re-model his own definition were not supported by Ruth. Table 56 depicts the rank correlations between core construct scores obtained for both participant's constructs in the final cumulative AG analysis. Core construct scores for SELF defining constructs had already been computed for both participants. This procedure was repeated, utilising eigenvectors for the element PARTNER for each participant's constructs. As a result, each construct was scored for centrality in two ways: a score representing centrality to a SELF-definition, and a ecore representing centrality to a PARTNER-definition. These scores were obtained for constructs applied in both grids then rank and Spearman rho correlations obtained. The correlations indicated that both participants altered the functional properties of constructs to define themselves on the second occasion (Ruth, rho=.07; Isaac, rho=-.03), although Isaac and Ruth differed in the extent to which they redefined their partner. Whilst Ruth employs an almost unchanged
set of constructs to define Isaac (rho〒.49), Isaac's definition of Ruth on the third occasion had altered considerably (rho $=-.622$).

(Note * indicates $.05>p$, one-tailed)

TABLE 56 Rank correlations between core construct scores in the first and second grids.

These data enable inferences to be made about the nature of the couple's modelling activity over the series of interactions with procedures. The conclusion to be drawn is that Isaac and Ruth sought to reverse their roles in the relationship, Isaac to become less intellectually dominant and more domestically supportive, and Ruith to become more independent and confident in her intellectual abilities. Only one set of evaluative criteria, namely the increase in salience of partner-relevant constructs were met. However, it is clear that constructive change did occur, and that the evaluative. . criteria may be inappropriate. In a previous study (Chapter 3.4.) it was pointed out that evaluative criteria established independently did not. make allowances for variations in the goals and strategies employed by the participants.
4.2.6.3. Outcomes of secondary modelling activities.

The case-study reported in the preceding section indicated the nature of secondary modelling that the displays and reflective strategies provoked. Whilst the couple's responses to the displays provided qualitative data concerning their effect, with the exception of the Level 1 displays, quantification of this data was not possible. However, it was clear that the Level 2 component display, in clarifying the couple's modelling of thenselves, enabled Isaac and Ruth to experiment with their self-definition in a way that might otherwise not have been possible. Ruth's increasing self-confidence in her intellectual abilities, and Isaac's understanding of her tranditional domestic role may both be attributed to the clarification offered by these displays. Moreover, the role played by the family events and Isaac's career in the relationship appeared to be clarified as a consequence of the Level 3 displays.

Modelling at Level 1 was, however, quantifiable in that the couple attempted to classify the functional properties of their constructs in the individual and aggregate domains. The success of the procedures to encourage the development of discriminative control over modelling might then be inferred from the gains in predictive accuracy of Level 1 outcomes. However, the infererces that may be drawn in this case are limited by the form of learning that takes place in this activity. Chapter 3.4. pointed out that gains in predictive accuracy may be associated with the distinctive features of constructs as they are recorded in the grid
matrix rather than with distinctive features of the thoughts and; feelings conveyed by the constructs. Although it cannot be asserted that learning of the latter kind necessarily follows from the former, we may enquire as to the extent to which the couple achieved predictive accuracy of Level 1 classifications.

The couple independently formulated predictions concerning the centrality of their constructs to the self-definition in both individual and aggregate conversational domains. Figure 88 depicts the correlations between their anticipated rank orderings of constructs in terms of their core construct scores in the IG and AG analyses.

Applying Fisher's z transformation to the rank correlations and estimating the standard error of rho, it is evident that only Isaac shows a significant improvement in identifying functional features in the IG context (Isaac, $z=1.86 ; p=.031$ Ruth, $z=.796$). However, both participants achieve significant levels of correlation by the third session (Ruth, $r_{B}=.472, p<.05 ;$ Isaac, $r_{B}=.428, p<.05$). Neither participant shous a substantial gain in identifying functional features in the AG context (Ruth, $z=.164$ Isaac, $z=.552$) : nor do they attain any substantial correlation (Ruth, $r_{s}=-.022$; Isaac, $r_{s}=.364$). It is important to note that learning the ordering of construct outcomes in the first analysis does not facilitate predictive accuracy of outcomes in the second grid; both Ruth's and Isaac's constructs undergo changes in relevance to their self-definitions, (Ruth, rho = .07; Isaac, rho $=-.622$). Thus, any improvement in predictive accuracy must reflect the development of the ability to evaluate construct dimensions in their relevance to self-definitions at the time of their

$$
-635-
$$

Figure 88 Level 1 predictive accuracy in individual and aggregate
gride.
production.

It is apparent that Isaac and Ruth are less able to evaluate the way in which their constructs contribute to a shared definition of themselves on the third session. Unless each participant is fully able to anticipate their partner's modelling activities, accuracy in predicting AG outcomes is unlikely to be achieved. It is therefore noteworthy that Isaac attains a higher level of accuracy than Ruth; this may reflect Isaac's ability to sympathetically respond to Ruth's attempts to re-model her self-definition. As he realises Ruth is attempting to define herself in similar terms to his own self-definition, he is more able to anticipate Ruth's view of him.

In summary, qualitative evidence of the results of the procedures for secondary modelling is available in the case-study report. In addition, within the limitations discussed in Chapter 3.4., quantitative data on gains in predictive accuracy of Level 1 outcomes do indicate the development by the couple of the ability to distinguish the functional properties of predicates in the individual grids. Similar gains did not obtain for outcomes in the aggregate grids, although Isaac did display greater accuracy than Ruth. These findings are consistent with the previous observations that Isaac was able to reciprocate Ruth's :attempts to re-model her self-definition.
4.2.6.4. Participants' reports on the activities.

It became clear in the discussions of Chapter 3.5. that the evaluation of conversational procedures cannot be achieved unless the assumption of identity between participant and procedural
objectives is satisfied. That is, criteria for evaluating procedures are appropriate only if they approximate to the purposes of the user in interacting with them. If the criteria do not approximate to user objectives the procedures may erroneously be considered inadequate. 'To estimate the couple's purposes, they were interviewed by E after the four sessions were completed, regarding the outcomes of the study as they perceived them.

Ruth felt that the exercises helped her "sort out what I felt about people", and gave her "courage to face up to the bad things I thought about them". She remarked that she had found greater understanding in her relationship with Isaac, and felt flatiered by his confidence in her stamina and resilience She found that "talking about my feelings came easier", and whilst in the past was frightened by Isaac's moods, now found she could writhstand them and find the confidence to express her feelings about him. Isaac felt he had reflected a great deal on himself, and thought that his views were no:! more realistic. He reported increased confidence in nis own work which had some time previously been at a low ebb and that he now knew where he stood with Ruth. Both Ruth and Isaac reported greater thoughtfulness about each other, and a greater extent of self-disclosure to each other. Ruth said that she "did not know what to expect from the study, so what had happened was a bonus". It had, she said, "given me a marvellous feeling of the depth of . people.....being able to see people in depth and finding them interesting". In remarking on the procedures, Isaac criticised the use of computer prograns and wondered whether simpler operations might not have sufficed. However, both Isaac and Ruth appreciated
the unobtrusive nature of the procedures and suggested that more potent prompts might be less appreciated by people who were "slow to open up". Whilst neither member was able to explicitly specify their objectives in the interactions, they both felt that the outcomes were entirely satisfactory.
4.2.7. Summary.
4.2.7.1. The task of this chapter has been to incorporate the aggregate grid method, developed for two or more participant users in the preceding chapter, into the algorithm of activities developed in Part 3. To do so, some simplification of the procedures was necessary, and only transformations and displays relevant to the feature of predicate centrality were employed. The procedure, the reciprocal insight grid, was devised for use in a couple's counselling context, and its application in a single case-study is reported.
4.2.7.2. Comprehensive transformations, displays and refiective strategies were developed compatible with this context, and details of the instructions and activities reported. In addition, methods for evaluating modelling activity promoted by the procedures were formulated, and it was evicent that the couple studied engaged in modelling with a clear purpose, namely, to attempt to reverse the roles they had come to assume for themselves within the relationship, and focus on applying to themselves attributes previously associated with their partner.

Chapter 4.3.

Summary
4.3.1. Implications for internal modelling conversations.
4.3.2. Implications for interpersonal modelling conversations.
4.3.1. Implications for internal modelling conversations.

Abstract

4.3.1.1. The procedures developed in Part 4 may be summarised in terms of the model of conversations as a device enabling two or more participants to exteriorise their models of themselves and each other in a way that permits them to operate on the reference frame of their relationship. This is achieved by interposing between the participants a class of procedures that act collectively as a cognitive reflector, and mediator of each participant's modelling of their partner (Fig. 89). Mediation, however, takes a special and restricted form. Rather than convey the content of reciprocal modelling between participants, the procedures display the function of each model for a common domain of reference, namely, the aggregate grid. Each participant interacts separately•with the displays, providing a context in which internal modelling of self and partner may occur. Within this definition the procedures developed and applied in Chapter 4.1. and 4.2. are only partly successful. Their limitations may be divided into two classes: (i) limitations in their capability to promote internal modelling; (ii) limitations in their capability to promote interpersonal modelling.

4.3.1.2. In summarising the individual case-studies of Part 3, Chapter 3.5. noted a number of features of user interactions with procedures that were observed in the reciprocal insight grid study. For example, prompts at a specific level of display frequently led to a modelling activity at several levels, outcomes at each level occasionally appeared incompatible and the complexity of the transformations of ten led users to view them as arbitrary. However,

Figure 89.
a number of additional limitations to internal modeliing were observed in this study which require discussion.

Firstly, both participants found secondary modelling in response to the Level 2 component displays difficult to achieve. Whilst they were requested to comment on the functional properties of classes of predicates identified in these displays, their responses were invariably to denote the classes by formulating superordinate constructs which subsumed the individual members of each class. For example, Isaac denoted the class of constructs comprising WARM \& LOVING, PROGRESSIVE IN SOCIAL ATTITUDES, CULTURALLY SOFHISTICATED, INTELLIGENT, etc., as "warm and progressive". That is, the participants did not compare and contrast classes of preaicates by denoting them within a second-level metalanguage, ar.a instead replaced then with constructs of greater generality at the same level of discourse. A systematic procedure for guiding comparisons between classes in these displays thus appears desirable, and may be modeiled on repertory grid procedure. That is, classes of
predicates may form elements in a higher-order grid, and constructs produced to distinguish between them.
4.3.1.3. Secondly, identifying significant recent events
fequently 'set' participants to engage in particular forms of
secondary modelling in reply to Level 3 prompts. For example, having noted events concerning their relatives, Isaac and Ruth were predisposed to respond to prompts by accounting for observed changes in their modelling of self and partner by exclusive reference to these events. Discrepancies which could not be attributed to this source.frequently obtained reduced secondary modelling (for example; Isaac's response to the construct PHYSICALLY ATTRACTIVE). Two considerations follow from these observations: (i) the identification of significant events in advance of Level 3 displays may be eliminated. The problem may reappear, however, in that Participants' responses to Level 3 displays on one occasion may influence their. responses to subsequent displays; (ii) prompts of greater potency or persistence may be devised. This would require that the procedure recognise the need for additional prompting, perhaps by classifying user responses. The paraphrasing of feedback. information, repetition of observations, extent of exploration and implications of responses for self-modelling are possible parameters of such a classification. These considerations may be viewed as aspects of the supportive function of procedures, discussed in Chapter 3.5.
4.3.1.4. Thirdly, participants remarked that the means devised for recording their responses to prompts at all levels were frequently inadequate to convey the thoughts and feelings provoked by the prompts. Methods for representing primary modelling activity have already been discussed (Chapter 1.2.) and it was concluded that the repertory grid technique was appropriate as it enabled systematic predication within a conversational domain. Owing to the indeterminate nature of the conversational domain of secondary modelling, systematic predication in response to prompts was not considered feasible at that time. A possible adaptation to the procedure to enable systematic secondary modelling is to utilise the prompts to demarcate a secondary domain, and to formulate constructs within that domain. For example, in the previous casestudy Ruth noted that a number of her constructs had altered their function in her erids, constructs which:
> "were originally thought of with Isaac's brother in mind......but now my feelings have softened......I think my relationship has improved with Isaac's brother, and I'm not so antagonistic".

Ruth has clearly identified the domain of secondary modelling (her relationship with Isaac's brother) and might have proceeded to eiaborate additional constructs within that dcmain. She may, for cxample, produce constructs from selected triads of elements (e.g. ISAAC, RUTY, ISAAC'S BROTHER) until the thoughts and feelings embodied in the staiements "my feelings have softened", and "my relationship has improved" had been systematically elaborated. Further development of the procedures may then seek to devise
methods to reflect the implications of primary modelling activity back onto the record of that activity, and thus modify and elaborate it.

The effects on the conversational domain of predicates derivins from secondary modelling may then be asserted, and may become the source of additional prompts. Channelling secondary modelling to operate on the primary domain parallels the elaborative options included in the DEMON computer program for eliciting repertory grids (Thomas, 1975), and enables the user to develov his modelling within a single frame of reference.

4.3.2. Implications for interpersonal modelling.

4.3.2.1. Applying the procedures in an interpersonal context raises a number of considerations concerning their role in couples counselling. In particular, one of the design specifications of procedures, namely their supportive function, was difficult to achieve. In a counselling interview, the counsellor employs diverse cues to infer the state of readiness of the client to receive particular classes of prompt. To simulate this process a procedure nust first have available a repertoire of categories denoting 'user states", secondly the means to identify those states, and thirdly,. transformations and displays compatible with each state identified. In the case-study reported in the previous chapter a number of observations may be made in relation to the supportive function of procedures.
4.3.2.2. Firstly, although the procedures were intended to mediate between participants' modelling conversations, the couple were simultaneously involved in the activities and consequently frequently engaged in interpersonal modelling conversations. For example, Isaac and Ruth might discuss together their feelings towards particular persons. Whilst the procedures did not require conversations of this kind, it was anticipated that they would proveke modelling transactions between the couple. One policy of the procedure was thus to provide each participant with the choice of what to disclose and what to hold back from discussion by maintaining independent interactions with the procedures. However, it became: evident that the effectiveness of the procedures was limited by this
policy, and that modelling activity might be considerably extended by providing unobtrusive guidance for interpersonal modelling conversations. One aspect of the procedures that the couple agreed should be preserved was that primary modelling be conducted privately, with no commitment to exchange or reveal predications thus formulated. Many secondary modelling activities involving the aggregate grid, however, appeared to demand that participants reveal their modelling of themselves and their partner. For example, in demonstrating to each participant the manner in which their constructs functioned differently in the individual and aggregate domains, the couple felt that they could formulate explenations only by enquiring as to the nature of their partner's construing.
4.3.2.3. Secondly, it was often the case that participants sought assistance from their partner when engaged in secondary modelling activity. As E perceived his role to be a source of information rather than to provide additional prompts, each participant occasionally assumed a supportive role for their partner. By commenting on their partner's displays, making suggestions, sumnarising their partner's reflections, and generally assisting their partner's introspective activities, the couple began to develop the capacity to counsel each other. This was viewed as a constructive outcome of the inadequacies of the procedures, and could not be achieved in the individuai interactions discussed in Part 3. As particip-. ants may readily be able tio identify and anticipate states of readiness of their partners, the supportive function might be better achieved by participants than oy the procedures. Thus, whilst the objective of procedures in the individual context was to develop
in the user the role of self-counsellor, in the interpersonal context the objective properly becomes the develoment of comcounselling capacities of the couple.
4.3.2.4. Thirdly, the measures developed to assess the outcomes of modelling activity by the couple revealed that each responded to the self-definition of their partner by attempting to apply those attributes to themselves. For example, Ruth evidently attempted to construe herself as intellectually competent, whilst Isaac sought to view himself as able to become domestically supportive. Whilst Isaac responded to Ruth's attempts to alter her self-definifion, by simultaneously redefining Ruth, Ruth did not reciprocate Isaac's attempts to redefine himself. This finding oloarly has implications for the nature of the couple's relationship, but was not made available to them at the time. This reciprocal aspect of modelling may ve displayed only by demonstrating the functions of predicates for defining partner in the aggregate grid. For exampie, to draw Ruth's attention to the discrepancy between her own and Isaac's. modeliling of Isaac requires information contrasting her own and Isaac's constructs to define Isaac, in addition to contrasting her own and Isaac's constructs to define herself. This dual process is represented in Fig: 90, where scheme (a) displays to each participant the extent of agreement or disagreement in the collective definition of self, and scheme (b) agreement or disagreement in the collective definition of partner.

Figure 90.
4.3.2.5. In summary, these comments on procedures reflect the difficulties of simulating the activities of the counsellor with an interactive algorithm. At many points during the interactions E was required to fulfil functions which were not readily translatable into a set of operations. The extent to which E was required to intervene indicated the shortcomings of the procedures. The incompleteness of the procedures as autonomous algorithms suggests that at their current stage of development computerisation will achieve very little, save to enable on-line response-sensitive feedback. As a program of activities, to be administered by a participant experimenter or counsellor, however, the procedures do achieve
-650-
satisfactory outcomes. The following discussions seek to clarify the possibilities and implications of these and similar procedures for modelling conversations.

Part 5

Conclusion

Chapter 5.1. The rationale and outcomes of conversational procedures.

Chapter 5.2. Implications for conversational practice.

Chapter 5.1.

The rationale and outcomes of conversational procedures.
5.1.1. Conversational mechanisms.
5.1.2. The design of procedures.
5.1.3. Strategy A procedures.
5.1.4. Strategy C procedures.
5.1.5. Combining Strategy B and C procedures.
5.1.1. Conversational mechanisms.

Abstract

5.1.1.1. A science of persons. The two themes developed in parallel in this thesis may now be summarised. The first theme, a model of conversational process, focused on essential interand intra-personal mechanisms associated with conversation as a social activity. The second theme attempted to translate the first into a modus agendi for enhancing specific forms of conversation by constructing a number of conversational procedures. The following chapters trace the development and application of these procedures and assess their implications for conversational practice in applied settings, with special reference to psychological counselling. Figure 91 summarises this scheme, and depicts the structure of the research undertaken.

The epistomological status of the two themes is grounded in the assumption that conversational methods are derived from.a science of persons. Such a science, according to Harré and Secord (1972), has the following central features:-
(i) that any explanation of social phenomena depends to a greater extent on the view that a person acts as an agent directing his own behaviour than on the view that a person is an object responding to the push and pull of environmental forces;
(ii) that such explanations depend to a greater extent on the precision of meaning obtained by examining the actor's accounts of his own behaviour than in the standard of
accuracy of measurement familiar to physical sciences;
(iii) that the actor's justification for his accounts of conversational episodes leads to the discovery of the manner in which the actor monitors his own behaviour.

The conversational methods developed in this thesis closely conform to the ethogenic analysis of episodes favoured by Harré and Secord with the exception that the locus of the utility of explanation obtained by such an analysis is with the actor rather than with the observer. That is, the objective of the thesis was to develop procedures whereby actors may modify their accounts towards greater veridicality rather than to examine, from an objective standpoint, the explanatory properties of such accounts. Within this framework, however, the logic of the negotiation of accounts has been closely followed. Indeed, the methodological problems encountered by ethogenists in managing such a negotiation become central concerns to conversational methods. For Harré and Secord:-

[^5]

Figure 91. The research scheme.

```
as a man and wife discussing their relation-
ship with the help of a marriage guidance counsel-
lor.. The counsellor's job is not just to act as a
referee but to enter into the relationship as
negotiator of accounts."
```

Harré \& Secord (1972, p.235-7).

The conversational processes and procedures developed in this thesis thus focus on the role of negotiation in modifying the actor's capacity to account for his behaviour. The following sections summarise extrapolations from the epistemological base provided by Harré and Secord to describe the specific conversational mechanisms involved in the negotiation of accounts.
5.1.1.2. Modelling in conversations.

The opening chapters developed the notion of conversational competence by analysing conversational processes. This analysis drew on the contributions from diverse sources - the social behaviourism of Argyle and Kendon, the rationalistic interactionism of Mead, and the perspectives on therapeutic encounters provided by Lacan, Laing and Rogers collectively established the foundation of a model of conversational process. These perspectives drew attention to a fundamental feature of human relationships that shaped and directed the subsequent studies, namely that process and outcome in conversations are mediated by the conversant's capacity to form an internal representation, or cognitive model, of the interactions in which he engages. Empirical support for the notion that
behavioural outcomes are mediated by self-awareness and selfmodelling are to be found in studies of cognitive dissonance and self-perception (Bem, 1967; 1972), causal ascription for success and failure and achievement motivation (Veiner, 1974), and cognitive misattribution and emotional arousal (Schachter and Singer, 1962; Valins, 1966).

5.1.1.3. The distinctiveness of models.

The construction and maintenance of cognitive models of interactions enables the conversant to participate in social relationships by providing an interpretive frame of reference within which his own experience and behaviour, as well as the behaviour of others, is made intelligible. Reference frames were considered as a collection of inter-related models which, for simplicity, were partitioned into the minimal duality of self and other.

The utility of this distinction is supported on other than epistemological grounds, in that a failure to construct distinctive models of self and significant others leads to the disruption of interpersonal conversations. Empirical support for the utility of self-other distinctiveness is provided in studies of marital breakdown (Laing, Phillipson \& Lee, 1966), and studies of misattributions to self and the negative placebo effect (Valins \& Nisbett, 1972).
5.1.1.4. Interpersonal modelling.

The element of interpersonal veridicality in modelling associated with the "Negotiation of accounts" emphasised by Harre and Secord was introduced by distinguishing participative conversations from modelling conversations. In the former, the conversant was said to act on the basis of an established interpretive model. In the latter, models were said to be constructed or revised to minimise interpretive disjunctions between conversants either by explicit reference to modelling activity, or by implicit verbal or nonverbal communication. Empirical support for this distinction is provided in studies of "report/command" communications in therapeutic relationships (Bateson \& Ruesch, 1951), and the relationship-defining manoeuvres and paradoxes described by Haley (1963).
5.1.1.5. Personal modelling.

An additional distinction was drawn between interpersonal modelling conversations engaged in by two or more persons, and modelling conversations internal to a person. Whilst the former were said to give rise to "consensual definitions" (Mead, 1964), internal conversations were viewed as the medium through which a conversant effected changes in his construction of self and significant others. This distinction gave gave rise to the following fundamental considerations:-
(i) The nature of conversations and individuals; to clarify the status of internal conversations it was necessary to specify three distinctive features of conversational events, namely, the partition of at least two initially asynchronous individuals, reciprocally contingent coupling between individuals, and self-reference (Pask, 1975). In separating individuation from biological identity it becones equally as possible to partition processes internal to a single person into two asynchronous "psychological" individuals as to describe the process of the "deindividuation" of the individual within a group (Wicklund, 1975; Festinger, Pepitone \& Newcomb, 1952).
(ii) The primacy of the internal conversation; the consensual definitions of conversants arrived at through explicit or implicit modelling conversations are logically distinct from those internal modelling processes which give rise to the conversant's conceptions of self and other. Consensual definitions achieve their effect only through self-monitoring by the individual (Harré \& Secord, 1972).
(iii) The nature of self-awareness; internal conversations conform to recent formulations of objective self-awareness (Duval \& Wicklund, 1972; Wicklund, 1975) in which attention is directed towards self as a social object for the purposes of social comparison (Festinger, 1954). Empirical support.for this information-processing view of Mead's original notion of "self-interactions" is provided in studies of self-awareness

```
and self-esteem (Ickes, Wicklund & Ferris, 1973), self-
attribution (Vicklund & Duval., 1973), and dissonance
reduction (Vicklund & Duval, 1971).
```


5.1.1.6. Conversational competence.

Thesetheoretically and èmpirically justifiable distinctions between various conversational mechanisms enabled a tentative account of conversational competence to be outlined, featuring three performance characteristics, namely, the alternation of modes of selfawareness, the distinctiveness of models of self and other, and the capacity for perceptual differentiation within models. These performance characteristics were highlighted by examining them in relation to the breakdown of competence in the states of anxiety (Kelly, 1955; Tillich. 1952), guilt (Kelly, 1955), threat (Landfield, 1951), denial (Keen, 1972), projection and introjection (Laing, Phillipson \& Lee, 1966), misinvolvement (Goffman, 1971) and hostility (Kelly, 1955; Mischel, 1964).
5.1.2. The design of conversational procedures.

5.1.2.1. Strategies for intervening into modelling processes.

The analysis of conversational competence suggested that procedures designed to enhance competence converge on three major aspects of modelling conversations. Each aspect, however, entailed a distinct methodological strategy.

(i) Strategy A; The alternation of conversational modes.

An effective strategy A procedure would be required ${ }^{\text {a }}$ to (a) monitor the development of frames of reference in ongoing conversations; (b) intervene at critical moments to display conversational states to the participants, (c) provide conditions whereby participants may redirect the development of the conversation, and (d) develop the capacity to regulate transitions between modelling and participative conversational modes. Such a procedure would entail an analysis resembling that for enigmatic episodes (farré \& Secord, 1972), revealing the generative rules that govern conversational processes.
(ii) Strategy B; The distinctiveness of models of self and others.

An effective strategy B procedure would be required to (a) sample the conjoint personal and social environment of two or more participants, (b) reveal the functional properties of their self-identity systems (Norris \& Mahklouf-Norris, 1976, Mahklouf-Norris \& Jones,
1971), (c) display disjunctions and consensus in participants' modelling of themselves in order to (d) develop veridical perceptions of self and others.
(iii) Strategy C; The perceptual differentiation of models.

An effective strategy C procedure would be required to (a) sample the personal and social environment of a single participant, to (b) reveal the functional properties of modelling within this domain, (c) display cues associated with specific modelling processes, and (d) develop perceptual specificity (Gibson, 1969) in the utilisation of social feedback in constructing models. This procedure would resemble Kelley's (1967) covariance model of causal ascription.

Stated in these terms, the procedures implied by all three strategies were viewed as "enabling interventions" (Benjamin, 1974), paralleling psychological counselling in which a therapist engages a client or ciients in an interpersonal relationship for the intended purpose of changing the client in certain ways through "social influence" (Carson, 1973). The locus of effect of the therapist's social influence is not simply the client's behaviour (which may be modified by the impersonal props of the behaviour therapist) but "the templates by means of which he orders and construes his:experiences; his cognitive map or image of the universe, including of course his self and his notions of his proper relation to the rest of it" (Carson, 1973, p.161). As maladaptive conversational processes are, for Carson, behaviours designed to increase the match between a non-veridical self-system and the social feedback the

Abstract

client receives, the therapist's task is "to conduct himself in his interactions with his client in such a way as to fail to provide confirmatory and complementary feedback in response to the disorder-maintaining behaviours of the client, while at the same time providing the client with an experience that is sufficiently positive to maintain him in treatment" (Carson, 1973, p. 162.)

Haley's (1963) analysis of therapeutic intervention resembles Carson's, and both suggest that the outcomes described above are secured through the judicial use of "social power", therapistclient matching (Carson), and "control over the definition of the therapeutic relationship" (Haley). Indeed, Haley's argument takes the form that the control over the relationship exerted by the client in the form of symptoms may be countered only by control exerted through the therapist's paradoxical communication.

Both analyses emphasise the personal characteristics and skills of the therapist as an agent of social influence in achieving conversational competence. However, this dependence on the personal qualities of the therapist was challenged on the grounds that much of the therapist's social activity is routine and procedurally defined, that the objective of therapy is not to initiate specific changes in the client but to develop the capacity for adaptive change (Rogers, 1958), and that sucessful counselling is marked by the growth of self-counselling competence. The conversational procedures developed and reported in Parts 3 and 4 represented attempts to devise intervention strategies which functioned independently of the personal qualities of social agents by identifying
the requirements of an interactive system capable of provoking client modelling.

The three strategies suggested by the analysis of conversational competence make use of social feedback to modify conversational processes. However, this feedback may be framed in three distinct ways:-
(i) it may be utilised as a component in persuasive instruction, as an appeal to the client to re-model his construction of particular aspects of his personal and social environment. This use of social feedback especially characterises rational-emotive therapy (Ellis, 1962) attribution therapy. (Ross, Rodin and Zimbardo, 1969; Valins \& Nisbett, 1972) assessment therapy (D̈avison \& Valins, 1969), and the negative placebo effect (Storms \& Nisbett, 1970).
(ii) it may be utilised as a guideline for a behavioural regime in which the client's remodeliing of his personal and social environment is expected to be consequent upon the enactment of counter-attitudinal behaviours (Carson, 1973; Bem, 1967). Counterattitudinal advocacy especially characterises techniques such as fixed-role therapy (Kelly, 1955), psychodrama (Moreno, 1946), and the self-perception interpretation of forced-compliance studies (Bem, 1972).

These methods of utilising feedback may both be criticised in that an assumption is made concerning the veridicality of the therapist's account. Consequently, these strategies are not consistent with the
rationale of the negotiation of accounts (Harré and Secord, 1972).
(iii) Social feedback may be utilised within the therapist-client relationship to identify and explore discrepancies between the client's accounts of his personal and social environment and his behaviour, and between the client's accounts and the therapist's accounts. This use of social feedback is grounded in the notion of "constructive alternativism" (Kelly, 1955), and is especially characteristic of the conversational use of repertory grid technique (Rowe, 1976) personal construct therapy (Bannister, 1975), and laddering procedure(:Iright, 1970).

The third method of utilising social feedback was favoured as it most closely approached the ethogenic method advocated by Harré and Secord. Its acceptance, however, required that the role of the counsellor as a "cognitive reflector" (Fask, 1975) in the process of negotiating accounts be considered in greater detail.

5.1.2.2. The copnitive reflector.

An analysis of the counsellor's role as a "cognitive reflector" is essentially an extended analysis of the process of negotiating accounts ommitted in Harré \& Secord's (1972) formulation. The term "cognitive reflector" derives from Pask's (1975) description of a device that externalises the cognitive operations of the client so that they are executed in a modelling facility (e.g. the counselling interview or defined procedures such as projective tests and repertory grid technique), as a result of which they
become observable. In short, a cognitive reflector "mirrors (the client) in the context of R (the demarcated conversational domain), and does whatever is needed in order that (the client) shall understand $\mathrm{R}^{\prime \prime}$ (p.204).

Pask's formulation clearly required further elaboration. In particular, three aspects of cognitive reflection, namely reflective strategies, phases in reflection and consensus in negotiating accounts, were considered in greater detail.

(i) Reflective strategies.

Firstly, a reflective strategy requires that the counsellor respond by commenting within the conversational domain defined by the client. Such comments range from reflecting the content of the client's statements unchanged, summarising, clarifying and interpreting the client's statements, to questionning and prompting the client to extend his statements (Patterson, 1974).

Secondly, a reflective strategy is effective only when it enables the client to bring an alternative frame of reference to vear on the conversational domain. Such a strategy responds to cognitive fixedness by translating the client's statements into an alternative language system (Levy, 1963).

Thirdly, this translation has the function of making tine client's observations more amenable to manipulation (Levy, 1963). Essentially, this translation constitutes a starting point for further elaboration of the conversational domain by the client.

Finally, the client's initial statements within the conversational domain may be distinguished from his responses to the reflective strategy. The latter, secondary modelling, requires that the client develop a higher-order interpretive system by which to manipulate and denote his initial statements.
(ii) Phases in reflection.

In his discussion of the interpretive process, Levy, (1963) distinguishes two phases in interpretation; (a) the semantic phase, in which a different language system is brought to bear on the description of events, and (b) the propositional phase, in which propositional statements are formulated in the terms of this language system. These two phases represent components of reflective strategies.

Firstly, the semantic phase is concerned with the relation of descriptive terms to designated events in the client's elaboration of the conversational domain. To acnieve this events are assigned to equivalence classes according to the extent to which they display criterial attributes of those classes. The develoment of reflective strategies thus required the derivation of classes from a theory of conversational modelling and operational definitions of attributes defining those classes. These classes must be consistent with the principles outlined above, namely that they provide an alternative descriptive system and make the client's statements amenable to manipulation.

Secondly, the propositional phase is concerned with the formulation
of propositions empirically rooted in the classification of the semantic phase. Such propositions assert relations between events, and in the course of orthodox psychotherapy are derived from a theory or theories of psychodynamics. However, to remain consistent with the reflective strategy outlined above, propositions formulated by the client and the counsellor are viewed as equally valid.

Finally, an appropriate reflective strategy was viewed as incorpórating the semantic and propositional components in the following way. The counsellor's role consisted of enabling the client to externalise modelling statements. within a conversational domain, transforming them by semantic classification, and displaying them as cues for the client's secondary modelling, the client's role being to formulate propositional statements accounting for these cues.
(iii) Consensus in nerotiatins accounts.

A third consideration in the analysis of cognitive reflection is the criteria by which the progress of negotiation is assessed. How might consensus be identified and at what point might negotiation be terminated?

Two levels of consensus required clarification. Firstly, methods for comparing the client's statements within a conversational domain over a period of time were required. In the course of reflection upon his . own actions the client may restate a particular assertion in different terms, modify a previously stated assertion, or formulate novel assertions. It was thus necessary to externalise modeling statements in a form that enabled them to be compared.

Abstract

Secondly, where two or more clients are involved (as in marital or family therapy), or where client or counsellor compare viewpoints, methods for establishing consensus were required. To achieve this, it was necessary to ensure that participants uniformly predicate within the same conversational domain.

Repertory grid technique provided a method capable of meeting these requirements. In this technique the conversational domain is specified by a sample of elements or figures (nodes in Pask's (1975) entailment structure) which are systematically predicated (forming topic relations in the entailment structure). Each element is defined by the pattern of predications which it obtains, usually represented numerically at an ordinal, ordered metric, or nominal level of measurement. Estimates of consensus in this technique thus reduce to the measurement of functional equivalence, defined as. similarity in predication patterning with respect to a fixed domain. Functional equivalence between participants hinges on the assumption of the identity of the element sample for the participants, which may only be ensured by negotiating elements representative of the domain prior to predication.

Incorporating this techrique into the reflective strategies outlined above enabled the profress of the client's modelling to be monitored, and in addition, to highlight consensus in the functional properties of models of two or more clients simultaneously.
5.1.2.3. Conversational procedures.

The function of cognitive reflection is to promote conversational skill. The analysis of cognitive reflection enabled the construction of a model for conversational procedures incorporating three phases of activity, namely, primary modelling within a conversational domain, the reflection and subsequent secondary modelling of that domain.
(i) Primary modelling comprised those activities in which the client engages when formulating initial statements. Firstly, procedures would enable the client to specify the conversational domain within which to formulate statements. Usually, this takes the form of demarcating the client's personal and social environment which encompasses the domain of his complaint. Initially, this demarcation is arbitrary, but may be contracted or dilated as modelling proceeds. Secondly, procedures should enable the client to systematically predicate within this domain in a form that is isomorphic to the client's modelling of that domain. 'Ihis entails that the client employ personal symbolism as far as possible. Finally, the procedure should comprise a facility for recording the client's predications in a form that enables transformations to be subsequently applied.
(ii) Reflecting primary modelling comprised those minimal activities that a counsellor engages in to promote conversational competence in his client. Firstly, the procedure should comprise a system of descriptive categories capable of distinguishing functional aspects of the client's predications. Relevant functional aspects are determined by reference to the model of conversational mechanisms

Abstract

outlined in previous sections. Secondly, the procedure should incorporate a set of decision rules for assigning predications to categories. These two operations together form the semantic phase of reflection discussed above. Finally, the procedure should embody methods for assembling displays to exhibit to the client functional aspects of his predications. The feedback of transformation outcomes involves several considerations, including the timing and form of displays appropriate to the user's readiness for secondary modelling. (iii) Secondary modelling comprised client activities associated with elaborating and assimilating the semantic phase of cognitive reflection. Firstly, the procedure should present augmented extrinsic cues in the feedback displays as a basis for the formulation of propositions by the client. These cues take the form of prompts, requesting the client to account for specific outcomes. Secondly, to formulate accounts the client must develop an internal representation of the system of categories and decision rules employed by the cognitive reflector. Thirdly, this entails that he distinguish intrinsic cues associated with functional aspects of his primary modelling independently of feedback displays. Fourthly, as the client's dependence on extrinsic feedback decreases and intrinsic feedback increases, his capacity to transfer perceptual skills to other conversational domains is increased.

These three phases of conversational procedures are diagrammed in Fig. 92.

PROCEDURE

Fifure 92 Phases in conversational procedures.

Procedures conforming to this model were conceived within the guidelines of the intervention strategies outlined in 5.1.2.1. Three classes of procedure vere envisaged, converging on the timestructure of modelling processes (Strategy A), consensus in the outcomes of modelling (Strategy B), and the functional properties of models (Strategy C). Although studies of all three strategies
were attempted, difficulties were experienced with Strategy A in particular, and the final research scheme was somewhat abbreviated (fig. 93).
STRATEGY A
STRATEGY B
STRATEGY C

```
Chapter 2.12
Chapter 2.2.
```


Chapter 4.2.

Figure 93 The research -scheme.

The objectives of the three intervention strategies may be briefly summarised.
(i) Strategy A: The analysis of the time-structure of modelling processes.

With the objective of facilitating competence in regulating transitions between modelling and participative modes of self-
experience, Strategy A procedures were intended to focus on two principal issues, namely the monitoring of reference frames in ongoing conversations and establishing criteria for intervening into and redirecting conversational processes. The first two pilot studies (Chapters 2.1. and 2.2.) reported attempts. to implement this strategy. Consistent with Fig. 92, this strategy would entail a series of procedural steps.

Firstly, the conversational domain would need to be demarcated. This entails formulating criteria for isolating and selecting a sample of representative events from an ongoing conversation. Secondly, predications of the event sample would need to be systematically formulated. A variety of techniques vere identified capable of guiding predication to a greater or lesser extent. Thirdly, a set of transformations and decision-rules would need to be constructed. Such transformations would comprise coding schemes for classifying predications and for characterising the event sample in terms of those predications. Fourthly, a system for the display of transformations would need to be constructed. As a component of this system, criteria for the timing and frequency of the displays would need to be formulated, since the display of transformations represents a cue for the shift to a modelling mode of self-experience. Fifthly, criteria for selecting salient cues in the displays would need to be formulated to provide prompts for secondary modelling. Finally, methods for guiding the secondary modelling of display information would need to be established
(ii) Stratery B: The analysis of the distinctiveness of models.

Strategy B procedures had two principal objectives, namely the monitoring of the functional properties of two or more participants' self- and other-identity systems, and the display of disjunctions and consensus between their systems. Pilot study 2.3. explored the effects of interviewer bias in modelling conversations, and study 4.1. developed specific procedures for identifying disjunction and consensus in participants' modelling.

Strategy B again requires that the conversational domain first be demarcated. However, the domain must comprise figures common to the personal and social environment of all participants, which must, of course, include themselves. Secondly, the need for participants to independently predicate within this domain was highlighted in the study of interviewer bias in modelling conversations. However, wherever possible, participants' predications should be yoked, and the timing and conditions under which predication takes place be equivalent. Thirdly, a set of transformations and decision-rules would be required to classify participants' predications, revealing between-participant functional consensus and disjunction, and temporal changes in between-participant features. Fourthly, a system for the separate display of transformation outcomes to each participant. would be required. Fifthly, selection criteria for identifying salient outcomes in each participant's display would need to be developed. Finally, reflective strategies for guiding the independent secondary modelling of participants would be required.
(iii) Stratepy C: The analysis of differentiation of models.

The objectives of Strategy C procedures were to facilitate the emergence of perceptual specificity in the utilisation of social feedback. Consequently, Strategy C was intended to focus on three principal issues, namely an analysis of intrapersonal conversations to reveal modelling at different levels of complexity, an analysis of specific features of selfamodelling predicates and their relationship to the coupling of levels of modelling, and an attempt to develop a training paradigm to heigiten sensitivity to cues associated with modelling at different levels. Studies 3.2., 3.3. and 3.4. reported attempts to implement this strategy.

Firstly, a relevant conversational domain for a single participant must be demarcated. Such a domain would include the participant and a representative sample of his personal environment. Secondly, predications within this domain must be formulated over a period of time in order to display relationships between events within the personal environment and functional aspects of modelling, Thirdly, sets of transformations and decision-rules appropriate to different levels of modelling would be required to classify predicates and identify functional aspects of modelling. Fourthly, a facility to enable comparisons between the participant's expectations concerning his predications and their observed functions vould be required. Fifthly, discrepancies between expected and observed functions must be utilised within a training paradign, namely to provide the participant with knowledse of results of his expectations. Finally, reflective strategies for guiding secondary modelling of discrepancies would be required.

The preceding sections have summarised both the conversational mechanisms underlying modelling processes and the derivation of procedures to enhance these processes. In the following sections we critically review studies in which attempts were made to implement each of the intervention strategies described in this section. This review will focus on each strategy, or combination of strategies, to examine the methods developed for primary and secondary modelling, reflective strategies and evaluation, and will highlight difficulties encountered in implementing these strategies.

5.1.3. Strategy A procedures.

5.1.3.1. Strategy A was implemented in the pilot studies reported in Chapters 2.1. and 2.2. Both studies examined the logic of intervention into ongoing interactions, the former a series of conversations between two persons in a friendship relationship, the latter a planned series of meetings of a group of art and design students. The nature of the ongoing interaction in these studies was similar in many respects. In the friendship study, the focus of the conversations was the nature and the future of an existing relationship, whilst in the group study, the meetings evolved around the objective of exploring group processes. In short, both series of interactions vere intentionally reflexive, and it was in this context that a high incidence of modelling activity was expected to occur. In the friendship study, however, regular opportunity for modelling conversations was established by following a planned "conversation cycle", comprising six tape-recorded conversations, each conversation immediately followed by independent tape-recorded commentaries along the lines of HcFall's "mystic monitor" (1971). This was not the case for the group study, since only one of the 16 meetings provided an explicit opportunity to model evente in the group.

In all other respects, however, the two studies were comparable, and may be examined by discussing each stage of the procedure in turn.
5.1.3.2. Recording the exchange and demarcating the conversational
domain.

In the friendship study two audio-tape recordings of each two-r person conversation were obtained, one recording for each participant. This was not the case for the group study, and although E made detailed notes after each meeting, group members had no recorded commentary concerning the series of meetings. This difference is significant for three reasons.

Firstly, the group members had to rely on their own recollections of group meetings when they came to formulate predications concerning those meetings. In contrast, participants in the friendship study were able to immediately appraise the tape-recording of events in the two-person conversations.

Secondly, the availability of the audio-tape recording in the friendship study suggests that states of objective self-awareness (Duval and Wicklund, 1972) were induced more readily than for the members in the group study. The use of audio or videotape self-confrontation in psychotherapy has been argued to induce awareness of self as a social object (Bailey and Sowder, 1970), to reduce self-image dissonance (Boyd and Sisney, 1967), increase congruence in selfperception (Bailey, 1968), and increase personal rather than consensual validation of behaviour (Wilmer, 1968). In short, selfmodelling would be expected to occur more readily for the participants in the friendship study.

Thirdly, the absence of recordings of group meetings might reduce the systematicity with which events in these meetings were sampled by group members, thus restricting the conversational domain. In fact, ten events which the group considered to represent "definite stages in the group's development" were selected by the group as a whole, including E, hopefully reducing this effect. In contrast, participants in the friendship study were at liberty to isolate anf events from the audio-tape recordings on which to base their predications. In this case it is evident that less control existed over the sampling of events than in the group study. However, independent modelling in this study was always preceded by the playback of the preceding two-person conversation which was assumed to achieve a "priming" effect on subsequent predications. It was not possible to explore the nature of this priming effect in detail, although at least three components were suggested to influence subsequent predication. Firstly, the induction of objective selfawareness noted above was assumed to increase the salience and centrality of self-relevant predications (Lemon and Warren, 1974). Secondly, it was assumed that dissonance between expressed and unexpressed feelings in the two-person conversation would be highlighted, increasing the incidence of self-role predications. This component is systematically utilised in Mair's "conversation cycle" (1970b). Thirdly, as an alternative to objective self-awareness, it was thought that playback in some circumstances :oay lead to "emotional absorption' in recorded events, priming other-relevant predications which may not have been expressed in the two-person conversation.

The comparison of the methods of demarcation of the conversational
domain in the two studies suggests a dimension along which control of demarcation may vary, extending from experimenter-based event sampling, through a form of negotiated sampling exemplified in the group study, to the subject-based sampling of the friendship study. Whilst the consequences of restriction of the conversational domain were made clear in the interviewer-bias study of Chapter 2.3., further research is required to establish the conditions under which different levels of control are appropriate.
5.1.3.3. Exteriorising and recording primary modelling.

The two studies employed radically different methods for exteriorising and recording primary modelling. In the friendship study primary modelling was conducted independently and in complete isolation. As a result, the form that modelling activity took in these sessions is indeterminate. In addition, all records of primary modelling remained confidential and were not open to scrutiny. Consequently, comments concerning modelling activity in this study can only be anecdotal. In contrast, modelling activity in the group study comprised an event in which all members participated, records of which were available for further analysis. These differences between the methods in the two studies were significant in several respects.

Firstly, the locus and quality of control over the primary modelling situation clearly differed, and these differences reflect variations in the demand characteristics present in the two methods (Orne, 1962). Demand characteristics here refer to the sum total of cues present in the modelling situation which influenced participant's
expectations concerning their performance in that situation. Thus, in the group study, where members were requested to independently formulate personal constructs to describe similarities and contrasts in their perception of the group event sample, it may be supposed that subsequent sharing or exchange of constructs was expected. Consequently, participant's modelling was shaped by the expectation that other group members would scrutinise their constructs and draw inferences about them. Similarly, some members collaborated in formulating constructs, suggesting the presence of cues capable of evoking evaluation apprehension. Some of the implications of demand characteristics operating in repertory grid interviews are explored in Chapter 2.3.

Expectations concerning modelling in the friendship study appeared to takethree forms namely an expected norm of extensive selfdisclosure, anxieties concerning confidentiality, and expectations concerning the outcome of modelling. Explicit instructions for the first stage of the "mystic monitor" were minimal, but it was apparent that both participants viewed the activity as a test of the extent to which they could be "honest" with themselves. Despite assurances that the sessions would not be monitored, that the audiotapes would be retained by, each participant, and that they were to be erased following the final two-person conversation, both participants reported a fear of eavesdropping, indicating the strength of the norm against "talking to oneself". Finally, both participants initially expected a significant outcome from the exercise, and reported some disappointment when this outcome was other than anticipated.

Secondly, the two studies differed in the extent to which the method employed guided modelling activity. In the friendship study, no guidance was offered during modelling activity. By contrast, modelling in the group study was guided firstly by the random selection of event triads which effectively yoked the otherwise independent construct formulations of group members, and secondly in the systematic numerical predication of events by constructs in repertory grid technique. Whilst repertory grid methods do not determine the content of predications, they do have the advantage of ensuring the predication of the entire conversational domain. One consideration that was observed, however, was the need to ensure by appropriate triad selection that the range of convenience of constructs encompassed the entire event sample (Bannister and Mair, 1968).

Thirdly, predication in the friendship study was expected to be characterised by a greater variety of form than in the group study. In the latter study predication took the form of written statements within a relatively fixed "sense of audience" (Rosen, 1973), namely self and other members of the group. In the friendship study, however, predications were not written but spoken, and the accompanying sense of audience free to vary. Thus, whilst within the repertory grid format the group members would be expected to be at some pains to Hord and phrase their formulations for the understanding of other group members, in the "mystic monitor" sessions the modeling monologue took a variety of forms associated with a range of rolerelationships. Firstly, the fact that predication occurred within the context of an audience was evident from the prevalence of
sociocentric speech sequences (Duncan 1972), ranging from backchannel communication (e.g. "I mean", "You know?" utterances) to explicit other-directed sequences (e.g. apologies, corrections, confiding in whispers, etc.). Secondly, it became apparent that the nature of the audience varied according to the affective content of the predications, ranging from the "sympathetic listener" to the absent conversational partner. Thirdly, one distinctive form of audience was observed, namely, self-audience, represented either as a future listener to the audio-tape, in which case predicates took the form of "notes for future reference", or as a listener in the present, speech being marked in this instance by egocentric speech patterns in which only the subject was denoted and the predicate omitted. Fourthly, the enactment of entire episodes was observed, the subject alternately assuming the roles of two protagonists engaged in dialogue, frequently of a question-answer form. Finally, the sense of audience may become so acute as to inhibit any form of speech whatever, all overt predication coming to a halt.

In summary, what may be gained in the exhaustive predication of a conversational domain by the repertory grid methodology may be lost in the relatively fixed sense of audience associated with a strict construct elicitation procedure. To obtain an increase in the affective content of construct formulations it may be advisable to root construct formulation in a more fluid dyadic interaction of the kind suggested by Rowe (1976) in which "the therapist, starting with the grid, tries to learn and to work in the client's own language" (p.14). In view of the discussion of demand characteristics of such an interaction, it is apparent that great skill is required to encourage the unbiased externalisation of personal interpretations.
5.1.3.4. The transformation of primary modelling.

The transformation of primary modelling is an aspect of Strategy A that was not developed in the friendship study. Instead, the audiotape recording obtained in the first stage of the "mystic monitor" sessions was immediately played back as a basis for further independent modelling activity. Insofar as an audiotape provides an unbiased and nonselective record of modelling utterances no external transformations were present.

In the group study, however, transformations were varied and complex. The constructs formulated by each group member from the common set of 10 group events were pooled (providing 46 constructs in all from 7 group members) to form a "group grid". The group grid thus comprised a matrix of numerical ratings (taking values of 1,2 and 3) in 46 rows and 10 columns. This grid represented the record of the group's primary modelling, and it was to this data that a series of numerical transformations were applied.

The first transformation was to assess the extent of functional equivalence between predicates in the grid. The concept of functional equivalence refers to similarities in the pattern of event predications obtained by any pair of constructs, and is rooted in the conversational domain specified by the evert sample. If two constructs obtain identical ratings for all 10 events, they were said to be functionally identical. No assertions could be, or were, made as to whether this equivalence extended to other events beyond the demarcated event sample.

Functional equivalence was assessed by computer analysing the group grid to obtain a matrix of the similarities between each construct and all others. Because of the limited range of rating values, the matric employed by the program was the normalised matching score (Thomas and Garnons-Williams, 1970), a city-block metric of the form ($n d \max / 2$) $-\sum d$) $\left(n^{n d} \max / 2\right.$), with values varying between -100. (maximal negative association) and +100 . (maximal positive association). This metric was, however, very sensitive to biased rating distributions, and a more appropriate metric in this sample case would have been available if dichotomous sorting had been employed, namely Pearson's index of mean square contingency, or phi-coefficient.

The second transformation was applied to the similarity matrix to obtain a typal analysis solution, and comprised elementary linkage analysis (McQuitty, 1957). Essentially, elementary linkage analysis is an agglomerative single-linkage technique, where clustering by types (defined as categories comprising items most associated with other items within the same category) proceeds from the disjoint to c. one or more conjoint partitions. The procedure has distinct advantages over both complete clustering schemes (e.g. Cattell, 1944) and hierarchical clustering schemes (e.g. Johnson, 1967). Firstly, elementary linkage analysis does not require the arbitrary specification of a lower limit of inter-item association necessary to determine cluster membership in complete linkage schemes. Secondly, elementary linkage analysis is labour saving in comparison to hierarchical clustering schemes. Thirdly, hierarchical clustering schemes require a theoretical decision to be made concerning the representation of conjoint items in the residual
matrix (e.g. averaging, centroid and centre of gravity methods) which elementary linkage analysis does not.

This transformation was applied in order to simultaneously locate consensual and disjunctive predications of group events for two reasons; first, to provide the group with a summary of their interpretation of events in the group's development, and second, to exhibit the pattern of assumptions in the group at the time of primary modelling. In fact, from the 46 constructs elementary linkage analysis located two large types to which all seven members contributed at least one construct, four small types and six isolate constructs. The presence of isolates is not to be expected from elementary linkage procedure, and indicates one of the difficulties experienced in applying this transformation.

Firstly, as the similarity matrix increases in size the likelihood of "straggly" clusters emerging from elementary linkage analysis increases. Straggly clusters comprise long chains of items with links of varying intensity. McQuitty (1957) foresaw this problem and suggested identifying such clusters as "mixed types", with one or more items acting as links between what might otherwise appear (in the absence of these items) as discrete types. In the group stuay the expedient of setting a lower bound on matching scores was employed, with the attendant danger of reducing the validity of the types produced by severing the weak links. As a result, six constructs with very weak typal membership emerged as isolates.

Secondly, McQuitty acknowledges that the number of types located by the analysis is determined exclusively by the number of reciprocal
item pairs (where item i_{1} has its highest matching score with item j_{2}, and j_{2} has its highest matching score with i_{1}). By employing the above expedient, this restriction is lifted, as types may be located which do not converge on a reciprocal item pair.

These transformations gave rise to two outcomes in the group study. The first outcome was the characterisation of the group's development by its members. Focussing on the two largest linkage types, it was evident that they were consistent with social-emotional satisfaction (Type I) and task satisfaction (Type II), described by Bales and Slater (1955). This sharp distinction between task and group maintenance goals may well have been potentiated by the removal of legitimate group leadership creating some resentment in the group and requiring the differentiation of a maintenance leader to reform the group's shared assumptions (Verba, 1961; Burke, 1967). Ordering e the group attempts in a temporal sequence and scoring each event for positive and negative evaluation in terms of the two major types obtained a striking pattern of shifting task and social-emotional goal satisfaction over the series of group meetings. This shift appeared to coincide with $E^{\prime} s$ observations concerning the movement of the group through the "grumble" and "party games" assumptions of Phases I and II towards the self-initiated "task-oriented" assumptions of Phase III.

A major problem in this analysis is the indeterminate extent of the contribution of individual members and E to the observed pattern of event evaluations. Since members vary in the number of constructs ~ they contribute to each of the two major types the observations on which the evaluation pattern is based are not independent, and some
degree of bias may be present. A more appropriate basis for the evaluation data would be to compute an evaluation index for each type for each group member, and base the pattern on the mean values of the index obtained for each of the ten group events.

However, the method does have distinct advantages. Previous studies of phases in problem-solving groups have relied upon behavioural data and objective criteria to establish shifts in the group climate throughout its development. For example, in a well-known series of studies, Bales and Strodtbeck (1968) employed the 12 category event schedule of the Interpersonal Process Analysis method to locate three generalised phases (orientation, evaluation and control) in problemsolving groups, requiring the presence of a trained observer. The present group study offers a more exact method for exploring members' interpretations of group activities, thus directly accessing shared assumptions concerning group climate, instead of relying on inferences from behavioural data. Nevertheless, the utility of such an analysis did not escape Bales and Strodtbeck, as they remark that "it may be used with some advantage as a baseline for the detection of discrepancies or accentuations due to known or experimentally introduced external conditions, or...as diagnostic indications of the presence of otherwise unknown conditions" (1968, p.398). These possibilities in connection with the present group study method are discussed in the following section.

The second outcome of the transformations applied in the group study was the display of shared assumptions within the group at the time of primary modelling activity. This was achieved by applying a third transformation, namely relaxed rank order typal analysis (HcQuitty,
1971) to a similarity, or consensus, matrix, obtained by computing an overlap score between members according to the extent to which they contributed constructs to the types derived from the initial linkage analysis of the group's 46 constructs. Again an agglomerative clustering procedure, relaxed rank order typal analysis has the advantage of (a) assuming only an ordinal level of measurement in the overlap scora, (b) being exhaustive, achieving the conjoint partition in every case, (c) making no assumptions concerning lower. limits of typal membership, and (d) avoiding the typal determination by reciprocal item pairs associated with elementary linkage analysis.

In many respects, this analysis achieves a summary of intragroup relationships resembling those obtained by sociometric methods (Moreno, 1953), in which criterial aspects of relationships may be depicted as a proximity network. However, the method employed by the group study is essentially indirect, in contrast to members' deliberate estimation of proximity in the sociometric technique.

Essentially, this analysis exhibited three member types distinguished by their relative emphasis on the first three linkage types. Whilst these member types corroborated E's observations conceraing task and social-emotional group leaders, the utility of the anaiysis for the members themselves will be discussed in the following section. The validity of the member types observed, however, may be questioned for two other reasons.

Firstly, the numerical basis for the overlap score from which the consensus matrix was obtained is extremely weak. The score itselp reflects the ratio between the observed and expected frequencies of
reciprocal typal membership of the constructs contributed by any member pair, or $\sum_{m}^{1} n_{1 m} n_{2 m} / N_{1} N_{2}$, where $m=$ number of linkage types, $n=$ number of constructs contributed by each member to the jth type, and $N=$ total number of constructs contributed by each member. With the exception of E , all members produced either 5 or 6 constructs distributed over 6 linkage types. Consequently, the overlap score is biased in favour of member pairs that contribute constructs to a limited number of types, and against pairs that distribute constructs evenly over the types. An alternative metric for the overlap score might be based on the partition of the expected frequency of reciprocal membership over the m types.

Secondly, inferences from the overlap score rest on the assumption that the conditions for construct sampling were equivalent for all group members, and that the overlap score reflects the relative salience of typally defined predicates for each member. That is, salient predicates, identifiable by their priority in elicitation (Tajfel and Wilkes, 1963) their elicitation frequency (Shubsachs, 1975), and their judgemental polarisation (Bonarius, 1965; Isaacson and Landfield, 1965), are viewed as important to the individual because they (a) allow more effective inferences to other predicates (centrality) and (b) provide a means of characterising self in relation to the group (self-relevance; Lemon and Warren, 1974). Similarly, Eiser and Stroebe (1972) point out that salience coincides with the effects of "ego-involvement" (Sherif, Sherif and Nebergall, 1965) and "valuing" (Tajfel, 1959) in social judgement. These assumptions underly the inference that member types reflect the intragroup structure of interpretations of group events. However, Eiser and

Stroebe point out the error of assuming that "just because an individual prefers to use certain dimensions rather than others when judging a particular set of stimuli, these dimensions or personal constructs, will remain equally salient for him whatever the nature of the stimuli he is judging. Dimensions which are found to be salient for a given individual in one situation will not necessarily be salient for him in another' (1972, p.214). Clearly, inferences concerning the structure of the group must take account of the nature of the primary modelling situation, and here we may note that predication in the group is likely to have been influenced by members' expectations and the demand characteristics introduced into the activity by E discussed in 5.1.3.2.

In summary, the transformations applied to primary modeling in the group study highlighted a number of numerical, procedural and inferential difficulties which have considerable consequences for the logic of Strategy A cognitive reflection, and as the following section displays, for subsequent secondary modelling by participants.
5.1.3.5. Intervention and the display of transformation outcomes.

A fourth consideration in assessing the two Strategy A studies is the manner in which transformation outcomes are utilised to promote secondary modelling. This aspect of Strategy A was not fully developed in the group study. However the friendship study included an attempt to devise criteria for regulating intervention into the ongoing conversation, and in the light of the discussion of transformations in the group study, some indications for the development
of an appropriate reflective strategy may be outlined.

Developing appropriate reflective strategies in these studies required that three major issues be resolved, namely, the timing of intervention, the content of intervention, and the nature of secondary modelling.

In his discussion of psychological interpretation as a cognitive activity, Levy (1963) points out that there is an optimal frequency and timing for interpretations, and that this timing is associated with the client's capacity to identify intrinsic cues in accordance with the development of conversational competence; "too high a dosage of interpretation....may in some instances encourage dependency upon the therapist....(or) so gratify the patient as to reduce the frustration necessary for him to move forward in therapy" (p.254). Here we see a restatement of Holding's (1965) assertion that augmented feedback is valuable insofar as it redirects the trainee's attention to intrinsic cues arising during task performance. As to the optimal moment of interpretation, Levy suggests that this depends on the client's readiness to receive the propositions interpretation asserts, as reflected in the level of dissonance experienced by the client within the domain of those propositions.

As an attempt to assess mements of readiness for intervention in the friendship study, an analysis was made of the series of two person conversations to establish criteria for intervention. To achieve this analysis an independent judge firstly selected from the audiotape recordings of the conversations a number of "significant events" which were viewed as having an effect on the course of the encounter.

From four hours of conversation 47 events were selected, and coded in such a way as to achieve three objectives: (a) to identify the interaction modality of each event by classifying it along two dimensions, active vs. passive and personal vs. impersonal, (b) to identify models of self and other constructed by the participants in each event by classifying events into a limited class of reference frames, and (c) to identify the sequencing and transitions between reference frames over the series of conversations. The reference frames in (b) above were constructed by the judge, who was instructed to analyse the event sample for its dramatic content and to group the events into a minimum number of discrete classes according to the roles enacted by the the participants. Four frames of reference were identified from the event, namely "debate" (intellectual discussion), "performance" (monologue by one participant), "stroking" (reciprocal exchange of concessions), and "fight-flight" (conflict and dispute). The four reference frames were then characterised by their predominant modality, as follows: debate, passive-impersonal; performance, passive-personal; stroking, passive-personal; fight-flight, activepersonal.

Clearly, the procedure for sampling and coding events in the conversations is far from ideal. Firstly, the criteria the judge employed for selecting events were not made sufficiently explicit, and no attempt was made to test sampling stability or inter-judge reliability. Secondly, similar criticisms may be levelled at the encoding of the event sample by interaction modality and reference frame. Finally, the reference frames themselves have not been tested for their general validity.

However, this procedure represented a first attempt at establishing a means of identifying phases in ongoing conversations from which to develop intervention criteria. In applying the results of this. coding scheme to the sequence of two-person conversations it became evident that two cycles of activity, each opening and closing with ritualised behaviours, were present. The first cycle, marked by the prevalence of the performance frame, appeared to set the stage for the activity of the second cycle, distinguished by the prevalence of the fight-flight frame. Within the second cycle, it became apparent that unsuccessful attempts to establish a new definition of the relationship were being made, and that these attempts were marked by the avoidance of complementary self-models, either through overt contradiction of self-models by one or other participant, or through inadvertant paradox in the demands participants placed on each other. Instances of paradox and contradiction seemed to represent moments of impasse, and thus monents of maximal readiness for intervention. On the basis of criteria for identifying contradiction and paradox, a reflective strategy might be constructed to intervene at those points, display the sequence of immediately preceding reference frames, and provide a basis for participants to engage in secondary modelling.

The assumption that paradox and contradiction represent ideal moments for intervention is grounded in Levy's theoretical account of interpretation (1963). Firstly, Levy points out that the purpose of interpretation is to introduce an alternative language system for describing events when those events are interpreted by the client in an inconsistent and unproductive way. Secondly, interpretation introduces dissonance into the client's interpretive system (Axiom 6)
which the client seeks to reduce by cognitive restructuring. Thirdly, cognitive restructuring will occur only if post-interpretation dissonance is less than pre-interpretation dissonance (corollary IIIA). If the reverse is the case, Levy argues, interpretive propositions are rejected or distorted. Thus, intervention criteria may be stated in behavioural terms, as behaviours that indicate the occurrence of maximal dissonance in self-cognitions. Moreover, the development of competence in regulating transitions between participative and modelling modes of self-experience entails identifying intrinsic cues associated with dissonance of this kind.

The second major consideration in the development of a reflective strategy concerns the content of the intervention response. It was suggested that in the friendship study a reflective strategy would display the sequence of behaviours that led to the occurrence of paradox and contradiction of self-models. As this was not attempted in the study the consequences of this intervention are not known. However, transformation outcomes were displayed to participants in the group study, and some remarks concerning their consequences may be made.

Three displays derived from the "group grid" were presented and discussed in the group; (a) a "focused grid" (Thomas and Shaw, 1976) obtained from the linkage analysis to display the pattern of construct types produced by the group, (b) a chart depicting the evaluation of events by the group in terms of the first two construct types, and (c) a "consensus" diagram derived from the relaxed rank order typal analysis depicting the three "member types" within the
group. These three displays were introduced as discussion items and, although they provoked considerable discussion, group members identified a number of difficulties in formulating propositions concerning them. Firstly, in the group study the timing of presentation of the displays was not coincident with dissonance in the group. Instead, the timing of presentation was determined by the time taken to process the data, and in many cases members observed that their interpretations of group events were now so different as to render their earlier formulations irrelevant. Secondly, some members were reluctant to formulate propositions concerning the displays because the transformations that had been applied were not explicit. Consequently, members rejected the alternative language system provided by the displays. Finally, members felt that their original predications were not entirely valid, influenced as they were by the context in which they were formulated.

In summary, although some secondary modelling did occur, difficulties were experienced by group members in accepting the semantic phase of cognitive reflection. It is important to note that this is not an instance of "rejection of an interpretation" (which Levy views as indicating the magnitude of dissonance produced by interpretation) because no interpretation was offered. Secondary modelling by group members was intended to be the only propositional activity in the strategy. Instead, members found the process of primary modelling, its various transformations and the timing of the displays unacceptable.
5.1.3.6. The discussion of Strategy A procedures has focussed on four issues relevant to the model of cognitive reflection outlined in 5.1.2.3., namely the demarcation of the domain of primary modelling, the conditions under which primary modelling occurs, its transformation, and the intervention and display of transformations to redirect the course of ongoing conversations. The difficulties emerging from the implementation of Strategy A are far from resolved, but the studies have shown the need to consider a number of factors in the design of Strategy A procedures. Firstly, care is required to ensure that both the selection of the conversational domain and subsequent predication within that domain is not controlled either entirely by the subject or by the experimenter. Problems associated. with the former were exhibited in the friendship study, whilst the group study reflected the effect of the demand characteristics imposed on modelling by E. Secondly, a stable and appropriate set of transformations and decision-rules for classifying primary predicates is required, capable of identifying functional features of modelling. These transformations should be self-evident to the extent that they may be seen to be based on easily observable features of predications. Finally, to fully implement Strategy A behavioural criteria are required to determine the timing and frequency of intervention. Since Strategy A seeks to facilitate participants' abilities to self-regulate transitions between modes of self-experience, these criteria must also be stable and unambiguous. Further research concerning Strategy: A procedures would be expected to rely on the construction of a machine-mediated system capable of sampling ongoing conversations, identifying the occurrence of recurring sequences of reference frames and paradoxical and contradictory self-monitoring, and intervening into the conversationito
display these criterial features.

The development of Strategy A procedures was suspended for three reasons; (a) computing facilities do not yet exist for sampling and intervening into ongoing conversations, (b) the development of adaptive coding frames is a task which presents many difficulties, and (o) Strategy A depends entirely on carefully defined intervention criteria, and those developed in the pilot studies may not have sufficient generality.

5.1.4. Strategy C procedures.

5.1.4.1. Strategy C was developed and implemented in the studies reported in Chapters 3.2., 3.3. and 3.4. Essentially, this strategy seeks to develop participants' capacity to identify and utilise intrinsic cues arising during modelling to achieve increasing specificity and veridicality in the models they construct. In these studies, modelling was confined to the formulation of personal constructs in the repertory grid technique, since this methodology (in contrast to the audiotape method utilised in Chapter 2.1.) enabled the exhaustive predication of a given domain and the use of numerical methods for recording and transforming predications. Consequently, the three studies of Part 3. focus on five area, namely the development of classes of transformations for identifying functional features of predication, the development of a stratified model to systematise reflective strategies, the development of transformations appropriate to these reflective strategies, the development of displays to exhibit transformation outcomes and identify salient cues for secondary modelling, and finally the application and evaluation of these procedures in two case-studies. In all the studies the principal focus has been on the diachronic nature of modelling and the development of conversational competence. To sample modelling processes over a period of time, a longitudinal repertory grid methodology was first developed.
5.1.4.2. The repertory grid cycle.

A discussion of one procedure for sampling modelling over a period of time (Ryle and Lipshitz, 1975) in Chapter 3.3. gave rise to a
number of considerations for the design of a serial repertory grid method. Firstly, it was evident that grid procedures are as likely to precipitate change in construction as they are to measure it. Secondly, since change in construction is under test, additional constructs should be elicited on each modelling occasion to detect shifts in predicate sampling (Slater, 1972, 1969), salience (Eiser and Stroebe, 1972) or shift change (Hinkle, 1965). Thirdly, since revision of construction is under test, predicates from previous modelling occasions should be reapplied on each subsequent occasion to detect rating consistency (Slater, 1972) or slot change (Hinkle, 1965). Fourthly, that the element sample should be representative of the conversational domain under consideration, namely the user's social and personal environment (Norris \& Makhiouf-Norris, 1976).

