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Buckling behaviour of cold-formed steel beams with web 

perforations 

 

Nanting Yu 

 

 

ABSTRACT 
 

Cold-formed steel (CFS) members are widely used in the constructional industry, because 

CFS has high strength-to-weight ratio and can be easily fabricated into different shapes. In 

order to accommodate services like electric wires and pipelines, perforations are commonly 

punched into the web of CFS beams. However, the appearance of web openings may reduce 

the properties of the cross section and hence change the stress distribution along the longitude 

axis. As a result, the perforated cold-formed steel (PCFS) beam is more susceptible to lateral-

torsional buckling. For specific cross sections controlled by distortional buckling, the 

restraint of web on the flange weakens due to the web perforations and hence the PCFS beam 

may fail more easily than the CFS beam. Among all the current specifications, the design 

equations for determining the critical stress of PCFS beams are non-existent. In addition, the 

design guideline of CFS mainly concentrates on the loading conditions that the members 

subject to pure bending or compression, while the uniformly distributed load is more 

common in beams.   

 

It is known that singly PCFS beams have low lateral stiffness and torsional rigidity about the 

weak axis which lead to them suffering from distortional or lateral-torsional buckling. To use 

PCFS sections with larger scale in structures, back-to-back built-up CFS beams with web 

perforations are commonly employed. They are connected by two individual PCFS studs 

using self-drilling screws. However, the application of built-up CFS beams with web 

perforations in practice is encountering challenges due to the lack of suitable design method. 

The researchers are prone to modify the design equations of hot-rolled I sections to predict 

the ultimate strength of built-up CFS sections, but this approach was found to be conservative. 
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This project aims to investigate the buckling behaviour of CFS beams with web perforations. 

Simplified analytical models based on energy method were proposed to predict the critical 

stress of distortional buckling of PCFS beams subject to pure bending and uniformly 

distributed load, and the effect of variant moment distribution along the longitude axis was 

examined. Li’s model proposed in 2004 was modified for the calculation of the lateral-

torsional buckling of PCFS beam subject to pure bending and uniformly distributed uplift 

load, and the influences of lateral and translational restraint provided by sheeting were 

discussed. Elastic finite element models were developed by using commercial software 

ANSYS to investigate the influence of hole sizes and cross-section dimensions on the 

buckling behaviour of PCFS beams. The results have shown a good agreement between the 

finite element analysis data and theoretical results. 

 

In this study, non-linear finite element models including material, geometrical and contact 

non-linearity were performed to explore the structural behaviour of CFS built-up beams with 

web perforations subject to pure bending. The numerical results were verified against the 

existing experimental data in the literature. Afterwards, the validated finite element models 

were employed for the extensive parametric study. A total of 398 numerical simulations were 

conducted to examine the influence of hole sizes, hole spacing, beam slenderness and screw 

arrangements. The current direct strength method for PCFS beams was extended for the 

design rule of CFS built-up beams with web perforations subject to pure bending.  

 

This thesis has contributed to improve the understanding of distortional and lateral-torsional 

buckling behaviour of PCFS beams subject to pure bending and uniformly distributed load, 

the data obtained from the numerical investigations provided a thorough grounding for 

further design of CFS built-up beams with web perforations. 

 

KEY WORDS: cold-formed steel beams; web perforations; built-up sections; distortional 

buckling; lateral-torsional buckling; finite strip method; finite element method; pure bending; 

uniformly distributed load; stress gradient; energy method; built-up section; ultimate capacity; 

non-linear analysis; direct strength method 
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NOMENCLAURE 
 

 All the symbols have been defined where they first appeared, the primary symbols used in 

this thesis are summarized below, 

h web depth of the cross section  

  
b flange width of the cross section  
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t thickness  

d diameter of the circular hole  

l beam length  

nh total number of the holes in the web 

A cross-section area of the compressed flange and lip  

E Young’s modulus  
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σy yield stress  

G shear modulus  

J torsion constant of the compressed flange and lip 

λd critical half-wave length of distortional buckling  

Iw warping constant  

Ix 
moment of inertia of the compressed flange and lip to the shear center about the 

x-axis  

Iy moment of inertia of the compressed flange and lip to the shear center about the 

y-axis  

Ixy product of inertia of the compressed flange and lip about the shear center  

kɸ rotational spring stiffness  

u horizontal displacement of the compressed flange and lip at the shear center for 

distortional buckling 

v vertical displacement of the compressed flange and lip at the shear center for 

distortional buckling 

ɸ rotation of the compressed flange and lip about the shear center for distortional 

buckling 

D flexural rigidity of the unperforated strip 
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Dh flexural rigidity of the perforated strip 

α reduction factor of the rotational spring stiffness for distortional buckling 

ky vertical spring stiffness for distortional buckling 

EI1 bending stiffness of the plain web 

EI2 bending stiffness of the perforated web 

β reduction factor of the vertical spring stiffness for distortional buckling 

Mcr critical moment of the PCFS beam 

My yield moment of of gross cross-section 

rc polar radius of gyration of the compressed flange and lip about the centroid 
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distributed load 
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qz density of uniformly distributed load for distortional buckling  
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σx(x,y,z) pre-buckling longitudinal stress for lateral-torsional buckling 

ū(x,y,z) longitudinal deflection at point (x,y,z) during lateral-torsional buckling 

kz horizontal spring stiffness for lateral-torsional buckling 

w horizontal displacement of the PCFS beam at the centroid for lateral-torsional 

buckling  

v1 vertical displacements of the PCFS beam at the centroid for lateral-torsional 

buckling  

ɸ1 rotation of the PCFS beam about the shear center for lateral-torsional buckling 

 Iz1  the moment of inertia of CFS beams (without holes) about the z-axis  

Iy
*  moment of inertia of the PCFS channel section about the y-axis 

Iz
*
  moment of inertia of the PCFS channel section about the z-axis 
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VQ coefficient of variation of load effect 

CP  correction factor 

β1 calculated reliability index 

 β0 target reliability index 

  



 1 

Chapter 1 — Introduction  
 

1.1 General introduction – cold-formed steel sections 

 

Cold-formed steel (CFS) sections are made by pressing, folding plates or rolling sheet steel at 

ambient temperature. The yield stress of CFS is increased due to the cold working processes, 

which can reach 550 MPa or higher, while the ductility of CFS may be decreased at the same 

time. The benefit of CFS is not only its high strength but also its lightness in weight. The 

thicknesses of the CFS usually range from 0.9 mm to 8 mm. Due to its unique material 

property, it is widely used in the construction industry. For example, CFS sections are usually 

employed as main structural members in the light steel prefabricated buildings. They are also 

used in storage racks, stadiums, bridges, transmission towers, etc. 

 

CFS members first used in building construction began in the 1850s in America. No design 

standard about CFS existed at that time, for this reason, the usage of the CFS members was 

limited. The first specification for design of CFS sections was published in 1946 (AISI, 1946). 

Since then, some CFS design codes have been came out by other countries. America, Canada 

and Mexico use the North American Specification (AISI, 2016) to design the CFS members. 

European countries design the CFS members according to the Eurocode 3 (EN-1993-1-3, 

2006). Other countries tend to utilize their own guidelines for CFS members, which were 

developed based on the American design code. 

 

There are various types of CFS sections (see Figure 1.1), the most common sections are the 

channel, sigma and zed shapes. Lips are added to improve the efficiency against local 

buckling (Li and Chu, 2008). Compared with hot rolled steel sections, the thickness of CFS 

sections is relevantly thin which makes it tend to buckle under compression, generally it 

cannot reach the full strength of the material. Furthermore, CFS beams have low lateral 

stiffness and low torsional stiffness which give great flexural stiffness about one axis. This 

leads to CFS beams very prone to buckling. Hence, the stability is the key problem for the 

CFS structures. 
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Figure 1.1 Common used sections of CFS members (Copy from EN 1993-1-3 (2006)) 

 

Normally, open cross-section CFS beams have three typical buckling modes, namely, local 

buckling, distortional buckling and lateral-torsional buckling (see Figure 1.2). The buckling 

mode of the CFS section mainly depends on the dimension of the section, the beam length 

and the support condition (Chen and Li, 2010). 

 

The local buckling is a mode only involves plate flexure, no translation of the intersection 

lines of the adjacent plates appears (Ádány, 2004). In addition, the half-wave length of local 

buckling is similar to the cross section which is the shortest one among the three modes, as 

shown in Figure 1.2(a).  

 

Distortional buckling is known as stiffener buckling which involves translation and rotation 

of the compressed flange and lip at the web-flange junction. The flange-lip system does not 

change in the cross-sectional shape during buckling (Teng et al., 2003). When the flange-lip 

system buckles, the web will suffer flexure at the same half-wavelength. The half-wavelength 

of distortional buckling is several times longer than the cross-section size which is between 

the local and lateral-torsional buckling, as shown in Figure 1.2(b).  

 

Lateral-torsional buckling is a mode in which the whole member moves like rigid body, the 

whole cross section may rotate and translate, but the shape of the section will not change (Li, 

2004). The half-wavelength of lateral-torsional buckling is equal to the beam length which is 

the longest one among the three modes, as shown in Figure 1.2(c). 



 3 

 

(a)                                           (b)                                                 (c) 

Figure 1.2 Buckling modes of a CFS channel beam in bending (a) Local buckling, (b) Distortional 

buckling and (c) Lateral-torsional buckling 

 

Figure 1.3 illustrates the buckling curve of CFS channel beams with a typical section under 

bending which is generated by the program CUFSM (Shafer and Ádány, 2006), the web 

depth, flange width, lip length and thickness of cross section is selected as 200 mm, 70 mm, 

20 mm and 2.5 mm, respectively. It can be found that local buckling occurs at the first 

minimal value in which the half-wavelength is 100 mm, the distortional buckling occurs at 

the second minimal value in which the half-wavelength is 550 mm. When the half-

wavelength is greater than 2000 mm, lateral-torsional bucking is the dominant buckling mode.  

 

1.2 Background of the project 

 

The perforated cold-formed steel (PCFS) beams have been employed as bearing components 

in constructions. The web openings can not only create the space for serviceability of 

pipelines to pass across but also reduce the weight of the beam due to the economic benefit. 

Compared with castellated beams, PCFS beams are lighter and thinner so that the costs on the 

transport and erection of the construction are lower. Moreover, the web perforations can be 

done by hole punches directly during the beam manufacturing processes and it would not 

cause much extra labour work. Therefore, the PCFS beam could be a more economical choice 

for steel construction industry. 
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Figure 1.3 Buckling curves of CFS beams subject to pure bending 

 

In the existing specifications (AISI, 2016; AS/NZS, 2005), there are some design rules for 

determining the ultimate strength of PCFS members. However, these design rules were 

proposed based on the experimental and numerical investigations, little information about the 

theoretical approaches were mentioned. The theoretical approaches for calculating the critical 

buckling stress are needed. In this thesis, new formulae based on Hancock’s model proposed  

in 1987 and Li’s model proposed in 2004 were presented for predicting the critical stress of 

distortional and lateral-torsional buckling of PCFS channel beams subject to pure bending, 

respectively.  

 

Furthermore, the current design codes mainly focused on the situation that the sections are 

subject to pure bending or compression, but the uniformly distributed load is the most 

common force in practice. When the PCFS beam is subject to uniformly distributed load, the 

buckling behaviour could be different compared to pure bending. In this thesis, new formulae 

based on Li and Chen’s model proposed in 2008 and Li’s model proposed in 2004 were 

derived for determining the critical stress of distortional and lateral-torsional buckling of 

PCFS channel beams subject to uniformly distributed load, respectively. The influence of 

variant moment distributions along the longitudinal axis was also discussed. 
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Since 1950s, castellated and cellular beams have been used as structural members in 

constructional industry by engineers (see Figure 1.4). A castellated beam is fabricated from 

standard I-shape steel by cutting a zigzag pattern along the web. The two halves are welded 

back together to form the castellated section (AISC, 2016). A cellular beam is produced in 

the similar process, the only difference is that webs require twice cutting to form half circular 

patterns. These work increases the depth of the web without adding any material and hence 

strengthen the major axis bending strength and stiffness (Yuan et al., 2014; Kim et al., 2016).  

 

     

Figure 1.4 Castellated and cellular beams used in constructional industry 

 

Recently, cellular beams are made by just cutting holes directly from the web, which 

eliminates welding. There are already several books written for the design and analyses of 

castellated and cellular beams (Knowles, 1985; Harper, 1991; Fares et al., 2016), the 

corresponding design method is explicit. However, the castellated and cellular beams are 

made from hot-rolled steel, the yield strength cannot reach as high as 550 MPa. Furthermore, 

the processes of cutting and welding can increase the fabrication cost.  

 

There is a trend that the CFS built-up channel beam with web perforations takes the place of 

castellated beams or cellular beams in practice. The CFS built-up channel beam with web 

perforations is connected by two PCFS sections using self-tapping screw, back to back (see 

Figure 1.5). Compared with single section, the built-up section has higher torsional rigidity 

and lateral stiffness which makes it have better performance against distortional and lateral-

torsional buckling.  
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Figure 1.5 Cold-formed steel built-up channel beams with web perforation 

 

The structural behaviour of built-up sections contains nonlinear problems due to the contact 

between two webs and discontinuous connections along the longitudinal axis. For these 

reasons, the theoretical analysis of built-up CFS channel beam is very complicated. 

Researchers tended to modify the equations of hot-rolled I sections for designing the built-up 

CFS sections even though this design rule may be conservative. In the current specifications, 

a suitable approach for predicting the failure strength of the CFS built-up beam with web 

perforations is limited. In this thesis, non-linear finite element analyses (FEA) were 

conducted for the parametric study to extend the direct strength method (DSM) equations for 

calculating the ultimate moment of CFS built-up beams with web perforations.  

 

1.3 Research aim and objectives 

 

The aim of this study is to investigate the distortional and lateral-torsional buckling behaviour 

of PCFS beams subject to pure bending and uniformly distributed load, new theoretical 

approaches to determine the critical buckling stress need to be presented. Meanwhile, the 

non-linear numerical investigations of built-up CFS beams with web perforations are 

performed to extend the DSM equations for predicting the ultimate failure strength. The 

specific objectives are listed as follows, 

 

 To find suitable analytical approaches to predict the critical stress of distortional 

buckling of PCFS beams subject to pure bending and uniformly distributed load. 
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 To study the influence of web perforations on the buckling behaviour of PCFS beams 

subject to pure bending and uniformly distributed load by FEA. 

 

 To investigate the effect of stress gradient along the beam longitudinal direction on 

the distortional buckling behaviour of PCFS beams.  

 

 To develop analytical models for calculating the critical moment of lateral-torsional  

buckling of PCFS beams subject to pure bending and uniformly distributed uplift load. 

 

 To explore the influence of horizontal and rotational restraint provided by the sheeting 

on the lateral-torsional buckling behaviour of PCFS beams subject to pure bending 

and uniformly distributed uplift load. 

 

 To conduct nonlinear FE models to obtain the ultimate failure strength of built-up 

CFS beams with web perforations subject to pure bending. 

 

 To investigate the effect of beam slenderness, screw arrangements, hole size and hole 

spacing on the structural behaviour of CFS built-up beams with web perforations 

subject to pure bending. 

 

 To extend original DSM design equations for predicting the ultimate failure strength 

of CFS built-up beams with web perforations subject to pure bending. 

 

1.4 Outline of the project 

 

The objectives of this project are implemented through combination of numerical simulation 

experimental investigation and theoretical derivation. The results of elastic FEA were 

compared with finite strip method and the non-linear finite element models were validated 

against the data of existing test. This thesis is consistent of seven chapters and divided into 

three steps. 

 

 Step I (Chapters 1-2) 
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Step I  mainly focuses on illustrating the background of the project and reviewing the 

relevant literature. Chapter 1 comprises the general introduction of CFS sections, background 

of the project, objectives and outline of this thesis. Chapter 2 provides more detailed literature 

review, including the development of existing analytical models for buckling of CFS sections, 

design method for CFS sections, buckling behaviour of PCFS members and structural 

behaviour of CFS built-up beams with plain web, intermediate stiffeners and web 

perforations. 

 

 Step II (Chapters 3-4) 

 

Step II turns the point to investigate the buckling behaviour of PCFS beams. Chapter 3 

conducted the theoretical and numerical investigation of distortional buckling. New analytical 

approaches were proposed to obtain the critical stresses of distortional buckling of PCFS 

beams subject to pure bending and uniformly distributed load. The influences of hole sizes, 

cross-section dimensions and stress gradient were examined in FEA. Chapter 4 studies the 

lateral-torsional buckling of PCFS beams subject to pure bending and uniformly distributed 

uplift load, the simplified formulae were put forward to determine the critical moment of 

lateral-torsional buckling. The effects of horizontal and rotational restraint provided by 

sheeting were investigated. The finite strip method (FSM) performed by CUFSM was used to 

validate against the results of the elastic finite element models with plain web. 

 

 Step III (Chapter 5-6) 

 

Step III concentrates on investigating the structural behaviour of CFS built-up beams with 

web perforations subject to pure bending. Chapter 5 reports the details of non-linear finite 

element including material non-linearity, geometric non-linearity and contact non-linearity. 

The existing experimental data of CFS built-up beams with or without web perforations was 

used to check the accuracy of numerical investigation. Chapter 6 presents the design rule of 

CFS built-up beams with web perforations, the current DSM design equations were extended 

according to the parametric study. The influences of hole size, hole spacing, screw 

arrangements and beam slenderness were also investigated. 
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Chapter 7 is the last part of this thesis, which summarizes the main findings of the project. 

The recommendations for future work on the PCFS beams and CFS built-up beams with web 

perforations were also presented. 
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Chapter 2 — Literature review  
 

2.1 General 

 

This chapter reviews the previous research on the buckling performance of CFS members 

including local buckling, distortional buckling and lateral-torsional buckling. Especially 

focusing on the former study on the buckling behaviour of PCFS sections and structural 

behaviour of CFS built-up beams with web perforations. 

 

The first part summarizes the design method for CFS members, including the existing 

analytical approaches, the generalised beam theory, numerical method, effective width 

method and direct strength. The second part covers the existing literature on the buckling 

behaviour of single PCFS members including the development of experimental work, 

numerical investigation and theoretical study. The third part involves the recent research on 

the structural behaviour of the CFS built-up sections, CFS built-up sections with intermediate 

stiffeners and CFS built-up sections with perforations.  

 

The relevant literatures are listed in each section of this chapter. 
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2.2 Analytical models for buckling behaviour of cold-formed steel members 
 

2.2.1 Local buckling 

 

Local buckling normally occurs in the compression flange of CFS beams in deep sections, it 

may also occur in the web (Li, 2011). The critical stress of the local buckling can be 

calculated using the formula of buckling of plates developed by Timoshenko and Gere (1961) 

as follows, 

 

2
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where σcr,l is the critical stress of local buckling, E is the Young’s modulus, kl is the buckling 

coefficient, μ is the Poisson’s ratio, t is the thickness of the element and bc is the width of the 

compression element. When the element is subject to pure compression and the lip does not 

have enough stiffness, the buckling coefficient of flange and web can be taken as 4 and the 

buckling coefficient of lip can be taken as 0.43, respectively. When the element is subject to 

pure bending, the web buckling coefficient can be taken as 23.9, the flange buckling 

coefficient is considered as 4 and the lip buckling coefficient is about 0.43 (Li and Chu, 

2007).  

 

However, the critical stress obtained from Eq.2-1 is underestimated, because the interactions 

between the adjacent elements are not taken into account. Schafer and Peköz (1999) 

presented a semi-empirical interaction model to predict the local buckling stress of CFS 

members which considered interaction of the flange, web, and/or lip, the buckling coefficient 

can be expressed as follows, 
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where b is flange width and c is lip length. f1 and f2 is the stresses at the opposite edges of the 

element, respectively.  

 

2.2.2 Distortional buckling 

 

Compared with the local buckling in which the critical stress depends only on the ratio of the 

width to thickness of the plate, the distortional buckling is much more complicated. Because 

the distortional buckling stress is not only dependent on buckled part but also the other parts 

of the section (Chen and Li, 2010). Several analytical methods have been developed to 

determine the critical stress of distortional buckling of CFS members. 

 

Lau and Hancock (1987) first presented an analytical model to predict the distortional 

buckling stress of CFS columns. The model considered the compression flange and lip alone 

and assumed that they were not distorted. The lateral and rotational spring were applied at the 

web-flange junction to represent the effects of web, as shown in Figure 2.1. Lau and Hancock 

found that the lateral restraint had very small influence on the critical stress and could be 

ignored. The stiffness of rotational spring was determined by the longitudinal compression 

stress and distributed bending stress along the longitudinal edges, meanwhile, the web was 

assumed to be simply supported along the edges. Later, Hancock (1997) extended this model 

to CFS beams. It was assumed that the compression end of the web was simply supported but 

the tension end of the web was fix supported for determining the rotational spring stiffness, 

the specific computational processes are illustrated in Section 3.3.1. 

 

Figure 2.1 Distortional buckling model proposed by Lau and Hancock (1987) 
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Eurocode 3 (EN1993-1-3, 2006) recommended an analytical model which had simple 

expression for calculating the critical distortional buckling stress. In this model, the half 

flange and lip was on the elastic foundation which represented the buckling behaviour of the 

compression flange and lip system, see Figure 2.2. The spring stiffness could be determined 

by applying the unit load at the centroid of the stiffener, the two ends of the web were 

assumed to be simply supported. The design equation for calculating the critical stress of CFS 

members is given by, 

,

2 s

cr d

s

KEI

A
 

                     

(2-5) 

where σcr,d is the critical stress of distortional buckling, K is the spring stiffness per unit 

length, E is the Young’s modulus, As is effective area of the stiffened element, Is is the 

effective second moment of area of the stiffened element about the centroid axis, for channel 

sections, the relevant parameters are, 
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where b, c, h are the flange width, lip length and web height respectively. t is the thickness, 

D= Et3/12/(1-μ2) is the flexural rigidity of the web, a=b-b2/4/(b+2c) is the horizontal distance 

of the centroid of the stiffened element from the web and e=c2/(b+2c) is the vertical distance 

of the centroid of the stiffened element from the flange. 

 

 

Figure 2.2 Distortional buckling model proposed in EN-1993-1-3 (2006) 
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According to the analytical model suggested by EN1993-1-3, Li (2009) used different 

support conditions at the tension and compression ends of the web to investigate their 

influence on the critical stress of distortional buckling of CFS sigma purlins. The results 

showed that the model with a fixed support at the tension end and a roller support at the 

compression end of the web had a better agreement with the finite strip method (FSM). To 

optimize the section dimensions, Ye et al. (2016) presented a methodology which can be used 

to develop more efficient cold-formed steel channel sections with maximum flexural strength 

for practical applications. The optimized sections were designed to comply with the Eurocode 

3 geometrical requirements as well as with a number of manufacturing and practical 

constraints. 

 

Li and Chen (2008) presented an analytical model to describe the distortional buckling of 

CFS sections which considered the flexure behaviour of the compression flange. It was very 

similar to Hancock’s model (Lau and Hancock, 1987). The only difference was that they used 

the translational spring at the centroid of the compression flange and lip system to take the 

place of the rotational spring at the flange-web junction, as shown in Figure 2.3. It was shown 

that Li and Chen’s model was as good as Hancock’s model for most channel, zed and sigma 

sections. The details of the Li and Chen’s model are shown in Section 3.4.1. 

 

 

Figure 2.3 Distortional buckling model proposed by Li and Chen (2008) 

 

Zhu and Li (2016) proposed a stiffened plate buckling model which assumed the compressive 

flange/lip system behaved like a rigid body to follow the movement of the compressive end 

of the web (see Figure 2.4). The web can be treated as a plate and the whole system can be 

treated as a plate with a stiffener. The analytical formula was derived for calculating the 
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critical stress of distortional buckling of CFS beams based on the energy method. Later, 

Huang and Zhu (2016) extended this model to CFS columns, the web had both in-plane and 

out-plane bending deformations, the flange/lip systems were regarded as the stiffener at the 

two ends of the web subjected to asymmetric bending and torsion, good agreement of 

comparison between the theoretical model and FSM showed that the stiffened plate buckling 

model can be applied to the practical engineering. After that, they used the model for 

distortional buckling analysis of CFS sections with stiffened web and web stiffened by 

longitudinal ribs subject to compression or pure bending (Huang et al., 2018; Huang et al., 

2019). 

 

Figure 2.4 Distortional buckling model proposed by Zhu and Li (2016) 

 

It should be pointed out that all the analytical models mentioned above can only be applied to 

members subjected to compression or pure bending. This is because these models did not 

consider the variation of pre-stresses along the longitudinal axis of the compressed flange/lip 

system. Chen and Li (2010) extended their former model (Li and Chen, 2008) to analysis the 

distortional buckling of CFS beams subjected to uniformly distributed load. The influence of 

stress gradient which was highly dependent on the beam length was investigated. For the very 

long beams, the effect of stress gradient could be ignored. Zhu and Li (2018) investigated the 

effect of shear stress on distortional buckling of CFS beams subjected to uniformly 

distributed load. It seemed that the shear stress gradient might reduce the critical stress of 

distortional buckling of short beams. But for the long beams, the shear stress effect could be 

ignored. 
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2.2.3 Lateral-torsional buckling 

 

Unlike local and distortional buckling, the research on the lateral-torsional buckling of CFS 

members is limited. This is because the CFS members usually work with metal sheeting or 

cladding in which the lateral movement of upper flange is completely restrained. Normally 

the lateral-torsional buckling occurs in the long CFS beams with low lateral and torsional 

rigidity.  

 

The calculation approaches for determining the critical moment of lateral-torsional buckling 

of unrestrained, simply supported CFS beams subject to different loading conditions have 

been described in some books (Timoshenko and Gere, 1961; Yoo and Lee, 2011). It can be 

expressed as follows, 

 
2

, 2
( )w

cr l y

EI
M EI GJ

l l


 

                               

(2-9) 

where Mcr,l is the critical moment of distortional buckling, α is the loading coefficient (α=1 

for pure bending, α=1.13 for uniformly distributed load and α=1.39 for one concentrated 

load applied at mid-span), l is the length of the beam, E is the Young’s modulus, Iy is the 

moment of inertia about the y-axis, G is the shear modulus, J is the torsion constant and Iw is 

the warping constant. 

 

Seah and Khong (1990) proposed semi-analytical, semi-numerical method to predict the 

critical moment of lateral-torsional buckling of channel beams with unbraced longitudinal 

edge stiffeners. In theoretical study, quintic polynomial function was used to represent the 

deformation of plate component in transverse direction and single term trigonometric 

function was used to represent the deformation of plate component in longitudinal direction, 

meanwhile, the classical energy method was employed in matric structural analysis. Four-

point loading experiments were conducted to validate the proposed method. 

 

Cheng et al. (2013) presented an analytical solution for the flexural and lateral-torsional 

buckling of CFS beams subject to combined compression and bending. The interactive effect 
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of compression load and bending moment has been investigated. They found that when the 

member was subjected combined compression and the major-axis bending, the bending 

moment would decrease the critical compressed load; when the member was subjected to 

combined compression and the minor-axis bending, the influence of bending moment 

depended on the direction of bending applied. 

 

Li (2004) originally presented a model for analyzing the lateral-torsional buckling of CFS 

zed-purlin beams partially restrained by metal sheeting subjected to transverse loads which 

was built for practical cases. In Li’s model, the restraint of sheeting was simplified by one 

rotational spring and translational spring, see Figure 2.5. The energy method was used for 

determining the critical load. The effects of interval anti-sag bar, the moment distribution and 

boundary conditions were investigated. Some details of Li’s analytical model can be found in 

Section 4.4.1. 

 

 

Figure 2.5 Lateral-torsional buckling model proposed by Li (2004) 

 

Later, Chu et al. (2004, 2005) applied Li’s model to explore the influence of lateral restraint 

on the lateral-torsional buckling of CFS zed, channel-section beams. The effect of moment 

variation along the longitudinal axis and boundary conditions were also investigated. It was 

found that the lateral restraint could increase the critical stresses and the moment gradient had 
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a considerable influence on the lateral-torsional buckling, pure bending was the worst case 

(less than half of the critical moment in the uniformly distributed uplift load). Furthermore, 

the warping stress might not affect the lateral-torsional buckling of CFS channel-section 

beams. Ren et al. (2012) utilized similar model for describing bending and twisting buckling 

behaviour of partially restrained channel-section purlins subject to up-lift load. Calculating 

formula deduced by the classical bending theory was used to predict the bending stresses of 

the roof purlins. 

 

2.3 Design method of cold-formed steel members 
 

2.3.1 Generalised beam theory 

 

The generalised beam theory (GBT) was originally proposed by Schardt (1989). The thin-

walled members were supposed as an assembly of thin plates constrained to buckle as a linear 

combination of particular deformation modes. To take the distortional effects into account, 

Schardt (1994) presented a calculation equation for determining the critical stress, 
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(2-10) 

where E is the Young’s modulus, kC is the generalisation of warping constant, G is the shear 

modulus, kD is the generalisation of torsional constant, kB is the generalisation of transverse 

bending stiffness, kVm is the generalisation of deformation resultant, λ is the half-wave length, 

kWm is the generalisation of stress resultant, ijkκ is the second-order section property and l is 

the length. 

 

After that, Davis and his colleagues (Davis et al., 1994a; Davis et al., 1994b) extended the 

GBT to the first-order and second-order GBT. The first order showed how this theory was 

used to analyze the buckling behaviour of CFS sections, whereas the second order added the 

geometric non-linearity into the basic equation of the GBT. Later, Davis et al. (1997) 

modified the GBT for calculating the critical stress of PCFS members, the concept of 

effective thickness was used.  
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More recently, Camotim and Silvestre made much contribution to the improvement of the 

GBT. In 2002, Silvestre and Camotim (2002a; 2002b) developed first-order and second-order 

GBT to describe the structural behaviour of composite thin-walled members. Subsequently, 

Silvestre and Camotim (2004a; 2004b; 2004c) derived analytical formula which was fully 

based on GBT for the distortional buckling of CFS C-, Z- and rack-section members. Later, 

Silvestre (2007; 2008) used the GBT to analyze the buckling behaviour of circular and 

elliptical hollow cross-sections. 

 

Compared to other design method, the GBT can calculate the ultimate strength of CFS 

members more accurately. However, the procedure of GBT is complicated, plenty of 

differential equations need to be solved. It may not be promoted widely in the design guide 

for structural engineers. 

 

2.3.2 Finite element method 

 

It is known that solving stability of CFS members by using classical hand solutions is 

cumbersome. For this reason, nowadays the structural designers tend to utilize numerical 

method to analyze the buckling modes of CFS members, such as finite element method (FEM) 

and finite strip method (FSM).  

 

The FEM divides large problems into smaller element, and then the simple equations of the 

finite elements can be assembled into a larger system of equations to solve the problem. 

Normally the FEM is performed with commercial program such as ANSYS and ABAQUS, 

the loading and boundary conditions need to be set correctly. There are two types of FEM to 

analyze the buckling behaviour of CFS members. One is eigenvalue analysis in which the 

critical stress and buckling modes can be obtained, the other one is nonlinear analysis in 

which the load-displacement curve can be obtained. It should be noting that stress-strain 

relationship of the materials, contact elements and large deflection theory are incorporated 

into the nonlinear analysis. 
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Compared to FSM, the FEM is available for all required situations. However, FEM cannot 

give a signature curve for a specific cross section because the beam length used in the 

analysis is the actual beam length, but not the wavelength of the buckling model. To obtain 

the critical stress of a single cross-section requires thousands of candidate buckling modes 

which is very time-consuming (Ádány and Shafer, 2006a).  

 

2.3.3 Finite strip method 

 

The basic idea of FSM is similar to those of FEM, the only difference is that one single strip 

is applied along the longitudinal direction. In the FSM, a special shape function is selected to 

describe the displacement of the whole length (Ádány, 2004).  

 

The first paper about FSM for recognizing buckling behaviour of hot-rolled steel sections 

was written by Cheung (1968). Later, Hancock and his colleagues extended the spline FSM 

to evaluate the stabilities of thin flat-walled structures (Lau and Hancock, 1986). To estimate 

the effect of non-linear material stress-strain properties, strain hardening and residual stresses, 

Lau and Hancock (1989) presented an analytical method for inelastic buckling analysis of 

thin-walled sections which was based on spline FSM. Afterwards, the similar computing 

method was developed by Kwon and Hancock (1991), the local, distortional, overall buckling 

and the interaction between them in the post-buckling range can be solved.  

 

More recently, Ádány and Shafer (2006a; 2006b; 2008) proposed constrained finite strip 

method (cFSM) to predict the critical load of unbranched CFS members. In the cFSM, the 

constrained matrices separated the degree of freedom (DOF) into those consistent with local, 

distortional and global modes. Thus, the number of DOF can be reduced. Later, Li and 

Schafer (2013) extended FSM to general end boundary conditions. 

 

Compared to FEM, FSM is more efficient. The FSM program such as CUFSM (Shafer and 

Ádány, 2006) and THIN-WALL (Papangelis and Hancock, 1995) can determine the critical 

stress of CFS members automatically. However, the stress distribution is assumed constant 
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along the longitude direction, the FSM cannot simulate the case that the beam subject to 

uniformly distributed uplift load. Furthermore, the FSM is not available for investigating the 

buckling behaviour of PCFS beams since the perforations cannot be easily modelled. 

 

2.3.4 Effective width method 

 

The local buckled plate can take considerable loads before it collapses. However, it is 

complicated to evaluate the structural behaviour of the post-buckled plate (Li and Chu, 2008). 

The effective width method (EWM) was originally introduced by von Karman et al. (1932) to 

determine the failure strength, the real width was replaced by effective width to simplify the 

calculation progress. 

 

Winter (1968) modified the EWM for the CFS members. This method supposed that when 

the ultimate load reached, the effective sections would bear the total force. In other words, an 

actual plate with a nonlinear stress distribution due to the buckling was replaced by an 

effective plate with a simplified stress distribution (Schafer, 2008). The concept of effective 

width has been adopted by the primary design specifications (AS/NZS, 2005; EN 1993-1-5, 

2006; AISI, 2016). Currently, some researchers presented a new design method based on 

EWM to predict the distortional buckling stress of CFS sections (Yu and Yan, 2011; Yao et 

al., 2016). This method was calibrated by the DSM in North America specification. 

 

The effective width can be determined by an empirical formula which was based on a large 

number of experimental work. In EN 1993-1-5 (2006), the effective width of a compression 

element can be obtained from Table 2.1 and Table 2.2. It should be mentioned that the 

isolated plates of the CFS section are supposed to be simply supported. The effective cross-

section of a CFS channel column or beam could be found in Figure 2.6. 

 

The reduction factor ρ can be taken as follows, 

For the internal compression elements: 

1.0       for λ ≤ 0.673 
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 
     for λ > 0.673, where (3+ψ) ≥ 0          (2-11) 

 

For the outstand compression elements: 

1.0       for λ ≤ 0.748 
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where y

cr

f



  and ψ = σ2/σ1.  

 

Table 2.1 Internal compression elements (copy from EN 1993-1-5 (2006)) 

Stress distribution (compression positive) Effective width beff 

 

    ψ = 1: 

    beff = ρ b 

    be1 = 0.5 beff     be2 = 0.5 beff 

 

    1 > ψ ≥ 0: 

    beff = ρ b 

    be1 = 2/(5-ψ) beff     be2 = beff  - be1 

 

    ψ < 0: 

    beff = ρ bc = ρ b/ (1-ψ)  

    be1 = 0.4 beff     be1 = 0.6 beff 
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Table 2.2 Outstand compression elements (copy from EN 1993-1-5 (2006)) 

Stress distribution (compression positive) Effective width beff 

 

    1 > ψ ≥ 0: 

    beff = ρ c 

 

 

    ψ < 0: 

     

    beff = ρ bc = ρ b/ (1-ψ)   

 

    1 > ψ ≥ 0: 

    beff = ρ c 

 

 

    ψ < 0: 

     

    beff = ρ bc = ρ b/ (1-ψ)   

 

The EWM is a useful design approach. However, the elements of the CFS section are 

considered independently, the interaction between flange and web is ignored. Each element 

may fail at different stresses, hence the EWM is more conservative compared to other 

approaches. Furthermore, when it comes to more complex cross-section shapes (those with 

folded-in stiffeners or lips), determining the effective section can be cumbersome by using 

EWM.  

 



 24 

 

Figure 2.6 Effective cross-section of CFS channel members (a) column (b) beam (Copy from EN 

1993-1-5 (2006)) 

 

 

2.3.5 Direct strength method 

 

The root of the direct strength method (DSM) was the design method proposed by the 

researchers at the University of Sydney (Know and Hancock, 1992; Hancock et al., 1994).  

Schafer and Peköz (1998) first designated it as DSM, this method can be regarded as an 

extension of the use of column curves for global buckling with the application of local and 

distortional buckling. The post-buckling and the interaction between these buckling modes 

were also taken into account (Schafer, 2008).  

 

In order to develop the DSM, Schafer (2002) conducted a series of tests for CFS columns 

failed by local, distortional and global buckling modes, the analytical and numerical solutions 

for the elastic buckling were also presented. Later, Yu and Schafer (2003, 2006) performed 

some flexural tests for C- and Z-section beams controlled by local buckling and distortional 

buckling, additional paired fasteners were used to isolate the two buckling modes. After that, 

numerical simulations of CFS beams in local and distortional buckling were conducted by Yu 
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and Schafer (2007), all the experimental and numerical data were applied to the proposed 

design curves of the DSM.  

 

The DSM was adopted in North American and Australia/New Zealand design specification 

(AISI, 2016; AS/NZS, 2005), the relative equations (Schafer, 2008) can be expressed as 

follows, 

For columns: 

Flexural, torsional, or torsional-flexural buckling 

2

(0.658 )c

ne yP P


     if λc ≤ 1.5  

2

0.877
( )ne y

c

P P


     if λc > 1.5             (2-13) 

where /c y creP P  ; Py is the squash load; Pcre is minimum of the critical elastic column 

buckling load in flexural, torsional, or torsional-flexural buckling. 

 

Local buckling 
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where /l ne crlP P  ; Pcrl is the critical elastic local column buckling load. 

 

Distortional buckling 
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where /d y crdP P  ; Pcrd  is the critical elastic distortional column buckling load. 

 

For beams: 

Lateral-torsional buckling 

ne creM M      if Mcre ≤ 0.56My 

1010
(1 )

9 36

y

ne y

cre

M
M M

M
     if 0.56My ≤ Mcre ≤ 2.78My            (2-16) 

ne yM M      if Mcre > 2.78My 

where My is the cross-section first yield moment; Mcre is the critical elastic lateral-torsional 

buckling moment. 

 

Local buckling 
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 if λl > 0.776             (2-17) 

where /l ne crlM M  ; Mcrl is the critical elastic local buckling moment. 

 

Distortional buckling 
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where /d y crdM M  ; Mcrd is the critical elastic distortional buckling moment. 
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It should be noted that the DSM presented by Schafer and Peköz (1998) is limited to pure 

compression and bending. Pham and Hancock (2009a) extended the DSM to purlin systems 

for combined shear and bending, eight different test series on purlin sheeting systems 

performed at the University of Sydney were used to calibrate the DSM design proposals. 

Later, the extended DSM were proposed by Pham and Hancock (2012a) for the design of 

CFS sections in shear and for combined bending and shear with or without tension field 

action. The shear tests of CFS sections were performed by Pham and Hancock (2012b), the 

result showed that the post buckling strength was caused by tension field action, relative 

design equations were proposed. 

 

The spline FSM was employed by Pham and Hancock (2009b) to determine the elastic 

buckling stresses of CFS channel sections subject to shear force, the influence of the flange 

on the shear buckling was examined. Pham and Hancock (2012c) performed buckling 

analyses of CFS members subject to shear stresses. It was found that the long CFS member 

with narrow flange would buckle in a twisting mode, the CFS member with wide flange 

would fail by distortional buckling. When the flange is not wide enough to provide torsional 

resistance for the web, the CFS member would be controlled by local buckling. After that, 

Pham et al. (2014) summarized the extended DSM for shear buckling of plain C-sections, C-

sections with rectangular and triangular web stiffeners. The shear buckling loads were 

computed by both semi-analytical and spline finite strip method.  

 

Compared to the EWM, the calculation of effective width is not required in the DSM. The 

DSM provides new idea for engineers to obtain the ultimate load of CFS members based on 

determining the critical stress of elastic buckling behaviour and the yield stress (Schafer, 

2008). Currently, researchers tend to extend the DSM to CFS sections in shear, combined 

bending and shear or web crippling. 

 

2.4 The buckling behaviour of perforated cold-formed steel sections  

 

As mentioned in Section 2.2, a great deal of work on the buckling behaviour of CFS members 

and the relevant design rules has been reported. Like CFS members, the perforated cold-
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formed steel (PCFS) sections may also experience three buckling modes: local, distortional 

and global buckling. The perforations may cause the stress concentration and decrease the 

cross-sectional properties (Moen, 2008). However, it is hard to determine the critical 

buckling loads of PCFS members, plenty of factors like the shape, size and location of holes 

need to be considered. The existing research on the buckling behaviour of PCFS sections 

including the experimental work, numerical investigation and theoretical study are 

scrutinized below. 

 

2.4.1 Experimental work 

 

Kesti and Mäkeläinen (1998) conducted a series of full-scale compression and bending tests 

to investigate the local and distortional buckling behaviour of the perforated steel wall studs, 

the influence of gypsum wallboard on the bending stiffness of the whole component was 

evaluated. Subsequently, the compression experiment of non-perforated and perforated equal-

angle CFS stub columns were carried out by Dhanalakshimi and Shanmugam (2001). It was 

found that the existence of perforations could reduce the ultimate strength of the columns, the 

influence of multiple holes was more obvious for the member with low slenderness ratio. 

Furthermore, the ultimate strength of the column would decrease rapidly when the eccentric 

load was applied away from the corner, however the effect of eccentricity reduced for the 

member with large slenderness ratio. 

 

Moen and Schafer (2008) conducted 24 compression tests of short and intermediate length 

CFS columns with and without slotted web holes to study the relationship between elastic 

buckling and column deformation. The influence of slotted holes on the buckling behaviour 

and ultimate strength was examined. The setup and instrumentation of column tests were 

shown in Figure 2.7, the steel platens were rigidly fixed to the crosshead and actuator. The 

friction-bearing boundary conditions were used in this test which means the columns were 

placed directly on the steel platens as the compression load was applied. After that, bending 

experiments on CFS joints with rectangular un-stiffened web holes were carried out by Moen 

et al. (2013). The experimental results were used to validate the extended DSM equations for 

CFS joints with holes.  
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Figure 2.7 Setup and instrumentation of the column test (Moen and Schafer, 2008) 

 

Kulatunga and his colleagues (Kulatunga and Macdonald, 2013; Kulatunga et al., 2014) 

performed compression experiments to evaluate the influence of cross-section dimension, 

perforation position, shape and size on the load capacity of PCFS columns. It was shown that 

the ultimate failure load of PCFS columns under compression varied with the web openings, 

and the load capacity of PCFS columns had a remarkable decrease with the increase of length 

and opening area of the perforations. Meanwhile, the design equations in AISI Specification, 

British Standard and EU Standard were employed to determine the relevant buckling load.  

 

Chen et al. (2019) carried out 26 axial compression tests of CFS columns with edge-stiffened, 

un-stiffened web openings and plain web to evaluate the influence of edge-stiffened circular 

holes on the load capacity. Their test results showed that the compression resistance of CFS 

sections with edge-stiffened web openings was higher than that of CFS sections with plain 

web. The design equations based on the parametric study were proposed to predict the axial 

load capacity of CFS column with edge-stiffened web openings (Chen et al., 2020a). Later, 

Chen et al. (2020b) conducted 16 four-point bending tests to investigate the effects of hole 

size, stiffener length, specimen length and fillet radius on the moment capacity of CFS beams 

with edge-stiffened web openings. It was found that the AISI and AS/NZ design equation can 

well predict the moment capacity of CFS channel beams without web holes, but is over-
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conservative by around 11% and 28% respectively for CFS channel beams with un-stiffened 

and edge stiffened web openings. 

 

Zhao et al. (2019) carried out 10 groups of pure bending test to estimate the flexural 

behaviour of PCFS beams. In the test, two experimental specimens were bolted to the load 

transfer blocks and the end support points, meanwhile the steel plates were installed at the 

non-research span of the compression flanges (see Figure 2.8). It was shown that for the 

beams with web openings tested the failure modes of the beams changed from the single 

distortional buckling model or single local buckling model to the interactive buckling 

between local and distortional models. The moment capacity of the beam reduced slightly 

when the hole height-to-web depth increase from 0 to 0.4, and reduced dramatically when the 

hole height-to-web depth further increase to 0.8. Furthermore, the current DSM equations 

were found to be unconservative for most PCFS beams, and hence the modified DSM 

formulas were proposed.  

 

 

Figure 2.8 Four-point bending test rig (Zhao et al., 2019) 

 

Recently, many researchers focused on the performance of PCFS members for steel storage 

rack systems since the web perforations could help to adjust the height of the shelf. For 

example, the compression steel pallet rack members of different cross-section dimensions, 

with and without perforations were tested by Crisan et al. (2012a). The calibrated finite 

element model and erosion of critical bifurcation load approach were applied to determine the 

buckling curves (Crisan et al., 2012b). Bernuzzi and Maxenti (2015) studied the performance 
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of isolated rack columns subject to axial load and gradient moment and three European 

alternatives were proposed to design PCFS beam-columns for steel storage systems. 

 

2.4.2 Numerical investigation 

 

Shanmugam and Dhanalakshmi (2001) developed finite element models of channel sections 

with various hole sizes, shapes and web plate slenderness ratios using the commercial 

software ABAQUS to determine the ultimate load capacity of PCFS channel stub columns. 

The material and geometric non-linearity, residual stresses were taken into account in the 

numerical investigation. The quadratic equation was proposed to determine the load-carrying 

capacity based on the parametric studies. Subsequently, a total of 960 non-linear finite 

element models of steel beams covering different section sizes and perforation configurations 

were performed by Liu and Chung (2003). 

 

As mentioned in Section 2.3.3, the web perforations lead to the variation of sectional property 

along the beam length direction and thus it is difficult to use FSM to do the analysis of the 

perforated beams. Nevertheless, some simplified models such as equivalent-thickness model 

and perforated model were employed in the FSM to represent the effect of web perforations, 

then the elastic buckling stresses obtained from the FSM were applied in the DSM for 

analysing the PCFS studs subject to axial load (Sputo and Tovar, 2005; Tovar and Sputo, 

2005).  

 

After that, Smith and Moen (2014) improved the calculation model in the FSM for thin-

walled metal columns with perforation patterns. The weighted average of the net and gross 

cross-sectional moment of inertia along the length was used in the finite strip model to 

determine the critical stress of flexural buckling, and the weighted average of the warping 

constant and torsion constant was used for flexural-torsional buckling. For local buckling, the 

reduced thickness stiffened element equation based on Rayleigh-Ritz energy method was 

developed to simulate the influence of the perforation patterns. For distortional buckling, the 

reduced thickness equation was derived to simulate the decreased bending stiffness caused by 

the perforation patterns.  
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Casafont et al. (2012) carried out the numerical investigation on the elastic buckling of 

perforated steel storage rack columns, the reduced thickness based on regression analysis was 

used in the FSM to calculate the critical buckling load. The accuracy was verified by 

eigenvalue buckling FEM analysis and real test. It was found that the concept of reduced 

thickness can be applied to distortional and global buckling, but it is not able to cover all 

varieties of perforations for local buckling. 

 

Moen and Schafer (2011) conducted the non-linear finite element simulation of 213 PCFS 

columns using ABAQUS to evaluate the proposed design formula. Specific column lengths 

and cross sections were selected for isolating the case collapsed by distortional buckling and 

local-global buckling, the buckling modes of PCFS columns obtained from eigenvalue 

buckling FEM analysis could be found in Figure 2.9. The boundary condition for the 

simulated columns were pinned-pinned free-to-warp, the node centered in flange was 

restrained in longitudinal direction to avoid the rigid body movement (see Figure 2.10). The 

non-linear finite element models were validated with the experiments on PCFS columns 

(Moen and Schafer, 2008), the recommended DSM equations for PCFS columns across a 

wide range of hole sizes, spacings, shapes and cross-section dimensions could be expressed 

as follows, 

Local buckling 

nl ynet net yP P A f                    (2-19) 

where Pynet is the strength of the column net cross-section at the location of the hole and Anet 

is the area of the net cross-section. 

 

Global buckling 
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Distortional buckling 
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The extended DSM approaches for PCFS beams were reported in Moen and Schafer (2010), 

relevant equations can be expressed as follows, 

Global buckling 

ne creM M      if Mcre ≤ 0.56My  

1010
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9 36
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M
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M
     if 0.56My ≤ Mcre ≤ 2.78My           (2-23) 

ne yM M      if Mcre > 2.78My 

where Mcre includes the effect of holes. 

 

Local buckling interaction 

nl ne ynetM M M      if λl ≤ 0.776 
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where Mcrl includes the effect of holes. 
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Distortional buckling 
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Figure 2.9 Buckling modes of PCFS columns obtained from eigenvalue buckling FEM analysis 

(Moen and Schafer, 2011) 
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Figure 2.10 Boundary and loading conditions of finite-element model (Moen and Schafer, 2011) 

 

2.4.3 Theoretical study 

 

Early work tends to explore the influence of perforations on the buckling behaviour of 

rectangular plates. For example, Brown et al. (1987) utilised the conjugate load method to 

analyse the stability of plates with centrally located, rectangular perforation. Shanmugam et 

al. (1999) investigated the post-buckling behaviour of perforated plates subject to uniaxial or 

biaxial compression with different boundary conditions by using FEM, a design formula was 

proposed to determine the ultimate load based on their parametric studies. It was found that 

the ultimate strength of perforated plates would decrease with the increase of hole size and 

slenderness ratio, furthermore the ultimate loads of plates with circular holes were higher 

than the plates with square holes. Maiorana et al. (2009) developed the FEA studies of plates 

with circular and rectangular holes at different positions subject to axial compression and 

bending moment to evaluate the influence of position and dimension of perforation on the 

linear buckling behaviour.  

 

Later, Moen and Schafer (2009b) put forward the forms of expressions based on the classical 

plate stability theory for stiffened and unstiffened elements to approximate the critical stress 

of thin plates in compression or bending. The finite element eigenvalue buckling studies were 
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developed to validate the proposed expression. It was observed that the holes would change 

the half-wave length of the buckling modes (see Figure 2.11), thus the critical buckling stress 

of thin plates might decrease or increase depending on the geometry and spacing of 

perforations.  

 

Figure 2.11 Local buckling shape of simply-supported plate with or without holes subject uniform 

compression (Moen and Schafer, 2009b) 

 

Miller and Peköz (1994) presented the unstiffened strip approach for predicting post-buckling 

strengths of perforated wall studs. The web of the wall stud was assumed as two unstiffened 

elements which located on both sides of the perforation. The modified effective width 

approach was applied in the proposed analytical model. Davies et al. (1997) modified the 

GBT for analyzing PCFS sections subject to axial load and bending, in which the perforated 

plate was treated as unperforated plate with effective thickness. Szabo and Dubina (2004) 

calibrated effective width formula for the PCFS sections, the erosion of critical bifurcation 

load approach was used to evaluate an equivalent imperfection factor for EN buckling curves. 

 

Moen and Schafer (2009a) introduced the simplified methods for calculating the critical 

stress of local, distortional and global buckling of PCFS sections. The formula for predicting 

the critical load of global buckling was deduced based on classical energy solutions, 

“weighted average” cross-section properties were employed to represent the influence of 

perforations. The critical loads of distortional and local buckling were obtained by semi-

analytical FSM. The element thickness and buckling half-wavelength were modified in the 

finite strip models to consider the effect of holes.   
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Yao and Rasmussen (2011a) applied the isoparametric spline FSM to the material and 

geometric non-linear analysis of PCFS structures. The related formulas including kinematics 

assumptions, strain-displacement relations, constitutive relations and equilibrium equations 

were proposed. It was shown that the implicit backward Euler return method was superior to 

the explicit integration scheme due to the numerical efficiency and reliability. The proposed 

theoretical approach was validated against their numerical investigation. The results indicated 

that it was efficient and accurate for predicting the inelastic post-buckling behaviour of PCFS 

structures (Yao and Rasmussen, 2011b). 

 

Lawson and Basta (2019) derived simplified formula to determine the deflection of simply 

supported C-section beams with isolated and closely spaced circular web openings subject to 

uniform loading. The additional deflection of a PCFS beam was expressed as a function of 

the pure bending deflection of the unperforated beam. Comparing to the results of tests and 

finite element models, it was shown that the proposed formula were reasonably accurate for 

the beams: L (beam span) ≥ 15h (section depth) and h0 (opening diameter) ≤ 0.8h (section 

depth). 

 

More recently, this research group proposed some analytical models to predict the 

distortional buckling stress of PCFS beams subject to pure moment and uniformly distributed 

load (Yuan et al., 2017; Yu et al., 2019; Yu et al., 2020; Yu et al., 2021). The variable 

moment distributed on the longitude direction could alter the half-wave length of distortional 

buckling and hence change the critical buckling stress. For beam subject to pure bending, the 

concept of equivalent width was applied to determine the reduction of web bending rigidity. 

It was shown that the analytical solution based on EN1993-1-3 model and Hancock’s model 

can calculate the distortional buckling stress. A new analytical approach based on the 

stiffened plate buckling model was carried out for approximating the critical stress of 

flange/web distortional buckling, the relative eigenvalue equation was solved by using 

Rayleigh-Ritz method. 
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2.5 The structural behaviour of cold-formed steel built-up sections 

 

The built-up members can be assembled by individual CFS studs using welds, self-drilling 

screws or bolts. Comparing to single open sections, the built-up members have larger 

torsional rigidity. Nowadays, they are widely used in the industry due to their excellent 

torsional resistance. The design method can be found in North American Specification 

standard (AISI, 2016). This section reviews the existing literature on the CFS built-up 

sections, CFS built-up sections with intermediate stiffeners as well as CFS built-up sections 

with perforations. 

 

2.5.1 CFS built-up sections 

 

Gjelsvik (1990) presented an analytical method for built-up columns. The method extended 

the classical Engesser method for columns and the Timoshenko shear-beam theory for beams. 

It was found that the stay plates could affect the buckling load and the chords’ bending 

stiffness should be taken into account. Afterwards, the Engesser type approach was used to 

predict the buckling loads of shear columns, the influence of shear stiffness on the buckling 

load for usual standard boundary conditions was presented by Gjelsvik (1991).  

 

Piyawat et al. (2013) developed an axial load capacity equation for doubly symmetric CFS 

built-up sections. The design equation was proposed based on a regression analysis of three-

dimensional surface fitting and calibrated by the experimental data. It exhibited a good 

agreement with numerical and experimental results. Abbasi et al. (2018) applied the 

compound strip method to investigate the elastic buckling behaviour of CFS built-up sections 

with discrete fasteners. A beam element with adjustable stiffness properties was used to 

represent the fastener. The results demonstrated that the buckling capacity of the CFS built-

up section increased when the fastener spacing ratio reduced. 

 

A total of 32 compression tests were conducted by Stone and LaBoube (2005) to investigate 

the structural behaviour of CFS built-up I-sections. It was shown that the equations in current 

design specification were conservative to determine the ultimate load. Later, Georgieva et al. 
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(2012) performed 12 bending tests and 8 compression tests to study the behaviour of double- 

Z built-up members, the actual failure modes and overall buckling capacity of these sections 

were determined. 

 

Xu et al. (2009) established finite element models using ANSYS to investigate the flexural 

strength of CFS built-up box section subject to eccentric loads. To consider the effect of 

screws, the translational and rotational degrees of freedom where the screws located were 

coupled in the x, y and z directions. In their parametric study, the influence of steel yield 

strength, web height-to-thickness ratio, screw spacing and location of applied load were 

investigated. After that, the flexural strength of CFS built-up lip-reinforced I-beams was 

evaluated by numerical and experimental study. The strength-reduction method and effective 

width method to predict the ultimate load were proposed by Zhou and Shi (2011). 

 

Laím et al. (2013) carried out experimental and numerical studies on the structural behaviour 

of CFS built-up beams with C-, I-, R- and 2R- shaped cross sections. In the finite element 

analysis, the contact between the two profile surfaces was assumed as hard contact and the 

tangential friction coefficient was assumed as 0.2. The geometric imperfections for local, 

distortional and global buckling were chosen as h/300, 0.40t and L/750, respectively. The 

influence of the thickness, height and length on the structural behaviour were evaluated by 

parametric studies. 

 

Li et al. (2014) studied the ultimate load-carrying capacity of CFS built-up box and I section 

through experimental and numerical investigations. The commercial software ANSYS was 

adopted for the finite element analysis, the nodes where the screws located were coupled to 

simulate the connection between the overlapping webs (see Figure 2.12), while the effect of 

friction was neglected. A total of 21 compression tests were carried out to validate against the 

numerical results. The strength estimation method was proposed for the CFS built-up 

members under axial compression. 
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Figure 2.12 ANSYS model for CFS built-up members (Li et al., 2014) 

 

Fratamico et al. (2018) investigated buckling and collapse behaviour of CFS built-up 

columns, a total of 17 concentric compression specimens were tested to explore the 

composite action in sheathed and bare columns. It can be observed that connecting the webs 

in CFS built-up members with fasteners could emerge the composite action and increase the 

load capacity in unsheathed columns. However, all sheathed columns failed in web local 

buckling, the composite action from the fasteners was not obvious.   

 

Wang and Young (2018) explored the influence of screw arrangements on the behaviour and 

design of CFS built-up open or closed section beams. A total of 35 beams with different 

screw arrangements were tested under four-point bending. The results of experiment were 

used to verify the finite element models. According to the parametric study, the current DSM 

equations were shown to predict the ultimate strength of CFS built-up open section beams 

well. For the CFS built-up closed section beams, the current DSM equations were modified to 

predict the ultimate strength and the maximum screw spacing was recommended for the 

design rules. 

 

Roy and his colleagues conducted both several experimental and numerical work to explore 

the structural behaviour of CFS built-up sections. For example, compression tests and non-
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linear finite element analysis were conducted to assess the effect of screw spacing and cross-

sectional thickness on the structural behaviour of axially loaded back-to-back CFS built-up 

channel sections (Ting et al., 2017; Roy et al., 2018a). It could be found that the number of 

screws had limited influence on the slender columns, but the strength would decrease when 

the spacing of screws doubled for the short and intermediate columns. When the thickness 

was above 1.15 mm, the AISI specification would overestimate for the short and intermediate 

columns. Later, Roy et al. (2018b) presented an experimental study on the axial strength of 

back-to-back gapped CFS built-up channel columns to investigate the effect of the gap and 

link-channel spacing. 

 

Iman’s research group carried out experimental and numerical studies on the strength and 

deflection behaviour of CFS built-up sections. For instance, Ye et al. (2018b) developed the 

numerical models to investigate the flexural strength and failure modes of CFS back-to-back 

channel-section beams. The verified FE models were used to assess the design capacity in 

EC3 and DSM, and it was showed that both the design rules can provide accurate predictions.  

Using compression tests they also investigated the effects of connector spacing on the 

behaviour and capacity of CFS built-up columns. It was found that the connector spacing has 

obvious effect on the buckling modes but has minimal influence on the ultimate capacity of 

CFS built-up columns (Meza et al., 2020a; Meza et al., 2020b). More recently, Mojitabaei et 

al. (2021) developed the optimization process for both single and built-up CFS beam-column 

members with various lengths and thicknesses subject to different loading conditions by 

using a generic algorithm. 

  

In addition, the experimental investigations on the axial strength of CFS built-up box sections 

and face-to-face CFS built-up channel sections were presented (Roy et al., 2019a; Roy et al., 

2019b). The specimens of the compression tests were selected from short to slender columns, 

non-linear finite element models verified against the experimental data were performed for 

their parametric study. The effect of fastener spacing on the axial strength was evaluated. It 

was shown that the current design equations were conservative for both CFS built-up box 

sections and face-to-face CFS built-up channel sections. 
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Chen et al. (2020c) presented new results on the axial strength of back-to-back CFS built-up 

sections with edge-stiffened holes, un-stiffened holes and plain webs through axial 

compression tests and finite element analysis. Tensile coupon tests were conducted to obtain 

the material properties of the channels. The test results showed that the axial strength of the 

column with edge-stiffened holes was 6.6% on average higher than the column with plain 

web, whereas the axial strength of the same section with un-stiffened holes had a 12.4% on 

average compared to the plain channel. 

 

Other researchers also focused on the structural behaviour of CFS built-up sections connected 

by welds. For example, Landolfo et al. (2008) carried out the experimental investigations of 

laser welded built-up CFS beams to assess the load bearing capacity. The influences of 

connection strength and weld configuration on the load bearing capacity were also evaluated. 

Whittle and Ramseyer (2009) conducted hundreds of compression tests on closed-section, 

built-up C-channels to check the accuracy of the approach proposed in North America 

Specification. The results showed that the modified slenderness ratio was exceedingly 

conservative, the unmodified slenderness ratio and fastener spacing provisions were 

consistently conservative.  

 

Reyes and Guzmán (2011) reported the experimental investigation to explore the comparative 

behaviour of CFS built-up box section subject to compression. The samples were connected 

by seam welds with different spacings and tested under the rigid and flexible end support 

conditions. The results obtained from the tests showed that the modified slenderness ratio was 

not always required for the member with 2.0 mm and 1.5 mm thick, the actual slenderness 

ratio could be applied to determine the ultimate strength. Substantially, Guzmán et al. (2021) 

evaluated the influence of seam welding space on CFS built-up box flexural members 

through an experimental study. The results concluded that the seam space should be less than 

the distortional buckling half-wave length of the single C section and box section and a mean 

value between these parameters was recommended for calculating the maximum separation 

between seam welds.   
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2.5.2 CFS built-up sections with intermediate stiffeners 

 

Young’s research group reported several experimental studies on the design of CFS built-up 

sections with edge or intermediate stiffeners during the past decades. The web stiffeners can 

reduce the slenderness of the plate element and improve the buckling strength. Current DSM 

equations were modified based on the experimental and numerical results to design the CFS 

built-up sections with intermediate stiffeners. For example, a range of column tests on CFS 

built-up closed sections with intermediate stiffeners were conducted by Young and Chen 

(2008). Three different method (single section, single restrained section and double section) 

were employed in the finite strip buckling analysis to obtain the local and distortional 

buckling stress. It was shown that the DSM where the critical stresses obtained from single 

section were conservative and reliable.  

 

Zhang and Young (2012) performed several compression tests of CFS built-up I-shaped open 

sections with edge and web stiffeners to evaluate the suitability of the DSM. It was shown 

that the DSM was available for predicting the ultimate strength of CFS built-up I-shaped 

open sections with edge and web stiffeners. The critical stresses obtained using 1.2 times 

thickness of the web in the contact area were reliable. Later, the modified DSM based on the 

extensive numerical investigation was proposed for the design of CFS built-up open section 

columns with longitudinal stiffeners. More recently, Zhang and Young (2018) presented an 

experimental study on the structural behaviour of CFS built-up closed section columns with 

web stiffeners. According to their reliability analysis, the DSM using nominal plate thickness 

in the contact area to obtain the critical stress was considered more reliable and conservative 

compared to other methods.  

 

Wang and Young (2015a, 2015b) carried out an experimental investigation on the structural 

behaviour of CFS built-up open and closed sections with intermediate stiffeners subject to 

bending. It was observed from their four-point and three-point bending tests that the local and 

distortional buckling behaviour of built-up beams were different from the single specimens. 

The modified DSM equations for CFS doubly symmetric built-up open and closed section 

with intermediate stiffeners were calibrated with the numerical parametric study. 
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Roy et al. (2020) presented experimental and numerical investigations on the flexural 

capacity of gapped CFS built-up channel sections. The results showed that the influence of 

link-channel spacing on the moment capacity was limited, however the influence of gap 

between the back-to-back channels on the moment capacity was more significant. 

Furthermore, the current design guidelines (AISI, 2016; AS/NZS, 2005) could be 

conservative as much as 27% for predicting the flexural capacity of gapped CFS built-up 

channel sections. 

 

2.5.3 CFS built-up sections with perforations 

 

For the CFS built-up section with perforations, the appearance of web openings can decrease 

cross-sectional properties and the sections could be controlled by local or distortional 

buckling more easily. Hence, the modified slenderness ratio method for CFS built-up sections 

addressed in North America Specification standard (AISI, 2016) is not available in this case. 

Sivakumaran et al. (2006) conducted the bending tests to investigate the flexural strength of 

CFS joists with unreinforced and reinforced web openings. The results showed that it was 

possible to set up reinforcement schemes for CFS sections with large web openings. 

 

Wang and Young (2015c) tested a total of 43 CFS built-up beams with web perforations 

under four-point bending to observe the reduction of moment capacity and localized failure 

modes caused by the holes in the web. The specimens contained ten cross-section sizes with 

the hole diameter-to-web depth ranged from 0.25 to 0.7. Typical ultimate failure stage of CFS 

built-up beams with web perforation in the four-point bending tests was shown in Figure 2.13. 

It was evident from the results that the influence of hole on the moment capacity was small 

when the hole diameter-to-web depth was 0.5, whereas the influence increased when the hole 

diameter-to-web depth was up to 0.7.  

 

After that, Wang and Young (2017) performed a wide range of nonlinear finite element 

analysis to develop extensive parametric studies on the CFS built-up beams with various hole 

sizes and beam slenderness. The finite element models were developed by commercial 

software ABAQUS, simply supported conditions were simulated by restraining U1, U2 and 
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UR3 at the end of the beam and using symmetric boundary condition (U3=0, UR1=0 and 

UR3=0) at the mid span of the beam (see Figure 2.14). To facilitate convergence, the 

displacement-controlled numerical analysis was employed during the non-linear solution. It 

was shown that the influence of hole on the moment capacity was more significant for CFS 

built-up closed beams than CFS built-up open beams. Furthermore, it proved that the DSM 

formulae were capable to calculate the ultimate strength of CFS built-up closed and open 

sections with web perforations.  

 

 

Figure 2.13 Ultimate stage of distortional and flexural buckling of CFS built-up beams with web 

perforation in the four-point bending tests. (Wang and Young, 2015c)  

 

 

 

Figure 2.14 ABAQUS model for CFS built-up beams with web perforation (Wang and Young, 2017) 
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More recently, Chen et al. (2021) carried out an experiment to examine the moment capacity 

of 14 back-to-back CFS built-up beams with edge-stiffened holes, un-stiffened holes and 

plain webs. Non-linear finite element models were established by software ABAQUS, 

eigenvalue analysis was first performed to obtain the buckling modes and the load-

displacement analysis was then performed to determine the moment capacity. The finite 

element simulation had a good agreement with the test results as shown in Figure 2.15. It was 

found that the moment capacity of built-up beam with five edge-stiffened holes was 15.4% 

higher than the specimen with plain web, whereas the same section with un-stiffened holes 

had a 15.1% reduction compared to the specimen with plain web. Furthermore, the moment 

capacity of back-to-back section was more than twice as much as the single section due to the 

effect of the contact due to the composite action. 

 

 

Figure 2.15 Distorsional buckling of CFS built-up beams with web perforations in test and finite 

element simulation (Chen et al., 2021) 

 

2.6 Summary 

 

This chapter has presented a literature review on the development of analytical approaches to 

determine the buckling load of CFS members and design rules for CFS sections to calculate 

the ultimate failure load. Special attentions have been paid to the buckling behaviour of PCFS 

members and the structural behaviour of CFS built-up sections with web perforations, 

including theoretical, numerical and experimental investigations. Some important findings 

and conclusions summarized from the literature review are listed as follows, 
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 Most existing analytical models to predict the critical stress of distortional buckling or 

lateral-torsional buckling were employed for the CFS sections with plain web, i.e. 

without holes on the web. Little work has been done to develop theoretical approaches 

for calculating the elastic buckling load of PCFS sections. The specific expressions 

for predicting the distortional or lateral-torsional buckling stress of PCFS beams are 

urgently required. 

 

 In the current specifications, the design equations were established for the cases that 

the specimens subject to compression or pure bending. However, the design formula 

for determining the critical stress of PCFS sections subject to the uniformly 

distributed load has not been discussed in the literature. Hence, further research is 

needed. 

 

 A great number of investigations on exploring the structural behaviour of CFS built-

up sections and CFS built-up sections with intermediate stiffeners has been reviewed 

in the Section 2.5. However, the research related to CFS built-up sections with 

perforations was really limited, which implies the requirement of this project.   

 

 The finite strip analysis software CUFSM (Shafer and Ádány, 2006) has been widely 

used to calculate the critical buckling loads of CFS members. However, the CUFSM 

dose not have the function to model the web perforations. The eigenvalue analysis by 

finite element software, ANSYS should be conducted to determine the critical 

buckling stress of PCFS sections.  

 

 The load-controlled method conducted by ANSYS for the nonlinear analysis of CSF 

built-up sections might meet the convergence problems. Therefore, most researchers 

tried to use the displacement-controlled approach for the nonlinear finite element 

analysis to obtain the ultimate failure load of CSF built-up sections.  

 

 The modified slenderness ratio method addressed in North America Specification 

standard (AISI, 2016) was not available to calculate the ultimate strength of CFS 

built-up sections. Recently, researchers tend to use the DSM to determine the ultimate 
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failure loads which require the accurate critical stresses of local, distortional and 

global buckling. However, the DSM is limited to the CFS built-up sections without 

holes. Further modifications on the DSM equations are needed for the CFS built-up 

sections with web perforations.  
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Chapter 3 — Distortional buckling performance of perforated cold-formed steel 

channel beams   

 

3.1 Introduction 

 

This chapter describes the analytical and numerical investigations on the distortional buckling 

performance of perforated cold-formed steel channel channel beams subject to pure bending 

and uniformly distributed load.  

 

The eigenvalue buckling analysis conducted by ANSYS is used to examine the distortional 

buckling behaviour of PCFS beams. The influence of hole sizes, cross-section dimensions 

and stress gradient is discussed. Finite strip models of CFS beams with plain web performed 

by CUFSM is used to check the boundary and loading conditions of the eigenvalue buckling 

analysis.  

 

An analytical approximate solution for predicting the critical moment of distortional buckling 

of PCFS beams subject to pure bending is derived according to Hancock’s model proposed in 

1987. The reduction of rotational spring stiffness deduced by energy method is used to 

represent the effect of web perforations on the critical moment of distortional buckling. 

 

A theoretical approach for calculating the critical stress of distortional buckling of PCFS 

beams subject to uniformly distributed load is proposed based on Li and Chen’s model 

proposed in 2008. The influence of web perforations is reckoned by reducing the vertical 

spring stiffness. To obtain the critical stress of distortional buckling, the Rayleigh-Ritz 

method is employed to solve the eeigenvalue problems. 
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3.2 Numerical investigation  

 

The commercial software ANSYS was employed to perform the finite element eigenvalue 

buckling analysis of PCFS beams subject to pure bending and uniformly distributed load. The 

linear buckling analysis was used to assess the influence of hole sizes, cross-section 

dimensions and stress gradient on the distortional buckling behaviour of PCFS beams. The 

finite strip method conducted by CUFSM was used to check the boundary and loading 

conditions of the finite element model with plain web.  