These considerations led to the use of a repertory grid cycle, in which the user was firstly required to elicit a fixed number of constructs on each modelling occasion from an element sample fixed over all occasions, and secondly to reapply all constructs elicited on preceding occasions. This methodology had several advantages; the user might (a) reproduce the original meanings of constructs on subsequent reapplications of them, (b) view reapplied constructs as variations of other, perhaps more relevant, meanings, (c) view reapplied constructs as implying entirely novel interpretations, (d) revise particular element predications on reapplied constructs, (e) elicit constructs to duplicate or amend earlier constructs, and finally (f) to elicit constructs expressing entirely novel and independent interpretations.

Construct elicitation in the cycle followed a modified version of the Full Context Form (Bannister and Mair, 1968) in which the user considered all the elements (noted on separate cards) at once and was requested to locate two elements which differed in a single, important way. This distinction was verbally recorded by the user himself on a card provided, and the element cards sorted by him into five or seven ordinal piles between the extremes formed by the two selected elements. To ensure an adequate range of convenience for the elicited constructs, the user was asked to sort and resort the elements until he was satisfied that thay conveyed his subjective distinction, and if necessary to reword the construct definition to suit. The user also recorded on a provided grid form, the location of cards himself. This entire procedure was first practised with the objective of enabling the self-administration of the grid, thus reducing as far as was possible any bias attributable to experimental demand characteristics.

A number of considerations are relevant to this discussion, with a view to improving the methodology. Firstly, in the three studies the element sample was fixed across all modelling occasions to enable uniform comparisons to be made between the pattern of element placements on constructs. However, just as construct sampling may vary with time, so might the salient aspects of the user's personal and social environment vary (Slater, 1972). An improved repertory grid cycle might make provision for the user to introduce into the element sample additional figures viewed as having current relevance to the user's model of self. Providing elements were not deleted over successive occasions, intermconstruct comparisons might then be

> made on ratings obtaining for the appropriate subsets of the element. sample.

Secondly, as constructs are introduced on each occasion, the number to be reapplied increases over successive occasions. Experience with this method suggests that many reapplied constructs come to be seen as currently irrelevant, poorly expressed, or duplicated to an undesirable degree. An improved method might provide the user with the facility of either deleting some constructs from previous occasions, or for combining those that obtain a criterial level of similarity in element placement.

Finally, the appropriate number of constructs to be elicited on each modelling occasion was fixed at either 4 or 6 in the three studies reported here. Since it is argued that constructs represent successive approximations to "felt meanings" (Gendlin, 1972), this may be viewed as too small a number to adequately sample those meanings. On the other hand, priority in elicitation is argued to be an indication of predicate salience (Tajfel and Wilkes, 1963; Lemon and Warren, 1974), and the use of the modified Full Context Form for construct elicitation, consistent with this assumption, was intended to sample only those predicates reflecting a high degree of category accessibility (Bruner, 1957). An improved method might be to permit the user to elicit as many constructs, over and above a lower limit, as are felt necessary to convey current interpretations of the personal and social environment.
5.1.4.3. The development of transformation classes.

The purpose of Strategy C was to encourage the user to learn to identify and utilise cues associated with specific functional aspects of self-modelling conversations. Although the aspects are partly determined by the method chosen to exteriorise internal processes, repertory grid techniques permit a great variety of inferences concerning the functioning of constructs, ranging from specific features in the predication of particular elements (e.g. the ideal, social and actual self comparisons of Norris and Makhlouf-Norris, 1976) to general features of construct subsystems (e.g. complexitysimplicity, Bieri et al, 1966). The two features selected for attention in Strategy C were centrality of predication, giving rise : to the core grid procedure (Chapter 3.2.) and stability of predication, giving rise to the reconstruction grid procedure (Chapter 3.3.).

Firstly, the feature of centrality of predication was grounded in the notion that "felt meanings" were only partly reflected by, or mapped onto, exteriorised predications. Gendlin's (1972) account of experiential explication and Pask's (1975) model of incompatibility and interference were both employed to identify sources of mapping failure in construct formulation. When the intention of construct formulation is the description of the user's self-identity system, failures of mapping may be identified in a variety of ways; (a) a failure to polarise the element SELF on construct scales (Cromwell and Caldwell, 1962; Mitsos, 1961; Landfield, 1968; Isaacson, 1966), (b) a failure to give priority to self-relevant constructs during elicitation (Tajfel and Wilkes, 1963; Lemon and Warren, 1974), (c)

Abstract

a failure to repeat selfarelevant constructs during elicitation (Tajfel and Wilkes, 1963; Shubsachs, 1975), and (d) a failure of self-relevant constructs to resist changes in element allotment (Hinkle, 1965) or display test-retest consistency (Kelly, 1955). However, it was evident that features (b) and (c) above were less appropriate for defining central predicates than they were for qualifying central predicates. It was observed, for example, that for a user reluctant to direct his attention towards himself, central predicates are less likely to obtain priority and repetition in elicitation. Instead, it might be said that at that time central predicates were less salient (Eiser and Stroebe, 1972) for that user.

Consequently, centrality of predication was operationally defined in terms of the three components of Kelly's (1955) definition, namely predicates that polarise the element SELF, predicates that display relative polarisation of the element sample, and predicates that display stability of interpretation on retest applications.

This formulation is not without difficulties. Firstly, to obtain operational definitions of centrality some aspects of Kelly's original formulations have been distorted. For example, it may be argued that "comprehensive" constructs are not coincident with constructs that display element polarisation. Although polarisation has been shown to be consistent with "subjective meaningfulnesi" (O'Donovan, 1965; Landfield, 1971), Lemon and Warren find this term to be "a near-tautological designation which cries out for coherent unpackingi (1974, p.123). Lemon and Warren point out the variety of definitions of "meaningfulness", of which being "comprehensive but not too permeable...a person can use it to see a wide variety
of known events as consistent with his personality" (Kelly, 1955), appears to simultaneously subsume two, namely implicative potential and self-relevance. Similarly, it is merely an assumption that . constructs "by which (the person) maintains his identity and existence" (Kelly, 1955) are constructs which display self-polarisation, in which "the self-construct will act as an anchoring point to produce the effects of assimulation and contrast" (Lemon and Warren, 1974, p.123). However, to add rigour and to reduce these translation problems, central predicates were taken as only those constructs which satisfied all three operational definitions.

Analogously to defining central predicates, Chapter 3.2. also focused on the extent to which individual elements were central or incidental to each construct. Central elements were viewed as those figures which were more rigourouslydefined, or polarised, by constructs, incidental elements those that were more frequently located at or near the scalar midpoint. Essentially, central elements will be those that act as anchor stimuli (Bieri et al, 1966) for comparative judgements within the element sample. In addition, the use of the modified Full Context Form of construct elicitation was expected to immediately provide the user with anchor stimuli as end-points of the stimulus range. Since the provision of anchor stimuli (Sherif, Taub and Hovland, 1958) or categorial cues (Tajfel and Wilkes, 1963) have been shown to bias the use of judgement scales either towards assimilation (judged stimulus displaced towards anchor or category when in proximity to anchor) or towards contrast (judged stimulus displaced away from anchor or category when distal to anchor), the Full Context Form was favoured over the Minimum Context Form of
construct elicitation as the user was free to choose appropriate anchor stimuli from the entire element sample. This procedure ensured that scalar end-points were both subjectively defined and reflected category accessibility.

A second feature of anchor stimuli was their stability of location on judgement scales (Bieri, 1966). Combining the polarisation and stability criteria provided a rigorous operational definition for element centrality. Element stability was estimated by computing a difference score between successive occasions over a set of re-... : tested constructs. One difficulty in estimating element stability was the effect of construct reinterpretation at the time of retest. Should construct meanings change (as reflected in low element rating similarity and low inter-construct pattern similarity between occasions) then it is clear that different anchor elements might be employed. If, however, elements systematically shifted on construct scales (low element rating similarity but high inter-construct pattern similarity) then original end-point elements may be regarded as unstable. Consequently, element stability was estimated only from constructs that display stability of interpretation between occasions.

The second class of transformations focused on the feature of stability of predication. A discussion of the conditions under which change in construction occurs revealed that it was logically necessary to postulate two levels of construction, namely an outwardly directed interpersonal construct system, and an inwardly directed system taking the former as its object. This stratification is consistent with the notion of objective self-awareness (Duval
and Wicklund, 1972; Wicklund, 1975) in which self and self-cognitions become the objects of attention and social-comparison. By utilising Pask's (1975) exposition of subjective uncertainty, it was possible to analyse the strategies for coping with invalidating data described by Fransella (1970) as examples of different degress and qualities of coupling between the two systems.

The repertory grid cycle described above permits comparisons between constructs over successive occasions. Operational definitions of construct reconstruction were threefold, distinguishing between stable constructs (constructs maintaining element placement patterns. throughout a series of replicated grids), transitional constructs (constructs displaying change in element placement patterns on some replications and stability on others in the grid series), and unstable constructs (constructs failing to maintain element placement patterns on any of its replications). Analogously to constructs, elements were operationally defined as stable, transitional or unstable.

The rationale of this threefold operational definition was to distinguish constructs and elements which represented revision of opinion (transitional) from those about which opinion was indifferent or random (unstable). Clearly, this distinction is rather arbitrary, since repeated revision of opinion may reflect a significant area of uncertainty rather than random predication. Indeed, over a series of replications a user may alternate between two discrete interpretations of a given construct or element which, when only sequential comparisons between construct or elements are made, would suggest : . opinion concerning that item to be unstable. A more appropriate
set of operational definitions might be obtained if the standard for comparison over replications was taken as the element or construct scores obtaining on the occasion on which it was first elicited. Thus, some constructs otherwise defined as unstable may be classified as transitional. This would, of course, not be appropriate to the definition of transitional items, since what is examined here is the sequential properties of replicated constructs and elements, and comparisons with the standard suggested above would conceal revisions of opinion which subsequently stabilised.

Secondly, it was observed that a very small proportion (9.3\%) of elements were classified as stable. This outcome was attributed to the procedure of the repertory grid cycle, in which additional constructs were introduced on each successive occasion. Unlike construct comparisons, this required that only sequential element comparisons could be made, since the number of constructs on which each element was scored incremented over occasions. It was suggested that because of this effect element stability was adversely affected, firstly because of the successive increase in the size of the sample on which the index of element association was based, and secondly because of the hypothetical instability of newly elicited constructs.

All estimates of consistency between replicated constructs and elements were based on exact probabilities of association computed by a custom-built program EXACT (Appendix D). This program computes the entire population of score differences that may be obtained between any pair of score strings (element ratings on constructs, or construct ratings on elements) with known distributions, calculates
the cumulative probability distribution associated with the variate $\sum \mathrm{d} / \mathrm{n}$, and derives the exact probability associated with the value of that variate observed for the given pair of score strings. Whilst this procedure is powerful, assumption-free and superior to alternative association metrics, it has two disadvantages. Firstly, it is an extremely cumbersome method requiring a great deal of computer time which increases exponentially with sample size. Secondly, the derivation of the population of score differences between construct pairs differes markedly from that for element pairs, leading to incompatibility between the exact probabilities for constructs and elements.

5.1.4.4. The stratification of reflective strategies.

The two classes of transformations, centrality and stability of predication, discussed above were intended to identify fuctional features of the user's predications in completing a repertory grid. However, it was argued that modelling processes were hierarchically organised, and that whilst grid predications represented lower-order processes, their functional properties had implications for a number of higher-order processes. Consequently, it was possible to enumerate a number of reflective strategies, and to implement these strategies to take effect at distinct levels of organisation in modelling processes. Essentially, this analysis of modelling competence paralleled the theoretical analysis of Miller, Galanter and Pribram (1960) who suggest that the basic unit of analysis (the test-operate-test-exist unit, or TOTE) represents a simple self-regulating servomechanism, and that skilled activity exhibits the organisation of

TOTEs into successively larger units, each unit having the same fundamental feature of self-regulation.

In their analysis Miller et al emphasise the role of the perceptual, or "test" mechanism over that of the "operate" mechanism. In the absence of adequate discriminatory powers, the most sophisticated operations will be maladaptive. The role of reflective strategies in Strategy C was thus expressly stated as the development of perceptual specificity in identifying and recognising cues intrinsic to modelling activity. The transformation classes discussed in the previous. section are intended to provide augmented extrinsic feedback (Holding, 1965) as knowledge of the results (KR) of modelling activity. As Annett (1972) points out, KR must be regarded as providing informational feedback because its "incentive function adds nothing to its properties as feedback since in a general sense motivation can be regarded as feedback in action ${ }^{n}$, and that the interpretation of KR as reinforcement "has serious empirical and theoretical defects which cannot be lightly brushed aside" (1972. p.160-161). Instead, the learner must be conceived of as generating and testing a series of hypotheses concerning the nature of the outcomes he has achieved.

This rationale is fully incorporated into Strategy C reflective strategies. Firstly, modelling activity was stratified into minimally three levels, and KR appropriate to each level identified; (a) at the lowest level the user obtains information concerning the attributes of each predicate (construct-element interaction) he formulates in completing a repertory grid, (b) at the second level the user obtains information concerning the models (element-concepts) from the first level predicates were derived, and (c) at the third
level the user obtains information concerning the contexts or circumstances in which second level models are employed. These reflective strategies were utilised in a training paradigm in which the user was required to specify his hypotheses concerning outcomes at each level before $K R$ was made available to him.

This stratification of levels was made for expedience rather than on empirical grounds. As is evident in the account of Miller et al, the TOTE analysis is more frequently conducted on functional grounds, as in the case of skilled task analysis. The levels of modelling activity described above cannot be postulated as the only levels:of organisation in modelling, but simply as acknowledging that modelling is organised in some way. However, this analysis would permit increased clarity in defining the locus of effect of features identified by other workers. For example, the dimension of cognitive complexitysimplicity (Bieri et al, 1966) appears appropriate to Level 2 descriptions (i.e. as a dimensional feature of the models an individual constructs concerning his interpersonal environment). However, in the context of Level 3, complexity-simplicity may be designated as a situational feature, subject to alterations of the circumstances under which modelling occurs.
5.1.4.5. The stratification of transformations.

Within the training paradigm outlined above Strategy C was intended to provide the user with concurrent feedback (Holding, 1965) concerning the two functional features of his grid predications, namely their centrality and their stability. To provide concurrent feedback it
was necessary to develop a series of transformations to be applied to the repertory grid for two reasons. Firstly, the operational definitions of centrality and stability drew on features of predica-. tion samples fran completed repertory grid cycles. The definition of centrality, for example, could not be derived from a single observation of a given construct or element, as one component of the definition of centrality referred to the stability of predicates over a series of replications. A concurrent feedback system thus required the development of a means to predict these functional features from a single observation. Secondly, the analysis of levels of modelling activity required the development of reflective strategies appropriate to each level. As reflective strategies were viewed as tactics for initiating secondary modelling, appropriate strategies for each level were conceived in the following way; (a) at the first level the user states his hypotheses concerning the functional features of each grid predicate, matches his hypotheses against observed outcomes, and furnishes accounts for any discrepancies that obtain, (b) at the second level, the user identifies the structural properties of his predications, and furnishes accounts for the observed structure, and (c) at the third level the user identifies significant changes in the functional properties of replicated predications and furnishes accounts for any observed changes that obtain.

These two requirements were met by the use of three levels of transformations; (a) at the first level a set of decision rules for classifying predicates according to their properties of centrality and stability, (b) at the second level a method for exhibiting the
underlying parameters of grid predications, and (c) at the third level a set of decision rules for predicting first level classification predicates on subsequent replications. The procedures developed for each of these transformations will be examined in turn.

(i) Level 1 transformations.

Chapters 3.2. and 3.4. outlined the development of two methods for classifying grid predicates in terms of centrality and stability, namely as discrete qualitative variables and as continuous, quantitative variables.

Firstly, the predication centrality variable was derived from a multivariate analysis of the matrix of grid scores. Chapter 3.2. compared two models for structuring the multivariate population of grid scores, namely the typal model for locating configurations of items in an undefined space, represented by elementary linkage analysis (ELA; McQuitty, 1957), and the multidimensional model for defining the reference coordinates of items, represented by principal components analysis (PCA; Slater, 1972). In the former model homogeneous types are obtained by first grouping together those items that are reciprocally most similar, and successively including those items more related to items in this primitive type than to any other item in the sample. Typal structure is thus determined by the number of reciprocal pairs, and typal relevancies may be computed analagous to factor loadings. In the latter model, a sequence of orthogonal latent variates are located which successively account for the largest proportion of
initial or residual variation, until all variability in the grid scores is exhausted. This variability is simultaneously partitioned between elements and between constructs, and the loadings of each construct and element on each latent variate, or component, obtained.

To achieve comparability with ELA and to eliminate error variance, a method of component representation was developed for PCA in order to assign constructs to their most representative component according to the magnitude of each construct's loading across all components. In addition, an analogous method of representation was devised to assign elements to components in PCA and to types in ELA, namely to locate those elements that accounted for at least the first 50% of variance to each component or type. In both methods, these elements were designated as central elements and those not accounting for half the variance on any significant component or type, incidental elements. To locate central, or core, constructs central elements were first examined for the inclusion of the element SELF. Those types or significant components which included the element SEJF as a central element were designated core components or types (all others being designated as peripheral), and similarly all constructs located within that type or representative of that component designated as core constructs.

On a test case, both methods obtained identical solutions for constructs. However, different solutions were obtained for central elements, and consequently the designation of core constructs differed. These differences were attributed to the fact that PCA represents all grid scores as deviates from the mean for each
construct, whilst ELA represents grid scores as deviates from the scalar midpoint. Consequently, ELA is insensitive to biased element distributions whilst PCA compensates for this bias.

PCA was selected on the basis of this test case as a more appropriate transformation model for three reasons; (a) because the PCA solution accounted for less of the total variation in the grid scores, reflecting the greater specificity entailed in locating latent variates when contrasted with the ELA procedure of locating itemspecific types prior to estimating the variance they subsume, (b) the total variation in the grid scores was simultaneously partitioned between constructs and elements in PCA in contrast to the alternative of obtaining two typal solutions (with incompatible assumptions) for constructs and elements separately, and (c) most importantly, PCA assumes continuity in the mapping of "felt meanings" onto grid predications (all constructs load to a greater or lesser extent on all components), whereas ELA embodies a discrete item assumption, in which each construct is viewed as a unique psychological event.

Secondly, the predication stability variable was also obtained from PCA solutions. However, two classes of reconstruction were envisaged, requiring some modifications to be made to PCA procedure; (a). the user may exhibit contraction in his predication of a conversational domain by abandoning or coalescing constructs which were distinct on previous occasions, or (b) the user may exhibit elaboration in his predications either by introducing new predicates into his grid or by reinterpreting predicates over successive occasions. In order to monitor these classes of reconstruction serial grids were processed cumulatively, PCA solutions being obtained for the entire sample of constructs
produced by the user (grid $_{t}+$ grid $_{t+1}+$ grid $_{t+2}+\ldots . \operatorname{grid}{ }_{t+n}$).- This method had the following advantages;.1 (a) all predications formulated by the user have equal weight in the PCA solution, (b) novel predications introduced on later occasions are traced back to their origins in previous grids, and (c) these features reflect the directionality of ongoing predications over an extended period of time.

Five discrete classes of reconstruction outcome were defined in terms of cumulative PCA solutions, namely emergence (predicates in grid t_{t+1} not represented in grid ${ }_{t}$), replication (retested predicates in grid t_{t+1} replicating predicates in grid ${ }_{t}$), duplication (introduced predicates in grid ${ }_{t+1}$ replicating predicates in grid ${ }_{t}$), displacement (retested predicates in grid ${ }_{t+1}$. replicating nonidentical predicates in grid ${ }_{t}$), and finally, abandonment (disappearance in grid t_{t+1} of predicates present in grid ${ }_{t}$. Similarly, two discrete element reconstruction outcomes were defined as follows: (a) elements were said to be consistent if their scores obtained on retested constructs were associated with their original score to an exact probability (Appendix D) of 5 percent or less, and (b) inconsistent if the exact probability of association exceeded 5 percent.

Three major problems were experienced when these qualitative variables were utilised in case studies. The first two problems reflected inadequacies in the transformation procedures, whilst the third concerned the difficulty of utilising the variables within a concurrent feedback paradigm. Firstly, it was clear that the 50% criterion of element centrality was an arbitrary standard, and led to numerous ambiguities in its application. If, for example, a single element accounted for 50% or more of a single component's

Abstract

variance, that component was viewed as "one-sided" since only one anchor could be located. Not only did this make it difficult for the user to identify such a component, it also led to the inference that the component failed to establish a consistent dimension of contrast within the element sample. Secondly, the application of this 50% criterion occasionally led to the exclusion of the element SELF from the subset of central elements, and the conclusion that none of the user's constructs were self-relevant. The expedient of relaxing the criterion until the element SELF was included was used in these cases, with a consequent reduction in the validity of the term core construct. Thirdly, users experienced some difficulty in identifying the distinctive features of the core-peripheral attribute, and features associated with the attributes of replication, duplication and displacement. These difficulties were attributed to the exceptionally coarse scale grain employed to define these variables (Bilodeau, 1966).

To correct these difficulties, information feedback at the first level was redefined in terms of continuous variables in Chapter 3.4. by constructing four measures; (a) an element centrality score, as the sum for each element of its loadings on significant constructs, (b) a core construct score, as the sum for each construct of the product of its loading and the element SELF vector on significant components, (c) an element reconstruction score, as the exact probabilities of association between element ratings on successive occasions, and (d) a construct reconstruction score, as the exact probabilities of association between constructs on successive occasions. These continuous variables were all significantly
related to the earlier discrete variables.

In conclusion, the development of continuous measures of stability and centrality afforded the user with fine-grain information feedback in order to test his hypotheses in a more detailed way by making ordinal, rather than categorial, judgements concerning the functional features of his grid predications. Moreover, the use of an ordinal level of measurement enabled a more precise test of matching between his hypotheses and observed outcomes to be made.
(ii) Level 2 transformations.

Having selected PCA transformations as an appropriate model for locating the underlying parameters of modelling in the grid, second level transformations were straightforward. Firstly, the cumulative principle components analysis provided an exhaustive listing of components underlying grid predications of all grids completed by the user. Secondly, the method of representation discussed above located significant components and anchor elements for each component. The data available to the user was thus an account of the structure of his predications, each underlying parameter represented by a component, and described in terms of the representative constructs and the distribution of elements on that component.

One difficulty of note in employing the method of representation to assign constructs to components was a problem familiar to multivariate analyses, namely the "naming of factors" probiem. Whilst the advantage of PCA was that constructs contributed variance to
a lesser or greater extent to all components, making it possible to view constructs as approximations to a subjectively "felt meaning", this advantage was lost when constructs were unequivocally assigned to components. Indeed, the procedure reintroduced the disadvantages of ELA by suggesting that components were discrete item-specific variates. For the user, this problem manifests itself only in those instances where a single construct was located to represent a significant component. Clearly, such a construct could not display the full implications of the component, and users were occasionally struck by the apparent contradiction of an element distribution on the component which was inconsistent with the ratings they had assigned to elements on the representative construct.

An improved procedure is, however, available in order to display to the user the implications of significant components located by the method of representation. Rather than insist that a component's meaning is encapsulated in representative constructs, information concerning the loading of all constructs, ordered from the highest to the lowest loading may be presented, and the element distribution ordered in the same display. The resultant matrix may then be filled with the original ratings rearranged to exhibit the gradient of meaning, and repeated for each significant component. Figure 94 depicts this scheme for a sample grid with two significant components, the vertical and horizontal divisions partitioning central elements and representative constructs respectively, and constructs reflected according to their signed loadings.

	E_{6}	E_{5}	E_{1}	E_{3}	E_{4}	E_{2}
C_{2}	1	1	1	2	4	5
C_{3}	1	2	3	5	4	5
$-C_{4}$	1	4	3	1	1	4
$-C_{1}$	2	4	5	5	5	3

	E_{3}	E_{1}	E_{4}	E_{6}	E_{5}	E_{2}
$-C_{4}$	1	1	1	1	4	4
C_{1}	1	1	1	4	2	5
$-C_{3}$	1	3	2	5	4	1
C_{2}	2	1	4	1	1	5

Figure 94 An alternative representation of principal components in a sample grid.

(iii) Level 3 transformations.

The rationale of third level reflective strategies was to present the user with observed changes in the functional properties (centrality and stability) of grid predications, and request them to furnish an account of these changes. To achieve this it was necessary to develop a procedure for labelling constructs and elements according to their expected centrality or stability on the basis of sequential observations of their functional features. The problem was posed in the following way: given the transformation outcomes observed for constructs or elements on the basis of one or a few repeated grids, to what extent do these outcomes indicate that particular constructs and elements are cases that meet the established operational definitions of centrality and stability, bearing in mind that these defintions are derived from completed grid cycles?

This problem was analysed in the following way. First, it is clear that the more frequently a given outcome obtains for a particular construct or element over a series of replicated grids, the greater the certainty that the same outcome will obtain on subsequent replications. Secondly, the greater the certainty that particular transformation outcomes are associated with established operational definitions of centrality and stability, the greater the certainty that particular constructs and elements may be labelled as such. Thirdly, to the extent that qutcomes fluctuate for a particular construct or element over a series of replicated grids, certainty concerning subsequent outcomes will not be influenced by the sequence of preceding outcomes but by their frequency of occurrence. The appropriate sequential process model for this problem is thus that of a non-stochastic stationary path-independent process (Coombs, Dawes and Tversky, 1970), where certainty concerning outcomes on trial n is determined by outcomes on all preceding trials irrespective of their trial number.

This model was consistent with the Bayesian formulation in which the unconditional probability distributions of the operational definitions of stability and centrality are modified by the conditional probability of observed outcomes on these definitions to produce posterior probability distributions of the definitions for each construct and element. Put simply, this means that we begin by forming an estimate of the likelihood of any construct or element being stable or central before observing its function in the user's grid, then estimate the likelinood that particular functional features predict stability or centrality over the completed
grid series, and finally modify prior opinion concerning particular constructs and elements on the basis of their outcomes in that grid. Posterior opinions then provide (a) labels with degrees of certainty attached for each of the user's constructs and elements, and (b) predictions concerning their function in the user's subsequent grid.

To implement this procedure it was necessary to obtain (a) estimates of the unconditional distribution of operationally defined central and peripheral constructs, central and incidental elements, and stable, transitional and unstable constructs and elements, and (b) estimates of the conditional distributions of the transformation outcomes derived from PCA, given these operational definitions: The former was obtained from a sample of serial grids from seven subjects who had completed repertory grid cycles of different lengths, providing samples of 80 constructs and 54 elements.

Firstly, prior distributions were obtained for the centrality variables. To achieve this, the sample was reduced to five subjects, as two subjects had completed grids using the ranking form and the component definition of element rating extremity were not applicable to these grids. From the remaining subjects 192 separate construct sorts were obtained, and 47 element rating profiles. Each construct sort and element profile was coded according to the aggregate definitions of core/peripheral constructs and central/incidental elements. Converting these frequencies into proportions provided the required distributions for the centrality variables. In fact, the ratio of core to peripheral constructs and central to incidental elements was approximately 2:1.

Secondly, the complete sample of seven subjects was again examined to estimate the prior probabilities of the stability variables. The 80 sample constructs and 54 sample elements were coded according to the stable, transitional and unstable operational definitions and their frequencies converted to proportions to obtain unconditional probability distributions. In fact, the ratio of stable to transitional to unstable constructs was 5:4:1, whilst that for elements was 1:7:2. The relative scarcity of stable elements was discussed in section 5.1.4.3.

Thirdly, conditional probabilities were obtained by applying the centrality and stability transformations described in this section. To achieve this, each grid replication (32 in all) was separately analysed within the cumulative PCA paradigm, obtaining 192 constructs centrality outcomes and 47 element centrality outcomes in the 5subject sample, and 238 construct reconstruction outcomes and 54 element reconstruction outcomes in the 7-subject sample. These classifications were then cross-tabulated with the classifications obtaining for the operational definition of centrality and stability to derive conditional probability distributions, expressed• in the form of likelihood tables. Testing each likelihood table by computing the GoodmanKruskal index of predictive association ($\boldsymbol{\lambda}$) obtained moderate levels of predictive power; (a) for core constructs $\boldsymbol{\lambda}=.327$, (b) for central elements $\boldsymbol{\lambda}=.351$, (c) for construct stability $\lambda=.282$, and (d) for element stability $\lambda=.5$.

The procedures described above may be criticised on a number of grounds. Firstly, the observations on which the estimates of
unconditional distributions are based clearly not independent. That is, the distributions may be biased owing to several sources of nonrandom variability. For example, subjects may systematically vary in the extent to which they formulate self-relevant predications, or predications may systematically vary in centrality as they are successively replicated. Moreover, these two effects may interact in some indeterminate way. To construct prior probability distributions on firmer ground it may well be advisable to tabulate the frequencies obtained from the samples according to several contingent factors (subject, occasion, replication, and so on) and compute the extent of independence by partitioning χ^{2} according to the method advocated by Lancaster (1951). Those factors that emerge as significant from this treatment would indicate the structure of future samples. There is reason to assume, however, that the conditional distributions would be unaffected by such a bias, since these distributions merely reflect whether particular classification criteria may be predicted from grid transformations.

Secondly, in some cases it was evident that the relationship between transformation outcomes and operational definitions was neartautological. For example, since the operational definition of element instability was an element that failed to display criterial consistency on any replication, the observation of a single case of inconsistency automatically eliminated the hypothesis of element stability. Similarly, a single case of consistency eliminated the hypothesis of element instability. Thus, if after two observations one case of consistency and one of inconsistency had been observed, posterior probabilities associated with a transitional hypothesis
attained the terminal level of $p=1.0$ (see Figure 95).

Figure 95 Sequential posteriors for element stability.

This outcome is the consequence of the use of discrete operational definitions of stability in conjunction with discrete outcome or data classes. A more appropriate procedure, and one that would be consistent with modifications to first-level variables, would be to utilise continuous variables for definitions of stability and centrality. To achieve this it would be necessary to (a) specify prior distributions by approximation to a Beta distribution for both stability and centrality variables (Fhillips, 1973), (b) determine the parameters p and q of the distribution, (c) find the credible intervals for the priors, (d) test observed centrality or
stability scores in relation to this interval, (e) revise the prior distribution in the light of the observed score, (f) find the credible intervals for the posterior Beta distributions, and so on.

Thirdly, because neither the unconditional nor the conditional distributions markedly distinguished between hypotheses concerning centrality and stability, posterior probabilities displayed only gradual increments following replications. For example, to attain a 95\% level of confidence concerning the centrality of a construct, it would be necessary for it to function as a core construct in 6 grid replications (see $H_{c c}$ in Figure 96). Similarly, the 95% level is attained after 6 replications for a central element ($H_{c e}$), 6 replications for a stable construct ($H_{s c}$), and 7 replications for a stable element (H_{se}). Figure 96 also reveals the increment in the likelihood of the transitional element hypothesis ($H_{t e}$) prior to the elimination of the unstable element hypothesis ($H_{u e}$) by replication 2. To increase the slope of these functions requires the construction of transformations which obtain higher levels of predictive association with centrality and stability variables. This would be one objective of further research and development of Strategy C procedures.

[^6]
CENTRALITY

Figure 96 Posterior probability functions for stability and

 centrality hypotheses.5.1.4.6. Assembling displays.

By assembling information displays concerning functional features of grid predication, Strategy C attempted to initiate secondary modelling of this information. Chapters 3.2., 3.3. and 3.4. developed information displays appropriate to each level of modelling, and in addition established reflective strategies to direct secondary modelling at each level.
(i) Level 1 displays.

Firstly, L_{1} displays were developed for both variables of centrality and stability for constructs and elements. Secondly, the reflective strategy component entailed that the user state his hypotheses concerning the centrality and stability variables by ranking constructs and elements from those expected to be most stable or central to those expected to be least. Thirdly, expected and observed rankings were assembled into a two way display by locating construct or element cards in the array according to their coordinates on the two rankings. Perfect match between these rankings would thus locate the cards on the array diagonal. Fourthly, cards which represented errors of anticipation were identified as those which were offdiagonal by a factor greater than or equal to $n / 2$, where $n=$ number of cards in the sample. Finally, errors of anticipation were presented to the user, who was requested to furnish an explanation for the observed discrepancy.

Whilst this procedure has the advantage that the user is able to appreciate the implications of the stability and centrality variables and is thus assisted in identifying their distinctive features, it does have a number of disadvantages. Firstly, the array becomes increasingly difficult to assemble and interpret as the sample size increases. With large samples it may be advisable to employ computer-drawn arrays. Secondly, the method employed for locating significant discrepancies is somewhat arbitrary. A more appropriate procedure would be to compute the standard error of differences in rank placement (assuming, of course, that the ranks represent underlying normally distributed continuous variables) and express observed discrepancies in terms of normal deviates with their associated probabilities. Finally, users experienced some difficulty in formulating accounts of observed discrepancies. However, it was the process of furnishing accounts rather than the accounts themselves that was important, since identifying the distinctive features of stable and central predicates does not require that those features be verbalised.

(ii) Level 2 displays.

Second level displays entailed the assembly of firstly, a principal components array in which representative constructs were assigned to components, and secondly outcome displays-which exhibited the interaction between centrality and stability variables.

Firstly, the PCA display employed gave rise to some problems owing to assigning constructs to components without replacement. This
problem has already been discussed (5.1.4.5. (ii)) and an alternative procedure proposed. For this reason, users occasionally experienced difficulty in naming thèir components. In utilising the alternative procedure described above, component naming may be systematically guided by requesting the user to develop superordinate constructs of the type described by Hinkle (1965) to distinguish 'between components. Further development of this procedure may show this to be a fruitful area of research.

Within the PCA paradigm, however, alternative displays have been utilised by other workers, notably Ryle (1975) and Slater (1972). Ryle's method utilises the first two principal components to construct a two-component graph, whilst Slater's program INGRID provides either the polar coordinates of items plotted as projections on the surface of a hypersphere utilising three components, or as a series of two component plots of elements in construct-space for each pair of significant components. Both these methods may be criticised on the grounds that (a) twom, or even three-, component plots lead to unjustified assumptions concerning the magnitude of error variance, (b) plotting items as points in hyperspace removes the user from the raw data of his grid predications, and (c) makes it more difficult for the user to formulate his own interpretations of the underlying structure of his predications.

(iii) Level 3 displays.

The purpose for third level displays was to exhibit any observed change in the functional properties of constructs and elements over
a series of occasions. To achieve this the posterior probabilities associated with centrality and stability variables were carried forward from each occasion as predictions for subsequent occasions, qualified in terms of the degree of certainty associated with the posterior probabilities. Thus, posteriors from one observation of a predicate's function become priors for the subsequent occasion on which it is used.

An appropriate display to exhibit changes in function was to classify items within a two-way array according to most likely prior hypotheses and observed data class (Figure 97).

DATA CLASS

Figure 97 General scheme for third-level displays.

In this scheme it was possible to directly determine conjunctions (cells marked c) and disjunctions (cells marked d) between data classes and prior hypotheses, and to request the user to formulate
explanations for observed disjunctions. However, this was appropriate only in those cases where data classes and hypothesis classes were nominally equivalent. For example, the data class "central element" was equivalent to the hypothesis "element centrality". In those cases where nominal equivalence did not obtain (i.e. for the stability variables) it was necessary to convert data classes into hypothesis.classes by applying Bayes theorem for a single observation, and assigning items to the most likely hypothesis class. For example, the observation that construct ${ }_{i}$ replicates a component in a previous grid would lead to the designation of that construct as "stable" with $p\left(H_{s c}\right)=.661$. In contrast to the scheme described above, this procedure implies a comparison between prior hypotheses based on a series of two or more observations, $S_{n}\left(p\left(H_{i} / \sum_{n}^{1} S_{n}\right)\right.$), and a posterior hypothesis based on a single observation $\left(p\left(H_{i} / S_{1}\right)\right.$). As this scheme (see Figure 98) has greater generality, it would be desirable to standardise on this procedure in future applications of Strategy C.

PRIOR
HYPOTHESES

$$
p\left(H_{1} / n S_{n}\right) \geqslant .5
$$

$$
\mathrm{p}\left(\mathrm{H}_{2} /{ }_{n} \mathrm{~S}_{\mathrm{n}}\right) \geqslant .5
$$

POSTERIOR PROBABILITY OF DATA
CLASS AFTER ONE OBSERVATION

$$
p\left(H_{1} / S_{1}\right) p\left(H_{2} / S_{1}\right) p\left(H_{i} / S_{1}\right) p\left(H_{I} / S_{1}\right)
$$

$$
p\left(H_{i} / n S_{n}\right) \geqslant .5
$$

$$
p\left(H_{I} / n S_{n}\right) \geqslant .5
$$

c	$\therefore \mathrm{d}$	d	d
d	c	d	
d	d	c	
d	d	d	

These schenes assume discrete hypotheses concerning centrality and stability. However, as discussed in the previous section, definitions of centrality and stability are more appropriately couched in terms of continuous variables. The application of Bayesian transformations to continuous variables would require the reconceptualisation of third-level displays, since observed centrality and stability scores would be tested in relation to a given credible interval of the prior distributions of hypotheses. Further research would indicate the form these displays should take.

5.1.4.7. Evaluating the procedures.

The Strategy C procedures discussed above were implemented in two case-studies in the form of the insight grid (Chapter 3.4). Both case-studies concerned the work relationships of two individuals, Tom and Brenda, which enabled an almost exhaustive sampling of the relevant conversational domains, namely those persons with whom the individuals were in daily contact in a work capacity. The insight grid comprised an elaborated repertory grid cycle divided into a sequence of 6 modules, each module representing a separate primary modelling, display or secondary modelling activity. Both individuals completed the repertory grid cycle three times, over periods of two and three months. Both individuals were concerned with their current employment, and sought some clarification of their positions in their work environment.

To assess the effects of Strategy C procedures three evaluative criteria were derived from the model of conversational skill. Firstly, it was postulated that an increase in the capacity to identify intrinsic cues associated with modelling predicates would enable the user to increase the extent of mapping between subjectively "felt meanings" and externally expressed predications, yielding an overall improvement in the quality of modelling. In greater detail, increased mapping was expected to be manifested in two ways; (a) an increase in the diversity of predication associated with the formulation of more subtle distinctions, and (b) an increase in the centrality or self-relevance of predications, associated with an increase in the personal significance of modelling.

Secondly, it was postulated that increasing sensitivity to intrinsic cues would lead to the elaboration of the conversational domain, manifested in two ways; (a) in the redirection of the user's attention to emergent attributes over successive occasions, associated with transitions in the user's interpretation of his personal environment, and (b) in the reinterpretation of past events in novel terms, associated with identifying alternative implications of familiar events.

Thirdly, Strategy C was expected to directly influence the user's capacity to identify intrinsic cues associated with modelling enabling the development of discriminative control of modelling and increasing independence of the extrinsic augmented feedback provided by the displays. This emergent control was expected to be manifested firstly in the user's capacity to retrospectively identify functional
properties of predicates, and secondly, to enable the user to control the function of predicates he subsequently formulates. The emergence of discriminative control, then, should be exhibited in the increasing accuracy with which users retrospectively identify functional properties of predicates.

The two case-studies reported in Chapter 3.4. met some, but not all, of these criteria. Firstly, by testing the strength of construct inter-relationships over the three occasions it was found that diversity of predication did not increase as predicted, and that in one case-study diversity significantly decreased. However, it was found that centrality of predication significantly increased for both individuals over the three occasions. It was concluded that a decrease in diversity did not necessarily indicate diminishing quality of modelling, since such criteria were based on the assumption that participants' objectives coincided with the experimenter's objectives. It was postulated that both participants may have voluntarily focussed their attention on self-relevant attributes rather than seek more varied interpretations of themselves and their personal environment.

Secondly, the case-studies differed in the extent to which they displayed salient emergent attributes over the course of the repertory grid cycle. This observation reinforced the notion that participants differed in their objectives, one individual displaying a shift of attention to an emergent area of construction whilst the other giving more detailed attention to one area throughout.

In addition, some indications were found in one case-study that the procedures led to the elaboration of alternative interpretations of familiar events.

Thirdly, significant improvements in identifying functional properties of predications were found in both case-studies for element centrality, and in one case-study for construct centrality and reconstruction. However, neither case-study showed significant improvements in identifying the locus of element reconstruction. These findings were thought to indicate that gains in accuracy obtain only for those features of predication which are based on information available to the user during grid production. For example, as the entire element sample is predicated by each construct in turn, the user gains a clear picture of changes along construct dimensions, but very little information concerning changes in element predication across construct dimensions. In short, the centrality and stability features of predication differed in the extent to which intrinsic cues were evident during grid production, the more concealed the cues during the task the more haphazard the development of discriminative control. Moreover, where cues are difficult to locate the user may attempt to identify predication features in terms of previous outcomes. Thus, in one case-study accuracy in identification of construct centrality obtained for consistent retested constructs, but not for constructs introduced into the grid on the second occasion.

These tests of Strategy C may be criticised on two grounds, namely in the translation of criteria into operational tests, and in the derivation of criteria from the model of conversational skill. Firstly,
the measure of diversity employed to test improvements in the quality of modelling may not be entirely valid. The diversity measure reflected the distribution of similarity coefficients (exact probabilities of association) between all constructs on each occasion, and was operationally similar to the measure of intensity of construct relationships (Bannister and Fransella, 1966; Bannister, Fransella and Agnew, 1971), and cognitive complexity measures (Adams-Webber, 1970; Bieri et al, 1966). Radley points out that these measures "stand in a paradoxical relationship...inasmuch as the same (or similar) operational measures apparently reflect quite disparate conceptual systems, i.e. loöse schizophrenic thinking and complex normal thinking" (1974, p.317). In the present study the diversity measure was used to monitor increases in the subtlety which the user formulated distinctions, i.e. an increase in the complexity of his conceptual system. However, an increase in diversity may evidently arise from two sources; (a) an increase in the number of functionally independent constructs (an increase in the complexity of construction) or (b) an increase in the variability of element placements on functionally similar constructs (an increase in "looseness" of construction). Thus, identical distributions of similarity coefficients may obtain from a grid containing a large number of functionally independent constructs and from a grid containing a single functional construct dimension and a moderate to high degree of variability of element placement between these dimensions. Moreover, as Radley (1974) points out, the measure of consistency in the pattern of construct relationships (employed by Bannister and Fransella, 1966) does not distinguish these two disparate sources of diversity of construction. Whilst this discussion does not alter the implications
of the present case-studies (as no increase in diversity was observed) it does suggest the need for less ambiguous measures in further attempts to evaluate Strategy C. In particular, a measure is required that will unambiguously reflect the structure of constructions in the grid. This, however, is no simple demand, as most measures of structure (e.g. articulation, Makhlouf-Norris, Jones and Norris, 1970; functionally independent constructs, Landfield, 1971) are based on the magnitude of similarity coefficients.

Secondly, the component representation measure of shifts in attention between occasions requires an appropriate statistical test before conclusions concerning the elaboration of predication may be drawn. Since representation is determined from partitioning between occasions the variance attributable to a component drawn from all occasions, an appropriate test would be of the null hypothesis of homogeneity of variance over the series of occasions $\left(\sigma_{1}^{2}=\sigma_{2}^{2}=\ldots \sigma_{k}^{2}=\sigma^{2}\right)$. This test, the Bartlett test, would of course be carried out for each significant component. Moreover, to test whether any specific occasion exhibits a departure from the variance expected on the basis of other occasions, the test may be made recursively by successively combining the sums of squares for each occasion.

Finally, in testing the accuracy with which users identify functional features of predications more trials are required to assess the stability of correlations between predicted and observed outcomes. Moreover, testing for significant changes in these correlations is less satisfactory than demonstrating the attainment of significantly high levels of correlation. Lastly, these tests did not distinguish

Abstract

between the production of predicates under the discriminative control of their functional properties, and the capacity to discriminate between predicates after their production. Whilst both processes suggest the development of a capacity to identify distinctive functional features, only the former represents an increment in conversational skill. A more appropriate test of the former might be to request the user to specify the function of predicates in advance of their formulation, and to match their performance against the user'.s predictions.

A second source of criticism of these tests centres on whether the criteria established to evaluate, increments in conversational skill adequately reflect the model of conversations from which they derive. In particular, the inference that gains in discriminative control of predication reflects the acquisition of conversational skill was challenged on three grounds: (a) because apparent control may be achieved by identifying external features of predicates as they are represented in the repertory grid rather than internal features associated with the feelings they represent, (b) because readily s. identifiable features of predicates within the repertory grid obtained discriminative control more rapidly than concealed features, and (c) because users may develop response strategies to test subjective hypotheses concerning functional features which conceal increments in discriminative control.

These conclusions, combined with the suggestion that participants in the two case-studies differed in their objectives in engaging in their modelling: activity, led to an attempt to reformulate evaluative
strategies with respect to Strategy C procedures. The development of appropriate evaluative methods was clearly an urgent need, and the discussion of this issue is resumed in the following chapter.
5.1.4.8. This review of Strategy C procedures has attempted to highlight difficulties experienced in implementing the model of conversational procedures. In particular, it has highlighted the need for future applications of the strategy to consider (a) extending the flexibility of element sampling in the repertory grid cycle, (b) the need to redefine functional features as continuous variables and to obtain a more stable sampling of their occurrence, (c) the need to systematise grid transformations across all levels of information feedback, and to develop appropriate displays, and (d) to develop an evaluative strategy that is consistent with the model of conversations it seeks to test.

5.1.5. Combining Strategy B and.C procedures.

5.1.5.1. Strategy B was developed in Chapter 4.1. and implemented in combination with Strategy C in Chapter 4.2. Essentially, Strategy B seeks to enhance interpersonal consensus by intervening into interpersonal modelling activity in a restricted way in order to exhibit the relationship between the functional properties of predicates of two or more participants. To achieve this supplementary methods were developed, namely aggregate grid methods, and incorporated into the general scheme of Strategy C procedures.
5.1.5.2. The aggregate grid method.

A number of considerations led to the development of a specialised procedure for monitoring interpersonal modelling. Firstly, it was considered desirable that modelling by two or more participants should proceed independently. The pilot study of repertory grid interviews in Chapter 2.3. indicated that diversity of construction within the interview context varied between interviewers and appeared to be largely controlled by the variety of elements elicited by the interviewer. These observations suggest that it is insufficient for interviewers to claim that "active" interviewing styles lead to increases in interviewee verbalisation (Heller, Davis and Myers, 1966) without reference to the content of verbalisation. Similarly, as it was the content of predication that was being examined in interpersonal modelling, it was considered desirable to entirely remove E and other participants by ensuring that all predication remained confidential. This was achieved by training participants to self-administer the repertory grid, and by ensuring that all
construct cords were retained by each participant.

Secondly, it was necessary that both participants predicate within the same domain. To ensure this, and to lift restrictions on element sampling, participants were requested to independently construct a list of persons known to be familiar to them both. The final element sample was drawn equally from both lists and included the names of the participants themselves.

Thirdly, in order to reflect salient interpretations of the element sample the precaution of ensuring independence of construct formulation was taken by not yoking constructs between participants to element triads. Instead, a modified Full Context Form of construct elicitation was employed. Moreover, since the salience of self- and other-relevant predicates was under test, it was thought advisable to include either of these elements as anchor-stimuli in construct elicitation. As Bender (1974) has shown, the Sequential Form, and by inference the Self-Identification Form (Bannister and Mair, 1968), successively obtain attributes of decreasing "importance" to the subject.

Finally, as both participants formulate constructs within the same domain, two classes of analysis are made available; (a) an analysis of each individual's grid (IG) consistent with procedures developed in Strategy C, and (b) an analysis of constructs pooled from all participants to form an aggregate grid (AG). The principle of functional equivalence may be used in AG analysis provided the element sample is unambiguous:

From a pilot application of this procedure utilising the repertory grid cycle of activities described in the previous section, it was evident that the AG method yielded four classes of information; (a) the classes of predicates on which participants have achieved consensual self- and partner-definitions, (b) the classes of predicates on which participants display exclusive or disjunctive self- and partner-definitions, (c) changes in the salience of these predicate classes over a period of time, and (d) the interdependence of these changes between participants.
5.1.5.3. Transformations and reflective strategies in the
aggregate grid.

To incorporate this methodology into Strategy C procedures additional transformations were required. These transformations centred on information concerning the functional properties of each participants' predicates in the context of their partner's predicates. For example, whilst a particular predicate is central to the Husband's self- definition, the proposition that a functionally equivalent predicate in the Wife's grid is central to her definition of Husband may be tested. Thus, predicate function in IG may be matched or mismatched to the function of the same predicate in AG. For any two participants, functional match or mismatch may arise from the following causes; (a) match may arise either because the partner does not contribute to AG any functionally equivalent constructs to those produced by self, thus preserving the function of self's constructs, or (b) because partner does : contribute constructs to $A G$ equivalent in all respects including their functional properties for self, indicating consensus in selfo

```
definition, and (c) mismatch may arise because the partner
contributes constructs to AG equivalent in all respects except
their functional properties for self, indicating disjunctive
definitions of self.
```

The use of the principle of functional equivalence in this context was clarified by examining the status of principal components extracted from IG and AG analyses. The issue under investigation was the extent to which IG and AG PCA's were commensurable, and whether AG solutions differed in any significant way from straight forward comparisons of two participants' IG solutions for identical element samples. This latter comparison was achieved by testing the correlation of element eigenvectors on all components for two IG solutions and contrasting the pattern of component relationships with element eigenvectors extracted by the AG solution. It was found that equivalences between components in the IG solutions were recovered in the $A G$ solution. In addition, the AG solution revealed dominant patterns of variation from a single IG source and the loss of less dominant patterns from the second IG source. It was concluded that patterns of variation which are underemphasised in IG solutions and unshared in AG solutions must compete with the variations shared by both sources. Thus, the strength of the AG analysis is in its capacity to locate sources of variation common to two or more IG solutions, enabling tests of predicate function in the two contexts.

This analysis enabled the construction of a special class of comparisons, namely IG-AG function comparisons which influenced the development of reflective strategies and displays in a procedure
which came to be termed the reciprocal insight grid. Chapter 4.1. reported a case-study in which these comparisons were developed, focusing on the functional property of predication centrality.

This procedure was further developed into a modular series of activities in Chapter 4.2. Again focusing on centrality of predication, these activities resembled those of Strategy C insofar a_{6} the IG transformations and displays were stratified into three discrete levels. In addition to the IG displays, however, corresponding AG transformations and displays were also stratified into three levels.

(i) Level 1.

The cumulative PCA and representation methods for determining significant components developed for Strategy C were applied to the AGs in the reciprocal insight grid. In addition, the construct centrality score developed in Chapter 3.4. was applied to constructs in the AG context for both participants. Thus, centrality scores in the separate IGs were directly comparable with AG centrality scores for the same constructs. In addition to estimating the relative centrality of constructs and elements in their individual grids, participants repeated this activity for the AG analysis. Similarly, significant errors were identified and participants were requested to furnish explanations for these errors.
(ii) Level 2.

By applying the Bayesian transformation developed in Strategy C for the predication centrality variable, two displays were assembled at the second-level; (a) an AG principal components display incorporating constructs from both participants, and (b) a direct comparison of construct and element classifications in IG and AG analyses according to posterior probabilities of predication centrality. In the former display, participants were requested to formulate descriptions of each significant AG component. In the latter display, functional disjunctions (where the functional properties of a construct or element in the IG analysis did not match those obtained in the AG analysis) were identified, and each participant requested to furnish an account of the consequences of observed disjunctions for the relationship.
(iii) Level 3.

The transformations developed to identify centrality attributes for Strategy C were applied and, utilising the same unconditional and conditional probability distributions derived in Chapter 3.2., posterior probabilities were obtained for the functioning of participants' predicates in the AG context.

Displays identical to those developed for Strategy C were employed for AG posteriors. That is, each participant was presented with a display which identified disjunctions between data classes and prior hypotheses for centrality in the aggregate domain. Analagously to IG displays, each participant was requested to furnish an account
for observed changes in predicate function by identifying significant events in the relationship wherever possible.

Throughout the construction of AG transformations it has been assumed that AG information does not significantly differ from IG information. These procedures may be challenged on the grounds that they are not comparable with IG procedures for a number of reasons. Firstly, the sample of observations from which unconditional probabilities for predicate centrality were derived, namely a series of individual grids, may not provide an appropriate estimate of the unconditional probability of predicate centrality in the aggregate domain. Whilst the $A G$ analysis identifies the major sources of variation in separate IG analyses, and is thus comparable to the extent that IG and AG solutions are similar, it is conceivable that components might be extracted from the AG solution which bear no resemblance to components in the separate IG solutions. This would indicate that predicates in the AG domain might more appropriately be treated as a discrete sample, requiring separate estimates of the unconditional frequency of central predications.

Secondly, similar criticisms may be levelled against the use of conditional probability distributions deriving from IG solutions. Clearly, if separate AG observations were collected, estimates of conditional distributions would also be required.

Thirdly, AG reflective strategies required participants to estimate the functional properties of their partner's modelling without providing any means by which these estimates might be tested. This was a serious shortcoming of the procedures. In the case-study
reported in Chapter 4.2., for example, participants sought information from each other to assist them during secondary modelling activities. The procedures, however, were constructed to exclude such exchanges, however. fruitful they might be. Further development of the reciprocal insight grid would need to consider methods by which such exchanges could be incorporated into the activities at appropriate points.
5.1.5.4. Evaluating the procedures.

The operational form of Strategy B and C combined, the reciprocal insight grid, was tested in a single case-study involving a married couple. In four sessions over three months, the couple completed the repertory grid cycle twice, formulating constructs from a jointly produced sample of 16 elements, including close friends, relatives and themselves. On the first session, the couple independently formulated 10 constructs, and in addition to two whole figure constructs (Bannister and Mair, 1968) of the form LIKE SELF/PARTNER IN CHARACTER, predicated the entire element sample in terms of these constructs. On the third occasion 6 additional constructs were independently formulated and applied, and the 12 from the first session reapplied.

The evaluation of the reciprocal insight grid paralleled the methodology employed in Chapter 3.4., in that criteria were first derived from the rationale of Strategy B / C and then operationally tested. If the procedures effectively enhanced interpersonal modelling by the couple, the following effects were expected to obtain in primary and secondary modelling performances; (a) that both participants display increasingly distinct models of self and partner as their avareness of the functional properties of self- and partnerrelevant predicates improves; (b) that both participants engage in interpersonal modelling conversations more frequently leading to the increasing salience of partner-relevant predicates, (c) that both participants display increasing specificity of self- and partner-relevant predicates; and (d) that both participants display
increasing descriminative control over self-modelling both in the IG domain, and in the joint AG domain.

These propositions were tested by (a) examining the correlation between element placements on the two whole-figure constructs LIKE SELF and LIKE PARTNER for each participant before and after secondary modelling, (b) comparing the salience of constructs elicited by the participants in the two grids to self- and partner-relevant AG components, (c) examining the loadings of the two whole-figure constructs on self- and partner-relevant AG components, and finally (d) comparing the correlations obtained between participants' rankordering of constructs in terms of self-centrality and observed centrality outcomes before and after secondary modelling.

The case-study reported in Chapter 4.1. met only a fraction of these criteria. Firstly, only one of the participants showed a tendency towards significantly distinguishing self from partner, whilst the other displayed a significant tendency in the reverse direction. Secondly, both participants displayed a non-significant tendency towards decreasing salience of self-relevant predicates, but only one participant displayed a significant tendency towards emphasising partner-relevant predicates in the second grid. Thirdly, both participants displayed a significant decrement in the loadings of the LIKE SELF construct on self-relevant predicates, and one participant displayed a significant decrement for the loading of the LIKE PARTNER construct on partner-relevant predicates. Contrary to predictions, both participants displayed significant or nearsignificant increments in the loadings of the construct LIKE SELF

Abstract

on partner-relevant predicates. One participant did, however, display a significant decrement in the loading of LIKE PARTNER on selfmrelevant predicates. Finally, both participants attained significant levels of competence in identifying self-relevant predicates in the IG domain, but neither participant displayed any improvement in identifying the same functional property of their predicates in the AG domain.

These findings were interpreted as indicating firstly, that evaluative criteria were not coincident with subjective strategies underlying modelling activity, and secondly that anticipating the functional outcomes of predicates in the AG context was a qualitatively different task to anticipating IG outcomes. It was suggested that the subjective strategies of the participants were directed towards a reversal of roles within the relationship because of differential assumptions initially held by the participants concerning selfpartner similarity. The Husband, for example, had not previously demarcated his own role from the Vife's, whilst the Wife had reluctantly come to view herself as HAPPY WITH DOMESTICITY ALONE rather than compete on intellectual terms with the Husband. As a result of the procedures the Husband had not only learned to appreciate the Wife's distinctions between their roles but had also attempted to reverse these roles. In contrast, the Wife had attempted to view herself as intellectually on a par with the Husband. These relationship-defining strategies were not anticipated in the design of the procedures. Moreover, the procedures had excluded any systematic interpersonal exchanges concerning the content of participants self-partner modelling. In the absence of this information participants were not able to anticipate the
effects of their partner's modelling on the functioning of their own self-relevant predicates. Further development of this procedure should thus incorporate means by which such information may be exchanged.

As in the previous study (Chapter 3.4.) the evaluation strategy in this case-study may be criticised on two grounds, namely in the translation of criteria derived from the rationale of Strategy B / C into operational tests, and the derivation of the criteria themselves. Firstly, the test of independence of self-partner modelling might be improved by examining the profiles of ratings for the SELF and PARTNER elements rather than, or in addition to, comparing the LIKE SELF and LIKE PARTNER whole-figure constructs. When this comparison is made (see Table 57) strikingly different results are obtained.

	Grid 1	Grid 2
Ruth	-.679	.182
	$(N=12)$	$(N=18)$
	-.425	$.767^{*}$
	$(N=12)$	$(N=18)$

(* denotes $p<.01$, two-tailed).

TABLE 57 Correlations coefficients between the elements SELF and PARTNER on two occasions for two participants.

Here it is evident that both participants distinguish self from partner prior to the procedures but both show a significant tendency towards identifying self with partner after the procedures (Ruth, $z=2.396, \mathrm{p}=.016$, two-tailed; Isaac, $\mathrm{z}=3.476, \mathrm{p}=.0006$, two-tailed). The results of this test are contrary to those obtained for Isaac when whole-figure constructs were correlated. What might account for this discrepancy? A methodological point of note is that both these comparisons employed the product-moment correlation coefficient, which is not entirely appropriate because (a) the, range of values of the grid scores is restricted to a seven-point rating scale, and (b) an interval level of measurement and normal distribution scores cannot be safely assumed. However, the discrepancy is so marked that these strictures alone cannot suffice to explain it. A more plausible explanation lies in the inconsistencies of the whole-figure constructs themselves. Whilst it was argued that the ambiguity of constructs of the LIKE SELF IN CHARACTER type made them particularly susceptible to multiple interpretations, and that this susceptibility was advantageous in determining the salience of such interpretations at any point in time, it was evident that participants experienced difficulty in employing the predicate consistently across the element sample. As Mair (1967) cogentiy points out, whole-figure constructs are extremely difficult to use wholistically, and subjects may tend to focus on one attribute in predicating one element, another attribute for a second element, yet another.for a third, and so on. Thus, we cannot assert that the dimensions LIKE SELF and LIKE PARTNER represent a single salient attribute. The implications of this are that whole-figure constructs represented a less appropriate test of the evaluative criteria than element rating profiles.

Similar criticisms may be levelled against the use of whole-figure constructs to examine the specificity of self-partner models. Because of their probable inconsistency, the loadings of whole-figure constructs on self- and partner-relevant predicates is surely ambiguous. Even if whole-figure constructs could be shown to be consistent, the test of specificity reported in the case-study has a second weakness, namely that increasing specificity of, for instance, the self model; was assumed to be exhibited by an orthogonal relationship between selfrelevant predicates and the whole-figure construct LIKE PARTNER. However, examining loadings only for orthogonal relationships conceals the presence of reversals of relationship (because the sign of the construct loading is ignored). which would be expected to occur if the opposite poles of central predicates came to be applied to self. In such a case, it would appear that no change of specificity had occurred (because the magnitude of the loadings of the constructs LIKE SELF and LIKE PARTNER had remained the same) even though self-relevant predicates had reversed their implications for the self model. To test for the presence of such reversals in the case-study, the loadings of wholefigure constructs were plotted taking the sign of the loadings into account (Figures $99 a_{\text {a }}$ and 99b). Comparing these plots with Figures 86 and 87 reveals slight differences for Isaac's constructs on partnerrelevant predicates (LIKE SELF from orthogonal tends towards a positive leading $z=2.014, p=.022$; LIKE RUTH from positive to negative loading $z=-2.41, p=.008$), and for Ruth on self-relevant predicates (LIKE ISAAC from negative loadings to orthogonal $z=1.765, p=.039$; LIKE SELF from positive to negative loading $\mathrm{z}=-2.629, \mathrm{p}=.004$). These reversals on the second, Ruth-defining component are significant since both Ruth and Isaac display reciprocal shifts. In conclusion, the test for

Figure 99a Loadings of ISAAC'S whole-figure constructs on central components.

Figure 99b Loadings of RUTH'S whole-figure constructs on
central components.
specificity did not consider reversals in the implications of self- and partner-relevant predicates.

Thirdly, the tests of improvements in discriminating features of modelling predicates in this case-study suffer identical faults to the casestudies reported in Chapter 3.4., namely (a) that the test fails to distinguish between improvements in identifying external features of predicates as they are represented in the grid form and improvements attributable to identifying distinctive features of "felt meanings", (b) more readily identifiable features (e.g. IG functions) obtain discriminative accuracy more rapidly than less identifiable features (e.g. AG functions), (c) response strategies may conceal increments in discriminative accuracy, (d) an insufficient number of trials were employed to test the stability of discriminative accuracy and (e) the test failed to distinguish between discriminative control (the capacity to formulate predicates of predetermined function) and retrograde discriminative accuracy (identifying predicate features after their production).

Finally, the tests remain inconclusive in the absence of appropriate controls. For example, a no-feedback comparison is required to establish that improvements in discriminative control are dependent on first-level information feedback and reflective strategies. Similarly, a no-contact control is required to determine whether increasing salience of partner-relevant predicates is a function of interpersonal modelling over the period intervening between the grid administrations. Further research would seek to clarify the causal processes underlying the effects of intervention strategy.

The evaluative methodology may also be challenged on the derivation of criteria from the rationale of Strategy B / C. In particular, the predictions concerning increasing self-partner distictiveness and salience of partner-relevant predicates hinge on participants' reactions to the outcomes of secondary modelling processes. To take an example, consider a man who construes himself as UARM AND LOVING and views this as a fundamental aspect of his relationship with his wife. On this basis he anticipates that this construct will be corroborated by his wife and will appear as central in the AG analysis. Suppose, however, that it is not central in the AG domain, how might he react? The theory of objective self-awareness (Wicklund, 1975) would suggest that this finding would lead him to examine himself and to turn his attention particularly to those attributes and behaviours relevant to being WARM AND LOVING. However, two options are available to him. He may either attempt to reduce the discrepancy by coming to view the construct WARM AND LOVING as nonessential to him, or he can escape from objective self-awareness by avoiding. self-focussing stimuli. When requested to formulate constructs following this experience, these two reactions would lead to differential outcomes; in the former he would tend to produce self-relevant constructs that effectively distinguish himself from his wife, in the latter constructs that were not self-related, but which focussed on his :vife or other persons in the element sample. If it was observed that the salience of self-relevant constructs declined whilst increasing for partner-relevant constructs we would conclude that he was avoiding self-focussing stimuli. If, however, the salience of sclf- and partner-relevant constructs increased, we would conclude
that he was attempting to reduce the dissonance.

The evaluative criteria established to test the procedures did not take account of these strategies. To achieve an adequate assessment of the procedures it would be necessary to closely monitor subjects' responses to both validating and invalidating information, and to estimate subjective purposes, expectations, and strategies for utilising the procedures. Methods for achieving appropriate evaluative strategies are discussed in the final chapter.
5.1.5.5. This section has reviewed the construction and application of Strategies B and C combined. It has been pointed out that (a) the aggregate grid method required procedures of a different order to achieve optimal secondary modelling, (b) that procedures developed to display features of individual grids may not be entirely appropriate to the aggregate domain, and that (c) a methodology for evaluating the success of the procedures remains to be developed.

Chapter 5.2.

Implications for conversational practice.
5.2.1. Conducting conversations.
5.2.2. Methodologies of evaluations

5.2.1. Conducting conversations.

Abstract

5.2.1.1. The objective of this final chapter is to place the research in a wider context by briefly discussing the general implications of the models of conversation and conversational procedures. In this section we will focus on problems inherent to a procedural approach to conversations, namely factors in the exteriorisation of accounts and cognitive reflection, and the applicability of the skills paradigm and models of change to conversational competence.

5.2.1.2. Factors.in the exteriorisation of accounts.

The procedures developed to enable persons to exteriorise their interpretive systems in this research are essentially double-edged. On the one hand it is recognised that the forces of social influence exerted by, for example, the counsellor or the teacher are sufficiently powerful to transform the modelling processes of the client or learner, both externally (in what the client or learner says he thinks) and internally (in what the client or learner says to himself). When these forces are ostensibly removed by removing the teacher or counsellor from the scene, modelling processes were .. \because assumed to take on a less biased form. To what extent was this assumption justified? In its most basic form this question seeks to reveal the conditions under which optimal self-expression may occur.

A first consideration is that the physical removal of a participant other (teacher, counsellor) need not be coincident with the removal
of social influence. In his discussion of social influence Moscovici (1974) distinguishes two convergent forces of social pressure on the individual, institutional (pressure directly exerted by one person on another through the social agency of sanctions and control over resources), and inferential pressures (pressure indirectly exerted on the individual through the external agency of values, opinions and attitudes). Removal of the institutional forces does not necessarily lead to a reduction of inferential forces. Sherif's (1935) studies of group influence on autokinetic movement judgements clearly indicate (a) that subjects seek to establish an individual norm in the absence of social standards, and (b) that following social influence judgements are made in terms of the group norm. Even if it could be asserted, and this is highly unlikely, that no norms existed prior to the modelling experiences of our subjects this study suggests that the individual would establish his own frame of reference for guiding, selecting and expressing his interpretations. Whilst many writers suggest that establishing a norm reflects a need to reduce uncertainty; it is evident from the studies of Alexander, Zucker and Brody (1970) that it is not uncertainty about the physical environment that concerns the individual, but uncertainty concerning appropriate social behaviour. Using a confederate who tended towards either convergent or divergent judgements these authors demonstrated that subjecis attempted to remain consistent with the confederate irrespective of the physical judgements he made. The function of norms, then, are to stabilise the social relationships between the subject and other persons on the basis of expectancies that he holds concerning such relationships. Thus, despite the repeated injunction that modelling was to remain
confidential to the person, it is highly likely that subjects established a standard on inferences concerning experimenter expectations, the nature of the task and perceived social roles. Such standards need not necessarily have the effect of limiting modelling only to those predicates which are perceived as socially acceptable and desirable. As Ehrenzweig points out "by one of the many ironical turn-abouts in modern art, today self-expression has become a social duty forcibly imposed on the student by teacher, parents and the public alike...Individual self-expression has turned into another social convention" (1970, p.156). Similar statements may be made by observers of the encounter group movement or any of the modern therapies. Even here, in amongst the displays of primal emotions, group togetherness, aggression and hostility may be found standards of appropriate conduct. Non-evaluative therapies easily become transformed into social standards because "the social reinforcers likely to be involved in the application of genuineness, accurate empathy and unconditional positive regard are fairly obvious" (Jones, 1971, p.282). Not only do the procedures fail to. ensure that optimal conditions for self-expression are achieved, they also fail to determine what standards are operating in the individual's selection of aspects of his social environment to be predicated, and in the determination of the content of predicates.

A second consideration derives from the notion that the presence of direct social influence is essential to self-expression. Both Haley (1963) and Carson (1973), for example, assert that the role of the therapist is to engage the client in a social relationship with the intended purpose of changing him in certain ways. In
order to do this the therapist must discover "the templates by which (the client) orders and construes his experiences" so that the social feedback the therapist supplies fails to "provide confirmatory and complementary feedback in response to the disordermaintaining behaviours of the client" (Carson, 1973, p.162). The view expressed here is that neither exteriorisation nor change of the client's interpretive system can occur outside of such a relationship. Similarly, Jourard asserts that "self disclosure is a factor in the process of effective counselling or psychotherapy. Would it be too arbitrary an assumption to propose that people become clients because they have not disclosed themselves in some optimum degree to the people in their life?'' (1971, p.225). The extension of awareness into Quadrant 3 (hidden experiences, not known to others but known to self) and Quadrant 2 (blind experiences, known to others but not known to self) in the Johari Uindow model of awareness (Luft, 1971) similarly cannot be achieved without self-disclosure in a trusting relationship. Even within the neo-Freudian tradition, the essential role of therapist as cryptographer and interpreter. has been firmly established (Lacan, 1968). In all these accounts the therapist is seen as a catalyst, enabling rather than determining self-modelling by the client.

These considerations suggest that procedures designed to be entirely self-administered must necessarily be limited by the user's predispositions and expectations. However, the same procedures utilised in an interpersonal context transfer the enabling process of the therapist to a participant client who himself may become the helpee of other participants. Machine-mediated conversations of this kind seem quite feasible provided the means are embodied
in the procedure to identify restriction on modelling (where participants limit their conversational domain), distortion (where participants fail to achieve adequate mapping between "felt meanings" and exteriorised predicates) and appropriate and unobtrusive guidance (to avoid selective omissions in predication).
(i) Restriction: Although users nominated specific persons within their social environment to provide an element sample the guidelines employed to delineate the class of elements to be included in the sample were somewhat arbitrary and occasionally appeared to restrict modelling activity. These restrictions were manifested by (a) a limited definition of the user's self-concept under consideration, (b) the use of a fixed element sample throughout the repertory grid cycle, and (c) the practice of allowing the user to select anchor-stimuli for construct formulations in order to test predicate salience. Each of these sources of restriction may be controlled by an automated procedure in the following ways: (a) by free sampling within a series of self-concept classes (e.g. family, male friends, female friends, work colleagues, etc.), (b) by extending the domains within each class as they vary between occasions, and (c) by monitoring the selection of anchor-stimuli and occasionally removing items on the basis of selection frequency from the element sample.
(ii) Distortion: Distortion may arise from two sources of failure to map felt meanings onto construct representations; (a) incompatibility, where verbal descriptions of a construct dimensions and the allocation of elements on dimensions fail to represent felt meanings, and (b) interference, where verbal descriptions and element
allocations do represent felt meanings but not those originally intended. Both sources may be monitored to some extent by examining constructs for element polarisation in general, and criterial element polarisation in particular. These criterial elements will be determined by the purpose of the modelling activity. If, for example, self modelling is under consideration, the extent of polarisation of the element SEWF may be monitored. This process. can, of course, apply to any element in the sample.
(iii) Guidance: Unobtrusive guidance in modelling entails ensuring that all predicates are applied to all elements in the sample. One consideration relevant here, however, is the range of convenience of the predicates, especially when using an element sample segmented into a number of domains. Kanges of convenience may be monitored by the use of a non-applicable category (Landfield, 1971) and the domains monitored to ensure predication equally within all domains.

5.2.1.3. Factors in cognitive reflection.

The development of reflective strategies has entailed a discussion of the role of confrontation in facilitating conversational competence. The use of prompt cues to provoke secondary modelling consists of exhibiting

[^7]```
attitudes, beliefs or behaviours. It may also
lead to the discovery of ambivalance in feelings
and attitudes towards persons in the client's life''.
```

Patterson (1974, p.76).

In his discussion of confrontation in therapy, Patterson points out that initial confrontations are tentative and general, becoming increasingly specific as therapy progresses, and that confrontation in the absence of sensitivity to the client's receptive state may have a "demoralising and demobilising effect upon the inadequately prepared helpee" (Carkhuff, 1969, p.93). Similarly, confrontation concerning central beliefs held by the client in the absence of an adequately supportive context in which such beliefs may be examined is likely to lead to the client's rejection of the exploratory strategy in use. A systematic exploratory strategy of the kind described by Wright (1970) appears effective as it employs the "laddering" technique to initiate an examination of central beliefs by progressive elaboration from more peripheral implications. This strategy frequently reveals contradictory and conflicting "laddered" implications, but by exhibiting their origin in primary constructs, provides an explanatory context within which secondary modelling may take place. Such an exploiatory context was not available in the procedures, in which discrepancies between expected and observed construct functions (Level 3 outcomes) and between subjectively anticipated and observed construct functions (Level 1 outcomes) were presented to the user without consideration to the centrality of the beliefs about self that each represented. Thus, whilst users found some discrepancies self-evident and easily explained, others appeared unnaccountable, arbitrary or disturbing.

Secondly, the process of cognitive mirroring entailed in reflective strategies is necessarily selective. The notion that direct, objective information feedback through the use of videotape playback methods alone represents a method of confrontation (Kaswan and Lave, 1969) cannot be accepted following the discussion of Chapter 2.1. In such a methodology the element of confrontation is absent unless the subject is in a state of readiness to observe and respond to particular cues. Thus, our analysis of confrontation hinges on three elements, (a) the selection of appropriate cues, (b) the state of readiness of the subject, and (c) the intelligibility of selected cues.
(i) Selection of appropriate cues: For Kaswan and Love "confrontations can be subjective or objective in form. A reflective 'you sound angry' from a therapist or group member is more subjective than his playing back an audio or videotape of the angry outburst ...The videotape appears to be the most comprehensive form of objective confrontation because it presents information about the self more completely, directly and concretely than other media" (1969, p.225). Here they convey the sentiment that the biased subjectivity of the therapist is removed from acts of confrontation through the use of videatape playback. However, the inconsistency of this assertion is revealed when they describe their methodology; "Content chosen for feedback ranges from small samples of reiterated verbal behaviour to presentation or videotapes showing complex social interactions...When the family returned to the clinic... each of them was individually shown brief sections of the videotape that the consultant had judged to be representative of their interactions" (p.229). Moreover, clients evaluated their videotapes
in terms of carefully constructed rating scales manifestly designed to draw their attention to particular aspects of their behaviour. It is clear from this study that information feedback fails to achieve confrontation in the absence of the client's directed attention to certain events, or patterns of events contained in the feedback. The question then becomes: on what basis is the clinet directed to observe selected aspects of his behaviour?

The criteria for selecting appropriate cues in the procedures are based entirely on the single assumption embodied in Patterson's account, namely observed discrepancies.between different levels of user behaviour. For example, first level confrontation followed from a discrepancy between user expectations and observed predicate function. Similarly, level three confrontation followed from a discrepancy of observed predicate function between occasions. The behaviours compared by these methods are predication responses (element allocation on construct dimensions) and reflective responses (classification of predicates by expected function). Both forms of behaviour are as faithfully recorded in the procedures as are the videotaped interpersonal behaviours in the Kaswan-Love method. In contrast, the procedures have recognised the need to direct the user's attention to specific features of recorded behaviour, and objective criteria (e.g. magnitude of ranking discrepancy at Level 1, and magnitude of discrepancy between the probability of prior hypothesès and data classes at Level 3) were developed to meet this need.
(ii) States of readiness: Kaswan and Love do not discuss the relationship between confrontation and client readiness. However, timing of intervention has been explicitly discussed both in terms Of the feedback of discrepancies (Patterson, 1974; Carkhuff, 1969) and psychological interpretation (Levy, 1963). In the development of Strategy A in which feedback was intended to redirect ongoing modelling activity, confrontation was viewed as essentially tied to the status of the conversation. Although this was equally true for Strategies $B$ and $C$, confrontation in those case-studies was procedure-based rather than user-based. For Levy the timing of interpretation is grounded in the model of cognitive dissonance developed by Festinger (1957, 1964), timing being determined by the magnitude of dissonance between criterial elements in the domain under consideration. It is important to note that interpretation for Levy differs from the process of confrontation in both the Kaswan-Love method and the procedural approach in the preceding chapters, in that the client is aware of the dissonant relations between elements and in a state of readiness to receive or construct an alternative description of these relations. The therapist in this situation merely offers one of several alternative descriptions. In the process of confrontation, however, the user is initially unaware of the relations between elements and thus does not experience dissonance directly. Instead, confrontation through information feedback introduces dissonance by exhibiting behavioural discrepancies. Subsequently, all propositional interpretations are formulated by the user via secondary modelling activities.

Yoking confrontation to the state of readiness of the client is thus a problematic issue which cannot be solved by simply basing intervention on estimates of experienced dissonance. Instead, confrontation must be articulated against measures which reflect "failures to elaborate one's personal construct system" (Bannister, 1975, p.132). Essentially, these measures should assess the extent of coupling between levels of control of modelling as indices of the timing of confrontation. Bannister points out that Kelly's formulation of change as three stages of circumspection, preemtion and control indicates three points at which change may stabilise, requiring different types of intervention at each stage. Firstly, "it may be that the person's construing system has become too tight, too specific,...to restricted to particular strategies for handling experiment and evidence" (1975, p.132). Hence, in the obsessional "we apparently see the execution of low-level tactic plans without higher-level strategic control...(the) plans become detached into closed loops to produce the recycling repetitive behaviour so sharacteristic of the disorder" (Jones, 1971, p.283). Secondly, the personal construct system may become "too loose, too chaotic... so vague and inconsistent that they generate no testable expectation" (Bannister, 1975, p.132). Finally, there may be "particular contradictory implications....which prevent elaboration" (p.132).

Clearly, dissonance inducing confrontation is less appropriate to the second and third forms of stasis than to the first, and confrontation of this kind might be most effective if timed to occur within a period of tight construing.

The progression of stages in the C-P-C cycle may not, however, be as continuous and gradual as Kelly supposed it to be. Methods of articulating confrontation may become more effective if movement between stages were viewed as discontinuous. The recent development of catastrophe theory may provide an appropriate model of the cycle of reconstruction. Zeeman (1976), for example, has provided a simple cusp catastrophe model of anorexia nervosa and reports a treatment strategy based on converting the behaviour : surface of the cusp into a butterfly catastrophe by introducing reassurance as a fourth control parameter. We may speculate that a similar cusp catastrophe may be utilised to describe discontinuous shifts of state in an anxiety-hostility catastrophe (Figure 100). For a competent subject, invalidation leads directly to circumspection, the elaboration of alternatives and consequent choice. For a less competent subject however, invalidation leads to a "selfcriticism" catastrophe, projecting the subject into an anxiety state of excessively loose construing. Attempts to tighten construing may complete the hysteresis cycle and through a second "tunnel-vision" catastrophe project the subject onto the lower plane where he extorts validation from social events by acting in a hostile way. Either side of the fold lie the two cycles of hostility and anxiety which represent equilibria at the tight and loose stages of the C-P-C cycle. The role of confrontation would be to induce this hysteresis cycle for subjects stabilised in a hostility equilibrium by inducing dissonance and consequent loosening whilst moving the entire cycle along the competence dimension by facilitating insight into modelling processes. This entire procedure would result in a spiral course along the cusp (Figure 101).


Figure 100 Anxiety-hostility cusp catastrophe.

(iii) Intelligibility of cues: Selecting cues from a record of behaviour and presenting them to a subject also supposes that the subject will be able to make them intelligible by attributing them with meaning. It was pointed out in Chapter 3.1. that if modelling processes are hierarchically organised, cues derived from one level of organisation may be made intelligible only by the development of a denotative metalanguage at a superordinate level of complexity. Thus, the reflective statement "you seem angry" may only become meaningful if the individual reflects on antecedent behaviour in such a way as to isolate both behavioural elements and associated feelings and predicate them as examples of anger or not-anger. In the case of the Kaswan-Love videotape method, cues are propositions which may be checked against the objective recording, presented without additional implications ("I did x", "she did $y^{\prime \prime}$ ). In the conversational procedures cues are propositions concerning the classification of predicates ("Construct $x$ is selfrelevant'). In both cases, however, the subject must utilise an alternative language projection (Jones, 1963) to add meaning to the propositions ("I did $x$ because I was angry", "I thought construct 。 $x$ was self-relevant because my wife is $x^{\prime \prime}$ ). The role of the developing meta language is thus the focussing of experience, or "the putting into unambiguous words and making conscious something Which has been vaguely 'known', suspected, or 'felt', or something which is just outside the 'focus-range' of consciousness" (Jones, 1968, p.95). All secondary modelling activities have this function, namely the development of a propositional language capable of making behavioural cues intelligible.

### 5.2.1.4. Applicability of the skills paradigm.

Chapter 1.2. proposed that the development of conversational competence entailed that the individual acquire the means to initiate and direct modelling activity to achieve adaptive adjustments to self-cognitions. Modelling was viewed as a skilled activity because (a) it may be learned, (b) it is a self-regulating process, (c) it requires the differentiation of cues intrinsic to the modelling process, and (d) the breakdown of competence is manifested in failures to regulate modelling processes (e.g. anxiety, hostility, guilt, etc.). The analysis of self-modelling suggested three performance dimensions; (a) the alternation between participant and modelling modes of self-experience, (b) the distinctiveness of the self-model, and (c) the differentiation of predicates. Each dimension was translated into a specialised training paradigm, and embodied in three separate intervention strategies. The objective of the intervention strategies was to develop sensitivity to cues associated with each dimension of competence, and was rooted in the methodology of feedback control for which techniques for exteriorising, transforming and displaying modelling functions were developed. In the light of these studies, a number of observations may be made concerning the. relevance and adequacy of these techniques.
(i) Feedback classes: One major consideration in the design of training paradigms concerns the nature of the intrinsic cues the learner is expected to identify. In the group study of Strategy A, for example, transformations were geared to exhibiting phases in the development of the group with a view to establishing behavioural indices to signpost transitions between phases. It was argued that
future use of Strategy A depended on (a) the specificity of behavioural cues and (b) the assumption that group members could learn to recognise their occurrence. Similarly, in Strategy C operationally defined indices of predicate function were established with the intention that subjects would learn to identify intrinsic cues associated with their functional properties.

However, the Strategy C training paradigm was challenged on the grounds that it might equally lead to a task-specific learning outcome, namely the recognition of cues associated with the representation of cues in the repertory grid format. That is, subjects may have been learning to identify those features recognised by transformation procedures as indicative of predicate function rather than internal cues associated with their production.

In their discussion of rehabilitative training, Smith and Smith (1969) propose a distinction between three classes of information feedback (IF) which may clarify this problem. Their analysis of unaided motor actions identifies "the direct sensory effects of movement or reactive feedback; the dynamic effects of this movement on the environment... dynamic operational feedback; and the persisting static effects of the movement on the environment, called static operational feedback'(1969, p.395). Applying these distinctions to modelling processes, cues arising during the production of a construct represent reactive feedback ( RF ), the effects created by applying that construct to the element sample dynamic operational feedback (DOF), and the functional properties of the construct in relation to other constructs static operational feedback (SOF). Whilst $R F$ and DOF are directly available to the subject, SOF is
made available only on the application of transformation procedures. Smith and Smith found that performance under DOF control was markedly superior to performance under SOF control, and that learning in the latter did not transfer to DOF. In the repertory grid context, this implies that subjects will experience difficulty in utilising information concerning predicate function to identify DOF cues in the allocation of elements on construct dimensions. In fact, in the reciprocal insight grid study subjects occasionally requested $E$ to specify hov core constructs differed from peripheral constructs in terms of element placement, indicating this problem of transfer. Transfer was made more difficult by the use of accumulated terminal feedback (KR provided after a response series is complete, as in repertory grid feedback) rather than serial terminal feedback following the production of each construct. In view of this effect, it is thus doubtful whether learning outcomes obtained on this task will transfer to other modelling contexts.
(ii) Discriminative control: In addition to this limitation, the Smith and Smith scheme also highlights a second issue in relation to first-level learning, namely the distinction between the discriminative control of predication (formulating predicates of predetermined function) and retrograde discriminative accuracy ( identifying predicate function following their formulation). The objective of the training paradigms is clearly the former, and entails learning to identify cues in RF. However, secondary modelling tasks were based on SOF, and in the absence of a serial feedback system providing SOF following production of each predicate, reactive control of modelling was unlikely to obtain.

It seems clear, therefore, that discriminative control is likely to occur only within a serial feedback system. Such a system would require the automation of transformations and a detailed analysis of the constitutive elements of the modelling task. Bilodeau (1966) and Annett(1972) provide the necessary framework for such an analysis by enumerating the temporal relationships between task components. Although their analysis centres on three significant intervals, a repertory grid task is more complex as it comprises a construct formulation response (CR) and a series of element allocation responses (AR). Consequently, four intervals are involved in the production of a single predicate (Fig. 102); the intervals between (a) successive element triad presentations (S), (b) CR and SOF, (c) AR and SOF, and (d) SOF and subsequent CRs.


Figure 102 Predication task components:
(adapted from Bilodeau, 1966)

To achieve discriminative control the subject must match the information content of $K R_{1}$ to the $R F$ arising in $C R_{1}$, possibly via the DOF arising in $A R_{1}$, and utilise this information to determine the $I F$ function $\mathrm{CR}_{2}=\mathrm{f}\left(\mathrm{KR}_{1}\right)$ (Bilodeau, 1966). Findings
concerning the effect of size of each of these displays equivocal with respect to verbal learning tasks, although there are indications that the interpolated activity of AR could interfere with learning (Bilodeau, 1966).
(iii) Feedback transformations: The relationship between predication responses and IF is a third consideration in the design of training paradigms. In Chapters 3.4. and 4.1. Level 1 IF was essentially an ordinal difference score between $R$ executed ( $S$ 's anticipation of predicate function) and $R$ required (observed predicate function), whilst Level 3 IF simply consisted of the categories "changed function" and "unchanged function". Bilodeau (1966) reports a number of studies in which coarseness of IF scale grain was detrimental to learning, and the use of extremely coarse IF scales at Level 3 may limit the extent to which cues associated with transitions of function are identified. Figure 1003 depicts three degrees of scale transformation of IF, (a) representing Level 3 IF and (b) Level 1 IF.
(a)
(b).
(c)

Displayed difference


True difference

Figure 103. IF scale functions.

It is clear that for $S$ to obtain continuous IF at Level 1 he would need to respond on a continuous scale when anticipating predicate function. Moreover, it was pointed out in the preceding chapter that the use of a continuous scale at Level 3 would require a different procedure for estimating disjunctions between prior hypotheses and data classes.

These three considerations suggest that the training paradigms employed in the studies are only marginally successful, and further testing should focus on (a) enhancing discriminative control of predication, (b) developing a serial feedback system, and (c) testing the effects of variations in IF scale grain. In general, the application of a feedback control paradigm to modelling activity has a future providing these relationships are clarified.

### 5.2.2. Methodologies of evaluation

5.2.2.1. Chapters 3.4. and 4.2. comprised tests of the effectiveness of Strategies $C$ and $B / C$ respectively. In both cases, evaluative strategies were developed in two stages; (a) the derivation of improvement criteria from the rationale of the intervention strategy, and (b) the construction of operational tests to assess change on these criteria. Test outcomes were disappointing. Whilst some tests did show evidence of criterial improvement, others obtained contraindicative results. These findings suggest five interpretations; (a) that the procedures did not achieve the desired outcomes, (b) that the improvement criteria were poorly matched to the strategy rationale, (c) that the operational tests did not sample relevant aspects of modelling behaviour, (d) that testing procedures biased behavioural outcomes, and (e) that subjective purposes did not coincide with the objective improvement criteria.

Chapter 5.1. has examined interpretation (c) in some detail and has concluded that some measures employed were ambiguous and in need of redefinition. However, the contraindicative findings cannot be fully explained by inadequate operational tests. Similarly, Chapter 5.1. has raised some doubts concerning the validity of some improvement criteria. This section is concerned, however, with determining the implications of interpretations (d) and (e) by taking a general view of the necessary and sufficient conditions for the evaluation of conversational procedures.

### 5.2.2.2. The control of nonspecific treatment effects.

One major feature of an appropriate evaluation strategy concerns the issue of whether conversational procedures contain specific therapeutic ingredients or whether some, or all behavioural change may be accounted for by nonspecific treatment effects. In his discussion of rules of evidence in the evaluation of psychotherapy, Thorne argues that "the effects of such concomitant variables as increased attention, suggestion, total push effects, etc., which seem to be present in all forms of psychotherapy, must be ruled out. As far as possible, concomitant variables must be identified" (1952, p.40). Thus, in evaluating conversational procedures it is necessary to identify and control for such variables.

Kazdin and Wilcoxon (1976) have attempted to identify concomitant variables in systematic desentitisation therapy in an attempt to devise control procedures. Their analysis centred on three nonspecific effects; (a) treatment credibility, (b) demand characteristics, and (c) client expectancies concerning therapeutic change. They point out the problems in controlling for these factors and advocate the use of three control strategies; (a) the attention placebo strategy, in which subjects are administered a treatment which is designed to be credible but which excludes supposedly active therapeutic ingredients, (b) the treatment ciement strategy, in which subjects are administered a treatment which "resembles the actual treatment as closely as possible...most or all of the components of treatment are included...(but) altered or recombined in the control group to render treatment inert" (p.739), and (c) the empirically derived strategy, in which "the expectancy for therapeutic
change generated by the control group is empirically demonstrated to be equal to that of the treatment group" (p.741).

Interpreting these strategies in terms of conversational procedures, control strategies may be constructed to utilise existing variables as follows:-
(i) Attention placebo: Subjects complete a repertory grid consistent with existing conversational procedures. Subsequently, a series of unstructured free-response self-description schedules are administered (e.g. the "Who are you?" technique, Bugenthal and Zelen, 1950; the sentence completion technique, Rotter, 1951; etc.), yoked to the same time-base as experimental subjects. Finally, the repertory grid is readministered.
(ii) Treatment element: Subjects complete an identical repertory grid cycle yoked to experimental subjects, but information feedback displays are randomised, displaced or excluded.
(iii) Empirical treatment: A series of tasks are devised and tested to ensure that they obtain comparable credibility and expectancy for therapeutic change. Tasks are preceded and followed by administrations of the repertory grid, and are yoked to experimental subjects.

Since before and after the repertory grid administrations are obtained, the dependent variables of component salience, complexity, anticipations of predicate function, etc. may be derived. It is clear from these proposals that evaluation strategies are based on
between-groups designs. To what extent is such a design appropriate to conversational procedures? To examine this it is necessary to consider the rationale of conversational procedures in relation to subjective hypotheses and expectancies concerning their outcome.
5.2.2.3. Subjective modelling of measurement.

Chapter 3.5. discussed the implications of the observation that the differential effects of subjective strategies in the reported case-studies may lead to outcomes at variance with the improvement criteria. In particular, it was observed that two subjects displayed divergent trends on the dependent measure of diversity of predication, suggesting that these subjects entertained different purposes in their interactions with these procedures.

To place these observations in context it was pointed out that measurement in conversational procedures differed from the traditional experimental approach in two ways: (a) because measurement data was channelled back into ongoing modelling activity in the form of feedback displays, and (b) because the objective of the procedures was to enable the subject to exercise greater choice and control in his modelling activity. The procedures were then conceptualised as providing the conditions necessary for the subject to elaborate an internal model of measurement and transformation procedures (Figure 74, p.506). However, four possible responses to measurement information were envisaged; (a) nonresponse, in that the subject may acknowledge measurement outcomes, and even paraphrase them in secondary modelling, but fail to utilise the information to develop an internal model of measurement trans-
formations, (b) noncontingent responses, where the subject fails to attribute meaning to measurement information, secondary modelling consequently being arbitrary and unrelated to transformation procedures, (c) restricted response, where the subject utilises measurement information to model a limited aspect of transformation procedures, and (d) strategic response, where the subject utilises measurement information to generate and test hypotheses concerning transformation procedures by manipulating primary modelling outcomes.

Response (d) is likely to give rise to the differences observed between subjects in their approach to modelling. Without implying that subjects deliberately manipulated primary modelling outcomes, it may be hypothesised that the discovery of relevant predicates in primary modelling may lead subjects to subsequently focus their attention to those predicates in order to maximise certain functional outcomes. Thus, in the case-studies of Chapter 3.4. one subject focussed on predicates which were manifestly self-relevant, whilst the other focussed on emergent predicates which provided an alternative description of relevant experiences. In short, improvement on objective criteria may arise only when those criteria coincide with subjective strategies for utilising measurement information. Consequently, the derivation of improvement criteria and the use of control groups to eliminate nonspecific treatment effects are both handicapped by the effect of indeterminate subjective strategies.

### 5.2.2.4. Negotiating assessment criteria.

Given the need to assess or control bias introduced into evaluation by nonspecific treatment effects and subjective strategies, it is possible to sketch the broad outlines of an evaluation strategy capable of meeting these needs. Firstly, Thorne's fifth rule of evidence must be observed, namely "external criteria of therapeutic success must be utilised" (1952, p.40). However, the procedure for establishing external criteria is flexible, and a system in which these criteria are negotiated may be envisaged. That is, subjective strategies may be compensated for by externalising these strategies and establishing improvement criteria partly on their basis. As Krumboltz has pointed out, "one set of statements cannot apply to all subjects...the goals of one client might be in direct contradiction to the goals of another client" (1966, p.154).

Such procedures are by no means new to the behaviour therapist. Many techniques may be evaluated only by (a) identifying a problem in behavioural terms with the : aid of the client, and (b) developing individualised behaviour change goals, again with the aid of the client. However, there are implicit dangers in the construction of simplemminded objectives, not the least being the expression of therapeutic goals in negative terms (e.g. to stop biting my nails, stop smoking, stay out of gaol, etc.). McFall (1976) has suggested a simple test for such negatively-framed objectives, namely the "dead-man test"; "if a dead man could satisfy the criteria for the treatment objective, then the treatment's goal response is incomplete in that it does not adequately specify positive response criteria" (p.233). For McFall, objectives are preferably framed
as increments in competence, "as the learned ability, acquired through training or experience, to perform with sufficient skill to produce an effect that meets the needs of a life situation" (p.234), a definition that is consistent with the concept of conversational skill developed in these chapters.

McFall's analysis offers four guidelines in the construction of subject-specific objectives; (a) definition by fiat, where "behaviours are identified as desirable merely because someone in a position of authority arbitrarily decides they are " (p.234), (b) definition by reference to known groups, where any specific behaviour that differentiates between the groups is treated as an essential component of competence, (c) definition by consensus, where opinion is pooled from several individuals, and (d) definition by experiment, where proposed objectives are sequentially modified on the basis of empirical tests. This last guideline implies that assessment should respond not only to subjective purposes, but also to changes in those purposes as treatment proceeds. Consequemtly, conversational procedures should entail a component concerned with the initial and sequential elaboration of objectives by which . external criteria may be aligned. Landfield (1975) conceives this $?$ process as the elaboration of the complaint, in which client and therapist must overcome various restrictions on communication (client expectancies, therapist expectancies, threat of selfdisclosure; client-therapist incongruency in attitudes and values) in order to establish counselling goals.

A more detailed account of the development of individualised goals is to be found in the ten steps advocated by Weigel and Uhlemann
(1975); (a) general goals (what change does $S$ feel to be most important?), (b) behavioural goals (how would $S$ behave if that change was achieved?), (c) observable behavioural goals (how could E tell if $S$ had changed in this way?), (d) specific observable behavioural goals (in what context is changed behaviour expected to occur?), (e) establish base rate (how frequently does this behaviour occur now?); (f) establish criteria of failure (how could E tell if $S$ did not achieve goals?), (g) reality check (how realistic are S's goals?), (h) importance check (do goal behaviours still appear as important as in (a)?), (i) contract (does $S$ agree to pursue these goals?), (j) evaluation and recognition (subsequent evaluation of behaviour and renegotiation of goals as necessary).

With some modification these steps might be incorporated into the intervention strategies to enable evaluation procedures to become more formally aligned with a single-case methodology. It should be borne in mind that a single-case methodology does not imply that generalisations to other cases are not possible. Clinical psychologists have, for some time, been concerned with developing singlecase methodologies which may (a) measure symptom changes in a single patient, and (b) do so in a manner which enables comparisons between patients (Shapiro, 1961a, 1961b). Moreover, to determine the extent of nonspecific treatment effects in the intervention strategies it will be essential to make such comparisons. Framing assessment criteria in terms of the single-case should in no way prohibit between-subject comparisons provided it is possible at least to establish (a) the variables on which change is expected to occur, (b) the magnitude of change on these variables, (c) the
initial values, or base-line, on these variables, and (d) the time-base over which change is expected to occur. Further implementation of intervention strategies and their associated training paradigms may thus be conducted as systematic single-case experiments which would nevertheless permit comparisons between subjects or treatment groups. established to test any of the features outlined in this chapter.

## REFERENCES

Adams-Webber J.R. An analysis of the discriminant validity of several repertory grid indices. Brit. J. Psychol., 1970, 61, 83-90.
Alexander C.N., Zucker L.G. \& Brody C.L. Experimental expectations and autokinetic experiences: Consistency theories and judgemental convergence. Sociometry, 1970, 33(4), 108-122.
Annett J. Learning a pressure discrimination under conditions of immediate and delayed knowledge of results. Quart. J. exper. Psychol., 1959, 11, 3-15.
Annett J. Feedback and human behaviour: The effects of knowledge of results, incentives and reinforcement on learning and performance. Penguin Books, 1972.

Argyle M. The psychology of interpersonal behaviour. Penguin Books, 1967.

Argyle M. Social interaction. Methuen, 1969.
Argyle M. Bodily communication. Methuen, 1975.
Argyle M. \& Kendon A. The experimental analysis of social performance.in Advances in experimental söcial psychology, Vol.3. Berkowitz L. (ed), Academic Press, 1967.
Argyle M., Lalljee M., Cook M. \& Latane J. Effects of the visibility of the other in social interactions. Unpub. im/B. 1967.
Ashby W.R. An introduction to cybernetics. Chapman \& Hall, 1956, Methuen, 1968.

Bailey K.G. Self-confrontation and self-concept change in group psychotherapy. Unpub. Doctoral Dissertation, Vest Virginia University, 1968.

Bailey K.G. \& Sowder W.T. Audiotape and videotape self-confrontation in psychotherapy. Psychol. Bull., 1970, 74(2), 127-137.
Bales R.F. \& Slater P.E. Role differentiation in small decisionmaking groups. in Family, socialisation and interaction process. Parson T. \& Bales R.F. (eds.), Free Press of Glencoe, 1955.
Bales R.F. \& Strodtbeck F.L. Phases in group problem-solving. in Group dynamics: Research and theory. Cartwright D. \& Zander E.R. (eds.), Tavistock, 1968.

Bannister D. Personal construct theory psychotherapy. in Issues and approaches in the psychological therapies., Bannister D. (ed.), Hiley, 1975.
Bannister D. \& Fransella F. A grid test of schizophrenic thought disorder., Brit. J. soc. clin. Psychol., 1966, 5, 95.
Bannister D. \& Fransella F. Inquiring man: The theory of personal constructs., Penguin Books, 1971.
Bannister D., Fransella F. \& Agnew J. Characteristics and validity of the grid test of thought disorder., Brit. J. soc. clin. Psychol., 1971, 10, 144-151.
Bannister D. \& Mair J.M.M. The evaluation of personal constructs. Academic Press, 1968.
Bateson G. A theory of play and fantasy., Psychol. Res. Reports, 1955, 2, 39-51.
Bateson G. The logical categories of learning and communication. in Steps to an ecology of mind., Paladin, 1973.
Bateson G., Jackson D., Haley J. \& Weajland J. Towards a theory of schizophrenia., Behav. Sci., 1956, 1, 251-264.
Rateson G. \& Ruesch J. Communication: The social matrix of psychiatry., Norton, 1951.
Bem D. Self-perception: An alternative interpretation of cognitive dissonance phenomena., psychol. Rev., 1967, 74, 188-200.
Bem D. Self-perception theory. in Advances in experimental social psychology., Vol.6, Berkowitz L. (ed.), Academic Press, 1972.
Bender M.P. To smile at or avert the eyes from? The formation of relationships among students., Res. in Educ., 1969, 2, 32-51.
Bender M. P. Provided versus elicited constructs: An explanation of Warr \& Coffman's (1970) anomalous finding., Brit. J. soc. clin. psychol., 1974, 13(3), 329-330.
Benjamin A. The helping interview. Houghton Mifflin, 1974.
Bennion R.C. A study of relative readiness for changing anticipations following discredit to situational behaviours: Hostility and the constellatoriness of personal constructs., Unpub. Masters Thesis, Ohio State University, 1959.
Bennis W.G. Patterns and vicissitudes in T-group development., in T-group theory and laboratory method., Bradford L. P., Gibb J.R. \& Benne K.D. (eds.), Viley, 1964.

Berne E. Games peoole play: The psychology of human relationships. Penguin Books, 1968.
Bernstein B. Class, codes and control., Vol. 1, Routledge \& Kegan Paul, 1971.

Bieri J. Changes in interpersonal perceptions following social interaction., J. abnorm. soc. Psychol., 1953, 48, 61-66.
Bieri J. Cognitive complexity and personality development., in Experience, structure and adaptability., Harvey O.J. (ed.), Springer, 1966.
Bieri J., Atkins A.L., Briar S.,Leaman R.L., Miller H. \& Tripodi T. Clinical and social judgement: The discrimination of behavioural information., Wiley, 1966.
Bilodeau I.M. Information feedback., in Acquisition of skill., Bilodeau E.A. (ed.), Academic Press, 1966.
Bilodeau I.M. Information feedback, in Principles of skill acquisition, Bilodeau E.A. \& Bilodeau I.M. (eds.), Academic Press, 1969.
Bion W.R. Group dynamics: A review, Internat. J. Psychoanal., 1952, 33, 235-247.
Blumer H. Sociological implications of the thought of George Herbert Mead, in School and society: A sociological reader, Routledge \& Kegan Pául, 1971.
Bonarius J.C.J. Research in the personal construct theory of George Kelly, in Progress in experimental personality research, Vol 2 , Maher B. (ed.), Academic Press, 1965.

Borger R. \& Seabourne A.E.M. The psychology of learning, Penguin Books, 1966.
Boyd H. \& Sisney V. Immediate self-image confrontation and changes in self-concept, J. consult. Psychol., 1967, 31; 291-296.
Bruner J.S. On perceptual readiness, Psychol. Rev., 1957, 64, 123-152.
Brunswick E. Perception and the representative design of psychological experiments, Berkeley, 1956.
Bugenthal J.F. \& Zelen S.L. Investigations into the self-concept: I. The $W-A-Y$ technique, J. Personal., 1950, 18, 498.
Burke P.J. The development of task and social-emotional role differentiation, Sociometry, 1967, 30, 379-392.

Cameron N. The psychology of the behaviour disorders, Houghton Mifflin, 1947.
Carkhuff R.R. Helping and human relations. Vol. 2 Practice and research , Holt, Rinehart and 甘inston, 1969.
Carson R.C. A conceptual approach to the problem of therapistclient matching, in Psychological dimensions of social interaction: Readings and perspectives ,Linder D.E. (ed), Addison-Wesley, 1973.

Cattell R.B. A note on correlation clusters and cluster rearch methods, Psychometrika, 1944, 9, 169-184.

Champness B.G. Mutual glance and the significance of the look, Advancement of Science, 1970, March, 309-312.
Chomsky N. Language and mind, Harcourt Brace Jovanovich, 1972.
Cooley C.H. Human nature and the social order, Scribners, 1902.
Coombs C.H., Dawes R.M. \& Tversky A. Mathematical psychology: An elementary introduction, Prentice-Hall, 1970.
Cromwell R.L. \& Caldwell D.F. A comparison of ratings based on personal constructs of self and others, J. clin.: Psychol., 1962, 18, 43-46.

Davis D. \& Brock T.C. Use of first pronouns as a function of increased objective selfmawareness and prior feedback, J.exper. soc. Psychol., 1975, 11, 381-388.
Davison G.C. \& Valins S. Maintenance of self-attributed and drugattributed behaviour change, J. personal. soc. Psychol., 1969, 1, 25-33.
Duncan S.D. Jnr. Towards a grammar for dyadic conversations, Semiotica, 1972.
Duval S. \& Wicklund R.A. A theory of objective self-awareness, Academic Press, 1972.
Duval S. \& Wicklund R.A. Effects of objective self-awareness on attribution of causality, J. exper. soc. Psychol., 1973, 9, 17-31.

Ehrenzweig A. The hidden order of art, PaPadin, 1970.
Eiser J.R. \& Stroebe W. Categorisation and social judgement, Academic Press, 1972.

Ellis A. Reason and emotion in psychotherapy, Lyle Stuart, 1962. Esterson A. The leaves of spring, Pelican books, 1972.

Feffer M. \& Suchotliff L. Decentering implications of social interactions, J. personal. soc. Psychol., 1966, 4, 415-422.
Festinger L. A theory of social comparison process, Human Relations 1954, 7, 117-140.
Festinger L. A theory of cognitive dissonance, Stanford University Press, 1957.
Festinger L. Conflict, decision and dissonance, Stanford University Press, 1964.

Festinger L., Pepitone A. \& Newcombe T. Some consequences of deindividuation in a group, J. abnorm. soc. Psychol., 1952; 47, 382-389.
Fjeld S.P. \& Landfield A.W. Personal construct consistency, Psychol. Reports, 1961, 8, 127-129.
Fransella F. Measurement of conceptual change accompanying weight loss, J. psychosomat. res., 1970, 14, 347-351.
Fransella F. Personal change and reconstruction: Research on a treatment of stuttering, Academic Press, 1972.

Fransella F. \& Joyston-Bechal M.P. An investigation of conceptual process and pattern change in a psychotherapy group, Brit. J. Psychiat., 1971, 119, 199-206.
Freud S. Complete psychological works of Sigmund Freud, Strachey J. (ed), Hogarth Press, 1953.

Garfinkel H. Studies in ethnomethodology, Englewood Cliffs, 1967.
Gathercole C.E., Bromley E. \& Ashcroft J.B. The reliability of repertory grids, J. clin. Psychol., 1970, 26, 513-516.
Geller V. \& Shaver P. Cognitive consequences of self-awareness, J. exper. soc. Psychol., 1976, 12, (1), 99-108.

Gendlin E. Experiencing: A variable in the process of therapeutic change, Amer. J. Psychother., 1961, 15, 233-245.
Gendlin E. Experiential explication in phenomenology and existentialism, Solomon R.C. (ed), Harper \& Row, 1972.
Gibson, E.J. Principles of perceptual learning and development, Appleton-Century-Crofts, 1969.

Glover E. The therapeutic effect of inexact interpretation: A contribution to the theory of suggestion, Internat. J. Psychoanal., 1931, 12, 4, 398-411.

Goffman E. On face work, Psychiatry, 1955, 18, 213-231.
Goffman E. The presentation of self in everyday life, Doubleday, 1959. Pelican Books, 1972.

Goffman E. Interaction ritual, Doubleday, 1967.
Goffman E. Where the action is, Allen Lane, 1969.
Goffman E. Relations in public, Allen Lane, 1971.
Gordon J. The metajourney of R.D. Laing, in Laing and anti psychiatry, Boyers R. \& Orrill R., (eds), Penguin Books, 1972.

Haley J. Strategies of psychotherapy, Grune \& Stratton, 1963.
Harre R. \& Secord P.F. The explanation of social behaviour, Blackwell, 1972.
Harris R.J. A primer of multivariate statistics, Academic Press, 1975.

Heider F. The psychology of interpersonal relations, Wiley, 1958.
Heller K., Davis J.D., \& Myers R.A. The effects of interviewer style in a standardised interview, J. consult. Psychol.,1966, 30 (6), 501-508.
Hick W.E. On the rate of gain of information, Quart. J. exper. Psychol, 1952, 4, 11-26.

Hilgendorf L. Information input and response time, Ergonomics, 1966, 9, 31-37.
Hinkle D.N. The change of personal constructs from the viewpoint of a theory of implications, Unpub. Doctoral Dissertation, Ohio State University, 1965.

Holding D.H. Principles of training Pergamon Press, 1965.
Humphreys P. User's manual for PRIMATE: Version 3.1., University College Environmental Besearch Group Monograph, London, 1971.
Hutt C. \& Ounsted C. The biological significance of gaze aversion with particular reference to the syndrome of infantile autism, Behav. Sci., 1966, 11, 346-356.

Ickes C.A., Wicklund R.A. \& Ferris C.B. Objective self-awareness and self-esteem, J. exper. soc. Psychol., 1973, 9, 202-219. Isaacson G.I. A comparative study of the meaningfulness of personal constructs, Unpub. Doctoral Dissertation, University of Missouri, 1966.
Isaacson G.I. \& Landfield A.W. Meaningfulness of personal versus common constructs, J. individ. Psychol., 1965, 21, 160-166.

Johnson S.C. Hierarchical clustering schemes, Psychometrika, 1967, 32(3), 241-254.
Jones E.E., Kanouse D.E., Kelley H. H., Nisbett R.E., Valins S. \& Weiner B. Attribution: Perceiving the causes of behaviour, General Learning Press, 1972.

Jones E.E. \& Nisbett R.E. The actor and the observer: Divergent perceptions of the causes of behaviour, in Attribution: Perceiving the causes of behaviour, Jones E.E., Kanouse D.E., Kelley H.H., Nisbett R.E., Valins S. \& Weiner B. (eds.), General Learning Press, 1972.

Jones G.S. Treatment or torture: The philosophy, techniques and future of psychodynamics, Tavistock, 1968.
Jones H.G. In serach of an ideographic psychology, Bull. Brit. Psychol. Soc., 1971, 24, 279-290.

Jourard S.M. Healthy personality and self-disclosure, in Encounter groups: Basic readings, Egan G. (ed.), Brooks/Cole, 1971.

Kaswan J. \& Love L.R. Confrontation as a method of psychological intervention, in Studies in self-cognition: Techniques of videotape self-observation in the behavioural sciences, Geertsma R.H. (ed.), Williams \& Wilkins, 1969.

Kazdin A.E. \& Vilcoxon L.A. Systematic desensitisation and nonspecific treatment effects: A methodological evaluation, Psychol. Bull., 1976, 83(5), 729-758.

Keen E. Three faces of being: Towards an existential clinical psychology, Appleton-Century-Crofts, 1970.
Kelley H.H. Attribution theory in social psychology, in Nebraska bymposium on motivation, Levine D. (ed.), University of Nebraska, 1967.

Kelley H.H. Attribution in social interaction, in Attribution: Perceiving the causes of behaviour, Jones E.E., Kanouse D.E., Kelley H.H., Nisbett R.E., Valins S. \& Heiner B. (eds.), General Learning Press, 1972.
Kelley H.H. Causal schemata and the attribution process; in Attribution: Perceiving the causes of behaviour, Jones E.E., Kanouse D.E., Kelley H.H., Nisbett R.E., Valins S. \& Weiner B. (eds.), General Learning Press, 1972.

Kelly G.A. The psychology of personal constructs: Vol. 1 A theory of personality, Norton, 1955.
Keltner J.W. Elements of interpersonal communication, Wadsworth, 1973.
Kendall M.G. Rank correlation methods, Griffin, 1948.
Krumboltz J.D. Behavioural goals for counselling, J. counsell. Psychol., 1966, 13, 153-159.

Lacan $J$. The language of the self: The function of language in psychoanalysis, Wilden A. (trans.), John Hopkins, 1968.
Laing R.D. The divided self: An existential study in sanity and madness, Pelican, 1965.
Laing R.D. Self and others, Tavistock, 1969.
Laing R.D. Knots, Tavistock, 1970.
Laing R.D. \& Cooper D. Reason and violence: A decade of Sartre's philosophy 1950-1960, tavistock, 1964.
Laing R.D. \& Esterson A. Sanity, madness and the family: Families of schizophrenics, Penguin Books, 1970.
Laing R.D., Phillipson H. \& Lee A.R. Interpersonal perception: A theory and method of research, Tavistock, 1966.
Lancaster H.O. Complex contingency tables treated by the partition of $X^{2}$, J. Royal Stat. Soc., 1951, 13(B); 242-249.
Landfield A.W. A study of threat within the psychology of personal constructs, Unpub. Doctoral Dissertation, Ohio State University, 1951.

Landfield A.W. The extremity rating revisited within the context of personal construct theory, Brit. J. soc. clin. Psychol., 1968, 7, 135-139.
Landfield A.W. Personal construct systems in psychotherapy, Rand McNally, 1971.

Landfield A.W. The complaint: A confrontation of personal urgency and professional construction, in Issues and approaches in the psychological therapies, Bannister D. (ed.), Wiley, 1975.
Lemon N. \& Varren N. Salience, centrality and self-relevance of traits in construing others, Brit. J. soc. clin. Psychol., 1974, 13, 119-124.

Lerner A.Y. Fundamentals of cybernetics, Chapman \& Hall, 1972.
Levy L.H. A study of the relative information value of constructs in personal construct theory, Unpub. Doctoral Dissertation, Ohio State University, 1954.

Levy L.H. Psychological interpretation, Holt, Rinehart \& Uinston, 1963.

Luft J. The Johari Window and self-disclosure, in Encounter groups: Basic readings, Egan G. (ed.), Brooks/Cole, 1971.

McFall R.M. Behavioural training: A skill-acquisition approach to clinical problems, in Behavioural approaches to therapy, Spence J.T., Carson R.C. \& Thibaut J.W. (eds.), General Learning Press, 1976.

McKnight C. Personal communication, 1974.
McKnight C. Purposive preforences for multi-attributed alternatives: A study of choice behaviour using personal construct theory in conjunction with decision theory, Unpub. Doctoral Thesis, Brunel University, Uxbridge, Middlesex, 1977.
Macmurray J. The form of the personal: Vol 1 The self as agent, Faber \& Faber, 1957.
McQuitty L.L. Elementary linkage analysis for isolating orthogonal and oblique types and typal relevancies, Educ. Psychol. Measurement, 1957, 17, 207-229.
McQuitty L.L. . Relaxed.rank order typal analysis, Educ. Psychol. Measurement, 1971, 31, 607-626.
Makhlouf-Norris F. \& Jones H.G. Conceptual distance indicec as measures of alienation in obsessional neurosis, Psychol. Med., 1971, 1, 381-387.
Makhlouf-Norris F., Jones H.G. \& Norris H. Articulation of the conceptual structure in obsessional neurosis, Brit. J. soc. clin. Poychol., 1970, 9, 264-274.

Mair J.M.M. Experimenting with individuals, Brit. J. med. Psychol., 1970a, 43, 245-256.

Mair J.M.M. Psychologists are human too, in Perspectives in personal construct theory, Bannister D. (ed.), Academic Press, 1970b.
Mair J.M.M. \& Boyd P.R. A comparison of two grid forms, Brit. J. soc. clin. Psychol., 1967, 6, 220.

Mair J.M.M \& Crisp A.H. Estimating psychological organisation, meaning and change in relation to clinical practice, Brit. J. med. Psychol., 1968, 41, 15-29.
Mann J.H. \& Mann C.H. The effect of role-playing experience on roleplaying ability, Sociometry, 1959, 22, 64-74.
Maslow A.H. Towards a psychology of being, Van Nostrand, 1968.
Head G.H. George Herbert Head on social psychology; Selected papers, Strauss A. (ed.), University of Chicago Press, 1964.
Miller N.E. \& Dicara L.V. Instrumental learning of heart rate changes in curarised rats: Shaping and specificity to discriminative stimulus, J. comp.-physiol. Psychol., 1967, 63, 12-19.
Miller G.A., Galanter E. \& Pribram K.H. Plans and the structure of behaviour, Holt-Dryden, 1960.
Mischel T. Personal constructs, rules and the logic of clinical activity, Psychol. Rev., 1964, 71(3), 180-192.
liitsos S.B. Personal constructs and the semantic differential, J. abnorm. soc. Psychol., 1961, 62, 433-434.

Moreno J.L. Psychodrama, Beacon House, 1946.
Moreno J.L. Who shall survive? Foundations of sociometry, group psychotherapy and sociodrama, Beacon HOuse, 1953.
Morrison D.F. Multivariate statistical methods, McGraw-Hill, 1967.
Moscovici S. Social influence I: Conformity and social control, in Social psychology: Classic and contemporary integrations: Nemeth C. (ed.), Rand McNally, 1974.

Newman R. A study of factors leading to change within the personal construct system, Unpub. Doctoral Dissertation, Ohio State University, 1956.
Nisbett R.E. \& Valins $S$. Perceiving the causes of one's own behaviour, in Attribution: Perceiving the causes of behaviour,

Jones E.E., Kanouse D.E., Kelley H. H., Nisbett R.E., Valins S. \& Weiner B. (eds.), General Learning Press, 1972.
Norris H. \& Makhlouf-Norris F. The measurement of selfaidentity, in The measurement of intrapersonal space by grid technique: Vol. 1 Explorations of intrapersonal space, Slater P. (ed.), Wiley, 1976.

Orne M.T. On the social psychology of the psychological experiment with particular reference to demand characteristics and their implications, Amer. Psychol., 1962, 17, 776-783.
Ostwald P.F. Acoustic methods in psychiatry, Sci. Amer., 1965, 212(3), 82-91.

Pask G. Conversation, cognition and learning: A cybernetic theory and methodology, Elsevier, 1975.
Pask G. \& Scott B.C.E. Eearning strategies and individual competence, Internat. J. Man-Machine Studies, 1972, 4, 217-253.

Patterson C.H. Relationship counselling and psychotherapy, Harper \& Row, 1974.
Phillips L.D. Bayesian statistics for social scientists, Nelson, 1973.

Radley A.R. Schizophrenic thought disorder and the nature of personal constructs, Brit. J. soc. clin. Psychol., 1974, 13(3), 315-327.
Rogers C. Client-centred therapy: Its current practice, implications and theory, Houghton Mifflin, 1951.
Rogers C. A process conception of psychotherapy, Amer: Psychol., 1958, 13, 142-149.

Rogers C. A theory of therapy, personality and interper'sonal relationships as developed in the client-centred framework, in Psychology: A study of a science, Koch S. (ed.), McGraw-Hill, 1959.
Rosen H. Written language and the sense of audience, Educ. Res., 1973, 15(3); 177-187.

Rosenthal R. \& Rosnow R.L. Artifact in behavioural research, Academic Press, 1969.
Ross L.D., Rodin J. \& Zimbardo P.G. Toward an attribution therapy: The reduction of fear through induced cognitive-emotional misattribution, J. personal. soc. Psychol., 1969, 12, 279-288.

Rotter J.B. Vord association and sentence completion methods, in

An introduction to projective techniques, Anderson H. H.\& Anderson G.L.(eds.), Prentice-Hall, 1951.
Rowe $D$. Grid technique in the conversation between patient and therapist, in The measurement of intrapersonal space by grid technique: Vol 1 Explorations of intrapersonal space, Slater P. (ed.), Wiley, 1976.

Rubin Z. \& Mitchell C. Couples research as couples counselling: Some unintended effects of studying close relationships, Amer. Psychol., 1976, 31(1), 17-25.
Ryle A. Frames and cages: The repertory grid approach to human understanding, Sussex University Press, 1975.
Ryle A. \& Breen D. The use of the double dyad grid in the clinical setting, Brit. J. med. Psychol., 1972, 45, 383.
Ryle A. \& Lipshitz S. Recording change in marital therapy with the reconstruction grid, Brit. J. med. Psychol., 1975, 48, 39-48.

Sartre J-P. Saint Genet: Comedien et martyr, Gallimard, 1952. Sartre J-P. Critique de la raison dialectique, Gallimard, 1960. Saussre F. de. Course in general linguistics, Baskin W. (trans.), Philosophical Library, 1959.
Schachter S. \& Singer J.E. Cognitive, social and physiological determinants of emotional state, Psychol. Rev., 1962, 69, 379-399.
Scheflen A.E. The significance of posture in communication systems, Pbychiatry, 1964, 27, 316-321.
Seymour W.D. Experiments on the acquisition of industrial skills, Occupational Psychol., 1954, 28, 77-89.
Shapiro D.H. \& Zifferblatt S.M. Zen meditation and behavioural
self-control, Amer. Psychol., 1976, 31(7), 519-532.
Shapiro M.B. A method of measuring psychological changes specific to the individual psychiatric patient, Brit. J. med. Psychol., 1961a, 34, 151-155.
Shapiro M.B. The single-case in fundamental clinical psychological research, Brit. J. med. Psychol., 1961b, 34, 255-262..
Sherif M. A study of some social factors in perception, Archives of Psychology, 1935, 22(187), 4, 6.
Sherif M., Taub D.:\& Hovland C.I. Assimilation and contrast effects of anchoring stimuli on judgement, J. exper. Psychol., 1958, 55,

150-155.
Sherif C.W., Sherif M. \& Nebergall R.E. Attitude and attitude change: The social judgement-involvement approach, Saunders, 1965. Shubsachs A.P.W. To repeat or not to repeat? Are frequently used constructs more important to the subject? A study of the effect of allowing repetition of constructs in a modified Kolly repertory test, Brit. J. med. Psychol., 1975, 48(1), 31-37.
Slater P. Theory and technique of the repertory grid, Brit. J. Psychiat., 1969, 115, 1287-1296.
Slater P. The measurement of consistency in repertory grids, Brit. J. Psychiat., 1972, 121, 45-51.

Slater P. Notes on INGRID 72: A program available for analysing grids individually under a grant from the M.R.C., Institute of Psychiatry, St. Georges Hospital, London, 1972.
Smith K.U. \& Smith T.J. Systems theory of therapeutic and rehabilitative learning with television, in Studies in self-cognition: Techniques of videotape self-observation in the behavioural sciences, Geertsma R.H. (ed.), Williams \& Wilkins, 1969. Storms M.D. \& Nisbett R.E. Insomnia and the attribution process, J. personal. soc. Psychol., 1970, 16, 319-328.

Tajfel H. The anchoring effects of value in a scale of judgements, Brit. J. Psychol. 1 1959, 50, 294-304.
Tajfel H. \& Wilkes A.L. Classification and quantitative judgement, Brit. J. Psychol., 1963, 54, 101-114.
Tajfel H. \& Vilkes A.L. Salience of attributes and commitment to. extreme judgements in the perception of people, Brit. J. soc. clin. Psychol., 1963, 2, 40-49.
Thomas L.F. Demon and double-demon: Computer-aided conversations with yourself, Paper presented to the Annual Conference of the Brit. Psychol. Soc., Nottingham, April, 1975.
Thomas L.F. \& Garnons-Uilliams C. MQUIT: A FORTRAN IV program for the analysis of repertory grids, Centre for the Study of Human Learning, Brunel University, Uxbridge, Middlesex, 1970. Thomas L.F. \& Harri-Augstein E.S. The self-organised learner and the printed word, Final Report, S.S.R.C. project Further
develoment of techniques for studying and influencing reading as a learning skill, Centre for the Study of Human Learning, Brunel Upiversity, Uxbridge, Middlesex, 1976.

Thomas L.F. \& Shaw M.L.G. FOCUS: A cluster analysis program for the repertory grid, Technical Report, Centre for the Study of Human Learning, Brunel University, Uxbridge, Middlesex, 1976. Thorne F.C. Rules of evidence in the evaluation of the effects of psychotherapy, J. clin. Psychole, 1952, 8, 38-41. Tillich P. The courage to be, Nisbet, 1952.

Trowill J.A. Instrumental conditioning of heart rate in the curarised rat, J. comp. physiol. Psychol., 1967, 63, 7-11.

Valins $S$. Cognitive effects of false heart-rate feedback, J. personal: soc. Psychol., 1966, 4, 400-408.
Valins S. \& Nisbett R.E. Attribution processes in the development and treatment of emotional disorders, in Attribution: Perceiving the causes of behaviour, Jones E.E., Kanouse D.E., Kelley H.H., Nisbett R.E., Valins S. \& Veiner B. (eds.), General Learning Press, 1972.

Verba S. Groups and political behaviour: A study of leadership, Princeton University Press, 1961.

Watzlawick P., Beavin J. \& Jackson D. Pragmatics of human communic- ation: A study of interactional patterns, pathologies and paradoxes, Faber \& Faber, 1968.

Veigel R.G. \& Uhlemann M.R. Developing individualised behaviour change goals with clients, J. contemporary 'Psychother.; 1975, 7(2), 91-95.
Weiner B. Achievement motivation and attribution theory, General Learning Press, 1974.

Weizenbaum J. Contextual understanding by computers, Communications of the A.C.M., 1967, 10, 474-480.
Velford A.T. AgeinF and human skill, Oxford University Press, 1958. Wicklund R.A. Objective self-awareness, in Advances in experimental social psychology Vol. 8, Berkowitz L. (ed.), Academic Press, 1975.

Vicklund R.A. \& Duval S. Opinion change and performance evaluation as a result of objective self-awareness, J. exper. soc. Psychole, 1971, 7, 319-342.
Wilden A. System and structure: Essays in communication and exchange, Tavistock, 1972.
Wilmer H.A. Innovative uses of videotape on a psychiatric ward, Hospital \& Community Psychiatry, 1968, 19(5), 129-133.
Wright K.J.T. Exploring the uniqueness of common complaints, Brit. J. med. Psychol., 1970, 43, 221-232.

Zeeman E.C. Catastrophe theory, Sci. Amer., 1976, 234(4), 65-83.

## Appendices

A Reference frames in a friendship
B Reference frames in a group
C Reference frames in interviews
D A consideration of the formal properties of repertory grids
E The core grid
F The reconstruction grid
G .The insight grid
H The aggregate grid
I The reciprocal grid

## Appendix A.

Reference frames in a friendship.
A.1. Coding aignipicant ovente.

The table bolow sumarises the distribution of the ample of 47 significant events by the independent judge over the reference frame and interaction modality categorice.


| Event | $\begin{aligned} & \text { Onset } \\ & (\mathrm{ming}) \end{aligned}$ | $\begin{aligned} & \text { Duration } \\ & \text { (mins) } \end{aligned}$ | Reforence Frame |  |  |  | Interaction modality |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Deb. | Per. | Str. | F-F. | Act. | Pas. | Per. | Inp. |
| 4.1 | 8.0 | . 8 |  |  | 3 |  |  | (3) |  | (3) |
| 4.2 | 9.0 | 1.2 |  |  | (1) |  |  | (3) |  | (2) |
| 4.3 | 11.8 | 1.9 |  |  |  | (8) | (3) |  | (3) |  |
| 4.4 | 14.7 | 1.2 |  | $(19)$ |  |  |  | (3) | (3) |  |
| 4.5 | 19.1 | 4.2 |  |  |  | (18) | 9 |  | (3) |  |
| 4.6 | 27.9 | . 7 |  |  |  | 0 | (x) |  | (3) |  |
| 4.7 | 29.1 | 1.4 |  |  |  | 0 | (4) |  | (12) |  |
| 4.8 | 37.5 | 1.0 |  |  |  | (2) | 3 |  | 3 |  |
| 4.9 | 39.4 | 2.2 |  |  |  | (3) | 3 |  | 3 |  |
| 4.10 | 44.0 | . 6 |  |  |  | 3 | 3 |  | 0 |  |
| 4.11 | 46.6 | 1.3 |  |  |  | (13) | (3) |  | (3) |  |
| 4.12 | 54.4 | . 6 |  |  | (3) |  |  | 18 | (3) |  |
| 5.1 | 5.9 | 1.2 |  | *) |  |  |  | 3 | $3)$ |  |
| 5.2 | 7.8 | . 4 |  | 3 |  |  |  | (3) | (3) |  |
| 5.3 | 9.3 | 1.4 |  |  | 6 |  |  | (3) | $\theta$ |  |
| 5:4 | 12.4 | 2.0 |  | (3) |  |  |  | (1) | (8) |  |
| 5.5 | 15.0 | . 8 |  |  | \% |  |  | 0 | 3 |  |
| 5.6 | 16.9 | 1.5 |  |  | 3 |  |  | 3 | 0 |  |
| 5.7 | 27.0 | . 6 |  |  | (3) |  |  | (13) | 3 |  |
| 6.1 | 74.7 | 1.1 | (4) |  |  |  |  | 93 |  | (1) |
| 6.2 | 22.0 | . 6 | i |  | 0 |  |  | (17) | (3) |  |
| 6.3 | 25.6 | 1.4 | (3) |  |  |  |  | (3) |  | (9) |

A.2. Transitional frequencies between reference frames.

The table below summarises the relative frequencies of transition from one Prame to anothor in the sample of 47 significant events.


## Appendix B

Refarenco frames in a group.

## B.9. Elicitation inatructions.

"From your list of group events, will each of you choose three at random and note down their numbers on your first row of the construct sheet. From those three ovents can you find a vay in which any two are oinilar whilst different from the third? Note the numbera of the two that are similar under tho coluen labelled "Pair" and the odd one out under the column labolled "aingle". Now note down in the apace provided what it is that the pair have in cormon. A ohort phrase or sentence will do. Note in the other opace what converse quality the sirglo has that diatinguishes it from tho pair. Now consider all ten events in turn and d cide if each possesses the quality defined by the pair, by the single, or possesses qualitics defined by both or noither the oingle or pair. If the first, put a $V$ in the appropriate square of your grid forn, if the second an $x$, and if the last leave the square blank. Nov select a second threc events, ensuring that you do not select two together that you have previously considered, and repeat the process. Continue until you have produced and scored six constructs".

## B.2. The element somple.

Listed below are the group events elicited by the group, nuabered in order of clicitation:

```
excluding E from discussion (week 3).
improvised music event (woek 7).
"consequences" party gamo (veek 4).
firat mecting (wock 1).
role-playing oxerciso (week 2).
vioiting the university (week 12).
visiting the fumiture workshop (week 8).
tape-measuro race (weck 5).
grid exorcise (week 14).
viaiting the perapex factory (wock 10).
```


## B.3. The group grid.

Listed below are the grids completed on the sample of 10 group events by the seven group wembers (including $E$ ). Simon's constructs are not listed as he reserved the right to confidentiality and retained his conotructo. In addition, Anne produced only 5 construets, and E 11.

| Nember | No. Pair $=\sqrt{ }$ | Single $=x$ | $12 \frac{\text { Elements }}{3456} 78910$ |
| :---: | :---: | :---: | :---: |
| Anne | 1 POSITIVE <br> 2 1:O OBVIOUS Furrose | nbgative <br> obvious <br> IURPOSE | $\begin{aligned} & \times \times \times \times \times V \vee \vee V V \\ & V \vee V \vee V=x \vee V \times \end{aligned}$ |


| Neaber | No. | Padr $=\sqrt{ }$ | Single $n \times$ | Elements $12345678910$ |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & 3 \\ & 4 \\ & 5 \end{aligned}$ | AIM <br> SURE <br> AN EVERT | AIfILESS <br> UIISURE <br> A WhOLE EVETT | $\begin{aligned} & V V \times V V V \vee V V V \\ & \times \times V \times \times-V \times \times V \\ & V V-V V \times \times V=\times \end{aligned}$ |
| Simon | $\begin{aligned} & 6 \\ & 7 \\ & 8 \\ & 9 \\ & 10 \\ & 11 \end{aligned}$ |  |  |  |
| Linda | $\begin{aligned} & 12 \\ & 13 \\ & 14 \\ & 15 \\ & 16 \\ & 17 \end{aligned}$ | OBVIOUS <br> FURPOSE <br> COMO: <br> PREDICAMENT <br> obvicus <br> PURPOSE <br> COWOH <br> PREDICAMENT <br> EVERYBODY ON <br> THEIR ONN <br> EXCITITA | AIMLESS <br> BORING <br> EXUBERATT <br> FUN <br> NEGATIVE <br> BEST <br> BEHAVIOUR <br> viexcitilig |  |
| Thomas | 18 <br> 19 <br> 20 <br> 21 | IHPERSONAL <br> ROBOTIC <br> IMFERSO:AL <br> EIVIRUIMETT <br> REDAXED <br> PARTICI PATION <br> US AGAIIIST YOU | PERSOMAL <br> FEELIIGGS <br> GOOD <br> FUN <br> GOOD FUN <br> IRLAXED |  |


| Nenber | No. | Pair $0 \sqrt{ }$ | Singlo $=x$ | Elcments $12345678910$ |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & 22 \\ & 23 \end{aligned}$ | FOSITIVE <br> WOULD DO IT <br> AGAI: | imgative <br> WOULD I'OT | $\begin{aligned} & \times \sqrt{ } \times \sqrt{ } \times \sqrt{ }+\sqrt{ } \times \sqrt{ } \times \sqrt{ } \times \sqrt{ } \end{aligned}$ |
| $E$ | 24 <br> 25 <br> 26 <br> 27 <br> 28 <br> 29 <br> 30 <br> 31 <br> 32 <br> 33 <br> 34 | EXCITIIIG <br> afrless <br> FUN <br> COM:OH <br> PTEDICABETTT <br> POSITIVE <br> WOULD DO IT <br> AGAIN <br> SURE <br> :CIEVETT <br> IMPERSOHAL <br> CONTIDENT <br> ASSURED <br> UNIFIED | BORIIG <br> OBVIOUS <br> PURPOSE <br> BEST <br> BEHAVIOUR <br> EVERYOINE ON <br> THEIR OWN <br> bgative <br> WOULD NOT <br> UIISURE <br> EVEITT <br> PERSONAL <br> EDGY, <br> IERVOUS <br> FRAGRENTED |  |
| Barry | 35 <br> 36 <br> 37 <br> 38 <br> 39 <br> 40 | INVOLVED <br> FORCED <br> GROUP RETAXED <br> TIGHT MENTAL <br> PROCESSES <br> TOTAL <br> PARTICI PATIOH <br> RORJIKi | HOT PERSORAL <br> LY IHTERESTED <br> RELAXED <br> ACADEIIC <br> HATURAL <br> FERSONIFICA- <br> TIOis <br> DISSI PATION <br> or ACTION ImITY | $V \times \times V \sqrt{ } \times x-x$ <br> $\checkmark \sqrt{ } \sqrt{ } \times \checkmark \vee \sqrt{ } \sqrt{ }$ $\times \times \sqrt{x} \sqrt{ } \times \times \times \sqrt{x}$ |


| Member | No. | PaifeV | Single $=\times$ | Elements <br> 12345678910 |
| :---: | :---: | :---: | :---: | :---: |
| Sue | 41 <br> 42 <br> 43 <br> 44 <br> 45 <br> 46 | EXCITIITG <br> AIMLESS <br> FUN <br> COMON <br> PROBIEM <br> POSITIVE <br> WOULD DO IT <br> AGAIN | BORIIKG <br> OBVIOUS <br> FURPOSE <br> BEST <br> BEHAVIOUR <br> EVERYBODY ON <br> THEIR OWN <br> IEGATIVE <br> WOULD <br> NOT | $x \vee \sqrt{x} \times \checkmark \downarrow \sqrt{ } \times-$ <br> $x \times \sqrt{x} \times x \times \sqrt{x} \times$ <br> $x \sqrt{x} \times x \times \times \sqrt{ } \sqrt{ }$ <br> $\checkmark \times \times \checkmark \sqrt{ } \boldsymbol{V} \sqrt{ } \times \sqrt{ }$ $\dot{V} \sqrt{ } \times \sqrt{ } \times V \times V \downarrow$ <br> $\checkmark \sqrt{ } \times \sqrt{ } \boldsymbol{V} \downarrow \sqrt{ } \times x$ |

## B.4. Group grid analyses.

The 460 data points conprising the group grid were recoded into numerical form and procesced by MQUTT (Thomas \& Garnons-Hilliams, 1970) a cooputor progran for analysing repertory grids, on Brunel Univeraity's ICL installation. The program computes a 'city-block' metric of nuserical aimilarity ("matching acores") between the 10 elements and between the 46 constructs, and an olementary linkage analysio solution (KcQuitty, 1957) for the two similarity matrices obtained. The following tables oumarise the similarity matrices for the 10 elements, and linkage solutions for clements and constructs. The construct eimilarity matrix is not included as it comprises 1035 matching score ontries.
(1) Similarity matrix for elements.

$$
\begin{array}{rrrrrrrrr}
\text { E2 } & \text { E3 } & \text { E4 } & \text { E5 } & \text { E6 } & \text { E7 } & \text { E3 } & \text { E9 } & \text { E10 } \\
4 & -34 & 38 & 12 & 10 & 8 & -25 & -4 & 0 \\
& -10 & 2 & 2 & 25 & 36 & 27 & -2 & 31 \\
& & -36 & -14 & -21 & 6 & 48 & 10 & 6 \\
& & 14 & 0 & 2 & -23 & 27 & -23 \\
& & & -29 & -19 & -23 & 2 & -14 \\
& & & & 51 & 4 & -17 & 59 \\
& & & & & & 40 & 2 & 44 \\
& & & & & & & -2 & 14 \\
& & & & & & & & -2
\end{array}
$$

(ii) Elementary linkage solution for elements.

(111) Elementary 11nkage solution for conatructs.


(i) Type I: social-ezotional goal achievement.

| Conatructs | Eleaents |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 4 |  | 5 | 1 | 3 | 8 | 2 | 7 | 10 | 6 | 9 |
| 1 | - |  | - | - | - | + | - | + | + | + | + |
| 6 | - |  | + | - | + | + | + |  | + | + |  |
| 7 | - |  | + | - | + | - | + |  | + | + | + |
| 8 | - |  | + | - | + | - | + | + | + | + | + |
| 9 | - |  | - | - | + | - | + | + | + | + | + |
| 11 | - |  | + | - | + | + . | + | - | + | + | + |
| 17 | - |  | - | - | + | + | + | + | + | + | - |
| 22 | - |  | - | - | + | + | + | + | + | + | - |
| 23 | - |  | - | - | + | + | + | + | + | + | + |
| 27 | - |  | - | - | + | + | + | + | + | + |  |
| 33 | - |  | - | - | + | + | - | + | + | . + |  |
| 36 | - |  | - | - | - | + | + | +. | + | + | - |
| 37 | - |  | - | - | + | + | + | + | + | + | - |
| 38 | - |  | - | - | + | + | + | + | + | + |  |
| 41 | - |  | - | - | + | + | + | + |  | + | - |
| Total + ${ }_{\text {P }}$ |  | 0 | 4 | 0 | 13 | 12 | 13 | 12 | 14 | 15 | 6 |
| Total -ve |  | 5 | 11 | 15 | 2 | 3 | 2 | 1 | 0 | 0 | 5 |
| Grand total |  | 15 | 15 | 15 | 15 | 15 | 15 | 13 | 14 | 15 | 11 |

(ii) Type II: Task foal achievecent

(iii) Proportion of positive ratingg.

| Phase | Type I | Type II |
| :--- | :---: | :---: |
|  |  | .089 |
| 2 | .844 | .675 |
| 3 | .976 | .500 |
| 4 | .546 | .878 |
|  |  | .546 |

## B.6. Cofmonality of tember'a conatruing.

To essess the extent to which group nembers displayed commonality of construing of group events, a consensus matrix was obtained by calculating an index of reciprocal representation of types (i) between all pairs of eembers. This entailed obtaining two values: the product of the number of constructs contributod to each type by each rember in the pair ( $p$ ), and the product of the total number of constructs contributed by each wember to the group grid (q). The value for 1 for aembera $A$ and $B$ dofined by

where $m=$ the number of types mutually represonted by members $A$ and
B. The higher the value of $i$, the greater the commonality of construing between member pairs. Computing i for cach membor pair obtains the following consenous matrix:

|  | Barry | Anne | Linda | Simon | $E$ | Sue |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Thomas | . 22 | . 10 | . 11 | . 28 | . 12 | . 14 |
| Barry |  | .17 | . 19 | . 42 | . 21 | . 28 |
| Anne |  |  | . 20 | . 17 | . 14 | . 13 |
| Linda |  |  |  | .14 | . 17 | . 19 |
| Simon |  |  |  |  | . 15 | . 19 |
| E |  |  |  |  |  | .21 |

A rank-order typal analysis solution (kequitty, 1971) was obtained from the consensus matrix, and is represented on page 223.

## C.1. Tho grid bamplo.

Repertory grids depicting the construction of "personally significant learning experiences" by 12 A-lovel students were obtained in intorviews with 6 teamnembers during a"learning-workshop", conducted at a Şouth London Collego of Technology. The 12 atudente were aged betwoen 16 and 21 years, and wore atudying a varioty of A-level courses. Listed below are (i) the learning experiences (olemente) nominated by each student, and thoir classification within the coding framo described on pago 237, (ii) the conatructe derived by the ainimal context pethod from theso elements for each student, and (iii) the grid entrices obtained by each student rating on a 5 -point scale each elegent in terins of each construct.

## (1) The olcment samples and codification

## S1 JB

cmbarrased in cashiers job ..... -
private tuition in matho ..... $+S$
embarrased in maths class ..... -S
failure as a marine engineer ..... -=
accepted by geography teacher ..... $+S$
resented sister's success ..... -F
encoyraged in practical hobbies ..... + F
meoting nev friends ..... $+\mathrm{P}$
resentod friend's success ..... $-\mathrm{P}$
stimulated by friends ..... $+P$
reading Scott Fitzgerald ..... + R
12 listening to Leozard Cohen ..... $+\mathrm{P}$
$\underline{S 2 \ldots}$
1 family's attitude to employment ..... + F
2 sister's asthea ..... $+F$
3 close relationchipo ..... $+\mathrm{P}$
4 . getting ideas in diccusoions with friends ..... $+\mathrm{p}$
pop press ..... $+\mathrm{R}$
the "Gane" ..... + R
required reading ..... -S
free classroom discusbions ..... $+5$
tread quictly while Mr. X is around ..... $+5$
playing tablo football ..... $+\mathrm{P}$
drop in for advico ..... $+5$
53
liberal and understanding father ..... $+F$
mother as educator ..... -F.
difference in parental discipline to brothers ..... $-\bar{F}$
closenesa to sister ..... $+F$
gap between steprother and mo ..... -F
neighbours' attitude-
reading to pick up facts ..... -s
reading for cpurse ..... -s
plugging by teachers ..... -s
formal teacher-student relationship ..... -S
no outside contact with teachers ..... -S
12 getting to know teachers as peoplo ..... $+5$
S4 MC
break-up with boyfriend ..... -p
leaving needlework class ..... -S
first day at junior school ..... -S
Euys watching us who crashed ..... -P
chased in the park ..... -p
reading "The Devile" ..... -R
reading "Bräve kew world" ..... -R
detention in history class ..... -s
reading James Baldwin ..... -R
10 splitting up ..... -P
S5 KD Code
revising for physics ..... -S
learning biology ..... -S
secing "Easy Rider" ..... + R
friends getting engaged$-P$
argument in family ..... $-F$
gotting in late when 13 ..... $-F$
seoing "The Klansmen" ..... $-R$
breaking off with boyfriend ..... $-\mathrm{P}$
boing approached by a drunk ..... -=
oister's overwoight problem ..... $-F$
JF
bullied by fathor ..... -F
living alone with fomily ..... -F
resented friends ..... -P
jealous of desk-mate ..... -P
reading around the house ..... + R
reading done in aick-bed ..... + R
reading for lecturca ..... -S
horework ..... -S
goirg to lectures ..... -S
jcalous of teacher ..... -S
being naughty and found out ..... -S
leaving school with friends ..... $+\mathrm{P}$
EJ
reading "Lord of the Rings" ..... + R
weeting teacher outaide of school ..... $+\mathrm{S}$
dinner party in Paris ..... $-\mathrm{P}$
argument with headnistress ..... -S
row with sister'o finance ..... -F
meeting new friends ..... $+P$
best friend moving away ..... $-P$
changing school and finding now Priends ..... $+\mathrm{P}$
9 moving to unfriendly district ..... -P
brcakup with boyfriend ..... -P
grandmothor coming to live with uo ..... -F
caught up in drugs bust in pub ..... -P
disliked my primary school head .....  -S
PP
mistrusting poople ..... -S
public school ..... -S
reading Poe and Blake ..... + R
school made me cynical ..... -S
aceing family in new light ..... $-F$
frcedon of thought at college ..... $+\mathrm{P}$
questioning authority ..... -S
irsular existance ..... -F
better in emall bursts ..... ${ }_{0}^{+5}$
working on my own
unstimulating teachers ..... -S
probiems with girls ..... -F
pop festival ..... $+\mathrm{P}$
accoptance of druga ..... $+P$
secing father's narrov existance ..... $-F$
music an emotional outlet ..... + R
$\qquad$
eycs opened to chemical warfare ..... + R
moving to England from Canada ..... $+5$
poetry evenings ..... $+P$
accing "Godspoll" ..... $+R$
clected head boy ..... $+5$
failing R.A.F. medical ..... $-=$
learning to drive ..... $+\mathrm{R}$
histosy lectures a waste of time ..... -S
conducting debates on school council ..... $+5$
carecrs viait to London Airport ..... $+=$
holiday in Germany ..... +P


13 reading about Kim Fhilby +R
gliding: overcoming tho odde $+R$
new people$+P$
poopl$+P$
eld course ..... $+$
mothor's interest in social work
help from friends ..... $+\mathrm{P}$forced to dovelop a aocial conscience$-\mathrm{P}$
parabitca ..... -S
1 discussions with Iriends ..... $+P$
father ..... $+F$
recting vare Bolan ..... $+\mathrm{P}$
parents taking an interest ..... $+F$
helped out of shyness at nursery school ..... $+S$
reading for course ..... -S
bullied by teachers-S
meeting interesting people ..... $+\mathbf{P}$
holpful teacher ..... +S
subjected to authority ..... -S
conforming to syllabus ..... -S

## NOTES

The following eymbols denote the origin of the experiences; S, school or college; $F$, family; $P$, peer relationships; $R$, recreational activitics; $=$, miscellaneous. The symbols + and - denote confirming and disconfirming experiences, respectively.
(ii) The construct samples

## S1 JB

1 represent an inability of my ow character because of judgement by other peoplo.

2 ropresent education system...ay inability to be absorbed into it whilst friends were successfully

3 represents success and more enjoyment, my ability to relate to

4 able to obtain certain satisfaction myoclf whilst giving nome to others.. leso cemanding
something I've achieved myself without direction fron authority... it might also appeal to those who judge me.
ropresonts a success of tyy own which alienates me from the system
situated whoro oomething was expected of me, but where inability to comply leas painful than in cducation
no sct patterns or direction laid down.for me to follow...able to choose own situation \& direction that appenled

5 overwhelmingly unpleasant...could not came to torm with these oituations...too traumatic...localised
xisted over longer time....moments of pressure...able to look objectiveIy in time/e partly come to terms with it
2ese precsure...atroosphere more
personal...less demanding..ny failure taken less harshly
pressuro on me...built up in my mind.. atmosphere very imperoonal

KB

1 experience in the echoolroom... origicnting there anjway

2 to do with immediate outlook or feclings

3 fceling of only being appropriate for spectific occasions

4 . only acquiro flat icages

5 fantasy...can never acquire reality

6 feeling of insecurity

7 feeling of goodwill...social awaroness
8 fceling of "oh yes I'd like to do or foel that"

9 experience of educating oneself by reading
day-by-day life
not into direct contact...like secing films of foreign cities... more remote
feel that I could always do it... any time
like pottery...shapo becomes core distinct....build up solid experiences
harshness of reality

Becurity...safe amongst friends
social awarenees but no goodwill
feeling of "It's a waste of tire" sometimes
oxperience of educating oneaclf by discussion

## 33 NB

1 apply to my mother in that she as an educator has caused the difference in parental discipline
$\dot{2}$ attitude of my mother and sister to me and mine to them are different but do influence my learning

3 deal with my reading and what I read

4 as I started sec. school \& Tech. I found just a pupil-teacher rolationship existed

5 plugging by teachers at attitude of noighbour count for very little

6 I have an almost teacher-pupil relationship with my mother

7 relationship with father and the reading $I$ do influences my learning

8 relationship with my mother and. aister are very different but they are very influential

S4 4

1 other people's behaviour changed my attitudes
2. made ne consciouely want to change
deals with my father, he being wore different from my mother
attitude of my neighbours has little to do with learning or way of lifo at all
plugging by teachers was unimportant unlike ny reading
later at achool I found that I got to know the teachers more as people
difference in parental discipline has altered ny life quite considerably reading has little to do with my relationship with my mother
the pupil-teacher relationship with lecturers does not account for any change or difference in my leaming
gotting to know teachers has influenced my school life but not my home life as well
it was to do with me rather than other people

| 3 | enabled ee to do somothing about changing people | nothing I could change in my behaviour...Just ny ideas |
| :---: | :---: | :---: |
| $4^{\circ}$ | gave we an outlet to change | bad experiences |
| 5 | put me off authority | no effect on my feclings for authority |
| 6 | thought how callous peoplo aro | thought how callous I an |
| 7 | really couldn't tolerate it | prepared to tolerate the bad olde |
| S5 | RD |  |
| 1 | really had to work | Its we trying to find an easy way out |
| $\begin{aligned} & 2 \\ & 3 \end{aligned}$ | ```fecls reasonable at the time seomed injustices...concorn many peoplc...difficult to solve``` | don't feol reasonable at the time personal concorn...could easily bo solved |
| 4 | somoone clse's decioion | own deciaion involved |
| 5 | made ce feel trappod | nothing to do vith that feeling |
| 6 | made ce a bit cautious | grinding effect |
| 7 | made me feel I ought to do something | made me fcel I wanted to do something |
| S6 | JF | ' , |
| 1 | subtle external influence | pressure to learn |
| 2 | effect of the environment | pressure (again) |
| 3 | incontive to learn caused by jealousy of others who are cleverer than me | opposite |

4 learning things not specifically
to do with to
did by choico no choice
for personal satisfaction
produced good results
provoked me to think more
by own conditions

10 like
11 "good thing" in others' estimation
learning things thnt were to do with ne
general interest
obstinacy
following blindly
conditions imposed by parenta \& others
dislike
"bad thing...."

1 affected dealings with other people didn't...

2 changed way of seeing poople didn't...

3 contact with new poople...ideas loss of someone
4 opeaed up new ideas...new things opposite to diccuss

5 other people entering the family circle...causing various upsets

6 losing contact with familiar people and things
me entering somebody clac's semily and circle of friends
making contact with new person

7 . meoting new poople...different types coming up against someone whose but aimilar to myself

8 Losing someone close

9 changed relationships inside the family

10 finding out people's true character.. finding out my own character looking further than ouperficialitics

## S8 pp

1 affected view of authority
didn't

2 Eade me think of other people's views hasn't

3 wade te queation society no effect on views on society

4 made me realiae importance of academic intereat

5 rade re realise the validity of

6 made me try to undorstand others

7 realising value of expressing myself through the medium

8 cade me vant to break away from society

9 made mo wary of other people's characters at firat

S9 CS

1 fear that if west and cast went to war, serious disastoro could result on the people
2 fear in coming into somothing new my confidence in my job of boing in fears compared to other people's fears command

3 receiving something

4 overconing a vorry
giving something
receiving $\dot{a}$ worry

5 pleasure in reading and seeing
speaking out
knowing what it was all about
learning about people
finding something new about myself
moving from one country to another ...travelling long diatances

11 flying

510 LS
learning from wore than one person
2 emotional self expression

3 from others insights (ny insight into their insights into events)
.4. thing learnod as ond product

5 (influence by) vague ideas...
dependent on ny own mewory of then

## S11 BU

1 growing up...thought. .awareness

2 different sort of achievement... learning
3 liking
4 like
5 liking...growing up..authority
work that goes with the job
oilent majority
not really knowing
learaing about myself
already knowing
stationary
ground
...from onc perbon in particular unemotional...impersonal
from my own insights (ay insight into events directly)
thing learned leads to further activity
(influence by) clearly thought out ideas, which are set down and can be directly referred back to
part of life whereas pair are new.. accepted -
achievement through learning
dislike...discouraged...disillusianed dislike
hate...growing up...embarassment

7 friendship...coming out of a shell

9 reading...concrete

S12 S:4

1 same gencration
2 self organised

3 if intercated has more positive effect
4. more related to life in general

5 open..frec..talk about what I like

6 take notice of and therefore learn

7 affected attitude to lifo positivoly ...generation gap..etc.
basic...sport
not necessarily friendship... shy... embarassed
bad...hate
a sense

## older generation

someone clsc telling you what to do if not interested has negative effect related particularly to school
not free to say what I like.. on guard
put off and not remember
affected attitudes negatively





## C 2 Diversity of construction

To devolop a measuro of diversity of construction Kendall's coofficient of soncordanco was adapted for use with sote of ratings rather than rankings. The procedures involvod are as follows:-
(i) A similarity matrix betwoen constructs in each grid was obtained by computing "matching scores" (Thomas \& Garnons-Williams, 1972) for all pairs of constructs. The divaraion of rating on constructo was adjusted to optimise watching scores whore necessary.
(ii) The sums of ratinge for each olement over all constructe were obtained ( $r_{j}$ ) and summed ( $\Sigma r_{j}$ ).
(iii) A value of $\chi^{2}$ was computed for each grid aẹ follows:-

$$
X^{2}=\left[\frac{\left(r_{j}-\frac{r_{j}}{i}\right)^{2}}{\frac{\Sigma r_{j}}{N}}\right]
$$

with $\mathrm{N}-1$ degrees of freedom
vhero $N=n u m b e r$ of olemente in each grid.

It is ovident that this neasure seeks to estimate the extent of divergence of the observed distribution of $r_{j}$ 's from a square distribution. If after the direction of ratiag on constructe has been optimiged to obtain tho highest watching scores for the $n(n-1) / 2$ pairs of conatructs, it is possible to infer a high degree of divoraity of construction. A aignificant doparture from a square distribution of $r_{j}$ 's indicatos a high degree of numerical similarity between constricts, and low diveraity of construction. However, since the probability of diversity increases as the number of eloments increacos, the diversity score is adjusted as follows:-
diveraity bcoro $=X^{2} /$ number of elementa (i1)

The folloving table lists the values of $\chi^{2}$ and diversity scores obtained in the sample of 12 grids .

| Subject | $X^{2}$ | di | $N$ <br> constructs | Diversity scoze |
| :--- | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| S1 JB | 19.31 | 11 | 6 | 1.609 |
| S2 KB | 7.49 | 11 | 9 | .624 |
| S3 HB | 7.57 | 11 | 8 | .631 |
| S4 MC | 21.63 c | 9 | 7 | 2.163 |
| S5 RD | 11.47 | 9 | 7 | 1.147 |
| S6 JF | 37.63 a | 11 | 11 | 3.135 |
| S7 EJ | 10.09 | 12 | 10 | .776 |
| S8 PP | 63.55 a | 15 | 10 | 3.972 |
| S9 CS | 7.77 | 13 | 11 | .555 |
| S10LS | 26.43 b | 12 | 5 | 2.033 |
| S11BU | 16.63 | 9 | 9 | 1.663 |
| S12SN. | 26.30 b | 10 | 7 | 2.391 |

Notes: The following subscripts denote levol of eignificanco: a, . $001>\mathrm{p} ; \stackrel{\substack{\infty}}{\stackrel{\infty}{1}}$ b, . $01>\mathrm{p} ; \mathrm{c}, .05>\mathrm{p}$.

C3 Classification of elements.

The sample of 145 elements was coded according to tho origin and type of experience reported by the students. The following tables tabulate (i) frequency of olcment classes, and (ii) frequency of olement clacses by interviower.
(1) Frequency of elcment closses.

| High <br> Diveraity <br> Group | School <br> Conf Disc | Pecrs <br> Conf Disc | Fam. <br> Conf Disc | Roc. <br> Conf Disc | Misc. <br> Conf Disc | 7 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S9 CS | 4 | 1 | 2 | - | - | - | 5 |
| S2 KB | 3 | 1 | 3 | - | 2 | - | 3 |
| S3 NB | 1 | 5 | - | - | 2 | 3 | - |
| S7 | - | - | - | 12 |  |  |  |
| SJ | 1. | 2 | 2 | 5 | 7 | 2 | 4 |



## (ii) Origin of experience, immediate effect, and interviewer.

|  |  |  | Origin of | exporience | and imnedio | to offect |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Inter. | S | Sch. Coaf Disc. | Fan. <br> Conf. Disc. | Peers <br> Conf. Dise | Rec. <br> Conf. Disa | Migc. Conf. Disc. | Total |
| 1 | 12 | 24 | 2 - | $3-$ | - - | - - | 11 |
|  | 8 | 25 | - 4 | $3-$ | $2-$ | - - | 16 |
|  | 11 | 13 |  | 4 - | 1 | - - | 10 |
| 2 | 4 | - 3 | - | - 4 | - 3 | - - | 10 |
|  | 5 | - 2 | - 3 | - 2 | 11 | - 1 | 10 |
| 3 | 2 | 31 | 2 | 3 | $3-$ | - - | 12 |
|  | 6 | - 5 | - 2 | 12 | 2 | - - | 12 |
| 4 | 3 | 15 | 23 | - - | - - | - 1 | 12 |
|  | 9 | 41 | - - | 2 | 5 | 11 | 14 |
| 5 | 1 | 21 | 11 | 21 | 2 | - 2 | 12 |
|  | 10 | - 2 | 11 | 81 | - - | - - - | 13 |
| 6 | 7 | 12 | - 2 | 25 | 1 | - - | 13) |
| 'Intol |  | 16, 34 | ) 16 | a 19 | $17 \quad 1$ | 1 ' | 1/1/i; |

## Appendix D. A consideration of the formal properties of repertory grids.

## D 1 The iormal properties of ropertory erids

The most elementary formulation of the population of grid reoponses is as a semiordered set of predications represented numerically on a series of judgenent scales. Different mothods of numerical representation entail different assumptions ani associated data models. Since these data models determine subsequent data reduction mothods, it io important to distinguish procecures for represonting grid reaponses. Threc represontation procedures are commonly employed ${ }^{1}$; (a) the dichotomisod form, elements being exclusively assigned to ono or other polo of each construct, (b) the ranking form, clements being ordered by proximity to one conotruct pole, usually the emergent pole, (c) the rating form, whero elements are absigned to an ordinal set of categorics on an equal-interval scale between the extremes formed by the two poles of the construct.

The reaponse matrices by thesc methods offer threo data types within Coomb's Theory of Data ${ }^{2}$ :-
(a) Dichotomised form: pair of pointo from different seto; proximity. Form of matrix: of f-diagonal, dichotomous, oymetric data on points (Quadrant IIb;). Example Datum: Does element A bolons with attribute 1?
(b) Ranking form: pair of distances from different sets, domirance. Form of matrix: off-diagonal, nondichotonous dominance data on distances (Quadrant Ia;). Example datum: does the distance from clenont $A$ to attribute 1 exceed the distance of clement $B$ to attribute 1 ?
(c) Rating form: pair of points from differont soto, proximity. Form of matrix: off-diagonal, nondichotonous, symetric proximity data on points (Quadrant IIb). Example Datum: to what extent does eleaent A beiong with attribute 1?

[^8]Having decided which deta type the grid predicates denote, it is possible to sumarise thoso nccessary assumptions in the data model ${ }^{3}$ :-
(a) Dichotomised and ratins forms:
(i) Datum a relation: a datum is a relation on a pair of points or a pair of distances.
(ii) Common dimension: there exists at least one dimension that is psychologically counnon to both real world counterparte of the two points.
(iif) Excluded indifference: either a given relation or its complement connects the two points; no third category exists.

## (b) Ranking form in addition to the above:

(iv) Poaitivo direction: the researcher decides in advance which responses he will arbitrary call positive and interprot to mean that one point dominated a cecone, not that the aecond dominated the first.
(v) Honotonicity: the relation between the response and the order of the two points is monotonic.

In summary, if the grid matrix is treated numerically the conditions listed above cust be satisfied in each of the threce modes of representation. As will be seen, these data types may thenselves be transformed into other types, and the rationale of this transformation depends critically on the assumptions made at this stage.

## D 2 Data roduction models.

Depending on data type, grid matrices may be numerically analysed to reveal cuitidimensional patterns. To achieve this a second-order proximity matrix is derived composed of coefficients of similarity or association between judgement scales and itens. Each data typo representa a discrote levol of measurement, and ideal coefficients of aimilarity or association are as follows:
(a) Dichotomiged form: assuming point diatribution for both dichotomised variables
3. Runkel P.J. \& HeGrath J.E. Regearch on human behaviour, Holt Rinehart \& Hanton, 1 ग\%2.
the most appropriate statistic is the phi-cocfficient, $\boldsymbol{\varphi}$. Suitable for both construct and element relationshipg.
(b) Ranking form: assubing monotonicity of ordinal relationships for both ranked variables, the most appropriate statistic is Spearman rank-difference correlation cocfficient, $r_{s}$. Suitable for construct relationships only.
(c) Rating, form: exact probabilities of observed differences given rating diotributions on both variables. Suitable for both construct and olement relationships.

Employing the appropriate cocfficient, two new matrices are eencrated from the original grid data, namely an element proximity eatrix, and a construct proximity matrix. In both cases, these matrices conform to tho following type:-

Quadrant IIIb: Intact, non-dichotomous, symetric proximity data on points of the same set.
Example datu: : Do elements/constructs $A$ and $B$ belong in the same class?

Such proximity matrices way be further reduced by application of a cultivariate analytic model. Four auch modelis are comonly employed:-
(i) Cluster/typal analysis: essentially aimed at identifying configurations in proximity opace, cluster and typal analysos havo evolved from non-Cartesion models, such as non-dimensional graphs and sociometric analyses. Attempts to integrate the location of configurations into a space of known dimensionality have yielded multidimensional aodels such as simplex, circumplex, and radex nodels ${ }^{4}$. The dicadvantages of the cluster/typal model are (i) that different models entail different membership conditions, and boundary criteria are fairly arbitrary; (ii) that the solution is non-dimensional and inter-relationships between types are frệuently difficult to estimate; (iii) that in many fores od data intransitivitics are frequent and membership criteria inadequately resolvo ambiguitics 5 .

4 Runkel P.J. \& MicGrath J.E., op. cit.
5 Rlashficjd R.K. Mixture model tests of cluster analysic: fecuracy of four agclomerative hicrarchical methodu, P3ychol. Bull.. 1976, 83(3), 377-393.
(ii) Factor analysis: cssentially aimod at dofining the roforence coordinates of proxicity spaco, in which "every oticulus is represented by a point, and evory point has a projection, or position on ovory dimension or 'reforenco vector'...Factor analysis represento stimulus points as vectors (that is, directed lines) and seeks a reduced set of vectors spanning a space in which the original voctors can bo embeddod. In factor analysis, consequently, the search for axes or roference vectors is explicit, and the choice of an efficiont set of axes is a central problem" ${ }^{6}$.
(iii) Princizal components analysis: This model "accounts for the variance within a sot of data by providing thoso linear combinations of correlated variables that maximise the varianico of the woighted suc...The new variable (the weighted sum) is called the first principal component...and other woighted sums that are orthogonal to the first aro also considerod. The weights in the principal compononta associated trith a voctor of corrolated attributes are oxactly tho normalised latent vectors of the covarianco matrix of the vector of attributes, and the latent roots of the covariance eatrix are tho variances of the principal componente"?
(iv) Nultidimonsional scaling: in contract to factor and principal components analysec, multidimensional scaling employs only ordinal relationships within the proximity eatrix. Reforonce coordinates are evaluatod by the criterion of "goodnoss-of-fit" or atress;
"ive seok, siaply, that configuration of $\underline{n}$ points in the (Euclidian) space of cmallest possible dimensions auch that, to an accoptable degroc of approximation, the resulting interpoint distances $d_{i j}$ aro monotonically rolated to the given proxiaity data, in tho sense that $d_{i j}>\alpha_{k l}$ whonever $S_{i j}>S_{k l}$. In order to apply the gradient nothod, and, hence, to find the optimum configuration of points, the only further specification required is an explicit function to neasure the to-bo-minimised departure from the desired monotonic relation betweon the givon proxiaity data $S_{i j}$ and the distances $d_{i f}$. Then ono simply employs an algorithm according to which the coordinates for the points aro

## 6 Runkel P.J. \& HGGrath J.E. op. cit. p. 336

7 Pross S.J. Apmiod cultivariate analysis, Holt, Pinchart \& Uinston, 1972, p. 283-234
adjusted, during each interaction, in the dircetion of tho (nogative) gradient of that function until 'otationary' is reached in which tho gradiont vanioheo and - barring ontrapment in a merely local minimus - any further adjustmente could only make the fit worso". 8

Notwithstanding the merits of these techniques, a number of pointe should be raised regarding thoir applications to grid analygis:-
(a) To what extent do the nodels onit potentially important responses? Factor and principal components analytic solutions tond to dopreciato gmall sources of variation (e.g. individual constructs). Cluster-typal analytic oolutions froquently rejoct ambiguous or tied relationships in demareating typal boundaries.
(b) Are the models of functional oquivalonce cmployed by the techniques appropriate? That ic, are the descriptive statictics adcquato for the level of measuresent employod in the grid, and are the statiatics satisfactorily utilised in derivins solutions?
(c) To what extent aro original rosponses recoverable from solutions? The reference coordinates of factor and principal componont analytic solutions aro synthetic, whilst typal solutions aro recombinations of original responces.
(d) Are the solutions readily interpretable? In very fow modols is this the case. Investigators may oxperience equal difficulty in identifying tho basis on which construsts have been grouped in typal solutions as in identifying the underlying reference axes in factor analytic solutione.

D 3 EXACT: A FOBTRAII IV program for calculatinf exact probabilities of association between constructs and elements in a repertory grid by reforence to observod responses.

Aa notod abovo, accociation coofficientajm curront ugago oro oonoitive to implicit assumptions which are rarely satisfied. To satiofy them requires oither a

8 Shopard R.N. in Gultidimonsional Scaling: Vol 1 Thoory, Shepard R.lf., Romnoy A.K., Nerlove S.B. (Eds) Scainar Press, 1972, p.7-8.
knowledge of the nature of the distribution of acalar reaponses, or the constraint of scalar responses to form a known distribution with invariant propertics i.e. the split-hale and ranking forms. ${ }^{9}$ The use of constrained ccales presents many problems (ombiguous scalar placement on bipolar scales; ties, and the consequent roduction of tho sum of squares; non-equality in direction of ranking on bipolar scales, otc.). On tho other hand, alternative methodo (c.g. the rating form) and alternative statistics (o.g. patching scorcs, Pearson r, etc.) yield biased measures of similarity if the assumption of interval equality is not met. A problem in this respect is construct "lopsidedncss", and the confounding of similarity measures that thio produces. 10 Espirically, construct rating distributions vary a great deal, and this diversity in itself reveala much information about the naturo of construing. Using fivepoint scales, symetrical distributions are fairly rare, and oymetrical squaro diatributions rarer still. Of the aymetrical distributions most take a "sadde-shaped" forn. Intercstingly, ao constructs of thio form aro retested, cany appear to approxicato to a squaro diatribution, indicating that the construct has acquired a more "verbal" identity, and comes to be ueed independently of the oxtrenc elements that initially dofined it.

日y for the most comion are irregular diatributions, often with zoro frequencies at one or several points. For a similarity coefficient to compensate for irregular.diatributions the diatribution must bo known, and must figuro in the derivation of the coefficient neasuro. By far the most reliable, if a little inconvenient, eothod of deriving such a coefficient is to calculato the distribution of the entire population of differonces that ray be obtained between a pair of scoles with know rating distributions, and to derive the probability density associated with a difference as large as that observed. Thus, any deviation fron a square diatribution of ratings on either or both scales reduces the size of the population of differences.

Mowezor, it is usually desirablo to obtain both construct and clement proximity catrices, and for this reason careful thought has to bo given to what constitutes the popriation of differences in the two cases. The examples that follow

[^9]describe tho derivation of clement and construct difference populations using the variate $\sqrt{\sum d^{2} / n}$, as thio produces a distribution that approaches normality as tho size of $n$ increases.
(i) The pomulation of differences between construct pairs: The distribution of $\sqrt{\sum d^{2} / n \text { between a pair of constructs is a function of the rating distrib - }}$ ution on each of those constructs. For sioplicity, consider a grid of ratings on a' five-point scale comprising five elements and two constructs, one of which is "lopsided", the other "square" (Table I).


## TABLE I

The dietributions of ratings on each of these constructs may then be calculated (Table II).

| RATIMG SCORE | COISTRUCT A | CONSTRUCT B |
| :---: | :---: | :---: |
| 1 | $3 / 5$ | $1 / 5$ |
| 2 | $1 / 5$ | $1 / 5$ |
| 3 | $0 / 5$ | $1 / 5$ |
| 4 | $0 / 5$ | $1 / 5$ |
| 5 | $1 / 5$ | $1 / 5$ |

## TABLE II

No the five-point scale is used, dany take any integer value between 0 and
4 for each of the five element comparisons, and thus the value of $d^{2}$ cay be $0,1,4,9$ or 16 . But a $d^{2}$ of 0 may arice in 5 ways (5-5, 4-4, 2-3, 2-2, 1-1),
a $d^{2}$ of 1 in 8 ways ( $5-4,4-3,3-2,2-1,1-2,2-3,3-4,4-5$ ), a $d^{2}$ of 4 in 6 ways (5-3, 4-2, 3-1, 1-3, 2-4, 3-5), a d of 9 in 4 vays ( $5-2,4-1,1-4,2-5$ ), and a $d^{2}$ of 16 in 2 kays ( $5-1, i-5$ ). Thius, for constructs A and $B$ the diotribution of $d^{2}$ for any single clement comparioon will bo as follows:-
$d^{2}=0=(1 / 5)(1 / 5)+(0 / 5)(1 / 5)+(0 / 5)(1 / 5)+(1 / 5)(1 / 5)+(3 / 5)(1 / 5)=5 / 25$
$\mathrm{d}^{2}=1=(1 / 5)(1 / 5)+(0 / 5)(1 / 5)+(0 / 5)(1 / 5)+(1 / 5)(1 / 5)+(0 / 5)(1 / 5)+(0 / 5)(1 / 5)+(1 / 5)(1 / 5)+$ $(3 / 5)(1 / 5)=6 / 25$
$d^{2}=4=(1 / 5)(1 / 5)+(0 / 5)(1 / 5)+(0 / 5)(1 / 5)+(1 / 5)(0 / 5)+(1 / 5)(1 / 5)+(1 / 5)(3 / 5)=5 / 25$
$d^{2}=9=(1 / 5)(1 / 5)+(3 / 5)(1 / 5)+(0 / 5)(1 / 5)+(1 / 5)(1 / 5)=5 / 25$

## $d^{2}=16=(1 / 5)(1 / 5)+(3 / 5)(1 / 5)=4 / 25$

Unfortunately, this is just the begianing. What we have here is the distribution of $d^{2}$ for a singlo comparison, and to fully describo the relationship betwieen constructo $A$ and $B$ tho expression requires to be expanded four nore tines until $\mathrm{d}^{2}$ varice between zoro and $16 \mathrm{n}=80$. But at thio stage it is possible to derive the probability density associated with differont values of $\mathrm{d}^{2}$ in the single caso.

$$
\begin{aligned}
& d^{2}=0=5 / 25=0.2 \\
& d^{2}=1=5 / 5 / 5+6 / 25=0.44 \\
& d^{2}=4=5 / 25+6 / 25+5 / 25=0.64 \\
& d^{2}=9=5 / 25+6 / 25+5 / 25+5 / 25=0.84 \\
& d^{2}=16=5 / 25+6 / 25+5 / 25+5 / 25+4 / 25=1.0
\end{aligned}
$$

And these values are specific to the rating distributions on constructs $A$ and $B$.
(ii) The population of differences botwoen elcment palrs: The distribution of $\sqrt{\left\{\mathrm{d}^{2} / n \text { betveen a pair of elements is a function of the distribution of ratings }\right.}$ along each of the conistructs on which that pair of olements is rated. The key variation in this case is in the origin of the distribution of $\sqrt{\xi_{d}{ }^{2} / n}$. Uoing the previous example, the number of possiblo differences between cach and overy elenent is dofined by $n(n-1) / 2$, which with 5 elements is 10 . That is, if all
the elements were rated: 5 on construct $A$ thoro would be 10/10 chances of obtaining $a \cdot d^{2}$ 'at 0 , and zero chance of obtaining $d^{2}$ of $1,4,9$ or 16 .

Given the observed rating distributions in the example, the distribution of $d^{2}$ for any pair of elemento on constructs $A$ and $B$ nay be calculated (Table III).

| $d^{2}$ | Construct $A$ | Conotruct B |
| :--- | :---: | :---: |
| 0 | $3 / 10$ | $0 / 10$ |
| 1 | $3 / 10$ | $4 / 10$ |
| 4 | $0 / 10$ | $3 / 10$ |
| 9 | $1 / 10$ | $2 / 10$ |
| 16 | $3 / 10$ | $1 / 10$ |

TABLE III

Each of these distributions thus describes the probability of obtaining a $d^{2}$ as large as that observed between any pair of clements on each construct independently. The chance of obtaining $\sum d^{2}=0$ for any pair of elemente is determined by the product of the probabilitics of obtaining $d^{2}=0$ on construct $A$ and $d^{2}=0$ on construct $E$. Thus

$$
\sum d^{2}=(3 / 10)(0 / 10)=0
$$

That io, aince there aro no differances of 0 on conotruct $B, \leqslant d^{2}=0$ cannot be obtained. Similarly, $a \leqslant d^{2}$ of 1 ray be obtained in tro ways; a $d^{2}$ of 0 on $A$, and $a d^{2}$ of 1 on $B$, or a $d^{2}$ of 1 on $A$ and $a d^{2}$ of $O$ on $B$. Thus,

$$
d^{2}=1=(3 / 10)(4 / 10)+(3 / 10)(0 / 10)=12 / 100
$$

Combining the distributions for the two constructe obtains all possible values of $c^{2}$ and the rrobabilities acsociated with them (Table IV).

| $\mathrm{d}^{2}$ |  | Products |
| :---: | :--- | ---: |
|  |  |  |
| 0 | $(3 / 10)(0 / 10)$ | $0 / 100$ |
| 1 | $(3 / 10)(0 / 10)+(3 / 10)(4 / 10)$ | $12 / 100$ |
| 2 | $(3 / 10)(4 / 10)$ | $12 / 100$ |
| 4 | $(0 / 10)(0 / 10)+(3 / 10)(3 / 10)$ | $9 / 100$ |
| 5 | $(0 / 10)(4 / 10)+(3 / 10)(3 / 10)$ | $9 / 100$ |
| 8 | $(0 / 10)(3 / 10)$ | $0 / 100$ |
| 9 | $(1 / 10)(0 / 10)+(2 / 10)(3 / 10)$ | $6 / 100$ |
| 10 | $(1 / 10)(4 / 10)+(3 / 10)(2 / 10)$ | $10 / 100$ |
| 13 | $(1 / 10)(3 / 10)+(0 / 10)(2 / 10)$ | $3 / 100$ |
| 16 | $(3 / 10)(0 / 19)+(3 / 10)(1 / 10)$ | $3 / 100$ |
| 17 | $(3 / 10)(4 / 10)+(3 / 10)(1 / 10)$ | $15 / 100$ |
| 18 | $(1 / 10)(2 / 10)$ | $2 / 100$ |
| 20 | $(3 / 10)(3 / 10)+(0 / 10)(1 / 10)$ | $9 / 100$ |
| 25 | $(3 / 10)(2 / 10)+(1 / 10)(1 / 10)$ | $7 / 100$ |
| 32 | $(3 / 10)(1 / 10)$ | $3 / 100$ |
|  |  |  |

## TARLE IV

It io now possible to derive the exact probability associated with a value of $\sqrt{\sum_{d^{2} / n}^{2} \text { ior any pair of clemento, e.g. } \sum_{d_{Q S}}^{2}=5 \sqrt{\sum_{d_{Q S}}^{2} / n}=1.549, p(Q S)=}$ $0+.12+.12+.09+.09=0.42$.
(iii) The pogulation of differences botweon replicated grido

In reapplying a construct on a separate occasion from that in which it, was elicited, there is every opportunity for the user to totally reinterprot ito meaning, and to regard it as a novel and indopendent construct. Because of this, the procedure for comparing a pair of constructe used on two separato occasions is equivalent to cooparing two different constructs on tho same occosion, and is then a subset of procedure (i). Thus, the population of difforences is a function of variations in the rating distributions of the "damo" construct, replicated once. Howover, it is desirable to make similar comparisons botween elemento in roplicated
grids. Once again, the origin of the population of differences requires careful thought. Suppose tho example grid was replicated at time $t+1$, using tho "sane" elements and the "came" conotructs. Any change in circuistances or subtle changes of meaning in the constructo when reappliod may be revealed in either changes in element allotment to the construct scales, or changes in the distribution of ratings on these scalcs, or both (Table V).

table V
Whilat Grid ${ }_{t+1}$ may be analysed in a similar way to Grid (using procedures (i) and (ii), we may wish to know if oither of the constructs, or any of the elements show oyotematic changes in rating allotment. That is, wo wish to partition the enatrix of differences in such a way as to identify the cain dimensions of varia tion, (Table VI). The population of differences botween replicated clements is a function of the variation in rating allotment alone cach construct. That is, if ono or both constructo show considerable rating change, $t$ e population of possible element difforences will be fairly largo. To identify this population we first require the distribution of $d^{2}$ obtained between each of the origizal and roplicated pairs of conatructs (Tablo VII).


Once again, we must piot the ways in which difforent values of $d^{2}$ may arise by combining $d^{2}$ for a single element over both constructs $A$ and $B$ (Table VIII).

| $d^{2}$ |  |  | Producta |
| :---: | :--- | :---: | :---: |
| 0 | $(2 / 5)(1 / 5)$ | $2 / 25$ |  |
| 1 | $(2 / 5)(1 / 5)+(2 / 5)(3 / 5)$ |  | $8 / 25$ |
| 2 | $(2 / 5)(3 / 5)$ | $6 / 25$ |  |
| 4 | $(1 / 5)(1 / 5)+(2 / 5)(0 / 5)$ |  | $1 / 25$ |
| 5 | $(1 / 5)(3 / 5)+(2 / 5)(0 / 5)$ |  | $3 / 25$ |
| 8 | $(1 / 5)(0 / 5)$ |  | $0 / 25$ |
| 9 | $(0 / 5)(1 / 5)+(2 / 5)(1 / 5)$ |  | $2 / 25$ |
| 10 | $(0 / 5)(3 / 5)+(2 / 5)(1 / 5)$ |  | $3 / 25$ |
| 13 | $(0 / 5)(0 / 5)+(1 / 5)(1 / 5)$ |  | $1 / 25$ |
| 16 | $(0 / 5)(1 / 5)+(2 / 5)(0 / 5)$ |  | $0 / 25$ |
| 17 | $(0 / 5)(3 / 5)+(2 / 5)(0 / 5)$ |  | $0 / 25$ |
| 18 | $(0 / 5)(1 / 5)$ | $0 / 25$ |  |
| 20 | $(0 / 5)(0 / 5)+(1 / 5)(0 / 5)$ |  | $0 / 25$ |
| 25 | $(0 / 5)(1 / 5)+(0 / 5)(0 / 5)$ |  | $0 / 25$ |
| 32 | $(0 / 5)(0 / 5)$ |  | $0 / 25$ |

TABLE VIII
liow it is possible to specify tho exact probability associated with a $<\mathrm{d}^{2}$ as large as that observed between any pair of roplicated elemente, o.gz

$3 / 25+0 / 25+2 / 25+2 / 25=24 / 25=0.96$.

These procedures indicate that there is likely to be considerable variation in the probabilities associated with any one value of $\sqrt{\sum_{d}{ }^{2} / n}$ botween elements and constructa in both aingle and replicated grids, and that this is a direct function of variation in rating distributions, "lopsidedness', and interval inequality in the use of the rating scales. The scatter-plot in Fig. I shows the rango of probabilities associated with values $\sqrt{\sum_{d^{2}} / n}$ for a five-point. scale rating form $12 \times 12 \mathrm{grid}$, and as can be seen, variation in the middle range is considerable.


The following pages firstly depict the flow chart of procedures and couputations of the program EXACT, and secondly a listing of the program in CDC Extended FORTRAN.


EXACT IS A PRDGRAM FIIR THE ANALYSIS OF RFPERTORY GRIDS.
IT IS DESIGNFD TO MAKE MULTIPLE CUMPARISONS BETWFFN A SERIES OF REPLICATED GRIDS FROM A SINGLF INDIVIOUAL. THO TYPES
OF SIMILARITY MRASURE ARE ORTAINED : A DISTANCE MEASURE, BASED ON THE ROOT MFAN SIUARE DIFFERENTE RETWFEN HATINGS, AND EXACT PROBABILITIES ASSOCIATFD WITH THE OBIAIIED DISTANCE MEASURE, HASFD ON IHF ORSERVED DISTRIRUTIONS OF RATINGS ALONG EACH COHSTRIIGT. THF PIJRPUSF DF THE PROBABILITY MEASURE IS TO CREAIE AN IGOFX OF SIMILABITY THAT IS SENSITIVF IO VARIAIIONS IN THE SCAIAR NATURE OF COHSTRUCTS.

THF DATA DECK TAKES THF FOILOWING FORM:

| CARD NUMEER | IST COLIIMN | DESCRIPTION |
| :---: | :---: | :---: |
| 1 | PETER"S PICTURE GRID | TITLE CARD |
| 2 | (811) | FORMAT CARD |
| 3 | 84115 | PARAMETER CARD |
| 4 | 11345432 | DATA |
| 5 | 52351131 | DATA |
| 6 | 13524414 | DATA |
| 7 | 31334215 | DATA |

CARO 1 : ALPHARURERIC IITLE FOR THIS DATA DESK, UP 1072 COLUMNS
CARD 2 : FORTRAN FORYAT CARD USED GY THE PROGRAM TO READ FACH DATA CARI, THTEGER MODE IS MAPDATORY.
CARU 3 : PARAMLIFR CARD COHPRISING 5 PARAMETENS, FIELD KIDTH BEING ? COLUMNS. INTFGFR MUNE IS MANDATORY. FIRSY PAKAKFTER SPECIFIES IHF HUMBER OF CONSIHIICTS. WHFFF EACM CO:STHIISI IS A SIMGLE DATA GARD. YAXIMUII VALIHF IS 24 CONSTRUC.IS. SFCORD PARAMEIER SPYCIFILS THE NUABEP OF FIEMENTS, THAT IS THE NIMRER OF VALUFS IN EACH DATA CARN. MAYIMUM VALUE IS 15 ELEMENTS. YHIHD PARAMFTFR SPECIFILS THE NUMDER OF GRIDS IN THE SET. MAXIMUM VALIIT IG 6 GRIDS. FOIJRTH PARA:4EIFR SPECIFIES IHF MINIMUM RATING VALUF, WHICH MUST BE GREATER THAN OR EQUAL TO 1. FIFIH PARAMFIFR SPECIFIES THE MAXIMMG RATING VALUE, WHICH YUST VOT HE TBREAER THAN 10.

CARD A ON : DATA CAROS, WHFRE EACH CARD REPRESENTS RAIINGS OF ELEMENIS DH A SIUGIE CONSTRIICT.

WHERE A SERIES OF REPLICATED GRIDS FROM A SITGLE INDIVIDUAL
ARE TO BE ANAI,YSED, PROVISIOH IS MADE FOR INCREMERTING IHE
SIZE OF IHE GRID BY IHE AUDITION OF CONSTRIJCIS ON EACH sIJCCESSIVE REPIICATIUN.

OUTPUT LISTIHG


CUMMON/L $7 / 1 \times(50,20,6), 1 \times \times(28,58,6), 01 S T R I(25,10,6), 1$ DREP $(40,10,6)$, 1IUISP(5R.10.6)
COMMON/HSTI/IYMAX, MIHD
COMMON/MS2/NC, DEWCJM(SIAR), DEEBCUM(5月())
LEVEL 2,IX,IXX,DISIRI, IDREP, IDISP
OIMENSION ITITLE(I3), IDIST(59,SB), ICUM(50,50), COUNT(IB),LO(IB), INF imy(IS)
1 FORMAT(13AG)
? FORMAT(512)

- FURNAT(1141,19X,13AB,/)

5 FORHAT(1H, IOX, BHHAK DATA, 1)
6 FORMAT(1 His, 8к, 2512,1)
7 FORHAT(1H,5x,17,1x,2512)
e FORMAT(In, 10X, 18HRSTING FREOUFIICIES./1
9 FORMAT(11M, $7 x, 1813,1)$
10 FORMAT (14, 5x, 12, 1x,5I. $)$
II FORHAT (IM,IGX, 3 IHDIFFFRENCF FREQUENCIES ON GRID, I2,IIH CONSTR \&T $15.1)$

13 FORMAT(IH . © TXX, BHELEMENTS./)
-831-100

IX(I+NCG, J,K) $=1 \times 14 A X+i-1 \times(1, J, K)$
WRITE(6,4)(ITITLE(I), $1=\{, 13)$
WRITE 6.5$)$
DO 1U1 K=1, REG
P:CG=NC*K
WRITE $(6,0)(J, J=1$, HE)
DO 1BI I=1,NC.G
101 WRITE(6,7)I, (IX(I,J,k),J=1,NE)
MRADGEEIXMAX $-1 \times M I D$
RANGF:=HRANTEE
XNF: ='JE
MIND $=$ HRANGF \# NRANGF +1
COMPUTE RATING FREOUENCIES
DO रे $2 \mathrm{~K}=1, \mathrm{Nr}$.
NCG:NC*K』?
DO 200 $I=1, \operatorname{HCG}$
DO 281 LEI.IXMAX
231 ID1SP(I,L,K)=0
DO $20 B \mathrm{~J}=1$, $N E$
$L=I \times(1, J, K)$
200 IDISP(I,L,K)=10ISP(I,L,K)+1
QUTPUT RATING FREBUFNCIES
WRITE(0.4)(ITITLE(I).I=1,13)
WRITE 6,8 )
DO $202 K=1, N G$
NCG=NC\&K
WRIVE(6,9)(L,L=1,1XMAX)
DO $202 I=1, N C G$
2 (62 WRITE(6,10)I, (IDISP(I,L,K),L=1,IXMAX)
COMPUTE FIFMFNT DIFFERFNCES WITHIN GRIDS
NED $=(N E A(N E-1)) / 2$
XNED = NED
$00300 \mathrm{~K}=1$, NG
NCG:NC*K
00 JDG $I=1, N C G$
DO 392 LAE1, IXMAX
362 COUNT (LA) $=0.9$
NEUP=NE-1
DO 303 Ja=1, NEUP
JAUP $=J A+1$
DO 303 JH=JAIIP, ME
LA:IABS (JX(I,JA,K)-IX(I,JB,K)) +i
303 COUNT (L.A) $=$ COUNT (LA) +1.8
00 3Bn LA=1. IXMAX
30日 DISTRI(I,LA,K)=COUNT(LA)/XNED IF(NG.EG.1)GO TO 5021

COMPUTE DIFFERFNCF FREDUENCIFS BETWEEN GRIDS
00 वठठ L=1.IXHAX
400 LO(L) $=\mathrm{L}-1$
NGUP=NG-1
DO $494 K=1$, NGUP
NCG=NC*K
KLUP $=K+1$
DO 40? KL =KLUP, NG
DO 402. I=1,NCG
1REP $=1+((K L-K-1)$ ANCG)
DO 4 B3 $L=1$, IXMAX
403 IDREP (IREP,L,K) $=0$
DO 482 J=1, NE
$\operatorname{LaIABS}(1 \times(1, J, K)-1 \times(I, J, K())+1$.
4B2 IOREP(IREP.L,K)=IDREP(IREP,L,K)+1
QUTPUI DIFFFRFNCE FREQUFNCIES BETWEEN GRIDS
WRITE (0,4)(ITITLE(I),I=1.13)
WHITE 6.11 )K
DO 4U4 KL=KLUP,NG
WRITE $(6,9)(L O(L), L=1, I \times M A X)$
DO $4 \mathrm{BH}_{4} \mathrm{I}=1$, NCG
1REP = $1+((K L-K-1)$ * NCG $)$


C COMPUTE SIMILARITY MATRICES
S月？．MTYFE $=\{$
500日 MTYPEGMTYPE＋1
If（MTYPE．FO．1）GO TO 58Z！
DO $586 K=1$ ，NG
NCG＝NC＊K
DO らnG I＝s，NCG
DO SUB J＝1，NE
50B IXX（J，I，K）＝IX（I，J，K）
5091 DO 501 $K=1$ ，NG
HCGZNC＊K＊2
MAXDC＝（HJND－1）A $\mathrm{NE}+1$
IDIST（NCG，NCG）＝8
IDIST（NE，NE）$=0$
ICUM（NCG，NCG）$=0$
ICUM（NE，NE）$=0$
$\mathrm{KL}=\mathrm{K}$
IF（MTYPE．ER．？）GO TU 5月1：
BSTOP＝NCG
GOTO SBI2
5011 ISTOP＝NE
NTYPE＝1
CALL PROBE？（NTYPE，K，KL，NE）
5012 DO 532 $1=2$ ．ISTOP
MSTOP＝1－1
DO 582 M＝1．MSTOP
$10=8$
NSTOP＝
JF（MTYPE．EQ．1）NSTOP＝NE
IF（MTYPE．EO．2）NSTUP $=$ NC \＃K
DO $503 \mathrm{~J}=1, \mathrm{NSTOP}$
10IFF＝
IF（HTYPE，E（i，I）IDIFF＝IX（I，J，K）－IX（M，J，K）
IF（HTYPE，EQ，2）IDIFF $=I X X(I, J, K)=I X X(M, J, K)$
$50310=10+10 I F F+1 D I+F$
IF（MTYIE．ER． 2 IGO TO 5982
CALL PROREI（ID，1，M，K，KL，NCG，MAXDC，NE，7DOM）
$\operatorname{ICUM}(I, M)=7.00 \mathrm{M}$
$D=10$
DIST＝（SART（D／XHE）／RANGE）＊10日．B
GO 105003
5092 KOUNT＝10＋1
ICUM（ $1, M$ ）＝OE WCUM（KOUNT）
$0=10$
XNCG $=N C * K$
DIST：（SQRT（D／XNCG）／RANGE）＊100．a
$5803 \operatorname{ICUA}(H, H)=3$
IDIST（M，H）＝9
$\operatorname{ICUM}(M, I)=\operatorname{ICUM}(I, M)$
IDISI（I，M）＝0IST
502 10IST（H，1）＝IOIST（J，H）
WRITE（6，4）（ITITLE（1），I＝1，13）
IF（MTYPE，EN．2）GO 105987
WRITE（6，12）
NCGINC•K
ISTOP＝NCG
MSTOPEISTOP
$005050 \quad 1=1$ ，NCG
IPLUS $=1+\mathrm{HCG}$ ，

DO 534 MEI，HSTOP
$10=9$

```
 -833-
DO SAS J=1.NSTOP
1OIFF=0

SUQROUTINE PROBFI（ID，I，M，KN，KL，NCG，MAXDC，NE，7OOM）
COMMON／L？／IX（5，25，6），IXX（25，53，6），DISIRI（25，1P，6），
1IDREP（49，10，6），IDISP（50，10，6）
COMMOH／HSI2／IXMAX，MIVD
COMMON／SI2／NX（500），Y（500），YY（509）
LEVEL 2，IX，IXX，DISTRI，IDREP，IDISP
DIMENSION Z（I9），NXX（50日），NXXX（5月0），YYY（5の日）
DO 6U日 KQ＝I．IXMAX
\(6002(K 0)=0.0\)
XNEINE
OD 6DI KAEI．IXMAX
DO 6U！LA＝1，IXMAX
\(K O=1 A B S(L A-K A)+1\)
DRIP＝IOISP（I，KA，KN）
DROP＝IDISP（H，LA，KL）
O1SPI＝DRIP／XNE
DISPM＝DROP／XNE
601 Z（KO）＝Z（KR）＋DISPI＊DISPM
DO \(602 K=1, H I N D\)
\(N X(K)=-1\)
\(602 Y(K)=0.0\)
DO \(683 \mathrm{~K}=1, \mathrm{MAXDC}\)
\(N X X(K)=-1\)
NXXX（K）\(=-1\)
\(Y Y(K)=14,0\)
603 YYY（K）\(=0.1\) ．
OO \(604 \mathrm{~K}=1.1 \times \mathrm{MaX}\)
\(M A=K-1\)
\(M H=H A \quad M A+1\)
\(N X(M H)=M M=1\)
\(N X X(M K)=N X(M M)\)
\(Y(M H)=Z(K)\)
\(684 \mathrm{YY}(\mathrm{MH})=\mathrm{Y}(\mathrm{MH})\)
\(M N=1\)
\(6098 \mathrm{MN}=\mathrm{MN}+1\)
KSTOPa（MIND－I）AMN＋1
```

    DO 6:35 MO=1,MIND
    IF(NX(MO).EO.-I)GO TO 605
    KI=0
    ```
\(6301 \mathrm{KT} \underset{\mathrm{K}}{\mathrm{K}} \mathrm{T}+1\)
If（NXX（KT），FO．－1）Gn TO 60日I
IF（KT．GT．KSTOP）GO 10685
\(K M=N X X(K T)+N X(M O)+1\)
NXXX（KM）\(=K M=1\)
YYY（KM）\(=\mathrm{YYY}(K M)+Y Y(K T) \& Y(M Q)\)
IF（NXXX（KM）．GT，ID）RO TO 6 O5
IF（KT．L．T．KSTOP）GO TO G日月！
605 CONTINUE
DO \(606 \mathrm{~K}=1, \mathrm{KSTOP}\)
NXX（K）\(=\mathrm{NYXX}(\mathrm{K})\)
YY（K） \(\operatorname{EYYY(K)}\)
\(606 \mathrm{YYY(K)}=\mathrm{G}, \mathrm{E}\)
IF（MN．LT．HE）GO TO 60日G
KOUNT＝1D＋1
CUM＝0． 0
OO 687 K＝1，KOUNT
607 CUM \({ }^{=}\)C（IM \(+Y Y(K)\)
\(200 M=C U M .10060 .0\)
RETURN
END

SUBROUTINE PRORF（IJTYPE，K，KL，NF ）
CUMMON／L2／IX（50，25，6），IXX（25，5日，6），DISTRI（25，10，6）．
\(110 R E P(40,10,6), 10\) ISP（SH，10，6）
COMHON／MSI2／IXMAX，MIND
COMMON／MS？／NC，DF NCUM（5，9A），DERCUM（52日）
COMMON／SITINX（5月O），Y（530），YY（Sis ）
LEVEL 2，IX，IXX，DISTRI，IDREP，IDISP
XNE \(=N E\)
NCG＝NC＊K
LSTOP＝（MIND－1）＊NCG＋1
DO 700 LB＝I，LSIOP
\(N X(L B)=-1\)
\(Y(1, B)=0.0\)
70 Y Y \(\mathrm{Y}(\mathrm{LH})=0,0\)
I＝1
IRFP \(=1+((K L-K-1) * N(G)\)
\(007 B 1 L A=1, I X M A X\)
\(M A=(L A-1) *(L A-1)+1\)
\(N X(M A)=M A-1\)
IF（NTYPE，ED．？）GO \(1070(2)\)
Y（MA）＝DISTRI（I，LA，K）
GOTO 7 OI
7 万E2 UREP＝IDREP（IREP，LA，K）
Y（YA）\(=\) DREP／XNF．
701 CONTINUE
DO 132．I＝2，NCG
IREP＝1＋（（KL－X－1）＊NCG）
KSTOP \(=(I-1) *(\) M \((N D-1)+1\)
DO 703 LA＝1．IXMAX
\(M A=(L A-I) *(L A-1)+1\)
DO 7U3 KA＝1，KSTOP
IF（NX（KA），EO．-1\()\) GO 10703
\(M H=M A * K A-1\)
\(N X(M M)=M M-1\)
IF（NTYPE，EO．2）GO TO 7 OR3
\(Y Y(H M)=Y Y(M M)+D I S T R I(I, L A, K) * Y(K A)\)
GO 10703
7803 DREP＝IDRF．P（IREP，L A，K）
\(Y Y(M M)=Y Y(M M)+(D R E P / X N E) * Y(K A)\)
703 CONTINUE
JSTOP＝1＊（MIND－1）＋1
DO 782 JAEI，JSTOP
\(Y(J A)=Y Y(J A)\)
\(702 \mathrm{YY}(\mathrm{JA})=\mathrm{E}, \mathrm{C}\)
ZOOM＝Y（1）＊10000．0
IF（NTYPE．ER．1）GO 107804
DEBCUM（1）\(=200 \mathrm{M}\)
DO 7 O4 L．B＝T，LSTOP
200M＝Y（LB）＊1月0日の． 9
704 DEACUM（LB）\(=700 \mathrm{OH}+\mathrm{OEBCUM}(L 8-1)\)
60107045
7 JiBa DEHCUM（1）＝700M
DO 705 LB＝2．LSTOP
200Mey（LB） 1 10319． 9
705 DEXCUM（LA）\(=200 \mathrm{CH}+\mathrm{OEWCUM}(L B=1)\)
7285 KETURN
END

\section*{Example gqies}

\section*{RAW DATA}
\begin{tabular}{lllllllll}
& 1 & 2 & 3 & 4 & 5 & 5 & 7 & 8 \\
1 & 2 & 1 & 4 & 5 & 4 & 2 & 2 & 3 \\
2 & 2 & 1 & 4 & 5 & 3 & 2 & 3 & 2 \\
3 & 1 & 1 & 4 & 5 & 3 & 2 & 3 & 4 \\
4 & 4 & 5 & 2 & 1 & 3 & 3 & 2 & 2 \\
& 1 & 2 & 3 & 4 & 5 & 6 & 7 & \(A\) \\
1 & 3 & 1 & 5 & 4 & 4 & 4 & 2 & 3 \\
2 & 4 & 2 & 5 & 1 & 1 & 1 & 4 & 3 \\
3 & 2 & 2 & 5 & 4 & 4 & 1 & 3 & 4 \\
4 & 4 & 5 & 2 & 1 & 3 & 2 & 2 & 1 \\
5 & 5 & 4 & 3 & 3 & 3 & 2 & 4 & 4 \\
6 & 2 & 3 & 5 & 5 & 4 & 3 & \(?\) & 5 \\
7 & 2 & 3 & 5 & 4 & 3 & 2 & 1 & 2 \\
4 & 1 & 3 & 4 & 3 & 4 & 2 & 3 & 5
\end{tabular}

EXAMPLE GTIOS
RATIVG FREQUENCIES
\begin{tabular}{llllll}
& 1 & 2 & 3 & 4 & 5 \\
1 & 1 & 3 & 1 & 2 & 1 \\
2 & 1 & 3 & 2 & 1 & 1 \\
3 & 2 & 1 & 2 & 2 & 1 \\
4 & 1 & 3 & 2 & 1 & 1 \\
& 1 & 2 & 3 & 4 & 5 \\
& 1 & 1 & 2 & 3 & 1 \\
& 3 & 1 & 1 & 2 & 1 \\
& 1 & 2 & 1 & 3 & 1 \\
2 & 3 & 1 & 1 & 1 \\
& 1 & 1 & 3 & 3 & 1 \\
0 & 2 & 2 & 1 & 3 \\
1 & 3 & 2 & 1 & 1 \\
1 & 1 & 3 & 2 & 1
\end{tabular}

\section*{EXAMPLE GRIOS}

DIFFERENCE FREQUENCIES ON GRID 1
\begin{tabular}{llllll}
2 & 0 & 1 & 2 & 3 & 4 \\
1 & 4 & 3 & 1 & 0 & 0 \\
2 & 0 & 5 & 2 & 0 & 1 \\
3 & 2 & 6 & 0 & 0 & 0 \\
-4 & 0 & 2 & 0 & 0 & 0
\end{tabular}

EXAMPLE GRIDAS
CONSTRUCTS
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{distances} & \multirow[t]{2}{*}{GR10 1} \\
\hline & 1 ? & 34 & & \\
\hline 1 & 015 & \(1^{7-23}\) & & \\
\hline \(?\) & 159 & 19-21 & & \\
\hline 3 & 1719 & 0-15 & & \\
\hline 4 & -23-21- & 150 & & \\
\hline & PROBA & BILI & IES & - GR10 \\
\hline & 1 & 2 & 3 & 4 \\
\hline 1 & 0 & 25 & 26 & \(-180\) \\
\hline \(?\) & 25 & 9 & 55 & -98 \\
\hline 3 & 26 & 55 & \(\Delta\) & -15 \\
\hline 4 & -180 & -98 & -13 & \(\lambda\) \\
\hline
\end{tabular}

\section*{EXAMPLE GRIDS}

\section*{CONGTRUETS *}

OISTANCFS GRID 1 HITH?
\(\begin{array}{lccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & -46 & 21 & 31 & 31 & 27 & 20 \\ 3\end{array}\)
\(\begin{array}{lllllll}1 & 23-46 & 21-31-31 & 27 & 20 & 33 \\ 2 & 27 & 47 & 26-33-30 & 36 & 27 & 38\end{array}\)
\(3 \begin{array}{llllllll}1 & 27 & 47 & 26-33-37 & 36 & 27 & 36 \\ 31 & 51 & 21-23-34 & 27 & 34 & 37\end{array}\)
4-27 49-26 12 35-29-39-31
PROHABILITIES GKID 1 WITH ?
\(1 \begin{array}{ccccccc}180-3966 & 112 & -606-2529 . & 379 & 587 & 1754\end{array}\) \(\begin{array}{lllllllll}549 & 5385 & 413 & -738-2950 & 1593 & 1016 & 3868\end{array}\) 3 1054-5224 1月4-115-2519 34i 1650 572 \(4-1016-4954-587 \quad 7\) S \(1805-961-3088-2914\)

EXAMDLE GRIDS

\section*{Coinstructs}

OISTANCES GRIO 2

\section*{EXAMPLE GRIDS}

\section*{ELEMENTS}

\section*{OISTANCES GRID 1}
\(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}\)
2107519043535 \(\begin{array}{cccccccc}21 & 0 & 75108 & 57 & 53 & 53 & 59 \\ 57 & 75 & 5 & 25 & 21 & 45 & 36 & 27\end{array}\) \(\begin{array}{lllllll}57 & 75 & 4 & 25 & 21 & 45 & 30 \\ 81 & 27 \\ 31 & 25 & 9 & 45 & 69 & 53 & 4 B\end{array}\) \(\begin{array}{llllllll}81 & 139 & 25 & 9 & 45 & 69 & 53 & 48 \\ 39 & 57 & 21 & 45 & 39 & 27 & 25\end{array}\) \(\begin{array}{llllllll}37 & 57 & 21 & 45 & 3 & 30 & 27 & 25\end{array}\) \(\begin{array}{rrrrrrrr}17 & 33 & 45 & 69 & 30 & 6 & 21 & 30 \\ 37 & 53 & 31 & 53 & 77 & 21 & 1 & 21\end{array}\) \(\begin{array}{llllllll}37 & 53 & 36 & 6.3 & 27 & 21 & 0 & 21 \\ 40 & 59 & 21 & 48 & 25 & 30 & 21 & 1\end{array}\)
\(40592 \% 482530210\)
```