 

3.2.1 Finite strip method 
 

The finite strip software CUFSM is widely used to determine the elastic buckling stress of 

CFS sections due to its efficiency. It can provide a signature elastic buckling curve according 

to the cross-section dimension, while the elastic buckling loads obtained from finite element 

eigenvalue buckling analysis need to be identified from hundreds of buckling modes 

manually. However, the strip elements in CUFSM do not have the functions to model the 

web perforations, and thus it cannot be applied in this study to calculate the critical buckling 

moment of PCFS beams.  

 

Nevertheless, the finite strip model produced by CUFSM can be used to validate the finite 

element model with plain web. It should be noted that the parameters (i.e. boundary 

conditions, loading conditions, material properties and mesh sizes) in the finite element 

model with plain web were the same as those in the finite element model with web 

perforations.   

 

In order to ensure the CFS beam failed by distortional buckling and gain the lowest 

eigenvalue which represents the critical stress of distortional buckling, the cross-section 

dimensions of CFS beams need to be carefully selected. Three sections A, B and C which 

represent the small, medium and large section were chosen in the numerical and analytical 

investigations. The dimensions of cross sections can be found in Table 3.1. 
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Table 3.1 Cross-section dimensions of the selected CFS beams for numerical investigations in pure 

bending (unit: mm) 

Sections Web depth, h Flange width, b Lip height, c Thickness, t 

Section A 150 50 15 2 

Section B 200 70 20 2.5 

Section C 250 80 25 3 

 

It is assumed that the simply supported CFS beam was subject to pure bending and the 

equivalent forces of pure bending were applied at the finite strip model. The cross section of 

a typical CFS channel beam (Section B) in CUFSM can be found in Figure 3.1, and the 

relevant material properties including Young’s modulus and Poisson’s ratio were set as 205 

GPa and 0.3 respectively.  

 

h=200 mm, b=70 mm, c=20 mm, t=2.5 mm 

Figure 3.1 Cross section in CUFSM to obtain the distortional buckling stress of CFS beams subject to 

pure bending (Section B) 

 

The typical distortional buckling modes of CFS beams in CUFSM are shown in Figure 3.2. It 

can be observed from Figure 3.2 that the distortional buckling modes were characterised by 

the rotation of the compressed flange and lip about the flange-web junction. The critical 

distortional buckling half-wave lengths of the three sections were 400 mm, 570 mm and 680 

mm respectively. 
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(a) Section A: h=150 mm, b=50 mm, c=15 mm, t=2 mm, half-wave length=400 mm 

 

(b) Section B: h=200 mm, b=70 mm, c=20 mm, t=2.5 mm, half-wave length=570 mm 

 

(c) Section C: h=250 mm, b=80 mm, c=25 mm, t=3 mm, half-wave length=680 mm 

Figure 3.2 Typical distortional buckling modes of CFS beams in CUFSM  

 

Figure 3.3 shows a log-based plot of distortional buckling curves of the three selected CFS 

beams produced by CUFSM, where Mcr is the critical moment of distortional buckling of CFS 

beam subject to pure bending and My is the yield moment. It can be found that when the 

slenderness ratio of the beam ranges from 10.5 to 71 (Section A), from 11.3 to 69.6 (Section 

B) and from 13.1 to 60.8 (Section C), the lowest value is the critical distortional buckling 

stress. Furthermore, the critical moments of local buckling of the three selected sections are 
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higher than the critical moment of distortional buckling which indicates that the selected CFS 

beams were controlled by the distortional buckling. 

 

Figure 3.3 Distortional curves of selected CFS beams with plain web produced by CUFSM (σy=390 

MPa, My is the yield moment) 

 

3.2.2 Elastic finite element analysis 

 

The finite element package ANSYS has been employed in Section 3.2.2 to generate the finite 

element model and perform the eigenvalue buckling analysis of PCFS and CFS beams. The 

data obtained from CUFSM has been used to validate the finite element models. 

 

3.2.2.1 Geometry  

 

The geometry of a PCFS beam with circular perforations in the web can be found in Figure 

3.2. The web depth, flange width, lip height and thickness of the cross section were denoted 

as h, b, c and t, respectively. The circular perforations were supposed to displace along the 

neutral axis of the web equally and the diameter of the circular hole was symbolized by d. 

The beam length was regarded to be l=nhπd/2, where nh represented the total number of the 

holes in the web. In this study, Section A, Section B and Section C were selected for the 
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simulation of PCFS beams subject to pure bending. Section D (h=200 mm, b=65 mm, c= 20 

mm and t=2.5 mm) in Albion sections was selected for the case subject to uniformly 

distributed load. 

 

 

Figure 3.4 Geometry of a PCFS beam with circular perforations in the web 

 

3.2.2.2 Element type and mesh 

 

The PCFS beams were modelled by Shell 181 elements which are isoparametric four-node 

elements with six degrees of freedom at each node. The Young’s modulus of the cold-formed 

steel was taken as E=205 GPa, Poisson’s ratio was taken as µ=0.3 and the yield strength was 

taken as σy=390 MPa.  

 

It is well known that the mesh sizes will affect the accuracy of critical stresses obtained from 

finite element analysis. The mesh sensitivity analysis was conducted by using trails with 

different sizes, the results showed that the critical loads obtained from different mesh sizes 

were almost same when the maximum element sizes were below 10 mm (see Appendix A.1). 

In the present study, the maximum mesh size was controlled not exceeding 5 mm for 

different beam lengths. Typical finite element mesh of a PCFS beam is shown in Figure 3.5. 
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Figure 3.5 Typical finite element mesh of a PCFS beam (Section B, h=200 mm, b=70 mm, c=20 mm, 

t=2.5 mm, d=100 mm, l=1256 mm) 

 

3.2.2.3 Boundary and loading conditions of PCFS beams subject to pure bending 

 

Simply supported boundaries were applied at the PCFS beams, which means two ends were 

restricted to move in the lateral and transverse directions and free to move in the longitudinal 

direction. Hence, the boundary conditions had zero lateral and transverse displacement 

(UX=UY=0) and zero rotational deformation about z axis (ROTZ=0) for all nodes at two 

ends in present finite element analysis. Furthermore, the longitudinal movement of point A 

was prohibited to avoid the rigid displacement (See Figure 3.6).  

 

During the eigenvalue buckling analysis, the pure bending moment was applied at the two 

ends in which the forces was assumed uniformly distributed on the flanges (σyt for the top 

flange and  -σyt for the bottom flange) and linearly distributed on the web (from σyt to -σyt) 

and lips (from σyt to σyt(1-2c/h) for the upper lip and from -σyt(1-2c/h) to -σyt for the lower 

lip), the boundary and loading conditions of PCFS beams subject to pure bending can be 

found in Figure 3.6.   

 

Figure 3.6 Boundary and loading conditions of PCFS beams subject to pure bending 
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3.2.2.4 Boundary and loading conditions of PCFS beams subject to uniformly 

distributed load 

 

The setting of boundary conditions for PCFS beams subject to uniformly distributed load are 

the same with that in Section 3.2.1.3 (simply supported boundaries). The only difference is 

that the flange-web corner line was restrained in x direction to avoid lateral-torsional 

buckling, as shown in Figure 3.7. This is because the distortional buckling mode will couple 

with the lateral-torsional buckling mode when the length of PCFS beams increase and hence 

the relevant critical stress decrease.  

 

Figure 3.7 Boundary conditions of PCFS beams subject to uniformly distributed load 

 

During the eigenvalue buckling analysis, the uniformly distributed load were applied at the 

shear center so that the PCFS beam can only suffer bending but without twist. To realize this 

force condition, the uniformly distributed load can be applied on the plate with infinite 

rigidity (plate length is equal to beam length and plate width is equal to the distance from 

shear center to web line), as shown in Figure 3.8(a). The other approach is applying the 

uniformly distributed load combined with equivalent distributed twist moment (the value of 

twist moment is equal to the value of transverse load times the distance from shear center to 

web line) at the web line (see Figure 3.8(b)). For convenience, the latter approach (Figure 

3.8(b)) was adopted in present finite element eigenvalue buckling analysis. 
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                                                         (a)                               (b) 

Figure 3.8 Loading conditions of PCFS beams subject to uniformly distributed load 

 

3.2.3 Results and discussion 

 

3.2.3.1 Influence of hole size 

 

The distortional buckling curves of PCFS beams with three typical sections subject to pure 

bending were shown in Figure 3.9, the web perforations varied from d/h=2/7 to d/h=1/2 

where Mcr is the critical moment and My is the yield moment. It can be found that all the 

curves had the similar tendency, the local minimum point represents the critical moment of 

distortional buckling of PCFS beams subject to pure bending. 

 

It is evident from the figure that the PCFS beam with larger circular holes has smaller critical 

moment. This is because the web with larger perforations has weaker resistance to the 

compressed flange and lip. Furthermore, the half-wave lengths of PCFS beams increase with 

the increase of hole sizes (the half-wavelength changes from 400 mm to 430 mm when the 

d/h increases from 2/7 to 1/2 for Section A) but this effect is minimal. The details of the 

critical moment of distortional buckling of PCFS beams with different hole sizes subject to 

pure bending obtained from eigenvalue buckling analysis can be found in Appendix B.1. 
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(a) h=150 mm, b=50 mm, c=15 mm, t=2 mm 

 

 

(b) h=200 mm, b=70 mm, c=20 mm, t=2.5 mm 
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(c) h=250 mm, b=80 mm, c=25 mm, t=3 mm 

Figure 3.9 Distortional buckling curves of PCFS beams with different hole sizes subject to pure 

bending (a) Section A (b) Section B (c) Section C (σy=390 MPa, My is the yield moment) 

 

3.2.3.2 Influence of cross-section dimensions 

 

The typical distortional buckling modes of PCFS beams subject to pure bending for the three 

selected sections (d/h=0.5) obtained from finite element analysis are shown in Figure 3.10, 

Figure 3.11 and Figure 3.12, respectively. It can be observed from the figures that Section A 

and Section B have three distortional buckling modes with one, two and three buckling waves, 

Section C has two buckling modes with one and two buckling waves, all the buckling modes 

of PCFS beams in different length are all characterised by the rotation of the compressed 

flange and lip about the flange-web junction which is same as that of the CFS beam with 

plain web. Furthermore, it is shown that the cross-section dimensions had a significant 

influence on the buckling behaviour of PCFS beams. For example, for the two same channels 

with different flange widths, the channel section with wider flange can buckle easily by the 

distortional buckling. Similarly, for the two same channels with different thicknesses, the 

channel section with thinner thickness can buckle easily by the local buckling.  
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(a) One half-wave                                    (b) Two half-waves 

 

(c) Three half-waves  

Figure 3.10 Distortional buckling modes of PCFS beams (Section A, d=h/2) subject to pure bending 

(a) 470 mm (b) 846 mm (c) 1316 mm 

 

              

(a) One half-wave                                         (b) Two half-waves 

 

(b) Three half-waves  

Figure 3.11 Distortional buckling modes of PCFS beams (Section B, d=h/2) subject to pure bending 

(a) 628 mm (b) 1256 mm (c) 1884 mm 
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(a) One half-wave                                       (b) Two half-waves 

Figure 3.12 Distortional buckling modes of PCFS beams (Section C, d=h/2) subject to pure bending 

(a) 785 mm (b) 1570 mm 

 

3.2.3.3 Influence of stress gradient 

 

Figure 3.13 shows the typical distortional buckling modes of PCFS beams with different hole 

sizes (d/h=0 for Figure 3.13(a), d/h=0.25 for Figure 3.13(b) and d/h=0.5 for Figure 3.13(c)) 

subject to uniformly distributed load obtained from finite element analysis. It is evident that 

the distortional buckling modes are also identified by the rotation of the compressed flange 

and lip about the flange-web junction which is analogous to the case subject to pure bending. 

The only difference is that the half-wave lengths are different in the longitudinal direction 

when the PCFS beam subject to uniformly distributed load.  

 

It can be observed from the figures that the shortest half-wave length occurs in the central 

region and the longest half-wave length appears at two ends of the beam. This is because the 

axial stresses vary parabolically along the longitudinal direction when the PCFS beam subject 

to uniformly distributed load. It is clear that the largest axial stress occurs in the central 

region of the beam and the smallest axial stress appears at the beam ends. The stress gradient 

along the beam length leads to the distortional buckling modes of PCFS beams appear with 

several buckling waves (each wave has different half-wave lengths) and hence changes the 

value of critical stress of distortional buckling.  

 



 62 

   

(a) d/h=0                                                         (b) d/h=0.25 

 

(c) d/h=0.5 

Figure 3.13 Typical distortional buckling modes of PCFS beam subject to uniformly distributed load 

(h=200 mm, b=65 mm, c=20 mm and t=2.5 mm) 

 

3.2.4 ANSYS-CUFSM results comparison 

 

The finite element eigenvalue buckling analysis of CFS beams (without holes) subject to pure 

bending was conducted to compare with the result obtained from CUFSM. It should be 

pointed out that the parameters including material properties, mesh sizes, loading conditions 

and boundary conditions in finite element models of CFS beams with plain web were the 

same with that in finite element models of PCFS beams. The distortional buckling modes of 

CFS beams with plain web obtained from FSM and FEA can be observed in Figure 3.14.   

 

The comparison of critical moment of distortional buckling of CFS beams with plain web 

calculated by CUFSM and ANSYS can be found in Table 3.2. The maximum gap between 

the results obtained from FSM and FEA was lower than 2% which indicated that the present 

element finite models were reliable to investigate the distortional behaviour of PCFS beams. 
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(a) FSM                                                        (b) FEA 

Figure 3.14 Distortional buckling modes of CFS beams with plain web subject to pure bending 

obtained from FSM and FEA (Section B, h=200 mm, b=70 mm, c=20 mm, t=2.5 mm,  l=570 mm) 

 

Table 3.2 Comparison of critical moment of distortional buckling of the CFS beam with plain web 

obtained from FSM and FEA (Section selected from Albion Section)  

Section Mcrd,FSM (N·mm) Mcrd,FEA (N·mm) Mcrd,FEA /Mcrd,FSM 

C12515 7786362 7651869 0.98 

C12516 8929630 8771681 0.98 

C14614 8487595 8396131 0.99 

C14515 9800079 9695672 0.99 

C14616 11215004 11096347 0.99 

C14618 14360457 14206215 0.99 

C14620 17932463 17738878 0.99 

C17616 12845107 12704062 0.99 

C17618 16470259 16288020 0.99 

C17620 20598457 20369134 0.99 

C17623 27766412 27448880 0.99 

C17625 33220420 32835011 0.99 

C20618 17591022 17393131 0.99 

C20620 22021628 21775813 0.99 

C20623 29728661 29391278 0.99 

C20625 35601006 35177264 0.99 

C22620 23640708 23332396 0.99 

C22623 31977273 31595035 0.99 

C22625 38341653 37862774 0.99 

C24623 33094628 32675985 0.99 

C24625 39713371 39207085 0.99 

C24630 59402398 58578888 0.99 
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C26625 41489193 40917602 0.99 

C26630 62267075 61352789 0.99 

C30725 41534248 40976363 0.99 

C30730 62385749 61516305 0.99 

 

3.3 Analytical model for PCFS beams subject to pure bending 
 

3.3.1 The analytical model by Hancock 
 

The analytical expressions were first proposed by Lau and Hancock (1987) to calculate the 

distortional buckling load of CFS columns. It should be noted that the distortional buckling 

mainly includes the rotation and translation of the compressed flange and lip. In the 

Hancock’s theoretical model, the rotational and lateral spring at the flange-web junction were 

used to represent the influence of web on the compressed flange and lip (see Figure 3.15). 

Considering the equilibrium of forces in the horizontal and vertical directions, the 

equilibrium of moments about the shear center axis, the buckling load could be obtained by 

solving the following three simultaneous differential equations, Eq.(3-1) to Eq.(3-3) 
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Figure 3.15 Analytical model proposed by Lau and Hancock (1987) 
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where b is the width of the flange, t is the thickness of the flange and lip, x0 is the distance 

between the flange-web junction and centroid, y0 is the distance between the shear center and 

centroid, A is the cross-section area of the compressed flange and lip. E is the Young’s 

modulus, G is the shear modulus and J is the torsion constant. I0 is the polar second moment 

of the cross-section area about the shear center, Ixy is the product of inertia about the shear 

center, Iw is the warping constant, Ix and Iy are the moment of inertia to the shear center about 

the x-axis and the y-axis, respectively. P is the buckling load, Qy is the intensity of the 

reaction force distributed continuously along the support. kx and kɸ are the lateral spring 

stiffness and the rotational spring stiffness, respectively. u is the displacement of the shear 

center in the x-direction, v is the displacement of the shear center in the y-direction and ɸ is 

the rotation of the compressed flange and lip about the shear center which can be expressed 

as,  
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where A1 and A2 are arbitrary constants, λd is the distortional buckling half-wave length. 

Substituting Eq.(3-4) to Eq.(3-6) into Eq.(3-1) to Eq.(3-3), one obtains, 
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To calculate the minimum value of the buckling load P, the critical half-wave length λd 

should be determined. It was assumed that the half-wave length λd approached the critical 

value as the lateral spring stiffness kx was infinite. Hence, the buckling load P can be given by,
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where D is the flexural rigidity of the web, h is the height of the web. The critical value of the 

half-wave length can then be expressed as follows, 
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It should be pointed out that the rotational spring stiffness in Eq.(3-10) ignored the influence 

of compression on the web. The reduction factor given by the ratio of the local buckling 

stress of web to the buckling stress of flange was proposed to represent the compressive force 

on the web and the rotational spring stiffness can be rewritten as, 
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where P’/A is the buckling stress of flange, σw is the local buckling stress of web which can 

be described as, 
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In order to adapt to the results obtained from finite strip analysis, the rotational spring 

stiffness was modified as,
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In Hancock’s model, the lateral restraint has been ignored (kx=0). Substituting Eq.(3-11) and 

Eq.(3-14) into Eq.(3-7), the distortional buckling load becomes, 
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The initial distortional buckling load in Eq.(3-15) was obtained with rotational spring 

stiffness kɸ=0 in Eq.(3-16). After a couple of iterations, the distortional buckling load of CFS 

columns can be determined. 
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Later, Hancock (1997) applied this analytical model to predict the critical stress of 

distortional buckling of CFS beams. Similar to the compression members, the distortional 

buckling of the flexural members also contained the rotation of compressed flange and lip 

about the flange-web junction. In Hancock’s model, the web of the channel section subject to 

compression was assumed as a simply supported beam in flexure (see Figure 3.16(a)) and 

hence the rotational stiffness at the end was 2EI/h. However, the web of the channel section 

subject to pure bending can be treated as a beam simply supported at one end and fixed 

supported at the other end (see Figure 3.16(b)), then the rotational stiffness at the end was 

4EI/h. The critical value of the half-wave length and rotational spring stiffness can be further 

modified as,
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where σ’cr is the distortional buckling stress which can be obtained as follows, 
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The distortional buckling stress can be determined by assuming the rotational spring stiffness 

in Eq.(3-22) to be zero. After the iterations, the critical stress of distortional buckling of CFS 

beams can be obtained. The calculation processes to determine the distortional buckling 

stress of CFS beams were the same with that of CFS columns. 

 

3.3.2 Proposed analytical model  

 

To obtain the critical stress of distortional buckling of PCFS beams subject to pure bending, 

the influence of web openings should be clarified during the calculation processes. In the 

present study, the rotational spring stiffness in the model proposed by Hancock (1997) has 

been modified to represent the effect of web openings. As shown in Figure 3.17, the circular 
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perforations were displayed identically in the centreline of the web and the shaded portion 

represented the solid area in perforated strip.  

 

 

                 (a)                   (b) 

Figure 3.16 Web deformation of the CFS sections due to the distortional buckling (a) pure 

compression (b) pure bending  

 

For simplicity, the area of holes was supposed to be the same as the solid area in the 

perforated strip. Hence, the length of the PCFS beam was nhπd/2, nh was the total number of 

the perforations. 

 

Figure 3.17 Notation and geometry of the PCFS beam in the longitudinal direction 

 

In the proposed analytical model, the flexural rigidity of the perforated strip was assumed to 

be half of the unperforated strip in the web according to the concept of equivalent width. In 

order to determine the modified rotational spring stiffness, a unit bending moment was 
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applied at the flange-web junction and then the rotation angle of the loading point can be 

evaluated (see Figure 3.18). The strain energy of the web is expressed as follows,  
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where D is the flexural rigidity of the unperforated strip and Dh is the flexural rigidity of the 

perforated strip. 
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 The rotation angle of the loading point is 
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By solving Eq.(3-24) and Eq.(3-27), the rotational spring stiffness of the PCFS beam can be 

obtained as follows, 
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It could be observed from Eq.(3-28) that if d=0 then kɸ
*=3D/h, which represents the rotational 

spring stiffness of the CFS beam with the plain web. The reduction factor of the rotational 

spring stiffness of the PCFS beam is given by,
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Moen and Schafer (2009b) illustrated that the perforated web might buckle because of the 

buckling of plate which ignored the influence of holes or the buckling of unstiffened plate 

adjacent to the perforations or the combination of both two. The computing formula was 

proposed to predict the buckling stress of unstiffened plate. However, the perforations were 

not allowed to be too large nor too small, the spacing of holes cannot be too close in the 

design expressions proposed by Moen and Schafer (2009b). This was because the small 

perforations would change the half-wave length of the web and the large perforations would 

narrow the unstiffened strip to increase the stiffness of the web. Furthermore, if the holes 

were too close, the buckling behaviour would be restrained at the holes. It is hard to develop 

general expressions to calculate the local buckling stress of the perforated plate. 

 

 

Figure 3.18 Distortional buckling model proposed by Hancock (1997) (left) and proposed analytical 

model used to determine rotational spring stiffness (right)  

 

Note that, the different local buckling stress of the perforated web had minimal impact on the 

reduction factor in Eq.(3-14) which considered the effects of compressive force on the web. 

Moreover, it was found that if the PCFS beam controlled by the distortional buckling in pure 

bending, the main impact of the perforations was to reduce the rotational stiffness, the 

influence on the half-wave length was negligible (Moen and Schafer, 2009a). Therefore, the 

rotational spring stiffness of the PCFS beam can be further modified as follows, 

4 23
* 0
, 2 4 4 2 2

1.112
(1 )

5.46( 0.06 ) 12.56 2.192 13.39

crPB d
d

d d d

hEt
k

h Et h h


 

  
 

  

            

(3-30) 



 72 

 

Substituting Eq.(3-30) and Eq.(3-21) into Eq.(3-23), and undergoing the iterative process, the 

critical stress of distortional buckling of PCFS beams subject to pure bending can be 

determined. The relevant critical moment of distortional buckling can be calculated as 

follows,
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where Ired is the second moment of the reduced area, that is 
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 where Ifull is the second moment of the area of the channel section with plain web. 

 

3.2.3 Comparison between the proposed model and FEA 
 

The comparisons of critical moments of distortional buckling of PCFS beams subject to pure 

bending among the proposed model (solid line), the analytical model proposed by Yuan et al. 

(2017) (dot dash line) and the results obtained from eigenvalue buckling analysis (point) were 

shown in Figure 3.19. Where Mcr and Mcr0 is the critical moment of CFS beams with and 

without web perforations, four different values of d/h were selected in the eigenvalue 

buckling analysis to evaluate the accuracy of the proposed analytical model. 

 

It is evident that the proposed analytical approach based on the Hancock’s model proposed in 

1987 had a good agreement with the result obtained from eigenvalue buckling analysis 

(Figure 3.19(a) for Section A, Figure 3.19(b) for Section B and Figure 3.19(c) for Section C) 

which reveals that it can be utilized into the design codes of PCFS sections. Furthermore, the 

critical moments of distortional buckling calculated from the analytical model proposed by 

Yuan et al. (2017) were slightly lower than those from the eigenvalue buckling analysis. This 

is because Yuan’s model was proposed based on the stiffened element buckled on the elastic 

foundation, the expressions were simpler and more conservative. It indicates that the 

proposed analytical model can capture the distortional buckling behaviour of PCFS beams 

subject to pure bending well. 
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(a) h=150 mm, b=50 mm, c=15 mm, t=2 mm 

 

 

(b) h=200 mm, b=70 mm, c=20 mm, t=2.5 mm 

 



 74 

 

(c) h=250 mm, b=80 mm, c=25 mm, t=3 mm 

Figure 3.19  Comparisons of critical moments of distortional buckling of PCFS beams subject to pure 

bending among the proposed analytical model, analytical model in Ref.[Yuan et al., 2017] and 

eigenvalue buckling analysis (a) Section A (b) Section B (c) Section C (σy=390 MPa, My is the yield 

moment) 

 

3.4 Analytical model for PCFS beams subject to uniformly distributed load 
 

3.4.1 The analytical model by Li and Chen 
 

The analytical model by Li and Chen was very similar to the Hancock’s model shown in 

Figure 3.15. The only difference was that Li and Chen (2008) added a vertical spring at the 

centroid to take place of the rotational spring at flange-lip junction, as shown in Figure 3.20. 

This idea was illuminated by the analytical model in Eurocode 3 (EN1993-1-3, 2006), the 

vertical spring represented the effect of the web on the compressed flange and lip as well as 

the flexure behaviour of the compressed flange and lip itself. Considering the equilibrium of 

forces in the y- and z-directions and the equilibrium of moments about the shear center axis, 

the buckling load can be obtained from the following three simultaneous differential 

equations, Eq.(3-33) to Eq.(3-35). 
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Figure 3.20 Analytical model proposed by Li and Chen (2008) 
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where b is the width of the flange, t is the thickness of the flange and lip, y0 is the lateral 

distance between the shear center and centroid, z0 is the vertical distance between the shear 

center and centroid, A is the cross-section area of the compressed flange and lip. E is the 

Young’s modulus, G is the shear modulus, J is the torsion constant and Iw is the warping 

constant. I0 is the polar second moment of the cross-section area about the shear center, Iyz is 

the product of inertia, Iy and Iz are the moment of inertia about the y-axis and the z-axis, 

respectively. P is the buckling load, Qy is the intensity of the reaction force distributed 

continuously along the support. ky and kz are the lateral spring stiffness and the vertical spring 

stiffness, respectively. u is the deflection of the shear center in the y-direction, v is the 

deflection of the shear center in the z-direction and ɸ is the rotation of the compressed flange 

and lip about the shear center, can be expressed as, 
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where C1 and C2 are the arbitrary constants, λd is the distortional buckling half-wave length. 

Substituting Eq.(3-33) to Eq.(3-35) into Eq.(3-36) to Eq.(3-38), it yields, 
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It could be found that Eq.(3-39) was similar to Eq.(3-7), the only difference was the last term, 

which in the Hancock’s model the it was kɸ but in the model by Li and Chen it was kz(b-y0)
2. 

The flexibility of the vertical spring kz in the model by Li and Chen could be split into two 

parts. One was the rotation at the flange-web junction and the other was the flexure of the 

flange itself, which leads to,
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where kɸ is the rotational spring stiffness in the Hancock’s model, Df is the flexural rigidity of 

the flange plate. Obviously, when the flexural rigidity Df is infinite, kz(b-y0)
2 will be equal to 

kɸ.  For simplicity, Eq.(3-40) can be rewritten as, 
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If the vertical spring stiffness and half-wave length of a channel section were known, the 

distortional buckling load can be solved by Eq.(3-39). In the Hancock’s model, the rotational 

spring stiffness kɸ was found to be 2D/h for the column and 4D/h for the beam. Let dP/dλd=0, 

for the case the lateral spring stiffness ky was infinite. The critical half-wave length can then 

be determined as follows,  
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in which, 
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The critical stress of distortional buckling of CFS sections can be calculated from Eq.(3-39) 

as follows,
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in which,
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Similar to the Hancock’s model, the reduction factor was multiplied by the rotational spring 

stiffness to represent the effect of the compressive force on the web. For the CFS columns 

subject to compression, 
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For the CFS beams subject to pure bending, 
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It should be pointed out that the two buckling stresses were not in the same position, the 

project factor h/(h+2z0) was adopted in Eq.(3-50) to reduce the errors. Where σcr|kɸ’=0 is the 

distortional buckling stress determined by Eq.(3-44) with kɸ’=0 and σcr|λ=λd is the local 

buckling stress of web which can be expressed as,  

For the CFS columns subject to compression, 
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For the CFS beams subject to pure bending,

 

 2244

42

2

06.1297.132.11 hh
h

Et
crd

cr

w cr



  

               

(3-52) 

 

Substituting Eq.(3-49) and Eq.(3-50) into Eq.(3-41), the expression of kɸ’ for compression 

and pure bending can be obtained. After the iterative processes, the critical stress of 

distortional buckling of CFS channel sections can be determined. 

 

3.4.2 Proposed analytical model  

 

It is known that when the beam is subject to uniformly distributed load, the moment curve is 

parabolic. While the beam is subject to pure bending, the relevant moment curve is straight, 

as shown in Figure 3.21. The distortional half-wave length is equal for the beam subject to 

pure bending. However, it becomes unequal for the beam subject to uniformly distributed 

load due to variant moment distribution along the longitudinal direction. The design 

expressions presented in Section 3.3.2 are not available for calculating the distortional 

buckling stress of PCFS subject to uniformly distributed load. In the present study, the 
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analytical model based on the model by Li and Chen was proposed to predict the distortional 

buckling stress of PCFS beams subject to uniformly distributed load. Furthermore, the effects 

of perforations and stress gradient on the distortional buckling behaviour of PCFS beams 

were examined. 

 

 

Figure 3.21 Bending moment diagram for uniformly distributed load (left) and pure bending (right) 

 

In the proposed analytical model, the vertical spring stiffness in the model by Li and Chen 

needs to be reduced to consider the influence of web openings. Hence, a unit load, F was 

applied at the centroid of the compressed flange and lip to determine the modified vertical 

spring stiffness (see Figure 3.22). The strain energy of the web and compressed flange can be 

expressed as follows, 
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where EI1 and EI2  are the bending stiffnesses of the plain and perforated webs respectively. 

 

The deflection of the vertical spring has been found to be 
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The modified vertical spring stiffness can be determined as follows, 
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where D is the flexural rigidity of the unperforated strip and Dh=0.5D is the flexural rigidity 

of the perforated strip. 

 

Figure 3.22 Model used to determine the stiffness of the vertical spring 

 

For the CFS beam with plain web (d = 0), the vertical spring stiffness in Eq.(3-55) becomes 
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The factor 3D/h in Eq.(3-56) represents the rotational spring stiffness of CFS beams at the 

flange-web junction, by multiplying the reduction factor, it yields,
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The reduction factor of the vertical spring stiffness of the PCFS beam can be defined as,
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Let Eq.(3-57) replace the factor 3D/h in Eq.(3-56), the modified vertical spring stiffness can 

be expressed as, 
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In order to avoid twisting, the uniformly distributed load is applied at the shear center of the 

PCFS beam as illustrated in Section 3.2.2.3. If the PCFS beam is simply supported, the 

internal moment along the longitudinal axis can be given by 
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where qz is the density of uniformly distributed load and l is the length of the PCFS beam.

 

 

Then the external force in the compressed flange and lip can be expressed as follows, 
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where McrdUDL = qzl
2/8 is the largest internal moment, σcrdUDL is the distortional buckling stress 

of the PCFS beam subject to uniformly distributed load, A=(b+c)t is the area of the 

compressed flange and lip. 

 

For the simply supported PCFS beam subject to pure bending, the relevant external force in 

the compressed flange and lip is 
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If the PCFS beam subject to uniformly distributed load is controlled by distortional buckling, 

the strain energy stored in the compressed flange and lip can be described as follows, 
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A loss of the potential energy gives 
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where rc is the polar radius of gyration of the compressed flange and lip about the centroid 

and some parameters in Eq.(3-63) and Eq.(3-64) are given by, 
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The rotation of the compressed flange and lip about the shear center is defined as follows, 
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where a1, a2, … , an are arbitrary constants and hence various shapes of the rotation curves 

can be obtained. According to the energy method, the critical buckling stress of the 

compressed flange and lip with continuous vertical spring support can be determined by 
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Substituting Eq.(3-61), Eq.(3-63) and Eq.(3-64) into Eq.(3-73), one obtains, 
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It should be pointed out that n is not equal to m and the sum of n and m is even in Eq.(3-74). 

Substituting Eq.(3-59) into Eq.(3-74), the critical distortional stress of PCFS beams subject to 

uniformly distributed load can be determined. Eq.(3-74) can be evaluated by using the 

Rayleigh-Ritz method, the derivation of Eq.(3-74) with respect to a1, a2, … , an vanish, it 

yields,

 
11 1 11 1

1 1

0

n n

crdUDL

n nn n nn

a a b b

a a b b



   
   

 
   
      

                

(3-75)

 

in which,  

0 ( )ija i j 
                   

(3-76)
 

2 4 2 ' 2

0( )( ) ( ) ( )w y z

nn

n n
EI EI b GJ k b y

l la
A

 
   


               

(3-77)
 

 0 ;pnb p n p n odd   
                 

(3-78)
 

 
22 2 2 2

0 0

2 2 2 2

( )
[ 16 ]

( )

c

mn

z b y r nm n m
b

l n m

   
  

                

(3-79)

 

 
22 2 2 2

0 0

2
[2 ( 1)]

3

c

nn

z b y r n
b

l

  
  

                
(3-80) 



 84 

Eq.(3-75) is the linear equations in a1, a2, … , an with infinite dimensions which represents 

the eigenvalue problem. The eigenvalues can be calculated by using MATLAB and the 

minimum value is the critical distortional buckling stress. It should be noted that the 

distortional buckling half-wave length of the CFS beam is mainly dependent on the cross-

section dimension. However, it is found that most half-wavelengths of CFS sections selected 

from Albion Section are around 500 mm, and the relevant results obtained by using software 

CUFSM are summarized in Appendix C. Hence the largest value of n can be determined by 

the beam length, e.g., for the beam with 3000 mm length, the relevant n should be taken at 

least 6.  

 

For the same PCFS beam subject to pure bending, substituting Eq.(3-62), Eq.(3-63) and 

Eq.(3-64) into Eq.(3-73), the relevant critical distortional buckling stress can be calculated as 

follows,
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The comparison of critical distortional buckling stress of PCFS beams (Section D, h=200 mm, 

b=65 mm, c=20 mm and t=2 mm) subject to pure bending and uniformly distributed load is 

shown in Figure 3.23. It can be found that when the PCFS beam was subject to uniformly 

distributed load, the critical stress of distortional buckling was highly dependent on the beam 

length. For the PCFS beams less than 3000 mm, the distortional buckling stress decreased 

sharply with the increase of beam length. Whereas this decrease weakened for the PCFS 

beams more than 4500 mm. Furthermore, the distortional buckling stress of the PCFS beam 

subject to uniformly distributed load was continually higher than that of the same beam 

subject to pure bending. However, this gap tended to be close for the long beam. Hence, for 

the beam lengths ranging from 2 meters to 4 meters, the effect of variant moment distribution 

along the longitudinal direction of PCFS beams should be taken into account in the design of 

the beams. 
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3.4.3 Comparison between the proposed model and FEA 

 

The comparison of the critical distortional buckling stress of PCFS beams with different hole 

sizes subject to uniformly distributed load between the proposed model and FEA was shown 

in Figure 3.24, where σcrdUDL is the critical stress and σy is the yield stress (σy=390MPa). It can 

be identified from the figure that the critical stress curves of PCFS beams with different hole 

sizes have the similar variation pattern. Furthermore, the relevant critical stresses of PCFS 

beams decreased with the increase of hole size. The details of the critical moment of 

distortional buckling of PCFS beams with different hole sizes subject to uniformly distributed 

load obtained from eigenvalue buckling analysis can be found in Appendix B.2. 