PROEARILITIES GRID I

```
 \(\begin{array}{rrrrrrrr}1523 & 8887 & 9984 & 367 y & 203 & 2868 & 5505 \\ 523 & 4 & 9889 & 9909 & 8,387 & 2320 & 7271 & 8747\end{array}\) 8087 9889 उ \(783 \quad 52.349591672\) 1月99 \(99844999783 \quad 54959979872716307\) 367 \＆月67 \(5234959 \quad 0 \quad 16721449\) 783 \(2: 3\) 232！ 4959971381672 a 5231672 2868727116727271 10月9 523 औ 523

\section*{EXAMPLE GRIOS}

\section*{Elenfits}

 5 57a3 8750 87ヶn 8Gリ1 DAAS 8691 8115 8115

 \(8 \quad 97509345475 \% 542950298750\) 8115 2978

\section*{EXAMPLE GRIDS}

\section*{ELEMENTS}

DISTANCFS GRID 2
\(\begin{array}{lllllllll}-1 & 1 & 2 & 3 & 4 & 5 & 5 & 7 & 8 \\ 1 & 0 & 35 & 61 & 58 & 50 & 49 & 30 & 55\end{array}\)
\(\begin{array}{lllllllll}1 & 0 & 35 & 61 & 58 & 50 & 49 & 30 & 55 \\ 2 & 35 & 0 & 64 & 53 & 46 & 45 & 39 & 51\end{array}\)
\(\begin{array}{lllllllll}2 & 35 & 0 & 64 & 53 & 46 & 45 & 39 & 51 \\ 3 & 61 & 04 & 0 & 44 & 43 & 63 & 56 & 40\end{array}\)
\begin{tabular}{llllllll}
4 & 58 & 53 & 48 & 4 & 23 & 39 & 51 \\
\hline
\end{tabular}

\(\begin{array}{lllllllll}6 & 45 & 45 & 63 & 39 & 36 & 9 & 43 & 50 \\ 7 & 39 & 39 & 50 & 51 & 44 & 43 & 4 & 31\end{array}\)
\(\begin{array}{lllllllll}1 & 50 & 39 & 50 & 51 & 44 & 43 & 0 & 31 \\ 8 & 55 & 51 & 49 & 33 & 31 & 50 & 37\end{array}\)

\section*{PROHARILITIFS GKIN ？}
\(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 0 & 1552 & 9673 & 9784 & 7274 & 4948 & 070 & 8766\end{array}\) 1552 25 \(0837799931084918 \quad 27757590\) \(\begin{array}{rrrrrrr}1552 \\ 9673 & 9837 & 9837 & 7999 & 3108 & 4918 & 2775 \\ 75 月 9\end{array}\) 96739837 \＆ 31684224976189793168 \(\begin{array}{rlrrrrrr}9784 & 7999 & 3168 & 0 & 106 & 2775 & 7539 & 1048 \\ 7274 & 3168 & 4270 & 106 & 1050\end{array}\) \(\begin{array}{llllllll}7274 & 316 月 & 4220 & 106 & 18524627 & 865\end{array}\) 49134948976127751852 （1）423 6948 \(\begin{array}{rrrrrrrrr}667 & 2775 & 8979 & 7549 & 4627 & 4220 & 0 & 2137 \\ 8766 & 7509 & 3168 & 1648 & 865 & 0948 & 2137 & \end{array}\)

\section*{Appendix \(E\) Tho Coro Grid. \\ E. 1 The sortal grid santile}

Serial reportoiy grids were obtained from 5 subjects, all of whom were male postgraduates attending Brunel Univeraity. The testing series varied both in format and in periods covered, as follows:-
\begin{tabular}{|l|c|l|l|c|c|}
\hline Subject & Age & \begin{tabular}{l}
limber of \\
testings \\
occasions
\end{tabular} & \begin{tabular}{l}
Sizo of \\
element \\
sample
\end{tabular} & \begin{tabular}{l}
Number of \\
constructs \\
elicited \\
each \\
occasion
\end{tabular} & \begin{tabular}{l}
Timo \\
period \\
(wks)
\end{tabular} \\
\hline S1 & 24 & 3 & 12 & 6 & 10 \\
S2 & 22 & 3 & 12 & 6 & 6 \\
S3 & 27 & 4 & 12 & 6 & 12 \\
S4 & 26 & 6 & 9 & 4 & 11 \\
S5 & 23 & 6 & 9 & 4 & 11 \\
\hline
\end{tabular}

In all casce elegent canples were nominated by the subjects in response to a request to list the names of persons considored significant to their lives. Every subject included their own name in the clenent list \(S 1\) and \(S 2\) also included the clement SELF. Theac names were then transforred to \(6 " \times 4 "\) cards and numbered in random order. Constructs wero clicited uaing the modified full Context Form, in which subjecta aelected two cards from the entire clement sample (displayed on a table) to ropresent anchor elements for opposito poles of cach construct. Subjects were instructed to survey the entire element sample and oelect two persons who were opposite in some immediatoly obscrvablo and important respect. Subjects were encouraged to make this selection as quickly as possible and to note imediately on a oeparate \(6^{\prime \prime} \times 4^{\prime \prime}\) card, divided by a linc in the middle, a word or phrase describing the opposing attributes of the two anchor elemente. Care was taken to ensure that attributes were antonymous. Following thic, a set of cards numbered botween 1 and 5 were arranged in order on the table, and anchor elements initially placed under the two extreme cards. Subjects were instructed to ensuro that the loft-hand attribute on thoir construct cards corresponded to the anchor element jocatod ot position 1, and lant jocated at
position 5 with the right-hand attribute. Subjects then sorted the remining elenent cards into any of the five positions in accordance with their perception of tho extent to which each clement displayed the attributes named. lie restriction was placed on the number of olements assigned to each position. The indifference category (position 3) was defined as "a neutral position", in which either both attributcs apply equally, or in which neither attribute applies". Subjects were instructed to ensure that the final distribution of cards was in accord with their views of tho attributo named, and to make any changes they now felt necessary. In some cases this entailed the repositioning of anchor stimuli away from extreme positions. Finally, subjects wore requested to ensure that their attribute descriptions conveyed the distinction embodied in the element sort, and to make any changes to the wording they folt necessary. This procedure was repeated for each construct elicited, and element positions vere recorded on a grid form.

Initially, subjects were instructed in the procoduro by E. After 2 or 3 such elicitations, however, subjecto were left to clicit and record constructs on their oum. On every testing occosion following the first, subjects began by cliciting and recording a fixed number of constructs. Subsequen'tly, subjecto were instructed to take each construct card produced on grevious occasions and locate elewents on the five-point scale withcut reference to their previous allocations. Attempted reproduction of previous allocations was discouragod by pointing out that the excrcisc was not a test of memory or consistency, but an attempt to record their perceptions of persons at the time of testing.

The following tables record the grid eatrices produced by the five subjects (elements columntise, SELF and IDEAL SELF denoted by • and * respectively; conotructo rowwiso).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline S1 & 1 & 2 & 3 & 4 & 5* & 6.. & 7 & 8 & 9 & \(10^{\text { }}\) & 11 & 12 \\
\hline T 11 & 4 & 5 & 1 & 3 & 1 & 1 & 4 & 2 & 2 & 3 & 4 & 3 \\
\hline 2 & 2 & 2 & 1 & 2 & 1 & 1 & 2 & 4 & 5 & 3 & 4 & 2 \\
\hline 3 & 5 & 4 & 4 & 3 & 1 & 1 & 3 & 2 & 1 & 3 & 4 & 3 \\
\hline 4 & 1 & 4 & 2 & 3 & 1 & 3 & 4 & 2 & 3 & 3 & 1 & 5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 1 & 2 & 3 & 4 & \(5{ }^{\circ}\) & 6.0 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline 5 & 4 & 4 & 2 & 3 & 1 & 1 & 4 & 1 & 3 & 2 & 5 & 3 \\
\hline 6 & 2 & 3 & 2 & 4 & 1 & 5 & 2 & 1 & 5 & 3 & 3 & 2 \\
\hline \(\mathrm{T}_{2} \quad 1\) & 5 & 3 & 1 & 4 & 1 & 1 & 5 & 1 & 2 & 1 & 3 & 2 \\
\hline 2 & 3 & 4 & 1 & 4 & 1 & 1 & 3 & 5 & 5 & 3 & 4 & 2 \\
\hline 3 & 5 & 3 & 4 & 3 & 2 & 1 & 3 & 1 & 1 & 3 & 4 & 4 \\
\hline 4 & 1 & 1 & 3 & 2 & 5 & 5 & 2 & 2 & 3 & 4 & 1 & 3 \\
\hline 5 & 5 & 5 & 1 & 4 & 1 & 1 & 5 & 1 & 4 & 2 & 4 & 3 \\
\hline 6 & 1 & 2 & 3 & 4 & 1 & 5 & 1 & 5 & 5 & 1 & 3 & 3 \\
\hline 7 & 4 & 4 & 1 & 2 & 1 & 1 & 4 & 2 & 2 & 5 & 3 & 2 \\
\hline 3 & 5 & 2 & 1 & 4 & 1 & 3 & 4 & 2 & 3 & 5 & 4 & 1 \\
\hline 9 & 3 & 1 & 4 & 2 & 5 & 1 & 3 & 2 & 1 & 3 & 3 & 1 \\
\hline 10 & 1 & 2 & 2 & 1 & 5 & 5 & 5 & 4 & 4 & 1 & 2 & 3 \\
\hline 11 & 5 & 4 & 3 & 1 & 1 & 1 & 4 & 3 & 2 & 5 & 4 & 2 \\
\hline 12 & 5 & 3 & 2 & 4 & 1 & 1 & 5 & 2 & 2 & 1 & 3 & 3 \\
\hline \(\mathrm{T}_{3} \quad 1\) & 4 & 5 & 2 & 2 & 1 & 1 & 5 & 1 & 3 & 2 & 4 & 4 \\
\hline & 2 & 4 & 3 & 4 & 1 & 1 & 3 & 5 & 5 & 3 & 4 & 2 \\
\hline 3 & 4 & 2 & 4 & 3 & 2 & 4 & 3 & 2 & 1 & 2 & 3 & 3 \\
\hline 4 & 2 & 3 & 4 & 2 & 4 & 5 & 2 & 2 & 3 & 5 & 1 & 3 \\
\hline 5 & 5 & 4 & 1 & 3 & 1 & 1 & 5 & 1 & 2 & 1 & 3 & 4 \\
\hline 6 & 5 & 4 & 3 & 2 & 3 & 5 & 4 & 2 & 1 & 3 & 2 & 3 \\
\hline -7 & 5 & 5 & 2 & 1 & 1 & 1 & 5 & 2 & 3 & 5 & 4 & 2 \\
\hline 8 & 5 & 3 & 1 & 5 & 3 & 3 & 2 & 2 & 2 & 5 & 2 & 2 \\
\hline 9 & 4 & 1 & 5 & 2 & 3 & 1 & 1 & 3 & 1 & 2 & 2 & 1 \\
\hline 10 & 1 & 4 & 3 & 2 & 5 & 5 & 5 & 4 & 5 & 1 & 4 & 4 \\
\hline 11 & 5 & 5 & 3 & 1 & 3 & 1 & 5 & 2 & 2 & 5 & 4 & 3 \\
\hline 12 & 4 & 5 & 3 & 3 & 2 & 1 & 5 & 2 & 4 & 1 & 2 & 2 \\
\hline 13 & 4 & 4 & 1 & 2 & 3 & 3 & 2 & 2 & 5 & 1 & 4 & 4 \\
\hline 14 & 5 & 5 & 2 & 1 & 3 & 1 & 5 & 1 & 4 & 1 & 2 & 3 \\
\hline 15 & 5 & 4 & 3 & 4 & 1 & 2 & 4 & 2 & 5 & 1 & 3 & 2 \\
\hline 16 & 4 & 4 & 3 & 2 & 2 & 1 & 5 & 3 & 4 & 1 & 3 & 4 \\
\hline 17 & 5 & 3 & 2 & 3 & 2 & 1 & 4 & 3 & 4 & 3 & 2 & 1 \\
\hline 13 & 4 & 5 & 1 & 5 & 1 & 3 & 4 & 1 & 3 & 4 & \({ }^{\prime}\) & , \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\underline{1}\) & 1 & 2 & 3 & 4 & 5 & \(6 *\) & 7** & 8 & 9 & 10 & 11 & 12 \\
\hline \multirow[t]{6}{*}{\(\mathrm{T}_{1}\)} & \multicolumn{3}{|c|}{;} & 4 & 4 & 4 & 5 & 2 & 5 & 1 & 5 & 4. \\
\hline & 5 & 2 & 5 & 2 & 4 & 5 & & 1 & 5 & 2 & 5 & 4 \\
\hline & '2 & 1 & 2 & 2 & 1 & 2 & 1 & 5 & 1 & 5 & 2 & 1 \\
\hline & 2 & 4 & 2 & 3 & 2 & 2 & 2 & 4 & 2 & 1 & 3 & 1 \\
\hline & 3 & 1 & 3 & 4 & 2 & 1 & 2 & 5 & 2 & 4 & 3 & 1 \\
\hline & 4 & 5 & 3 & 1 & 2 & 1 & & 3 & 2 & 1 & 5 & 2 \\
\hline \(\mathrm{T}_{2} 1\) & 4 & 2 & 4 & 4 & 3 & 4 & 4 & 2 & 4 & 2 & 4 & 4 \\
\hline 2 & 5 & 3 & 3 & 2 & 2 & 5 & 5 & 1 & 5 & 1 & 5 & 5 \\
\hline 3 & 2 & 3 & 3 & 2 & 3 & 2 & 2 & 4 & 2 & 5 & 2 & 2 \\
\hline 4 & 2 & 4 & 3 & 4 & 2 & 3 & 2 & 3 & 2 & 4 & 2 & 2 \\
\hline 5 & 2 & 3 & 3 & 3 & 3 & 2 & 1 & 5 & 1 & 5 & 2 & 1 \\
\hline 6 & 4 & 5 & 2 & 2 & 2 & 2 & 3 & 3 & 2 & 3 & 4 & 3 \\
\hline 7 & 4 & 3 & 1 & 3 & 2 & 1 & 1 & 3 & 1 & 3 & 4 & 1 \\
\hline 8 & 3 & 4 & 5 & 2 & 3 & 2 & 2 & 5 & 2 & 3 & 2 & 3 \\
\hline 9 & 3 & 1 & 3 & 5 & 3 & 1 & 2 & 5 & 1 & 5 & 3 & 2 \\
\hline 10 & 2 & 3 & 2 & 3 & 1 & 1 & 1 & 3 & 1 & 4 & 2 & 2 \\
\hline 11 & 3 & 2 & 3 & 4 & 2 & 2 & 2 & 5 & 2 & 2 & 3 & 1 \\
\hline 12 & 3 & 2 & 2 & 5 & 5 & 3 & 4 & 2 & 3 & 1 & 5 & 4 \\
\hline \(\mathrm{T}_{3} \quad 1\) & 5 & 2 & 4 & 4 & 3 & 4 & 5 & 1 & 5 & 1 & 5 & 5 \\
\hline 2 & 5 & 2 & 3 & 3 & 3 & 4 & 4 & 1 & 5 & 1 & 5 & 5 \\
\hline 3 & 1 & 3 & 3 & 1 & 2 & 2 & 1 & 5 & 1 & 5 & 1 & 1 \\
\hline 4 & 1 & 4 & 3 & 4 & 2 & 2 & 3 & 4 & 2 & 4 & 2 & 3 \\
\hline 5 & 2 & 2 & 3 & 3 & 2 & 1 & 1 & 5 & 1 & 4 & 1 & 1 \\
\hline 6 & 5 & 5 & 1 & 2 & 1 & 1 & 1 & 4 & 1 & 3 & 5 & 2 \\
\hline 7 & 5 & 3 & 2 & 4 & 2 & 2 & 1 & 3 & 2 & 3 & 5 & 2 \\
\hline 3 & 4 & 4 & 5 & 2 & 3 & 2 & 2 & 5 & 2 & 4 & 2 & 2 \\
\hline 9 & 3 & 2 & 4 & 4 & 3 & 1 & 1 & 5 & 1 & 5 & 3 & 2 \\
\hline 10 & 3 & 4 & 2 & 4 & 2 & 2 & 2 & 4 & 2 & 4 & 4 & 2 \\
\hline 19 & 3 & 3 & 3 & 3 & 2 & 2 & 2 & 5 & 2 & 4 & 2 & 1 \\
\hline 12 & 3 & 5 & 2 & 5 & 4 & 2 & 3 & 2 & 2 & 2 & 5 & 4 \\
\hline 1.3 & 4 & 4 & 1 & 3 & 2 & 2 & 1 & 2 & 5 & 1 & 5 & 3 \\
\hline
\end{tabular}
\begin{tabular}{|l|lll|lll|lll|lll|}
\hline & 1 & 2 & 3 & 4 & 5 & \(6 \cdot\) & \(7 \cdots\) & 8 & 9 & 10 & 11 & 12 \\
\hline 14 & 4 & 4 & 2 & 4 & 3 & 2 & 1 & 5 & 2 & 4 & 5 & 3 \\
15 & 5 & 3 & 3 & 4 & 2 & 3 & 3 & 2 & 4 & 2 & 4 & 4 \\
16 & 5 & 4 & 2 & 2 & 5 & 5 & 5 & 2 & 4 & 1 & 5 & 4 \\
17 & 5 & 2 & 3 & 4 & 3 & 3 & 1 & 1 & 3 & 1 & 5 & 4 \\
18 & 3 & 4 & 1 & 3 & 2 & 2 & 1 & 3 & 1 & 5 & 3 & 2 \\
\hline
\end{tabular}

S3
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9* & 10 & 11 & 12 \\
\hline \multirow[t]{6}{*}{\(\mathrm{T}_{1}\)} & 3 & 5 & 5 & 5 & 3 & 2 & 4 & 2 & 1 & 1 & 5 & 4 \\
\hline & 3 & 5 & 5 & 5 & 5 & 2 & 4 & 1 & 1 & 3 & 2 & 5 \\
\hline & 1 & 1 & 1 & 2 & 1 & 2 & 5 & 1 & 1 & 1 & 4 & 2 \\
\hline & 4 & 1 & 1 & 5 & 5 & 4 & 4 & 2 & 1 & 2 & 5 & 2 \\
\hline & 1 & 2 & 1 & 5 & 2 & 4 & 1 & 1 & 1 & 1 & 1 & 3 \\
\hline & 5 & 4 & 3 & 4 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 4 \\
\hline \multirow[t]{12}{*}{\(\mathrm{T}_{2}\)} & 3 & 3 & 3 & 4 & 2 & 3 & 5 & 2 & 3 & 1 & 2 & 5 \\
\hline & 3 & 4 & 5 & 2 & 5 & 2 & 1 & 2 & 3 & 2 & 2 & 5 \\
\hline & 2 & 1 & 1 & 3 & 1 & 5 & 5 & 4 & 3 & 1 & 4 & 3 \\
\hline & 2 & 4 & 1 & 3 & 2 & 5 & 2 & 5 & 3 & 4 & 5 & 1 \\
\hline & 5 & 2 & 1 & 3 & 1 & 5 & 4 & 5 & 5 & 1 & 1 & 4 \\
\hline & 5 & 1 & 5 & 4 & 2 & 2 & 5 & 1 & 3 & 2 & 5 & 5 \\
\hline & 1 & 1 & 3 & 5 & 1 & 4 & 2 & 2 & 1 & 4 & 2 & 5 \\
\hline & 1 & 5 & 1 & 2 & 5 & 4 & 1 & 3 & 1 & 2 & 3 & 4 \\
\hline & 5 & 5 & 1 & 2 & 1 & 2 & 3 & 5 & 1 & 4 & 1 & 2 \\
\hline & 2 & 2 & 2 & 5 & 4 & 2 & 3 & 4 & 1 & 3 & 3 & 5 \\
\hline & 1 & 1 & 3 & 5 & 1 & 4 & 2 & 1 & 1 & 1 & 5 & 5 \\
\hline & 2 & 1 & 1 & 5 & 5 & 5 & 5 & 2 & 1 & 2 & 5 & 5 \\
\hline \(\mathrm{T}_{3} 1\) & 3 & 5 & 5 & 2 & 2 & 4 & 5 & 2 & 1 & 1 & 4 & 3 \\
\hline & 3 & 5 & 5 & 4 & 2 & 1 & 3 & 2 & 4 & 4 & 1 & 5 \\
\hline 3 & 2 & 1 & 1 & 3 & 2 & 5 & 4 & 3 & 3 & 1 & 3 & 2 \\
\hline 4 & 5 & 2 & 1 & 5 & 1 & 5 & 2 & 3 & 2 & 2 & 4 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 3 & \(9 *\) & 10 & 11 & 12 \\
\hline 5 & 5 & 1 & 1 & \(?\) & 1 & 5 & 1 & 2 & 4 & 2 & 1 & 2 \\
\hline 6 & 5 & 1 & 5 & 1 & 1 & 5 & 5 & 1 & 3 & 2 & 5 & 4 \\
\hline 7 & 3 & 1 & 5 & 4 & 4 & 5 & 5 & 1 & 1 & 4 & 5 & 5 \\
\hline 8 & 1 & 5 & 1 & 1 & 5 & 1 & 1 & 3 & 3 & 3 & 1 & 2 \\
\hline 9 & 3 & 5 & 1 & 4 & 2 & 3 & 1 & 4 & 2 & 4 & 1 & 2 \\
\hline 10 & 3 & 3 & 3 & 5 & 4 & 5 & 5 & 4 & 1 & 4 & 4 & 5 \\
\hline 11 & 2 & 1 & 5 & 5 & 2 & 5 & 4 & 1 & 1 & 2 & 5 & 4 \\
\hline 12 & 4 & 1 & 1 & 5 & 4 & 5 & 5 & 2 & 1 & 4 & 5 & 5 \\
\hline 13 & 2 & 4 & 5 & 2 & 4 & 2 & 3 & 3 & 1 & 1 & 4 & 2 \\
\hline 14 & 5 & 2 & 1 & 3 & 4 & 2 & 4 & 5 & 4 & 4 & 4 & 2 \\
\hline 15 & 2 & 3 & 5 & 4 & 5 & 4 & 4 & 4 & 1 & 3 & 5 & 2 \\
\hline 16 & 3 & 4 & 1 & 2 & 2 & 4 & 2 & 5 & 5 & 3 & 2 & 2 \\
\hline 17 & 4 & 1 & 5 & 2 & 3 & 4 & 3 & 3 & 1 & 2 & 5 & 5 \\
\hline 18 & 5 & 3 & 5 & 5 & 2 & 4 & 5 & 1 & 1 & 4 & 5 & 3 \\
\hline T4 1 & 3 & 5 & 5 & 5 & 3 & 2 & 4 & 4 & 1 & 1 & 5 & 3 \\
\hline 2 & 3 & 5 & 5 & 2 & 2 & 4 & 1 & 2 & 4 & 4 & 1 & 4 \\
\hline 3 & 1 & 1 & 1 & 1 & 1 & 2 & 4 & 2 & 1 & . 1 & 2 & 5 \\
\hline 4 & 2 & 1 & 1 & 4 & 2 & 5 & 5 & 4 & 5 & 5 & 5 & 1 \\
\hline 5 & . 5 & 1 & 1 & 3 & 1 & 4 & 1 & 2 & 1 & 1 & 1 & 2 \\
\hline 6 & 3 & 3 & 5 & 2 & 1 & 1 & 1 & 1 & 5 & 3 & 5 & 2 \\
\hline 7 & 3 & 1 & 4 & 5 & 2 & 5 & 5 & 1 & 3 & 3 & 5 & 5 \\
\hline 8 & 1. & 5 & 1 & 1 & 4 & 1 & 1 & 1 & 3 & 1 & 4 & 4 \\
\hline 9 & 2 & 5 & 1 & 3 & 1 & 1 & 1 & 5 & 3 & 1 & 5 & 5 \\
\hline 10 & 1 & 2 & 1. & 5 & 5 & 5 & 5 & 5 & 2 & 4 & 5 & 5 \\
\hline 11 & 1 & 1 & 5 & 5 & 1 & 3 & 4 & 2 & 4 & 4 & 5 & 3 \\
\hline 12 & 4 & 1 & 1 & 4 & 5 & 3 & 5 & 4 & 2 & 4 & 5 & 5 \\
\hline 13 & 5 & 2 & 5 & 4 & 2 & 5 & 4 & 2 & 1 & 1 & 5 & 1 \\
\hline 14 & 4 & 2 & 1 & 4 & 3 & 1 & 5 & 5 & 2 & 2 & 3 & 2 \\
\hline 15 & 3 & 5 & 1 & 1 & 1 & 1 & 1 & 5 & 1 & 4 & 5 & 1 \\
\hline 16 & 1 & 5 & 1 & 3 & 3 & 2 & 5 & 5 & 5 & 5 & 1 & 5 \\
\hline 17 & 1 & 1 & 5 & 4 & 2 & 3 & 5 & 2 & 1 & 1 & 5 & 1 \\
\hline 18 & 5 & 1 & 5 & 5 & 5 & 5 & 5 & 1 & 1 & 1 & 5 & 1 \\
\hline 19 & 4 & 1 & 5 & 4 & 5 & 5 & 2 & 2 & 1 & 2 & 5 & 2 \\
\hline 20 & 1 & 5 & 2 & 2 & 2 & 2 & 1 & 2 & 5 & 4 & 2 & 3 \\
\hline
\end{tabular}
\begin{tabular}{|l|lll|lll|lll|lll|}
\cline { 2 - 10 } & & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline 21 & 1 & 5 & 5 & 4 & 4 & 5 & 2 & 1 & 5 & 5 & 1 & 3 \\
22 & 1 & 3 & 4 & 5 & 1 & 4 & 4 & 2 & 5 & 5 & 3 & 5 \\
23 & 1 & 2 & 5 & 5 & 5 & 3 & 2 & 1 & 1 & 1 & 5 & 1 \\
24 & 4 & 4 & 3 & 1 & 5 & 2 & 5 & 4 & 5 & 5 & 1 & 3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \(9 \cdot\) \\
\hline \multirow[t]{4}{*}{T,} & 1 & 3 & 1 & 1 & 2 & 4 & 2 & 2 & 5 \\
\hline & 1 & 5 & 2 & 4 & 1 & 1 & 1 & 4 & 2 \\
\hline & 3 & 5 & 5 & 4 & 2 & 1 & 4 & 5 & 1 \\
\hline & 5 & 2 & 5 & 5 & 2 & 5 & 1 & 2 & 1 \\
\hline \multirow[t]{8}{*}{\(\mathrm{T}_{2}\)} & 2 & 1 & 4 & 2 & 2 & 4 & 2 & 1 & 5 \\
\hline & 1 & 5 & 1 & 2 & 4 & 1 & 1 & 4 & 1 \\
\hline & 4 & 5 & 5 & 4 & 4 & 1 & 4 & 4 & 2 \\
\hline & 1 & 2 & 5 & 4 & 1 & 5 & 4 & 4 & 1 \\
\hline & 2 & 2 & 5 & 1 & 1 & 4 & 4 & 2 & 4. \\
\hline & 4 & 1 & 5 & 4 & 3 & 5 & 4 & 2 & 4 \\
\hline & 2 & 1 & 1 & 2 & 4 & 4 & 2 & 2 & 5 \\
\hline & 2 & 5 & 1 & 4 & 4 & 1 & 2 & 5 & 1 \\
\hline \multirow[t]{10}{*}{3} & 1 & 1 & 2 & 1 & 1 & 2 & 1 & 1 & 5 \\
\hline & 1 & 5 & 1 & 4 & 4 & 1 & 2 & 5 & 2 \\
\hline & 4 & 5 & 5 & 4 & 2 & 1 & 5 & 4 & 2 \\
\hline & 2 & 2 & 5 & 2 & 1 & 5 & 2 & \(2{ }^{\prime}\) & 1 \\
\hline & 4 & 4 & 5 & 2 & 1 & 4 & 1 & 4 & 1 \\
\hline & 3 & 2 & 2 & 3 & 3 & 4 & 5 & 1 & 5 \\
\hline & 2 & 1 & 1 & 1 & 4 & 4 & 5 & 4 & 4 \\
\hline & 2. & 5. & 1 & 4 & 4 & 1 & 2 & 5 & 1 \\
\hline & 1 & 2 & 1 & 2 & 4 & 1 & 1 & 1 & 5 \\
\hline & 1 & 1 & 1 & 1 & 1 & 2 & 1 & 1 & 5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \(9 *\) \\
\hline 19 & 1 & & 5 & 3 & 5 & 2 & 3 & 2 & 5 \\
\hline 12 & 1 & 4 & 2 & 3 & 3 & 2 & 1 & 2 & 5 \\
\hline \(\mathrm{T}_{4}{ }^{1}\) & 1 & 1 & 2 & 1 & 2 & 4 & 1 & 1 & 5 \\
\hline 2 & 1 & 4 & 1 & 4 & 2 & 5 & 5 & - 2 & 4 \\
\hline 3 & 4 & 5 & 3 & 4 & 3 & 4 & 3 & 4 & 5 \\
\hline 4 & 2 & 2 & 5 & 3 & 2 & 2 & 1 & 4 & 2 \\
\hline 5 & 1 & 1 & 4 & 1 & 4 & 2 & 1 & 1 & 1 \\
\hline 6 & 2 & 1 & 4 & 3 & 2 & 4 & 2 & 1 & 5 \\
\hline 7 & 2 & 3 & 1 & 4 & 4 & 2 & 1 & 4 & 5 \\
\hline 8 & 2 & 5 & 1 & 4 & 4 & 1 & 2 & 5 & 1 \\
\hline 9 & 1 & 4 & 1 & 1 & 4 & 1 & 1 & 2 & \(5{ }^{\prime *}\) \\
\hline 10 & 2 & 1 & 1 & 2 & 1 & 4 & 2 & 1 & 5 \\
\hline 11 & 5. & 3 & 1 & 4 & 1 & 4 & 1 & 2 & 4 \\
\hline 12 & 1 & 5 & 5 & 2 & 3. & 4 & 1 & 1 & 5 \\
\hline 13 & 1 & 4 & 4 & 2 & 1 & 4 & 2 & 2 & 5 \\
\hline 14 & 1 & 1 & 1 & 1 & 2 & 5 & 2 & 1 & 5 \\
\hline 15 & 1 & 1 & 5 & 2 & 2 & 5 & 5 & 1 & 4 \\
\hline 16 & 1 & 5 & 1 & 3 & 4 & 4 & 5 & 1 & 5 \\
\hline T \({ }_{5}{ }^{1}\) & 2 & 1 & 3 & 1 & 1 & 4 & 2 & 1 & 5 \\
\hline 2 & 1 & 5 & 1 & 4 & 2 & 1 & 1 & 4 & 4 \\
\hline 3 & 4 & 5 & 5 & 4 & 2 & 1 & 4 & 5 & 4 \\
\hline 4 & 4 & 5 & 5 & 4 & 5 & 5 & 4 & 4 & 4 \\
\hline 5 & 1 & 1 & 5 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 6 & 4 & 1 & 5 & 2 & 4 & 5 & 4 & 1 & 4 \\
\hline 7 & 4 & 2 & 1 & 4 & 2 & 1 & 1 & 4 & 5 \\
\hline 8 & 2 & 4 & 1 & 2 & 4 & 1 & 2 & 5 & 2 \\
\hline 9 & 2 & 1 & 1 & 2 & 4 & 2 & 2 & 1 & 4 \\
\hline 10 & 2 & 1 & 1 & 1 & 2 & 3 & 2 & 1 & 4 \\
\hline 11 & 3 & 1 & 1 & 4 & 1 & 4 & 5 & 3 & 2 \\
\hline 12 & 1 & 2 & 1 & 2 & 2 & 5 & 3 & 2 & 5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \(9 *\) \\
\hline 13 & 2 & 4 & 5 & 4 & 1 & 3 & 4 & 4 & 5 \\
\hline 14 & 1 & 1 & 1 & 1 & 4 & 4 & 2 & 1 & 5 \\
\hline & 1 & 2 & 5 & 2 & 2 & 5 & 5 & 1 & 5 \\
\hline 16 & 5 & 1 & 5 & 2 & 4 & 5 & 5 & 2 & 5 \\
\hline 17 & 4 & 1 & 1 & 2 & 2 & 4 & 4 & 5 & 3 \\
\hline 18 & 3 & 1 & 3 & 1 & 2 & 4 & 5 & 3 & 3 \\
\hline 19 & 4 & 1 & 1 & 1 & 5 & 2 & 1 & 2 & 2 \\
\hline 20 & 1 & 1 & 1 & 2 & 5 & 2 & 1 & 4 & 5 \\
\hline \multirow[t]{24}{*}{} & 3 & 1 & 1 & 4 & 1 & 4 & 2 & 1 & 4 \\
\hline & 1 & 2 & 2 & 4 & 3 & 1 & 2 & 5 & 4 \\
\hline & 3 & 4 & 5 & 4 & 3 & 4 & 3 & 2 & 5 \\
\hline & 2 & 2 & 5 & 3 & 4 & 4 & 2 & 2 & 1 \\
\hline & 1 & 1 & 5 & 3 & 1 & 2 & 1 & 3 & 3 \\
\hline & 2 & 2 & 2 & 4 & 3 & 4 & 4 & 3 & 4 \\
\hline & 3 & 1 & 1 & 3 & 3 & 2 & 2 & 3 & 4 \\
\hline & 1 & 4 & 2 & 3 & 3 & 1 & 2 & 5 & 3 \\
\hline & 1 & 1 & 3 & 2 & 4 & 1 & 4 & 4 & 5 \\
\hline & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 1 & 4 \\
\hline & 1 & 3 & 1 & 1 & 4 & 2 & 1 & 3 & 5 \\
\hline & 1 & 3 & 2 & 3 & 2 & 4 & 2 & 1 & 4 \\
\hline & 1 & 5 & 4 & 5 & 1 & 3 & 3 & 4 & 5 \\
\hline & 1 & 1 & 1 & 2 & 5 & 4 & 2 & 1 & 5 \\
\hline & 1 & 1 & 5 & 2 & 1 & 5 & 4 & 1. & 5 \\
\hline & 5 & 1 & 5 & 2 & 2 & 4 & 5 & 1 & 5 \\
\hline & 2 & 1 & 1 & \(\cdot 2\) & 3 & 4 & 4 & 2 & 2 \\
\hline & 4 & 3 & 3 & 2 & 2 & 4 & 5 & 2 & 5 \\
\hline & 1 & 2 & 1 & 1 & 4 & 2 & 2 & 4 & 2 \\
\hline & 1 & 4 & 1 & 4 & 3 & 1 & 1 & 3 & 3 \\
\hline & 1 & 2 & 3 & 2 & 4 & 4 & 3 & 3 & 5 \\
\hline & 2 & 1 & 4 & 2 & 3 & 5 & 4 & 4 & 5 \\
\hline & 2 & 2 & 1 & 2 & 4 & 1 & 2 & 3 & 4 \\
\hline & 3 & 3 & 1 & 2 & 1 & 1 & 1 & - 1 & 5 \\
\hline
\end{tabular}

\begin{tabular}{ll|llllllllll|}
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|lll|lllllll|}
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline 3 & 1 & 1 & 5 & 1 & 2 & 2 & 2 & 5 & 2 \\
4 & 4 & 1 & 2 & 1 & 2 & 5 & 2 & 1 & 5 \\
5 & 5 & 5 & 5 & 2 & 1 & 4 & 2 & 5 & 2 \\
6 & 1 & 2 & 3 & 4 & 4 & 2 & 4 & 5 & 1 \\
7 & 5 & 2 & 5 & 2 & 1 & 3 & 3 & 5 & 1 \\
8 & 2 & 5 & 5 & 5 & 4 & 2 & 4 & 5 & 1 \\
9 & 1 & 5 & 1 & 1 & 5 & 2 & 1 & 4 & 5 \\
10 & 4 & 4 & 5 & 1 & 1 & 2 & 2 & 2 & 1 \\
11 & 1 & 5 & 3 & 4 & 4 & 2 & 1 & 4 & 4 \\
12 & 1 & 5 & 1 & 1 & 4 & 1 & 1 & 1 & 5 \\
13 & 2 & 4 & 5 & 1 & 1 & 2 & 4 & 2 & 2 \\
14 & 1 & 1 & 1 & 1 & 4 & 4 & 2 & 1 & 5 \\
15 & 5 & 1 & 5 & 1 & 2 & 4 & 4 & 2 & 4 \\
16 & 1 & 5 & 3 & 2 & 2 & 1 & 1 & 4 & 2 \\
17 & 5 & 1 & 1 & 1 & 2 & 4 & 4 & 1 & 2 \\
18 & 5 & 2 & 4 & 2 & 2 & 4 & 3 & 4 & 2 \\
19 & 1 & 1 & 1 & 2 & 4 & 5 & 4 & 4 & 1 \\
20 & 1 & 1 & 1 & 2 & 4 & 4 & 5 & 1 & 2 \\
21 & 2 & 2 & 1 & 1 & 2 & 4 & 4 & 1 & 5 \\
22 & 1 & 1 & 1 & 2 & 4 & 1 & 2 & 1 & 5 \\
23 & 2 & 2 & 4 & 4 & 1 & 2 & 2 & 5 & 1 \\
24 & 4 & 5 & 5 & 4 & 1 & 2 & 1 & 5 & 2 \\
\hline
\end{tabular}

To save space, constructs for these grids will not be listed. However, S3, 54 and \(S 5\) were used as teat cases for some aspocts of the procedures and full details will be reported in the relevant appendiceo.

Prior to further analysis, the 22 individual grids in the sample were processed by the prorram EXACT. Exact probabilities of associations between constructs in cach erid are listed in the following natrices. probabilitics are given to four places, decimal point omitted. ilegative signs indicate that optital association is obtained when one nember of the pair is reversed.
```

    ST GRID I
    3015 0108 2583 0003-5024
-4301-4701 2491 3173
-4602 0108-2526
4301 2709
4219
S1 GRID 2
2 3 4 5 6
1932 0570-0194 0006-1618 0630 0432 -4850-2304 1506 0000
-3379-0210 0525 1967 1240 1414 -1445-2677 2134 2087
-0807 0899-03141210 2905 2229-0107 0468 0302
-0054 4316 -0900-2052 3566 0656-0440-0063
-1950 0223 0552-2405-1587 0917 0010
-0358-2704-0481 2560-0370-2123
0113 -4924-08420005 1103
-5110-1029 0492 1176
-5082 3682-4747
-\$616-2147
S1 GRID 3
3 4
3295 5118-0548 0002 3174 0047-4268-2135 5222 0132 0067 0861 0025 0268 0016 1520 0706
-0695-0612 5152 -0096 2613-3333-4340-5086-4785 1762.4832 -5019 1098 2099 1471 1142
-5525 2930 0410-4126 5044 1680, -2566-5279-4427 -3113 -4334 4796 -4837-3501-4621
-0241 2365-24614277-5393-5390-3876-0873-1897-1999-0413-0267-1310-0620
1900 0390 3753-2900-3999 0656 0102 1114 0050 0200 0051 0911 0634
2401 2479 4994-4079 1507 4208 -4918 1925 5478-5504 5384-5120
3041-4021-1921 0001 0605 3880 0290 1262.0766 02470864
5324-0156 3747-4256-4212-4275 4888-1242 1780 1560
-1191 4689-4541 -1764-3853-4882-4413 4044-1065
-21974292 1829 3350-4400 2894-1695-2617
1277 5271 0301 3928 1215 1289 2941
21920006 00070008 0143 3261
0445 0953 105243793009
0200 0010 04244535
0142 0113 2018
0915 3308
2855

```
 1495

```

S2 GRID 3

```
23

0000-0002-0201-0055-2438 \(5169-0366-0265-0616-005715341462-1160 \quad 0050 \quad 0310 \quad 0226-0197\) -0004-0047-0018-37064417-0256-0134-0700-0024 1692 \(0577-1921003600920084-0487\) \(043100323123-4479020902381373 \quad 0054-0426-0950 \quad 2047-0091-0175-02640730\) \(04384645-3728237109340521 \quad 0673-4775-1555 \quad 2987-0695-0076-03331309\) \(293437570289001408040005-2208-15141221-0795-0022-13680957\) \(00241601 \quad 168700611288 \quad 3147065000262914 \quad 5083 \quad 29340108\)
\(402611540111 \quad 26651180 \quad 045800190984-508603090586\) \(016920870100-0595-16771756-1648-0847-16152378\) \(030500425379-19810205-1816-0046-38730550\)
\(022728002790 \quad 0011-47+2-1084-46190021\)
\(-1218-24960815-1301-0119-10060729\)
\(155916601468 \quad 2190 \quad 03204620\)
\(\begin{array}{lllllll}1591 & 0242 & 1512 & 0191 & 4657\end{array}\)
5337-2503 3151 0142
1459 0061-3555
1443-1413
\(-4158\)

S3 PROBABILITIFS GRID 2
\(\begin{array}{lcccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11\end{array} 12\) \(\begin{array}{rrrrrrrrr}0 & 4865 & 1463-439 & 980 & 437 & 2353-3765-3836 & 29571132134 \\ 4865 & 9 & -120 & -249-1668 & 4828-4355 & 1510-2177 & 4851-4835-2823\end{array}\)
 \(-439-240 \quad 1524 \quad 0 \quad 4484-297-461327302296-3795-5671-5159\) \(\begin{array}{rrrrrrrr}-439 & -249 & 1524 & 0 & 4484-292-4613 & 2730 & 2296-3795-5071-515\end{array}\)

 23b3-4.155 3234-4n13-5n34 3n56 a 182-3日и?
 50751976 9? 1.139
 2957 4851 4380-5790-39:1 4330 518 1976-486? a 9R0 197 1132-4835 1019-5071-4325 6a4 9? 49R6-557 989 a \(1132-483109-5159-568518121089\) 1811-958 192 298 1341-2823 479-5159-5485 1A12 1089 1811 -958 192 20

S3 PROBABILITIES GRID 3

 5006 \(\quad\)-177-584-2A54-3083-3371 3541 3A96-2R19-3493-959-4735-912-1713-3121-2971 5237

4 PROBABILITIES GRIO 1
\(1{ }^{1}{ }^{2}{ }^{2} 8^{3}\)

\section*{1}
```