 

Figure 3.23 Comparisons of critical distortional buckling stress of PCFS beams subject to uniformly 

distributed load and pure bending (σy=390 MPa, h=200 mm, b=65 mm, c= 20 mm and t=2 mm) 

 

The critical stresses calculated by the proposed analytical model can match the results 

obtained from eigenvalue buckling analysis well when the lengths of PCFS beams were 

longer than 3500 mm, but the critical stresses obtained from the proposed analytical model 

were much higher than that obtained from finite element analysis for the short beams as 

detailed in Figure 3.24. This is because the shear stresses are more serious than the bending 

stresses near the support ends of short beams when the PCFS beam is subject to uniformly 
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distributed load. As a result, the failure modes of PCFS beams with short length would be 

controlled by shear buckling rather than distortional buckling. Furthermore, the stress 

concentration near the web openings might lead to the local buckling.  

 

It should be mentioned that the proposed analytical model only focuses on the distortional 

buckling, but the local buckling modes, shear buckling modes and combination of these two 

modes are all included in the eigenvalue buckling analysis. For the short beam subject to 

uniformly distributed load, the distortional buckling is not the dominate mode. This is the 

reason why the proposed analytical approach cannot predict the critical stress of the PCFS 

beam (beam length is less than 3500 mm) accurately. It should, however, be noted that the 

proposed analytical model can predict the critical stresses of distortional buckling of PCFS 

beams subject to uniformly distributed load well as the beam lengths increase. 

 

 

Figure 3.24 Comparison between the proposed model and eigenvalue buckling analysis of PCFS 

beams with different hole sizes subject to uniformly distributed load (σy=390 MPa, h=200 mm, b=65 

mm, c= 20 mm and t=2.5 mm) 

` 
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3.5 Summary  
 

The analytical studies on the distortional buckling of PCFS beams subject to pure bending 

and uniformly distributed load have been presented in this Chapter in which models by 

Hancock (1987) and Li and Chen (2008) have been modified to predict the critical stress of 

distortional buckling. The results from numerical analysis have been used to validate against 

the proposed analytical solutions. From the results obtained from both analytical and 

numerical studies, the following major conclusions can be drawn. 

 

 The circular perforations in the web can reduce the flexural rigidity of the web and 

thus decrease the rotational resistance of the compressed flange and lip. Consequently, 

the critical stresses of distortional buckling of PCFS beams decrease. 

 

 The Hancock model (1987) can be applied to predict the critical moment of 

distortional buckling of PCFS beams subject to pure bending if the rotational spring 

stiffness is adequately reduced. 

 

 The model by Li and Chen (2008) can be modified to determine the critical stress of 

distortional buckling of PCFS beams subject to uniformly distributed load. The 

influence of web perforations can be estimated by reducing the vertical spring 

stiffness of the compressed flange and lip system.  

 

 The concept of the equivalent width can be applied for determining the reduction of 

bending rigidity of the perforated web and hence the modified rotational spring 

stiffness or the modified vertical spring stiffness can be obtained by means of the 

classical energy solution.  

 

 When the PCFS beams are subject to uniformly distributed load, the half-wave 

lengths of the distortional buckling modes are different along the longitudinal 

direction due to the effects of stress gradient and the largest deflection appears at the 

mid-span. 
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 The effects of stress gradient on the distortional buckling behaviour of PCFS beams 

are highly dependent on the beam length. The critical stress of distortional buckling of 

a PCFS beam subject to uniformly distributed load is higher than that of the same 

beam subject to pure bending, this gap becomes closer with the increase of the beam 

length. 

 

 The critical stresses of distortional buckling of PCFS beams subject to pure bending 

and uniformly distributed load decrease with the increase of circular hole sizes. 

 

 For the short PCFS beams (beam length is less than 3500 mm) subject to uniformly 

distributed load, the section might experience shear failure in which case the 

distortional buckling is not the dominant mode. This explains why there is poor 

agreement between the adopted FEA results and the proposed analytical model. 

 

 There is a good agreement between the results calculated by the proposed analytical 

models and the data obtained from eigenvalue buckling analysis for the beam longer 

than 3500 mm, indicating that the proposed theoretical approaches are reliable and 

can be applied into the design guideline for PCFS sections controlled by distortional 

buckling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 89 

Chapter 4 — Lateral-torsional buckling performance of perforated cold-formed 

steel channel beams  

 

4.1 Introduction 

 

This chapter presents the theoretical approach and finite element analysis on the lateral-

torsional buckling performance of perforated cold-formed steel channel beams subject to pure 

bending and uniformly distributed uplift load.  

 

The finite element eigenvalue buckling analysis performed by ANSYS is used to investigate 

the influence of web openings, gradient moment and lateral restraint on the lateral-torsional 

buckling of PCFS beams. The finite strip solution by CUFSM is employed to verify the 

loading and boundary conditions of the finite element model. 

 

The theoretical solution for determining the critical moments of lateral-torsional buckling of 

PCFS beams subject to pure bending and uniformly distributed uplift load is deduced based 

on the energy method. The horizontal and rotational springs are used to represent the restraint 

provided by the sheeting, the influence of horizontal and rotational spring stiffness on the 

lateral-torsional buckling behaviour of the PCFS beams is examined. 
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4.2 Numerical investigation  

 

Eigenvalue buckling analysis of unrestrained and restrained PCFS beams subject to pure 

bending and uniformly distributed uplift load was conducted using finite element software 

ANSYS. The influences of hole sizes, variant moment along the longitudinal axis and 

restraint by the sheeting on the lateral-torsional buckling behaviour were explored. The finite 

strip method performed by CUFSM was used to demonstrate the adequacy of the boundary 

and loading conditions used in the finite element models. 

 

4.2.1 Finite strip method 

 

As described in Section 3.2.1, the finite strip method performed by CUFSM is an accurate 

predictor to calculate the critical buckling stress of simply supported CFS members (without 

holes) subject to pure bending. It was used to verify the reliability of the finite element 

models presented in this chapter. Section E (h=200 mm, b=70 mm, c=20 mm, t=2 mm) was 

selected as a typical cross section for the buckling analysis in CUFSM (see Figure 3.1). The 

simulation process of the finite strip model was the same as that in Section 3.2.1, the material 

properties such as Young’s modulus and Poisson’s ratio were also set as 205 GPa and 0.3, 

respectively.  

Section E (h=200 mm, b=70 mm, c=20 mm, t=2 mm) 

Figure 4.1 Cross section in CUFSM to obtain the critical moments of lateral-torsional buckling of 

CFS beams (without holes) subject to pure bending  

 

The typical lateral-torsional buckling mode of a 3-meter-long CFS beam (without holes) 

subject to pure bending is provided in Figure 4.2. It can be seen that the compression flange 
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of the cross section bend laterally with respect to the major axis, and other parts move with 

the compression flange when the lateral-torsional buckling occurs. The whole CFS beam 

moves like a rigid body and the shape of the cross section remains unchanged.  

 

                 

Figure 4.2 Lateral-torsional buckling mode of a 3-meter-long CFS beam (without holes) in CUFSM. 

(h=200 mm, b=70 mm, c=20 mm, t=2 mm)  

 

4.2.2 Elastic finite element analysis 

 

4.2.2.1 Geometry  
 

The geometry and notations used in the PCFS beam with circular holes in the web were 

defined in Figure 4.3, the web depth, flange width, lip length, thickness of the beam and 

circular hole diameter were labeled as h, b, c, t and d, respectively. The circular perforations 

were assumed to be punched in the web evenly, the beam length was considered as l=nhπd/2 

in which nh was the total number of perforations. All the symbols used for the lateral-

torsional buckling analysis were the same as those for distortional buckling analysis in 

Section 3.2.2.1. In this chapter, Section E (h=200 mm, b=70 mm, c=20 mm, t=2 mm) was 

selected for the eigenvalue buckling analysis of PCFS beams subject to pure bending and 

uniformly distributed uplift load. 
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Figure 4.3 Geometry and notations used in the PCFS beam with circular holes in the web 

 

4.2.2.2 Element type and mesh 

 

The isoparametric four-node elements Shell 181 with six degrees of freedom at each node 

were used to model the PCFS beams for lateral-torsional buckling analysis. The material 

properties of the cold-formed steel including Young’s modulus, Poisson’s ratio and the yield 

strength were taken as E=205 GPa, µ=0.3 and σy=390 MPa respectively. The mesh size of a 

PCFS beam was roughly 5×5 mm (corresponding mesh sensitivity analysis can be found in 

Appendix A.2), smooth transition meshes were arranged around the circular perforations as 

shown in Figure 4.4. 

 

Figure 4.4 Typical finite element meshes of a PCFS beam in ANSYS (Section E, h=200 mm, b=70 

mm, c=20 mm, t=2 mm, d=100 mm, l=3140 mm) 

 

4.2.2.3 Boundary conditions of PCFS beams 

 

In this section, the simply supported boundary conditions were assumed to be applied at two 

ends of the PCFS beam which is same to the description in Section 3.2.2.3. Two general 
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cases were considered in this section, one was that there were no lateral restraint on the PCFS 

beam (kz=0, k=0). The other was that the tension flange of the PCFS beam was laterally 

restrained by sheeting (kz=∞, k=0). 

 

Case 1: Laterally unrestrained PCFS beams (kz=0, k=0) 

 

Figure 4.5 provides simply supported boundary conditions of a PCFS beam without lateral 

restraint. It can be found in the figure that the translations of end nodes were restrained in the 

y and z direction (that is UY=UZ=0), the rotation of end nodes was restrained about the x-

axis (that is ROTX=0). To avoid the rigid displacement, the translation of Point C located in 

the middle of the web at one end was restrained in the x direction. 

 

 

Figure 4.5 Boundary conditions of an unrestrained PCFS beam in ANSYS 

  

Case 2: Laterally restrained PCFS beams (kz=∞, k=0) 

 

When the PCFS beams were restrained by sheeting, the translation of tension flange-web 

corner line should be restrained in the z direction (that is UZ=0) as shown in Figure 4.6. 

Other setting of simply-supported boundary conditions were the same as that in Case 1. It 

should be pointed out two flange-web corner lines were both restrained laterally to ensure the 

PCFS beam controlled by distortional buckling in Section 3.2.2.4, however, only the tension 

flange-web corner line was restrained laterally in this Section.  
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Figure 4.6 Boundary conditions of a laterally restrained PCFS beam in ANSYS 

 

4.2.2.4 Loading conditions of PCFS beams 

 

 

In this section, two general loading conditions (pure bending and uniformly distributed uplift 

load) were applied in the eigenvalue buckling analysis. The equivalence of forces were 

employed to simulate the above two loading cases.  

 

Case 1: Pure bending 

 

The equivalent forces of pure bending were applied at both ends of the PCFS beam in which 

the forces were uniformly distributed on the flanges but linearly distributed on the web and 

lips as shown in Figure 4.7. 

 

Figure 4.7 Loading conditions of a PCFS beam subject to pure bending 
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Case 2: Uniformly distributed uplift load 

 

 

To avoid additional torsional moment, the uniformly distributed uplift load was applied at the 

intersection of shear center line and upper flange line of the cross section. To simulate this 

loading condition, the uniformly distributed uplift load coupled with equivalent moment was 

applied at the web line which is very similar to that described in Section 3.2.2.4 (see Figure 

4.8).  

 
 

 
Figure 4.8 Loading conditions of a PCFS beam subject to uniformly distributed uplift load 

 

4.2.2.5 Results and discussion 

 

 

The critical moments of lateral-torsional buckling of laterally unrestrained and restrained 

PCFS beams with different hole sizes subject to pure bending and uniformly distributed uplift 

load obtained from eigenvalue buckling analysis are summarized in Appendix D, the beam 

length ranges from 3 meters to 14.5 meters.  

 

Typical lateral-torsional buckling modes of a 3-meter-long PCFS beam with or without 

lateral restraint subject to pure bending are shown in Figure 4.9. Similar to the CFS beam 

(without holes), the cross section of the PCFS beam rotated about the major axis and moved 

laterally during lateral-torsional buckling, but the shape of the cross section did not change. It 

can also be found that the half-wave length of lateral-torsional buckling was equal to full 

length of the PCFS beam.  
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(a) kz=0, k=0 

 

 

 
(b) kz=∞, k=0 

 
Figure 4.9 Typical lateral-torsional buckling modes of a PCFS beam subject to pure bending in 

ANSYS (h=200 mm, b=70 mm, c=20 mm, t=2 mm, d=100 mm, l=3140 mm) (a) with no lateral 

restraint (b) with lateral restraint at the tension flange 

 

Furthermore, it is interesting to notice that the lateral-torsional modes in Figure 4.9(a) and 

Figure 4.9(b) were almost the same which indicated that the influence of lateral restraint at 

the tension flange on the lateral-torsional buckling of PCFS beams subject to pure bending 

was negligible. This is mainly because the beam only deflects in the xy plane before buckling 

for the pure bending and the effect of lateral restraint on the pre-buckling moment 

distribution could be ignored.   

 

The lateral-torsional buckling modes of a 3-meter-long PCFS beam with or without lateral 

restraint subject to uniformly distributed uplift load were analogous to the same beam subject 

to pure bending as shown in Figure 4.10. However, the cross-section rotation in Figure 4.10(a) 

was severer than that in Figure 4.10(b) which revealed that the lateral restraint at the tension 

flange can increase the critical moment of lateral-torsional buckling of PCFS beams subject 

to uniformly distributed uplift load. The reason is that the beam not only deflects in the xy 

plane but also in the xz plane before buckling for the uniformly distributed uplift load and the 

lateral restraint could affect the relevant pre-buckling moment distribution. 
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(a) kz=0, k=0 

 

 
(b) kz=∞, k=0 

 
Figure 4.10 Typical lateral-torsional buckling modes of a PCFS beam subject to uniformly distributed 

uplift load in ANSYS (h=200 mm, b=70 mm, c=20 mm, t=2 mm, d=100 mm, l=3140 mm) (a) with no 

lateral restraint (b) with lateral restraint at the tension flange 

 

4.2.3 ANSYS-CUFSM results comparison 
 

The comparison of lateral-torsional buckling modes of a 3-meter-long CFS beam (without 

holes) subject to pure bending obtained from FSM and FEA is provided in Figure 4.11. The 

finite element model had the same geometry, material properties, boundary and loading 

conditions used in CUFSM. It can be observed from the figures that the buckling modes 

generated by CUFSM and ANSYS had similar deformation patterns. Furthermore, it should 

be mentioned that the finite element parameters including material properties, mesh sizes, 

loading conditions and boundary conditions in this section were the same as that in Case 1 

Section 4.2.2.4, the only difference was that there was no holes punched in the web. 
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(a) FSM 

           

(b) FEA 

Figure 4.11 Comparison of lateral-torsional buckling modes of CFS beams (without holes) subject to 

pure bending obtained from FSM and FEA (h=200 mm, b=70 mm, c=20 mm, t=2 mm,  l=3000 mm) 

 

Table 4.1 summarizes the numerical results of lateral-torsional buckling of CFS beams 

(without holes) ranging from 3000 mm to 14000 mm. It should be mentioned that in the 

practical cases the beam length might not be longer than 6000 mm. However, to make a 

straightforward comparison between the critical moments of lateral-torsional buckling 

obtained from CUFSM and eigenvalue buckling analysis by ANSYS, the longest length of 

the beams was selected to 14000 mm in the present study. It can be seen that the FEA-to-

FSM moment ratios (Mcrλ,FEA /Mcrλ,FSM) for CFS beams were all higher than 99.5% which 

revealed that the loading and boundary conditions of the finite element models built in this 

chapter were suitable and hence the models can be used to calculate the critical moments of 

lateral-torsional buckling of PCFS beams subject to pure bending and uniformly distributed 

uplift load. 
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Table 4.1 Comparison of the critical moments of lateral-torsional buckling of CFS beams (without 

holes) obtained from FSM and FEA (Section E, h=200 mm, b=70 mm, c=20 mm, t=2 mm)  

Length 

(mm) 

Slenderness 

ratio 
Mcrλ,FSM (N·mm) Mcrλ,FEA (N·mm) Mcrλ,FEA /Mcrλ,FSM 

3000 113 11247734 11209025 0.997 

3500 132 8417563 8386739 0.996 

4000 150 6560385 6535480 0.996 

4500 169 5278048 5258164 0.996 

5000 188 4356176 4339836 0.996 

5500 207 3671256 3656855 0.996 

6000 226 3148283 3136392 0.996 

6500 244 2739682 2728775 0.996 

7000 263 2413920 2404452 0.996 

37500 282 2150102 2141490 0.996 

8000 301 1924718 1925299 1 

8500 320 1752210 1745289 0.996 

9000 338 1599740 1593446 0.996 

9500 357 1469864 1464248 0.996 

10000 376 1358217 1352734 0.996 

10500 395 1261422 1256636 0.996 

11000 414 1176847 1172408 0.996 

11500 433 1102459 1098003 0.996 

12000 451 1036579 1032392 0.996 

12500 470 977901 974521 0.997 

13000 489 925380 921655 0.996 

13500 508 878101 874568 0.996 

14000 527 835357 832002 0.996 

 

4.3 Analytical model for lateral-torsional buckling analysis of PCFS beams  
 

4.3.1 Li’s model 

 

An analytical solution for calculating the critical stress of lateral-torsional buckling of cold-

formed zed-purlins was proposed by Li (2004). This model was built for the case that the 

CFS members partially restrained by sheeting or interval anti-sag bars and subject to 

transverse loads, in which the horizontal and rotational spring on the upper flange were used 

to represent the restraint of the sheeting, see Figure 4.12. 
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Figure 4.12 Analytical model proposed by Li (2004) 

 

According to the coordinate system shown in Figure 4.12, the bending moment can be 

expressed as follows, 
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where E is the Young’s modulus, My and Mz are the bending moments about the y and z axes, 

Iy and Iz are the moment of inertia about the y and z axes, Iyz is the product of inertia. Ry and 

Rz are the radii of curvature of neutral axis in the xz and xy planes which can be expressed as 

follows, 
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where w and v are the horizontal and vertical displacements of the zed-purlin at the centroid.  
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The strain energy stored in the zed-purlin due to bending about the y and z axes, twisting and 

warping torsion can be expressed as,  
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where ɸ is the twist of angle about x-axis, l is the length of the zed-purlin. G is the shear 

modulus, J is the torsion constant and Iw is the warping constant. 

 

The strain energy stored in the horizontal and rotational springs on the upper flange due to the 

deformation of the zed-purlin can be expressed as, 
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where kz and kɸ are the per-unit-length stiffness of the horizontal and rotational spring, h is the 

height of the zed-purlin. 

 

If the zed-purlin is subject to uniformly distributed uplift load within the span and bending 

moment at two ends, the potential energy produced by the external loads is given by, 
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where qy is the density of uniformly distributed uplift load in the vertical direction, a is the 

distance of loading point to the web. Myo, Myl, Mzo and Mzl are the bending moment about the 

y and z axes at the ends of the zed-purlin. 

 

According to the principle of the minimum potential energy, the deflections of the zed-purlin 

i.e. horizontal displacement, vertical displacement and rotational displacement due to the 

external loads can be determined.  
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It is assumed that the pre-buckling moment is distributed as Myo and Mzo, then the pre-

buckling longitudinal stress is  
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The horizontal and vertical deflections of the zed-purlinw(x,y,z) andv(x,y,z) at point (x,y,z) 

during buckling can be expressed as follows, 

2

2

1
sin)1(cos),,(  zywyzwzyxw 

                 

(4-9)
 

2

2

1
)1(cossin),,(  yzvyzvzyxv 

                

(4-10) 

 

The longitudinal deflection of the zed-purlinu(x,y,z) at point (x,y,z) during buckling can be 

expressed as follows, 
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where β(y,z) is the warping function of St. Venant torsion, u(x) is the longitudinal deflection 

of the zed-purlin at point (x,0,0). Then the longitudinal strain and shear strains produced by 

the buckling deflections can be obtained as follows, 
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Substituting Eq.(4-9) and Eq.(4-10) into Eq.(4-11) to Eq.(4-13) and splitting them into linear 

and nonlinear parts. Then, the second-order nonlinear strains can be obtained as follows, 
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Hence, the potential energy produced by pre-buckling longitudinal stress due to the second-

order nonlinear strains can be given by, 
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The negative sign in Eq.(4-18) is because the pre-buckling longitudinal stress and the second-

order nonlinear strains are in opposite direction. Substituting Eq.(4-15) into Eq.(4-18), it 

yields, 
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When the uniformly distributed uplift load is not acting at the shear center, the work due to 

the lowering of the loads during the rotation should be taken into account. That is,  
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The cubic spline interpolations were used to represent the horizontal and vertical deflections 

of the zed-purlin in Li’s analytical model. Comparing to the traditional trigonometric series, 

the selected spline function can fit various boundary conditions and stimulate the restraint of 

interval anti-sag bars. Thus, 
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where wi and vi are the horizontal and vertical deflections at interpolation point xi which need 

to be determined. fi(x, xi) is the spine interpolation functions at n interpolation points (x1, x2, 

x3,..., xn) and can be defined as follows, 
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It should be pointed out that the derivation values of the spline functions at end points mainly 

depend on the actual boundary conditions. For a fixed boundary at the end point xj , 
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For a simply supported boundary at end point xj , 
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The rotational displacement of the zed-purlin can be expressed in terms of the horizontal 

deflection as,  

 )(
2

)( xw
h

x 
                    

(4-27) 

 

Noting that the buckling occurs when the strain energy produced by the buckling deflections 

is less than the potential energy generated by the pre-buckling stresses. The critical buckling 

stress can be calculated by following buckling equation. 
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(4-28) 

where λ is the critical load factor, the smallest eigenvalue calculated by Eq.(4-28) represents 

the buckling load factor. Substituting Eq.(4-21), Eq.(4-22) and Eq.(4-27) into Eq.(4-4), Eq.(4-

5) and Eq.(4-20) and then into Eq.(4-28), the critical load of lateral-torsional buckling of 

partially restrained cold-formed zed-purlin can be determined.   

 

4.3.2 Proposed analytical model 

 

4.3.2.1 PCFS beams subject to pure bending 

 

In this section, an analytical model was derived by using the energy method to predict the 

critical stress of lateral-torsional buckling of PCFS beams subject to pure bending. The cross-

sectional properties were reduced in the energy-based stability equations to account for the 

influence of web openings. Unlike the case in Section 4.3.1, the present study mainly focused 

on the simple boundary condition and ignored the interval restraints by anti-sag bars. Hence, 

for convenience, the traditional trigonometric series were used to express the deflections 

rather than the cubic spline functions.  

 

Let the x-axis be along the longitudinal direction of the beam, the y and z axes be the two 

principle axes of the cross section which are parallel to the web line and flange line 

respectively. Furthermore, the origin of the coordinate was located at the centroid of the cross 

section, as shown in Figure 4.13(a). 

 

It should be pointed out that the web perforations have minimal effect on the position of the 

centroid and shear center. Hence, the distance from the centroid to the web line zc and the 

distance from the shear center to the web line zs of the PCFS beam are the same as that of the 

CFS beam (see Figure 4.13 (a)) and can be calculated as follows,  
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where Iz1 the moment of inertia about the z-axis of CFS beams (without holes) and can be 

calculated as follows, 
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(a)                                               (b)  

Figure 4.13 Model used for lateral-torsional buckling analysis of PCFS beams subject to pure bending 

(a) Notation and geometry (b) Analytical model 

 

 

The strain energy stored in the PCFS beam due to the buckled displacements i.e. horizontal 

deflection, vertical deflection and rotation can be expressed by,  
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where Iy
* and Iz

*
 are the moment of inertia about the y and z axes, J* is the torsion constant, Iw 

is the warping constant about the shear center.  
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The cross-section properties of a PCFS beam can be divided into three different regions i.e. 

upper part of beam (unperforated strip), mid part of beam (perforated strip) and bottom part 

of beam (unperforated strip) as shown in Figure 4.14. For the thin-walled section with 

uniformly distributed perforations punched in the web, the contribution of solid part in the 

mid part of beam to the cross-section properties is negligible due to the discontinuities. 

Therefore, the relevant parameters can be calculated as follows, 
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According to the work by Moen and Schafer (2009), the discontinuities generated by the 

perforations do not allow warping resistance at the end of the beam and hence the warping 

strain energy can be taken as zero in the unperforated strip. Hence, the warping constant of a 

PCFS beam can be calculated as follows,  
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Figure 4.14 Cross-section properties of the PCFS beam in different regions 
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Similar to Li’s model, rotational and horizontal springs continuously distributed in the x-axis 

are used to represent the restraint by the sheeting. The strain energy stored in the horizontal 

and rotational springs (see Figure 4.13 (a)) due to the deformation of the PCFS beam is  
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(4-37) 

 

The horizontal, vertical and rotational displacements of the PCFS beam at the centroid (see 

Figure 4.13 (b)) for the lateral-torsional buckling mode is given by,  
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where l is the beam length,  B1, B2 and B3 are constants need to be determined.   

 

For a simply supported PCFS channel beam subject to pure bending in which two equal 

bending moments in the opposite direction at both ends, the internal bending moment along 

the longitudinal axis is  

0)( MxM z 
                                                                                                 

(4-41) 

where M0 is the internal bending moment about the z-axis. 

 

The potential energy generated by the pure bending is equal to the product of the bending 

moment and corresponding angle due to the lateral-torsional buckling, thus 
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After the rotation and deflections, the pre-buckling longitudinal stress generated by the 

internal bending moment about the z-axis can be calculated as, 
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The work done by the longitudinal stress via the second-order nonlinear strains can be 

expressed as, 
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where εx2 is the second nonlinear strains and is expressed as Eq.(4-15) in the Section 4.3.1. 

 

It should be pointed out that the channel section is symmetric about the z-axis, thus 
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Substituting Eq.(4-43) and Eq.(4-15) into Eq.(4-44), it yields, 
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Hence, the total work done by the pure bending during the lateral-torsional buckling can be 

expressed as follows, 
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The total potential energy of the proposed analytical model subject to pure bending becomes  



 110 

dx
dx

wd
MdxW

dx

vd
Mdxkdx

h
wk

dx
dx

d
EI

dx

d
GJ

dx

vd
EI

dx

wd
EI

WUU

l

x

lll

z

l

wzy

springPCFS











0 2

2

012

1

2

0
0

0

2

1
0

21

0

2

2

1

2
21*2

2

1

2
*2

2

2
*

1

2

1
])

2
[(

2

1

])()()()([








            

(4-49) 

 

Substituting Eq.(4-38) to Eq.(4-40) into Eq.(4-49), it yields, 
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According to the principle of minimum potential energy, the total potential energy of the 

proposed analytical model will reach the state of equilibrium with respect to the constants B1, 

B2 and B3 when the lateral-torsional buckling occurs. That is
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By using Raleigh-Ritz derivation the eigenvalue equations can be re-written as follows, 
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in which A11, A13, A22, A31, A33 are the coefficients of Eq.(4-54) and can be expressed as 

follows, 
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Eq.(4-54) is an eigenvalue equation with three dimensions and can be solved by the 

calculation software MATLAB. The smallest eigenvalue is treated as the critical moment of 

lateral-torsional buckling of a PCFS beam with typical length subject to pure bending. 

 

4.3.2.2 PCFS beams subject to uniformly distributed uplift load 

 

In some practical cases, the sheeting fixed in the upper flange of a PCFS beam is used to 

enclose the building. To some extent, it helps to reduce the possibility of lateral-torsional 

buckling. However, when the PCFS beams are subject to uplift wind loads, the lateral-

torsional buckling is still the dominant mode for the PCFS beam with long length (see Figure 

4.15(a)). In this section, the restraint by the sheeting is simplified to the rotational and lateral 

spring (see Figure 4.15(b)), the analytical model proposed in Section 4.3.2.1 is used to 

calculate the critical load of lateral-torsional buckling of PCFS channel beams subject to 

uniformly uplift distributed load.
   

 

For a simply supported PCFS channel beam, the uniformly uplift distributed load is assumed 

to apply at the intersection of shear center line and upper flange line to avoid additional 

torsional moment as shown in Figure 4.15(b) and the internal moment along the x-axis can be 

calculated as follows,
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where qy is uniformly distributed uplift load.
             

 

 

           (a)                                                                 (b) 

Figure 4.15 Model used for lateral-torsional buckling analysis of PCFS beams subject to uniformly 

distributed uplift load (a) Practical case (b) Simplified model  

 

Hence, after the lateral-torsional buckling, the pre-buckling longitudinal stress produced by 

the internal moment can be expressed as follows, 
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Substituting Eq.(4-61) and Eq.(4-15) into Eq.(4-44), the potential energy generated by the 

pre-buckling longitudinal stress leads to, 
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The work done by the uniformly distributed uplift load can be divided into two parts, one is 

the product of the bending moment generated by uniformly distributed uplift load and 
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corresponding angle, the other is the product of uniformly distributed uplift load and the 

lowering distance during rotation, that is   
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Hence, the total work done by the uniformly distributed uplift load during the lateral-torsional 

buckling can be expressed as follows, 

UDLxUDL WWW  2

                    

(4-64) 

 

The total potential energy of the proposed analytical model subject to uniformly distributed 

uplift load is  
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Substituting Eq.(4-38) to Eq.(4-40) into Eq.(4-65), it yields, 
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The calculation procedure to determine the critical load of a PCFS beam subject to uniformly 

distributed uplift load is the same as that in Section 4.2.2.1. The total potential energy will 

have a stationary with respect to the constants B1, B2 and B3 when the lateral-torsional 

buckling happens, that is  
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Based on the Raleigh-Ritz method, the simultaneous equations (4-67) to (4-69) can be re-

written as follows, 
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in which Cij and Dij are the coefficients of Eq.(4-54) and can be expressed as follows, 
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The eigenvalue equation (4-70) can be solved by the calculation software MATLAB. For the 

failure mode dominated by the lateral-torsional buckling, the smallest eigenvalue is the 

critical load of a PCFS beam subject to uniformly distributed uplift load. 

 

4.3.3 Comparison between the proposed analytical model and FEA 
 

4.3.3.1 PCFS beams subject to pure bending 

 

The critical moments of lateral-torsional buckling of a PCFS beam with different hole sizes 

subject to pure bending calculated from the proposed analytical model were plotted for 

varying beam length and compared to the eigenvalue buckling analysis data in Figure 4.16, 

where McrλPB is the critical moment of lateral-torsional buckling of a PCFS beam subject to 

pure bending and My is the yield moment (σy=390MPa).  

 

Section E (h=200 mm, b=70 mm, c= 20 mm and t=2 mm) was selected as a typical cross 

section in the analytical and numerical analysis. The diameters of circular holes in the web 

were chosen as 100 mm, 80 mm, 66.7 mm and 50 mm. Hence, the ratios of d/h were 0.5, 0.4, 

0.33 and 0.25 respectively. 

  

(a)                                                                            (b) 
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(c)                                                                             (d) 

Figure 4.16 Comparison between critical moments of lateral-torsional buckling obtained from present 

model and FEA for PCFS beams with different hole sizes subject to pure bending. (a) d=100 mm (b) 

d=80 mm (c) d=66.7 mm (d) d=50mm (σy=390 MPa, h=200 mm, b=70 mm, c= 20 mm and t=2 mm) 

 

As expected, the proposed analytical solution gives an excellent agreement with FEA. For the 

PCFS beams with small perforations (d=50 mm), the FEA data was slightly higher than the 

results calculated from the present solution as the beam length increased longer than 8000 

mm. This is probably because the solid part of perforated strip still had a minimal 

contribution to the cross-sectional properties of the PCFS beam which made the present 

solution a little conservative in this case. Furthermore, the critical moment of lateral-torsional 

buckling decreased with the increase of beam length. It is interesting to find that the critical 

moments of PCFS beams with different hole sizes had the same decreasing trend, this 

decreasing tendency slowed down as the beam length increased.  

 

The critical moments of lateral-torsional buckling of PCFS beams (d=100 mm) subject to 

pure bending were compared to that of CFS beams (without holes) as shown in Figure 4.17. It 

should be mentioned that these two kinds of beams have the same cross-section, the only 

difference is that the PCFS beams have the circular holes (d=100 mm) in the web. It is 

evident that the critical moments of lateral-torsional buckling of PCFS beams were lower 

than that of CFS beams which indicated that the PCFS beam was more susceptible to lateral-

torsional buckling. In addition, the gap of critical lateral-torsional buckling moments between 
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PCFS and CFS beams widened with the increase of beam length. The critical moment of 

lateral-torsional buckling of the PCFS beam (h=200 mm, b=70 mm, c= 20 mm, t=2 mm) was 

found to reduce by 11% at the length of 3140 mm, but to 20% at the length of 11932 mm. 

 

 

Figure 4.17 Comparisons of critical moments of lateral-torsional buckling of CFS beams (without 

holes) with PCFS beams (d=100 mm) subject to pure bending (σy=390 MPa, h=200 mm, b=70 mm, 

c= 20 mm, t=2 mm) 

 

4.3.3.2 PCFS beams subject to uniformly distributed uplift load 

 

The comparisons between the proposed analytical model and eigenvalue buckling analysis 

demonstrated that the present solution was practical for calculating the critical moments of 

lateral-torsional buckling of PCFS beams subject to uniformly distributed uplift load as 

shown in Figure 4.18. Similar to the case that subject to pure bending, the critical moment of 

lateral-torsional buckling McrλUDL decreased with the increase of beam length, but this 

downward trend lessened with the growth of span length. It should be mentioned here that, 

the first points obtained from FEA shown in Figure 4.18(a)-Figure 4.18(d) are all lower than 

those predicted by the present model. The reason is that for the short beam (less than 3000 
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mm) subject to uniformly distributed uplift loading, the shear stress has a great effect on the 

buckling modes, which is considered in the FEA but not in the present analytical model. 

 

To evaluate the influence of stress gradient distributed along the longitudinal axis, the critical 

moments of lateral torsional buckling of PCFS beams (d=100 mm) subject to uniformly 

distributed uplift load were compared to that subject to pure bending in Figure 4.19. As 

explained before, the uniformly distributed load was applied at the shear center rather than at 

the intersection of shear center line and upper flange line. It can be seen from the figure that 

the critical moments of lateral-torsional buckling for the pure bending were lower than those 

for the uniformly distributed uplift load (e.g., the critical moment for the pure bending is 16% 

lower than that for the uniformly distributed uplift load at the length of 3000 mm). However, 

the difference between these two cases narrowed as the beam length increased and the 

difference between them could be ignored when the beam length is longer than 7000 mm). 

Most CFS beam lengths used in practice are about 6000 mm. Hence, the design load obtained 

according to the pure bending may be conservative.  

 

 

(a)                                                                            (b) 



 119 

 

(c)                                                                             (d) 

Figure 4.18 Comparison between critical moments of lateral-torsional buckling obtained from present 

model and FEA for PCFS beams with different hole sizes subject to uniformly distributed uplift load. 

(a) d=100 mm (b) d=80 mm (c) d=66.7 mm (d) d=50mm (σy=390 MPa, h=200 mm, b=70 mm, c=20 

mm and t=2 mm) 

 

 

Figure 4.19 Comparisons of critical moments of lateral-torsional buckling of PCFS beams subject to 

uniformly distributed uplift load and pure bending (h=200 mm, b=70 mm, c= 20 mm, t=2 mm, d=100 

mm) 
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4.3.3.3 Influence of the horizontal and rotational springs 

 

Figure 4.20 compares the influence of lateral restraint on the critical moments of lateral-

torsional buckling of PCFS beams subject to pure bending. It is interesting to notice that the 

effect of lateral displacement restraint at the tension end of web on the lateral-torsional 

buckling is limited for the pure bending. This is mainly because when the PCFS beam is 

subject to pure bending, it only deflects in the longitudinal direction before the lateral-

torsional buckling occurs and hence the lateral restraint does not change the pre-buckling 

moment distribution. It is known that the lateral restraint affects the pre-buckling moment 

distributions and then provides influence on the lateral-torsional buckling rather than the 

buckling modes. 

 

Figure 4.20 Comparisons of critical moments of lateral-torsional buckling for the laterally restrained 

and unrestrained PCFS beams subject to pure bending (k=0, σy=390 MPa, h=200 mm, b=70 mm, c= 

20 mm, t=2 mm and d=100 mm) 

 

The influence of spring stiffness on the critical moments of lateral-torsional buckling of a 6-

meter-long PCFS beam subject to uniformly distributed uplift load was shown in Figure 4.21. 