48g5 0, 661-4216
-5!5 661 0 5004
-1245-4216 3004 . 6

```

4 PROBABILITIES GRID 2
 －548－1898－2839－615－11－329 13 －699 1898 8～1846－2678－1837－143 1167 4281－2839－4800 12 127 1948－1971－3529 \(\begin{array}{rrrrrrr}4281-2839-4800 & 1207 & 1948-19710352 日 \\ 191-615-2670 & 1207 & 073 & 4769\end{array}\) \(\begin{array}{rrrrrr}191 & -615-2670 & 1207 & 07 & 873 & 4769 \\ 382 & -11-1837 & 1948 & 873 & 2912 & -14\end{array}\) 723－329－143－19714769 291？0－2019 \(-62431187-3520-75\)－44－2810

\section*{S4 PROBABILITIES GRID 3}
\(\begin{array}{cccccccccc}2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 0.2666-2885-4845-3514 & 2028 & 3505-1459 & 1314 & 252 & 1601 & 125\end{array}\)
 3－2085 3366 B－5202．2720－1934－960 248日－1274－1792－2704－2639 4－4845－873－5262 204－4043－3日10～1080－919～3673n5264－1983 5－3514－3792 2720 244 0－242－738－5203－791－2611－4192－2528 0 2098－775－1934－4043－242 ด 918－344 2476 1696－5月18 4648 7 3505－4286－9n0．3010－730 918 0．3331 3311 2741－5233－4106 8－1459 2 2480－1080－5203－344－3331 B－527日－2741－3327 3705
 252－3385－1792－3613－2611 1696 2741－2041 1127 0 235k 1146
 12 1252 1748－2639－1983－252日 4648－4104 3705 1721146673

S4 PROBABILITIES GRID 5

 5131-4008-4118 0 3839 4658-2686-5331-5224-5158-3176-5403-4610 4610 45?1-5911-3257-4821 4886-5092 3983-2893, 3036 3839 © 2473-2640-2504-3086-3531-2632-2506 2589-3294 2785 3294-2177 5091-3306-3065

 3264-4193

 4049 1391 1570-3492 1468 3412-4428 1283 4443 3564 4086 1585

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & & & & & \\
\hline & 0 & 94 & & 482 & 115 & 46 & 42.49 & 13 & 3 & 88 & 27.4 & -532 \\
\hline & 94 & a & 2883 & 215 & & & 37 & . 2630 & 49 & 319 & 5 & 3e \\
\hline & 79 & 2863 & & 4719 & 5319 & 34 & 234 & 3219 & & 2397 & 2893 & -866 \\
\hline & 4824 & 2151 & 4719 & 0 & -6 & & 1805 & -1? & 32 & & 2490 & \\
\hline & - 3115 & -3324 & 5319 & 627 & 0 & 2771 & 24 & 425 & -571 & & 13 & 2361 \\
\hline & d6 & 418 & 349 & 894 & 2771 & 6 & 248 & 985 & 37 & 512 & 3 & 127 \\
\hline & 249 & -3755 & 23 & 885 & 244 & 2484 & 0 & 966 & -9 & 69 & -153 & -483 \\
\hline & 113 & 263 & 32.19 & -12. & 425 & 985 & 66 & & 3 & & & 1347 \\
\hline 9 & 325 & 498 & 3020 & 3238 & -571 & 3704 & 91 & 3632 & & -620 & 37 & 1894 \\
\hline & -884. & -319 & 397 & - & & 5 & 094 & 513 & 28 & & 38 & 32 \\
\hline & 2a & 5119 & 93 & & & 52 & & & & 30 & & \\
\hline & -532 & 50 & & & & & & & 8 & 72 & 31 & \\
\hline
\end{tabular}

\section*{S5 PROBABILITIES GRID 4}
 \(2-2031\) - \(0-3493\) 129日 5672-3533-3873-32.22-5194 4454 3918-2239-862-1626 1741-4843

 \(1975.50721835-4009 \quad 0.3922 \quad 7215323-2585 \quad 26\) 36?4-4009 660-2327-4668 3782

 219-3222 4088-117 5323 1964-3918 G 4564 3438.1767.4999 2970 5047-105.060 1711-5194-3125-2091-2585 32.26-1264564 \(\quad 0 \quad-786 \quad 142.31375-3181865-753 \quad 615\)
 2393 3918 142J-4444 3624 1473 4868-1767 1423-2638 86-4936-3574-3151-4335 2610

 4-4189-1626-989 3840-2327-1155-295 5047 1865-2478-3151 17-3916 日-5047 255A

1
2
2

 \(\begin{array}{rrrrrl}2 & 1916 & 2681 & 3825 & 1977 & 3250 \\ 3 & 1991-2589-4783-3877 & 4827-2560-2631-3124 & 3877 & 4359-4449-1898-2284 & -815\end{array}\)

 \(-2525-3877\) 4670-4092 281-2992 2668 4681-2325 0-2614-4655 1575-5988 3251 4831-3428 62-3163-2356

 3112-2631 417-1756 1532 1430 1596 2009-5326 1575-4407-3367 B-1145-3648-3618-1422 1819 26.30-1991
 -486 3877-3425 286-5488-1126 2152-1087-482 3251-2829-3022-3648 1587 0.937 54 \(13154175 \quad 768\)
 \(-65-4449-949 \quad 56-2122-5004865-478-1848-3428-2854-3743-1422 \quad 834 \quad 54-739 \quad 0 \quad 2921 \quad 3630 \quad 110\)
 53日7-2284 3891-5316-2435 3436 4058 4599-4175-3163-5024-3872 2630-4815 4173-1926 36304941 1850 -739-813-1294 1078-331-1898-3802-2495-2356-2356-4840-5314-1991 829 768-1047 110 3956 1850

PROBABILITIES GRID 6

F

The sanplo grids comprised 3096 Individual element rating decisions. Elements and constructs in each grid wero classified according to the schere described in Chapter 3.2. This schemo entailed classifying constructs in terms of three operational definitions of centrality, and elemente by two, as follows:-
(a) Constructs
(i) Self-cxanining: all conotructs locating the elencnt SELF at position 1 or 5 wore denoted +SE, all others -SE.
(ii) Average extremity: all constructs were bcorod for avorage extremity by computing root mean equare deviations \(\left(\sqrt{ }\left(\sum d^{2} / n\right)\right.\)) of elements from the midpoint, or indif:erenco position (3). The gedian ocore was found for each subject, and constructa exceeding the median donoted \(+A E\), all others \(-A E\).
(1ii) Stability of interpretation: the exact probability of association between construct replications was obtained for each construct uoing the program EXACT (Appendix D). In addition, for those conotructs dioplaying exact probabilities of association greater than . 05 , probabilities for those constructs were ranked within grids and Spearcian rho correlation coefficiente obtained between rankings obtained on successive occesions. Significant values of rho were interpreted as indicating pattern consistency. All constructs obtaining either an exact probability \(\leqslant .05\) or rho \(\leqslant .01\) (one-talled) were denoted as + SI, all others -SI.

\section*{(b) Elemento}
(i) Element oxtremity: all olemonto wero scored for averago extremity ovor oelfrelevant constructs (where SELF is located at position 1 or 5) produced by each subject (inciuding retested constructs) by computing root mean equare deviations
- from the midpoint. The median score was found for cach subject, and elements exceeding the median denoted \(+E E\), all others -EE. The elements Sill F and IDEAL SEDF were omitted in this analysis.
(ii) Element stability: all elementa were scorod for stability by computing
the root mean aquaro difference score for cach elcment ovor replicated constructs. Oniy those constructs diaplaying otability of interpretation were utilised for these comparisons. The median score for each subject was found, and elerento is excecdiag the cedian denoted -ES, all others as ?ES. The elemente SELF and IDEAL SELF verc onitied froa thic analyois.

Of the 300 conctruct sorts in the grid sample, only those for which a otability score could be obtained were employed in the coding scheme. That is, all sorts with the excoption of those in the final grid in each oerics wero coded, totalling 192 constructe. After the clements SELF and IDEAL SEJF had been renoved from the element oampleo for cach oubject, 47 elements remained to be coded.

\section*{(a) Construct clagsifications}

The following table codes each of the 192 sample constructs according to the extent to which each dioplays self extrenity of rating, average extremity of rating, and stabiltiy of interpretation. Each variable is dichotomised, thus constructo may fall into ono of eight classes:-
\begin{tabular}{ccl}
Code & Class & Function \\
\hline A & \(+S E,+\Lambda E,+S I\) & Central \\
B & \(+S E,+A E,-S I\) & Peripheral \\
C & \(+S E,-A E,+S I\) & Periphoral \\
D & \(+S E,-A E,-S I\) & Feripheral \\
E & \(-S E,+A E,+S I\) & Peripheral \\
I & \(-S E,+A E,-S I\) & Peripheral \\
G & \(-S E,-A E,+S I\) & Feripheral \\
II & \(-S E,-A E,-S I\) & Poripheral
\end{tabular}

Tha table below provides the data and code for each construct. It should be noted that the definition of stability has two components; the exact probability of association (PA) and (PC), the latter being computed enly for those constructs dispiaining \(-P \Lambda(p>.05)\). In fact, in no case did a -PA construct attain a cignificant leval of pattern consistency. All values of PA are given to three places, decimal point omitted. Subscripts refer to notes at the foot of the table.

\begin{tabular}{|c|}
\hline Construct S & & AE & PA & PC & Code & Construct & SE & AE & PA & PC & Code & Construct & SE & AE & PA & RC & Code & Construct & SE & AE & PA & F & Code \\
\hline \multicolumn{2}{|l|}{\multirow[t]{18}{*}{}} & 1.73 + & 001+ & & \(\wedge\) & 6 1 & \(1+\) & 1.49 - & 009+ & & C & 2 & \(5+\) & \(1.67+\) & 006+ & & A & & \(2-\) & \(1.73+\) & 001+ & & E \\
\hline & & \(1.73+\) & 001+ & & A & 7 & 1+ & 1.53 - & 008+ & & c & 3 & \(1+\) & \(1.83+\) & 001+ & - . & A & 4 & 5+ & 1.49 & 01+ & & C \\
\hline & & 1.73 + & & & A & 8 & 1+ & \(1.60+\) & 044+ & & A & & \(5+\) & \(1.60+\) & 000+ & & A & & 4 & 1.63 & 003+ & & E \\
\hline & & 1.37 - & 0,2- & & H & & & & & & & & \(3-\) & 1.49 - & 000+ & & G & & 1 & 1.37 & \(004+\) & & C \\
\hline & & 1.25 - & 055- & & H & 12 & \(2-\) & 1.70 + & 041+ & & E & 6 & १+ & 1.60 + & 002+ & & A & 7 & T+; & 1.67+ & 000+ & & A \\
\hline & & 1.63 + & 195- & & \(F\) & 25 & \(5+\) & \(1.63+\) & 023+ & & A & 7 & \(1+\) & \(1.56-\) & 000+ & & C & & \(1+\) & \(1.63+\) & 009+ & & A \\
\hline & & \(1.73+\) & 049+ & & A & 32 & \(2-\) & 1.53- & 006+ & & G & 8 & 1+ & 1.49 - & 000+ & & c & & \(5+\) & 1.53 - & 002+ & & C \\
\hline & & & & & & 45 & \(5+\) & 1.70 + & 047+ & & A & 9 & \(5+\) & 1.63 + & 009+ & & A & 10 & \(2-\) & \(1.53-\) & 007+ & & G \\
\hline & & \(1.73{ }_{1}+\) & 003+ & & A & 5 & 2 & \(1.60+\) & 002+ & & E & 10 & 2. & 1.49 & 000+ & & G & 11 & 4- & \(1.63+\) & 151- & \(.272{ }_{\text {k }}-\) & F \\
\hline & & 1.60 + & & & A & 6 & \(1+\) & \(1.45=\) & \(004+\) & & C & 19 & 4 & 1.63 + & 042+ & & E & & \(5+\) & 1.53 & 004+ & & C \\
\hline & & \(1.30+\) & \(014+\) & & A & 7 1 & \(1+\) & \(1.20-\) & \(003+\) & & C & 12 & \(5+\) & 1.60 + & 001+ & & A & & 2- & 1.29 & 004+ & & G \\
\hline & & 1.49 - & 036+ & & C & 8 & \(1+\) & 1.60 + & 048+ & & A & 13 & 1 & \(1.63+\) & 003+ & & A & & 5+ & \(1.63+\) & 001+ & & A \\
\hline & & & & & & 95 & \(5+\) & 1.50 + & 011+ & & A & 14 & 4 & 1.45 & 105- & -.239 \({ }^{-}\) & H & & 4 & \(1.53-\) & O01+ & & G \\
\hline & & 1.63 + & 004+ & & \(\wedge\) & 102 & 2 & 1.45 - & 000+ & & G & 15 & \(5+\) & 1.60 & 001+ & & A & 16 & \(5+\) & 1.49 & 118- & . \(3^{09} \mathrm{~F}_{\mathrm{k}}=\) & D \\
\hline & & 1.73 + & 012+ & & A & 11 & 4 & 1.53 - & 111- & \(.118{ }_{c}=\) & H & 16 & 4 & \(1.33-\) & 002+ & . & G & & 4- & 1.73 & 004+ & & F. \\
\hline & & \(1.91+\) & 016+ & & A & 125 & 5+ & 1.49 - & 009+ & & C & & & & & & & & 1+ & 1.37 & 031+ & & C \\
\hline & & 1.45 - & 017+ & & C & & & & & & & S5 \(\mathrm{T}_{5}{ }^{1}\) & & \(1.63+\) & \(003+\) & & E & & \(1+\) & 1.53 & 1i6- & \(.511_{k}-\) & D \\
\hline & & 1.63 + & 000+ & & \(E\) & \(\mathrm{S} 5 \mathrm{~T}_{4} 1\) & \(2-\) & \(1.63+\) & 006+ & & E & & & \(1.63+\) & 013+ & & A & & & \(1.53-\) & 002+ & & G \\
\hline
\end{tabular}

\section*{lotes}
a: Hedian \(A E\) score \(=1.395\)
\(b: \quad N=5, \alpha=.01\) (onc-tailod), \(r_{B}=1.0\)
\(c: \quad \mathrm{N}=11, \alpha=.01\) (Onc-tailed), \(r_{s}=.729\)
d: Nedian \(A E\) scoro \(=\) 1.32. Two constructo tied at median, both assigned to \(+A E\).
e: Medion \(A E\) score \(=1.565\)
f: \(\quad n=17, \alpha=.0 i\) (one-tailed), \(r_{B}=.583\)

8: Modian \(A E\) score \(=1.53\). Nine constructo tied at modian, 4 randomiy assigned to \(+A E, 5\) to \(-A E\).
\(h\) : \(\|=3\), Speaman rho cocfficient inapplicable.
\(n=7, \alpha=.01\) (one-tailed), \(r_{i}=.893\)
\(i=15 . \alpha=.01\) (onc-tailed), \(r_{B}=.623\)
\(N=19, X=.01\) (one-tailed), \(r_{0}=.549\)
1: Hedian \(A E\) score \(=1.60\). Hine constructs ticd at mecion, all assigned to \(+A E\).

Tabulating theso data by class and aubject, the following frequencies aro obtained:-
\begin{tabular}{|c|ccccc|c|}
\hline Subjoct & S1 & S 2 & S 3 & S 4 & \(\mathrm{S5}\) & Total \\
\hline Codo A & 7 & 7 & 13 & 19 & 23 & 69 \\
B & 1 & - & 1 & 5 & - & 7 \\
C & 6 & - & 3 & 8 & 14 & 31 \\
D & 2 & - & 6 & 6 & 2 & 16 \\
E & 1 & 3 & 3 & 3 & 9 & 19 \\
F & - & - & 1 & 6 & 1 & 8 \\
G & - & 7 & 3 & 3 & 9 & 22 \\
H & 1 & 1 & 6 & 10 & 2 & 20 \\
\hline Total & 18 & 18 & 36 & 60 & 60 & 192 \\
\hline
\end{tabular}

\section*{(b) Element claseifications}

The following tablo codes each of the 47 samplo olcments (IDEAL SELF and SELT clements removed) according to tho oxtent to which each displays overall oxtremity of rating, and ovorall atability. Each variable is dichotomised, thus clemonts fall into onc of four classes:-
\begin{tabular}{lll}
Codo & Class & Function \\
A & \(+E E,+E S\) & Contral \\
B & \(+E E,-E S\) & Incidental \\
C & \(-E E,+E S\) & Incidental \\
D & \(-E E,-E S\) & Incidental
\end{tabular}

The tablo bolov liato tho data and tho coding for cach olcment. Since values of clement constructs in each subjoct's samplo, and valuos for atability dopend on tho number of stablo constructa for each subjoct, EE and ES bcore vary in tho numbor of obsorvations on which thoy aro based. Subscripte rofor to tho dotaile in tho notes at tho foot of tho table.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Element & EE & ES & Code & Element & EE & ES & Code \\
\hline \multirow[t]{11}{*}{S1} & & \(1.96{ }^{-}\) & B & 4 & 1.5 & 2.39 - & B \\
\hline & 1.3 & 2.41 - & D & 5 & 1.5 & 2.29 - & D \\
\hline & 1.3 & 1.67 + & A & 6 & 1.4 & 2.46 - & D \\
\hline & 1.1 & 1.95 - & & 7 & 1.5 & 2.65 - & D \\
\hline & 1.40 & 2.05 - & B & 8 & 1.4 & 2.33 - & \(D\) \\
\hline & 1.2 & 2.22 - & D & 10 & 1.5 & 2.10 + & C \\
\hline & 1.3 & \(1.85+\) & A & 11 & 1.7 & 2.28 + & A \\
\hline & 1.4 & \(1.91+\) & A & 12 & 1.5 & 2.12 + & 1 \\
\hline & 1.03 & \(1.71+\) & C & & & & \\
\hline & & 1.87 + & C & & & 2.46 \({ }^{-}\) & \\
\hline & & & & 2 & & 2.27 + & A \\
\hline S2 1 & & \(1.39{ }_{\text {d }}{ }^{+}\) & A & \(\cdot 3\) & 1.7 & 2.42 - & B \\
\hline 2 & 1.3 & 1.77 - & D & 4 & 112 & 2.24 + & C \\
\hline 3 & 1.2 & \(1.53-\) & D & 5 & 1.3 & 2.39 - & D \\
\hline 4 & . 9 & 1.41 + & C & 6 & 1.4 & 2.15 + & C \\
\hline 5 & 1.24 & 1.70 - & D & 7 & 1.5 & 2.61 - & D \\
\hline 8 & 3.4 & \(1.33+\) & A & 9 & 1.5 & 2.30 + & A \\
\hline 9 & 1.78 & 1.41 + & \(\wedge\) & & & & \\
\hline 10 & 1.49 & 1.83 - & B & 551 & & \(1.45{ }_{j}+\) & A \\
\hline 11 & 1.60 & 1.57 - & B & 2 & 1.7 & 1.61 - & B \\
\hline 12 & 1.45 & \(1.48+\) & A & 3 & 1.5 & 1.24 + & C \\
\hline & & & & 4 & 1.68 & 1.53 - & B \\
\hline S3 1 & & \(2.38{ }^{\circ}\) & D & 5 & 1.3 & 1.92 - & D \\
\hline 2 & 1.6 & \(2.14+\) & \(\wedge\) & 6 & & 1.45 + & \(C\) \\
\hline 3 & 1.30 & 1.96 + & A & 7 & 1.12 & 1.33 + & C \\
\hline & & & & 8 & 1.7 & 1.63 - & B \\
\hline
\end{tabular}

Wotes
(a) N self-relevant constructs a 24; Modian EE ocoro \(=1.335\)
(b) N stable constructs \(=14\); Median ES scoro \(=1.93\).
(c) II self-relevant constructo \(=11\); Modian \(E E\) scoro \(=1.41\). Two elemente tied at median, both assignod to +EE.
(d) \(N\) stablo constructe \(=17\); Modian ES scoro \(=1.505\).
(o) \(N\) self-rolevant constructe \(=39\); Median \(E E\) score \(=1.555\).
(f) Hatablo constructe \(=21\); Median ES score \(=2.285\).
(s) in self-rolevant constructs \(=47\); Median \(E E\) scoro \(=1.53\).
(h) N stable constructo \(=30\); Median \(E S\) score \(=2.345\).
(i) N sclf-relovant constructs \(=52\); Modian EE scorc \(=1.62\).
(j) IN stable constructs \(=53\); Modian ES ocore \(=1.525\).

Tabulating theso data by class and subject, the following frequencies aro obtainod:-
\begin{tabular}{|c|ccccc|c|}
\hline Subject & S1 & S2 & S3 & S4 & S5 & Total \\
\hline Code A & 3 & 4 & 4 & 2 & 1 & 14 \\
B & 2 & 2 & 1 & 2 & 3 & 10 \\
C & 2 & 1 & 1 & 2 & 3 & 9 \\
D & 3 & 3 & 5 & 2 & 1 & 14 \\
\hline Total & 10 & 10 & 11 & 8 & 8 & 47 \\
\hline
\end{tabular}

\section*{E3 Estimatins construct and element likelihoods.}

To estimate the oxtent to which principal components analysis (FCA) locatod contral conotructs and clemente.in tho grid sample, all construct sorts in each of the 5 grid cerics were first processed by the PREFAN program. \({ }^{1}\) PREFAN solutions comprise the principal components underlying all constructs produced by each subject ora fixed olerent sample sanple over all testing occasions. To obtain approximate conditional probabilitice of the extent to which PCA idontified central predicates, oimplifiod transformations were employod to designate contral constructs and elements, follows:-
(i) Significant components woro first identified by the method of construct ropresentation. (3.2.4.). Unroprcsonted componente wero oliminated.
(ii) Self-relovant components vore located by testing for the inclusion of the clement SELF within those elements accounting for the first 50 percent of varianco

1 Slater P. Notes on INGRID 22, Institute of Pbychiatry, St. George's Hospital, L.ondon, 1972.
attributable to each significant componont. In only one case (S2) was it necessary to relax the 50 percont critorion in order to locato a solfrolevant component (roloxed to \(72 \%\)).
(iii) To locate contral clemonto, the elemente SELF and IDEAL SELF wero removed and percent variance accounted for by each elemont on the first component listed (Tablo 1 below). All elesents oxceeding the median porcent value for each subject wero designated central olements (+).
(iv) To locato contral constructo, construct loadings on self-rolevant. componento woro first listed disregarding sign (Table II bolow). Whero more than one self-relevant component was foursi (S1 and S5), tho highest laading for each construct was listod. Tho modian loading was found for each subject, and constructs oxceoding this median designated as contral constructs (+).

The conditional probabilities obtained by cross-tabulating central items derived by theco procodures with items designated as central in terme of tho operationnl definitions of centrality must be regarded as approximate, since the procedures above aro at variance with thoso dovelopod in Chapter 3.2. In the main, the above procodures will tend to overestimate . the extent of centrality, since a modion split has boon employed in tho designation of constructs and cicmonto. As the analysis in E 2 indicates, the unconditional ratio of central to poripheral items is in the region of 2:1, In contract to the \(1: 1\) ratio assumed by the median split. The effect of employing the latter procoduro eay be acen in the following contingency tables which represent the conditional probabilities which obtain given the optical fit betwoen hypothesis classes and data:-
(i) Conditional probabilities and likelihoods given optimal fit for mediangolit procedures.
\begin{tabular}{|c|cc|c|}
\cline { 2 - 4 } \multicolumn{1}{c|}{} & \(D_{c}\) & \(D_{p}\) & \\
\hline \(\mathrm{~B}_{\mathrm{C}}\) & .3 & 0 & .3 \\
\(\mathrm{H}_{\mathrm{p}}\) & .2 & .5 & .7 \\
\hline & .5 & .5 & 1.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|cc|l|}
\cline { 2 - 4 } \multicolumn{1}{c|}{} & \(D_{c}\) & \(D_{p}\) & Priora \\
\hline\(H_{c}\) & 1 & 0 & .3 \\
\(H_{p}\) & .29 & .71 & .7 \\
\hline
\end{tabular}
(ii) Theoretical conditional probabilities given optimal fit with the procodures of Chapter 3.2.

It is ovicent that the former nethod favours \(p\left(H_{p}\right)\) in that a single datum \(D_{p}\) is required to onsuro \(p\left(H_{p}\right)=1.0\). This is not the case for the datum \(D_{c}\), where one observation yiolds the posterior probabilities \(p\left(H_{c}\right)=.6, p\left(H_{p}\right)=.4\). In fact, optimal fit io unlikely to bo achioved, and thua conditional probabilitios of zero would not bo obtainod. In this case, the gonoral outcone will be to retard . incresents to \(p\left(H_{c}\right)\) given successive obsorvations of \(D_{c}\), and to accelorate increments to \(p\left(H_{p}\right)\) given successivo observations of \(D_{p}\). Consequently, as a nethod for esticating \(p\left(D / H_{c}\right)\), the above procedure leads to reduced cortainty of prodication contrality.

Table I : Data clasbes in the elemont samplo.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & ment & V\% & DCO & Codo & & cment & V\% & \(\mathrm{co}_{0}\) & Codo \\
\hline \multirow[t]{11}{*}{S1} & 1 & 5.23 & & B & & 5 & . 20 & & D \\
\hline & 2 & 0.0 & & D & & 6 & 7.05 & (2) & D \\
\hline & 3 & 21.58 & 0 & A & & 7 & 9.73 & \((6)\) & D \\
\hline & 4 & . 16 & & D & & 8 & 5.87 & & D \\
\hline & 7 & . 37 & & B & & 10 & 7.54 & (3) & C \\
\hline & 8 & 3.94 & & D & & 11 & 16.25 & 0 & A \\
\hline & 9 & 11.64 & 118 & A & & 12 & . 80 & & A \\
\hline & 10 & 12.62 & 3 & A & & & & & \\
\hline & 11 & 0.0 & & C & S4 & 1 & 1.56 & & B \\
\hline & 12 & 4.32 & 3 & c & & 2 & 15.72 & 5 & A \\
\hline & & & & & & 3 & 0.0 & & 8 \\
\hline \multirow[t]{2}{*}{S2} & 1 & 1.46 & & A & & 4 & 4.48 & Q & C \\
\hline & 2 & 3.18 & & D & & 5 & . 46 & & D \\
\hline \multirow[t]{9}{*}{} & 3 & . 15 & & D & & 6 & 21.35 & (17) & C \\
\hline & 4 & 1:08 & & C & & 7 & 1.14 & & D \\
\hline & 5 & . 56 & & D & & 8 & 15.67 & \((3)\) & A \\
\hline & 8 & 32.74 & 0 & A & & & & & \\
\hline & 9 & 10.16 & (6) & A & SS & 1 & 1.26 & & A \\
\hline & 10 & 28.87 & (1) & B & & 2 & . 64 & & 8 \\
\hline & 11 & 2.35 & & B & & 3 & 21.86 & & C \\
\hline & 12 & 7.49 & (3) & A & & 4 & 3.08 & & \\
\hline & & & & & & 5 & 2.47 & & D \\
\hline \multirow[t]{4}{*}{S3} & 1 & 0.0 & & D & & 6 & 10.60 & (3) & C \\
\hline & 2 & 10.88 & 3 & A & & 7 & . 94 & & c \\
\hline & 3 & 2.19 & & \(A\) & & 8 & 29.86 & 3 & B \\
\hline & & 9.67 & (2) & B & & & & & \\
\hline
\end{tabular}

Abbroviations: V\% = percent varianco; \(\mathrm{C}_{\mathrm{ce}}=\) contral olewent.

Abbroviations : Ld5 = loadiac on oolf-rolovant components; \(D_{c c}=\) coro construct datum.

\section*{Hotes}
(a) Hedian loading \(=2.138\)
(b) Kedian loading \(=2.494\)
(c), Median Loading \(=1.597\)
(d) Hedian loading \(=\) 1.843. Two constructe tied at median, both absigned to \(D_{c c}\)
(c) Nedian loading \(=\) 1.608. Threo constructs ticd at median, all assigned to \(D_{c c}\)

Cross-tabulations of hypothetical classes and data classes are given for constructs on page 331, and for elements on page 334.

E 4 Tables of posterior prokabilitics for centrality hypotheses.

The computation of posterior probabilities froa the data of E2 and E3 is timoconsuming and tedious. The following pages provicic instant reforence to posterior probabilitics of centrality for constructo and elcmonts, based on the estirates of conditional and unconditional probability distributions providod by the oamplo. reported above. To utiliso the tables, tho transforcations described in Chaptor 3.2. should be appliod and items classifiod into dichotomous data classes:-
\(D_{c C}=\) coro construct
\(D_{p c}=\) periphoral construct
\(D_{\text {io }}{ }^{\circ}=\) incidental element
\(D_{c o}=\) central olement
The tables that follow provide posterior probabilities for construct centrality (Table I) and eleaent centrality (Tablo II) for a שaximum of oight successive obscrvaticns.

\section*{\(\frac{\text { Table I : Posterior probabilitics for construct centrality }}{D_{c c}}\)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline \multirow[t]{2}{*}{0} & 359 & 505 & 650 & 772 & 860 & 918 & 953 & 974 & 986 \\
\hline & 641 & 495 & 350 & 228 & 140 & 082 & 047 & 026 & 014 \\
\hline \multirow[t]{2}{*}{1} & 204 & 318 & 459 & 607 & 737 & 836 & 903 & 944 & \\
\hline & 796 & 682 & 541 & 393 & 263 & 164 & 097 & 056 & \\
\hline \multirow[t]{2}{*}{2} & 105 & 175 & 279 & 493 & 552 & 700 & 810 & & \\
\hline & 895 & 825 & 721 & 587 & 438 & 300 & 190 & & \\
\hline \multirow[t]{2}{*}{3} & 051 & 089 & 151 & 245 & & 518 & & & \\
\hline & 949 & \(911^{\circ}\) & 849 & 755 & 628 & 482 & . & & \\
\hline \multirow[t]{2}{*}{4} & 024 & 043 & 076 & 130 & 213 & & & & \\
\hline & 976 & 957 & 924 & 870 & 787 & & . & & \\
\hline \multirow[t]{2}{*}{5} & 019 & 020 & 036 & 064 & & & & & \\
\hline & 989 & 980 & 964 & 936 & & & & & \\
\hline \multirow[t]{2}{*}{6} & 005 & 009 & 016 & - & & & & & \\
\hline & 995 & 991 & 984 & & . & & & & \\
\hline \multirow[t]{2}{*}{7} & 002 & 004 & & & & & & & \\
\hline & 998 & 996 & & & & & & . & \\
\hline \multirow[t]{2}{*}{8} & 001 & & & & & & & & \\
\hline & 999 & & & & & & & & \\
\hline
\end{tabular}

Note: Each coll coanprises two values, \(p\left(H_{c c}(D)\right.\) upper values, \(p\left(H_{p c} / D\right)\) lower values, given to throo places, decinal point omittod.

Noto: Each cell comprises tho values, \(p\left(H_{c e} / D\right)\), uppor values, \(p\left(H_{i e} / D\right)\) lower values, given to three places, decical point omitted.

In order to devolop appropriato displays the mothodology described in Chapter 3.2. was applied to a single tost case, namely 53 (Kenneth) in the grid eample. The following pages dopict the application of the procedures to each of the four gride produced by Kennoth to locate central elements and constructs. Firstly, cumulative princigal componentc analyses ore obtained for the four grids (grid, grid \({ }_{1}\) +
 only those loadinge obtaining for conctructe in tho most recent grid are employed. Significant components are locatod by the method of construct reprecontation. Elemente contral to each component aro located by applying the 50 percent variance critorion (obtained by squaring and suming olement voctors (v) in order of magnitudo until \(\left\langle v^{2} \geqslant .5\right)\). Coro componente are identified as components which includo the element SELF (E9) in the contral olemont subsot. The following tableb firct lict the porcontages of total variance accounted for by each of the exhaustivo ceries of componento, followod by elemont voctors for ouch oignificant component, contral olements donotod by a rarker; and construct loadings, roprcoertativo conotructe donoted by a markor. Finally, components aro denotod as coro (\(C\)) or pariphoral (\(P\)), and total varianco accountod for by significant componenta 2 isted.

KENNETH GRIDI
\(\therefore\) THE COMPONEHT-SPACE IS LIHITEO TO O DIMENSIONS

VARIANCE ACCOUNTED FOR \(=82.86 \%\)

KENNETH GRID 2

\section*{COMPONENTS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 1 & 2 & 3 & 4 & 5 \\
\hline Elerent & VECTIR & \(V_{\text {ection }}\) & \(V_{\text {EC }} \mathrm{C}_{\text {TOR }}\) & VECTSR & Vection \\
\hline - . 1 & - J. 1705 & 0.0730 & \(0.448 . j 0\) & -3.137) & 0.40850 \\
\hline - . 2 & -.).2*S4 & 0.36350 & -0.25 20 & - . 2082 & 0.39570 \\
\hline - 3 & -.).0137 & \(0.519 \%\) O & 0.2718 & -. 3559 & -0.3270 \\
\hline 4 & .).47320 & 7.02ik & -0.0491 & -1). 2194 & 0.0134 \\
\hline 5 & 0.1020 & 0.2276 & \(-0.512<0\) & J.3602 \({ }^{\circ}\) & 0.0614 \\
\hline 0 & \(0.12: 5\) & - 0.46590 & - \(0.240{ }^{\text {a }}\) & -.9.2187 & -0.2658 \\
\hline 7 & \(0.2 i 4.3\) & - . 2 2647 & 0.36810 &). 23त4 & J. 3437 \\
\hline 8 & - 1.35 con & - \(0.36 .5 \%\) & - 0.1103 & -3.2073 & 0.0822 \\
\hline \(y\) & -3.37:30 & -0.16\% & 0.3101 & 9.1264 & - \(0.47520^{\circ}\) \\
\hline 10 & - 3.3111 & -5.3015 & -0.23) & 3.113: & -0.15.14 \\
\hline 11 & 1.232.) & - \(1.21 / 4\) & -9.0ni 14 & J. \(5320{ }^{\circ}\) & 3.1717 \\
\hline 12 & .J.10470 & n. 2347 & 0.0564 & -3.334, 0 & -0. 0273 \\
\hline
\end{tabular}

VARIANCE ACCOUNTED FOR \(=81.89 \%\)

KENNE TH GRID 3
\begin{tabular}{|c|c|c|c|}
\hline COMPOAENT & ROST & AS & PER CENT \\
\hline 1 & 117.5317 & & 24.08) \\
\hline 2 & 75.6479 & & 19.107 \\
\hline 3 & \(4 \% .3623\) & & 11.9011 \\
\hline 4 & 40.5771 & & 10.247 \\
\hline 5 & 26.0750 & & 6, SCS \\
\hline 6 & 23.2380 & & S. 501 \\
\hline 7. & 20.5754 & & 5.796 \\
\hline 8 & 16.2135 & & 4.044 \\
\hline 9 & 11.8910 & & 3.003 \\
\hline 10 & 9.8533 & & 2.440 \\
\hline 11 & 0.9423 & & 1.753 \\
\hline
\end{tabular}

ELEMENT
COMPONENTS

\section*{CONSTRUCT}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1 & -1.5593 & -1.0349 & 0.7631 & 0.7581 & 1.167050 & -1.3153 \\
\hline \(\because 2\) & - 1.6734 & -2.290:0 & 0.7414 & -1.3524 & -3.1310 & 0.0543 \\
\hline - 3 & 1.2207 & 2.41340 & - 0.0157 & -. 2931 & -0.1507 & -1.214:) \\
\hline 4 &). 1016 & 2.23530 & -0.0760 & - - 7012 & 1.0992 & -1.214. \\
\hline 5 & - -1.6145 & 2.02330 & 1.2160 & -1.3304 & 0.0081 & -0.2049 \\
\hline 6 & 1.83 .14 & 1).47i5 & 2.stoso & 0.4509 & \(0.0 ? 5.5\) & -0,3007 \\
\hline 7 & \(\therefore .96530\) & -.). 2754 & 0.01378 & 0.2938 & -0.6713 & 0.33295 \\
\hline 8 & -2.3640 & -1.035n & -1.0140 & - 0.5207 & -0.4544 & -0.3.57\% \\
\hline 9 & -1.35590 & J. \(35 \% 3\) & -1.0013 & -1.5153 & 1.4703 & 0.3366 \\
\hline 10 & 2.35190 & 0.3226 & -1.6.j01 & -0.4292 & 0.1110 & 0.1665 \\
\hline 11 & 3.11170 & -.).0213 & 0.1304 & -0.1033 & 0.1357 & -0.43<4 \\
\hline 12 & 2. 37690 & 1.3i/s & \(-0.4596\) & -.).3001 & -0.5311 & 1.0715 \\
\hline 13 & .1. 1774 & -i.Y j:35 & -0.3130 & \(1.964{ }^{1} 0\) & i. 116 il & -0.7267 \\
\hline 14 & -1.0757 & 1.4218 & 0.0474 & J. 9191 & -0. stis & 1.711s \\
\hline 15 & 1.5755 & -3. 3288 & -1.3550 & \(2.061{ }^{\circ}\) & 0.0370 & -0.05/2 \\
\hline 16 & -2.31260 & 1.637 & -0.11472 & -0.3749 & 0.3740 & -1.037. \\
\hline 11 & \(2.2723^{\circ}\) & -.). 510.3 & 0.7471 & 0.6021 & -0. 0365 & -0.1052 \\
\hline 18 & 2.4.7330 & -0.1973 & 0.7640 & -0.154 & 1.4141 & 1.2004 \\
\hline & C & P & C & P & \(P\) & \(P\) \\
\hline
\end{tabular}

\footnotetext{
VARIANCE ACCOUNTED FOR \(=\mathbf{7 7 . 5 8 \%}\)
}

KENNETH GRID 4
\begin{tabular}{|c|c|c|}
\hline CUMPONEST & ROAT & AS PEM Cfit \\
\hline 1 & 133．2536 & 27.101 \\
\hline 2 & 133．413a & 15.150 \\
\hline 3 & 71.6597 & 10.70 H \\
\hline 4 & 6N． 1310 & 10.319 \\
\hline 5 & 53．34．17 & 1．027 \\
\hline 6 & 10．0361 & 7，433 \\
\hline ， & 41.3430 & H． 264 \\
\hline \(\lambda\) & in． \(91 / 6\) & 4.608 \\
\hline 9 & 26．5268 & 4.019 \\
\hline 10 & 20.6263 & 3.125 \\
\hline 11 & 15.3106 & 2， \(3<0\) \\
\hline
\end{tabular}

ELEMENT

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline CONSTR & & & & & & & \\
\hline 1 & －1．3646 & －1． 38.3 & 1．4837． & － \(0.77 \% 3\) & －1．625\％ & －．）． 888 & －1．6724 \\
\hline \(?\) & 1.67 .17 & \(-1.171 .00\) & & 3． 3120 & －．）．670？ & ），84，¢0） & －0．0148 \\
\hline 3 & －1．2477 & －1． 3237 & 0．\％489 & 1．974：0 & 9．0：54 & －1．8135 & －0．23．39 \\
\hline 4 & －1．5799 & 2．44．320 & －0．1562 & & 1．17\％ 0 & 0.6845 & － 0.5338 \\
\hline 5 & －．）．7？1．4 & 1．2114 & －1．0717 & －U．S3A\％ & －2．633 & 1）． 4942 & 9．5．114 \\
\hline ？ & 1．4719 & －1．01．t． & －1．435 & －1．1581 & 1．02．0？ & －0． 1092 & －1．0728 \\
\hline 7 & \(\because 77\) ；iso & －． 0.70 & \(-1 .: 196\) & 1．7532 & 1．3．17 & －0．0．1418 & －1． 1175 \\
\hline 8 & \(\therefore\) i．357 & & 1．3i1so & －）Jつ3n & 1． 2.3 St & －0．1157 & －7．5513 \\
\hline 9 & ）．\()^{\text {¢ }}\) ， 3 & －．120＂ & 1.1954 & Ј．3日\％ & －9．6713 & －0．5230 & －2．36070 \\
\hline 10 & －1．4330 & 1．03：40 & －cill 1 & 1．5） & 1.1124 & 0.5786 & 0.0259 \\
\hline 11 & －1．454？ & －0．41；7 & －1．3500 & 0． 5132 & 1.1370 & 0.3129 & －1．0239 \\
\hline 12 & \(=1.5429\) & 1．13：10 & 1． 370 & －J． 5595 & ．1．1：11 & －0．0052 & 9.974 .5 \\
\hline 15 & & －）\ll 心 & －-7.76 & －1． 1085 & \(-1.0360\) & 0.2951 & －0．30 25 \\
\hline 14 & ：-1.4751 & 1.6380 & 1．347？ & － 3.18 .74 & \(-7.4103\) & －1．0．529 & － 7.2151 \\
\hline 15 & 1.1673 & ）． 3563 & 1.2527 & －1．．3792 & －0．14．5 & 0.029 .5 & －1．84＂） \\
\hline 10 & 1．922 & －1． 81.64 & 0.0454 & 2．13420 & ）． 0.121 & －1），8371 & －0．3354 \\
\hline 17 & －\(\because 3320\) & －9， 3 26． & 9.1671 & －J．isn 3 & \(1.70 \cdot 1 \%\) & －0．0114 & －0．7719 \\
\hline 14 & －i．j？3io & －1）．\(<66_{10} 5\) & －o．usit & －1．4742 & －7．109： & & 0.7170 \\
\hline 10 & －-27350 & －1． 3 ？ 0 & － 0 － 10 dr & －1．424\％ & －1．＜ibil & 1.3431 & 1.9374 \\
\hline 20 & 2．3，740 & －\() .1 .355\) & －0．4．371 & 1．1213 & 9．10：1 & 0.7371 & －0．0217 \\
\hline 28 & －1．07？7 & －1．4726 & －．3．973 & －1．113＇ & 0.6179 & 1.90830 & 0.5643 \\
\hline 22 & \(-1.3705\) & －7．35：2 & －1．6．445 & 2．7．2．30 & 1.0152 & 0.4501 & －0．7199 \\
\hline 23 & －1．973：0 & －1．412\％ & 0.4575 & －u．i．jis & 3.0518 & 1，4226 & 9．14．74 \\
\hline 2． & －\(\therefore .17 \% 70\) & 1．3）42 & 0.1942 & －－1．93） & ）．6ה7．3 & －1．345？ & 1.5630 \\
\hline & \[
\stackrel{:}{\cdot} \cdot \mathrm{C}
\] & P． & C & P & C & \(P\) & \(P\) \\
\hline
\end{tabular}
The following tables list raw rankings for tho two additional subjects (constructs
by row, olcsents by column, clement SELF denoted by \({ }^{\circ}\)).

other subjects, in the following format:additional subjects completed repertory grid cycles identical in all other respects to of the ranking form grid method of element allotaent, which did not permit tho use
of measures based on element distribution on rating scales. However, the two

 and element reconstruction data classes, the 5 subject sample of Appendix \(E\) was To obtain estimates of tho unconditional and conditional distributions of construct

\(12345678^{*} 9\)
\(12345678^{*} 9\)

\section*{F2 Estinating conditional and unconditional nrobabilities of reconstruction}

With the additional grid data, the grid sample was formed by pooling from each grid series constructs that were reapplied to respective element samples at least once. This onabled a total of 80 constructs to be examined for reconstruction. Siailarly, eleronte from the grid sories were pooled with the excoption of clement samples from 56 and S7. As the measure of olemont reconstruction employod wae based on exact probabilities of association botween occasions, tho ranking form data of 56 and 57 was excluded from this analysis. A total of 54 elemente were this available for examination:-
\begin{tabular}{llc}
& Constructs & Elemonts \\
S1 & 6 & 12 \\
S2 & 6 & 12 \\
S3 & 12 & 12 \\
\(S 4\) & 16 & 9 \\
S5 & 16 & 9 \\
S6 & 12 & - \\
S7 & 12 & - \\
& & \\
Total & 80 & 54
\end{tabular}

The construct and olement samplos were thon classified in two ways: (a) by applying operational definitions of predication stability over the conplete grid series, and (b) by applying transformations developed in Chapter 3.3. to locate reconstruction on each testing occasion.

Operational dufinitions of atability were as follows:-
(i) Stable constructs and elements were designed as those which obtainod exact probabilities of associateion between ratings on every successive testing occasion in the series of .05 or less (or \(r_{B} \leqslant .01\), where applicable).
(ii) Transitional constructs and elements wero designated as those which obtained ore or more oxact probabilitics of .05 or loss (or \(r_{5} \leqslant .01\), whero applicable)
between successive testing occasions in the scrics.
(iii) Unstable constructs and elemonts woro designated as thoso which failed to obtain exact probabilities of .05 or less (or \(r_{s} \leqslant .01\), whoro applicablo) betwoen any successive testing occasion.

The following tables list exact probabilities for the 80 sample constructs and 54 oample elemente coded according to whother they are stable (S), transitional (\(T\)), or unstable (U).

In addition, the same tables record tho data classes observed for cach construct and element on each testing occasion in thich it was employed by the subjects. The data classes for constructs were dorived by (i) obtaining a FCA solution for all constructs in cach subject's sorics, (ii) locating aignificant components by assigning constructs to components without replacement by the nothod of reprosontation, (iii) coding each construct according to observed data class on each toating occasion. This proviced a sanplo of 238 roplications, codod according to the following data classes:-
(a) Roplication (\(D_{r}\)) where a construct in grid \(t+1\) is assigned to the same component as tho same construct in grid \(t\);
(b) Displacement (\(D_{d}\)), where a construct in grid \(t+1\) is assigned to a component other than the component to which the same construct is assigned in grid \(t\);
(c) Emergence (\(D_{0}\)), whero a construct in grid \(t+1\) is agsigned to a component not represented by any construct in grid \(t\).

The data classes for cloment wero basod on exact probabilitios of association botweon ratings obtained on successive testing occasions. Elements were designatod as consistent (\(D_{c}\)) if \(p \leqslant .05\), and inconsistent (\(D_{i}\)) if \(p>.05\). Since the joint observation for any element of \(D_{c}\) and \(D_{i}\) oxcluded the oporational definitions of otability and instability, the tables rocord only the frequency of \(D_{c}\) and \(D_{i}\) observations for transitional olements.
(a) Classiincation of sample constructs.

\begin{tabular}{|c|ll|l|ll|}
\hline \begin{tabular}{c}
S2 \\
construct
\end{tabular} & \(T_{12}\) & \(T_{23}\) & \(H\) & \(D_{r}\) & \(D_{d}\) \\
\hline 1 & \(D_{0}\) \\
\hline 2 & \(023 a\) & 001 & \(S\) & 1 & 1 \\
3 & 002 & 001 & \(S\) & 2 & \\
4 & 244 & 004 & \(T\) & 2 & \\
5 & 016 & 000 & \(S\) & 2 & \\
6 & 006 & 001 & \(S\) & 2 & \\
\hline
\end{tabular}
\begin{tabular}{|c|ccc|c|ccc|}
\hline \begin{tabular}{c}
S3 \\
construct
\end{tabular} & \(T_{12}\) & \(T_{23}\) & \(T_{34}\) & \(H\) & \(D_{r}\) & \(D_{d}\) & \(D_{e}\) \\
\hline 1 & \(104 a\) & 129 & 021 & \(T\) & & 1 & 2 \\
2 & 037 & 063 & 020 & \(T\) & 3 & & \\
3 & 037 & 000 & 239 & \(T\) & 1 & 1 & 1 \\
4 & 039 & 060 & 099 & \(T\) & 2 & 1 & \\
5 & 373 & 013 & 016 & \(T\) & & 1 & 2 \\
6 & 043 & 006 & 192 & \(T\) & & 2 & 1 \\
7 & & 054 & 002 & \(T\) & 1 & 1 & \\
3 & & 033 & 033 & S & & 2 & \\
\hline
\end{tabular}
\begin{tabular}{|c|lll|l|lll|}
\hline \begin{tabular}{c}
S3 \\
construct
\end{tabular} & \(\mathrm{T}_{12}\) & \(\mathrm{~T}_{23}\) & \(\mathrm{~T}_{34}\) & H & \(\mathrm{D}_{\mathrm{r}}\) & \(\mathrm{D}_{\mathrm{d}}\) & \(\mathrm{D}_{\mathrm{e}}\) \\
\hline 9 & & 008 & 237 & T & & 1 & 1 \\
10 & & 026 & 007 & S & & 2 & \\
11 & & 01 & .019 & S & 1 & & 1 \\
12 & & 001 & 003 & S & 1 & 1 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { s4 } \\
\text { construct }
\end{gathered}
\] & \(\mathrm{T}_{12}\) & \(\mathrm{T}_{23}\) & \(\mathrm{T}_{34}\) & \(T_{45}\) & \(\mathrm{T}_{56}\) & H & \(\mathrm{D}_{r}\) & \(\mathrm{D}_{\mathrm{d}}\) & \(\mathrm{D}_{\mathrm{e}}\) \\
\hline 1 & 112a & 038 & 046 & 006 & 071 & T & 5 & & \\
\hline 2 & 046 & 004 & 468 & 351 & 003 & T & 3 & 1 & 1 \\
\hline 3 & 010 & 007 & 547 & 436 & 537 & T & 2 & 3 & \\
\hline 4 & 044 & 012 & 172 & 487 & 301 & T & 3 & 2 & \\
\hline 5 & & 322 & 429 & 161 & 045 & T & & 3 & 1 \\
\hline 6 & & 108 & 096 & 035 & 405 & T & 3 & 1 & \\
\hline 7 & & 036 & 430 & 012 & 008 & T & 2 & 1 & 1 \\
\hline 8 & & 000 & 000 & 003 & 003 & S & 3 & 1 & \\
\hline 9 & & . & 012 & 087 & 132 & T & 1 & 9 & 1 \\
\hline 10 & & - & 050 & 013 & 019 & S & 3 & & \\
\hline 19 & & & 831 & 302 & 854 & U & & 2 & 1 \\
\hline 12 & & & 033 & 219 & 014 & T & 1 & 2 & \\
\hline 13 & & & & 041 & 004 & S & 2 & & \\
\hline 14 & & & & 009 & \(\infty\) & S & 2 & & \\
\hline 15 & & & & 000 & 001 & S & 2 & & \\
\hline 16 & & & & 499 & 114 & T & 1 & 1 & \\
\hline
\end{tabular}
\begin{tabular}{|c|ccccc|c|ccc|}
\hline \begin{tabular}{c}
\(\mathrm{S5}\) \\
construct
\end{tabular} & \(\mathrm{T}_{12}\) & \(\mathrm{~T}_{23}\) & \(\mathrm{~T}_{34}\) & \(\mathrm{~T}_{45}\) & \(\mathrm{~T}_{56}\) & H & \(\mathrm{D}_{\mathrm{r}}\) & \(\mathrm{D}_{\mathrm{d}}\) & \(\mathrm{D}_{0}\) \\
\hline 1 & 003 a & 004 & 041 & 006 & 003 & 5 & 4 & 1 & \\
2 & 009 & 012 & 023 & 066 & 013 & T & & 2 & 3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { S5 } \\
\text { construct }
\end{gathered}
\] & \(\mathrm{T}_{12}\) & \(\mathrm{T}_{23}\) & \(\mathrm{T}_{34}\) & \(\mathrm{T}_{45}\) & \(\mathrm{T}_{56}\) & H & \(\mathrm{D}_{\mathrm{r}}\) & \(\mathrm{D}_{\mathrm{d}}\) & \(\mathrm{D}_{0}\) \\
\hline 3 & 014 & 016 & 006 & 001 & 001 & S & 5 & & \\
\hline 4 & 036 & 017 & 047 & 000 & 001 & S & 5 & & \\
\hline 5 & & 000 & 002 & 000 & C03 & S & 4 & & \\
\hline 6 & & 009 & 004 & 002 & 004 & S & 4 & & \\
\hline 7 & . & 008 & 003 & 000. & 000 & S & 4 & & \\
\hline 8 & & 054 & 078 & 092 & 053 & U & 1 & 2 & 1 \\
\hline 9 & & & 011 & 009 & 002 & S & 3 & & \\
\hline 10 & & & 060 & 080 & 211 & U & & 3 & \\
\hline 11 & & & 111 & 042 & 151 & \(T\) & & 1 & 2 \\
\hline 12 & & & 009 & 001 & 004 & S & 1 & 2 & \\
\hline 13 & & & & 003 & 004 & S & 1 & 1 & \\
\hline 14 & & & & . 105 & 001 & T & 2 & & \\
\hline 15 & & & & 001 & 001 & S & 2 & & \\
\hline 16 & & & & 002 & 118 & \(T\) & 2 & - & \\
\hline
\end{tabular}
\begin{tabular}{|c|cccc|cccc|}
\hline construct & \(\mathrm{T}_{12}\) & \(\mathrm{~T}_{23}\) & \(\mathrm{~T}_{34}\) & \(\mathrm{~T}_{45}\) & H & \(\mathrm{D}_{\mathrm{r}}\) & \(\mathrm{D}_{\mathrm{d}}\) & \(\mathrm{D}_{\mathrm{c}}\) \\
\hline 1 & .316 & .83 & .86 & .85 & S & 4 & & \\
2 & .95 & 1.00 & .96 & .93 & S & 4 & & \\
3 & .91 & .93 & .90 & .93 & S & 4 & & \\
4 & .76 & 1.00 & .86 & .36 & T & 2 & 1 & 1 \\
5 & & .85 & .98 & .98 & S & 3 & & \\
6 &. & .71 & .85 & .99 & T & 3 & & \\
7 & & .93 & .80 & .95 & S & 1 & 1 & 1 \\
3 & & .83 & .88 & .83 & S & 2 & 1 & \\
9 & & & .93 & .95 & S & 2 & & \\
10 & & & .86 & .86 & S & & 2 & \\
11 & & & .93 & .96 & S & & 2 & \\
12 & & & .85 & .83 & S & 2 & & \\
\hline
\end{tabular}
\begin{tabular}{|l|lllll|lll|}
\hline \begin{tabular}{c}
S7 \\
construct
\end{tabular} & \(\mathrm{T}_{12}\) & \(\mathrm{~T}_{23}\) & \(\mathrm{~T}_{45}\) & \(\mathrm{~T}_{56}\) & H & \(\mathrm{D}_{\mathrm{r}}\) & \(\mathrm{D}_{\mathrm{d}}\) & \(\mathrm{D}_{\mathrm{o}}\) \\
\hline 1 & .76 b & .80 & .91 & .93 & T & 4 & & \\
2 & .96 & .98 & .96 & .90 & S & 4 & & \\
\hline 3 & .95 & .93 & .96 & .93 & S & 4 & & \\
4 & .91 & .36 & .80 & .83 & S & 2 & 2 & \\
5 & & .93 & .73 & .66 & S & & 1 & 2 \\
6 & & .85 & .93 & .85 & S & 3 & & \\
7 & & .86 & .81 & .23 & T & 1 & 2 & \\
8 & & .88 & .75 & .95 & T & 3 & & \\
9 & & & .91 & .73 & T & 2 & & \\
10 & & & .44 & .85 & T & 2 & & \\
11 & & & .91 & .86 & S & 2 & & \\
12 & & & .78 & .76 & T & & 1 & 1 \\
\hline
\end{tabular}

Abbreviations: \(T\) : testing occasion, \(H\) : hypothosis clasc, \(D_{r}\) : replication data class, \(D_{d}\) : duplicato data class, \(D_{e}\) : emergent data class.
Notes: a, exact probability of association given to throo places, decimal point onittod; b, Spearman correlation coefficiont, il \(=9\),
\(\alpha=.01\) (ono-tailed), \(r_{s}=.78\).

Tabujating the 80 constructs by hypothesis class for the soven subjects obtaine the following frequencies:-
\begin{tabular}{|l|rrl|l|}
\hline & \multicolumn{3}{|c|}{ Hypothesis class } & \\
Subject & S & T & U & Total \\
\hline S1 & 3 & 2 & 1 & 6 \\
S2 & 5 & 1 & - & 6 \\
S3 & 4 & 8 & - & 12 \\
S4 & 5 & 10 & 1 & 16 \\
S5 & 10 & 4 & 2 & 16 \\
S6 & 10 & 2 & - & 12 \\
S7 & 6 & 6 & - & 12 \\
\hline Total & 43 & 33 & 4 & 80 \\
\hline
\end{tabular}

Firally, the 233 replications may be tabulated by hypothesis and data class, and subtotals cmployed to estimate conditional probability distributions (p.394):-
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & & Data & & \\
\hline Subjoct & H & \(\mathrm{D}_{\mathrm{r}}\) & \(\mathrm{D}_{\text {d }}\) & \(D_{0}\) & Total \\
\hline & S & 5 & 1 & - & 6 \\
\hline S1 & T & 1 & 2 & 1 & 4 \\
\hline & U & 2 & - & - & 2 \\
\hline & S & 9 & 1 & - & 10 \\
\hline S2 & \(T\) & 2 & - & - & 2 \\
\hline & U & - & - & - & - \\
\hline & S & 2 & 5 & 1 & 8 \\
\hline S3 & T & 7 & 8 & 7 & 28 \\
\hline & U & - & - & - & - \\
\hline & S & 12 & 1 & - & 13 \\
\hline 54 & T & 21 & 15' & 4 & 40 \\
\hline & U & - & 2 & 1 & 3 \\
\hline & 5 & 33 & 4 & - & 37 \\
\hline S5 & T & 4 & 3 & 5 & 12 \\
\hline & U & 1 & 5 & 1 & 7 \\
\hline & 5 & 22 & 6 & 1 & 29 \\
\hline s6 & T & 5 & 1 & 1 & 7 \\
\hline & U & - & - & - & - \\
\hline & S & 15 & 3 & 2 & 20 \\
\hline 57 & T & 12 & 3 & 1 & 16 \\
\hline & U & - & - & - & - \\
\hline \multirow{3}{*}{Subtotala} & S & 98 & 21 & 4 & 123 \\
\hline & T & 52 & 32 & 19 & 103 \\
\hline & U & 3 & 7 & 2 & 12 \\
\hline \multicolumn{2}{|l|}{Total} & 153 & 60 & 25 & 238 \\
\hline
\end{tabular}
(b) Clasification of samplo clementa.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
S1 \\
Elcments
\end{tabular} & \(\mathrm{T}_{12}\) & \({ }^{1} 23\) & 11 & & & \begin{tabular}{l}
s2 \\
Elemento
\end{tabular} & \(\mathrm{T}_{12}\) & \(\mathrm{T}_{23}\) & H & \(\mathrm{D}_{\mathrm{c}} \quad \mathrm{D}_{\mathrm{i}}\) \\
\hline \(=\) & & & & & & & & & & \\
\hline 1 & 012 & 4.36 & T & & 1 & 1 & 000 & 203 & \(T\) & 11 \\
\hline 2 & 731 & 622 & U & & & 2 & 776 & 064 & U & \\
\hline 3 & 004 & 004 & S & & & 3 & 326 & 000 & T & 1 \\
\hline 4 & 133 & 033 & T & 1 & 1 & 4 & 003 & 064 & T & 11 \\
\hline 5 & 537 & 201 & U & & & 5 & 513 & 064 & U & \\
\hline 6 & 012 & 002 & S & & & 6 & 003 & 203 & T & 11 \\
\hline 7 & 182 & 248 & U & & & 7 & 651 & 873 & U & \\
\hline 8 & 689 & 018 & T & 1 & 1 & 8 & 000 & 010 & S & \\
\hline 9 & 000 & 790 & \(T\) & & 1 & 9 & 003 & 064 & T & 17 \\
\hline 10 & 226 & 002 & \(T\) & & 1 & - 10 & 931 & 395 & U & \\
\hline 11 & 000 & 030 & \(T\) & & 1 & 11 & 015 & 755 & \(T\) & 11 \\
\hline 12 & 133 & 004 & T & & 1 & 12 & 015 & 064 & T & 11 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { S3 } \\
& \text { Eloments }
\end{aligned}
\] & \(\mathrm{T}_{12}\) & \(\mathrm{T}_{23}\) & \(\mathrm{T}_{34}\) & H & \(D_{c} \quad D_{i}\) \\
\hline 1 & 126 & 186 & 120 & ס & \\
\hline 2 & 203 & 000 & 000 & \(T\) & 21 \\
\hline 3 & 000 & 002 & 000 & S & \\
\hline 4 & 081 & 466 & 083 & U & \\
\hline 5 & 006 & 239 & 120 & T & 12 \\
\hline 6 & 009 & 686 & 942 & T & 12 \\
\hline 7 & 865 & 810 & 424 & U & \\
\hline 8 & 735 & 015 & 000 & T & 21 \\
\hline 9 & 770 & 001 & 167 & T & 12 \\
\hline 10 & coo & 015 & 222 & T & 21 \\
\hline 11 & 053 & 111 & 005 & T & 12 \\
\hline 12 & 000 & 008 & 599 & T & 21 \\
\hline
\end{tabular}
\begin{tabular}{|c|ccccc|c|cc|}
\hline S4 & & & & & & & \\
Elements & \(T_{12}\) & \(T_{23}\) & \(T_{34}\) & \(T_{45}\) & \(T_{56}\) & \(H\) & \(D_{C}\) & \(D_{i}\) \\
\hline 1 & 724 & 013 & 033 & 123 & 092 & \(T\) & 2 & 3 \\
2 & 029 & 001 & 003 & 603 & 229 & \(T\) & 3 & 2 \\
3 & 276 & 201 & 160 & 260 & 000 & \(T\) & 1 & 4 \\
4 & 096 & 157 & 009 & 000 & 229 & \(T\) & 2 & 3 \\
5 & 490 & 001 & 136 & 102 & 016 & \(T\) & 2 & 3 \\
6 & 000 & 001 & 926 & 361 & 001 & \(T\) & 3 & 2 \\
\(?\) & 175 & 949 & 381 & 783 & 051 & \(U\) & & \\
8 & 096 & 289 & 013 & 000 & 782 & \(T\) & 2 & 3 \\
9 & 009 & 157 & 000 & 000 & 229 & \(T\) & 3 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|ccccc|c|cc|}
\hline S5 & & & & & & & \\
\hline Elenents & \(\mathrm{T}_{12}\) & \(\mathrm{~T}_{23}\) & \(\mathrm{~T}_{34}\) & \(\mathrm{~T}_{45}\) & \(\mathrm{~T}_{56}\) & H & \(\mathrm{D}_{\mathrm{C}}\) & \(\mathrm{D}_{\mathrm{i}}\) \\
\hline 1 & 013 & 533 & 242 & 003 & 000 & T & 3 & 2 \\
2 & 043 & 012 & 693 & 784 & 783 & T & 2 & 3 \\
3 & 252 & 053 & 000 & 000 & 000 & T & 3 & 2 \\
4 & 122 & 132 & 034 & 400 & 103 & U & & \\
5 & 993 & 391 & 974 & 733 & 174 & U & & \\
6 & 013 & 187 & 009 & 187 & 174 & T & 3 & 2 \\
7 & 043 & 036 & 005 & 009 & 000 & S & & \\
3 & 122 & 391 & 042 & 064 & 845 & T & 1 & 4 \\
0 & 000 & 000 & 000 & 003 & 103 & T & 4 & 1 \\
\hline
\end{tabular}

Abbreviations: \(D_{c}\), consistent data class; \(D_{i}\), inconsistent data class.
iloto: Exact probabilities given to three places, decimal point omitted.
Tabulating tho 54 elements by hypothesis class for the fivo subjocts obtaine the following froquencies:-
\begin{tabular}{|l|ccc|c|}
\hline & \multicolumn{3}{|c|}{\begin{tabular}{c}
Hypothesis class \\
Code
\end{tabular}} & S \\
S1 & T & U & Total \\
\hline S2 & 2 & 7 & 3 & 12 \\
S3 & 1 & 7 & 4 & 12 \\
S4 & - & 8 & 3 & 12 \\
S5 & 1 & 8 & 1 & 9 \\
\hline Total & 5 & 3 & 2 & 9 \\
\hline
\end{tabular}

Finally, tho 122 replications obtaining for elements designated above as transitional aay be tabulated to ectimate the conditional probabilitiy distribution (p.396) :-
\begin{tabular}{|l|ll|l|}
\hline \multirow{2}{*|}{} & \multicolumn{2}{|c|}{ Data class } & \\
Data class & \(D_{c}\) & \(D_{i}\) & Total \\
\hline\(S 1\) & 7 & 7 & 14 \\
\(S 2\). & 7 & 7 & 14 \\
\(S 3\) & 12 & 12 & 24 \\
\(S 4\) & 19 & 22 & 40 \\
\(S 5\) & 14 & 16 & 30 \\
\hline Total & 53 & 64 & 122 \\
\hline
\end{tabular}

\section*{F3 A reconstruction grid test casc.}

To illuatrate the application of reconstruction grid transformations to successive grids, the \(f\) llowing tables depict the analyoic of Kenneth's oorico of four grids in tho form of a scrios of reconatruction maps. Each map depicts the component representation of constructs reapplicd on each successive testing occasion. For examplo, constructs elicited ard applied on Day 1 (C1 to C6) arc retestod on Day 38, and a combined PCA obtained. The reconstruction map (Day 38) records the digplaced ropresentation of \(C 3\) and \(C 4\) on conponent 2 , and the emergent representation of \(C 5\) and \(C 6\) on compononts 4 and 3, respectively. Constructs 1 and 2 naintain their ropresentation of compononts 1 and 2 , respectivoly.

Day 108 Roconstruction map

\section*{A Enendix G The insicht grid}

\section*{G1 The case otudy data}

The following tables compriso Modulo \(A\) and \(B\) data for tho two case studics of Tom and Brenda on each of the threo testing occasions forming tho ropgrid cycle.
Element and construct samples vere elicited in tho mannor described in Chapter 3.4. In addition to recording clement ratings, the following tables depict oubjects ranikings of (a) the expected relovance of constructs to solf-description (cC), (b) the oxpected relevarce of olenents to self-description (EC), the expected extent of element rating change (ER), and (d) tho expocted oxtent of construct rating change (CR). Elenents aro recordod by colunn, ACTUAL SEIF and IDEAL SELF olements denoted TA and TI respoctively for \(T O n, B A\) and \(B I\) respectively for Brenda.

\section*{Tom Day i: Grid natriy}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 03 & R2 & 3 & & & H & ED & JB & F & & M & ET & TA & & II & CC \\
\hline 1 & 3 & 1 & 1 & & & & 2 & 2 & 3 & & 4 & 5 & 1 & & 3 & 2 \\
\hline 2 & 3 & 4 & 4 & 2 & & 5 & 1 & 2 & 3 & & 4 & 3 & 1 & & 1 & 5 \\
\hline 3 & 3 & 4 & 5 & 1 & & 4 & 4 & 2 & 3 & & 3 & 3 & 1 & & & 3 \\
\hline 4 & 3 & 3 & \[
2
\] & & & 3 & 2 & . 1 & 4 & & 2 & 2 & 1 & & & 1 \\
\hline 5 & 2 & 5 & 4 & 3 & & & & & & & 4 & 3 & 1 & & & 4 \\
\hline 6 & & 4 & 2 & 5 & & 2 & 1 & 4 & 2 & & 2 & 2 & 1 & & & 6 \\
\hline EC & 7 & 6 & 4 & 8 & & 2 & 11 & 10 & 5 & & 9 & 2 & 1 & & & \\
\hline
\end{tabular}

\section*{Tom Day \(1_{i}\) Listinr of elicited constructa.}

\section*{Pating nosition 1}
1. Situation identical i.e. harrabseents of running business
2. Siailar intorceto

Discimilar interesto
3. Smart Scruffy
4. Ability to commanicate in a buaincssliko mannor
5. Socially compatible
socially incompatiblo
6. Lack of suitability to business suitablo lifo.

Tom Day 24; Grid matrix
\begin{tabular}{|l|cccc|ccccccccc|cc|}
\cline { 2 - 12 } & GB & RF & B & KP & H & BD & JB & F & A & ET & TI & TA & CC & CR \\
\hline 1 & 4 & 1 & 1 & 3 & 1 & 3 & 2 & 2 & 2 & 3 & 5 & 5 & 12 & 4 \\
2 & 1 & 3 & 5 & 2 & 3 & 1 & 1 & 4 & 5 & 2 & 1 & 1 & 9 & 2 \\
3 & 3 & 4 & 5 & 1 & 3 & 4 & 1 & 3 & 3 & 4 & 2 & 1 & 11 & 6 \\
4 & 1 & 3 & 1 & 5 & 2 & 3 & 5 & 4 & 1 & 3 & 1 & 5 & 8 & 3 \\
5 & 2 & 4 & 5 & 4 & 5 & 1 & 1 & 4 & 5 & 3 & 1 & 1 & 5 & 1 \\
6 & 3 & 4 & 3 & 5 & 4 & 1 & 5 & 4 & 3 & 2 & 1 & 1 & 2 & 5 \\
7 & 1 & 2 & 1 & 4 & 2 & 2 & 4 & 1 & 5 & 3 & 5 & 5 & 3 & \\
8 & 5 & 3 & 4 & 2 & 4 & 1 & 2 & 2 & 4 & 2 & 1 & 1 & 10 & \\
9 & 5 & 4 & 5 & 3 & 2 & 1 & 2 & 4 & 4 & 1 & 1 & 3 & 7 & \\
10 & 1 & 3 & 5 & 2 & 3 & 2 & 2 & 4 & 5 & 3 & 1 & 1 & 4 & \\
11 & 3 & 3 & 3 & 1 & 1 & 4 & 2 & 2 & 3 & 1 & 5 & 1 & 1 & \\
12 & 5 & 4 & 5 & 2 & 4 & 3 & 3 & 1 & 4 & 2 & 1 & 1 & 6 & \\
\hline & & & & & & & & & & & & & & \\
\hline\(E C\) & 6 & 7 & 12 & 2 & 8 & 5 & 4 & .10 & 9 & 11 & 1 & 3 & & \\
ER & 11 & 9 & 8 & 12 & 10 & 4 & 6 & 1 & 3 & 5 & 7 & 2 & &
\end{tabular}

Tom Day 24; Listing of olicited constructa

Rating position 1
7. Cocknoy
8. Futuristic
9. Introvort

Rating nosition 5

Non London
Non futuriatic
Extrovort

Bronda Day 1; Grid matrix
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & RF & JH & HS & vB & \(1]^{1}\) & \(A B\) & BP & GC & Lin & OB & BA & BI & CC \\
\hline 1 & 2 & 2 & 4 & 1 & 2 & 3 & 4 & 3 & 2 & 1 & 2 & 2 & 4 \\
\hline 2 & 5 & 5 & 4 & 1 & 5 & 5 & 2 & 4 & 4 & 4 & 4 & 5 & 1 \\
\hline 3 & 1 & 2 & 1 & 5 & 2 & 2 & 5 & 2 & 1 & 1 & 2 & 1 & 5 \\
\hline 4 & 2 & 4 & 5 & 1 & 2 & 5 & 3 & 1 & 2 & 2 & 1 & 1 & 6 \\
\hline 5 & 2 & 3 & 1 & 4 & 2 & 3 & 5 & 4 & 2 & 1 & 1 & 2 & 3 \\
\hline 6 & 5 & 5 & 2 & 2 & 5 & 5 & 1 & 2 & 4 & 4 & 5 & 3 & 2 \\
\hline EC & 2 & 5 & 6 & 10 & 8 & 9 & 12 & 7 & 11 & 3 & 1 & 4 & \\
\hline
\end{tabular}

Brenda Day 1 i Listinr of elicitod constructo

\section*{Ratine position 1}
1. Hore controlled
2. Schening
3. Kind to others for free
4. Ability to control others
5. Approachablo
6. Hard

\section*{Rating nosition 5}
less controlled
forthright
kind to others for ulterior motives unablo to control others
diatant
soft.

Pating position 1
Rating position 5
Stiff \& forcod

\section*{Brorda Day 53; Grid matrix}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & R & JH & HS & VB & & AB & BP & \(G C\) & H/f & 03 & BI & \(\mathrm{B} \cap\) & CC & CR \\
\hline 1 & 2 & 2 & 4 & 4 & 3 & 2 & 3 & 4 & 2 & 2 & 3 & 2 & 10 & 1 \\
\hline 2 & 4 & 4 & 2 & 2 & 4 & 4 & 2 & 4 & 3 & 4 & 4 & 4 & 5 & 5 \\
\hline 3 & 2 & 2 & 3 & 5 & 3 & 2 & 4 & 2 & 3 & 2 & 2 & 2 & 6 & 3 \\
\hline 4 & 2 & 4 & 5. & 3 & 2 & 4 & 3 & 2 & 2 & 3 & 2 & 3 & 9 & 4 \\
\hline 5 & 1 & 2 & 3 & 5 & 3 & 2 & 5. & 3 & 3 & 1 & 2 & 1 & 12 & 2 \\
\hline 6 & 5 & 5 & 3 & 1 & 3 & 5 & 1 & 2 & 2 & 5 & 5 & 5 & 1 & 6 \\
\hline 7 & 1 & 2 & 3 & 4 & 2 & 2 & 3 & 3 & 1 & 2 & 1 & 1 & 8 & \\
\hline 8 & 1 & 4 & 3 & 3 & 1 & 4 & 3 & 3 & . 2 & 1 & 1 & 1 & 2 & \\
\hline 9 & 2 & 3 & 4 & 3 & 5 & 2 & 5 & 2 & 3 & 3 & 2 & 2 & 7 & \\
\hline 10 & 3 & 3 & 2 & 1 & 2 & 5 & 2 & 5 & 5 & 4 & 3 & 4 & 4 & \\
\hline 11 & 1 & 3 & 1 & 5 & 3 & 3 & 5 & 5 & 3 & 2 & 1 & 2 & 19 & \\
\hline 12 & 2 & 3 & 2 & 2 & 3 & 3 & 5 & 4 & 2 & 1 & 2 & 2 & 3 & \\
\hline EC & 7 & 9 & 3 & 8 & 11 & 2 & 4 & 1 & 12 & 10 & 5 & 6 & & \\
\hline ER & 12 & 8 & 2 & 1 & 4 & 9 & 10 & 11 & & 5 & 6 & 7 & & \\
\hline
\end{tabular}

Bronda Day 53; Listine of elicited constructo

Rating position 1
7. Together
3. Porconality impact
9. Spiritual
10. Good intentions hardly ever carried out
11. Playful
12. Optinistic

Rating position 5
untogethor
no impact
materialiotic
always goes to others if in noed
uptight
gloozy

Brenda Dav 91; Grid matrix
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Rr & JH & HS & VB & MB & \(A B\) & BP & GC & 10, & OB & BI & BA & CC & CR \\
\hline 1 & 2 & 1 & - 4 & 4. & 3 & 2 & 4 & 4 & 2 & 3 & 2 & 3 & 15 & 1 \\
\hline 2 & 5 & 5 & 2 & 1 & 4 & 5 & 1 & 4 & 3 & 5 & 4 & 5 & 16 & 3 \\
\hline 3 & 1 & 1 & 3 & 5 & 3 & 1 & 5 & 1 & 2 & 1 & 2 & 1 & 13 & 2 \\
\hline 4 & 1 & 5 & 5 & 3 & 1 & 5 & 4 & 2 & 1 & 2 & 1 & 1 & 2 & 7 \\
\hline 5 & 1 & 2 & 2 & 4 & 3 & 1 & 5 & 3 & 2 & 1 & 1 & 1 & 5 & 3 \\
\hline 6 & 5 & 5 & 2 & 1 & 3 & 5 & 1 & 3 & 3 & 5 & 4 & 4 & 3 & 6 \\
\hline 7 & 2 & 3 & 4 & 4 & 2 & 4 & 4 & 4 & 2 & 2 & 2 & 2 & 7 & 4 \\
\hline 8 & 2 & 5 & 3 & 3 & 2 & 5 & 3 & 4 & 2 & 2 & 2 & 1 & 6 & 5 \\
\hline 9 & 2 & 4 & 4 & 4 & 5 & 2 & 5 & 2 & 3 & 2 & 2 & 2 & 12 & 10 \\
\hline 10 & 2 & 3 & 3 & 2 & 2 & 5 & 2 & 5 & 4 & 4 & 2 & 3 & 11 & 9 \\
\hline 11 & 1 & 3 & 2 & 5 & 4 & 3 & 5 & 4 & 3 & 2 & 1 & 1 & 18 & 12 \\
\hline 12 & 2 & 3 & 3 & 4 & 3 & 2 & 5 & 3 & 2 & 1 & 2 & 2 & 10 & 11 \\
\hline 13 & 4 & 5 & 3 & 2 & 3 & . 4 & 2 & 4 & 2 & 4 & 3 & 3 & 14 & \\
\hline 14 & 2 & 4 & 4 & 4 & 2 & 5 & 5 & 4 & 3 & 3 & 2 & 1 & 1 & \\
\hline 15 & 5 & 4 & 4 & 1 & 1 & 5 & 2 & 3 & 2 & 3 & 2 & 1 & 9 & \\
\hline 16 & 4 & 5 & 4 & 1 & 2 & 5 & 2 & 2 & 5 & 4 & 5 & 5 & 4 & \\
\hline 17 & 1 & 3 & 4 & 5 & 1 & 3 & 3 & 3 & 2 & 2 & 2 & 1 & 17 & \\
\hline 13 & 3 & 5 & 2 & 1 & 3 & 5 & 1 & 4 & 3 & 4 & 3 & 1 & 8 & \\
\hline EC & 7 & & & 2 & 11 & & & 12 & 10 & 9 & 5 & 3 & & \\
\hline ER & 12 & 2 & 4 & 1 & 10 & & 9 & 6 & 7 & 8 & 5 & 11 & & \\
\hline
\end{tabular}

\section*{Rating mosition 1}
13. Shrewd
14. Survivor
15. Envice thoso who know moro
16. Nourotic
17. Over in a flash
18. Groasy

Ratinr position_s
naivo
would bo lost
equivocal
norad
long term moody straight

The following pages list the PCA solutions for the three testing occasions in each case study. Each solution comprises (a) an exhaustive listing of latent roots and the variance accounted for by each (the number of roots is equal to the number of constructs or to the number of elements less one, whichever is smaller), (b) a listing of element vectors on significant components, the central element subset denoted by markers, and (c) a listing of construct loadings on significant components (located by the method of representation) for constructs in each and the immediately preceding grids. Representatative constructs are denoted by markers. These listings enable core components to be identified by the usual procedures, and the identification of reconstruction data classes for retested constructs on each testing occasion.

TOM DAY 108
\begin{tabular}{ccc}
COHPOHEHT & ROOT & AS PER CEHT \\
1 & 154.3711 & 38.983 \\