It can be observed from Figure 4.21(a) that when the rotational spring stiffness was equal to 

zero (k=0), the critical moment of lateral-torsional buckling slightly increased with the 



 121 

increase of horizontal spring stiffness in the range of 10-4≤kz≤10. Different from the beam 

subject to pure bending, the lateral restraint can help to increase the critical moment of 

lateral-torsional buckling when the PCFS beam subject to uniformly distributed uplift load. 

 

In addition, when the horizontal spring stiffness was equal to zero (kz=0), the critical moment 

of lateral-torsional buckling remarkably increased with the increase of rotational spring 

stiffness in the region that was larger than 0.1 (k≥0.1), as shown in Figure 4.21(b). It can be 

found that the rotational spring stiffness has more influence than the horizontal spring 

stiffness on the lateral-torsional buckling of PCFS beams. 

 

(a) 

 

(b) 

Figure 4.21 Influence of spring stiffness on the critical moments of lateral-torsional buckling of a 6-

meter-long PCFS beam subject to uniformly distributed uplift load (σy=390 MPa, h=200 mm, b=70 

mm, c= 20 mm, t=2 mm and d=100 mm) 
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4.4 Summary 
 

In this chapter, theoretical expressions based on the energy method are developed and 

presented to predict the critical moments of lateral-torsional buckling of PCFS beams subject 

to pure bending and uniformly distributed uplift load. Eigenvalue buckling analysis 

performed by ANSYS is used to verify the proposed analytical model. According to the 

results from theoretical and numerical analyses, the following conclusions have been drawn. 

 

 The critical moments of lateral-torsional buckling decrease as the diameter of circular 

holes increases for PCFS beams subject to the pure bending. The same happened 

when subject to the uniformly distributed uplift load. 

 

 The restraint of sheeting on the PCFS beam can be simplified by a horizontal spring 

and a rotational spring which is very similar to the model proposed by Li (2004). The 

influence of web perforations on the lateral-torsional buckling can be evaluated by 

reducing the cross-sectional properties. 

 

 For the beam length within 6000 mm, the critical moments of lateral-torsional 

buckling of PCFS beams subject to uniformly distributed uplift load are higher than 

those of the same beams subject to pure bending due to the moment gradient along the 

beam longitudinal direction. 

 

 The lateral restraint at the tension end of the web can help to increase the critical 

moment of lateral-torsional buckling if the PCFS beam is subject to uniformly 

distributed uplift load. However, the influence of lateral restraint on the lateral-

torsional buckling is negligible when the PCFS beam is subject to pure bending. 

 

 The rotational spring stiffness has more influence than the horizontal spring stiffness 

on the critical moments of lateral-torsional buckling of the PCFS beams. 

 

 The critical moments of lateral-torsional buckling determined by the present 

analytical solution can match well with the results obtained the ANSYS eigenvalue 
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buckling analysis, demonstrating that the proposed analytical method is valuable for 

predicting the buckling loads of PCFS beams.   
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Chapter 5 — Numerical investigation on cold-formed steel built-up channel 

beams with web perforations  

 

5.1 Introduction 
 

The numerical investigation was performed by ANSYS to investigate the structural behaviour 

of CFS built-up beams with and without web perforations subject to four-point bending loads. 

Details of developing non-linear finite element models including geometry, element type, 

mesh density, boundary conditions, loading conditions, material non-linearity, contact non-

linearity, initial geometric imperfections and solution algorithm are presented in this chapter.  

 

Four-point bending tests of CFS built-up beams with or without web perforations conducted 

by Wang and Young (2015 and 2018) are used to validate against the proposed non-linear 

finite element models. The non-linear finite element modelling protocol reached from this 

chapter are used for the parametric study in Chapter 6.  
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5.2 Evaluation of existing experimental data  
 

As mentioned in Section 1.3, the back-to-back CFS built-up beam with web perforations has 

higher capacity and stability comparing to the single PCFS beam, the self-tapping screws in 

the web can avoid the individual section failing by distortional or lateral-torsional buckling 

independently. However, the relevant research on the structural behaviour of CFS built-up 

beam with web perforations is limited in the literature.  

 

Wang and Young (2015) carried out a total of 43 four-points bending tests to investigate the 

structural behaviour of CFS built-up open and closed section beams with circular web holes.  

The steel stiffening plates were bolted on the upper flanges and two sides of the web to 

transfer the load. To simulate the simply supported condition, half round and round bar were 

placed at the two ends, as shown in Figure 5.1.  

 

 

Figure 5.1 Loading rig for CFS built-up open section beams by Wang and Young (2015) 

 

During the four-point bending tests, the servo-controlled hydraulic testing machine was 

employed to exert loads on the spread beam. Displacement control was adopted in the test by 

driving the hydraulic actuator at a constant rate of 0.5 mm/min, then the data acquisition 

system would record the applied loads and displacements at 1.5 second intervals. To obtain 

the moment-curvature curves, the hydraulic actuator stopped applying force for 90 seconds 

near the ultimate load.  
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Among all the specimens in the tests by Wang and Young (2015), the single circular hole was 

located in the mid-span and the ratio of hole diameter to web depth was ranging from 0.25 to 

0.7. The screw spacing was about equal to the web depth of the cross section. Table 5.1 

summarized the results of built-up open sections obtained from the four-point bending tests 

and finite element analysis by Wang and Young (2015).  

 

The specimens were labeled based on the cross section of a CFS built-up beam with web 

perforations. For example, “OH0.25T0.42-86” represented that the CFS built-up open section 

(O) had a single hole (H) in the web, the ratio of hole diameter to web depth was 0.25, the 

thickness (T) of the cross section was 0.42 and the web depth of the cross section was 86 mm. 

 

The buckling modes including i) flexural buckling (F) , ii) distortional buckling (D), iii) local 

buckling (L), iv) the interaction of distortional and flexural buckling (D+F) and v) the 

interaction of local, distortional and flexural buckling (D+L+F) observed in the tests and 

finite element analysis were also added in Table 5.1. The local buckling mainly occurred in 

the web or compressed flange, which has short half-wavelength buckling modes. The 

distortional buckling was identified as the rotation and translation of the compressed flange 

and lip. For some specimens, the interaction of different buckling modes were also observed 

in the post-buckling models, which have significant influence on the ultimate strength and 

failure mechanism.   

 

Table 5.1 Summary of four-points bending tests for cold-formed steel built-up channel beam with web 

perforations by Wang and Young (2015) 

Specimens 
Tests 

MEXP (kN·mm)       Failure modes 

 

Tests 

 

FEA 

MFEA (kN·mm)        Failure modes 

 

FEA 

 

Comparison 

MEXP/MFEA 

OH0.25T0.42-86 1108 D+L+F 1133 D+L+F 0.98 

OH0.5T0.42-86 1062 D+L+F 1141 D+L+F 0.93 

OH0.7T0.42-86 1017 D+L+F 1100 D+L+F 0.92 

OH0.25T1.2-86 6993 D+L+F 6978 D+L+F 1.00 

 
OH0.5T1.2-86 6820 D+L+F 6795 D+L+F 1.00 

OH0.7T1.2-86 6295 D+L+F 6430 D+L+F 0.98 

OH0.25T1.2-136 11603 D+L+F 12725 D+L+F 0.91 

OH0.5T1.2-136 11807 D+L+F 12747 D+L+F 0.93 
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OH0.7T1.2-136 11031 D+L+F 11227 D+L+F 0.98 

OH0.25T1.9-86 12217 D+F 12091 D+F 1.01 

OH0.25T1.9-86R 12310 D+F 12091 D+F 1.02 

OH0.5T1.9-86 12146 D+F 11895 D+F 1.02 

OH0.7T1.9-86 11136 D+L+F 10809 D+F 1.03 

OH0.25T1.9-136 22334 D+F 22471 D+F 0.99 

++ 
OH0.5T1.9-136 21205 D+F 22038 D+F 0.96 

OH0.7T1.9-136 19062 D+L+F 19866 D+F 0.96 

 

Recently, Chen et al. (2021) conducted six four-point bending tests to explore the influence 

of hole spacing on the moment capacity of back-to-back CFS built-up channel with web 

perforations. The experimental data obtained from the bending test was summarized in Table 

5.2, the label of the specimen involved the web depth, beam length and the hole types. For 

example, “B240-L4000-S100-UH1” means a CFS built-up (B) beam had one un-stiffened 

hole (UH1) in the web, the depth of web was 240 mm, the length of beam (L) was 4000 mm 

and the spacing of screws (S) was 100 mm. 

 

Table 5.2 Summary of four-points bending test for built-up cold-formed steel channel beam with web 

perforations by Chen et al. (2021) 

Specimens 
Web depth  

d (mm) 

Flange 

width        

bf (mm) 

Lip height 

bl (mm) 

Beam 

length       

L (mm) 

Screw 

spacing     

s (mm) 

Hole 

spacing      

a (mm) 

Test     

MEXP·B 

(kN·m) 

B240-L4000-

S100-UH1 
240.9 45.0 14.6 4002 100 - 23.3 

B240-L4000-

S100-UH3 
240.2 44.5 15.0 4001 100 100 22.3 

B240-L4000-

S100-UH5 
239.6 45.0 15.6 4001 100 50 21.3 

B240-L4000-

S50-UH1 
240.5 45.8 15.3 4000 50 - 23.9 

B240-L4000-

S50-UH3 
238.9 46.1 14.5 4000 50 100 22.9 

B240-L4000-

S50-UH5 
240.0 45.6 15.0 4001 50 50 22.0 

 

Wang and Young (2018) undertook the experimental and numerical study on the structural 

behaviour of CFS built-up open and closed section beams with different screw arrangements. 

A total of 35 beams were tested under four-point loading to investigate the influence of screw 
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spacing. It should be mentioned that the procedure of these experiment was the same as the 

previous test conducted by Wang and Young (2015).  

 

The experimental and numerical results of CFS built-up open section beams were shown in 

Table 5.3, the label of the specimen was very similar to that in the previous test (Wang and 

Young, 2015). For example, “OT1.2-86-S75R1-R” represented that the CFS built-up open 

section beam (O) had a thickness of 1.2 mm (T) and web depth of 86 mm, the one row (R1) 

screw spacing (S) of 75 mm and the beam test was the repeated one (R). If the specimen had 

two rows of screws, none other symbols would be added in the label. Furthermore, the 

buckling modes including distortional buckling (D), local buckling (L) and the interaction of 

local and distortional buckling (D+L) occurred in the test and finite element analysis were 

also summarized in Table 5.3. 

 

Table 5.3 Summary of four-points bending tests for cold-formed steel built-up channel beam (without 

web perforations) by Wang and Young (2018) 

Specimens 
Tests 

MEXP (kN·mm)       Failure modes 

 

Tests 

 

FEA 

MFEA (kN·mm)        Failure modes 

 

FEA 

 

Comparison 

MEXP/MFEA 

OT0.42-86-S75 1206 D+L 1149 D+L 1.05 

OT0.42-86-S75R1 1229 D+L 1150 D+L 1.07 

OT0.42-86-S300 1222 D+L 1149 D+L 1.06 

OT0.42-86-S300R 1160 D+L 1149 D+L 1.01 

OT1.2-86-S75 7417 D+L 7159 D+L 1.04 

OT1.2-86-S75R1 7303 D+L 7132 D+L 1.02 

OT1.2-86-S75R1-R 7341 D+L 7132 D+L 1.03 

OT1.2-86-S300 7030 D+L 7128 D+L 0.99 

OT1.9-86-S75 12535 D 12129 D+L 1.03 

OT1.9-86-S75R1 12528 D 12206 D+L 1.03 

OT1.9-86-S300 12513 D 12224 D+L 1.02 

OT1.2-136-S150 12240 D+L 12107 D+L 1.01 

OT1.2-136-S150-R 12126 D+L 12107 D+L 1.00 

OT1.2-136-S300 12240 D+L 12033 D+L 1.02 

OT1.2-136-S600 12126 D+L 12248 D+L 0.99 

OT1.9-136-S150 22796 D 22572 D+L 1.01 

OT1.9-136-S300 22159 D 22643 D+L 0.98 

OT1.9-136-S600 22750 D 22451 D 1.01 
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It can be observed from Table 5.3 that the influence of screw arrangements on the moment 

capacities of CFS built-up open section beams was not significant. When the screw spacing 

was larger than the distortional buckling half-wave length of a single CFS beam, the effect of 

screw arrangements on the ultimate load of CFS built-up open section beams could be 

ignored.  

 

5.3 Nonlinear finite element modelling in ANSYS 

 

It is known that non-linear finite element solution is effective for investigating the load-

displacement response of CFS sections. In this section, the commercial software ANSYS was 

used to establish finite element models and carry out non-linear analysis for CFS built-up 

beams with web perforations. The non-linear finite element models including material non-

linearity, geometric non-linearity and contact non-linearity were developed based on the four-

point bending tests conducted by Wang and Young (2015 and 2018). 

 

5.3.1 Geometry  

 

The CFS built-up open section beam with web perforations was assembled by individual 

PCFS beams, the geometry and notations of the specimens in Wang and Young’s test (Wang 

and Young, 2015) were shown in Figure 5.2. The web depth, flange width, lip length and 

thickness were defined as hw, bf, bl and t, respectively. The screw spacing along the 

longitudinal axis was close to web depth and the vertical distance between the screw and 

flange was marked as e. The single circular hole was punched in the middle of the moment 

span and the ratio of hole diameter (d) to web depth (hw) ranged from 0.25 to 0.7. 
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Figure 5.2 Geometry and notations in the CFS built-up beam with web perforations according to the 

four-point bending tests (Wang and Young, 2015)  

 

5.3.2 Element type and mesh 

 

The CFS built-up beam with web perforations were modeled with shell elements Shell 181, 

material non-linearity was embodied in the finite element models by using the bilinear 

isotropic hardening material model with the assumption of von Mises yield criterion. The 

material properties of cold-formed steel involving Young’s modulus and yield stress were 

obtained from the tensile coupon tests (Wang and Young, 2015), Poisson’s ratio was taken as 

0.3. Table 5.4 summarized Young’s modulus and yield stress of coupon specimens (plate 

thicknesses of 0.42, 1.2 and 1.9) in Wang and Young’s tensile coupon tests.  

 

Table 5.4 Material properties obtained from the tensile coupon tests (Wang and Young, 2015) 

Coupon specimens Young’s modulus (GPa) Yield stress (MPa) 

OT0.42-86 220 662 

OT1.2-86 213 577 

OT1.2-136 213 578 

OT1.9-86 201 486 

OT1.9-136 199 484 

 

Based on the mesh sensitivity analysis, two types of meshes were employed in the finite 

element models (i.e. coarse mesh with element size of 10×10 mm was used in the region 
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away from the perforation and fine mesh with element size of 2×2 mm was used around the 

perforation). A typical finite element mesh of the CFS built-up beam with web perforations 

was shown in Figure 5.3. 

 

Figure 5.3 Typical finite element meshes of the CFS built-up beam with web perforations (Specimen 

OH0.5T1.9-136) 

 

 

5.3.3 Boundary and loading conditions 

 

Similar to the numerical models in Wang and Young’s research (Wang and Young, 2015), 

only half-span of the CFS built-up beam with web perforations was created using the 

symmetric property in the present non-linear finite element analysis so that the computational 

time could be saved.  

 

The simply support boundary conditions were attributed to the reference point 1 at the 

position of round bar, the translation in the x and y directions and the rotation about the z-axis 

were constrained (UX=UY=ROTZ=0), the symmetric boundary conditions were applied at 

the end nodes of mid-span of the beam (ZSYM=0, UZ=ROTX=ROTY=0), as shown in 

Figure 5.4.   

 

In Wang and Young’s tests (Wang and Young, 2015), the load was applied through the load 

bearing plates. Hence, the contact area between the load bearing plates and top flange/web of 

the beam was modeled as coupling constraints, these reinforced regions were coupled with 

the reference point 2 in all degrees of freedoms (see Figure 5.5). In this way, the motion of 
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multiple points can be simplified to the motion of a single point, then the load was applied to 

the reference point 2 in the numerical analysis. 

 

 

Figure 5.4 Boundary and loading conditions of a CFS built-up beam with web perforations under 

four-point bending (Specimen OH0.5T1.9-136) 

 

5.3.4 Contact of webs and constraint of screws 

 

The interaction between the contacted webs of the CFS built-up beam with web perforations 

were defined as surface-to-surface contact pairs. The web of a PCFS beam was considered as 

the master surface, whereas the web of other PCFS beam was considered as the slave surface. 

Enhanced Lagrange algorithm was used to establish the relationship of the contact pairs in the 

normal direction. Hence, the separation of the contact pairs was allowed when the tension 

force occurred but the penetration of the contact pairs was prohibited in the finite element 

models. Furthermore, the contact property was defined as friction-less in the tangential 

direction. 

 

Several studies have reported the relevant approaches on modelling the screws. For example, 

Lim and Nethercot (2003) used the simplified bolt model which consisted of two 

perpendicular nonlinear springs to simulate the behaviour of self-tapping screws. Liu et al. 

(2015) used the solid brick element and surface-to-surface contact interaction to model the 

bolt behaviour. It should be pointed out that in present study the strength of self-tapping 

screws was plenty of times higher than the cold-formed steel and the CFS built-up beam with 

web perforations usually failed before the destruction of screws during the tests. In the 
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present finite element models, multi-point constraint beam connector elements MPC 184 

were used to stimulate the self-tapping screws, which was similar to the method presented by 

Ye et al. (2018b). The nodes at the position of screws on the contact pairs were connected by 

MPC 184 so that the node pairs would have the same degrees of freedom. 

 

5.3.5 Initial geometric imperfections  

 

The initial geometric imperfections of the specimens were always formed in the process of 

manufacturing and transportation. The value of initial geometric imperfections might affect 

the accuracy of the non-linear finite element analysis. To incorporate the initial geometric 

imperfections into the finite element model, eigenvalue buckling analysis of the CFS built-up 

beam with web perforations was performed to determine the elastic buckling modes. The 

lowest buckling mode was used as the shape of imperfect geometries and then multiplied by 

the values obtained from experimental measurement. In Wang and Young’s tests (Wang and 

Young, 2015), the maximum measured geometric imperfections were 0.294, 0.424 and 0.542 

mm for the specimens with thicknesses of 0.42, 1.2, 1.9 mm which were employed in the 

non-linear finite element analysis in this chapter.  

 

It is known that the presence of geometric imperfections has a significant influence on the 

post-buckling behaviour of CFS sections, especially when the interaction of different 

buckling modes is taken into account (Ye et al., 2018a). Schafer and Peköz (1998) proposed 

the cumulative function value to determine the magnitudes of the local and distortional 

buckling imperfections with the value of 0.34t and 0.94t, respectively. The global buckling 

imperfection magnitude was chosen as L/1500. In Euro code, the local buckling imperfection 

magnitude was recommended as 0.4t for the CFS sections, whereas the global buckling 

imperfection magnitude was given as L/400 for the hot rolled steel beams. 

 

For the parametric study presented in Chapter 6, the local buckling imperfection magnitude 

was taken as 0.5t, which has been verified to be reasonable by Wang and Young (2015). The 

global buckling imperfection magnitude was chosen as L/1000, which has been used as the 

maximum value for CFS flexural members (Kankanamge and Mahendran, 2012).  



 134 

5.3.6 Non-linear solution 

 

It is well known that the arc-length method (or the modified RIKS method) is a powerful tool 

for solving nonlinear equation of the systems and can predict the post-buckling behaviour of 

CFS built-up beams with web perforations. Two general static steps were performed for the 

nonlinear solution, eigenvalue buckling analysis was first conducted to obtain the geometric 

imperfections, nonlinear modified RIKS method was then employed to determine the 

ultimate load.   

 

The post-peak equilibrium paths in modified RIKS method are sensitive to the loading 

method in which the load-controlled method was loaded with a concentrated load at the 

reference point 2 and the displacement-controlled method was loaded with imposed 

displacement at the reference point 2.  

 

Figure 5.5 compares the moment-curvature curves obtained from load-controlled method, 

displacement-controlled method and experimental data. It can be found in the figure that the 

tendency of the three curves is identical before the peak load occurs. The load-controlled 

method can find the peak load but terminates quickly due to the convergence problem. The 

displacement-controlled method can predict the peak load and find the post-peak equilibrium 

path before terminating which is similar the experimental curve. Therefore, the displacement-

controlled method was selected for the non-linear analysis of the following parametric study. 

 

In the present study, a small displacement was first applied at the reference point 2 to 

generate the contact relationship between the master surface and slave surface. Then the full 

displacement was applied until the CFS built-up beam failed. The automatic stabilization 

algorithm was employed in the non-linear solution to help to overcome the convergence 

issues. 
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Figure 5.5 Comparisons of moment-curvature curves obtained from load-controlled method, 

displacement-controlled method and experimental data (Specimen OH0.5T1.2-86) 

 

5.4 Verification of the finite element models 

 

As mentioned in Section 5.2, Chen’s tests (Chen et al., 2021) mainly focused on the influence 

of edge-stiffened and un-stiffened holes on the moment capacity of CFS built-up beams with 

web perforations. In addition, the specimens in Chen’s tests failed due to the distortional 

buckling and the relevant experimental data cannot cover all cases. Hence, in this section, 

Wang and Young’s tests (Wang and Young, 2015; Wang and Young, 2018) were used to 

validate against the nonlinear finite element models built in Section 5.3.  

 

5.4.1 CFS built-up beams with web perforations 

 

The comparisons of FEA results and experimental data obtained from four-point bending 

tests (Wang and Young, 2015) for CFS built-up beams with web perforations were shown in 

Table 5.5. The mean value of the experiment-to-FEA moment ratio (MEXP/MFEA) is 0.99 with 

corresponding coefficient of variation (COV) of 0.032 which proved that the proposed finite 

element models can predict the ultimate moment capacity of CFS built-up beams with web 

perforations well. 
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Table 5.5 Comparisons of FEA results against experimental data (Wang and Young, 2015) for CFS 

built-up beams with web perforations  

Specimens 
Tests 

MEXP (kN·mm)       Failure modes 

 

Tests 

 

FEA 

MFEA (kN·mm)        Failure modes 

 

FEA 

 

Comparison 

MEXP/MFEA 

OH0.25T0.42-86 1108 D+L+F 1098 D+L+F 1.01 

OH0.5T0.42-86 1062 D+L+F 1086 D+L+F 0.98 

OH0.7T0.42-86 1017 D+L+F 1073 D+L+F 0.95 

OH0.25T1.2-86 6993 D+L+F 6927 D+L+F 1.01 

 
OH0.5T1.2-86 6820 D+L+F 6730 D+L+F 1.01 

OH0.7T1.2-86 6295 D+L+F 6257 D+L+F 1.01 

OH0.25T1.2-136 11603 D+L+F 12633 D+L+F 0.92 

OH0.5T1.2-136 11807 D+L+F 12328 D+L+F 0.96 

OH0.7T1.2-136 11031 D+L+F 11376 D+L+F 0.97 

OH0.25T1.9-86 12217 D+F 12173 D+F 1.00 

OH0.5T1.9-86 12146 D+F 11917 D+F 1.02 

OH0.7T1.9-86 11136 D+L+F 10795 D+F 1.03 

OH0.25T1.9-136 22334 D+F 21406 D+F 1.04 

OH0.5T1.9-136 21205 D+F 21278 D+F 1.00 

OH0.7T1.9-136 19062 D+L+F 19522 D+F 0.98 

Mean     0.99 

COV     0.032 

 

The comparisons of moment-curvature curves for CFS built-up beams with web perforations 

(Specimen OH0.7T1.9-86, Specimen OH0.25T1.9-86 and Specimen OH0.5T1.9-136) 

obtained from experimental data (Wang and Young, 2015), FEA performed by ANSYS and 

FEA performed by ABAQUS (Wang and Young, 2015) were plotted in Figure 5.6. It can be 

observed from the figure that, both FEA curves match the peak load and initial stiffness very 

well with the experimental results. There are some differences between the predictions and 

test results in terms of the post-buckling behaviour. The reason for this could be due to the 

differences in the initial geometric imperfections and/or in the material properties (e.g., the 

residual stress and variation in yielding strength in the tested specimens caused by cold 

forming process). Nevertheless, since our interest is to obtain the ultimate failure moment of 

CFS built-up beams with web perforations, the accuracy of the peak point in the FEA 

predicted curves is most important to us. 
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(a) Specimen OH0.7T1.9-86 

 

 

(b) Specimen OH0.25T1.9-86 
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(c) Specimen OH0.5T1.9-136 

Figure 5.6 Comparisons of moment-curvature curves of CFS built-up beams with web perforations 

obtained from test, ABAQUS and ANSYS (Wang and Young, 2015) 

 

The typical deformed shapes of CFS built-up beams with web perforations obtained from the 

non-linear finite element analysis were compared to the deformed shapes occurred in the 

four-point bending tests (Wang and Young, 2015) as shown in Figure 5.7 for Specimen 

OH0.7T1.9-86, Specimen OH0.25T1.9-86 and Specimen OH0.5T1.9-136. As expected, in 

most cases, the deflected shapes obtained from numerical and experimental investigations 

were analogous after the collapse of the beams.  

 

For Specimen OH0.7T1.9-86, the failure modes observed in the tests involved local buckling, 

distortional buckling, flexural buckling and the interaction of two buckling modes. However, 

this specimen failed by distortional buckling and the local buckling cannot be observed in the 

non-linear finite element analysis. Nevertheless, this influence was negligible to determine 

the moment capacity. Most deformed shapes obtained from numerical investigations matched 

well with the experimental results. Hence, the present finite element models were capable for 

demonstrating the structural behaviour of CFS built-up beams with web perforations under 

four-point bending loads. 
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Test   

 

FEA 

(a) Specimen OH0.7T1.9-86 

 

            

Test   

 

FEA 

(b) Specimen OH0.25T1.9-86 
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Test        

 

FEA 

(c) Specimen  OH0.5T1.9-136 

Figure 5.7 Typical deformed shapes of CFS built-up beams with web perforations obtained from four-

point bending tests (Wang and Young, 2015) and FEA 

 

5.4.2 CFS built-up beams  

 

As mentioned in Section 5.2, Wang and Young (2018) conducted the four-point bending tests 

to investigate the influence of screw arrangements on the structural behaviour of CFS built-

up beams. The experimental processes were the same as those in Section 5.4.1, the only 

difference was that no perforations punched in the web for the specimens in the present tests. 

Therefore, the experimental results can be used to validate the proposed non-linear finite 

element modelling method.  

 

It should be mentioned here that the methodology used in the finite element model (i.e. finite-

element type, mesh density, initial geometric imperfection, solution algorithm, material and 

contact non-linearity) is similar to that described in Section 5.4.1, and thus is not explained 
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further. The comparisons between FEA results and experimental data obtained from four-

point bending tests (Wang and Young, 2018) for CFS built-up beams were reported in Table 

5.6. It can be found that the mean value of the experiment-to-FEA moment ratio (MEXP/MFEA) 

was 1.02 and the corresponding coefficient of variation (COV) was 0.033. 

 

Table 5.6 Comparisons of FEA results against experimental data (Wang and Young, 2018) for CFS 

built-up beams  

Specimens 
Tests 

MEXP (kN·mm)       Failure modes 

 

Tests 

 

FEA 

MFEA (kN·mm)        Failure modes 

 

FEA 

 

Comparison 

MEXP/MFEA 

OT0.42-86-S75 1206 D+L 1167 D+L+F 1.03 

OT0.42-86-S300 1222 D+L 1153 

 

D+L+F 1.06 

OT1.2-86-S75 7417 D+L 7069 D+L+F 1.00 

OT1.2-86-S300 7030 D+L 7014 D+L+F 0.99 

OT1.9-86-S75 12535 D 12166 D+F 1.03 

OT1.9-86-S300 12513 D 12207 D+F 1.03 

OT1.2-136-S150 12240 D+L 12236 D+L+F 1.00 

OT1.2-136-S300 12240 D+L 12284 D+L+F 1.00 

OT1.2-136-S600 12126 D+L 12584 D+L+F 0.96 

OT1.9-136-S150 22796 D 21348 D+F 1.07 

OT1.9-136-S300 22159 D 21361 D+F 1.04 

OT1.9-136-S600 22750 D 21384 D+F 1.06 

Mean     1.02 

COV     0.033 

 

The finite element analysis results for moment-curvature curves and deformed shapes of 

specimen OT1.9-136-S300 were shown in Figure 5.8 and Figure 5.9, respectively. It can be 

seen from the figures that the moment-curvature curves obtained from experimental data 

(Wang and Young, 2018), FEA performed by ANSYS and FEA performed by ABAQUS 

(Wang and Young, 2018) were in good agreement for the peak load, the deformed shapes 

observed from the experiment presented a good match with the FEA results which indicating 

that the proposed non-linear finite element modelling method was reliable for predicting the 

ultimate failure moment of CFS built-up sections. 
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Figure 5.8 Comparisons of moment-curvature curves of CFS built-up beams obtained from test, 

ABAQUS and ANSYS (Specimen: OT1.9-136-S300) (Wang and Young, 2018) 

 

 

(a) Test 

 

(b) FEA 

Figure 5.9 Typical deformed shapes of CFS built-up beams obtained from four-point bending tests 

(Wang and Young, 2018) and FEA (Specimen OT1.9-136-S300) 
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5.5 Summary 

 

Finite element analysis of simply supported CFS built-up beams with and without web 

perforations subject to four-point bending loads has been performed by commercial software 

ANSYS in this chapter. The influences of initial geometric imperfection, solution algorithm, 

material and contact non-linearity are investigated. It was found that the displacement-

controlled method was more suitable for the non-linear solution due to the convergence 

issues. The comparison of FEA results and experimental data obtained from four-point 

bending tests (Wang and Young, 2015; Wang and Young, 2018) proved that the present finite 

element models were capable to predict the moment capacity of CFS built-up beams with or 

without web perforations and the proposed non-linear finite element modelling protocol was 

reliable for the extended parametric study.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 144 

Chapter 6 — Proposed design rule for cold-formed steel built-up channel beams 

with web perforations  

 

6.1 Introduction 

 

The structural behaviour including failure modes and moment capacities of CFS built-up 

beams with web perforations subject to pure bending have been investigated in this chapter. 

The non-linear finite element modelling protocol developed in Chapter 5 is employed for the 

numerical investigations.  

 

The non-linear FEA models are parameterized by APDL language for the parametric study. 

The influences of screw spacing, hole sizes, hole spacing and slenderness ratio on the 

moment capacities of CFS built-up beams with web perforations are evaluated. 

 

The verified FEA results obtained from parametric study are merged with analytical models 

for elastic buckling presented in Chapter 3 and Chapter 4 to modify the existing DSM 

prediction curves for the failure modes controlled by local buckling, distortional buckling and 

lateral-torsional buckling. The final modified DSM formulae is proposed for the design of 

CFS built-up beams with web perforations. 
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6.2 Numerical examples 

 

The non-linear finite element models described in Chapter 5 can closely demonstrate the 

structural behaviour of CFS built-up beams with web perforations and predict the relevant 

moment capacities. However, the specimens selected from the four-point bending tests 

(Wang and Young, 2015; Wang and Young, 2018) only involved single circular hole in the 

mid-span of beams. In this section, multiple perforations with various hole sizes and spacing 

were punched in the webs of beams and the non-linear finite element modelling protocol 

proposed in Chapter 5 was used to build the numerical models for the parametric study.  

 

6.2.1 Specimen labelling  

 

To identify the cross-sectional properties of the CFS built-up beams with web perforations, 

the specimens in the parametric study were labelled based on the web height, beam length, 

cross-section thickness, screw spacing, distance between two adjacent holes and ratio of the 

diameter of the circular hole to web height as shown in Figure 6.1(a). 

 

 

(a) 

 

(b) 
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(c) 

Figure 6.1 Specimens in the parametric study (a) Labelling rule (b) Four-point bending load for local 

and distortional buckling (c) Pure bending for lateral-torsional buckling  

 

For example, the label “H150-L2000-T2-S300-A300(d/h0.5)” can be interpreted as the single 

piece of the specimen has web height (H) of 150 mm, beam length (L) of 2000 mm and 

cross-section thickness (T) of 2 mm. The screw spacing of the specimen (S) is 300 mm, the 

distance between two adjacent holes (A) is 300 and the ratio of the diameter of the circular 

hole to web height (d/h) is 0.5.  

 

It is worth noting that if the beam failed by the local or distortional buckling (i.e., the mid-

span length is longer than the half-wavelength of the buckling mode), the four-point bending 

load is able to simulate the pure bending, in which case the beam length is the length of the 

pure bending span of the four-point bending beam (see Figure 6.1(b)). However, if the beam 

failed by the lateral-torsional buckling (i.e., the half-wavelength is longer than mid-span 

length), the beam with four-point bending load will be different from the beam with pure 

bending. This is simply because they have different bending moment diagrams. Hence, in the 

following the uniform bending moment at two ends was used to represent the pure bending 

for the specimens controlled by the lateral-torsional buckling (see Figure 6.1(c)). 

 

6.2.2 Results and discussion 

 

The moment-curvature curves and deformed shapes of three typical specimens (H200-L1200-

T1.4-S200-A300(d/h0.25), H300-L1200-T2.4-S300-A300(d/h0.5) and H150-L4000-T1.8-

S150-A300(d/h0.65)) which controlled by local buckling, distortional buckling and lateral-

torsional buckling were shown in Figure 6.2, Figure 6.3 and Figure 6.4, respectively. It 

should be mentioned that the finite element models adopted here are mainly purposed for the 
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prediction of ultimate failure load not for the post-buckling behavior prediction as already 

explained in Section 5.4.1.  

 

It can be found in the figures that the local buckling and distortional buckling controlled in 

cases of short and intermediate built-up beams. The single PCFS channels buckled separately 

and independently when the CFS built-up beams with web perforations controlled by local 

buckling or distortional buckling. However, in the longer and slender built-up beams, the 

lateral-torsional buckling became more obvious before the peak loads occurred. Unlike the 

cases that controlled by local buckling or distortional buckling, the built-up beam buckle as a 

whole and the single PCFS channels did not buckle alone when the CFS built-up beams with 

web perforations controlled by lateral-torsional buckling.  

 

The details of prediction results of ultimate moments of CFS built-up beams with web 

perforations failed by local buckling, distortional buckling, lateral-torsional buckling or the 

combination of the above buckling modes obtained from the nonlinear finite element analysis 

were listed in Appendix E. 