2 & 55.8573 & 16.631 \\
3 & 44.8027 & 11.314 \\
4 & 33.7058 & 8.512 \\
5 & 29.1274 & 7.355 \\
0 & 20.7312 & 5.235 \\
7 & 12.8812 & 3.253 \\
8 & 12.3461 & 3.118 \\
9 & 10.2077 & 2.578 \\
10 & 7.5463 & 1.906 \\
11 & 4.4231 & 1.117.
\end{tabular}

COMPONENTS
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{ELEMEN} \\
\hline & -0.0008 & -.). 3136 & -0.61254 & \(-0.3162\) & 0.5102 \\
\hline 2 & 0.2078 & 0.079 L & -0.1940 & 0.1856 & -0. 0.1148 \\
\hline 3 & 0.4045 < & -0.413; & -0.0235 & 0.14432 & -.). \(2 ; 10\) \\
\hline 4 & \(-0.0035\) & 0.6531 4 & -3.0202 & 0.1227 & 0.1549 \\
\hline & 0.3412 & 0.1248 & 0.1591 & -0.1726 & 0.2355 \\
\hline 6 & -0. \(22^{R 6}\) & -0.30.16 & 0.1157 & -0.42994 & -0.2253 \\
\hline 7 & -0.1984 & 0.2578 & -0. \(2^{864}\) & 0.4194 & 0.0i67 \\
\hline 8 & 0.039 .3 & 0.1935 & -0.3057 & -0. 1506 & -0.6.)4? 4 \\
\hline 9 & 0.3553 & -.\() .00^{3} 3\) & 0.39554 & -0.0i3'1 & 0.2319 \\
\hline 10 & -0.0232 & 0.061. & 0.3399 & -0. 21004 & -0.073.5 \\
\hline 11 & -.).42418 & - 0.24 .74 & 0.2700 & 0.2409 & 0.268 ? \\
\hline 12 & \(-0.47012\) & 0.035 & 0.1631 & -0.5709 & -0.2114 \\
\hline \multicolumn{6}{|l|}{CONSTRUCT} \\
\hline D24 1 & -2.6374 & -0.4?11 & 0.3958 & -0.9438 & 0. \(3: 33\) \\
\hline 2 & 2.85778 & -u.1.301 & 0.5229 & - 0.2001 & -0.94in \\
\hline 3 & 1. 4344 & -2.0313 \({ }^{\text {a }}\) & 0.1731 & 0.2426 & -1).0694 \\
\hline 4 & -1.4.199 & .2.3:93 & -0.4943 & 0.0222 & -1.4.593 \\
\hline 5 & '5. 3 995 3 & 3.0'6? & 0.3689 & - 0.4945 & -1). 2305 \\
\hline 6 & 1.6612 & \(2.134^{\circ}\) & -1.0195 & - 0.6494 & 0. 2135 \\
\hline 7 & -1.5342 & \(1.1{ }^{1 \%}\) & 1.9461 ब & 0.1614 & \(0.9 ? 54\) \\
\hline 8 & 2.51684 & -0.0502 & -1.1 JOH & -0.3279 & 1.4386 \\
\hline 9 & 1.7405 & -0.3 3, 5 & \(-1.79468\) & -1.1 1333 & -0.0783 \\
\hline 10 & 2.80058 & -0.1i95 & 0.6376 & -3. 1645 & -1.. 2365 \\
\hline 11 & -0.40:0 & -2.2? 2 ? & \(-0.0267\) & 1.7655 & 1. 4742 \\
\hline 12 & \(2.2906<\) & -1.2.127 & -0.9860 & 0.3476 & 1.2713 . \\
\hline Dio8 1 & -2.1320 & -i. 3072 & 0.0750 & -1.3911 & 1.12:5 \\
\hline 2 & \(2.9310<\) & 0.2657 & 1.1402 & -0.3093 & 0.33 .36 \\
\hline 3 & 0.1172 & -1.9311 & 0.7929 & -0.5305 & -2.1) 304 \\
\hline 4 & J. 5133 & \(\cdots 1.94514\) & \(1.330 \%\) & -1.5699 & -0.0274 \\
\hline 5 & 2.9144 & -0.0.065 & 1.2190 & -0.5153 & -0.4.75 \\
\hline 6 & 1.1110 & 2.11714 & -1.5499 & 1.2878 & 0.07 ij \\
\hline 7 & -1.0653 & 1.8.111 & 2.13564 & 0.3102 & 0.7 .73 \\
\hline 8 & ?. 07798 & \(-1.543 ?\) & -0.4565 & -0.22d1 & 1.537? \\
\hline 9 & J. 7278 & -1.12ji & \(-1.7053<\) & -1.6152 & -0.3235 \\
\hline 40 & 2. 33968 & 0.6:39 & 1.31)75 & 0.6708 & 0.0319. \\
\hline 11 & -0.4330 & -2.0545 & -0.5638 & . 2.15506 & - 0.0069 \\
\hline 12 & 2.2469 \({ }^{2}\) & -1.5364 & 0.1534 & 0.1253 & 1.8060 \\
\hline 13 & \(2.34 \% 4\) & 1. \(0 \cdot 061)\) & 0.4448 & 0.3565 & -1.151? \\
\hline 14 & 2.24224 & O. 0333 & 1.9330 & 0.2914 & 0.8350 \\
\hline 15 & 1.3412 & 1.0904 & 1.4922 & -0.2911 & - 0.1116 \\
\hline 16 & 2. 29.94 & 1. 6.350 & 1.7056 & 1.1436 & -). 23 S \\
\hline 17 & 2. 17.16 & 1.0352 & -1.1904 & -1.2341 & -1).4) \%6, \\
\hline 18 & 2.2315 d & 0.1327 & -0.7151 & 0.7457 & 0.4550 \\
\hline
\end{tabular}

BRENDA. DAY I
\begin{tabular}{|c|c|c|}
\hline comronert & ROOT & AS PER Cfint \\
\hline 1 & 33.6742 & 51.028 \\
\hline 2 & 18.1525 & 27.504 \\
\hline 3 & 7.1750 & 10.879 \\
\hline 4 & 4.8351 & 7.526 \\
\hline 5 & 1.7851 & 2.705 \\
\hline 6 & 0.3770 & -. 0.573 \\
\hline
\end{tabular}
vECTORS

BRENDA DAY 53

\section*{G3 Lovel 1.ricasurcment}

Transformations dovolopod for Lovel 1 foedback comprised four meacurce: (a) an elenont centrality score for oach canple elemont on each testing occasion, computod as \(e_{i}=\sum_{n}^{1} L_{i j}\), where \(n=\) number of significant components, \(L_{i j}=\) loading of tho \(n\) ith element on tho jth oignificant component, (b) a core eonstruct seoro for cach sample construct on oach testing occasion, computed as \(c_{k}=\sum_{i}^{j} L_{k j} V_{c j}\), uharo \(n=\) numbor of significant compononts, \(L_{k j}=\) loading
of the of the \({ }^{n}\) kth conatruct on tho \(j\) the aignificant componont, and \(v_{B j}=\) vector of the - element ACTUAL SELP on tho \(j\) th componont, (c) an element reconstruction ecore, computed as exact probabilitics of asoociation betweon olement ratings on succescive testing occasions, and (d) a construct roconstruction scoro, congutod in the cane manner as for oleconts. Theso seores were ranked for the purpose of comparison with tho subjoct's Hocule B rankingo. Scores for each caso aro listod in the following tablos.
(a) Element centrality scorcs.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|c|}{T0:4} & \multicolumn{6}{|c|}{BRE:DA} \\
\hline & \multicolumn{2}{|l|}{Grid 1} & \multicolumn{2}{|l|}{Grid 2} & \multicolumn{2}{|l|}{Grid 3} & \multicolumn{2}{|l|}{Grid 1} & \multicolumn{2}{|l|}{Grid 2} & \multicolumn{2}{|l|}{Grid 3} \\
\hline Elcment & Score & Rank & Scoso & Rank & Scoro & Pank & Scoro & Rank & Scorc & Rans: & Score & Rank \\
\hline 1 & . 470 & 12 & 6.1999 & 8 & 12.005 & 1 & 1.748 & 7 & 5.647 & 8 & 5.632 & 6 \\
\hline 2 & 3.768 & 4 & 5.506 & 9 & 6.226 & 11 & 1.373 & 10 & 3.474 & 11 & 5.668 & 5 \\
\hline 3 & 3.833 & 3 & 9.116 & 3 & 10.791 & 4 & 2.693 & 3 & 9.160 & 3 & 4.294 & 9 \\
\hline 4 & 3.017 & 6 & 7.550 & 4 & 7.137 & 10 & 5.167 & 1 & 5.768 & 7 & 0.313 & 1 \\
\hline 5 & 3.411 & 5 & 5.659 & 10 & 8.591 & 7 & 1.463 & 8 & 4.937 & 10 & 3.340 & 10 \\
\hline 6 & 2.744 & 8 & 6.472 & 7 & 10.253 & 5 & 2.376 & 5 & 8.238 & 2 & 7.464 & 3 \\
\hline 7 & 2.997 & 7 & 7.322 & 5 & 9.221 & 6 & 4.991 & 2 & 10.177 & 1 & 8.059 & 2 \\
\hline 8 & 1.261 & 11 & 4.784 & 19 & 7.630 & 9 & 1.193 & 11 & 6.927 & 4 & 3.281 & 11 \\
\hline 9 & 2.207 & 9 & 6.988 & 6 & 8.437 & 8 & 1.135 & 12 & 2.987 & 12 & 2.593 & 12 \\
\hline 10 & 2.176 & 10 & 3.242 & 12 & 4.680 & 12 & 2.414 & 4 & 6.196 & 5 & 4.376 & 8 \\
\hline 11 & 4.335 & 1 & 10.654 & 1 & 11.876 & 2 & 2.054 & 6 & 6.122 & 6 & 5.521 & 7 \\
\hline 12 & 4.364 & 2 & 9.325 & 2 & 11.662 & 3 & 1.388 & 9 & 5.496 & 9 & 6.361 & 4 \\
\hline
\end{tabular}

\section*{(b) Core construct scores}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|c|}{TOi4} & \multicolumn{6}{|c|}{BREITA} \\
\hline & Grid 1 & & Grid. 2 & \(\cdot\) & 6rid 3 & & Gria 2 & & crid 2 & . & Grid 3 & \\
\hline Construct & Scoro & Ranle & Scoro & Rank & scoro & Rank & Scoro & Rank & Score & Rank & jcore & PRas \\
\hline 1 & 7.159 & 6 & 2.197 & 7 & 1.822 & 6 & . 388 & 1 & . 659 & 12 & . 713 & 17 \\
\hline 2 & 1.598 & 3 & 2.246 & 6 & 1.793 & 8 & . 732 & 2 & . 948 & 10 & . 857 & 11 \\
\hline 3 & 1.884 & 1 & 2.503 & 4 & 1.429 & 17 & . 638 & 4 & 1.033 & 9 & . 937 & 7 \\
\hline 4 & 9.203 & 5 & 3.027 & 2 & 1.435 & 16 & . 709 & 3 & 1.089 & - 8 & 1.014 & 3 \\
\hline 5 & 1.657 & 2 & 3.066 & 1 & 1.831 & 5 & . 543 & 6 & 1.194 & 5 & . 781 & 13 \\
\hline 6 & \(1.246^{\prime}\) & 4 & 2.744 & 3 & 1.729 & 11 & . 594 & 5 & 1.571 & 2 & . 235 & 8 \\
\hline 7 & & & 1.978 & 8 & 1.734 & 10 & & & . 224 & :1 & 1.031 & 2 \\
\hline 8 & & & 1.310 & 12 & 1.872 & 4 & & & 1.568 & 3 & .069 & 4 \\
\hline 9 & & & 1.845 & 11 & 1.518 & 14 & & & 1.093 & 7 & . 591 & 18 \\
\hline 10 & & & 1.946 & 9 & 1.700 & 12 & & & 1.152 & 6 & . 723 & 16 \\
\hline 11 & & & 1.849 & 10 & 1.585 & 13 & & & 1.761 & . 1 & . 754 & 14 \\
\hline 12 & & & 2.387 & 5 & 1.879 & 3 & & & 1.210 & 4 & . 739 & 15 \\
\hline 13 & & & & & 1.762 & 9 & & & & & . 967 & 5 \\
\hline 14 & & & & & 1.799 & 7 & & & & & 1.101 & 1 \\
\hline 15 & & & & & 1.231 & 18 & & & & & . 825 & 9 \\
\hline 16 & & & - & & 1.971 & 1 & & & & & . 790 & 12 \\
\hline 17 & & & & & 1.907 & 2 & & & & & . 916 & 10 \\
\hline 18 & & & - & & 1.471 & & & & & & . 967 & 6 \\
\hline
\end{tabular}
(c) Elcmont zeconstruction scorcs
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{70:} & \multicolumn{4}{|c|}{LEEIDM} \\
\hline & \multicolumn{2}{|l|}{Grid 12} & \multicolumn{2}{|l|}{Grid 23} & \multicolumn{2}{|l|}{Grid 12} & \multicolumn{2}{|l|}{Grid 23} \\
\hline Elcriont & Scoro & Rank & Scoro & Rant: & Score & Ranls & Scoro & Rank \\
\hline 1 & 226 & 4 & 002 & 11.5 & 003 & 9 & 064 & 8 \\
\hline 2 & 000 & 11 & 080 & 6 & 000 & 11.5 & 203 & 4.5 \\
\hline 3 & 012 & 8.5 & 486 & 3 & 776 & 2 & 064 & 8 \\
\hline 4 & 000 & 12 & 790 & 1 & 931 & 1 & 395 & 3 \\
\hline
\end{tabular}
\begin{tabular}{|c|lc|ll|ll|ll|}
\hline Memant & Score & Rank & Score & Rank & Score & Rank & Score & Rank \\
\hline 5 & 732 & 1 & 622 & 2 & 326 & 5 & 000 & 12 \\
6 & 004 & 10 & 004 & 9.5 & 015 & 6.5 & 756 & 2 \\
7 & 639 & 2 & 018 & 8 & 000 & 11.5 & 010 & 11 \\
3 & 133 & 6.5 & 033 & 7 & 003 & 9 & 064 & 8 \\
9 & 132 & 5 & 248 & 4 & 514 & 4 & 064 & 8 \\
10 & 139 & 6.5 & 004 & 9.5 & 015 & 6.5 & 064 & 3 \\
19 & 537 & 3 & 201 & 5 & 003 & 9 & 203 & 4.5 \\
12 & 012 & 8.5 & 002 & 11.5 & 651 & 3 & 373 & 1 \\
\hline
\end{tabular}
(!o:0: Probabilitics given to threc places, docimal point onittod).
(d) Construct reconatruction scores
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{4}{|c|}{TOi:} & \multicolumn{4}{|c|}{BRE: \({ }^{\text {d }}\)} \\
\hline & \multicolumn{2}{|l|}{Grid 12} & \multicolumn{2}{|l|}{Grid 23} & \multicolumn{2}{|l|}{Grid 12} & \multicolumn{2}{|l|}{Gria 23.} \\
\hline Construct & Score & Rants & Scorc & Rank & Scoro & Rank & Score & Rank \\
\hline 1 & 5106 & 1 & 0010 & 8 & 2441 & 1 & 0039 & 3 \\
\hline 2 & 0050 & 3 & 0086 & 6 & 0233 & 2 & \(\infty\) 010 & 5 \\
\hline 3 & 000 & 6 & 0643 & 2 & 0221 & 3 & 0010 & 5 \\
\hline 4 & 0539 & 2 & 9040 & 1 & 0060 & 5 & \(\infty\) & 5 \\
\hline 5 & 0001 & 5 & 0003 & 9 & 0162 & 4 & 0002 & 10 \\
\hline 6 & 0016 & 4 & 0000 & 12 & 0053 & 6 & 0000 & 11.5 \\
\hline 7 & & & 0011 & 7 & & & 0274 & 1 \\
\hline 8 & & & c002 & 10.5 & & & 0005 & 8 \\
\hline 9 & & & 0127 & 4 & & & 0001 & 9 \\
\hline 10 & & & 0108 & 5 & & & 0006 & 7 \\
\hline 11 & & & 0163 & 3 & & & 0000 & 11.5 \\
\hline 12 & & & 0002 & 10.5 & & & 0159 & 2 \\
\hline
\end{tabular}
(Hotc: probabilitics given to four places, decimal point onittod).

\section*{G4 Level 3 clagsifications}

Tranoformations doveloped for Level 3 feedback comprisod four procodures; (a) the identification of significant components by the method of conctruct ropresontation, and the demarcation of the oubset of central olcmonts by applying the 50 percent varianco criterion to cach significant component, (b) the designation of core components as these which include the olement SELF in the contral subset, and the designation of representative constructs on that component as core constructs, (c) the construction of construct roconstruction maps to examine component rapresentation of retested constructs, and the designation of retested constructs as roplicated, eisplaced or emergent, and (d) the computation of exact probabilities of association betwoen element ratings on successive teating occasions, and the desigration of conaistent olements as those obtaining \(p\). 05. These procedures enable the classification of constructs and elenents into the following clasece:-
\begin{tabular}{ll}
Constructs & Elements \\
coro \(\left(D_{c c}\right)\) & central \(\left(D_{c e}\right)\) \\
peripheral \(\left(D_{p}\right)\) & incidental \(\left(D_{i}\right)\) \\
replicatod \(\left(D_{r}\right)\) & consictent \(\left(D_{c o}\right)\) \\
displaced \(\left(D_{d}\right)\) & inconciotent \(\left(D_{i n}\right)\) \\
cmorgent \(\left(D_{0}\right)\) &
\end{tabular}

The following tables list data clacoce for olements (a) and for constructs (b) for both casc-studies. Data class subscripto have been eaployed to indicate lasaification. All conctructa in tho eecond case-stuad (Brenda) verc desiefrated ac poripheral ac no significant componente included SELF in the central olecuent subset. In this case-study the 50 percont critorion was not rolaxod.
(a) Data classes for elements
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Stersirt} & \multicolumn{3}{|l|}{T0\%} & \multicolumn{3}{|l|}{BREIDA} \\
\hline & Day 1 & Day 24 & Day 108 & Day 1 & Day 53 & Day 91 \\
\hline 1 & 1 & co in & ceco & i & i 0 & \(i\) in \\
\hline 2 & \({ }^{c} \theta\) & \(i \mathrm{co}\) & \(i\) in & i & ico & ce in \\
\hline 3 & i & coco & co in & co & coin & \(i\) in \\
\hline 4 & co & co co & coin & co & co in & co in \\
\hline 5 & ce & \(i\) in & \(i \mathrm{in}\) & i & ce in & \(i \mathrm{co}\) \\
\hline 6 & 1 & \(i \mathrm{co}\) & coco & i & ce co & \(c o\) in \\
\hline 7 & i & \(i\) in & i \(\mathbf{c o}\) & ce & ceco & co co \\
\hline 3 & i & \(\pm\) in & co co & i & \(i \mathrm{co}\) & \(i\) in \\
\hline 9 & \(i\) & ce in & co in & i & \(i\) in & \(i\) in \\
\hline 10 & co & \(i\) in & \(i \mathrm{co}\) & i & i 00 & \(i\) in \\
\hline 11 & ce & co in & ce in & i & \(i\) co & \(i\) in \\
\hline 12 & co & cocos & ce coio & i & \(i\) in & \(i\) in \\
\hline
\end{tabular}
(b) Data classes for constructs
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{EOIISTRUCT} & \multicolumn{3}{|l|}{T04} & \multicolumn{3}{|l|}{BRENDA} \\
\hline & Day 1 & Day 24 & Day 103 & Day 1 & Day 53 & Day 91 \\
\hline \(i\) & p & ce d & cc 5 & \(p\) & p d & \(p\) r \\
\hline 2 & cc & cc r & ce r & \(p\) & \(p r\) & pr \\
\hline 3 & cc & cc r & \(p\) c & \(p\) & pr & prer \\
\hline 4 & p & .cc F & p d & P & pr & p \(\mathbf{r}\) \\
\hline 5 & cc & cc \(\boldsymbol{r}\) & cc \(r\) & \(p\) & pr & P r \\
\hline 6 & \(p\) & ce r & \(\mathrm{p} \boldsymbol{r}\) & \(p\) & \(p r\). & p r \\
\hline 7 & & cc & \(p r\) & & p & p \(\mathbf{r}\) \\
\hline 9 & & cc & cc r & & p & p r \\
\hline \% & & cc & pr & & p & pr \\
\hline 10 & & cc & ce \(\boldsymbol{r}\) & & p & p d \\
\hline 71 & & cc & \(p \mathrm{c}\) & & p & p r \\
\hline 12 & & cc & cc r & & p & \(\mathrm{p} r\) \\
\hline 13 & & & cc & & & p \\
\hline
\end{tabular}
\begin{tabular}{|c|cc|cc|}
\hline Construct & Day 1 & Day 24 & Day 108 & Day 1 \\
\hline 14 & & Day 53 & Day 91 \\
15 & & ce & & p \\
16 & & p & & p \\
17 & & cc & & p \\
18 & & & cc & \\
\hline
\end{tabular}

Following tho data classification, postorior probabilitics for each hypothesis class wero conputed for constructs and olements on each occasion. Two sots of hypothesis claczes werc employod:-
\[
\begin{array}{ll}
\text { Constructs } & \text { Elements } \\
\text { core }\left(H_{c c}\right) & \text { central }\left(H_{c c}\right) \\
\text { peripheral (} \left.H_{p}\right) & \text { incidental }\left(H_{i}\right) \\
& \\
\text { stable }\left(H_{s c}\right) & \text { stablo }\left(H_{s e}\right) \\
\text { transitional }\left(H_{t c}\right) & \text { transitional }\left(H_{t c}\right) \\
\text { unstable }\left(H_{w n}\right) & \text { unctablc }\left(H_{w n}\right)
\end{array}
\]

The folloaing tables list posterior probabilities obtaining for element hypotheses (c) and conotruct hypotheses (d). Probabilities aro given to throe places decimal point omitted. Where dichotomous hypothoses are employed, postoriors for only one hypothesis are listed (\(\mathrm{H}_{\mathrm{cc}}\) or \(\mathrm{H}_{\mathrm{cc}}\)). Whero threc hypothoses are cmployed, two posterior probabilities aro listed (\(\mathrm{H}_{\mathrm{sc}}, \mathrm{H}_{\text {te }}\) or \(\mathrm{H}_{\mathrm{se}}, \mathrm{H}_{\text {to }}\)).
(c) Posterior probabilitics for elenent hypotheses
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Eloment} & \multicolumn{7}{|c|}{Tom} & \multicolumn{7}{|c|}{Brenda} \\
\hline & \multirow[t]{2}{*}{\[
\begin{array}{|l|}
\hline \text { Day1 } \\
n_{c o}
\end{array}
\]} & \multicolumn{3}{|l|}{\[
\text { Day } 24
\]} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\[
\mathrm{H}_{\mathrm{cc}} \quad \mathrm{H}_{\text {so }} \quad \mathrm{H}_{t o}
\]}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Dayi } \\
& H_{c c}
\end{aligned}
\]} & \multicolumn{3}{|l|}{Day 53} & \multicolumn{3}{|c|}{Day 91} \\
\hline & & \[
n_{c o}
\] & \[
\mathrm{H}_{50}
\] & & & & & & \(\mathrm{H}_{\mathrm{CO}}\) & \(\mathrm{H}_{50}\) & \(\mathrm{H}_{\text {te }}\) & \(\mathrm{H}_{\mathrm{cc}}\) & \(\mathrm{H}_{\text {se }}\) & \(\mathrm{H}_{\text {te }}\) \\
\hline 1 & 160 & 272 & 0 & 593 & 423 & 0 & 1 & 160 & 079 & 227 & 773 & 037 & 0 & 1 \\
\hline 2 & 454 & 272 & 227 & 773 & 143 & 0 & 1 & 160 & 079* & 227 & 773 & 143 & 0 & 1 \\
\hline 3 & 160 & 272 & 227 & 773 & 423 & 0 & 1 & 454 & 620 & 0 & 593 & 423 & 0 & 433 \\
\hline 4 & 454 & 620 & 227 & 773 & 761 & 0 & 1 & 454 & 620 & 0 & 593 & 761 & 0 & 433 \\
\hline - 5. & 454 & 272 & 0 & 593 & 143 & 0 & 433 & 160 & 272 & 0 & 593 & 143 & 0 & 1 \\
\hline 6 & 160 & 079 & 227 & 773 & 143 & 382 & 618 & 160 & 272 & 227 & 773 & 423 & 0 & 1 \\
\hline 7 & 160 & 079 & 0 & 593. & 037 & 0 & 1 & 454 & 620 & 227 & 773 & 761 & 382 & 618 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Elceont & \({ }_{\mathrm{HCO}}\) & & & \(\mathrm{H}_{\text {te }}\) & & \(\mathrm{H}_{\text {so }}\) & \(\mathrm{H}_{\text {to }}\) & \({ }^{\text {H }}\) ce & \(\mathrm{H}_{\mathrm{co}}\) & \(\mathrm{H}_{50}\) & \(\mathrm{K}_{\text {te }}\) & \({ }^{\mathrm{H}} \mathrm{ce}\) & & \(\mathrm{H}_{\text {te }}\) \\
\hline 8 & i60 & 079 & 0 & 593 & 143 & 0 & 9 & 160 & 272 & 227 & 773 & 143 & 0 & 1 \\
\hline 9 & 160 & 272 & 0 & 593 & 423 & 0 & 433 & 160 & 079 & 0 & 593 & 037 & 0 & 433 \\
\hline 10 & 454 & 272 & 0 & 593 & 14.3 & 0 & 1 & 160 & 079 & 227 & 773 & 037 & 0 & 1 \\
\hline 11 & 454 & 620 & 0 & 595 & 761 & 0 & 433 & 160 & 079 & 227 & 773 & 037 & 0 & 1 \\
\hline 12 & 454 & 620 & 227 & 773 & 761 & 332 & 619 & 160 & 079 & 0 & 593 & 037 & 0 & 433 \\
\hline
\end{tabular}
(d) Posterior urobabilities for construct hypotheses
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Construct} & \multicolumn{3}{|c|}{Tom} & \multicolumn{4}{|c|}{Brenda} \\
\hline & Day? & Day 24 & Day 109 & Day 1 & Day 53 & \multicolumn{2}{|r|}{Day 91} \\
\hline & \({ }^{\text {cce }}\) & \(\mathrm{H}_{\mathrm{cc}} \quad \mathrm{H}_{5 c} \quad \mathrm{H}_{\mathrm{tc}}\) & \({ }_{5 c c} \mathrm{H}_{\mathrm{sc}} \mathrm{H}_{\mathrm{tc}}\) & \({ }_{\mathrm{H}}^{\mathrm{cc}}\) & \(\mathrm{Hcc}_{c c} \mathrm{H}_{\mathrm{sc}} \mathrm{H}_{\mathrm{tc}}\) & \({ }^{\mathrm{H}} \mathrm{C}\) & \(H_{s c} H_{t c}\) \\
\hline \(9^{\prime}\) & 220 & 338476 & \(\begin{array}{llll}484 & 502 & 444\end{array}\) & 220 & \(\begin{array}{llll}115 & 416 & 579\end{array}\) & 057 & \(502 \quad 4.44\) \\
\hline 2 & 529 & \begin{tabular}{|cccc}
673 & 660 & 320
\end{tabular} & \(\begin{array}{llll}790 & 759 & 234\end{array}\) & 220 & \(\begin{array}{llll}115 & 660 & 320\end{array}\) & 057 & 759234. \\
\hline 3 & 529 & \(\begin{array}{llll}673 & 660 & 320\end{array}\) & \(\begin{array}{llll}434 & 251 & 712\end{array}\) & 220 & \(\begin{array}{llll}115 & 660 & 320\end{array}\) & 057 & 759234 \\
\hline 4 & 220 & \(\begin{array}{llll}338 & 660 & 320\end{array}\) & \(\begin{array}{llll}189 & 502 & 444\end{array}\) & 220 & \(\begin{array}{llll}115 & 660 & 320\end{array}\) & 057 & 759234 \\
\hline 5 & 520 & \begin{tabular}{|ccc}
673 & 660 & 320
\end{tabular} & 790759 234 & 220 & \(\begin{array}{llll}115 & 660 & 320\end{array}\) & 057 & 759. 234 \\
\hline 6 & 220 & 3336600320 & \(\begin{array}{llll}139 & 759 & 234\end{array}\) & 220 & 115660320 & 057 & 759 234 \\
\hline 7 & & 529 & \(\begin{array}{llll}333 & 660 & 320\end{array}\) & & 220 & 115 & 660320 \\
\hline 3 & & 529 & \(\begin{array}{llll}673 & 660 & 320\end{array}\) & & 220 & 115 & 660320 \\
\hline 9 & & 529 & \(\begin{array}{llll}338 & 660 & 320\end{array}\) & & 220 & 115 & 660320 \\
\hline 10 & & 529 & \(673 \quad 600\) & & 220 & 115 & 416579 \\
\hline 11 & & 529 & \(\begin{array}{llll}338 & 168 & 752\end{array}\) & & 220 & 115 & 660320 \\
\hline :2 & & 529 & \(673 \quad 660 \quad 320\) & & 220 & 115 & 660320 \\
\hline 13 & & & 529 & & & 220 & \\
\hline 14 & & & 529 & & & 220 & \\
\hline 15 & & & 220 & & & 220 & - \\
\hline 16 & . & & 529 & & & 220 & \\
\hline 17 & & & 529 & & & 220 & \\
\hline 18 & & & 529 & & & 220 & \\
\hline
\end{tabular}

\section*{G 5 Rucry Frompte}

Following the acsembly of feedback displays, iteme which obtained cither (a) a significant discroparicy between anticipated and observed function at Level 1 or (b) a disjunction botween prior probability and obcorved function at levci 3 wore icolated dom on Quory Forms which roquestod oubjocts to furnich an account for tho deccropancies. The following pages dopict quory prompto prosented in ono caco-study and the subject's reaponses to them.
quEry born OUSJET \(\qquad\) , , cc Pr a

Listed below are the numbers of construct's which ere more (or less) important to your definition oi yourself then you anticipated. Look at each construct card in turn. Can you think of any reason thy you thou tint these constructs might be important (or unimportant)? That is, can you describe why these constructs seemed important or unimportant to you at the time? If you can, jot down your reasons in tie space provided.

Listed below are the numbers of persons who are more (or less) important to your definition oi yourself than you anticipated. Think about each person in turn. Can you think: of any reason why you thought these people night be important (or unimportant)? That is, can you describe why these people seemed important or unimportant to you at the time? If you can, jot down your reasons in the spaces provided.

Listed below are the numbers of constructs which are more (or less) important to your definition of yourself than you anticipated. Look at each construct card in turn. Can you. think of any reason why you thought these constructs might be important (or unimportant)? . That is, can you describe why these constructs seemed important or unimportant to you at the time? If you can, jot down your reasons in the space provided.

SUBJECT \(\qquad\) wi \(\qquad\)

Listed below are the numbers of persons who are more (or less) important to your definition of yourself than you anticipated. Think about each person in turn. Can you think of any reason why you thought these people might be important (or unimportant)? That is, can you describe why these people seemed important or unimportant to you at the time? If you can, jot down your reasons in the spaces provided.
\begin{tabular}{|l|l|}
\hline 3 & \begin{tabular}{l}
Now u ally except that I haven yet \\
sigurd
\end{tabular} \\
\hline
\end{tabular}

QUERY FORM
SUBJECT \(\qquad\)
Listed below are the numbers of constructs on which you have changed your mind since the last occasion more (or less) titan you anticipated. Look ot each construct card in turn. fiat made you think your views on these constructs had (or had not) changed, when we can sec that tizzy have not (or have)? That is, con you describe what it was that mace you think your views on these constructs had or had not chanced? If you can, jot down your reasons in the spaces provided.

SUBJECT \(\qquad\)
\(\qquad\) 24

Listed below are the numbers of persons about whom you have changed your mind since the last occasion more (or less) than you anticipated. Think about each person in turn. that made you think you had (or had not) changed your rind about thea, when we can see that you have not (or have)? That is, can you describe what it was that made you think your views about these people had or had not changed? If you can, jot down your reasons in tire spaces provided.

\(\qquad\)
Listed below are the numbers of constructs which have changed. in their importance to your self-dcfinition since the last occasion. Look at each construct card in turn. Can you think' of any reason why these constructs aws. no longer important (or unimportant)? In particular, has anytining of note occurred in your relationships that might have led to this unexpected outcome? If you can identify an event of this sort, jot down a brief note of that occurred in the space provided.

\(\qquad\) LUCE

SUBJECT \(\qquad\) DAY \(\qquad\) 24

Listed below are the numbers of persons who have changed in their importance to you since the last occasion. Think about each.. person in turn. Can you think of any reason why these people are no longer important (or unimportant)? In particular, has anything of note occurred in your relationships with them that might have led to this unexpected outcome? If you can identify an event of this sori, jot down a brief note of what occurred in the space provided. selatonoluss. We howe a few pert every howe we would las important wo who. Indue fao eatanoui. for thin fellows in busies thane we one adulterate to whin we ave lu ta pub. It depends on when e I mast hus as to
 people who stan wi the routines ella up by bowing the pan. hataly lung plativonalip width trio fellow hon recon on te up and wi His language is anil lase is us a different
would fou we but fir How admin be doestat pultur
 shasciand
9 Ire spoken to trim fellow once free last time. Hes trying to con le out of eownisiong so sires then Ire esplesd to someone who D now thin fellow and who Said has tat fort of person. While vines tat brown fill beat his ing sound duspionon

QUERY FORM LC
SUBJECT \(\qquad\) DAY \(\qquad\) 108

Listed below are the numbers of constructs which are more (or less) important to your definition of yourself than you anticipated. Look at each construct card in turn. Can you think of any reason why you thought these constructs wight be important (or unimportant)? That is, can you describe why these constructs seemed important or unimportant to you at the time? If you can, jot down your reasons in the space provided.

QUERY rom InC: SUBJECT \(\qquad\) Mit 108

Listed below are the numbers oi persons who are more (or less) important to your definition oil yourself than you anticipated. Think about each person in turn. Can you think ot any reason why you thought these people might be important (or unimportant)?
- That is, can you describe why these people seemed important or unimportant to you at the time? If you can, jot down your reasons in the spaces provided.

DAY
\(\qquad\)

Listed below are the numbers of persons about whom you have changed your mind since the last occasion more (or less) than you anticipated. Think: about each person in turn. that made you think you had (or had not) changed your wind about' them, when we can see that you have not (or have)? That is, can you describe what it was that made you think your views about these people had or had not chanised? If you can, jot dow your reasons in the spaces provided.

SUBJECT \(\qquad\) dAY \(\qquad\)
Listed below are the numbers of constructs which have changed in their importance to your self-definition wince the last occasion. Look at each construct card in turn. © an you think of any reason why these constructs are no longer important (or unimportant)? In particular, has anything of note occurred in your relationships that might have led to this unexpected outcome? If you can identify an event of this sort, jot dom a brief note of what occurred in the space provided.

\(\qquad\)

Listed below are the numbers of persons who lave cinanece in ti:eir importance to you since the last occasion. pink about each person in turn. Can you think of any reason, why these people are no longer important (or unimportant)? In particular, has anything of note occurred in jour relationships with them that. might have led to this unexpected outcome? If you can identify an event of this sort, jot dow a' brief note of what occurred in the space provided.

 that Ido.

Iv seen lin a couple of fins bul hen a brash Bot of fellow as is he were selling from a market. stall. Its a bit offputiving and an alpert of busensss that In wot harper wits.

Yes. In a bit suspicion on this fellow and I reit to bead aunsuluy witt nm .

Listed below are the numbers of constructs on which your views have become more (or less) changeable since the last occasion. Look at each construct card in turn. Can you think of: any reason why you have (or have not) chanced your mind on these constructs between days 24 and 108 . when you did not (or did) change your mind between days _1._ and 2 he? If you can, jot down your reasons in the spaces provided.

SUBJEC? \(\qquad\) day 108

Listed below are tho numbers of persons about whom your vievs have become nore (or less) changeable since the last occasion. Think about each person in turn. Can you thinls of any reason why you have (or have not) changed your mind about them betweon days 24 and 108 when you did not (or did) change your mind between days __ and 2f? If you can, jot down your reasons in the spaces provided.

Three critoria vere constructed to asess the procodures applied to the two caco-3tudics; (a) teato of improvenent in the quality of coodelling, (b) teste of elaboration of the convorsational dorain, (c) tests of tho energence of higher-ordor control of modelling.
(a) Inorovement in the quality of modelling

Tho toste tere employod to assess change in the nature of modelling over the threo testing occasions in the two cace-studios; (i)a test of diversity in conctruction based on the distribution of exact probabilities of ascociation betwoon the six constructs olicitod on each testirc oceasion, and (ii) a teat of the contrality or solf-relovance of constructs olicited on cach testing occasion. The following tables list (i) exact probability proxinity natrices botween constructs for the two casc-studies on the throe occasions, (ii) median tests of theso probabilities for each casc-study, (iii) Kruskal-tallis ono taa nonparametric analysis of variance of core construct scores of olicited constructs for the two caso-studics.

\section*{TOM PROBABILITIES GRID 1}

TOM PRORABILITIES GRID 3

BRENDA FFOBABILITIES GRID 3
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 2 & & & & & & \\
\hline 1 & 3-281 & 431 & 4845 & 438 & -47 & 521. & -3728 & 2371 & -4775 & 934 & 673 & 3-695 & 29 & 1555 & 76 & 1309 & .333 \\
\hline 2 & -201 0 & & 2438 & -55 & 3 & -616 & 5169 & -366 & 1434 & -265 & -57 & & -1160 & 1462 & 310 & -197 & 226 \\
\hline 3 & \(431-2\) & , & 3123 & 32 & -4 & 1373 & 4479 & 239 & -426 & 238 & 54 & \(4-91\) & 2.947 & -958 & -175 & 738 & -264 \\
\hline 4 & 4645-2438 & 3123 & 0 & 2934 & 3785 & 61 & 24 & 1691 & 3147 & 1687 & 1288 & 2014 & 26 & 650 & 5083 & 108 & 2934 \\
\hline 5 & \(438-55\) & 32 & 2934 & 0 & -18 & 804 & 3757 & 289 & 2388 & 14 & 5 & 5-795 & 1231 & 1-1514 & -? 2 & 95 & -1368 \\
\hline 6 & -47 0 & & 3746 & -18 & 3 & -700 & 4417 & -256 & 1692 & -134 & - 2.4 & 36-1 & -1921 & 1577 & 92 & -487 & R4 \\
\hline - & -5?1-616 & 1373 & 81 & 884 & -790 & 0 & 111 & 2887 & 2809 & 345 & 227 & -4742 & 11 & 2790 & -1984 & & 4619 \\
\hline 8 & - 37285169 & 4479 & 24 & 3757 & 4417 & 111 & , & 4826 & 1189 & 1154 & 2665 & 5984 & 19 & 458- & -5086 & 58 & 389 \\
\hline O & 2371-366 & 209 & 1681 & 289 & -256 & 2087 & 4026 & 0 & -595 & 169 & 100 & -164A & 1756 & 6-167 & -847 & 237 & 369
615 \\
\hline 10 & -4775 1434 & -426 & \(3147{ }^{\circ}\) & 298 & 1692 & 2800 & 1188 & -595 & - \(\square^{\circ}\) & 5379 & 218 & 1468 & 1660 & 1559 & 2.190 & 4620 & 320 \\
\hline 11 & 934-265 & 238 & 1687 & 14 & -134 & 305 & 1154 & 169 & 5379 & 0 & & -1816 & 205 & -1981 & -46 & 55 & 873 \\
\hline 12 & 673-57 & 54 & 1268 & 5 & -24 & 227 & 2.665 & 100 & -12.18 & 42 & & -1301 & 815 & 5-7.496 & -119 & 72 & 006 \\
\hline 13 & -695 50 & -91 & 2914 & -795 & & -474? & 984. & -1648 & 1468= & 1816 & 1301 & -1508 & 5337 & 242 & 1459 & 555 & 61 \\
\hline 14 & 2987-1160 & \(204 \%\) & 26 & 1221-1 & 1921 & 11 & 19 & 1756 & 166a & 2.95 & 815 & 5337 & & 1591- & -2533 & 142 & 3151 \\
\hline 15 & -1555 1462 & -959 & 650. & -1914 & 577 & 2790 & 458. & . 1677 & 1559. & -1981- & -2496 & 242 & 1591 & 1591- & 1412 & 4657 & 191
191 \\
\hline 16. & -76 310 & -175 & 5083 & -22 & & -1084* & 5086 & -847 & 2190 & -46 & -119 & 1459 & 2503 & 1412 & & 1413 & 1443 \\
\hline 17 & 1309-197 & 730 & 108 & 957 & -487 & 21 & 586 & 2378 & 4629 & 558 & 729. & & 142 & 4657. & 1413 & 8. & 4158 \\
\hline 18 & -333 226 & -264 & 2934. & . 1368 & 84. & -4619 & 309. & 1615 & 320. & -3873- & 1086 & 61 & 3151 & 191 & 1443 . & -4158 & - \\
\hline
\end{tabular}

The exact probability submatrices for clicited constructs in tho two casc-studice
 \(3(n(n-1) / 2)=45\) probabilities,wero exanined to locate (a) nedian probabilities for each testing occasion, and (b) aedian probabilities for tho ontire grid serice (Tom, median \(p=.215 ;\) Brenda, median \(p=.146\)). Probability frequencies wero then tabulated, as follows, and chi-squared computod.
\begin{tabular}{|c|ccc|c|}
\hline Tor & Grid & G \(_{\text {rid }}^{2}\) & Grid & \\
\hline Modian & .302 & .118 & .095 & Total \\
\hline\(>.215\) & 12 & 5 & 5 & 22 \\
\(<.215\) & 3 & 9 & 10 & 22 \\
\hline Total & 15 & 14 & 15 & 44 \\
\hline
\end{tabular}
\[
X^{2}=3.21, d f=2, p<.02
\]
\begin{tabular}{|c|ccc|c|}
\hline Bronda & Grid \(_{1}\) & Grid \(_{2}\) & Grid \(_{3}\) & \\
\hline. !iedian & .106 & .215 & .145 & Total \\
\hline\(>.940\) & 7 & 8 & 7 & 22 \\
\(<.146\) & 8 & 7 & 7 & 22 \\
\hline Total & 15 & 15 & 14 & 44 \\
\hline
\end{tabular}
\(X^{2}=.13, \dot{d} f=2\), n. ..
(ii) K:uskal-Hallis tests of contrality.

PCA colutions wore coaputed for all conatruct sorte in cach caso-study, and coro construct ecores computed for conotricts olicitod on cach testing occasion (\(\mathrm{C} 1-\mathrm{c} 6, \mathrm{c} 7-\mathrm{C} 12, \mathrm{C} 13-\mathrm{C} 18\)) by the mothod described in Appendix D. As coro construct ceores wore cozparable between occasions, tho 18 scores wore ranked and KruskalHallia 1 coaputed.
\begin{tabular}{|r|ccc|}
\hline Toin & Grid & Grid \(_{2}\) & Grid \\
\hline Construct 1 & 13 & 2 & 11 \\
2 & 13 & 9 & 10 \\
3 & 6 & 8 & 16 \\
4 & 17 & 4 & 3 \\
5 & 12 & 7 & 5 \\
6 & 15 & 1 & 14 \\
\hline\(R_{j}\) & 81 & 31 & 59 \\
\hline Sican score & 1.458 & 1.969 & 1.690 \\
\hline Standard & .297 & .215 & .034 \\
ecviation & & & \\
\hline
\end{tabular}

H-7.345, df \(=2, p<.05\)
\begin{tabular}{|r|lll|}
\hline Erenda & Grid \(_{1}\) & Grid \(_{2}\) & Grid \(_{3}\) \\
\hline Congtruct 1 & 12 & 10 & 7 \\
2 & 14 & 2 & 5 \\
3 & 16 & 6 & 9 \\
4 & 15 & 4 & 13 \\
5 & 18 & 1 & 11 \\
6 & 17 & .3 & 8 \\
\hline \(\mathrm{R}_{\mathrm{j}}\) & 92 & 26 & 53 \\
\hline Hean scoro & .684 & 1.285 & .944 \\
\hline Standard & .122 & .315 & .101 \\
doviation &. & & \\
\hline
\end{tabular}
\(\mathrm{H}=12.377, \mathrm{df}=2, \mathrm{p}<.01\).
(b) Tests of the elaboration of the conversational donain.

To test for shifts of attention in construction over the grid serics loadingo of olicited constructs ovor the throo testing occasiono woro teotod on the
firat fivo components of FCA solutions in cach case-study. A Kruskal-Hallis analysio of variarco tias calculated for each component but as is evident from the following tables, no component attained aignificance (\(\alpha=.05\), df \(=2\), critical valuo of \(\#=5.99)\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Ton \\
Conotruct
\end{tabular}} & \multicolumn{5}{|c|}{Components} \\
\hline & 1 & 2 & 3 & 4 & 5 \\
\hline 1 & .4597 & 1.148 & 1.009 & 1.832 & . 5010 \\
\hline 2 & 3.661 & . 0917.5 & . 2217 & .6310 & .3515 \\
\hline 3 & 2.435 & 1.625 & .3315 & .4011 & .797 \\
\hline 4 & .1718 & 1.614 & . 6013 & 1.951 & . \(78 \quad 3\) \\
\hline 5 & . 2.992 & . 32.14 & . 2616 & . 0418 & .2514 \\
\hline ס́ & . 8215 & 2.212 & 1.665 & .897 & .769 \\
\hline \(\because \mathrm{car} / \mathrm{R}_{\mathrm{j}}\) & 1.6558 & 1.1750 .5 & .6975 & .9649 & .5963 \\
\hline 7 & 1.5313 & 1.157 & 1.951 & .1617 & .975 \\
\hline 3 & 2.524 & .6512 & 1.107 & .838 & 1.491 \\
\hline 9 & 1.7412 & .3313 & 1.803 & 1.136 & . 1018 \\
\hline 10 & 2.503 & . 1716 & . 6912 & .1716 & 1.213 \\
\hline 11 & . 4616 & 2.271 & . 0318 & 1.773 & . 4911 \\
\hline i2 & 2.298 & 1.206 & . 9910 & .3513 & 1.272 \\
\hline rean/3 \({ }_{\text {j }}\) & 1.8956 & .9755 & 1.0951 & .7463 & . 9240 \\
\hline 13 & 2.356 & 1.059 & .4514 & . 3612 & 1.154 \\
\hline 14 & 2.249 & . 0917.5 & 1.93-2 & . 2914.5 & . 886 \\
\hline 15 & 1.0414 & 1.643 & 1.098 & .2914 .5 & .1117 \\
\hline 16 & 2.307 & . 8611 & 1.714 & 1.145 & . 2116 \\
\hline 17 & 2.1911 & 1.0410 & 1.196 & 1.23 4 & .4113 \\
\hline 1.8 & 2.2310 & . 1215 & . 7211 & .759 & . 4612 \\
\hline Hean \(/ R_{j}\) & 2.0657 & . 8065.5 & 1.1845 & .6859 & . 5463 \\
\hline H & . 032 & . 713 & 2.947 & . 628 & 2.629 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Brenda & \multicolumn{5}{|c|}{Components} \\
\hline Constructs & 1 & 2 & 3 & 4 & 5 \\
\hline 1 & 1.2117 & 1.497 & .759 & .0317 & 2.471 \\
\hline 2 & 2.793 & .7114 & .1415 & .796 & 1.004 \\
\hline 3 & 2.831 & .1018 & . 6011 & .6110 & .397 \\
\hline 4 & .1718 & 2.572 & 1.792 & .629 & . 4911.5 \\
\hline 5 & 2.328 & .3911 & 1.743 & . . 5811 & . 0518 \\
\hline 6 & \(2.53 \quad 5\) & . 1617 & . 0518 & 1.472 & .966 \\
\hline Hean/R \({ }_{j}\) & 1.9352 & . 9969 & .3553 & .6355 & . 9347.5 \\
\hline 7 & 2.822 & . 8812 & . 0817 & .687 & . 689 \\
\hline 8 & 1.5515 & 2.781 & .1216 & .0218 & .3613 \\
\hline 9 & 2.009 & .4316 & 1.086 & 1.631 & . 323 \\
\hline 10 & 1.0512 & 1.0410 & 1.664 & .965 & . 935 \\
\hline 11 & 2.426 & .4915 & 2.081 & .2413 & .2015 \\
\hline 12 & 1.8113 & 1.109 & 1.315 & 1.293 & 1.552 \\
\hline Nean/R \({ }_{j}\) & 2.0957 & 1.1363 & 1.0649 & .7947 & .7752 \\
\hline 13 & 1.9910 .5 & 1.966 & .4213 & .4912 & . 4911.5 \\
\hline 14 & 1.9910 .5 & 2.464 & .1714 & . 1214.5 & . 1716 \\
\hline 15 & 1.2016 & 2.483 & . 6210 & . 1016 & .0717 \\
\hline 16 & 2.994 & . 7613 & 1.027 & . 1214.5 & .2714 \\
\hline 17 & 2.347 & 1.458 & .4812 & 1.174 & 1.243 \\
\hline 18 & 1.8014 & 2.125 & . 928 & .653 & .5510 \\
\hline Hean \(/ R_{j}\) & 1.3262 & 1.3739 & .6164 & .4469 & . 4771.5 \\
\hline H & .312 & 2.968 & . 687 & 1.479 & 1.924 \\
\hline
\end{tabular}
(c) Tosta of the ciwergonco of higher-order control

Emorgence of control over nodolling was equated thith increacing accuracy of prodiction of the functional ordoring of constructs and elesente. The rank ordored Lovel 1 variables vero corrolatod on each testing occacion with subject's anticizateci rankings using Spearman's rank-orcior correlation coefficient. To test for the significanco of difforoncea between corrolations on ouccessive testing occacions Fishor'a 2 tranoformation vas applied to the corrolations with a standard error of \(\sqrt{\left(1 / 1 I_{1}-3\right)+\left(1 / 1 I_{2}-3\right)}\). Tho follosing table lists the cocificionts for the two casc-studies, \(z\) valucs in brackets.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Variables} & \multicolumn{3}{|c|}{Ton \({ }^{\text {b }}\)} & \multicolumn{3}{|c|}{Brerida} \\
\hline & \(\mathrm{Srid}_{1}\) & \(\mathrm{Grid}_{2}\) & \(\mathrm{Grid}_{3}\) & Grid 1 & \(\mathrm{Grid}_{2}\) & \(\mathrm{Grid}_{3}\) \\
\hline ELETE:T CEmTBLITH & \[
\left\{\begin{array}{l}
.294 \\
(.303)_{a}
\end{array}\right.
\] & \[
\begin{gathered}
.584 \\
(.669)_{a}
\end{gathered}
\] & \[
\stackrel{.937}{(1.713)_{a}}
\] & \[
\left(\begin{array}{c}
.075 \\
(.075)_{a}
\end{array}\right.
\] & \[
\begin{gathered}
.790 \\
(1.07 i)_{a}
\end{gathered}
\] & \[
\begin{gathered}
.927 \\
(1.637)_{a}
\end{gathered}
\] \\
\hline \begin{tabular}{l}
CO:STRUEA CEMTRAL- \\
ITY (LIL CC:STRUCTS)
\end{tabular} & \[
\begin{aligned}
& -.371 \\
& (-.370)_{b 0}
\end{aligned}
\] & \[
\begin{aligned}
& -.007 \\
& (-.007)_{b c}
\end{aligned}
\] & \[
\begin{gathered}
.711 \\
(.889)_{b e}
\end{gathered}
\] & \[
\begin{aligned}
& -.036 \\
& (-.036)_{b e}
\end{aligned}
\] & \[
\begin{gathered}
.237 \\
(.295)_{h e}
\end{gathered}
\] & \[
\begin{aligned}
& .436 \\
& .544)_{h n}
\end{aligned}
\] \\
\hline COMS:BUT CEMTPALTTY
(ELICITED COHSTRUCTS) & & \[
\begin{aligned}
& .435 \\
& (.531)_{d}
\end{aligned}
\] & \[
\begin{aligned}
& .657 \\
& (.783)_{\mathrm{d}}
\end{aligned}
\] & & \[
\begin{aligned}
& .143 \\
& (.144)_{\mathrm{d}}
\end{aligned}
\] & \[
\begin{aligned}
& .257 \\
& (.263)_{\mathrm{d}}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
FIETETM \\
nECC:STR:CTIOM
\end{tabular} & & \[
\begin{gathered}
.203 \\
(.206)_{a}
\end{gathered}
\] & \[
\begin{gathered}
.301 \\
(.311)_{a}
\end{gathered}
\] & & \[
\begin{gathered}
.730 \\
(1.045)_{a}
\end{gathered}
\] & \[
\begin{gathered}
.33 j \\
\left(.40^{\prime}\right)_{a}
\end{gathered}
\] \\
\hline \[
\begin{aligned}
& \text { CC:SS:KCC FDCOLSTRUC- } \\
& \text { TIO:: (ALI CO:ISTRUCTS) }
\end{aligned}
\] & & \[
\begin{aligned}
& .200 \\
& (.203)_{b}
\end{aligned}
\] & \[
\begin{gathered}
.837 \\
(1.211)_{b}
\end{gathered}
\] & & \[
\begin{aligned}
& .600 \\
& (.693)_{b}
\end{aligned}
\] & \[
\begin{gathered}
.442 \\
(.475)_{b}
\end{gathered}
\] \\
\hline & & & \[
\begin{gathered}
.394 \\
(1.139)
\end{gathered}
\] & & & \[
\begin{gathered}
.600 \\
(.693)
\end{gathered}
\] \\
\hline
\end{tabular}

\section*{Appaidix H}

\section*{The aggregate grid.}

H1. A pilot aunlication.
The aggregate grid anolysis was applied to a pilot caso-stuay comprising two male subjecto, \(1 \& B\), comploting a six-fold reportory grid cyclo yoked by elemont sample and by testing occasion. The olement canple comprised the nomes of four rutual friends and subjects \(A\) and \(B\). On each of the six testing occasions four constructe wore clicited and constructs from provious oceasiono reapplied. Constructe were elicitod by the modifiod Full Context Form (seo Appendix E) and elements rated on five point scales formed by each construct. Following the complotion of the cycles, a curnlative aggregate FCA bolution was obtainod (licted on the following pages) and root mean cquare loadings of constructe for each subject calculated for each testing occasion on tho first throc aggregato componente, listed in the following table.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{components} & \multicolumn{3}{|l|}{Subject A} & \multicolumn{3}{|l|}{Sutject B} \\
\hline & 1 & 2 & 3 & 1 & 2 & 3 \\
\hline \multicolumn{7}{|l|}{Occacions} \\
\hline 1 & 1.544 & . 804 & . 697 & 1.180 & 1.317 & .9477 \\
\hline 2 & 1.470 & 1.141 & . 376 & 1.553 & 1.080 & . 783 \\
\hline 3 & . 293 & 1.663 & . 851 & 1.653 & 1.113 & . 655 \\
\hline 4 & . 999 & .. 954 & 1.436 & 1.609 & . 914 & . 856 \\
\hline 5 & 1.329 & . 952 & 1.184 & . 621 & 1.010 & 1.595 \\
\hline 6 & 2.140 & . 235 & . 722 & 1.414 & 1.135 & . 662 \\
\hline
\end{tabular}

Standarà orrors: (a) . 471 ; (b) .667; (c) .422; (d) . 816 ; (c) . 632.

\section*{H 2 The status of agsrogate convononts}

To exazine tho selationship botwcon componente obtained in aggregato and individual grid solutions, the FCA solutions for the case-study reported in Chapter 4.1. (Jack \& Jill) for the ontire grid serics wero examinod. The folloving tables list tho vectore for the comon elc-went samplo and their ranking from tho highest negative to righest positivo vector on significant conponents in Jack'c (H) and Jill'c (H) iadividual soluticis, and on significant components (HM) in tho aggrogato solution. Vectoss are listed to three places, docizal point onitted. Vector rankings wero then corrolated using Spearman's rank-ordor corrolation coofficiont, and tabulated on pages 533 and 535.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Elcment & \(\mathrm{cc}_{9}^{\mathrm{H}}\) & \(\mathrm{FC}_{2}^{\mathrm{ti}}\) & \(\mathrm{PC}_{3}^{1 /}\) & \(\mathrm{PC}_{4}^{1 /}\) & \\
\hline 1 & 0155 & 7721 & -079 5 & -466 1 & \\
\hline 2 & 4578 & -524 8 & -0776 & -205 3 & \\
\hline 3 & \(-4611\) & -159 7 & 3238 & 0196 & \\
\hline 4 & 2467 & 0064 & 7979 & -036 5 & \\
\hline 5 & 0656 & -4529 & -1.32 4 & -251 2 & \\
\hline 6 & 4.649 & 0323 & -352 1 & 2438 & \\
\hline 7 & -3392 & -0315 & -215 2 & -169 4 & \\
\hline 8 & -0114 & 2222 & -005 7 & 7609 & \\
\hline \(?\) & -335 3 & 1146 & \(-2103\) & 0937 & \\
\hline Brement & \(\mathrm{m}_{1}^{4}\) & \(\mathrm{PC}_{2}^{5}\) & \(\mathrm{IC}_{3}^{\mathrm{H}}\) & \(\mathrm{FC}_{4}^{\mathrm{II}}\) & \(\mathrm{FC}_{5}^{\mathrm{H}}\) \\
\hline 1 & -03n 4 & 3259 & -673 1 & 0315 & 4959 \\
\hline 2 & 3518 & 1566 & 2138 & 7569 & -064 3 \\
\hline 3 & -606 1 & -0273 & 1796 & 1237 & -266 2 \\
\hline 4 & 1436 & 2537 & -243 3 & -3272 & -735 1 \\
\hline 5 & 1447 & -5672 & 0395 & 0996 & 0486 \\
\hline 6 & 5029. & 2628 & 2127 & -244 3 & 1037 \\
\hline 7 & -110 3 & 0844 & 5399 & -440 1 & 3568 \\
\hline 8 & 1045 & -622 1 & -267 2 & -140 4 & 0074 \\
\hline 9 & -433 2 & 1545 & 0354 & 1558 & 0255 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline FLPHETT & \(\mathrm{xc}_{1}^{\mathrm{tan}}\) & \(\mathrm{FC}_{2}^{\mathrm{t} / \mathrm{H}}\) & \(\mathrm{Fc}_{3}^{\mathrm{tH}}\) & \(\mathrm{FC}_{4}^{\text {I/II }}\) & \(\mathrm{rc}_{5}^{\mathrm{VH}}\) \\
\hline 1 & - -0114 & -733 1 & -289 2 & -169 3 & -374 2 \\
\hline 2 & 4328 & 1847 & 4149 & 0275 & -522 1 \\
\hline 3 & -523 1 & 0635 & 2408 & 2948 & -0675 \\
\hline 4 & 2147 & -275 2 & 1917 & 6499 & 4709 \\
\hline 5 & 0346 & 5319 & -187 3 & 0536 & -1953. \\
\hline 6 & 4379 & -050 3 & 0894 & -403 2 & 3297 \\
\hline 7 & \(-2933\) & 1026 & 1566 & -516 1 & 4298 \\
\hline 8 & 0215 & 2158 & -748 1 & 1537 & 0946 \\
\hline 9 & -4012 & -022 4 & 1565 & -189 4 & -168 4 \\
\hline
\end{tabular}

\section*{H 3 n pilot casc-atudy; Jack and Jill.}

Subjects \(S 6\) and \(S 7\) of the roconstruction grid amplo (Appendix F1) correstrond to Jack and Jill, and details of tho format of their ropertory arid cycles ray bo found in that appendix. It is important to note, howover, that the cycles wore yoked by testing occasion (fivo over a 60 day period; days 1,2,5, 23 and 60) and by olemont samplo (comprising oevon mutual acquaintances and themselves). Constructs wore elicitod (four on each occasion) by the nodified Full Context method, and proviously elicitod constructs wero rappliod on each occasion. Elemonto tere rankod from the similarity polo, and ranking form gride for the subjecte aro tabulatod on page 863. Verbatim construct descriptions aro listed bolow. Tho descriptions were abbroviated in the case-study report of Chapter 4.1.

Jack Verbatim construct descriptions

\section*{Sim!larity pole \\ (Rank position 1)}
1. "emotionally remoto, distant"
2. "socially oelf-conscious and nervous"
3. "less articulato, (have difficulty with words")
4. ("often) sorious and humourloss"
5. ("consiontious) can be relied (up)on (for some certain things")
6. "tarm-hearted, loving, can foel for other poople"
7. "guarded, inhibited, bolieve in being tactful"
8. ("relish things going wrong, so that they can) punich themselves and other poople"
9. ("talk first and listan lator, if at all), find it casy to talk but hard to liston"

10 ("very suscoptible to games invonted by others), easily led on"
i "find garticipating with others casy" "find participating difficult, stand-offioh"

12 "try to be tactful, (but only imagine ("so open that thoy are) ofton (tactloss pessible misconstructions of thoir and) got into trcuble" actio:s")

13 "prefer to change their circumstancos and other people's minds to suit thoir values"
("articulate, good command of a roforential vocabulary"
("mainly jokoy and)funny socially"
("forgetful), carelese,(difficult to rely on")
"icy, stand-offish, frightened, and onooty"
"a bit tactloss, innocent, guileless out-front"
"hopeful"
("listen first, talk later), find it (casy to listen but) hard to tolk"
"plays games with other people, (without knowing about it at the time")
"profer to change thoir values to euit their circunstances and othor people"

4 "tolerant ard vido, 800 with flow"

5 "freo"

6 "guileless"

7 "cannot 80 too far with or will mut you in place

3 "tolcrant"

9 "prepared to listen and understand others"

10 "confidont about eexuality, therefore prepared to treat all as equal"

11 "coherent in words"

12 "the way thero is often more enchanting than tho end, to do with being relaxod in circumstances"

13 "strons individualists, no messing, stubborn"

14 "hich ideals about self, not talking abnut ideals with others, just forsonal one"

15 "do certain things to gain attention exaggerato ovento; cmotions otc., as above, colludo with others then blamo others for collusion"
"competitive and choosy"
"tied, bound"
"wilfully artful, guile"
"can go quito far with"
"blind, onesidod"
'igete bored with others unless it has any relevanco to self \({ }^{4}\)
"not confident about own soxuality, - therefore always trying to plog it"
"leas coheront"
"there must bo an end in order to precipitate the way to it"
"flexible, go with the flow in order to be \(i n^{\prime \prime}\)
"not such high ideals about self not pushy about ool?"
"do same things but much smallor acaie, know when enough is enough"

16 "do not choose as such but still bear dislike for neurotics otc. therefore
"chooses associates otc. carcfully so as not to confront real solf" try to avoid, or at loast discloso"
\begin{tabular}{ll}
17 "concopt of 'romantic'" & "concopt of 'industrial'" \\
18 "truth will out" & "truth can be conotructea" \\
19 "warm wolcoming" & "cool rocoption" \\
20 "carry things through" & "lose impotug"
\end{tabular}

H4 Principal components analvses of individual and aggragato erids.

Following the completion of tho repertory grid cycles, cumulative FCN Bolutions were obtained for Jack's and Jill's individual grids, and for thoir combined aggregate grids. The following paged liot these colutions together with the application of core grid tranoformations deecribed in Chaptor 3.2. no nay be seen, moro of Jill's compononts aro explicitly colf-relevant. The component obtaining the highest vector for the elemont JILL (component 1) was designated a coro component. Similarly, in tho aggregate grid solution, no components attained Jill-rolevance at the 50\% lovel. Consequently, the component with the highest vector for the olement JILL (componont 1) was designated core to Jill's oelf-definition. In the aggregate FCA listing, cases \(1,3,5,7\) and 9 represent Jill's grids, the remaining cases Jack's grids.

(b) Jil cumulative ig l.C.A.

VARIANCE ACSOUNTED RD \(\dot{R}=91.32 \%\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline (c) & cumulative & AG P.C.A & & & & & & - & & & \\
\hline C0:4POHENT & ROOT & AS Pen & LEAT & & & CASE & & 63 & 0.1517 & 0.64085 & 0.2727 \\
\hline 1 & 475.3712 & 249. & & & & 1 & -?.46914 & -0.0312
-0.0335 & 0.4118 & -0.2375 & 0.0755 \\
\hline 2 & 134.0133 & & & & & 2 & -2.3153 & -0.0335 & 0.7885 & -1.37014 & 0.0777 \\
\hline 3 & 9入. 1558 & 810. & 23 & & .. & 3 & -1.3573 & - 2.1508 & 0.1453 & - 0.2449 & 5.3513 \\
\hline 4 & 77.49 .54 & & 14 & & & 4 & -1.1314 & -1.1332 & 0.5923 & 0.1301 & -1. 1093 \\
\hline 5 & 58.7120 & & 64 & & & 5 & -1.0316 & -1.1532 & 0.3263 & -1.1222 & -1. 23447 \\
\hline 6 & 41.2766 & & 00 & & & 7 & -2.1573 & -0.3559 & 1.4527 & -1,1,711 & -0.0161 \\
\hline 7 & 30.8717 & & 16 & & & 7 & -2.1573 & -0.3701 & -0.7967 & -0.5904 & -1.2665 \\
\hline 8 & 23.4889 & - 2. & & & & 8 & -2.154 & -0.S701 & & -0.590 & \\
\hline & & & & & & CASE & 5 & & & & \\
\hline Item & & vectors & & & & 1 & -2.1732 & 0.6675
-0.0575 & 0.4682
0.4105 & 0.6002
0.2369 & 0.4947
-15.495 \\
\hline & & & & & 3 & 2 & 2.1267 & -0.0575 & 0.4105
-0.0596 & 0.7369
0.1070 & -1.695
0.3126 \\
\hline 1 & 0.0114 & 0.73341 & 0.2891 & 0.1635 & 0.3735 & 4 & 1. 3.5435 & 2.02194 & 0.2129 & -0.9549 & -i). 3115 \\
\hline 2 & -0.4317 & - 0.1835 & -0.4142 & -0.120\% & 0.32154 & 5 & ?.49354 & 0.9394 & -0.1943 & -0.1121 & -0. 0935 \\
\hline 3 & 0.52324 & - 0.0025 & -0.241)3 & -0.2738 & 1. 0664 & 6 & ?.24574 & 0.938 H & 0.31146 & 0.7504 & -1. 9173 \\
\hline 4 & -0.2139 & 0.2146. & -0.1910 & -0.64924 & -1.46974 & 7 & 1.2703 & \(-1.12324\) & -0.6568 & 1.5334 & -0.1225 \\
\hline 5 & -0.0.0344 & - \(0.551 \%\). & 0.1813 & -0. 05330 & 0.1346 & 8 & 2.1752 & 1.4312 & 0.0534 & 0.5131 & - -.1791 \\
\hline 6 & \(-0.4366\) & \(0.049 \%\) & -0.0887 & 0.4024 & -0.5236 & 9 & 2.6318 & 0.2221 & 0.1857 & 0.6351 & -0.0737 \\
\hline 7 & 0.2784 & -0.1016 & -0.1561 & 0.5163 & -0.42934
-0.001 .0 & 10 & \(9.7351<\) & 0.1105 & -0.0/55 & 1.1484 & -0. 0.502 \\
\hline 8 Ince & -0.02.9: & -0.214? & 0.7471 & -0.1528 & -0. 0710 & 11 & -1.0757 & 1.2300 & -1.3489 & 1.7974 & \\
\hline 9 บแ & 0.4010 & \(0.0<23\) & -0.1359 & 0.0873 & 0.1676 & \(17^{\circ}\) & 2.3002 & - 3.0704 & -0.7/30 & -0.5447 & -0. 2700 \\
\hline CASE & & & & & . & CASE & \(\bigcirc\) & & & & \\
\hline & & & 3. & 4 & 3 & 1 & -1.7375
-2.1974 & -0.3317
\(-0.04 i 8\) & 2.12504
0.4425 & 0.01318
0.3134 & \[
\begin{array}{r}
-0.1967 \\
0.3164
\end{array}
\] \\
\hline & 1. & \(2 \cdot\) & 3. & 4 & & 2 & -2.2707 & -1.8.172* & 0.7170 & -1.6427 & 1.0 .197 \\
\hline CASE & 1 & & & & & 4 & -1.33:7 & -1.64634 & 1.1385 & 0.6543 & -1).0315 \\
\hline cas & -2.25i3 & 1.0266 & 0.2175 & 0.3601 & 0.0643
-0.4575 & 4 & \(\therefore .2310\) & -1.3114 & 0.4221 & 0.2759 & \[
-1.90344
\] \\
\hline 2 & 2.3072 & 0.0674 & 0.0910 & - 0.2794 & -0.9575
-0.4230 & 6 & 2.5974 & 0.8955 & 0.5975 & -0.3901 & 0.1547 \\
\hline 3 & 2.1677 & -1.1124 & -0.1777 & -0.370.1 & -0.4.136? \({ }^{-1}\) & 7 & -1.56:2 & 0.1022 & 9.89nR4 & 0.1067 & \[
0.3329
\] \\
\hline 4 & \(1.0 \times 18\) & 1.1645 & -0.4708 & -0.7061 & -1.136? & 8 & -1.83 .15
-1.4310 & -1.0322 & -0.1637 & -0.7364
0.1068 & -1.0503
-1.0516 \\
\hline CASE & 2 & & & & & 10 & 1.4266 & 1.0648 & 1.9337 & -0.1260 & 0.4978 \\
\hline \({ }_{1}\) & -2.2614 & \(0.49{ }^{8}\) & 1.1493 & 0.6255 & 0.0159 & 11 & 2.0322 & 0.5987 & -0.3043 & 0.0535 & -0.0574 \\
\hline 2 & -3.5827 & -0. 2541 & 0.3425 & -0.3483 & 0.1469 & . 12 & -1.7630 & 0.4313 & 1.5058 & -0.3814 & -0.1746 \\
\hline 3 & 1.3613 & -1.1296 & 0.3539 & -1.4793 & 0.05306 & & & & & - & \\
\hline 4 & -1.6376 & \(-1.4150\) & 0.3446 & 0.6246 & 0.3 .06 & & & & & & \\
\hline CASt & 3-2.137? & 1.1290 & 1.1999 & 0.2506 & -0.5 \({ }^{10} 2^{\prime \prime}\) & & & & & & \\
\hline 1 & -2.7367 & -0.0575 & 0.4105 & U. 2369 & -7.41.15 & & & & & & \\
\hline 3 & 2.6697 & -0.1234 & 0.1730 & 0.1703 & 0.4107 & & & & & & \\
\hline 4 & 1.3436 & 2.021? & 0.2170 & -0.7542 & -1. 5115 & & & & & & \\
\hline 5 & ?.0.007 & -0.1902 & -0.5416 & 0.1235 & -0.3463 & & & & & & \\
\hline 6 & 2.10199 & 0.5108 & 1.1923 & - 0.2514 & -0.031) & & & & & & \\
\hline 7 & 1.52634 & -1.1277 & -0.9475 & 1.5523 & 0.2590 & & & & & & \\
\hline 8 & 1.9792 & 1.3868 & 0.9405 & -0.6185 &). 3270 & & - • & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline cast & 7 \\
\hline 1 & -2.0373 \\
\hline 2 & 2.3450 \\
\hline 3 & 2.37514 \\
\hline 4 & 2.1ヶ924 \\
\hline 5 & \(2.74 i 3<\) \\
\hline 6 & 2.こ)"? \\
\hline 7 & 2.a'i2 \\
\hline 8 & 1.0615 \\
\hline 9 & 2. 2212 \\
\hline 10 & 2.10295 \\
\hline 11 & \(\rightarrow .19722\) \\
\hline 12 & -2.0731 \\
\hline 13 & 1.45013 \\
\hline 14 & -1.3275 \\
\hline 15 & -2.3010 \\
\hline 16 & 2.8495 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \multirow{15}{*}{1.333
.1422
.055
.372
.678
.603
.313} \\
\hline \end{tabular}
\begin{tabular}{|c|c|c|}
\hline 1.3070 & 0.3335 & 0.1319 \\
\hline \(0.4 / 86\) & 0.9161 & -0.3401 \\
\hline 0.3100 & J.434 & -1). 3134 \\
\hline -0.0446 & -0.567s & -0.170? \\
\hline 0.2716. & 0.8800 & -0.1701 \\
\hline 1. viro & 0.4547 & -0.3194 \\
\hline -i). 8133 & 0.5515 & 0.3366 \\
\hline 1.7353 & \(0.361 \%\) & -0.1745 \\
\hline 0.4010 & 1.0582 & 0.14754 \\
\hline -0.0490 & 1.2646 & -1. 1246 \\
\hline 1.2446 & 1.5091 & 0.6172 \\
\hline -0.0548. & 0.1369 & 0.3581 \\
\hline 0.2043 & 1.4132 & -0. \(5: 19\) \\
\hline 0.8492 & -0.2607 & - 0.8796 \\
\hline -0.6054 & -0.6404 & -0.1311 \\
\hline 0.2255 & 0.3127 & 0.4641 \\
\hline 1.4327 & 0.6717 & -0.0061 \\
\hline 0.2493 & -0.3164 & 0.6203 \\
\hline 0.0777 & -1.3071 & - 1.4494 \\
\hline 0.8698 & 1.3183 & - 7.0704 \\
\hline 0.6795 & 0.5306 & -1.147) \\
\hline 0.0327 & -0.6272 & - 7.11915 \\
\hline 1.19644 & -0.6136 & -0.2717 \\
\hline -0.7238 & -0.2.137 & -1.3731 \\
\hline -0.3694 & 0.6023 & -0.4116 \\
\hline 1.8279 & -1.3566 & -1).0536 \\
\hline -0.0475 & -0.0575 & 0.4777 \\
\hline 2.0891 & -0.6301 & -0.121)6 \\
\hline \(1.12 \mathrm{Ho}^{\circ}\) & 0.6432 & 0.4 .302 \\
\hline -1.0/50 & -1.0775 & -0.423 \\
\hline -1.4602 & -1.3033 & 1.1439 \\
\hline -1.6271 & 1.1261 & -0.0705 \\
\hline
\end{tabular}

CASt
CASt
10 -
\begin{tabular}{|c|c|c|c|c|}
\hline -7.232. & -0.8185 & 0.1544 & 1.0729 & 0.2376 \\
\hline 2.4637 & -0.1431 & -0.3634 & -0.2926 & -1).2302 \\
\hline 1. 3.546 & -7.1024 & 1.1097 & -0.7817 & 1.4354 \\
\hline -1.3679 & -2.0422 & 0.6001 & 0.6884 & -0.03152 \\
\hline 1.4337 & -0.1790 & 0.5935 & 1.0512 & -1. 2770 \\
\hline 1.1742 & 0.6369 & 0.8128 & -0.3478 & 0.0397 \\
\hline -1.7725 & 1.3568 & 0.3264 & 0.8673 & -1.177? \\
\hline -1. 12572 & -0.577? & \(-1.2339\) & -0.4340 & -1.4i19 \\
\hline -1.5419 & 1.3567 & -1.36Rd & 0.2139 & 1.1936 \\
\hline 1).6448 & 0.8453 & 1.94084 & -1.4530 & -0.430\% \\
\hline 2. 3.1 .32 & 0.5699 & 0.3263 & -0.1001 & 0.3919 \\
\hline -1.3617 & 1.1132 & 1.4746 & -0.4753 & -1.51,59 \\
\hline 1.7339 & -1.4596 & 0.2952 & 0.9 a93 & -1. 9448 \\
\hline 1.3535 & -9.4517 & -1.0838 & -0.3138 & -1.421? \\
\hline -.). 82.03 & -0.0317 & 1.0265 & -1.074\% & 1. 539 ? \\
\hline -1.7719 & 0.94 .30 & -1.3980 & 0.5959 & -0.4336 \\
\hline - .3.7419 & -0.8627 & 0.1708 & -1. 117 & -2.2254 \\
\hline 1.350? & 0. 3979 & 0.1042 & -2. 22098 & -0.3435 \\
\hline -1). 7304 & -1.4558 & 0.6762 & -1.3793 & 1.0503 \\
\hline -2.4365 & -0.1652 & -0.3062 & -0,2596 & -0.8322 \\
\hline \(\mathrm{C}_{\text {Ju }}\) & \(p\) & \(C_{\text {Jack }}\) & \(P\) & \(p\) \\
\hline
\end{tabular}

VARIANCE ACCOUNTED FOR \(=89.98 \%\)

\section*{B5 Construct centrality data classes}

From the previous PCA listings, the following tables wore obtained: (a) individual grid data classes, (b) ageregate grid data classes, (c) postorior probabilitics of centrality in individual grids, and (d) posterior probabilitics of contrality in aggregate grids. Data classes are roprosented in tablos (a) and (b) as \(c\) (central) and \(p\) (poriphoral). Posterior probabilitice aro given to throe places, cecical point onitted.
(a) Data classes in individual rrid solutions
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{construct} & \multicolumn{5}{|l|}{Jack} & \multicolumn{5}{|l|}{Jill} \\
\hline & 1 & 2 & 5 & 23 & 60 & 1 & 2 & 5 & 28 & 60 \\
\hline 1 & 3 & P & \(p\) & p & p & c & c & c & c & c \\
\hline 2 & p & p & P & p & p & c & \(c\) & c & c & c \\
\hline 3 & c & c & c & c & c & c & c & c & c & c \\
\hline 4 & p & c & p & p & \(p\) & p & p & \(p\) & c & c \\
\hline 5 & & c & p & c & p & & c & c & c & c \\
\hline 6 & & p & p & p & p & & c & c & c & c \\
\hline 7 & & p & p & c & p & & c & \(p\) & c & c \\
\hline 8 & & p & p & \(p\) & \(p\) & & c & c & p & c \\
\hline 9 & & & c & c & c & & & c & c & c \\
\hline i0 & & & p & p & \(p\) & & & c & c & c \\
\hline 11 & & & p & p & p & & & p & p & p \\
\hline 12 & & & p & c & p & & & c & c & c \\
\hline 15 & & & & c & p & & & & c & c \\
\hline 14 & & & & \(p\) & \(p\) & & & & c & c \\
\hline is & & & - & & p & & & & c & c \\
\hline 16 & & & & & c & & & & c & c \\
\hline 17 & & & & & \(p\) & & & & & p \\
\hline 13 & & & & & p & & & & & c \\
\hline 19 & & & & & \(c\) & & & & & c. \\
\hline 20 & & & & & p & & & & & c \\
\hline
\end{tabular}
(b) Data clacses in aggrecate arid colutiono
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{construct} & \multicolumn{6}{|l|}{Jack} & \multicolumn{6}{|l|}{Jill} \\
\hline & 1 & 2 & & 5 & 23 & 60 & 1 & 2 & & 5 & 28 & 60 \\
\hline 1 & p & p & & c & p & p & c & c & & c & c & c \\
\hline 2 & \(p\) & \(p\) & & p & p & p & c & \(c\) & & c & c & c \\
\hline 3 & p & p & & p & p & p & c & c & & c & c & c \\
\hline 4 & P & p & & p & P & p & p & \(p\) & & p & c & c \\
\hline 5 & & p & & p & P & P & & c & & c & c & c \\
\hline 6 & & p & & p & p & p & & c & & c & c & c \\
\hline 7 & & p & & c & c & p & & c & & \(p\) & c & c \\
\hline 8 & & p & & p . & p & p & & c & & c & p & c \\
\hline 9 & & & & p & p & \(p\) & & & & c & c & c \\
\hline 10 & & & & c & c & c & & & & c & c & c \\
\hline 11 & & & & \(p\) & p & . p & & & & p & p & p \\
\hline 12 & & & & p & c & c & & & & c & c & c \\
\hline 13 & & & & & p & p & & & & & c & c \\
\hline 14 & & & & & 0 & p. & & & & & c & c \\
\hline 15 & & & & & c & p & & & & & c & c \\
\hline 16 & & & & & c & p & & & & & \({ }^{\text {c }}\). & c \\
\hline 17 & & & & & & \(p\) & & & & & & p \\
\hline 13 & & & & - & & \(p\) & & & & & & c \\
\hline 19. & & & & & & p & & & & & & c \\
\hline 20 & & & & & & \(p\) & & & & & & c \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{construct} & \multicolumn{5}{|l|}{Jack} & \multicolumn{5}{|l|}{Jill} \\
\hline & 1 & 2 & 5 & 23 & 60 & 1 & 2 & 5 & 23 & 60 \\
\hline 1 & 204 & 105 & 051. & 024 & 011 & 505 & 650 & 772 & 860 & 913 \\
\hline 2 & 204 & 105 & 051 & 024 & 011 & 505 & 650 & 772 & 860 & 913 \\
\hline 3 & 505 & 650 & 772 & 860 & 913 & 505 & 650 & 772 & 860 & 918 \\
\hline 4 & 204 & 318 & 175 & 089 & 043 & 204 & 105 & 051 & 089 & 151 \\
\hline 5 & & 505 & 318 & 459 & 279 & & 505 & 650 & 772 & 860 \\
\hline 6 & & 204 & 105 & 051 & 024 & & 505 & 650 & 772 & 860 \\
\hline 7 & & 204 & 105 & 175 & 089 & & 505 & 313 & 459 & 607 \\
\hline 8 & & 204 & 105 & 051 & 024 & & 505 & 650 & 459 & 607 \\
\hline 9 & & & . 505 & 650 & 772 & - & & 505 & 650 & 772 \\
\hline 10 & & & 204 & 105 & 051 & & & 505 & 650 & 772 \\
\hline 19 & & & 204 & 105 & 051 & & & 204 & 105 & 051 \\
\hline 12 & & & 204 & 318 & 175 & & & 505 & 650 & 772 \\
\hline 13 & & & & 505 & 318 & & & & 505 & 650 \\
\hline - 14 & & & & 204 & 105 & & & & 505 & 650 \\
\hline 15 & & & & 505 & 318 & & & & 505 & 650 \\
\hline 16 & & & & 505 & 650 & & & & 505 & 650 \\
\hline 17 & & & & & 204 & & & & & 204 \\
\hline 18 & & & & & 204 & & & & & 505 \\
\hline 19 & & & & & 505 & & & & & 505 \\
\hline 20 & & & & & 204 & & & & & 505 \\
\hline
\end{tabular}
(d) Fosterior probabilitics of centrality in aggregate grid solutiono
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{construct} & \multicolumn{5}{|l|}{Jack} & \multicolumn{5}{|l|}{Jill} \\
\hline & 1. & 2 & 5 & 28 & 60 & 1 & 2 & 5 & 28 & 60 \\
\hline 1 & 20: & 105 & 175 & 089 & 043 & 505 & 650 & 772 & 360 & 913 \\
\hline 2 & 204 & 105 & 051 & 024 & 011 & 505 & 650 & 772 & 860 & 913 \\
\hline 3 & 204 & 105 & 051 & 024 & 011 & 505 & 650 & 772 & 860 & 913. \\
\hline 4 & 204 & 105 & 051 & 024 & 011 & 204 & 105 & 051 & 089 & 151 \\
\hline 5 & & 204 & 105 & 175 & 089 & & 505 & 650 & 772 & 860 \\
\hline 6 & & 204 & 105 & 175 & 089 & & 505 & 650 & 772 & 860 \\
\hline 7 & & 204 & 318 & 459 & 279 & & 505 & 318 & 459 & 607 \\
\hline 8 & & 204 & 105 & 175 & 089 & & 505 & 650 & 459 & 607 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline construct & 1 & 2 & 5 & 23 & 60 & 1 & 2 & 5 & 28 & 60 \\
\hline 9 & & & 204 & 105 & 175 & & & 505 & 650 & 772 \\
\hline 10 & & & 505 & 650 & 772 & & & 505 & 650 & 772 \\
\hline 11 & & & 204 & 105 & 175 & & & 204 & 105 & 051 \\
\hline 12 & & & 204 & 318 & 459 & & & 505 & 650 & 772 \\
\hline 13 & & & & 204 & 105 & & & & 505 & 650 \\
\hline 14 & & & & 204 & 105 & & & & 505 & 650 \\
\hline 15 & & & , & 505 & 318 & & & & . 505 & 650 \\
\hline 16 & & & & 505 & 318 & & & & 505 & 650 \\
\hline 17 & & & & & 204 & & & & & 204 \\
\hline 18 & & & & & 204 & & & & & 505 \\
\hline 19 & & & & & 204 & & & & & 505 \\
\hline 20 & & & & . & 204 & & & & & 505 \\
\hline
\end{tabular}

H6 Salience of oelf and martner rolevant components

To absess tho salience of solf-relevant and partner-relevant predicateo to Jack and Jill over the five testing occaoions, root mean equarc loadings of constructs on components 1 (Jill-relovant) and 3 (Jackrelevant) of the aggregate grid solution were computed. These values are listod in the following table.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|l|}{\[
\begin{aligned}
& \text { Component } 3 \\
& \text { (Jnck-rolevant) }
\end{aligned}
\]} & \multicolumn{5}{|l|}{\[
\begin{aligned}
& \text { Componont ? } \\
& \text { (Jill-rclevant) }
\end{aligned}
\]} \\
\hline & 1 & 2 & 5 & 28 & 60 & 1 & 2 & 5 & 23 & 60 \\
\hline Jack & . 654 & . 801 & 1.263 & 1.235 & 1.001 & 2.029 & 1.947 & 1.779 & 1.546 & 1.730 \\
\hline Jill & . 2.37 & . 793 & . 590 & . 304 & . 626 & 2.263 & 2.209 & 2.213 & 2.195 & 2.203 \\
\hline Total & . 505 & \[
.797
\] & \[
.986
\] & \[
1.042
\] & \[
1.181
\] & 2.152 & 2.032 & 2.008 & 1.898 & 1.981 \\
\hline
\end{tabular}

\section*{The rociprocal rrid}

\section*{I 1 Hocules A and B}

The reciprocal grid casemstudy conprised a'married couple who completed a repertory grid cyclo ovor a four veck period. The cycle consisted of six modules of activitics repeated once. Sodule 1 comprisod (\(a\)) the elicitation of the names of Pourteen cutually important persons whioh, corbined with tho aubjootel own names formod tho element eamplo, (b) the recording of briof character skotches of oach element in the sample, and (c) the olicitation of ten conatructs and thoir application to the element samplo, using sovon-point rating seales for cach conotruct dimension. Two additional whole-figure constructs woro then introduced (LIKE SELF, LIKE PARTMER I! CHARACTER), and then ratod. Hodule B comprisod cubjects irdependent anticipations of the importarce of constructs (a) to thoir own grid and (b) to the ageregate grid. Listed below are firotly each subjocts' character oketches, secondly the constructs olicited on the two testing occasions, and finally, the natrices of ratings obtained on these occasions (constructe by row, elements by column). Rankings of the subjective importance of constructe are recordod at the oido of the grid aatrices, for individual (CIG) and aggregate (CAG) grid solutions.

\section*{Ruth: Element characterisations}
1. Ruth's Basically, a very kind, well meaning person, but rather lacking in empathy father and sensitivity. Fairly quiet, not a dominant character, but knows whero he stands on most issues. Does not play a very important part in the relationship betwoen \(I\). and me.
2. Isaac

Harm and loving. Dominant person who tends to lead the conversation in a group of poople. In some ways dominates me, but I can quietly atand ay ground if I foel strongly enough. Rather erratic in mood has bouts of elation and depression, also has sporadic burste of onerey. I have to adjust my behaviour to fit in with his mood. Loves lots of stimulation, noiso etc. butespecially likes to be with people. wuch wore generous than I an.
3. Ruth's
mother

4. Paul

\section*{mother}
6. Isaac'

Rather sensitive - likes to feel loved. Can casily be hurt. Has much moro empathy with others than father. Likes adventure and trying new things, and has a fear of growing old. Faïrly well read and appreciates art. Has doveloped much more liberal attitudes in recent years.

Can be rather intense, but on the whole a warn, friendly person who ocems to show a lot of enpathy with mo. In some oftuations I feel there are bimilarition botwoon hilm and me, which difforentiate us fron Isaac and Paul's wifo. On the other hand, I foel he is fas more intelloctual than I am and when he talks about his work I sosctimes can't understand what he's talking about.

A very fentle, quict, serene person who seems to have no ambitions about moncy and han optod out of tho rat-raco in favour of living a peaceful life in tho countryoide onjoying his garden. Hao a boyish enthusiasm for things, but does havo his sonsitivo oido, and can bo hurt if ho feole peoplo aro attacking him. Is refreohingly different fron most of our aequaintances and has probably influenced us, making us feel the importance of 'nature':

A very loving and wedl-meaning porson, who always tries to pleace. Her main intereste in life are her home and family and çho perhapo finde it difficult to understand women who want nore than that. She payo a great deal of attention to tho minutiae of day to day lifo, always organising things to the finest detail. This tends to irritate me: I also find I have to resiot a tendency to say thingo that I feel would ahock her.
7. Isaac's. brother-inlan

Very relaxed and oolf-assured. Very direct in hio manner and docsn't worry about what he says. Since he is oo easy going he is pleasant to be with. Docen't ceen to be particularly interested in his work or. very ambitious.
8. Isanc's Now vory much a shadow of his former self, but comes to life on father
be organiced by her, as day to day lifo has become rather an offort and he io rather forgetful. Normally I find it an effort to talk to hin as wo have so little in common, and it's only on these occasions when he does 'como to life' that I feol I'm truly seeing him as a human being.
9. Isanc's Very amooth talking uith charining manners which at first sight make him brothor very likeable. However, when one-gots to know him better there seeme to bo nothing wore than this front. Ho nover socms to open up and cay what he roally thinke = thoro alwaya ceome to bo a barrior. of tendion botween us which I find vory irritating. Ho seems to be solf-intercsted and lacking in real warnth.
10. Joan A jolly extravert sort of person who is fun to be with. She seens very capablo and copes woll with several jobs, 2 children and a difficult husbard. She is fairly dominant and a eood organiocr.
11. Paul's A lovoly, bubbling person, who has many facets to her perconality. vife She is very warm and always shows interest in.what other people are doing and thinking - she is fairly dominant and cometimes when I'口 talking to her I feel I ought to make more effort instead of letting her 'do all the work'. She seems rather a deep person at times with a fecling for 'things mystical'.
12. Joan's A rather moody person who can be a little frightening whon he's in husband one of hio dour roode. In normal conversation though he'o quite jolly and friendly. He's not madly eociable and doesn't seek out the compiny of others, preforring to be alone in the great outdoord.
13. Isaac's Self-ascured and sophisticated, always looks glamorous which, when I first sister knev her, used to nake co foel very scruffy and ill at case. How I know her bettor I like her vory much - sho is easy-going, interested in people and has the oase general outlook on life as I do. Fun to be with. vifo
14. Jack's Deep and sencitive. Feel vory otrongly about things. Rather quiet and shy, takes a lot of getting to know - doesn't seem to want a lot of
friends - preferring a fow close friends. Although ohe has a fairly intollectual background her world now centres round her home life.
15. Ruth Different personality in different situations. Amongst Isanc's friends I tend to be oubmissive and withdrawn, but in my own circle of friends \(I\) tend to be rather dominant - evon a leader vhom people consult. Although I'a very content on the whole with my life at home, there are times when I wish I could be doing comothing olso. In a lot of aituationo I look to Ioace for a lood and I fool he is far moro knowlodgeable and intollactual than I am, but \(I\) do feel \(I\) have a deop down strongth and \(I\) could carry on vith lifo whatever happenod.
16. Ruth's She has more warmth and is much moro straightforiard thar hor husband. sister-in- There doesn't seen to bo much depth to her charactor though, and ohe law attaches importance to things that I don't consider very inportant. Ono of these is physical appearance - it annoyo mo sometimes that sho alwaye looks so irmaculato. Wo have rather difforent outlooko on life, but if we just stick to talking about children and howe we got on fairly weld.

\section*{Isaac: Element characterisations}
1. Ruth's A rather bumbling, but babically lovable old bore. He'a Ruth's dad father \(\quad\) o I take rather nore notice of him than I would othorwico. Thero's roally not much moro to say - that's all there is to the man!
2. Isaac On occasion can be the life and soul of the party. Ho can also produce flashes of genuine creativity and inspiration. But this is too often opoilt by oilly dopression and self-doubts, caused of course by the absenco of a real self, on raro occaoions when futh's away. (actually this is an appalling example of false modesty). Have just discovered he has a solid central core of rock-hard cyniciow.
3. Ruath' mother
4. Paul
5. Jack

How can I get ovor this foeling of intellectual diatanco while wanting to become closer to both of them? A person who really doea caro for poople. Someone to learn from. But prono to a dangerous gullibility, could casily be sualloued by some freakioh sect. He and hio wifo have affected our relationship in a positivo vay. Maybe we aro, however, patronising in the way we adniro thoir worldiy innocence.
6. Isanc's Mum. Hother earth. Totally connitod to her children. Her neurosea nother don't matter, sho would do anything for her brood. Some would say her view of tho world was a norrow one. I rosent her making me afraid of horses, cows and dogs, though.
7. Isaac's Took my sister ayay - the coarse Australian git, ueod to seo him as a brother-in- revolting Barry Mackenzic poraonified, but the recont viait made mo soe lav him as a normal; outgoing, humorous drinking partner. He still took my oister away though.
8. Isaec's Distant but honourablo. Hever really knew him, but admired his hardfathor

Oh deart She sis in reality a rather frightened old lady, but with the occasional flach of medium'o insight. Mostly ohe laye on intolloctual and cultural protensions' of appalling tranoparency. Her husour is echoolgirligh, and protentious. But I think I love her reaily.
- Usually I think ho's bright. But I'm not always surc. Still ho'o olways otimulating and nico to have around. I'n convinced that there's a deen destructive urgo in hin. (No, really) This worrieenc. Ho io sometimes intolcrant of others' views. Eapocially if they aro logical positivista. vorking porsistence hugely. Hated his fob but stuck it for years,

9. Isaac'e I love him because ho'o ay brother and would do anything for him. just for us. How he's a pathetic old figuro, struck down by Parkinson's discaso. Occasional. marvollous eveningo of old-time reminisconces. Ruth loves him too. Will I got to know him before he diod?
10. Joan
?
11. Paul's. wifo But he is a classic Goffanmman. All front, no real caring. Prejudiced, reactionary. Houldn't go near him if he weren't ay brother.

Lively, bubbling; copos marvellously with ailly old husband. Quito attractive too. But how can ohe poseibly beliove in God? Some dreadful flaw there. Pity.

Lively, otimulating fun and nice to be with. But she also cared for othors. An unusual combination. Somothing thoro though, that I can't put my fingor on - that is it that she's afraid of? :lever mind, a lovoly pair - hopo these sessions won't put then off: netually have we really got to know paul's wife? I feol I know paul's fears better. But Paul's wifo has the basic loving mother earth' touch which owanpo the mystorious side. Just can't say how she affects our rolationohip - don't know.
12. Joan's husband.
13. Isacio 0 sictor
14. Jack'o
wifo

\section*{brothor}

Poor old Joan'c husband. Thick, impulaively ageressive. Confused. Hice to be with when bappy, but when he io down can bo wost unpleasant. Avoid in times of trouble.

My lovely sioter. Not quito sure how much is real. Perhaps she has a rock-hard core of confidence; just a chanco it's a learned act. Would bet on the forner. Harm and loving:

Has iearned to live the simple, good life but occabionally yearns for tho old. Depends totally on Jack, in an alion country. She is almost too 'nice' for her own good. Flashes of temper save her. Sho depends on Ruth now, too.
15. Ruth My oo difficult to write about? She means nore than I can say. Do I resont this deop-structure dependency? Porhaps not, as it has its complement on her kind of dependency on me. Perhaps it'o like trying to writo about tho meaning of life. Wish sho wouldn't use the hoover when I'm reading the paper. (Actually ohe'o otopped that now).
16. Isaac's "Ky dear, arn't theso socialiato dreadful". Id sho veren't my sicter-in- gister-in-law, she vould be unbearably ghastly. Excopt for her body. la'd

\section*{Ruth: Verbatia construct descriotions}

Satine value \(=19\)
Grid 1
1. Concerned about poople for thoir own eake
2. Intollactual
3. Happy with domeaticity alono
4. Appreciates nature - enjoys growing
thingo, etc.
5. Relaxed
6. Placid
7. I think I can tell what they aro feeline
9. Outgoing, sparkling
9. Doainant
10. Kappy and contented in general
11. Like Ruth in charactor

12: Ifko Isaac in charactor

Rating value \(=\) ?

Concornod about what people think of him/her (actions rather than appearanco) Non-intellectual
Discontentod vith just domesticity Docen't appreciato samo

\section*{Tense}

Excitablo
Don't know what they are feciling

Wi therawn
Subnicsive
Discontentod
fot like Ruth in charactor
Not liko Iaaac in charactor

\section*{Grid 2}
13. Kind and loving
14. Enjoye crude humour
15. Diosatisfiod vith the social oyoton - loftiot
16. Creativo
17. Muto on a 'front'
13. Hakes mo feel at caso

Not kind and loving
Doesn't
Content with social system -
rightist in viows.
Not creativo
Straightforsard
Hakes no foel tense

\section*{Isanc: Verbatim conatruct descrintions}

\section*{Ratine value \(=9\)}

\section*{Grid 1}

\section*{1. Harn and loving}
2. Intelligent
3. Fhysically attractivo
4. Progresaivo in social attitudes
5. Genuinely feols for nature and tho countrysido
6. Person who I love because of tho kind of porson he/she is
7. Forson I love because of the relationship he/sho has to wo
8. Deep down strong as a person
9. Livoly and stimulatins
10. Culturally sophisticated
11. Liko Ruth in charactor
12.. Like Ibanc in charactor

Rating value \(=?\)

Cold and distant
Unintelligent
Not physically attractivo
Reactionary in social attitudes Really a 'tomy"

Person I don't really love at all
becauce of tho person he/sho is
Person I don't love at all becauce of the relationship he/che docs not have to me
Deep down veak as a porson
Passivo and not stimulating
Culturally naivo
Not like Ruth in character
Not like Ieanc in character

\section*{Grid 2}
13. Straightforward Doviouo
14. Rather pathetic and dull
15. Relaxed
16. Sence of humour
17. Bachanalian
18. Sorious

Ruth: Day 1 Grid Vatrix
\begin{tabular}{|c|cccc|cccc|cccc|ccccc|cc|}
\hline 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 10 & 13 & 14 & 15 & 16 & CIG & CAG \\
\hline 1 & 4 & 1 & 2 & 2 & 3 & 3 & 6 & 4 & 6 & 4 & 2 & 5 & 5 & 2 & 3 & 5 & 4 & 2 \\
2 & 4 & 1 & 3 & 1 & 5 & 7 & 6 & 5 & 7 & 2 & 2 & 6 & 5 & 3 & 4 & 7 & 11 & 8 \\
3 & 4 & 4 & 6 & 6 & 1 & 1 & 5 & 2 & 5 & 4 & 4 & 5 & 4 & 2 & 1 & 1 & 3 & 12 \\
4 & 2 & 3 & 2 & 5 & 1 & 3 & 4 & 3 & 7 & 2 & 5 & 2 & 4 & 1 & 2 & 6 & 6 & 10 \\
5 & 1 & 6 & 5 & 6 & 2 & 2 & 4 & 3 & 4 & 5 & 6 & 6 & 4 & 3 & 1 & 1 & 10 & 5 \\
6 & 3 & 5 & 4 & 5 & 1 & 4 & 2 & 5 & 7 & 3 & 5 & 6 & 3 & 1 & 2 & 3 & 5 & 4 \\
7 & 6 & 2 & 4 & 5 & 3 & 4 & 6 & 6 & 7 & 3 & 5 & 6 & 5 & 2 & 1 & 3 & 12 & 6 \\
3 & 6 & 1 & 2 & 2 & 4 & 5 & 3 & 6 & 3 & 2 & 1 & 5 & 1 & 3 & 3 & 6 & 7 & 7 \\
9 & 4 & 1 & 2 & 2 & 4 & 6 & 2 & 5 & 3 & 2 & 2 & 3 & 2 & 3 & 3 & 7 & 9 & 11 \\
10 & 4 & 2 & 5 & 2 & 1 & 3 & 3 & 4 & 7 & 4 & 2 & 6 & 3 & 1 & 1 & 3 & 2 & 3 \\
11 & 3 & 5 & 4 & 6 & 3 & 4 & 7 & 6 & 7 & 3 & 5 & 7 & 5 & 2 & 1 & 4 & 1 & 1 \\
12 & 7 & 1 & 4 & 2 & 5 & 6 & 3 & 6 & 6 & 3 & 2 & 5 & 2 & 4 & 5 & 7 & 8 & 9 \\
\hline
\end{tabular}

Ruth: Day 31
\begin{tabular}{|l|llll|llll|llll|llll|rr|}
\hline 1 & 5 & 1 & 2 & 2 & 1 & 2 & 3 & 6 & 7 & 3 & 2 & 5 & 2 & 1 & 1 & 6 & 5 & 3 \\
2 & 4 & 1 & 2 & 1 & 5 & 6 & 5 & 5 & 7 & 3 & 2 & 7 & 4 & 2 & 3 & 7 & 7 & 9 \\
3 & 3 & 7 & 5 & 7 & 4 & 1 & 4 & 2 & 4 & 5 & 6 & 3 & 5 & 3 & 5 & 1 & 4 & 11 \\
4 & 3 & 2 & 3 & 5 & 1 & 2 & 4 & 2 & 7 & 3 & 5 & 3 & 4 & 1 & 2 & 6 & 8 & 10 \\
5 & 1 & 6 & 6 & 5 & 2 & 1 & 3 & 2 & 4 & 5 & 6 & 5 & 4 & 3 & 2 & 1 & 10 & 12 \\
6 & 4 & 5 & 5 & 5 & 1 & 5 & 2 & 3 & 7 & 5 & 4 & 6 & 4 & 3 & 2 & 3 & 19 & 15 \\
7 & 3 & 1 & 2 & 5 & 1 & 2 & 2 & 6 & 7 & 3 & 4 & 7 & 4 & 1 & 1 & 5 & 3 & 4 \\
3 & 6 & 1 & 3 & 3 & 4 & 5 & 4 & 7 & 4 & 2 & 1 & 7 & 2 & 3 & 4 & 5 & 13 & 13 \\
9 & 5 & 1 & 3 & 2 & 4 & 5 & 3 & 5 & 4 & 2 & 2 & 4 & 3 & 3 & 4 & 7 & 12 & 16 \\
10 & 5 & 3 & 4 & 4 & 2 & 4 & 4 & 5 & 5 & 4 & 3 & 5 & 3 & 2 & 2 & 4 & 2 & 7 \\
11 & 5 & 1 & 4 & 3 & 5 & 7 & 5 & 6 & 6 & 4 & 2 & 6 & 4 & 3 & 3 & 7 & 1 & 1 \\
12 & 4 & 1 & 3 & 2 & 3 & 3 & 3 & 6 & 7 & 4 & 2 & 5 & 2 & 2 & 1 & 5 & 6 & 6 \\
13 & 4 & 3 & 3 & 5 & 2 & 2 & 4 & 7 & 7 & 5 & 6 & 7 & 3 & 2 & 1 & 2 & 9 & 2 \\
14 & 2 & 1 & 5 & 2 & 3 & 7 & 1 & 3 & 2 & 4 & 2 & 4 & 3 & 3 & 4 & 6 & 18 & 13 \\
15 & 5 & 2 & 4 & 2 & 2 & 6 & 5 & 6 & 7 & 3 & 2 & 4 & 4 & 1 & 3 & 7 & 17 & 17 \\
16 & 6 & 2 & 2 & 3 & 4 & 3 & 6 & 6 & 6 & 4 & 3 & 4 & 5 & 4 & 5 & 5 & 16 & 14 \\
\hline
\end{tabular}
\begin{tabular}{|lllll|llll|llll|llll|ll|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & CIG & CAG \\
\hline 17 & 6 & 5 & 4 & 4 & 7 & 6 & 6 & 5 & 1 & 3 & 4 & 5 & 3 & 6 & 5 & 7 & 15 & 8 \\
13 & 2 & 1 & 2 & 3 & 3 & 5 & 3 & 6 & 7 & 4 & 3 & 5 & 3 & 2 & 4 & 5 & 14 & 5 \\
\hline
\end{tabular}

\section*{Icaac: Dav 1 Grid matrix}
\begin{tabular}{|c|cccc|cccc|cccc|cccc|ccc|}
\hline 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 3 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & CIG & CAG \\
\hline 1 & 4 & 1 & 2 & 3 & 3 & 1 & 5 & 7 & 6 & 2 & 1 & 5 & 2 & 1 & 1 & 5 & 2 & 4 \\
2 & 2 & 1 & 2 & 1 & 4 & 7 & 5 & 3 & 6 & 3 & 2 & 7 & 3 & 3 & 1 & 6 & 5 & 3 \\
3 & 7 & 2 & 5 & 3 & 3 & 6 & 2 & 7 & 3 & 2 & 1 & 4 & 1 & 2 & 1 & 2 & 7 & 7 \\
4 & 6 & 2 & 5 & 1 & 2 & 7 & 4 & 7 & 5 & 5 & 1 & 5 & 4 & 2 & 2 & 6 & 9 & 6 \\
5 & 3 & 4 & 4 & 4 & 1 & 5 & 6 & 6 & 6 & 3 & 5 & 2 & 3 & 1 & 1 & 5 & 8 & 9 \\
6 & 5 & 2 & 3 & 2 & 2 & 1 & 5 & 5 & 7 & 3 & 2 & 7 & 1 & 2 & 1 & 4 & 11 & 11 \\
7 & 5 & 2 & 5 & 4 & 4 & 1 & 5 & 2 & 2 & 4 & 4 & 4 & 1 & 4 & 1 & 3 & 12 & 12 \\
3 & 5 & 5 & 5 & 4 & 2 & 3 & 4 & 3 & 7 & 2 & 4 & 6 & 2 & 3 & 1 & 5 & 3 & 8 \\
9 & 5 & 1 & 4 & 2 & 5 & 6 & 4 & 7 & 3 & 3 & 1 & 4 & 2 & 3 & 3 & 4 & 4 & 2 \\
10 & 2 & 1 & 1 & 1 & 6 & 5 & 6 & 4 & 6 & 4 & 1 & 7 & 3 & 3 & 2 & 6 & 10 & 5 \\
19 & 3 & 2 & 5 & 4 & 1 & 1 & 6 & 5 & 7 & 4 & 2 & 4 & 2 & 1 & 1 & 5 & 6 & 10 \\
12 & 4 & 1 & 4 & 2 & 3 & 2 & 5 & 6 & 4 & 3 & 1 & 5 & 3 & 3 & 2 & 6 & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|l|rlll|llll|llll|llll|rr|}
\hline 1 & 4 & 2 & 3 & 3 & 2 & 2 & 3 & 6 & 6 & 3 & 3 & 6 & 2 & 1 & 1 & 4 & 1 & 3 \\
2 & 2 & 1 & 2 & 1 & 3 & 6 & 1 & 3 & 5 & 3 & 2 & 6 & 2 & 1 & 1 & 6 & 9 & 4 \\
3 & 7 & 3 & 6 & 3 & 2 & 5 & 3 & 7 & 3 & 2 & 1 & 5 & 1 & 1 & 1 & 2 & 17 & 16 \\
4 & 4 & 1 & 4 & 1 & 1 & 6 & 4 & 7 & 7 & 5 & 2 & 6 & 4 & 1 & 2 & 6 & 2 & 6 \\
5 & 3 & 3 & 3 & 4 & 1 & 6 & 4 & 7 & 7 & 4 & 4 & 3 & 3 & 1 & 1 & 7 & 12 & 12 \\
6 & 3 & 3 & 3 & 2 & 1 & 3 & 3 & 5 & 6 & 3 & 2 & 5 & 2 & 1 & 1 & 4 & 3 & 10 \\
7 & 4 & 4 & 4 & 4 & 4 & 2 & 3 & 1 & 2 & 5 & 4 & 5 & 2 & 4 & 2 & 3 & 15 & 17 \\
3 & 3 & 3 & 3 & 3 & 2 & 2 & 2 & 2 & 7 & 3 & 3 & 6 & 2 & 3 & 1 & 4 & 8 & 9 \\
9 & 5 & 1 & 3 & 2 & 4 & 6 & 2 & 7 & 3 & 2 & 1 & 5 & 2 & 2 & 3 & 6 & 6 & 5 \\
10 & 4 & 2 & 2 & 2 & 3 & 6 & 5 & 6 & 7 & 5 & 2 & 7 & 3 & 2 & 3 & 7 & 14 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|r|rrrr|rrrr|rrrr|rrrr|rr|}
\hline 11 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & CIG & CAG \\
\hline 12 & 5 & 1 & 6 & 2 & 4 & 5 & 3 & 7 & 4 & 5 & 2 & 6 & 3 & 2 & 3 & 7 & 11 & 15 \\
13 & 1 & 3 & 2 & 3 & 1 & 1 & 4 & 3 & 7 & 2 & 3 & 4 & 4 & 3 & 2 & 3 & 10 & 1 \\
14 & 1 & 7 & 4 & 7 & 5 & 3 & 5 & 6 & 7 & 5 & 5 & 7 & 4 & 3 & 1 & 6 & 18 & 18 \\
15 & 1 & 3 & 1 & 4 & 1 & 4 & 2 & 2 & 7 & 2 & 2 & 3 & 2 & 3 & 2 & 1 & 2 & 13 \\
16 & 5 & 1 & 2 & 3 & 4 & 6 & 3 & 3 & 1 & 3 & 3 & 3 & 4 & 3 & 2 & 4 & 13 \\
17 & 7 & 2 & 5 & 2 & 4 & 7 & 3 & 6 & 5 & 5 & 2 & 3 & 4 & 4 & 3 & 5 & 7 & 1 \\
18 & 1 & 6 & 3 & 4 & 2 & 2 & 2 & 3 & 2 & 2 & 2 & 2 & 3 & 2 & 4 & 3 & 4 & 8 \\
\hline
\end{tabular}

\section*{I 2 Cumulative PCA soluitons}

The following pages list 6 PCA solutions; two individual grid (IG) solutions for each subject testing occasion, and one aggregate. grid (AG) solution for each testing occasion. Significant components only are listed, together with central element vectors and representative construct loadings (underlined), and total variance accounted for by significant components.

ISAAC IG?

variance accounted for - Re. \(97 \%\)

VARIANEE AACOONTED POR \(=83.6 \%\)

BUTH \& ISAAC AG

Ruth \(I G 1+2\)
\begin{tabular}{|c|c|c|c|}
\hline CASE' & \multicolumn{3}{|c|}{60ADINGS} \\
\hline : & 1. & 2. & - 3. \\
\hline Case & 1 CLSAAC) & & \\
\hline 1 & 3.4.132 & 0.4614 & - 0.2334 \\
\hline 2 & 2. 3357 & -0.6154 & 1.4033 \\
\hline 3 & 2.1064? & -0.8415 & -2.6675 \\
\hline 4 & 3.144.14 & -1.0237 & - 0.5212 \\
\hline 5 & 2,3511 & 1.6065 & 0.8219 \\
\hline 6 & 3.2218 & 1.1719 & 0.0 .7766 \\
\hline 7 & 1.1.167 & 0.9661 & \(=2.4926\) \\
\hline 8 & 2.1273 & 2.1651 & -0.4732 \\
\hline 9 & 3.4274 & \(-2.31 \pi 5\) & -1.2872 \\
\hline 10 & 2.7411 & -1.0077 & 1.3.)57 \\
\hline 11 & 2.7653 & 1.9949 & -0.1879 \\
\hline 12 & 3.2.1)56 & -1.5627 & 0.0 .0074 \\
\hline Case & 2 (RUTH) & & \\
\hline 1 & 2.9763 & 0.0613 & 1.2944 \\
\hline 2 & 3.7.023 & -1.4511 & 1.5251 \\
\hline 3 & 1.2634 & 3.47 .36 & \(-1.1467\) \\
\hline 4 & 1.4.7.33 & 1.0935 & ?.2951 \\
\hline 5 & -1. 3277 & 3.3750 & -0.2507 \\
\hline 0 & 1.5152 & 2.5692 & 0.2146 \\
\hline 7 & \(2.71 / 4\) & 1.8737 & 0.0 .4152 \\
\hline 8 & 2.7153 & -2.3)37 & -0.8त25 \\
\hline 9 & 2.1529 & -2.1271 & 0.4432 \\
\hline 10 & 2.9121 & \(\underline{1.6255}\) & 0.0 .5539 \\
\hline 11 & 2.1431 & 2.1230 & 0.6492 \\
\hline 12 & 2.6537 & \(-2.3446\) & -0.5134 \\
\hline & CrI & \(C_{R}\) & \% \\
\hline \multicolumn{4}{|l|}{VARIANCE ACPOUNTED FOR \(=74.74 \%\)} \\
\hline
\end{tabular}

RUTH IG1+2
\begin{tabular}{ccc}
COMPONENT & ROOT & AS PER CENT \\
1 & 196.6825 & 43.707 \\
2 & 132.1471 & 29.366 \\
3 & 29.5947 & 6.377 \\
4 & 26.0300 & 5.184 \\
5 & 15.3475 & 3.419 \\
6 & 13.7502 & 3.056 \\
7 & 12.1855 & 2.108 \\
8 & 5.8819 & 1.307 \\
9 & 4.6256 & 0.983 \\
10 & 3.7451 & 0.852 \\
11 & 3.3014 & 0.736 \\
12 & 2.7710 & 0.696 \\
13 & 1.9352 & 0.430 \\
14 & 1.2967 & 0.248 \\
15 & 1.0864 & 0.261
\end{tabular}

ISAAC IG1+2

Ruth a ISAAC AGI+2

\section*{I\% Level 9 measuris}

Transforcations appropriato to ferst--lovel foedback in the reportod casc-study wore confirmod to tho meacurement of construct centrality, (self-relevance) in the individual and agbregate dozains. Tho mothod of scoring constructo for centrality has boen describod in Appondix \(G\). In tho reciprocal caso-study centrality scores were derived for IG and AG solutions for both solf-rolevance and partnor-relevance for each subject on each testing occasion according to the following echeme:-
\begin{tabular}{|c|c|c|}
\hline Polevance & IG oolutions & AG colutions \\
\hline solf & \[
o_{k}^{I G S}=\sum_{\|_{I G}}^{j} L_{k j} V_{B j}
\] & \[
c_{k}^{A G S}=\sum_{H_{M G}}^{j} L_{k j}{ }^{V_{a j}}
\] \\
\hline partnor & \(c_{k}^{\text {IGP }}=\sum_{M_{I G}}^{j} L_{k j} V_{p j}\) & \[
c_{k}^{A G P}=\sum_{N_{\mathrm{AG}}}^{j} \mathrm{~L}_{\mathrm{kj}} v_{\mathrm{pj}}
\] \\
\hline
\end{tabular}
whoro : \(_{I G}\), " \({ }_{A G}=\) number of significant components in \(I G\) and \(\Lambda G\) solutiona respectivoly; \(L_{k j}=\) loading of kth conatruct on the jth aignificant componont; \(v_{s j}, v_{p j}=\) voctor of olement SELF and PARTIER, respectivoly, on the jth cignificant component. The ecorco obtained by this schemo aro lioted for cach construct in tho following tables.

Isaac: Solf-relevant centrality scorce
\begin{tabular}{|c|rrrl|}
\hline\(c_{k}\) & \(I G S_{i}\) & \(\Lambda G S_{1}\) & IGS \(_{2}\) & \(\Lambda G S_{2}\) \\
\hline 1 & 2.66 & 1.30 & 1.611 & 1.922 \\
2 & 2.03 & 1.21 & 1.402 & 1.442 \\
3 & 2.33 & 1.02 & 1.465 & 1.0144 \\
4 & 3.12 & 1.34 & 1.265 & 1.469 \\
5 & 2.73 & 1.17 & 1.676 & 1.529 \\
6 & 3.10 & 1.45 & 1.736 & 1.898 \\
7 & 1.65 & .42 & 1.002 & 1.014 \\
8 & 1.03 & 1.31 & 1.862 & 1.669 \\
9 & 2.53 & 1.49 & 1.949 & 1.922 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \({ }^{\text {c }}\) k & \(\mathrm{IGS}_{1}\) & \(\mathrm{NGS}_{1}\) & \(\mathrm{IGS}_{2}\) & \(\mathrm{AGS}_{2}\) \\
\hline 10 & 2.90 & 1.25 & 1.223 & 1.535 \\
\hline 11 & 2.91 & 1.47 & 1.709 & 1.667 \\
\hline 12 & 1.96 & 1.26 & 1.632 & 1.594 \\
\hline 13 & & & 1.513 & 1.1404 \\
\hline 14 & & & 1.569 & 1.614 \\
\hline 15 & & & 1.332 & 1.301 \\
\hline 16 & & & 1.606 & 1.736 \\
\hline 17 & & & 1.615 & 1.326 \\
\hline 13 & & & 1.754 & 1.736 \\
\hline
\end{tabular}

Iseac: Fartnor-relevant centrality scores
\begin{tabular}{|c|c|c|c|c|}
\hline \(\mathrm{c}_{\mathrm{k}}\) & \(I G P_{1}\) & AGP \({ }_{1}\) & \(\mathrm{IGP}_{2}\) & \(\mathrm{AGF}_{2}\) \\
\hline 1 & 2.33 & 1.33 & 1.623 & 1.241 \\
\hline 2 & 2.95 & 1.33 & 1.712 & 1.590 \\
\hline 3 & 1.40 & 1.35 & 1.543 & 1.659 \\
\hline 4 & 3.04 & 1.43 & 1.519 & 1.240 \\
\hline 5 & 2.05 & . 1.36 & 1.729 & 1.658 \\
\hline 6 & 3.05 & 1.53 & 1.566 & 1.726 \\
\hline 7 & . 89 & . 84 & 1.714 & 1.730 \\
\hline 3 & 1.94 & 1.52 & 1.792 & 1.778 \\
\hline 9 & 2.40 & 1.81 & 1.525 & 1.911 \\
\hline 10 & 3.04 & 1.45 & 1.520 & 1.485 \\
\hline 11 & 2.39 & 1.61 & 1.506 & 1.653 \\
\hline 12 & 2.02 & 1.31 & 1.585 & 1.657 \\
\hline 13 & & . & 1.543 & 1.354 \\
\hline 14 & & & 1.545 & 1.568 \\
\hline 15 & & & 1.433 & 1.714 \\
\hline 16 & & & 1.077 & 1.387 \\
\hline 17 & & & 1.422 & 1.915 \\
\hline 13 & & & . 966 & . 1.954 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \(c_{k}\) & IGS \({ }_{1}\) & AGS \({ }_{1}\) & \(\mathrm{IGS}_{2}\) & \(\wedge^{\prime G} S_{2}\) \\
\hline 1 & 2.18 & 1.20 & 1.022 & 1.457 \\
\hline 2 & 2.99 & 1.73 & . 633 & 1.643 \\
\hline 5 & 2.55 & \(1.48{ }^{\text {. }}\) & 1.245 & 1.638 \\
\hline 4 & 2.26 & 1.49 & 1.244 & 2.004 \\
\hline 5 & 2.05 & 1.47 & 1.439 & 1.829 \\
\hline 6 & 2.47 & 1.41 & 1.394 & 1.498 \\
\hline 7 & 2.60 & 1.59 & 1.283 & 1.646 \\
\hline 8 & 2.07 & 1.31 & . 903 & 1.963 \\
\hline 9 & 1.43 & 1.70 & 1.170 & 1.843 \\
\hline 10 & 2.55 & 1.59 & 1.271 & 1.909 \\
\hline 11 & 2.96 & 1.73 & 1.334 & 1.751 \\
\hline 12 & 2.25 & 1.75 & . 869 & 1.704 \\
\hline 13 & & & . 961 & 1.365 \\
\hline 14 & & . & 1.142 & 1.446 \\
\hline 15 & & & . 665 & 1.600 \\
\hline 16 & & & . 865 & 1.407 \\
\hline 17 & & & 1.151 & 1.333 \\
\hline 19 & & & . 739. & 1.662 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \(c_{k}\) & IGP1 & \(\mathrm{AGP}_{4}\) & \(\mathrm{IGP}_{2}\) & \(\Lambda \mathrm{GP} 2\) \\
\hline 1 & 1.83 & 1.09 & 1.696 & 1.682 \\
\hline 2 & 3.33 & 1.47 & 1.615 & 1.528 \\
\hline 3 & 2.94 & 1.04 & 1.630 & 1.717 \\
\hline 4 & 1.51 & 1.06 & 1.070 & 1.596 \\
\hline 5 & 3.05 & 1.17 & 1.444 & 1.540 \\
\hline 6 & 2.01 & 1.19 & . 853 & 1.238 \\
\hline 7 & 1.54 & 1.44 & 1.434 & 1.729 \\
\hline 8 & 2.83 & 1.55 & 1.583 & 1.380 \\
\hline 9 & 2.49 & 1.45 & 1.700 & 1.843 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \(c_{k}\) & IGP \({ }_{1}\) & \(\mathrm{AGP}_{1}\) & \(\mathrm{IGP}_{2}\) & \(\mathrm{AGF}_{2}\) \\
\hline 10 & 1.39 & 1.43 & 1.563 & 1.731 \\
\hline 11 & 2.30 & 1.46 & 1.005 & 1.514 \\
\hline 12 & 3.17 & 1.54 & 1.739 & 1.902 \\
\hline 13 & & & 1.374 & 1:593 \\
\hline 14 & & & . 955 & 1.105 \\
\hline 15 & & & 1.355 & 1.611 \\
\hline 16 & & & . 998 & 1.200 \\
\hline 17 & & & . 819 & . 991 \\
\hline 18 & & - & 1.220 & 1.505 \\
\hline
\end{tabular}

I 4 Lovel 3 classifications

Level 3 data classec for constructe in IG and \(A G\) colutiona aro liatod for Ruth and Icaac in Tables 52 and 5j. Tho following table provides a listing of posterior probabilities of construct centrality associated with these outcores. (probabilitics are given to throe places, decimal point onitted).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Construct} & \multicolumn{4}{|c|}{RUTH} & \multicolumn{4}{|c|}{ISAIC} \\
\hline & \multicolumn{2}{|l|}{IG} & \multicolumn{2}{|l|}{\({ }^{\text {AG }}\)} & \multicolumn{2}{|l|}{IG} & \multicolumn{2}{|l|}{\({ }^{\text {a }}\) G} \\
\hline & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 \\
\hline 1 & 505 & 318 & 505 & 318 & 505 & 650 & 505 & 650 \\
\hline 2 & 204 & 105 & 505 & 318 & 505 & 650 & 505 & 650 \\
\hline 3 & 204 & 105 & 505 & 650 & 204 & 318 & 204 & 105 \\
\hline 4 & 204 & 318 & 204 & 318 & 505 & 650 & 505 & 650 \\
\hline 5 & 204 & 313 & 505 & 650 & 204 & 318 & 505 & 650 \\
\hline 6 & 505 & 650 & 505 & 650 & 505 & 650 & 505 & 650 \\
\hline 7 & 505 & 318 & . 505 & 313 & 204 & 105 & 204 & 105 \\
\hline 3 & 204 & 105 & 505 & 318 & 204 & 318 & 204 & 105 \\
\hline 9 & 204 & 105 & 505 & 318 & 505 & 650 & 505 & 650 \\
\hline 10 & 505 & 318 & 505 & 318 & 505 & 650 & 505 & 650 \\
\hline 11 & 505 & 650 & 505 & . 650 & 505 & 650 & 505. & 650 \\
\hline 12 . & 204 & 105 & 505 & 318 & 505 & 650 & 505 & 650 \\
\hline 13 & & - 204 & & 204 & & 505 & & 204 \\
\hline 14 & & 204 & & 505 & & 505 & & 505 \\
\hline 15 & & 204 & & 204 & & 505. & & 204 \\
\hline 16 & & 204 & & 204 & & 505 & & 204 \\
\hline 17 & & 505 & & 505 & & 505 & & 505 \\
\hline 13 & & 204 & & 204 & & 505 & & 505 \\
\hline
\end{tabular}

\section*{I 5 Quory Forms}

Following the accembly of Lovol 1 and Levol 3 IG and AG displays, conotructs obtaining significant diccropancies betreen (a) subjectively anticipated and obsorvod contrality ranko (Lovol 1), and (b) expectod ond observod data classes (Level 3) verc listed on Qucry forcs and presented to the subjecto to furnich an account of the diocropancics. The following pagos dopict the responses rocorded to theso prompts.

ISAAC
L1 IG DAY 1

6 Semisto enquasir ytar kind of
6 oscribed relaringstip.
8 Phit inderatand. 'M conimad

 as too gotobal and nor discrimenaarng
\[
\begin{aligned}
& \text { ISAAC } \\
& L 1
\end{aligned}
\]
\[
\begin{aligned}
& \text { SAA } A G \text { DAY } 1 \\
& \text { LI }
\end{aligned}
\]

2 Dres wor work beqause ore eank
2 intersectual factor.

Nie This io mipartawit to mien -
11, No whmane. Except pleared to isatac
L3 IG/AG DAY 1

 the comintrysio \({ }^{2}\) central to Revrt as a pers diblewt mone penpherat to Rut sitiong wowits ete.) her - wild

ISAAC
\[
\text { L1 IG } \triangle A Y 3 I
\]

Family unsi Draion tour do disolke?
 Fhor proing to nouptis) int aochal hat thues. lat hai ing iseen, limportais for *heyn wert ins so wn't aware they were np to important at डदenomenur).
ISAAC
E L1 AG DAY 31
Whe think RuTH min portay now ree sompthing
17 Whe ytus as unportant vow, whereas the dudn:t before.
2 oftain, 1 thük this is the reonlt
 mevi the discussed strew wards thin
 coltectre thengy to together' anivivioy un toth unar \(\rightarrow\) Roft's Lav unfellectial of mie of inteligent' 4 'Culturally sop histicated.

TSAAC:
M L3 IG DAY 31
Recent hor paothat conoequent
3 publui doshourie has draton my payche's abtertion to this anotruco
5 Cutain people I feel have teen Musey.
8 constred cris cue to psihn on this oth events will lead to mpe untrbence intarce relas lurs higeneraly o pure in partieular.
isatac
L3 IG/AG DAY 31
3 Effect: min thai mulfactoris as say
 8 harr tackried abuntey, han werems RUTH

13.

15 The workhir but Boing home dourrit abour that yhour quith Mr Silly i A duastrote for Ladiy....
16 up orrejeases tensin. thayke Cover
RÜTH
L1 IG DAY1

H. RUTH \(\quad\) LAG DAY 1

This reahaps is a olightly 'woeley contouct,
6. Maybe \(t\) wo thin cemis miterempatat becine'

12 Mayle 9 (亻ind \(t\) concentrate moe or che

RUTH
\(L 3\) IG/AG DAY1
9 dont Hinht Hat intelectualty is
2 very improttint to the defintion of me - The

3 Perharos s am mare aviousey toenitrfaghe if ine leltiven demeotraty o ofther interestes outaide the home.
5) When I rate myself on these ocabs. 9 tend to compar myseff with I. so. 8 S only rate mysilf as average, wherea
 9 underestimate majoelf)
\(12 \frac{9}{1}\) tand rot to thinh of juster as luing ethe
 RUTH
N6. L1 IG DAY31
5 This is probiliby an importent ent raveli
 6 Same as abore.

Ty attention hai heen droun to this ha the feudbach fom the grid, at, is Since hainin the feedbach, \(g\) have
 is o not jest the differenceo. 14

RUTH
\[
\text { L1 AG DAY } 3!
\]

RuTH
LU IC DAY 31

4 9 cunt really undyistand why reflected changed mood at Per in it joist Sought from. the grid may have

RUTH
\[
{ }^{\text {RUTH }}{ }^{\text {AG DAY } 31}
\]

1 Since bents have changed both I. 2 mi s

2 Foedlach from the gre has drain our
 Aging bead bach dow made me the
8 Agar bead bach; has made me them h that

 the is RUTH.
- LB IG/AG DAY 31

14 Humour A hey a more inineotent part

\section*{I 6 Evaluntion of tho nrccedurce}

Reciprocal grid procedures vero ovaluatod by conducting five independent teste; (a) a test of the dictinetiveness of construction of colf and partner, (b) a test of shift of salienco in construction from celf- to partncr-rolevant predicates,
(c) a test of tho specificity of solf- and partner- rolovant predicates, (d) a a test of the rolationohip botween construct centrality on the two teating occasions, and (o) tests for tho increase of discriminative control ovor modelling.
(a) Dictinctiveness of solf and partner construction.

Firstly, preduct-momont corrolatione wero computed betwoon tho whole figuro constructs (LTKE SELF, LIFE PARPIER) on the two testing occaoions, Fishor's a transformation applied and differences botweon the correlations tested. The following tabio liste corrolations, associated \(z\) values in brackets.
\begin{tabular}{|c|c|c|}
\hline & Grid 1 & Gride \\
\hline Itanc & \[
\begin{gathered}
.687 \\
(.842)_{a}
\end{gathered}
\] & \[
\begin{gathered}
-.139 \\
\left(-.1^{1 / 0}\right)_{b}
\end{gathered}
\] \\
\hline Ruth & \[
\begin{gathered}
-.172 \\
(-.17)_{c}
\end{gathered}
\] & \[
\begin{gathered}
.761 \\
(.799)_{\mathrm{C}}
\end{gathered}
\] \\
\hline
\end{tabular}

Standard orror for all comparisons \(=\).392. All corrolations based on \(i=15\). Comparisons:-
a.b. \(\quad z_{a}-z_{b}=.932, z_{r}=2.51, p=.006\)
c.d. \(\quad z_{c}-z_{d}=1.173, z_{r}=2.99, p=.001\)
a.c. \(\quad z_{a}-z_{c}=1.016, z_{r}=2.59, p=.005\)
b.d. \(\quad z_{b}-z_{d}=1.139, z_{r}=2.91, p=.002\)

Secordily, product moment corrolations vere computed betveen the elenents SEFF and EAPR:ER on the two testing occacions, Fisher's a transformation appliod and
differences between the corrolations testod. The following tablo listo correlations, associated \(z\) valuen and sanple if in bracketc.
\begin{tabular}{|c|c|c|}
\hline & Grid \(_{1}\) & \(\mathrm{Grid}_{2}\) \\
\hline Isaac & \[
\begin{aligned}
& -.425 \\
& (-.454, l l=12)_{a}
\end{aligned}
\] & \[
\begin{aligned}
& .767 \\
& (1.013, \mathrm{l}=18)_{b}
\end{aligned}
\] \\
\hline Ruth & \[
\begin{aligned}
& -.679 \\
& (-.327, i=12)_{C}
\end{aligned}
\] & \[
\begin{aligned}
& .132 \\
& (.182,1:=18)_{d}
\end{aligned}
\] \\
\hline
\end{tabular}

Standard errore for comparicono:-
\begin{tabular}{ll}
a.b, c.d & \(=.422\) \\
a.c & \(=.471\) \\
b.d & \(=.365\)
\end{tabular}

Comparisons:-
a.b. \(\quad z_{a}-z_{b}=1.1 ; 67, z_{r}=3.48, p \quad .0005\)
c.d. \(z_{c}-z_{d}=1: 009, z_{r}=2.39, p=.008\)
a.c. \(z_{a}-z_{c}=.373, z_{r}=.79, p=.215\)
b.d. \(z_{b}-z_{d}=1.011, z_{r}=2.77, p=.003\)
(b) Selicnce of construction

To test salfence of construction on colf and partnor predicates on the two occacions loadings of the first oix constructs (out of 10) olicited on tho first occasion and the eix elicited on the oocond ocension were listed for \(A G\) conponent 1 (Ibancrelovant) and AG component 2 (Ruth-relovant), and root nean equarc loadinge computed. The following table liste these values.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Construct} & \multicolumn{4}{|l|}{Isaac} & \multicolumn{4}{|l|}{Ruth} \\
\hline & \multicolumn{2}{|l|}{Comporient 1} & \multicolumn{2}{|l|}{Componont 2} & \multicolumn{2}{|l|}{Component 1} & \multicolumn{2}{|l|}{Componont 2} \\
\hline & Grid \(_{1}\) & \(\mathrm{Grid}_{2}\) & Grid \(_{1}\) & \(\mathrm{Grid}_{2}\). & Grid \(_{1}\). & \(\mathrm{Grid}_{2}\) & \(\mathrm{Grid}_{1}\) & \(\mathrm{Grid}_{2}\) \\
\hline 1 & 3.23

2.83 & \(2.58{ }^{\text {b }}\) b
3.54 & .65
.44 & \({ }^{2.52}{ }^{2} \mathrm{O}\) d & \[
\begin{aligned}
& 2.34 \\
& 2.99
\end{aligned}
\] & \[
\begin{aligned}
& 1.86_{\mathrm{P}} \\
& 1.17
\end{aligned}
\] & \[
1.298
\] & \[
\begin{aligned}
& 2.65 h_{h} \\
& 2.04
\end{aligned}
\] \\
\hline 3 & 2.14 & . 97 & 1.00 & 2.49 & . 10 & 3.46 & 3.21 & . 22 \\
\hline 4 & 3.22 & . 85 & . 94 & 2.51 & 1.40 & 2.21 & 2.14 & . 64 \\
\hline 5 & 1.96 & 2.35 & 1.62 & 1.90 & 1.01 & . 18 & 3.24 & 2.92 \\
\hline 6 & 3.00 & 1.75 & 1.40 & . 87 & 1.63 & 3.04 & 2.82 & . 20 \\
\hline \begin{tabular}{l}
r.a.s. \\
loading
\end{tabular} & 2.78 & 2.22 & 1.09 & 2.01 & 1.94 & 2.27 & 2.41 & 1.84 \\
\hline
\end{tabular}

Fiann-ihitr.cy 0 tests vero then conputed betweon construct ampies, as followa:
a.b. \(\quad \dot{U}(6 / 6)=10\), n.a.
c.d. \(U(6 / 6)=6, p=.032\) (one-tailed)
c.f. \(U(6 / 6)=13\), ก.s.
g.h. \(U(6 / 6)=9\), ก.s.
a.c. \(U(6 / 6)=6, p=.032\) (ono-tailod)
a.c. \(U(6 / 6)=\cdot 0, p=.001\) (one-tailed)
b.d. \(U(6 / \sigma)=18\), n.t.
b.i. \(U(6 / \sigma)=18\), n.s.
c.g. \(U(6 / 5)=7, p=.047\) (ono-tailed)
d.h. \(U(6 / \sigma)=15\), n. 0 .
0.8. J (6/6) \(=13\), n. . .
f.h. \(U(6 / 6)=14\), n.s.

\section*{(c) Syecificity of solf and nartner mredicates.}

To test tho epecificity of self and partner construction, the laadings of tho two
whole figure constructe on AG conponent 1 (Isanc-relevant) and AG component 2 (Ruth-relovant) woro first listed in tho followire tablo.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{Component 1} & \multicolumn{2}{|l|}{Component 2} \\
\hline & Grid \(_{1}\) & \(\mathrm{Grid}_{2}\) & Grid \(_{1}\) & \(\mathrm{Grid}_{2}\) \\
\hline ISAAC-LIKE SELT & -3.05 & -1.31 & - . 49 & 2.80 \\
\hline ISAMC-LIKE PARTHER & -2.51 & -3.04 & 2.09 & -1.19 \\
\hline WUTTI-LIKE SELF & -1.83 & -3.48 & 2.69 & \(-1.40\) \\
\hline RUTH-LIKE PARTiNER & -2.87 & -3.59 & -2.06 & . 53 \\
\hline
\end{tabular}

Two tests woro then conductod on the difforences in theso loadirg values in rolation to the population of differonces in loadings of all constructs applicd on the tro testing occasions; (i) a tost based on tho difforence in absolute loadings on the two testing occasions. Here, a positive difference indicates the increasing relovance of a given conotruct to the component, a negative difforence decreacing rolovance. Tablo (i) belon listo the distribution, nean and standard deviation of observed differences in absolute loadinge of replicated constructo ; (ii) a test based on algebraic differences between loadingo on the tro tocting occagions. This test takes account of changes in the polarity of relevance, in that a positive ard negative loading of the same value for a given conatruct on the two teotinc occasions (indicating a roversal of relevance on a componont) vould be concealed by the former test. Fabio (ii) below licts the distribution, arean and standard deviation of observed algebraic differences between loadings of replicated conotructs.

Ao these difference distributions ropresent the ontire population of differences, \(z\) acores were computed for obtained differences on tho two whole-figuro constructo for cach subjoct, and testod by approximation tho normal distribution probability density function. \(z\) ecores and associatod ono-tailed probabilitics are listed below each table.
(i) Differences betwoen absolute construct loadings on the first two components over testine occasions.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Cenctruct} & \multicolumn{2}{|l|}{Risth} & \multicolumn{2}{|l|}{Isanc} \\
\hline & Comp. 1 & Comp. 2 & Сожр. 1 & Comp. 2 \\
\hline 1 & . 711 & . 544 & . 014 & . 944 \\
\hline 2 & . 340 & -. 435 & . 141 & -. 030 \\
\hline 3 & 2.702 & - . 370 & . 009 & - . 753 \\
\hline 4 & . 106 & . 244 & . 341 & - . 737 \\
\hline 5 & . 571 & -. 104 & . .932 & -. 673 \\
\hline 6 & - . 515 & -. 193 & . 301 & . 233 \\
\hline 7 & . 244 & . 164 & 1.135 & . 299 \\
\hline 9 & . 148 & -. 694 & . 133 & . 031 \\
\hline 9 & . 492 & -. 303 & . 457 & - . 269 \\
\hline 10 & .243 & - . 479 & . 912 & - . 532 \\
\hline LIKE RUTİ & 1.6140 & \(-1.292{ }_{\text {b }}\) & . \(529{ }_{c}\) & - . 391 d \\
\hline LIIE ISAAC & .726。 & \(-1.482_{f}\) & \[
-1.7100_{g}
\] & 2.307 h \\
\hline K & . 617 & -. 403 & . 264 & -. .006 \\
\hline S & . 829 & . 606 & . 733 & . 903 \\
\hline
\end{tabular}
\(Z\) scores and associated one-tailed probabilities:-
\begin{tabular}{ll}
a. & \(z=1.234, \quad p=.109\) \\
b. & \(z=-1.459, \quad p=.072\) \\
c. & \(z=.352, p=.359\) \\
d. & \(z=-.975, p=.165\) \\
o. & \(z=.131, p=.443\) \\
f. & \(z=-1.772, p=.038\) \\
g. & \(z=-2.734, p=.003\) \\
h. & \(z=2.547, p=.005\)
\end{tabular}
(ii) Algebraic differences between construct loadings on the first two components over testing occasions.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Construct} & \multicolumn{2}{|l|}{Ruth} & \multicolumn{2}{|l|}{Isaac} \\
\hline & Comp. 1 & Comp. 2 & Comp. 1 & Comp. 2 \\
\hline 1 & - . 711 & . 544 & -. .014 & . 944 \\
\hline 2 & -. 340 & . 435 & -. 141 & . 030 \\
\hline 3 & 2.702 & -. 870 & - . 009 & . 758 \\
\hline 4 & - . 106 & . 244 & -. . 341 & 1.143 \\
\hline 5 & . 571 & -. 104 & -. 932 & -. 673 \\
\hline 6 & . 515 & -. 198 & - . 301 & . 233 \\
\hline 7 & - . 244 & - . 164 & 1.135 & . 299 \\
\hline 3 & - . 148 & . 694 & -. 133 & . 031 \\
\hline 9 & - . 492 & . 303 & - . 457 & . 269 \\
\hline 10 & - . 243 & - . 479 & -. 912 & . 532 \\
\hline LIKE RUTH & \(-1.640{ }_{a}\) & \(-4.032{ }_{b}\) & \(-.523_{c}\) & \(-3.231 \mathrm{~d}\) \\
\hline LIKE ISAAC & - . \(726_{\text {e }}\) & \({ }^{2.640}\) & \(1.7{ }^{140} \mathrm{~g}\) & \(3.239_{h}\) \\
\hline M & -. 072 & -. 060 & - . 075 & . 293 \\
\hline S & 1.047 & 1.530 & . 779 & 1.485 \\
\hline
\end{tabular}

2 scores and associatod one-tailed probabilitics:-
a. \(z=-1.493, p=.067\)
b. \(z=-2.629, p=.004\)
c. \(z=-.533, p=.230\)
d. \(\quad z=-2.410, \quad p=.003\)
o. \(z=-.625, p=.266\)
f. \(\quad \approx=1.765, p=.039\)
g. \(z=2.330, p=.010\)
h. \(z=2.014, p=.022\)
(d) Construct contrality

To test the oxtent of change of relevance of constructs to solf and partner cofinitions, centrality scores for self and partner in the IG colution (sco I.3) wore ranked and Spearaian rarle-order correlationo obtained betwoen testing occasions:-
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Construct} & \multicolumn{3}{|l|}{Isanc} & \multicolumn{3}{|l|}{Ruth} \\
\hline & \(\mathrm{IGS}_{1} \mathrm{IGS}_{2}\) & \(I G P_{1}\) & IGP 2 & \(\mathrm{IGS}_{1} \quad I G S_{2}\) & IGP \({ }_{1}\) & \(\mathrm{I} \mathrm{P}_{2}\) \\
\hline 1 & \(7 \quad 7\) & 6 & 5 & 99 & 9 & 3 \\
\hline 2 & 39 & & 4 & 112 & 2 & 5 \\
\hline 3 & 98 & & 8 & 56 & 4 & 4 \\
\hline 4 & 1. C & & 11 & 77 & 11. & 10 \\
\hline 5 & 65 & 9 & 2 & \(11 \quad 1\) & 3 & 8 \\
\hline 6 & 23 & & 7 & 62 & 3 & 12 \\
\hline 7 & 1212 & & 3 & \(3 \quad 4\) & 10 & 9 \\
\hline 3 & \(10 \quad 2\) & 11 & 1 & 1010 & 5 & 6 \\
\hline 9 & 81 & 8 & 9 & 128 & 6 & 2 \\
\hline 10 & 511 & & 10 & 45 & 12 & 7 \\
\hline 11. & 44 & & 12 & 23 & 7 & 11 \\
\hline 42 & 116 & 10 & 6 & 811 & 1 & 1 \\
\hline Sho & -. 028 & - . 6 & & . 070 & & \\
\hline
\end{tabular}
- denotes significance at the 5 percont lovel (one-tailed)

\section*{(o) Diccriminative control}

To test for increasea in accuracy of diecrimination of cues associatod with predication centrality, solf-relovant centrality scores in IG and AG oolutions wero ranked and Spearran rank-order correlations calculated betwoen obtainod ranks and rankings obtained for subjective estimates of oolf-rolevanco in Hodule B. In addition, inerenents or decrewente in correlations over tho two tosting occasions were tested by applying Fiaher's tranoformation: The following table liote the rankings on each
testing occasion, for IG solutions (a) and AG solutions (b), where S represents subject's ranking, and 0 observed centrality rank.
(a) Centrality in individual arid golutions
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Construct} & \multicolumn{2}{|l|}{Isaac} & \multicolumn{2}{|l|}{Ruth} \\
\hline & \(\mathrm{P}_{1} \quad \mathrm{O}_{1}\) & \(\begin{array}{ll}\mathrm{P}_{2} & \mathrm{O}_{2}\end{array}\) & \(\mathrm{B}_{1} \quad O_{1}\) & \(\mathrm{P}_{2} \quad \mathrm{O}_{2}\) \\
\hline 1 & 27 & 19 & - 49 & \(5 \quad 11\) \\
\hline 2 & 53 & \(9 \quad 14\) & 111 & \(7 \quad 17\) \\
\hline 3 & 79 & \(17 \quad 13\) & -3 5 & 46 \\
\hline 4 & 91 & \(2 \quad 16\) & 67 & 37 \\
\hline 5 & 36 & 126. & \(10 \quad 11\) & 101 \\
\hline 6 & 112 & \(3 \quad 4\) & 56 & 112 \\
\hline 7 & \(12 \quad 12\) & 15.18 & 123 & 3 4 \\
\hline 8 & 310 & 32 & 710 & \(13 \quad 13\) \\
\hline 9 & 43 & 61 & 912 & 12 B \\
\hline 10 & 105 & \(14 \quad 7\) & 2. 4 & 25 \\
\hline 11 & 64 & 11.5 & 12 & 1. 3 \\
\hline 12 & 111 & \(10 \quad 7\) & 88 & \(6 \quad 14\) \\
\hline 13 & & 1312 & & 912 \\
\hline 14 & & \(16 \quad 11\) & , & 1310 \\
\hline 15 & & \(13 \quad 15\) & & \(17 \quad 18\) \\
\hline 16 & . & 510 & & \(16 \quad 15\) \\
\hline 17 & & 78 & - & 159 \\
\hline 18 & & 43 & . & 14. 16 \\
\hline Rho & -. 315 & . 428 & . 175 & . 472 \\
\hline 2 & -. \(326_{0}\) & \(.457{ }_{\text {b }}\) & \(.177_{c}\) & \(.513{ }_{\text {d }}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Construet} & \multicolumn{4}{|l|}{Isaac} & \multicolumn{5}{|c|}{Ruth:} \\
\hline & \(P_{1}\) & \(0_{1}\) & \(\mathrm{P}_{2}\) & \(\mathrm{O}_{2}\) & & \(\mathrm{P}_{1}\) & \(\mathrm{O}_{1}\) & \(\mathrm{P}_{2}\) & \(\mathrm{O}_{2}\) \\
\hline 1 & 4 & 6 & 3 & 1 & & \(2{ }^{\circ}\) & 12 & 3 & 14 \\
\hline 2 & 3 & 9 & 4 & & & 8 & & 9 & 19 \\
\hline 3 & 7 & 11 & 16 & 17 & & 12 & 9 & 11 & 8 \\
\hline 4 & 6 & 4 & 6 & 13 & & 10 & 8 & 10 & 1 \\
\hline 5 & 9 & 10 & 12 & 12 & & 5 & 10 & 12 & 5 \\
\hline 6 & & 3 & 10 & 3 & & 4 & 11 & 15 & 13 \\
\hline 7 & & 12 & & 18 & & 6 & 6 & 4 & 10 \\
\hline 3 & & 5 & 9 & 7 & & 7 & 1 & 13 & 2 \\
\hline 9 & & 1 & 5 & 2 & & 11 & 9 & 16 & 4 \\
\hline 10 & & 8 & & 11 & & 3 & 7 & 7 & 3 \\
\hline 11 & & 2 & & 8 & & & 3 & 1 & 6 \\
\hline 12 & & 7 & & 10 & & 9 & 2 & 6 & 7 \\
\hline 13 & & & & 15 & & & & 2 & \(17^{\circ}\) \\
\hline 14 & & & & 9 & & & . & 18 & 15 \\
\hline 15 & & & & 16 & & & & 17 & 12 \\
\hline 16 & & & & 6 & & . & & 14 & 16 \\
\hline 17 & & & & 4 & & & & 8 & 18 \\
\hline 19 & & & & 5 & & & & 5 & 9 \\
\hline Rho & & .147 & & . 364 & & & . 091 & & . 022 \\
\hline z & & .148 & & \(.381_{\mathrm{f}}\) & & & \(.091{ }_{B}\) & & . 022 h \\
\hline
\end{tabular}

Standard orror for all conparisons \(=.422\)
Comparisons:-
a.b. \(z_{a}-z_{b}=.783, z_{r}=1.855, p=.031\)
c.d. \(\varepsilon_{c}-z_{d}=.336, z_{r}=.796, p=.212\)
e.f. \(z_{0}-z_{p}=.233, z_{r}=.552, p=.291\)
g.h. \(z_{g}-z_{h}=-.069, z_{r}=.164, p=.436\)```

[^0]: "If comunication is optimur, they understand that they differ on the interpretation of the act, and also realize

[^1]: Thus, representative constructs for Isaac's and Ruth's first component were arranged in a column from the highest to the lowest loading. Constructs which cbtained loadings of inconsistent sign were reversed, and where this occurred Isaac and Rith were instructed to substitute a card with the construct description reversed. Having completed the first compsent colum, salient element cards were arranged to either side:-

[^2]: "The next dispiay maps your estimates of the importance of your constructs to your definition of yourself against

[^3]: In summary, there is some evidence for a disjunction of views between Isaac and Ruth, in that whilst Isaac construes himself and Ruth in intellectual terms, Ruth chooses not to do so herself, emphasising instead her placid, easy going nature. This rift, between Isaac's view of Rutn as intellectual and her own reluctance to view herself in those terms, assumes some importance as later activities will demonstrate.

[^4]: "These three constructs were originally thought of with Isaac's brother in mind, as being very different from

[^5]: "A negotiation consists in the pooling of viewpoints, and the subsequent correction of accounts...(either because) in the course of reflection upon his own actions a person may come to form the opinion that some action which at first consideration seemed not to be done for a reason could be explained and a reason for it given...(or because) a person may also be persuaded that his account should be changed even if derived from a monitoring commontary...The standard situation of negotiation is typified by a "family therapy session", such

[^6]: Finally, further research, in addition to ensuring that sample observations are independent, would increase sample size in order to establish more stable conditional and unconditional distributions.

[^7]: "discrepancies between the clients' verbal expressions about himself (awareness or insight) and his behaviour either as it is observed by the therapist or reported. by the client.....Confrontation may be viewed as the attempt. to bring to awareness the presence of cognitive dissonance or incongruence in the client's feelings,

[^8]: 1 Rannioter D. \& Hair J.M.H. The evaluation of personal constructs. Acarlomic Press, 1968.
 2 Coombe C.H. A theory of data, Hilcy, 1964.

[^9]: . Pannicter D. \& Kair J.H.í., op. cit.
 10. Eannister D. \& Hair J.H.H., op. cit. p.59-60.