 

    

(a)                                                                             (b) 

Figure 6.2 Nonlinear FEA results of the CFS built-up beam with web perforations controlled by local 

buckling (H200-L1200-T1.4-S200-A300(d/h0.25)) (a) moment-curvature curve (b) deformed shape 
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(a)                                                                               (b) 

Figure 6.3 Nonlinear FEA results of the CFS built-up beam with web perforations controlled by 

distortional buckling (H300-L1200-T2.4-S300-A300(d/h0.5))  (a) moment-curvature curve (b) 

deformed shape 

 

 

 

(a)                                                                         (b) 

Figure 6.4 Nonlinear FEA results of the CFS built-up beam with web perforations controlled by 

lateral-torsional buckling (H150-L4000-T1.8-S150-A300(d/h0.65)) (a) moment-curvature curve (b) 

deformed shape 
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6.3 Parametric study 

 

The finite element parametric study comprising 398 CFS built-up beams with various beam 

length, cross-section profiles, screw arrangements, hole sizes and spacing was carried out to 

extend the current DSM design equations. The cross-section profiles include large (h=300 

mm, b=100 mm and c=20 mm), medium (h=200 mm, b=75 mm and c=20 mm) and small 

(h=150 mm, b=65 mm and c=15 mm) sections, the beam length ranges from 1200 mm to 

6000 mm, the screw arrangement ranges from 50 mm to 4000 mm, the ratio of diameter of 

the circular hole to web height ranges from 0.25 to 0.8 and the distance between two adjacent 

holes ranges from 150 mm to 450 mm. The material properties of the specimen including 

yield stress, Young’s modulus and Poisson’s ratio in the parametric study were selected as 

390 MPa, 2.05 GPa and 0.3 respectively.  

 

6.3.1 Influence of screw arrangement 

 

The ultimate moment capacities of 1.2-meter-long CFS built-up beams with web perforations 

controlled by the distortional buckling obtained from FEA were compared for different screw 

arrangements and are plotted in Figure 6.5. It can be seen that when the screw spacing ranged 

from 50 mm to 1200 mm, the influence of screw spacing on the ultimate failure moment of 

the beam was negligible (see Figure 6.5(a) for the specimens H150-L1200-T1.4-

A300(d/h0.5), Figure 6.5(b) for the specimens H200-L1200-T1.4-A300(d/h0.5), and Figure 

6.5(c) for the specimens H300-L1200-T1.4-A300(d/h0.5)). This is because the screws on the 

webs of the CFS built-up beams with web perforations had little restraint on the compressed 

flange/lip system and hence the effects of the screws on the distortional buckling behaviour 

were limited. 
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(a) h=150 mm, b=65 mm, c=15mm, t=1.4 mm and a=300 mm  

 

 

(b) h=200 mm, b=75 mm, c=20 mm, t=1.4 mm and a=300 mm  
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(c) h=300 mm, b=100 mm, c=20 mm, t=1.4 mm and a=300 mm  

Figure 6.5 Ultimate moment curves of 1.2-meter-long CFS built-up beams with web perforations in 

different screw arrangements obtained from FEA 

 

Figure 6.6 demonstrates the ultimate moment capacities of 4-meter-long CFS built-up beams 

with web perforations controlled by the lateral-torsional buckling in different screw 

arrangements, where Figure 6.6(a) is for the specimens H150-L4000-T1.6-A300(d/h0.5) and 

Figure 6.6(b) is for the specimens H200-L4000-T1.6-A300(d/h0.5). It can be observed from 

the figure that the ultimate failure moment decreased with the increase of screw spacing. 

When the screw spacing increased from 50 mm to 4000 mm, the ultimate failure moment of 

the specimen H150-L4000-T1.6-A300(d/h0.5) had 46% reduction. The reason is that for the 

longer beam failed by lateral-torsional buckling, the screw can enhance the composite action 

of two single beams and then increase the ultimate failure moment.  
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(a) h=150 mm, b=65 mm, c=15mm, t=1.6 mm and a=300 mm 

 

 

(b) h=200 mm, b=75 mm, c=20 mm, t=1.6 mm and a=300 mm 

Figure 6.6 Ultimate moment curves of 4-meter-long CFS built-up beams with web perforations in 

different screw arrangements obtained from FEA 
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6.3.2 Influence of hole sizes  

 

The ultimate moment capacities of 1.2-meter-long CFS built-up beams with web perforations 

controlled by the distortional buckling obtained from FEA were compared for different hole 

sizes and are shown in Figure 6.7. It can be observed from the figures that the ultimate failure 

moment decreased with the increase of hole sizes. For the specimen H150-L1200-T2.4-S150-

A300, for example, when the ratio of diameter of the circular hole to web height (d/h) 

increased from 0.25 to 0.8, the reduction of ultimate moment reached by 12%. This is 

because for the beam failed by distortional buckling, the beam with larger web perforations 

had weaker restraint to the compressed flange and lip from the web. 

 

 

(a) h=150 mm, b=65 mm, c=15 mm, a=300 mm and s=150 mm 
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(b) h=200 mm, b=75 mm, c=20 mm, a=300 mm and s=200 mm 

 

 

(c) h=300 mm, b=100 mm, c=20 mm, a=300 mm and s=300 mm 

Figure 6.7 Ultimate moment curves of 1.2-meter-long CFS built-up beams with different hole sizes 

obtained from FEA 
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Figure 6.8 exhibits the ultimate moment curves of 4-meter-long CFS built-up beams 

controlled by the lateral-torsional buckling with web perforations in different hole sizes 

obtained from FEA. It can be found that the hole sizes had minimal influence on the ultimate 

failure moment of the specimens H150-L4000-S200-A300 (see Figure 6.8(a)) and the 

specimens H150-L4000-S200-A300 (see Figure 6.8(b)) when d/h increased from 0.25 to 0.8. 

The reason is that the reduction of the cross-section properties due to the web perforations 

was not significant. Furthermore, the effect of the composite action can also help to eliminate 

the effect of hole sizes on the ultimate failure moment.   

 

(a) h=150 mm, b=65 mm, c=15 mm, a=300 mm and s=200 mm 
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(b) h=200 mm, b=75 mm, c=20 mm, a=300 mm and s=200 mm 

Figure 6.8 Ultimate moment curves of 4-meter-long CFS built-up beams with web perforations in 

different hole sizes obtained from FEA 

 

6.3.3 Influence of hole spacing 

 

The ultimate moment capacities of 1.8-meter-long CFS built-up beams with web perforations 

controlled by the distortional buckling obtained from FEA were compared for different hole 

spacing and are shown in Figure 6.9. It can be seen that the influences of hole spacing on the 

ultimate failure moment of the specimens H150-L1800-S150(d/h0.5) (see Figure 6.9(a)), the 

specimens H200-L1800-S200(d/h0.5) (see Figure 6.9(b)) and the specimens H300-L1800-

S300(d/h0.5) (see Figure 6.9(c)) were not obvious when the distance between two adjacent 

holes (s) increased from 150 mm to 450 mm. This is because the values of hole spacing 

selected in the present study were limited and the perforated area in the web of the beam did 

not change a lot when the hole spacing changed.  
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(a) h=150 mm, b=65 mm, c=15 mm, d=75 mm and s=150 mm 

 

 

(b) h=200 mm, b=75 mm, c=20 mm, d=100 mm and s=200 mm 
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(c) h=300 mm, b=100 mm, c=20 mm, d=150 mm and s=300 mm 

Figure 6.9 Ultimate moment curves of 1.8-meter-long CFS built-up beams with web perforations in 

different hole spacing obtained from FEA 

 

Figure 6.10 summarizes the ultimate moment curves of 4-meter-long CFS built-up beams 

with web perforations controlled by the lateral-torsional buckling in different hole spacing 

obtained from FEA. Similar to the beam failed by distortional buckling, the ultimate failure 

moment of the specimens H150-L4000-S200(d/h0.5) (see Figure 6.10(a)) and the specimens 

H150-L4000-S200(d/h0.5) (see Figure 6.10(b)) did not change a lot when the spacing 

increased from 150 mm to 450 mm. As explained before, the hole spacing did not have 

significant effect on the ultimate failure moment due to the limitation of the hole spacing 

value selected in the present study.  
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(a) h=150 mm, b=65 mm, c=15 mm, d=75 mm and s=200 mm 

 

 

(b) h=200 mm, b=75 mm, c=20 mm, d=100 mm and s=200 mm 

Figure 6.10 Ultimate moment curves of 4-meter-long CFS built-up beams with web perforations in 

different hole spacing obtained from FEA 
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6.3.4 Influence of slenderness ratio 

 

The ultimate moment capacities of CFS built-up beams with web perforations obtained from 

FEA were compared in different slenderness ratios and hole sizes as shown in Figure 6.11. It 

can be seen from the figure that the ultimate failure moment of the specimens H150-T2-

S200-A300 (see Figure 6.11(a)) and the specimens H200-T2-S200-A300 (see Figure 6.11(b)) 

decreased with the increase of slenderness ratio. It seemed that the ultimate failure moment 

was more sensitive to the slenderness ratio when the beam failed by the lateral-torsional 

bucking. As described before, it is interesting to find that the hole size had more influence on 

the ultimate failure moment of the beam controlled by the distortional buckling than that 

controlled by the lateral-torsional buckling.  

 

(a) h=150 mm, b=65 mm, c=15 mm, t=2 mm, a=300 mm and s=200 mm 
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(b) h=200 mm, b=75 mm, c=20 mm, t=2 mm, a=300 mm and s=200 mm 

Figure 6.11 Ultimate moment curves of CFS built-up beams with web perforations in different hole 

sizes and slenderness ratios obtained from FEA 

 

6.4 Modified direct strength method for CFS built-up beam with web perforations 

 

Moen and Schafer (2010) extended the classical DSM equations for predicting the ultimate 

moment of PCFS beams which has been prescribed in the North America Specification 

standard (AISI, 2016), the specific design formulae are illustrated in Section 2.4.2. In this 

section, new numerical results obtained from the parametric study were used to further extend 

the DSM equations of PCFS beams for determining the ultimate moment of CFS built-up 

beams with web perforations. The comparisons of FEA results with design strength obtained 

from original DSM equations for some selected specimens controlled by local buckling, 

distortional buckling and lateral-torsional buckling are listed in Table 6.1, Table 6.2 and 

Table 6.3, respectively. It can be seen that if the specimens were controlled by the local 

buckling or distortional buckling, the original DSM formulae were able to provide an 

accurate prediction of the ultimate failure moment. However, if the specimens were failed by 

the lateral-torsional buckling, the original DSM design rule would be conservative. The 

details of FEA results obtained from the present parametric study can be found in Appendix 

E. 
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Table 6.1 Comparison of ultimate moment obtained from FEA with original DSM prediction for 

selected specimens controlled by local buckling 

Specimen 

FEA DSM Comparison 

MFEA 

( kN·mm) 

MDSM,o 

( kN·mm) 
MFEA/MDSM,o 

H200-L1200-T1.4-S200-

A300(d/h0.25) 
19895 18991 1.05 

H200-L1200-T1.4-S200-

A300(d/h0.5) 
19622 15568 1.26 

H200-L1200-T1.4-S200-

A300(d/h0.65) 
18292 15350 1.19 

H200-L1800-T1.4-S200-

A150(d/h0.5) 
19357 15568 1.24 

H200-L1800-T1.4-S200-

A200(d/h0.5) 
19423 15568 1.25 

H200-L1800-T1.4-S200-

A250(d/h0.5) 
19427 15568 1.25 

H200-L1800-T1.4-S200-

A300(d/h0.5) 
19379 15568 1.24 

H200-L1800-T1.4-S200-

A350(d/h0.5) 
19374 15568 1.24 

H200-L1800-T1.4-S200-

A400(d/h0.5) 
19492 15568 1.25 

H200-L1800-T1.4-S200-

A450(d/h0.5) 
19681 15568 1.26 

H300-L1200-T1.4-S100-

D300(d0.5) 
26629 23347 1.14 

H300-L1200-T1.4-S200-

D300(d0.5) 
26500 23347 1.14 

H300-L1200-T1.4-S300-

D300(d0.5) 
26225 23347 1.12 

H300-L1200-T1.4-S400-

D300(d0.5) 
26189 23347 1.12 

H300-L1200-T1.4-S800-

D300(d0.5) 
26032 23347 1.11 

H300-L1200-T1.4-S1200-

D300(d0.5) 
25876 23347 1.11 
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Table 6.2 Comparison of ultimate moment obtained from FEA with original and modified DSM 

prediction for selected specimens controlled by distortional buckling 

Specimen 

FEA DSM Comparison 

MFEA 

( kN·mm) 

MDSM,o 

( kN·mm) 
MFEA/MDSM,o 

H150-L1200-T1.8-S150-

A300(d/h0.25) 
17952 16737 1.07 

H150-L1200-T1.8-S150-

A300(d/h0.5) 
17447 16392 1.06 

H150-L1200-T1.8-S150-

A300(d/h0.65) 
16828 15975 1.05 

H150-L1200-T1.8-S150-

A300(d/h0.8) 
15973 15155 1.05 

H200-L1800-T2.4-S200-

A150(d/h0.5) 
38378 36538 1.05 

H200-L1800-T2.4-S200-

A200(d/h0.5) 
38539 37161 1.04 

H200-L1800-T2.4-S200-

A250(d/h0.5) 
38764 37463 1.03 

H200-L1800-T2.4-S200-

A300(d/h0.5) 
38748 37644 1.03 

H200-L1800-T2.4-S200-

A350(d/h0.5) 
38825 37762 1.03 

H200-L1800-T2.4-S200-

A400(d/h0.5) 
38700 37846 1.02 

H200-L1800-T2.4-S200-

A450(d/h0.5) 
38771 37910 1.02 

H300-L1200-T2.4-S50-

A300(d/h0.5) 
70814 59619 1.19 

H300-L1200-T2.4-S100-

A300(d/h0.5) 
70798 59619 1.19 

H300-L1200-T2.4-S200-

A300(d/h0.5) 
70377 59619 1.18 

H300-L1200-T2.4-S300-

A300(d/h0.5) 
69873 59619 1.17 

H300-L1200-T2.4-S400-

A300(d/h0.5) 
69116 59619 1.16 

H300-L1200-T2.4-S800-

A300(d/h0.5) 
68876 59619 1.16 

H300-L1200-T2.4-S1200-

A300(d/h0.5) 
68637 59619 1.15 
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Table 6.3 Comparison of ultimate moment obtained from FEA with original and modified DSM 

prediction for selected specimens controlled by lateral-torsional buckling 

Specimen 

FEA DSM Comparison 

MFEA 

( kN·mm) 

MDSM,o 

( kN·mm) 
MFEA/MDSM,o 

H150-L4000-T1.4-S200-

A300(d/h0.25) 8842 4562 1.94 

H150-L4000-T1.4-S200-

A300(d/h0.5) 8810 4326 2.04 

H150-L4000-T1.4-S200-

A300(d/h0.65) 8760 4180 2.10 

H150-L4000-T1.4-S200-

A300(d/h0.8) 8673 4032 2.15 

H200-L4000-T2.4-S200-

A150(d/h0.5) 29724 16970 1.75 

H200-L4000-T2.4-S200-

A200(d/h0.5) 29813 16970 1.76 

H200-L4000-T2.4-S200-

A250(d/h0.5) 29658 16970 1.75 

H200-L4000-T2.4-S200-

A300(d/h0.5) 29746 16970 1.75 

H200-L4000-T2.4-S200-

A350(d/h0.5) 29852 16970 1.76 

H200-L4000-T2.4-S200-

A400(d/h0.5) 29857 16970 1.76 

H200-L4000-T2.4-S200-

A450(d/h0.5) 29859 16970 1.76 

H200-L4000-T1.6-S50-

A300(d/h0.5) 19619 10936 1.79 

H200-L4000-T1.6-S100-

A300(d/h0.5) 19297 10936 1.76 

H200-L4000-T1.6-S200-

A300(d/h0.5) 19111 10936 1.75 

H200-L4000-T1.6-S400-

A300(d/h0.5) 18670 10936 1.71 

H200-L4000-T1.6-S800-

A300(d/h0.5) 17617 10936 1.61 

H200-L4000-T1.6-S1600-

A300(d/h0.5) 16824 10936 1.54 

H200-L4000-T1.6-S4000-

A300(d/h0.5) 11278 10936 1.03 
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6.4.1 Local buckling investigation 

 

As described in Section 6.2.2, if the CFS built-up beams with web perforations are controlled 

by local buckling, the single PCFS channels will buckle separately and independently. 

Therefore, the ultimate moment of built-up beams can be assumed as the sum of two single 

PCFS beams. According to the extended DSM formulae for the local buckling of PCFS 

beams proposed by Moen and Schafer (2010), the ultimate moment of CFS built-up beams 

with web perforations controlled by local buckling can be expressed as follows, 
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where McrlPB is the critical moment of local buckling of the single PCFS beam which can be 

obtained from the design equations proposed by Moen and Schafer (2009b), Mynet  is the yield 

moment of net cross-section and My is the yield moment of gross cross-section.  

 

The factor η represents the influence of hole sizes which is defined as, 

/ynet yM M                                  (6-2) 

 

The modified factor κl and γl for local buckling are determined based on the factor η, 
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In which λl is the section slenderness for local buckling which is given by,   
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The limit of the local buckling slenderness transition λl1 can be solved by, 
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The modified DSM curves for CFS built-up beams with web perforations subject to local 

buckling were compared with FEA results as shown in Figure 6.12. For the built-up beams 

with small perforations (0.975≤η≤1), the original DSM curves were reliable to predict the 

ultimate moment (see Figure 6.12(a)). However, for the built-up beams with large 

perforations (η<0.975), the prediction moments determined by the original DSM equations 

were conservative. The mean value of the ratio of FEA results to beam strength determined 

by original DSM formulae was 1.11 and the corresponding coefficient of variation (COV) 

was 0.088. 

 

The modified factor κl and γl were carried out to extend the original DSM equations, the 

factor η was chosen as 0.95 for the built-up beam with large perforations (see Figure 6.12(b)). 

The mean value of the ratio of FEA results to beam strength determined by modified DSM 

formulae was 1.02 and the corresponding COV was 0.038. The comparisons of FEA results 

with design strength obtained from original and modified DSM equations for selected 

specimens controlled by the local buckling are listed in Table 6.4. 
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(a) η=1 

 

 

(b) η=0.95 

Figure 6.12 Comparison of the modified DSM curves with FEA results for CFS built-up beams with 

web perforations controlled by local buckling   
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Table 6.4 Comparison of ultimate moment obtained from FEA with original and modified DSM 

prediction for selected specimens controlled by local buckling 

Specimen 

FEA DSM Comparison 

MFEA 

( kN·mm) 

MDSM,o 

( kN·mm) 

MDSM,m 

( kN·mm) 
MFEA/MDSM,o MFEA/MDSM,m 

H200-L1200-T1.4-

S200-A300(d/h0.25) 
19895 18991 18991 1.05 1.05 

H200-L1200-T1.4-

S200-A300(d/h0.5) 
19622 15568 18240 1.26 1.08 

H200-L1200-T1.4-

S200-A300(d/h0.65) 
18292 15350 17917 1.19 1.02 

H200-L1800-T1.4-

S200-A150(d/h0.5) 
19357 15568 18240 1.24 1.06 

H200-L1800-T1.4-

S200-A200(d/h0.5) 
19423 15568 18240 1.25 1.06 

H200-L1800-T1.4-

S200-A250(d/h0.5) 
19427 15568 18240 1.25 1.07 

H200-L1800-T1.4-

S200-A300(d/h0.5) 
19379 15568 18240 1.24 1.06 

H200-L1800-T1.4-

S200-A350(d/h0.5) 
19374 15568 18240 1.24 1.06 

H200-L1800-T1.4-

S200-A400(d/h0.5) 
19492 15568 18240 1.25 1.07 

H200-L1800-T1.4-

S200-A450(d/h0.5) 
19681 15568 18240 1.26 1.08 

H300-L1200-T1.4-

S100-D300(d0.5) 
26629 23347 25267 1.14 1.05 

H300-L1200-T1.4-

S200-D300(d0.5) 
26500 23347 25267 1.14 1.05 

H300-L1200-T1.4-

S300-D300(d0.5) 
26225 23347 25267 1.12 1.04 

H300-L1200-T1.4-

S400-D300(d0.5) 
26189 23347 25267 1.12 1.04 

H300-L1200-T1.4-

S800-D300(d0.5) 
26032 23347 25267 1.11 1.03 

H300-L1200-T1.4-

S1200-D300(d0.5) 
25876 23347 25267 1.11 1.02 

 

The reliability analysis based on the frame work of North America Specification standard 

(AISI, 2016) was proposed to assess the suitability of the original and modified DSM 

equations. According to the Load and Resistance Factor Design (LRFD), the strength of the 

tested member should satisfy the following equation,   
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 i i b nQ R                      (6-7) 

where the left side is required strength based on the most critical load combination, γi are load 

factors and Qi are load effects, respectively; The right side is the design strength, Rn is the 

average of all test results and Փb is the resistance factor which can be determined by,  
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where CՓb is the calibration coefficient, M and F denote the ratio of the actual to the nominal 

material properties and the ratio of the actual to the nominal cross-sectional dimensions, P is 

the ratio of the buckling moment obtained from FEA to the design predictions, Mm Fm and Pm 

are the mean values of M, F and P, VM, VF and VP represent the coefficient of variations 

(COVs) of M, F and P, respectively, VQ is the COV of load effect, β0 is the target reliability 

index and can be taken as 2.5 for structural members for LRFD.  

 

The reliability index of the parametric study can be evaluated as follows, 
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(6-9) 

According to the LRFD, the resistance factor (Փb) of 0.9 was adopted in this study. CՓb is 

equal to 1.52, the mean value Mm and Fm can be taken as 1.10 and 1.00, the COV VM, VF and 

VQ can be taken as 0.10, 0.05 and 0.21, respectively. The mean value Pm and COV VP can be 

calculated from the present parametric study. Furthermore, to take account of the effect of 

limited number of data samples, a correction factor CP of 5.7 was included. 

 

 The reliability index β1 obtained from the original and modified DSM predictions for the 

specimens controlled by local buckling were 2.849 and 2.668 (see Appendix E.1) which were 

larger than the target reliability index β0 (2.5)). This proves that both design rules were 

reliable and the proposed design modified DSM formulae can give a more accurate prediction. 
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6.4.2 Distortional buckling investigation 
 

Similar to the case illustrated in Section 6.4.1, if the CFS built-up beams with web 

perforations were controlled by distortional buckling, the single PCFS channels would also 

buckle separately and independently. Hence the ultimate moment of built-up beams can be 

regarded as the sum of two single PCFS beams. 

 

According to the extended DSM formulae for the distortional buckling of PCFS beams 

proposed by Moen and Schafer (2010), the modified DSM equations for calculating the 

ultimate moment of CFS built-up beams with web perforations subject to distortional 

buckling are listed as follows, 
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where McrdPB is the critical moment of distortional buckling of the single PCFS beam which 

can be calculated by the analytical model presented in Section 3.3.2, λd0 is the section 

slenderness for distortional buckling which can be expressed as follows, 
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The limit of the distortional buckling slenderness transition λd1 and λd2 can be determined by 

the following equations, 

3

1 0.78dλ                                (6-12) 
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 1.44
2 0.78 1.7 0.7dλ                                  (6-13) 

 

The modified factor κd and γd for distortional buckling are given by, 

1.065d                     (6-14) 

0.581.19d                                   (6-15) 

 

Md2 is determined by Eq.(6-13), 
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The comparison of ultimate moment calculated by the modified DSM equations with FEA 

results for CFS built-up beams with web perforations controlled by distortional buckling were 

plotted in Figure 6.13. According to the hole sizes, the factor η were selected as 1, 0.95, 0.9 

and 0.85 (see Figure 6.13(a), Figure 6.13(b), Figure 6.13(c) and Figure 6.13(d)). It can be 

found that the original DSM curves were conservative compared to the FEA results in most 

cases, the mean value of the ratio of FEA results to beam strength calculated by original 

DSM formulae was 1.07 and the corresponding COV was 0.058. 

 

(a) η=1 
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(b) η=0.95 

 

 

(c) η=0.9 
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(d) η=0.85 

Figure 6.13 Comparison of the modified DSM curves with FEA results for CFS built-up beams with 

web perforations controlled by distortional buckling   

 

To improve the accuracy of design strength, the modified factors are applied into the original 

DSM equations. Then the mean value of the ratio of FEA results to beam strength calculated 

by modified DSM formulae turned into 1.02 and the corresponding COV turned into 0.059. 

The comparisons of FEA results with design strength obtained from original and modified 

DSM equations for selected specimens controlled by the distortional buckling can be found in 

Table 6.5. 

 

Based on the results of the reliability analysis, the reliability index β1 obtained from the 

original and modified DSM predictions for the specimens controlled by the distortional 

buckling were 2.823 and 2.627 (see Appendix E.2) which were larger than the target 

reliability index β0 (2.5). It is shown that the original and proposed modified DSM formulae 

are both reliable for predicting the moment capacities of the CFS built-up beams with web 

perforations controlled by distortional buckling. 
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Table 6.5 Comparison of ultimate moment obtained from FEA with original and modified DSM 

prediction for selected specimens controlled by distortional buckling 

Specimen 

FEA DSM Comparison 

MFEA 

( kN·mm) 

MDSM,o 

( kN·mm) 

MDSM,m 

( kN·mm) 
MFEA/MDSM,o MFEA/MDSM,m 

H150-L1200-T1.8-

S150-A300(d/h0.25) 
17952 16737 17695 1.07 1.01 

H150-L1200-T1.8-

S150-A300(d/h0.5) 
17447 16392 17250 1.06 1.01 

H150-L1200-T1.8-

S150-A300(d/h0.65) 
16828 15975 16728 1.05 1.01 

H150-L1200-T1.8-

S150-A300(d/h0.8) 
15973 15155 15989 1.05 1.00 

H200-L1800-T2.4-

S200-A150(d/h0.5) 
38378 36538 38621 1.05 0.99 

H200-L1800-T2.4-

S200-A200(d/h0.5) 
38539 37161 39385 1.04 0.98 

H200-L1800-T2.4-

S200-A250(d/h0.5) 
38764 37463 39757 1.03 0.98 

H200-L1800-T2.4-

S200-A300(d/h0.5) 
38748 37644 39979 1.03 0.97 

H200-L1800-T2.4-

S200-A350(d/h0.5) 
38825 37762 40124 1.03 0.97 

H200-L1800-T2.4-

S200-A400(d/h0.5) 
38700 37846 40227 1.02 0.96 

H200-L1800-T2.4-

S200-A450(d/h0.5) 
38771 37910 40304 1.02 0.96 

H300-L1200-T2.4-

S50-A300(d/h0.5) 
70814 59619 60689 1.19 1.17 

H300-L1200-T2.4-

S100-A300(d/h0.5) 
70798 59619 60689 1.19 1.17 

H300-L1200-T2.4-

S200-A300(d/h0.5) 
70377 59619 60689 1.18 1.16 

H300-L1200-T2.4-

S300-A300(d/h0.5) 
69873 59619 60689 1.17 1.15 

H300-L1200-T2.4-

S400-A300(d/h0.5) 
69116 59619 60689 1.16 1.14 

H300-L1200-T2.4-

S800-A300(d/h0.5) 
68876 59619 60689 1.16 1.13 

H300-L1200-T2.4-

S1200-A300(d/h0.5) 
68637 59619 60689 1.15 1.13 

 



 175 

6.4.3 Lateral-torsional buckling investigation 

 

Unlike local buckling and distortional buckling, if the CFS built-up beams with web 

perforations were controlled by lateral-torsional buckling, the single PCFS channels would 

not buckle alone, rather the built-up beam would buckle as a whole. The ultimate moment of 

built-up beams subject to lateral-torsional buckling cannot be simply assumed as the sum of 

two single PCFS channels, the effect of the contact due to the composite action on the 

moment capacities should be taken into account. 

 

Figure 6.14 shows the comparison of beam strength calculated by original DSM formulae 

with FEA results for CFS built-up beams with web perforations controlled by lateral-torsional 

buckling. It can be seen that the prediction moment obtained from the original DSM curve 

was over conservative compared to the FEA results and the disparity widened with the 

increase of beam length. In order to calculate the ultimate failure moment of CFS built-up 

beams with web perforations subject to lateral-torsional buckling accurately, the original 

DSM equations need to be modified. 

 

Figure 6.14 Comparison of the original DSM curves with FEA results for CFS built-up beams with 

web perforations controlled by lateral-torsional buckling   
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According to the extended DSM formulae for the lateral-torsional buckling of PCFS beams 

proposed by Moen and Schafer (2010), the modified DSM equations for calculating the 

ultimate moment of CFS built-up beams with web perforations failed by lateral-torsional 

buckling can be expressed as, 
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where McrλPB is the critical moment of lateral-torsional buckling of the single PCFS beam 

which can be calculated by the analytical model presented in  Section 4.3.2.1.   

 

The section slenderness for lateral-torsional buckling λc is given by, 
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It can be seen from the parametric study (shown in Section 6.3) that the slenderness ratio (l/i) 

and screw spacing (s) had significant influence on the structural behaviour of CFS built-up 

beams with web perforations controlled by lateral-torsional buckling.  

 

FEA results were compared with ultimate failure moment calculated by original DSM 

equations for CFS built-up beams with web perforations failed by lateral-torsional buckling 

in different slenderness ratio as shown in Figure 6.15. The screw spacing was equal to 200 

mm, the slenderness ratio varied from 40 to 100, the factor η were chosen as 1, 0.95 and 0.85 

which represent the size of the perforations from large to small (see Figure 6.15(a), Figure 

6.15(b) and Figure 6.15(c)). It can be observed from the figures that the gap between the FEA 

results and the ultimate moment determined by the original DSM equations increased with 
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the increase of slenderness ratio. The maximum deviation value of the ratio of FEA results to 

beam strength calculated by original DSM formulae was 259%, the mean value of the ratio of 

FEA results to beam strength calculated by original DSM formulae was 1.972 and the 

corresponding COV was 0.199.   

 

(a) η=1 

 

(b) η=0.95 
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(c) η=0.85 

Figure 6.15 Comparison of FEA results with design strength calculated by original DSM for CFS 

built-up beams with web perforations failed by lateral-torsional buckling in different slenderness ratio   

 

To clarify the effects of slenderness ratio and hole sizes, the modified factor γλ was carried 

out by fitting the FEA results, the relevant fitting function was given by, 
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According to the comparison of FEA results with different screw spacing for CFS built-up 

beams with web perforations failed by lateral-torsional buckling (see Figure 6.16), the 

modified factor κd  was represented by the proposed fitting function which included the effect 

of screw spacing,  
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Figure 6.16 Comparison of FEA results with different screw spacing for CFS built-up beams with 

web perforations failed by lateral-torsional buckling   

 

The comparisons of FEA results with design strength calculated by modified DSM for CFS 

built-up beams with web perforations failed by lateral-torsional buckling in different 

slenderness ratio were plotted in Figure 6.17. Compared to the original DSM formulae, the 

maximum deviation value of the ratio of FEA results to beam strength calculated by modified 

DSM formulae turned into 7%, the mean value of the ratio of FEA results to beam strength 

calculated by modified DSM formulae turned into 1.00 and the corresponding COV turned 

into 0.022. The comparisons of FEA results with design strength obtained from original and 

modified DSM equations for selected specimens controlled by the lateral-torsional buckling 

are shown in Table 6.6. 
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(a) η=1 

 

 

(b) η=0.9
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(c) η=0.85 

Figure 6.17 Comparison of FEA results with design strength calculated by modified DSM for CFS 

built-up beams with web perforations failed by lateral-torsional buckling in different slenderness ratio 

 

According to the reliability analysis, the calculated reliability index β1 for the original and 

modified DSM predictions of the specimens controlled by the lateral-torsional buckling were 

taken as 4.32 and 2.592 (see Appendix E.3), respectively. It is shown that both the design 

rules were reliable. However, the original DSM predictions are too conservative, whereas the 

proposed modified DSM formulae provides more accurate and reasonable prediction which 

can be recommended for the design strength of CFS built-up beams with web perforations 

failed by the lateral-torsional buckling. 
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Table 6.6 Comparison of ultimate moment obtained from FEA with original and modified DSM 

prediction for selected specimens controlled by lateral-torsional buckling 

Specimen 

FEA DSM Comparison 

MFEA 

( kN·mm) 

MDSM,o 

( kN·mm) 

MDSM,m 

( kN·mm) 
MFEA/MDSM,o MFEA/MDSM,m 

H150-L4000-T1.4-

S200-A300(d/h0.25) 8842 4562 8652 1.94 1.02 

H150-L4000-T1.4-

S200-A300(d/h0.5) 8810 4326 8668 2.04 1.02 

H150-L4000-T1.4-

S200-A300(d/h0.65) 8760 4180 8774 2.10 1.00 

H150-L4000-T1.4-

S200-A300(d/h0.8) 8673 4032 8570 2.15 1.01 

H200-L4000-T2.4-

S200-A150(d/h0.5) 29724 16970 29591 1.75 1.00 

H200-L4000-T2.4-

S200-A200(d/h0.5) 29813 16970 29591 1.76 1.01 

H200-L4000-T2.4-

S200-A250(d/h0.5) 29658 16970 29591 1.75 1.00 

H200-L4000-T2.4-

S200-A300(d/h0.5) 29746 16970 29591 1.75 1.01 

H200-L4000-T2.4-

S200-A350(d/h0.5) 29852 16970 29591 1.76 1.01 

H200-L4000-T2.4-

S200-A400(d/h0.5) 29857 16970 29591 1.76 1.01 

H200-L4000-T2.4-

S200-A450(d/h0.5) 29859 16970 29591 1.76 1.01 

H200-L4000-T1.6-

S50-A300(d/h0.5) 19619 10936 19547 1.79 1.00 

H200-L4000-T1.6-

S100-A300(d/h0.5) 19297 10936 19368 1.76 1.00 

H200-L4000-T1.6-

S200-A300(d/h0.5) 19111 10936 19033 1.75 1.00 

H200-L4000-T1.6-

S400-A300(d/h0.5) 18670 10936 18449 1.71 1.01 

H200-L4000-T1.6-

S800-A300(d/h0.5) 17617 10936 17573 1.61 1.00 

H200-L4000-T1.6-

S1600-A300(d/h0.5) 16824 10936 16572 1.54 1.02 

H200-L4000-T1.6-

S4000-A300(d/h0.5) 11278 10936 11008 1.03 1.02 
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6.5 Summary 

 

The numerical investigation on the structural behaviour of CFS built-up beams with web 

perforations subject to pure bending has been performed in this chapter. The influence of 

screw spacing, hole sizes, hole spacing and slenderness ratio on the moment capacities of 

built-up beams has been estimated in the parametric study. According to the FEA results, the 

modified DSM formulae were proposed to predict the ultimate moment. The results obtained 

from the present investigation in this chapter have shown that, 

 

 For the specimens selected in this study controlled by local buckling or distortional 

buckling, the effects of screw spacing on the moment capacities are negligible. 

However, the moment capacities increase with the decrease of screw spacing if the 

specimens selected in this study are failed by the lateral-torsional buckling due to the 

composite action of the two single beams. 

 

 For the specimens selected in this study controlled by distortional buckling, the 

ultimate failure moments decrease with the increase of hole size (e.g., for the 

specimen H150-L1200-T2.4-S150-A300, when the ratio of diameter of the circular 

hole to web height (d/h) increased from 0.25 to 0.8, the reduction of ultimate reached 

at 12%). However, the hole size has minor effect on the ultimate failure moments if 

the specimens selected in this study controlled by lateral-torsional buckling. 

 

 The slenderness ratio has significant influence on the moment capacities of CFS built-

up beams with web perforations controlled by lateral-torsional buckling, the ultimate 

moments decrease with the increase of slenderness ratio. 

 

 The FEA results of CFS built-up beams with web perforations have been compared 

against the ultimate moment of corresponding single PCFS channels obtained from 

original DSM formulae, the mean value of the ratio of FEA results to two times the 

ultimate moment of single PCFS channel is 1.11, 1.07 and 1.826 for the built-up 

beams controlled by local buckling, distortional buckling and lateral-torsional 

buckling, respectively. It is shown that the effect of the contact due to the composite 
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action of two single beams cannot be ignored when the built-up beam fail by lateral-

torsional buckling.  

 

 To check the accuracy of the modified DSM formulae, the FEA results of CFS built-

up beams with web perforations have been compared against the modified DSM 

results. The mean value of the ratio of FEA results to modified DSM results is 1.02, 

1.02 and 1 for the built-up beams controlled by local buckling, distortional buckling 

and lateral-torsional buckling, respectively. The results of the reliability analysis 

demonstrate that the proposed modified DSM can be recommended for the design of 

CFS built-up beams with web perforations subject to pure bending. 
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Chapter 7 — Conclusions and future work  

 

7.1 Conclusions 
 

This thesis has investigated the distortional and lateral-torsional buckling performance of 

PCFS beams when subjected to pure bending and uniformly distributed load. In addition, the 

structural behaviour of CFS built-up beams with web perforations when subjected to pure 

bending has been studied through the use of non-linear finite element analysis. Analytical and 

numerical approaches have been developed to predict the critical moments of distortional and 

lateral-torsional buckling of PCFS beams under pure bending and uniformly distributed load. 

Based on the results obtained from parametric study, the DSM design equations have been 

modified to determine the ultimate moment capacities of CFS built-up beams with web 

perforations under pure bending. The main conclusions are drawn as follows, 

 

Distortional buckling analysis of PCFS beams 

 

 The hole sizes have remarkable influence on the critical moment of distortional 

buckling of PCFS beam. The distortional buckling stress was found to decrease with 

the increased hole size. 

 

 For PCFS beams under pure bending, the effect of web perforations on the critical 

moment of distortional buckling can be represented by their influence on the 

rotational resistance of the compressed flange and lip system. The reduction of the 

bending rigidity of the web due to the circular perforations can be evaluated by using 

the concept of equivalent width. 

 

 The analytical model proposed by Lau and Hancock (1987) can be used to calculate 

the critical moment of distortional buckling of PCFS beams subject to pure bending 

by reducing the stiffness of the rotational spring. The modified rotational spring 

stiffness can be determined by applying a unit bending moment at the flange/web 

junction. 
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 For PCFS beams under uniformly distributed load, the stress gradient along the beam 

longitude direction has considerable influence on the distortional buckling. The half-

wave length of the distortional buckling modes varies along the longitudinal axis and 

the longest half wave occurs at the mid-span of the beam. 

 

 The analytical model proposed by Li and Chen (2008) can be used to predict the 

critical moment of distortional buckling of PCFS beams subject to uniformly 

distributed load by cutting down the stiffness of the vertical spring. The modified 

vertical spring stiffness can be estimated by applying a unit concentrated load at the 

centroid of the compressed flange and lip system. 

 

 For the most cases, the critical stress of distortional buckling of the PCFS beam under 

uniformly distributed load is larger than that of the same beam under pure bending. 

However, this difference narrows with the increase of beam length. 

 

 Comparisons of PCFS beams subject to pure bending and uniformly distributed load 

have been made between the proposed analytical methods and finite element analysis 

results. The results have shown that the two simplified theoretical models are capable 

to predict the critical moment of distortional buckling of PCFS beams and can be 

recommended for the design of PCFS sections. 

 

Lateral-torsional buckling analysis of PCFS beams 

 

 The web perforation was found to have a significant influence on the lateral-torsional 

buckling performance of PCFS beams. The critical moment of lateral-torsional 

buckling decreases with the increase of the diameter of circular holes.  

 

 The analytical model based on the energy method can be used to determine the   

critical moments of lateral-torsional buckling of PCFS beams under pure bending and 

uniformly distributed uplift load by reducing the cross-sectional properties. The 

contribution of the solid parts where the web perforations are located to the cross-

sectional properties is negligible due to the discontinuities caused by the uniformly 

distributed perforations.  
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 For the case that the PCFS beams restrained by the metal sheeting, the horizontal and 

rotational springs can be applied at the tension end of the web to estimate the 

restraints provided by the sheeting. 

 

 For PCFS beams under pure bending, the influence of the horizontal spring stiffness 

on the critical moments of lateral-torsional buckling can be ignored. 

 

 For PCFS beams under uniformly distributed uplift load, the horizontal and rotational 

springs have different influences on the critical moment of lateral-torsional buckling. 

The rotational spring stiffness has more effect on the lateral-torsional buckling 

behaviour than the horizontal spring stiffness. The critical moment of lateral-torsional 

buckling increases significantly with the increase of rotational spring stiffness when 

k≥0.1, whereas the critical moment increases slightly with the increase of horizontal 

spring stiffness when 10-4≤kz≤10. 

 

 The critical moment of lateral-torsional buckling of a PCFS beam under uniformly 

distributed uplift load is larger than that of the same beam under pure bending due to 

the effect of stress gradient. However, this gap becomes closer with the increase of 

beam length. 

 

 The proposed theoretical approaches have been compared with the eigenvalue 

analysis results, which have shown a good agreement. This proves that the proposed 

analytical models are reliable for calculating the critical moment of lateral-torsional 

buckling when subjected to pure bending and uniformly distributed uplift load. 

 

Non-linear analysis of CFS built-up beams with web perforations 

 

 The non-linear finite element models involving the geometric imperfection, 

geometrical, material and contact non-linearity have been developed for the numerical 

investigation of CFS built-up beams with web perforations. The FEA results have 

been validated against the existing experimental data in terms of the ultimate moment 

capacities and deformed shapes.  
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 The influence of hole sizes on the ultimate failure moment of CFS built-up beams 

with web perforations selected in this study controlled by the distortional buckling is 

more obvious than that controlled by the lateral-torsional buckling. 

 

 The effect of screw spacing on the moment capacities of CFS built-up beams with 

web perforations selected in this study failed by lateral-torsional buckling is more 

obvious than that failed by local buckling or distortional buckling. 

 

 The ultimate moment of CFS built-up beams with web perforations can be treated as 

the sum of two single PCFS beams, if the beams are subject to local buckling or 

distortional buckling. However, to calculate the ultimate moment of CFS built-up 

beams with web perforations subject to lateral-torsional buckling, the influence of the 

contact due to composite action of the two single beams on the beam strength should 

be taken into account.           

 

 The ultimate moments of CFS built-up beams with web perforations calculated by 

using modified and original DSM formulae are compared with the verified FEA 

results. It is shown that the modified DSM equations provide a more accurate 

prediction for the design of CFS built-up beams with web perforations controlled by 

local buckling, distortional buckling or lateral-torsional buckling. 

 

7.2 Future work 
 

The research work including analytical and numerical analysis on PCFS beams and CFS 

built-up beams with web perforations have been conducted in this thesis. The main findings 

and conclusions described in Section 7.1 have implemented the primary objectives of the 

project. However, in order to fully understand the buckling behaviour and failure mechanism 

of PCFS beams in complex loading systems, further research is still needed in some area. 

This includes,  
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 The analytical models proposed in this thesis can only be applied to the PCFS beams 

failed by distortional buckling and lateral-torsional buckling. Further study can be 

investigated for the PCFS beams controlled by shear buckling.  

 

 The shape of the specimens chosen in this thesis is limited to the channel cross section. 

Further research on the PCFS beam with various cross-section shapes is suggested to 

optimize new PCFS section types using in the industry.    

 

 The experimental work has not been conducted in this thesis, only the numerical 

investigations are performed to study the structural behaviour of CFS built-up beams 

with web perforations under pure bending. It is recommended to carry out the 

uniformly distributed loading tests to evaluate the effect of stress gradient on the 

failure modes of CFS built-up beams with web perforations. A further modification of 

DSM equations may be needed for the design of CFS built-up beams with web 

perforations subject to uniformly distributed load.  

 

 The residual stresses and plastic strains of cold-formed steel are not considered in the 

non-linear finite element analysis presented in this thesis. Future numerical studies are 

planned to recognize the effects of residual stresses and plastic strains on the moment 

capacities and failure modes of CFS built-up beams with web perforations. 

 

 The boundary condition of the beams studied in this thesis is limited to simply 

supported boundary condition. In practice, other boundary conditions (i.e. fixed-fixed, 

pinned-fixed) are also used and thus should be studied in the further research. 



 190 

REFERENCES  

Abbasi, M., Khezri, M., Rasmussen, K. J. R. and Schafer, B. W. (2018): Elastic buckling 

analysis of cold-formed steel built-up sections with discrete fasteners using the compound 

strip method. Thin-walled Structures, 124, 58-71. 

Ádány, S. (2004): Buckling mode classification of members with open thin-walled cross-

sections by using the finite strip method. Johns Hopkins University Press, Baltimore. 

Ádány, S. and Schafer, B. W. (2006a): Buckling mode decomposition of single-branched 

open cross-section members via finite strip method: Derivation. Thin-Walled Structures, 

44(5), 563-584. 

Ádány, S. and Schafer, B. W. (2006b): Buckling mode decomposition of single-branched 

open cross-section members via finite strip method: Application and examples. Thin-Walled 

Structures, 44(5), 585-600. 

Ádány, S. and Schafer, B. W. (2008): A full modal decomposition of thin-walled, single 

branched open cross-section members via the constrained finite strip method. Journal of 

Constructional Steel Research, 64(1), 12-29. 

AISI (1946): Specification for the Design of Light Gage Steel Structure Members. New York, 

USA. 

AISI (2016): North American Specification for the Design of Cold-formed Steel Structural 

Members (NAS). Washington, D.C., USA. 

AISC (2016): Castellated and Cellular Beam Design. Chicago, USA. 

AS/NZS (2005): AS/NZS 4600 Cold-formed Steel Structures. Standards of Australian and 

Standards of New Zealand, Sydney-Wellington, Australian.  

Bernuzzi, C. and Maxenti, F. (2015): European alternatives to design perforated thin-walled 

cold-formed beam–columns for steel storage systems. Journal of Constructional Steel 

Research, 110, 121-136. 

Brown, C. J., Yettram, A. L. and Burnett, M. (1987): Stability of plates with rectangular holes. 

Journal of Structural Engineering, 113(5), 1111-1116. 



 191 

Casafont, M., Pastor, M., Bonada, J., Roure, F. and Peköz T. (2012): Linear buckling analysis 

of perforated steel storage rack columns with the Finite Strip Method. Thin-Walled Structures, 

61, 71-85. 

Chen, B. S., Roy, K., Uzzaman, A., Raftery, G. M., Nash, D., Clifton, G. C., Pouladi, P. and 

Lim, J. B. P. (2019): Effects of edge-stiffened web openings on the behaviour of cold-formed 

steel channel sections under compression. Thin-walled Structures, 144, 106307. 

Chen, B. S., Roy, K., Uzzaman, A., Raftery, G. M. and Lim, J. B. P. (2020a): Parametric 

study and simplified design equations for cold-formed steel channels with edge-stiffened 

holes under axial compression. Journal of Constructional Steel Research, 172, 106161. 

Chen, B. S., Roy, K., Uzzaman, A. and Lim, J. B. P. (2020b): Moment capacity of cold-

formed steel channels with edge-stiffened holes, un-stiffened holes and plain webs. Thin-

walled Structures, 157, 107070. 

Chen, B. S., Roy, K., Uzzaman, A., Raftery, G. M. and Lim, J. B. P. (2020c): Axial strength 

of back-to-back cold-formed steel channels with edge-stiffened holes, un-stiffened holes and 

plain webs. Journal of Constructional Steel Research, 174, 106313. 

Chen, B. S., Roy, K., Fang, Z. Y., Uzzaman, A., Raftery, G. M. and Lim, J. B. P. (2021): 

Moment capacity of back-to-back cold-formed steel channels with edge-stiffened holes, un-

stiffened holes, and plain webs. Engineering Structures, 235, 112042. 

Chen, J. K. and Li, L. Y. (2010): Distortional buckling of cold-formed steel sections 

subjected to uniformly distributed transverse loading. International Journal of Structural 

Stability and Dynamics, 10(5), 1017-1030. 

Cheng, S. S., Kim, B. and Li, L. Y. (2013): Lateral-torsional buckling of cold-formed channel 

sections subject to combined compression and bending. Journal of Constructional Steel 

Research, 80, 174-180. 

Cheung, Y. K. (1968): The finite strip method in the analysis of elastic plates with two 

opposite simply supported ends. Proceedings of the Institution of Civil Engineers, 40(1), 1-7. 

Crisan, A., Ungureanu, V. and Dubina, D. (2012a): Behaviour of cold-formed steel 

perforated sections in compression. Part 1—Experimental investigations. Thin-Walled 

Structures, 61, 86-96. 



 192 

Crisan, A., Ungureanu, V. and Dubina, D. (2012b): Behaviour of cold-formed steel 

perforated sections in compression: Part 2—numerical investigations and design 

considerations. Thin-Walled Structures, 61, 97-105. 

Chu, X. T., Rickard, J. and Li, L. Y. (2004): Lateral-tortion buckling analysis of partial-

laterally restrained thin-walled channel-section beams. Journal of Constructional Steel 

Research, 60, 1159-1175. 

Chu, X. T., Rickard, J. and Li, L. Y. (2005): Influence of lateral restraint on lateral-torsional 

buckling of cold-formed steel purlins. Thin-Walled Structures, 43(5), 800-810. 

Davies, J. M. and Leach, P. (1994a): First-order generalised beam theory. Journal of 

Constructional Steel Research, 31(2-3), 187-220. 

Davies, J. M. and Leach, P. (1994b): Second-order generalised beam theory. Journal of 

Constructional Steel Research, 31(2-3), 221-241. 

Davies, J. M., Leach, P. and Taylor, A. (1997): The design of perforated cold-formed steel 

sections subject to axial load and bending. Thin-Walled Structures, 29(1-4), 141-157. 

Dhanalakshmi, M. and Shanmugam, N. E. (2001): Design for openings in equal-angle cold-

formed steel stub columns. Thin-Walled Structures, 39(2), 167-187. 

EN1993-1-3 (2006): Design of Steel Structures. Part 1-3: General rules- Supplementary rules 

for cold-formed members and sheeting. BSI, Brussels. 

EN1993-1-5 (2006): Design of Steel Structures. Part 1-5: Plated structural elements. BSI, 

Brussels. 

Erdal, F. and Saka, M. P. (2013): Ultimate load carrying capacity of optimally designed steel 

cellular beams. Journal of Constructional Steel Research, 80, 355-368. 

Fratamico, D. C., Torabian S., Zhao, X., Rasmussen, K. J. R. and Schafer, B. W. (2018): 

Experimental study on the composite action in sheathed and bare built-up cold-formed steel 

columns. Thin-Walled Structures, 127, 290-305. 

Georgieva, I., Sehueremans, L., Pyl, L. and Vandewalle, L. (2012): Experimental 

investigation of built-up double-Z members in bending and compression. Thin-Walled 

Structures, 53, 48-57. 



 193 

Gjelsvik, A. (1990): Buckling of built-up columns with or without stay plates. Journal of 

Engineering Mechanics, 116(5), 1142-1159. 

Gjelsvik, A. (1991): Stability of built-up columns. Journal of Engineering Mechanics, 117(6), 

1331-1345. 

Guzmán, A., Guzmán, O., Arteta, C. and Carrillo, J. (2021): Experimental study of the 

influence of welding space in cold-formed built-up box flexural members. Engineering 

Structures, 228, 111541. 

Hancock, G. J., Kwon, Y. B. and Bernard, E. S. (1994): Strength design curves for thin-

walled sections undergoing distortional buckling. Journal of Construction Steel Research, 

31(2-3), 169-186. 

Hancock, G. J. (1997): Design for distortional buckling of flexural members. Thin-Walled 

Structures, 27(1), 3-12. 

Harper, C. (1991): Design in Steel 4: Castellated and Cellular Beams. British Steel, Port 

Talbot, UK. 

Huang, X. H. and Zhu, J. (2016): A stiffened-plate buckling model for calculating critical 

stress of distortional buckling of CFS columns. International Journal of Mechanical Science, 

119, 237-242. 

Huang, X. H., Yang, J., Liu, Q. F., Zhu, J., Bai, L., Wang, F. L. and Wang, J. H. (2018): A 

simplified flange-lip model for distortional buckling of cold-formed steel channel-sections 

with stiffened web. International Journal of Mechanical Science, 136, 451-459. 

Huang, X. H., Bai, L., Yang, J., Wang, F. L., Zhu, J. and Liu, Q. F. (2019): Distortional-

buckling analysis of channel sections with web stiffened by longitudinal ribs subjected to 

axial compression or bending. Thin-walled Structures, 144, 106322. 

Kankanamge, N. D. and Mahendran, M. (2012): Behaviour and design of cold-formed steel 

beams subject to lateral-torsional buckling. Thin-Walled Structures, 51, 25-38. 

Kesti, J. and Mäkeläinen, P. (1998): Design of gypsum-sheathed perforated steel wall studs. 

Journal of Constructional Steel Research, 46(1-3), 215-216. 

Knowles, P. R. (1985): Design of Castellated Beams. Constrado, London, UK. 



 194 

Kim, B., Li, L. Y. and Edmonds, A. (2016): Analytical solutions of lateral-torsional buckling 

of castellated beams. International Journal of Structural Stability and Dynamics, 16(8), 

1550044. 

Kulatunga, M. P. and Macdonald, M. (2013): Investigation of cold-formed steel structural 

members with perforations of different arrangements subjected to compression loading. Thin-

Walled Structures, 67, 78-87. 

Kulatunga, M. P., Macdonald, M., Rhodes, J. and Harrison, D. K. (2014): Load capacity of 

cold-formed column members of lipped channel cross-section with perforations subjected to 

compression loading – Part I: FE simulation and test results. Thin-Walled Structures, 80, 1-12. 

Kwon, Y. B. and Hancock, G. J. (1991): A nonlinear elastic spline finite strip analysis of 

thin-walled sections. Thin-Walled Structures, 12(4), 295-319. 

Kwon, Y. B. and Hancock, G. J. (1992): Tests of cold-formed channels with local and 

distortional buckling. Journal of Structural Engineering, 118(7), 1786-1803. 

Laím, L., Rodrigues, J. P. C., and da Silva, L. S. (2013): Experimental and numerical analysis 

on the structural behaviour of cold-formed steel beams. Thin-Walled Structures, 72, 1-13. 

Landolfo, R., Mammana, O., Portioli, F., Di Lorenzo, G., and Guerrieri, M. R. (2008): Laser 

welded built-up cold-formed steel beams: Experimental investigations. Thin-Walled 

Structures, 46(7-9), 781-791. 

Lau, S. C. W. and Hancock, G. J. (1986): Buckling of thin flat-walled structures by a spline 

finite strip method. Thin-Walled Structures, 4(4), 269-294. 

Lau, S. C. W. and Hancock, G. J. (1987): Distortional buckling formulas for channel columns. 

Journal of Structural Engineering, 113(5), 1063-1078. 

Lau, S. C. W. and Hancock, G. J. (1989): Inelastic buckling analyses of beams, columns and 

plates using the spline finite strip method. Thin-Walled Structures, 7(3-4), 213-238. 

Lawson, R. M. and Basta, A. (2019): Deflection of C section beam with circular web 

openings. Thin-walled Structures, 134, 277-290. 

Li, L. Y. (2004): Lateral-torsional buckling of cold-formed zed-purlins partial-laterally 

restrained by metal sheeting. Thin-Walled Structures, 42(7), 995-1011. 



 195 

Li, L. Y. and Chu, X. T. (2008): Cold-formed Steel Sections. in Martin, L. H. and Purkiss, J. 

A. (eds.) Structural Design of Steelwork. 3rd edn. Amsterdam, Elsevier, Chapter 11, 413-457. 

Li, L. Y. and Chen, J. K. (2008): An analytical model for analysing distortional buckling of 

cold-formed steel sections. Thin-walled Structures, 46(12), 1430-1436. 

Li, L. Y. (2009): Analyses of distortional buckling of cold-formed sigma purlins using 

EN1993-1-3. Journal of Constructional Steel Research, 62(12), 2099-2102. 

Li, L. Y. (2011): Calculation of moment capacity of cold-formed steel members. International 

Journal of Structural Engineering, 2(2), 101-115. 

Li, Z. and Schafer, B.W. (2013): Constrained finite strip method for thin-walled members 

with general end boundary conditions. Journal of Engineering Mechanics, 139(11), 1566-

1576. 

Li, Y. Q., Li, Y. L., Wang, S. K. and Shen, Z. Y. (2014): Ultimate load-carrying capacity of 

cold-formed thin-walled columns with built-up box and I section under axial compression. 

Thin-Walled Structures, 79, 202-217. 

Lim, J. B. P. and Nethercot, D. A. (2003): Ultimate strength of bolted moment-connections 

between cold-formed steel members. Thin-Walled Structures, 41, 1019-1039. 

Liu, T. C. H. and Chung, K. F. (2003): Steel beams with large web openings of various 

shapes and sizes: finite element investigation. Journal of Constructional Steel Research, 59, 

1159-1176. 

Liu, Q., Yang, J. and Wang, F. L. (2015): Numerical simulation of sleeve connections for 

cold-formed steel sigma sections. Engineering Structures, 177, 641-654. 

Maiorana E., Carlo P. and Claudio M. (2009): Elastic stability of plates with circular and 

rectangular holes subjected to axial compression and bending moment. Thin-Walled 

Structures, 47(3), 241-255. 

Meza, F. J., Becque, J. and Hajirasouliha, I. (2020a): Experimental study of cold-formed steel 

built-up columns. Thin-Walled Structures, 149, 106291. 

Meza, F. J., Becque, J. and Hajirasouliha, I. (2020b): Experimental study of the cross-

sectional capacity of cold-formed steel built-up columns. Thin-Walled Structures, 155, 

106958. 



 196 

Miller T. H. and Peköz, T. (1994): Unstiffened strip approach for perforated wall studs. 

Journal of Structural Engineering, 120(2), 410-421. 

Moen, C. D. (2008): Direct strength design for cold-formed steel members with perforations. 

Ph.D. Thesis, Johns Hopkins University.  

Moen C. D. and Schafer B. W. (2008): Experiments on cold-formed steel columns with holes. 

Thin-Walled Structures, 46(10), 1164-1182. 

Moen, C. D. and Schafer, B. W. (2009a): Elastic buckling of cold-formed steel columns and 

beams with holes. Engineering Structures, 31(12), 2812-2824. 

Moen, C. D. and Schafer, B. W. (2009b): Elastic buckling of thin plates with holes in 

compression or bending. Thin-Walled Structures, 47(12), 1597-1607. 

Moen, C. D. and Schafer, B. W. (2010): Extending direct strength design to cold-formed steel 

beams with holes, Proceedings of the 20th international specialty conference on cold-formed 

steel structures. St. Louis, Missouri, USA: November 3&4. 

Moen, C. D. and Schafer, B. W. (2011): Direct strength method for design of cold-formed 

steel columns with holes. Journal of Structural Engineering, 137(5), 559-570. 

Moen, C. D., Schudlich, A., and von der Heyden, A. (2013): Experiments on Cold-Formed 

Steel C-Section Joists with Unstiffened Web Holes. Journal of Structural Engineering, 139(5), 

695-704. 

Mojtabaei, S. M., Becque, J. and Hajirasouliha, I. (2021): Structural size optimization of 

single and built-up cold-formed steel beam-column members. Journal of Structural 

Engineering, 147(4), 04021030. 

Mousavi, H., Azhari, M., Saadatpour, M. M. and Sarrami-Foroushani1, S. (2020): 

Application of improved element-free Galerkin combining with fnite strip method 

for buckling analysis of channel-section beams with openings. Engineering with Computers, 

DOI:10.1007/s00366-020-01087-8. 

Papangelis, J. P. and Hancock, G. J. (1995): Computer analysis of thin-walled structural 

members. Computers & Structures, 56(1), 157-176. 

Pham, C. H. and Hancock G. J. (2009a): Direct strength design of cold-formed purlins. 

Journal of Structural Engineering, 135(3), 229-238. 



 197 

Pham, C. H. and Hancock G. J. (2009b): Shear buckling of thin-walled channel sections. 

Journal of Constructional Steel Research, 65(3), 578-585. 

Pham, C. H. and Hancock G. J. (2012a): Direct strength design of cold-formed C-sections for 

shear and combined actions. Journal of Structural Engineering, 138(6), 759-768. 

Pham, C. H. and Hancock G. J. (2012b): Tension field action for cold-formed sections in 

shear. Journal of Constructional Steel Research, 72, 168-178. 

Pham, C. H. and Hancock G. J. (2012c): Elastic buckling of cold-formed channel sections in 

shear. Thin-Walled Structures, 61, 22-26. 

Pham, S. H., Pham, C. H. and Hancock G. J. (2014): Direct strength method of design for 

shear including sections with longitudinal web stiffeners. Thin-Walled Structures, 81, 19-28. 

Piyawat, K., Ramseyer, C., and Kang, T. H. K. (2013): Development of an axial load 

capacity equation for doubly symmetric built-up cold-formed sections. Journal of Structural 

Engineering, 139(12), 04013008. 

Reyes, W. and Guzmán, A. (2011): Evaluation of the slenderness ratio in built-up cold-

formed box sections. Journal of Constructional Steel Research, 67(6), 929-935. 

Ren, C., Li, L. Y. and Yang, J. (2012): Bending analysis of partially restrained channel-

section purlins subjected to up-lift loadings. Journal of Constructional Steel Research, 72, 

254-260. 

Roy, K., Ting, T. C. H., Lau, H. H. and Lim, J. B. P. (2018a): Effect of thickness on the 

behaviour of axially loaded back-to-back cold-formed steel built-up channel sections - 

Experimental and numerical investigation. Structures, 16, 327-346. 

Roy, K., Ting, T. C. H., Lau, H. H. and Lim, J. B. P. (2018b): Nolinear behaviour of back-to-

back gapped built-up cold-formed steel channel sections under compression. Journal of 

Constructional Steel Research, 147, 257-276. 

Roy, K., Mohammadjani, C. and Lim, J. B. P. (2019a): Experimental and numerical 

investigation into the behaviour of face-to-face built-up cold-formed steel channel sections 

under compression. Thin-walled Structures, 134, 291-309. 



 198 

Roy, K., Ting, T. C. H., Lau, H. H. and Lim, J. B. P. (2019b): Experimental and numerical 

investigations on the axial capacity of cold-formed steel built-up box sections. Journal of 

Constructional Steel Research, 160, 411-427.  

Roy, K., Lau, H. H., Ting, T. C. H., Chen, B. S. and Lim, J. B. P. (2020): Flexural capacity of 

gapped built-up cold-formed steel channel sections including web stiffeners. Journal of 

Constructional Steel Research, 172, 106154. 

Schafer, B. W. and Peköz, T. (1998): Direct strength prediction of cold-formed steel 

members using numerical elastic buckling solutions. Proceedings of the 14th international 

specialty conference on cold-formed steel structures. St. Louis, Missouri, 69-76. 

Schafer, B. W. and Peköz, T. (1998): Computational modeling of cold-formed steel: 

characterizing geometric imperfections and residual stresses. Journal of Constructional Steel 

Research, 47, 193-210. 

Schafer, B. W. and Peköz, T. (1999): Laterally braced cold-formed steel flexural members 

with edge stiffened flanges. Journal of Structural Engineering, 125(2), 118-127. 

Schafer, B. W. (2002): Local, distortional and Euler buckling in thin-walled columns. Journal 

of Structural Engineering, 128(3), 289-299. 

Schafer, B. W. and Ádány, S. (2006): Buckling analysis of cold-formed steel members using 

CUFSM: conventional and constrained finite strip methods. 18th International Specialty 

Conference on Cold-Formed Steel Structures. Orlando, Florida, USA: October 26&27. 

Shafer, B. W. (2008): Review: the direct strength method of cold-formed steel member 

design. Journal of Constructional Steel Research, 64(7-8), 766-778. 

Schardt, R. (1989): Verallgemeinerte Technische Biegetheorie. Springer, Berlin, Heidelberg, 

New York. 

Schardt, R. (1994): Lateral torsional and distortional buckling of channel- and hat-sections. 

Journal of Constructional Steel Research, 31(2-3), 243-265. 

Seah, L. K. and Khong, P. W. (1990): Lateral-torsional buckling of channel beams. Journal of 

Constructional Steel Research, 17(4), 265-282. 

Shanmugam N. E., Thevendran, V. and Tan, Y. H. (1999): Design formula for axially 

compressed perforated plates. Thin-Walled Structures, 34(1), 1-20. 



 199 

Shanmugam, N. E. and Dhanalakshmi, M. (2001): Design for openings in cold-formed steel 

channel stub columns. Thin-Walled Structures, 39(12), 961-981. 

Sivakumaran, K. S., Ng, M. Y. and Fox, S. R. (2006): Flexural strength of cold-formed steel 

joists with reinforced web openings. Canadian Journal of Civil Engineering, 33(9), 1195-

1208. 

Silvestre, N. and Camotim, D. (2002a): First-order generalised beam theory for arbitrary 

orthotropic materials. Thin-Walled Structures, 40(9), 755-789. 

Silvestre, N. and Camotim, D. (2002b): Second-order generalised beam theory for arbitrary 

orthotropic materials. Thin-Walled Structures, 40(9), 791-820. 

Silvestre, N. and Camotim, D. (2004a): Distortional buckling formulae for cold-formed steel 

C- and Z-section members: Part I—Derivation. Thin-Walled Structures, 42(11), 1567-1597. 

Silvestre, N. and Camotim, D. (2004b): Distortional buckling formulae for cold-formed steel 

C- and Z-section members: Part II—Validation and application. Thin-Walled Structures, 

42(11), 1599-1629. 

Silvestre, N. and Camotim, D. (2004c): Distortional buckling formulae for cold-formed steel 

rack-section members. Steel and Composite Structures, 4(1), 49-75. 

Silvestre, N. (2007): Generalised beam theory to analyse the buckling behaviour of circular 

cylinder shells and tubes. Thin-Walled Structures, 45(2), 185-198. 

Silvestre, N. (2008): Buckling behaviour of elliptical cylindrical shells and tubes under 

compression. International Journal of Solids and Structures, 45(16), 4427-4447. 

Smith, F. H. and Moen, C. D. (2014): Finite strip elastic buckling solutions for thin-walled 

metal columns with perforation patterns. Thin-Walled Structures, 79, 187-201. 

Sputo, T. and Tovar, J. (2005): Application of direct strength method to axially loaded 

perforated cold-formed steel studs: Longwave buckling. Thin-Walled Structures, 43(12), 

1852-1881. 

Stone, T. A. and LaBoube, R. A. (2005): Behaviour of cold-formed steel built-up I-sections. 

Thin-Walled Structures, 43(12), 1805-1817. 



 200 

Szabo, I. F. and Dubina, D. (2004): Recent research advances on the ECBL approach. Part II: 

interactive buckling of perforated sections. Thin-Walled Structures, 42(2), 195-210. 

Teng, J. G., Yao, J. and Zhao, Y. (2003): Distortional buckling of channel beam-columns. 

Thin-Walled Structures, 41(7), 595-617. 

Timoshenko, S. P. and Gere, J. M. (1961): Theory of elastic stability. New York: McGraw 

Hill, USA. 

Ting, T. C. T., Roy, K., Lau, H. H. and Lim, B. J. (2017): Effect of screw spacing on 

behavior of axially loaded back-to-back cold-formed steel built-up channel sections. 

Advances in Structural Engineering, 21(3), 474-487.  

Tovar, J. and Sputo, T. (2005): Application of direct strength method to axially loaded 

perforated cold-formed steel studs: Distortional and local buckling. Thin-Walled Structures, 

43(12), 1882-1912. 

Von Karman, T., Sechler, E. E. and Donnel, L. H. (1932): The strength of thin plates in 

compression, Transactions ASME 54, 53-57. 

Wang, L. P. and Young, B. (2015a): Behaviour of cold-formed steel built-up sections with 

intermediate stiffeners under bending. I: Test and numerical validation. Journal of Structural 

Engineering, 142(3), 04015150. 

Wang, L. P. and Young, B. (2015b): Behaviour of cold-formed steel built-up sections with 

intermediate stiffeners under bending. II: Parametric study and design. Journal of Structural 

Engineering, 142(3), 04015151. 

Wang, L. P. and Young, B. (2015c): Beam tests of cold-formed steel built-up sections with 

web perforations. Journal of Constructional Steel Research, 115, 18-33. 

Wang, L. P. and Young, B. (2017): Design of cold-formed steel built-up sections with web 

perforations subjected to bending. Thin-Walled Structures, 120, 458-469. 

Wang, L. P. and Young, B. (2018): Behaviour and design of cold-formed steel built-up 

section beams with different screw arrangements. Thin-walled Structures, 131, 16-32. 

Whittle, J. and Ramseyer, C. (2009): Buckling capacities of axially loaded, cold-formed, 

built-up C-channels. Thin-Walled Structures, 47(2), 190-201. 



 201 

Winter, G. (1968): Thin-walled structures theoretical solutions and test results. Preliminary 

Publications 8th Congress IABSE, 101-112. 

Xu, L., Sultana, P. and Zhou, X. (2009): Flexural strength of cold-formed steel built-up box 

sections. Thin-Walled Structures, 47(6-7), 807-815.  

Yao, X. Y., Guo, Y. L. and Li, Y. Q. (2016): Effective width method for distortional buckling 

design of cold-formed lipped channel sections. Thin-walled Structures, 109, 344-351. 

Yao, Z. and Rasmussen, K. J. R. (2011a): Material and geometric nonlinear isoparametric 

spline finite strip analysis of perforated thin-walled steel structures—Analytical 

developments. Thin-Walled Structures, 49(11), 1359-1373. 

Yao, Z. and Rasmussen, K. J. R. (2011b): Material and geometric nonlinear isoparametric 

spline finite strip analysis of perforated thin-walled steel structures—Numerical 

investigations. Thin-Walled Structures, 49(11), 1374-1391. 

Yan, Z. and Rasmussen, K. J. R. (2012): Inelastic local buckling behaviour of perforated 

plates and sections under compression. Thin-Walled Structures, 61, 49-70.  

Yoo, C. H. and Lee, S. C. (2011): Stability of structures, principles and applications. Oxford: 

Elsevier, UK. 

Ye, J., Hajirasouliha, I., Becque, J. and Piakoutas, K. (2016): Development of more efficient 

cold-formed steel sections in bending. Thin-Walled Structures, 101, 1-13. 

Ye, J., Mojtabaei, S. M. and Hajirasouliha, I. (2018a): Local-flexural interactive buckling of 

standard and optimised cold-formed steel columns. Journal of Constructional Steel Research, 

144, 106-118. 

Ye, J., Mojtabaei, S. M., Hajirasouliha, I., Shepherd, P. and Piakoutas, K. (2018b): Strength 

and deflection behaviour of cold-formed steel back-to-back channels. Engineering Structures, 

177, 641-654. 

Young, B. and Chen, J. (2008): Design of cold-formed steel built-up closed sections with 

intermediate stiffeners. Journal of Structural Engineering, 134(5), 727-737. 

Yu, C. and Schafer, B. W. (2003): Local buckling tests on cold-formed steel beams. Journal 

of Structural Engineering, 129(12), 1596-1606. 



 202 

Yu, C. and Schafer, B. W. (2006): Distortional buckling tests on cold-formed steel beams. 

Journal of Structural Engineering, 132(4), 515-528. 

Yu, C. and Schafer, B. W. (2007): Simulation of cold-formed steel beams in local and 

distortional buckling with applications to the direct strength method. Journal of 

Constructional Steel Research, 63(5), 581-590. 

Yu, C. and Yan, W. M. (2011): Effective width method for determining distortional buckling 

strength of cold-formed steel flexural C and Z sections. Thin-Walled Structures, 49(2), 233-

238. 

Yuan, W. B., Kim, B. and Li, L. Y. (2014): Buckling of axially loaded castellated steel 

columns. Journal of Constructional Steel Research, 92, 40-45. 

Yuan, W. B., Yu, N. T. and Li L. Y. (2017): Distortional buckling of perforated cold-formed 

steel channel-section beams with circular holes in web. International Journal of Mechanical 

Sciences, 126, 255-260. 

Yu, N. T., Kim, B., Yuan, W. B., Li, L. Y. and Yu, F. (2019): An analytical solution of 

distortional buckling resistance of cold-formed steel channel-section beams with web 

openings. Thin-Walled Structures, 135, 446-452. 

Yu, N. T., Kim, B., Li, L. Y., Hong, W. J.  and Yuan, W. B.  (2020): Distortional buckling of 

perforated cold-formed steel beams subject to uniformly distributed transverse loads. Thin-

Walled Structures, 148, 106569. 

Yu, N. T., Kim, B., Huang, X. H., Yuan, W. B., Ye, R., Wu, L. and Le, J. J. (2021): 

Analytical solution for flange/web distortional buckling of cold-formed steel beams with 

circular web perforations, Mechanics of Advanced Materials and Structures, 

DOI:10.1080/15376494.2021.1902594 

Zhang, J. H. and Young, B. (2012): Compression tests of cold-formed steel I-shaped open 

sections with edge and web stiffeners. Thin-Walled Structures, 52, 1-11. 

Zhang, J. H. and Young, B. (2015): Numerical investigation and design of cold-formed steel 

built-up open section columns with longitudinal stiffeners. Thin-Walled Structures, 89, 178-

191. 



 203 

Zhang, J. H. and Young, B. (2018): Experimental investigation of cold-formed steel built-up 

closed section columns with web stiffeners. Journal of Constructional Steel Research, 147, 

380-392. 

Zhao, J. Y., Sun, K., Cheng, Y. and Wang, J. (2019): Tests and direct strength design on 

cold-formed steel channel beams with web holes. Engineering Structures, 184, 434-446. 

Zhou, X. H. and Shi, Y. (2011): Flexural Strength Evaluation for Cold-Formed Steel Lip-

Reinforced Built-Up I-Beams. Advances in Structural Engineering, 14(4), 597-611. 

Zhu, J. and Li, L. Y. (2016): A stiffened plate buckling model for calculating critical stress of 

distortional buckling of CFS beams. International Journal of Mechanical Sciences, 115-116, 

457-464. 

Zhu, J. and Li, L. Y. (2018): Effect of shear stress on distortional buckling of CFS beams 

subjected to uniformly distributed transverse loading. Mechanics of Advanced Materials and 

Structures, 26(17), 1423-1429.



 204 

Appendix A - Mesh sensitivity analysis 

A.1 Mesh sensitivity study for the distortional buckling of PCFS beams subject to pure 

bending  

Section B (h=200 mm, b=70 mm, c=20 mm, t=2.5 mm, d=100 mm and l=1256 mm ) 

Label Element type Analysis solver Mesh size (mm) Mcrd (N·mm) 

D1 Shell 181 Eigenvalue buckling 3 28980506 

D2 Shell 181 Eigenvalue buckling 5 28894819 

D3 Shell 181 Eigenvalue buckling 10 28304607 

D4 Shell 181 Eigenvalue buckling 15 28436907 

D5 Shell 181 Eigenvalue buckling 20 25394254 

D6 Shell 181 Eigenvalue buckling 25 25665245 

D7 Shell 181 Eigenvalue buckling 30 26003153 

 

 

Figure A.1 Effect of mesh size on the distortional buckling of a PCFS beam (Section B: h=200 mm, 

b=70 mm, c=20 mm, t=2.5 mm, d=100 mm and l=1256 mm)
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A.2 Mesh sensitivity study for the lateral-torsional buckling of PCFS beams subject to 

pure bending 

Section E (h=200 mm, b=70 mm, c=20 mm, t=2 mm, d=100 mm and l=3140 mm) 

Label Element type Analysis solver Mesh size (mm) Mcrd (N·mm) 

D1 Shell 181 Eigenvalue buckling 3 9203210 

D2 Shell 181 Eigenvalue buckling 5 9159739 

D3 Shell 181 Eigenvalue buckling 10 9048194 

D4 Shell 181 Eigenvalue buckling 15 9265247 

D5 Shell 181 Eigenvalue buckling 20 9406640 

D6 Shell 181 Eigenvalue buckling 25 9472125 

D7 Shell 181 Eigenvalue buckling 30 8933363 

 

 

Figure A.2 Effect of mesh size on the lateral-torsional buckling of a PCFS beam (Section E: h=200 

mm, b=70 mm, c=20 mm, t=2 mm, d=100 mm and l=3140 mm)
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Appendix B - Distortional buckling load of PCFS beams obtained from 

eigenvalue buckling analysis 

B.1 PCFS beams with different hole sizes subject to pure bending  

Section A (h=150 mm, b=50 mm, c=15 mm, t=2 mm) 

 d=43 mm d=50 mm d=60 mm d=75 mm 

Length 

(mm) 

Mcrd,FEA 

(N·mm) 

Length 

(mm) 

Mcrd,FEA 

(N·mm) 

Length 

(mm) 

Mcrd,FEA 

(N·mm) 

Length 

(mm) 

Mcrd,FEA 

(N·mm) 

67 18907272 79 17078929 94 16519669 118 18968457 

134 19602298 157 17906322 188 17501624 236 19040839 

201 20064983 236 18390801 282 17272081 354 14431191 

268 18632941 314 16208547 376 14552961 472 13933716 

335 15725668 393 14731116 470 14573356 590 15530316 

402 14876080 471 15007047 564 16013196 708 14560159 

469 15217995 550 16294725 658 15591701 826 13893526 

536 16314120 628 16343113 752 14659934 944 14005898 

603 16982553 707 15286377 846 14413796 1062 14589752 

670 15839439 785 14822294 940 14646338 1180 14042688 

737 15206997 864 14788502 1034 15210396 1298 13887527 

804 14959659 942 15077430 1128 14692926 1416 12365908 

871 15007647 1021 15589102 1222 14464983 1534 10652536 

938 15285978 1099 15107222 1316 14471381   

1005 15746662 1178 14852086 1410 12883778   

1072 15401149 1256 14788102 1504 11421544   

1139 15117020 1335 14594151     

1206 14989252 1413 13136315     

1273 14992051 1492 11886428     

1340 14621344 1570 10808297     

1407 13360059       

1474 12255135       

1541 11282579       
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Section B (h=200 mm, b=70 mm, c=20 mm, t=2.5 mm) 

 d=57.2 mm d=66.7mm d=80 mm d=100 mm 

Length 

(mm) 

Mcrd,FEA 

(N·mm) 

Length 

(mm) 

Mcrd,FEA 

(N·mm) 

Length 

(mm) 

Mcrd,FEA 

(N·mm) 

Length 

(mm) 

Mcrd,FEA 

(N·mm) 

359 39472695 314 36338140 377 35491330 314 38810670 

449 33384005 418 34891385 502 30395435 471 30564700 

539 30572460 523 30456060 628 29199425 628 27949095 

629 30410955 628 29919650 754 31145730 785 30038475 

718 31896995 732 31610845 879 33247720 942 30809625 

808 34500475 837 34712905 1005 30564700 1099 28578625 

898 33562000 941 32218065 1130 29403125 1256 28080530 

988 31705905 1046 30613685 1256 29314370 1413 28726550 

1078 30704380 1151 29968150 1382 29981730 1570 29151895 

1167 30354210 1255 30036050 1507 30619505 1727 28307995 

1257 30513290 1360 30653455 1633 29703825 1884 28125635 

1347 31079285 1464 31604540 1758 29318250 2041 26089120 

1437 31979445 1569 30662185 1884 29354625   

1527 31334395 1674 30138385 2010 27864220   

1616 30747545 1778 29963785     

1706 30451210 1883 30077760     

1796 30399800 1987 28905515     

1889 30557425 2092 26291850     

1976 29675210       

2065 27351575       
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Section C (h=250 mm, b=80 mm, c=25 mm, t=3 mm) 

 d=71.4 mm d=83.3 mm d=100 mm d=125 mm 

Length 

(mm) 

Mcrd,FEA 

(N·mm) 

Length 

(mm) 

Mcrd,FEA 

(N·mm) 

Length 

(mm) 

Mcrd,FEA 

(N·mm) 

Length 

(mm) 

Mcrd,FEA 

(N·mm) 

112 61848691 131 55906484 157 54459311 196 62882899 

224 64233115 262 58755942 314 57773804 392 65342734 

336 65784427 393 60376381 471 59322422 588 55982792 

448 65864327 524 61344155 628 56489123 784 52690743 

560 61828940 655 57029569 785 55550077 980 57234256 

672 57657096 786 57122935 942 60083714 1176 56469373 

784 58250509 917 61188845 1099 60534385 1372 53242859 

896 61881908 1048 62310134 1256 56856303 1568 52951988 

1008 66436193 1179 59665363 1413 55384891 1764 54586791 

1120 62197018 1310 57362634 1570 55791572 1960 54049937 

1232 59299081 1441 56748573 1727 57570912 2156 52978023 

1344 57917444 1572 57406624 1884 56971215 2352 47589728 

1456 57716348 1703 59044120 2041 55735013 2548 40969719 

1568 58451605 1834 58781977 2198 55377709   

1680 59940074 1965 57458693 2355 48827725   

1792 60171694 2096 56890418 2512 43236538   

1904 58773897 2227 54924345     

2016 57999139 2358 49310714     

2128 57749564 2489 44511343     

2240 55018609 2620 40381693     

2352 50187816       

2464 45964800       

2576 42255297       
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B.2 PCFS beams with different hole sizes subject to uniformly distributed load  

Section D (h=200 mm, b=65 mm, c=20 mm, t=2.5 mm) 

 

d/h=0.5 d/h=0.25 d/h=0 

Length (mm) σcrd,FEA (MPa) Length (mm) σcrd,FEA (MPa) Length (mm) σcrd,FEA (MPa) 

628 114 628 152 600 170 

1256 264 1256 443 1250 527 

1884 375 1884 661 1800 729 

2355 455 2277 732 2200 792 

2512 482 2434 742 2350 770 

3140 587 2983 760 2850 809 

3611 633 3454 761 3400 800 

4239 644 4082 757 3900 806 

4710 646 4553 754 4400 795 

5181 646 5024 751 4850 791 

5652 646 5574 747 5350 786 

6280 644 6045 745 5850 783 
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Appendix C - Distortional half-wave lengths of CFS beams  

Cross section selected from Albion Section  (unit: mm) 

Section Web depth Flange width Lip length Thickness Half-wave length 

C12515 120 50 15 1.5 450 

C12516 120 50 15 1.6 430 

C14614 145 62.5 20 1.4 670 

C14515 145 62.5 20 1.5 650 

C14616 145 62.5 20 1.6 630 

C14618 145 62.5 20 1.8 590 

C14620 145 62.5 20 2 560 

C17616 175 62.5 20 1.6 650 

C17618 175 62.5 20 1.8 610 

C17620 175 62.5 20 2 580 

C17623 175 62.5 20 2.3 540 

C17625 175 62.5 20 2.5 520 

C20618 200 65 20 1.8 640 

C20620 200 65 20 2 610 

C20623 200 65 20 2.3 570 

C20625 200 65 20 2.5 540 

C22620 225 65 20 2 620 

C22623 225 65 20 2.3 580 

C22625 225 65 20 2.5 550 

C24623 240 65 20 2.3 580 

C24625 240 65 20 2.5 560 

C24630 240 65 20 3 510 

C26625 265 65 20 2.5 570 

C26630 265 65 20 3 520 

C30725 300 75 20 2.5 630 

C30730 300 75 20 3 580 
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Appendix D - Lateral-torsional buckling load of PCFS beams obtained from 

eigenvalue buckling analysis 

D.1 Laterally unrestrained PCFS beams with different hole sizes subject to pure 

bending (kz=0, k=0) 

Section E (h=200 mm, b=70 mm, c=20 mm, t=2 mm) 

 d=50 mm d=66.7mm d=80 mm d=100 mm 

Length 

(mm) 

Mcrλ,FEA 

(N·mm) 

Length 

(mm) 

Mcrλ,FEA 

(N·mm) 

Length 

(mm) 

Mcrλ,FEA 

(N·mm) 

Length 

(mm) 

Mcrλ,FEA 

(N·mm) 

3062 10436214 3037 10301378 3014 10241317 3140 9159740 

3533 7999621 3560 7636369 3517 7645419 3611 7022339 

4004 6355352 4084 5906699 4019 5944068 4082 5567746 

4553 5033819 4503 4927540 4522 4772322 4553 4535762 

5024 4224783 5027 4027481 5024 3931797 5042 3777202 

5495 3613725 5550 3367871 5526 3306645 5495 3201948 

6045 3073319 6074 2868880 6029 2826639 5966 2754781 

6516 2715329 6493 2551751 6531 2448936 6437 2400139 

7065 2385563 7016 2231403 7034 2145346 7065 2031534 

7536 2158564 7540 1974527 7536 1897946 7536 1812944 

8007 1970438 8063 1765534 8038 1693505 8007 1631476 

8557 1789401 8482 1625294 8541 1522381 8478 1479245 

9028 1660302 9006 1475864 9043 1377886 8949 1349970 

9499 1550765 9529 1348464 9546 1254899 9420 1238803 

10048 1443260 10053 1237593 10048 1149450 10048 1112687 

10519 1365413 10577 1140707 10550 1057887 10519 1031243 

10990 1298971 10995 1072138 11053 977981 10990 959023 

11540 1233261 11519 996150 11555 907830 11461 894537 

12011 1185646 12043 929172 12058 845951 11932 836669 

12482 1145058 12566 869358 12560 791114 12560 768126 

13031 1105412 13090 815724 13062 742217 13031 722167 

13502 1077052 13509 776713 13565 698449 13502 680345 

14052 1049418 14032 731887 14067 659093 14130 630556 
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D.2 Laterally restrained PCFS beams with different hole sizes subject to pure bending 

(kz=∞, k=0) 

Section E (h=200 mm, b=70 mm, c=20 mm, t=2 mm) 

 d=50 mm d=66.7mm d=80 mm d=100 mm 

Length 

(mm) 

Mcrλ,FEA 

(N·mm) 

Length 

(mm) 

Mcrλ,FEA 

(N·mm) 

Length 

(mm) 

Mcrλ,FEA 

(N·mm) 

Length 

(mm) 

Mcrλ,FEA 

(N·mm) 

3062 10444145 3037 10308078 3014 10251967 3140 9181325 

3533 8002207 3560 7639713 3517 7653393 3611 7041488 

4004 6355917 4084 5909741 4019 5951799 4082 5585880 

4553 5033899 4503 4931297 4522 4780963 4553 4553826 

5024 4225323 5027 4032821 5024 3942238 5042 3795869 

5495 3615310 5550 3375507 5526 3319464 5495 3221716 

6045 3076532 6074 2879174 6029 2841876 5966 2776158 

6516 2720158 6493 2564609 6531 2467225 6437 2423431 

7065 2392441 7016 2247294 7034 2166874 7065 2057720 

7536 2167278 7540 1993835 7536 1922912 7536 1841715 

8007 1981149 8063 1788465 8038 1722150 8007 1662845 

8557 1802410 8482 1651210 8541 1554648 8478 1513289 

9028 1675352 9006 1505630 9043 1413901 8949 1386773 

9499 1567689 9529 1382135 9546 1294751 9420 1278464 

10048 1462328 10053 1275242 10048 1193000 10048 1156217 

10519 1386301 10577 1182303 10550 1105297 10519 1077771 

10990 1321266 10995 1116831 11053 1029150 10990 1008541 

11540 1257097 11519 1044632 11555 962713 11461 947128 

12011 1210654 12043 981385 12058 904505 11932 892332 

12482 1170864 12566 925359 12560 853294 12560 827838 

13031 1131975 13090 875398 13062 807982 13031 784867 

13502 1103967 13509 839292 13565 767725 13502 745990 

14052 1076541 14032 798043 14067 731825 14130 699998 
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D.3 Laterally unrestrained PCFS beams with different hole sizes subject to uniformly 

distributed uplift load (kz=0, k=0) 

Section E (h=200 mm, b=70 mm, c=20 mm, t=2 mm) 

 d=50 mm d=66.7mm d=80 mm d=100 mm 

Length 

(mm) 

Mcrλ,FEA 

(N·mm) 

Length 

(mm) 

Mcrλ,FEA 

(N·mm) 

Length 

(mm) 

Mcrλ,FEA 

(N·mm) 

Length 

(mm) 

Mcrλ,FEA 

(N·mm) 

3062 6973576 3037 6917786 3014 6866571 3140 6249833 

3533 5509547 3560 5329344 3517 5337146 3611 4960282 

4004 4456655 4084 4216435 4019 4247988 4082 4016740 

4553 3578803 4503 3563169 4522 3465772 4553 3321021 

5024 3029384 5027 2949408 5024 2892053 5042 2799155 

5495 2608955 5550 2492981 5526 2460322 5495 2398978 

6045 2233390 6074 2144881 6029 2126232 5966 2085580 

6516 1982495 6493 1922398 6531 1861680 6437 1835516 

7065 1750154 7016 1696360 7034 1648198 7065 1573520 

7536 1589499 7540 1514353 7536 1473046 7536 1416693 

8007 1455724 8063 1365613 8038 1327735 8007 1285572 

8557 1326120 8482 1265399 8541 1205587 8478 1174897 

9028 1233056 9006 1158439 9043 1101991 8949 1080717 

9499 1153448 9529 1067435 9546 1013418 9420 999806 

10048 1074486 10053 988700 10048 937044 10048 908238 

10519 1016653 10577 919472 10550 870665 10519 849285 

10990 966403 10995 869755 11053 812449 10990 796999 

11540 915859 11519 813753 11555 761127 11461 750265 

12011 878407 12043 763779 12058 715508 11932 708192 

12482 845614 12566 719137 12560 674880 12560 658159 

13031 812421 13090 678931 13062 638331 13031 624445 

13502 787739 13509 649603 13565 605484 13502 593495 

14052 762667 14032 616004 14067 575610 14130 555982 
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D.4 Laterally restrained PCFS beams with different hole sizes subject to uniformly 

distributed uplift load (kz=∞, k=0) 

Section E (h=200 mm, b=70 mm, c=20 mm, t=2 mm) 

 d=50 mm d=66.7mm d=80 mm d=100 mm 

Length 

(mm) 

Mcrλ,FEA 

(N·mm) 

Length 

(mm) 

Mcrλ,FEA 

(N·mm) 

Length 

(mm) 

Mcrλ,FEA 

(N·mm) 

Length 

(mm) 

Mcrλ,FEA 

(N·mm) 

3062 6224789 3037 7646161 3014 7558300 3140 6814388 

3533 6051031 3560 5806569 3517 5788867 3611 5342061 

4004 4850321 4084 4544943 4019 4558137 4082 4285385 

4553 3859136 4503 3812840 4522 3686348 4553 3515770 

5024 3243970 5027 3130306 5024 3052889 5042 2943241 

5495 2776182 5550 2626182 5526 2579244 5495 2506848 

6045 2360472 6074 2243732 6029 2214364 5966 2166677 

6516 2084207 6493 2000385 6531 1926653 6437 1896604 

7065 1829335 7016 1754321 7034 1695790 7065 1615033 

7536 1653718 7540 1557140 7536 1507352 7536 1447644 

8007 1507848 8063 1397058 8038 1352093 8007 1308422 

8557 1366988 8482 1289818 8541 1222566 8478 1191685 

9028 1266306 9006 1175991 9043 1113637 8949 1093018 

9499 1180640 9529 1079826 9546 1021345 9420 1008854 

10048 1096189 10053 997283 10048 942552 10048 914409 

10519 1034738 10577 925383 10550 874751 10519 854164 

10990 981662 10995 874216 11053 816012 10990 801195 

11540 928584 11519 817194 11555 764739 11461 754276 

12011 889511 12043 766925 12058 719814 11932 712477 

12482 855484 12566 722548 12560 680153 12560 663395 

13031 821211 13090 683114 13062 645070 13031 630756 

13502 795953 13509 654691 13565 613895 13502 601177 

14052 770437 14032 622478 14067 586054 14130 565806 
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Appendix E - Comparison of ultimate moment obtained from FEA with original and modified DSM prediction for CFS built-

up beams with web perforations 

E.1 Comparison of ultimate moment obtained from FEA with original and modified DSM prediction for CFS built-up beams with web 

perforations failed by local buckling 

Specimen 

FEA Yield moment DSM Comparison 

MFEA 

( kN·mm) 
Failure mode 

My 

( kN·mm) 

Mynet 

( kN·mm) 

MDSM,o 

( kN·mm) 

MDSM,m 

( kN·mm) 
MFEA/MDSM,o MFEA/MDSM,m 

H200-L1200-T1.4-S50-A0(d/h0) 20021 L+D 27213 27213 18991 18991 1.05 1.05 

H200-L1200-T1.4-S100-A0(d/h0) 19993 L+D 27213 27213 18991 18991 1.05 1.05 

H200-L1200-T1.4-S200-A0(d/h0) 19950 L+D 27213 27213 18991 18991 1.05 1.05 

H200-L1200-T1.4-S400-A0(d/h0) 19881 L+D 27213 27213 18991 18991 1.05 1.05 

H200-L1200-T1.4-S800-A0(d/h0) 19793 L+D 27213 27213 18991 18991 1.04 1.04 

H200-L1200-T1.4-S1200-A0(d/h0) 19606 L+D 27213 27213 18991 18991 1.03 1.03 

H200-L1200-T1.4-S200-A300(d/h0.25) 19895 L+D 27213 27099 18991 18991 1.05 1.05 

H200-L1200-T1.4-S50-A300(d/h0.5) 19714 L+D 27213 26303 15568 18240 1.27 1.08 

H200-L1200-T1.4-S100-A300(d/h0.5) 19695 L+D 27213 26303 15568 18240 1.27 1.08 

H200-L1200-T1.4-S200-A300(d/h0.5) 19622 L+D 27213 26303 15568 18240 1.26 1.08 

H200-L1200-T1.4-S400-A300(d/h0.5) 19554 L+D 27213 26303 15568 18240 1.26 1.07 

H200-L1200-T1.4-S800-A300(d/h0.5) 19432 L+D 27213 26303 15568 18240 1.25 1.07 

H200-L1200-T1.4-S1200-A300(d/h0.5) 19290 L+D 27213 26303 15568 18240 1.24 1.06 

H200-L1200-T1.4-S200-A300(d/h0.65) 18292 L+D 27213 25213 15350 17917 1.19 1.02 

H200-L1800-T1.4-S200-A150(d/h0.5) 19357 L+D 27213 26303 15568 18240 1.24 1.06 

H200-L1800-T1.4-S200-A200(d/h0.5) 19423 L+D 27213 26303 15568 18240 1.25 1.06 

H200-L1800-T1.4-S200-A250(d/h0.5) 19427 L+D 27213 26303 15568 18240 1.25 1.07 

H200-L1800-T1.4-S200-A300(d/h0.5) 19379 L+D 27213 26303 15568 18240 1.24 1.06 
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H200-L1800-T1.4-S200-A350(d/h0.5) 19374 L+D 27213 26303 15568 18240 1.24 1.06 

H200-L1800-T1.4-S200-A400(d/h0.5) 19492 L+D 27213 26303 15568 18240 1.25 1.07 

H200-L1800-T1.4-S200-A450(d/h0.5) 19681 L+D 27213 26303 15568 18240 1.26 1.08 

H200-L1200-T1.6-S200-A0(d/h0) 25353 L+D 31100 31100 23784 23784 1.07 1.07 

H200-L1200-T1.6-S200-A300(d/h0.25) 25280 L+D 31100 30970 23784 23784 1.06 1.06 

H200-L1200-T1.6-S200-A300(d/h0.5) 24930 L+D 31100 30060 19564 23509 1.27 1.06 

H200-L1200-T1.6-S200-A300(d/h0.65) 23174 L+D 31100 28815 19295 23100 1.20 1.00 

H200-L1200-T1.8-S200-A0(d/h0) 30701 L+D 34988 34988 28958 28958 1.06 1.06 

H200-L1200-T1.8-S200-A300(d/h0.25) 30598 L+D 34988 34841 28958 28958 1.06 1.06 

H200-L1200-T1.8-S200-A300(d/h0.5) 30149 L+D 34988 33818 23902 29356 1.26 1.03 

H200-L1200-T1.8-S200-A300(d/h0.65) 28129 L+D 34988 32417 23578 28854 1.19 0.97 

H200-L1200-T2.0-S200-A0(d/h0) 35500 L+D 38875 38875 34482 34482 1.03 1.03 

H200-L1200-T2.0-S200-A300(d/h0.25) 35437 L+D 38875 38713 34482 34482 1.03 1.03 

H200-L1200-T2.0-S200-A300(d/h0.5) 34959 L+D 38875 37575 28560 35751 1.22 0.98 

H200-L1200-T2.0-S200-A300(d/h0.65) 33337 L+D 38875 36019 28179 35150 1.18 0.95 

H300-L1200-T1.4-S50-D0(d0) 29010 L+D 54857 54857 28711 28711 1.01 1.01 

H300-L1200-T1.4-S100-D0(d0) 28952 L+D 54857 54857 28711 28711 1.01 1.01 

H300-L1200-T1.4-S200-D0(d0) 28787 L+D 54857 54857 28711 28711 1.00 1.00 

H300-L1200-T1.4-S300-D0(d0) 28503 L+D 54857 54857 28711 28711 0.99 0.99 

H300-L1200-T1.4-S400-D0(d0) 28488 L+D 54857 54857 28711 28711 0.99 0.99 

H300-L1200-T1.4-S800-D0(d0) 28390 L+D 54857 54857 28711 28711 0.99 0.99 

H300-L1200-T1.4-S1200-D0(d0) 28292 L+D 54857 54857 28711 28711 0.99 0.99 

H300-L1200-T1.4-S300-D300(d0.25) 27683 L+D 54857 54601 28711 28711 0.96 0.96 

H300-L1200-T1.4-S50-D300(d0.5) 26707 L+D 54857 52810 23347 25267 1.14 1.06 

H300-L1200-T1.4-S100-D300(d0.5) 26629 L+D 54857 52810 23347 25267 1.14 1.05 

H300-L1200-T1.4-S200-D300(d0.5) 26500 L+D 54857 52810 23347 25267 1.14 1.05 

H300-L1200-T1.4-S300-D300(d0.5) 26225 L+D 54857 52810 23347 25267 1.12 1.04 

H300-L1200-T1.4-S400-D300(d0.5) 26189 L+D 54857 52810 23347 25267 1.12 1.04 

H300-L1200-T1.4-S800-D300(d0.5) 26032 L+D 54857 52810 23347 25267 1.11 1.03 

H300-L1200-T1.4-S1200-D300(d0.5) 25876 L+D 54857 52810 23347 25267 1.11 1.02 

H300-L1200-T1.4-S300-D300(d0.65) 24089 L+D 54857 50359 23010 24805 1.05 0.97 
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H300-L1800-T1.4-S300-D200(d0.5) 23837 L+D 54857 52810 23347 25267 1.02 0.94 

H300-L1800-T1.4-S300-D250(d0.5) 24039 L+D 54857 52810 23347 25267 1.03 0.95 

H300-L1800-T1.4-S300-D300(d0.5) 24853 L+D 54857 52810 23347 25267 1.06 0.98 

H300-L1800-T1.4-S300-D350(d0.5) 24880 L+D 54857 52810 23347 25267 1.07 0.98 

H300-L1800-T1.4-S300-D400(d0.5) 24324 L+D 54857 52810 23347 25267 1.04 0.96 

H300-L1800-T1.4-S300-D450(d0.5) 24974 L+D 54857 52810 23347 25267 1.07 0.99 

H300-L1200-T1.6-S300-D0(d0) 35621 L+D 62694 62694 36126 36126 0.99 0.99 

H300-L1200-T1.6-S300-D300(d0.25) 35319 L+D 62694 62401 36126 36126 0.98 0.98 

H300-L1200-T1.6-S300-D300(d0.5) 34244 L+D 62694 60354 29444 32720 1.16 1.05 

H300-L1200-T1.6-S300-D300(d0.65) 31471 L+D 62694 57553 29023 32127 1.08 0.98 

H300-L1200-T1.8-S300-D0(d0) 44767 L+D 70531 70531 44191 44191 1.01 1.01 

H300-L1200-T1.8-S300-D300(d0.25) 44175 L+D 70531 70202 44191 44191 1.00 1.00 

H300-L1200-T1.8-S300-D300(d0.5) 42427 L+D 70531 67898 36101 41055 1.18 1.03 

H300-L1200-T1.8-S300-D300(d0.65) 39677 L+D 70531 64747 35590 40319 1.11 0.98 

H300-L1200-T2.0-S300-D0(d0) 53804 L+D 78367 78367 52868 52868 1.02 1.02 

H300-L1200-T2.0-S300-D300(d0.25) 53708 L+D 78367 78002 52868 52868 1.02 1.02 

H300-L1200-T2.0-S300-D300(d0.5) 51370 L+D 78367 75442 43289 50245 1.19 1.02 

H300-L1200-T2.0-S300-D300(d0.65) 49154 L+D 78367 71940 42682 49353 1.15 1.00 

Mean 1.11 1.02 

COV 0.088 0.038 

Փb =0.9, Reliability index (β1)  2.849 2.668 
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E.2 Comparison of ultimate moment obtained from FEA with original and modified DSM prediction for CFS built-up beams with web 

perforations failed by distortional buckling 

Specimen 

FEA Yield moment DSM Comparison 

MFEA 

( kN·mm) 
Failure mode 

My 

( kN·mm) 

Mynet 

( kN·mm) 

MDSM,o 

( kN·mm) 

MDSM,m 

( kN·mm) 
MFEA/MDSM,o MFEA/MDSM,m 

H150-L1200-T1.4-S50-A0(d/h0) 13131 D 16740 16740 11748 12183 1.12 1.08 

H150-L1200-T1.4-S100-A0(d/h0) 13037 D 16740 16740 11748 12183 1.11 1.07 

H150-L1200-T1.4-S150-A0(d/h0) 12950 D 16740 16740 11748 12183 1.10 1.06 

H150-L1200-T1.4-S200-A0(d/h0) 12954 D 16740 16740 11748 12183 1.10 1.06 

H150-L1200-T1.4-S400-A0(d/h0) 12854 D 16740 16740 11748 12183 1.09 1.06 

H150-L1200-T1.4-S800-A0(d/h0) 12842 D 16740 16740 11748 12183 1.09 1.05 

H150-L1200-T1.4-S1200-A0(d/h0) 12820 D 16740 16740 11748 12183 1.09 1.05 

H150-L1200-T1.4-S150-A300(d/h0.25) 12828 D 16740 16676 11691 12114 1.10 1.06 

H150-L1200-T1.4-S50-A300(d/h0.5) 12476 D+L 16740 16228 11433 11809 1.09 1.06 

H150-L1200-T1.4-S100-A300(d/h0.5) 12400 D+L 16740 16228 11433 11809 1.08 1.05 

H150-L1200-T1.4-S150-A300(d/h0.5) 12356 D+L 16740 16228 11433 11809 1.08 1.05 

H150-L1200-T1.4-S200-A300(d/h0.5) 12388 D+L 16740 16228 11433 11809 1.08 1.05 

H150-L1200-T1.4-S400-A300(d/h0.5) 12350 D+L 16740 16228 11433 11809 1.08 1.05 

H150-L1200-T1.4-S800-A300(d/h0.5) 12347 D+L 16740 16228 11433 11809 1.08 1.05 

H150-L1200-T1.4-S1200-A300(d/h0.5) 12342 D+L 16740 16228 11433 11809 1.08 1.05 

H150-L1200-T1.4-S150-A300(d/h0.65) 12125 D+L 16740 15616 11123 11459 1.09 1.06 

H150-L1200-T1.4-S150-A300(d/h0.8) 11740 D+L 16740 14644 10661 10971 1.10 1.07 

H150-L1800-T1.4-S150-A150(d/h0.5) 11170 D+L 16740 16228 11193 11517 1.00 0.97 

H150-L1800-T1.4-S150-A200(d/h0.5) 11331 D+L 16740 16228 11323 11676 1.00 0.97 

H150-L1800-T1.4-S150-A250(d/h0.5) 11465 D+L 16740 16228 11392 11758 1.01 0.98 

H150-L1800-T1.4-S150-A300(d/h0.5) 11451 D+L 16740 16228 11433 11809 1.00 0.97 
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H150-L1800-T1.4-S150-A350(d/h0.5) 11498 D+L 16740 16228 11462 11844 1.00 0.97 

H150-L1800-T1.4-S150-A400(d/h0.5) 11490 D+L 16740 16228 11482 11868 1.00 0.97 

H150-L1800-T1.4-S150-A450(d/h0.5) 11501 D+L 16740 16228 11498 11887 1.00 0.97 

H150-L1200-T1.6-S150-A0(d/h0) 15475 D 19132 19132 14221 14911 1.09 1.04 

H150-L1200-T1.6-S150-A300(d/h0.25) 15368 D 19132 19059 14154 14828 1.09 1.04 

H150-L1200-T1.6-S150-A300(d/h0.5) 14816 D+L 19132 18547 13853 14453 1.07 1.03 

H150-L1200-T1.6-S150-A300(d/h0.65) 14473 D+L 19132 17847 13488 14019 1.07 1.03 

H150-L1200-T1.6-S150-A300(d/h0.8) 13886 D+L 19132 16736 12944 13408 1.07 1.04 

H150-L1200-T1.8-S150-A0(d/h0) 18069 D 21523 21523 16812 17792 1.07 1.02 

H150-L1200-T1.8-S150-A300(d/h0.25) 17952 D 21523 21441 16737 17695 1.07 1.01 

H150-L1200-T1.8-S150-A300(d/h0.5) 17447 D+L 21523 20865 16392 17250 1.06 1.01 

H150-L1200-T1.8-S150-A300(d/h0.65) 16828 D+L 21523 20077 15975 16728 1.05 1.01 

H150-L1200-T1.8-S150-A300(d/h0.8) 15973 D+L 21523 18828 15155 15989 1.05 1.00 

H150-L1200-T2.0-S150-A0(d/h0) 20895 D 23915 23915 19510 20808 1.07 1.00 

H150-L1200-T2.0-S150-A300(d/h0.25) 20809 D 23915 23823 19426 20697 1.07 1.01 

H150-L1200-T2.0-S150-A300(d/h0.5) 20262 D+L 23915 23184 19040 20181 1.06 1.00 

H150-L1200-T2.0-S150-A300(d/h0.65) 19527 D+L 23915 22308 18571 19571 1.05 1.00 

H150-L1200-T2.0-S150-A300(d/h0.8) 18118 D+L 23915 20920 17247 18688 1.05 0.97 

H150-L1800-T2.0-S150-A0(d/h0) 20306 D 23915 23915 19510 20808 1.04 0.98 

H150-L1800-T2.0-S150-A300(d/h0.25) 20108 D 23915 23823 19426 20697 1.04 0.97 

H150-L1800-T2.0-S150-A300(d/h0.5) 19479 D 23915 23184 19040 20181 1.02 0.97 

H150-L1800-T2.0-S150-A300(d/h0.65) 18810 D 23915 22308 18571 19571 1.01 0.96 

H150-L1800-T2.0-S150-A300(d/h0.8) 17542 D 23915 20920 17247 18688 1.02 0.94 

H150-L1200-T2.2-S150-A0(d/h0) 23660 D 26306 26306 22301 23942 1.06 0.99 

H150-L1200-T2.2-S150-A300(d/h0.25) 23568 D 26306 26206 22209 23818 1.06 0.99 

H150-L1200-T2.2-S150-A300(d/h0.5) 23022 D+L 26306 25502 21783 23232 1.06 0.99 

H150-L1200-T2.2-S150-A300(d/h0.65) 22177 D+L 26306 24539 21266 22535 1.04 0.98 

H150-L1200-T2.2-S150-A300(d/h0.8) 20454 D+L 26306 23012 19360 20824 1.06 0.98 

H150-L1200-T2.4-S50-A0(d/h0) 26586 D 28698 28698 25175 27176 1.06 0.98 

H150-L1200-T2.4-S100-A0(d/h0) 26456 D 28698 28698 25175 27176 1.05 0.97 

H150-L1200-T2.4-S150-A0(d/h0) 26374 D 28698 28698 25175 27176 1.05 0.97 
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H150-L1200-T2.4-S200-A0(d/h0) 26317 D 28698 28698 25175 27176 1.05 0.97 

H150-L1200-T2.4-S400-A0(d/h0) 26189 D 28698 28698 25175 27176 1.04 0.96 

H150-L1200-T2.4-S800-A0(d/h0) 26165 D 28698 28698 25175 27176 1.04 0.96 

H150-L1200-T2.4-S1200-A0(d/h0) 26143 D 28698 28698 25175 27176 1.04 0.96 

H150-L1200-T2.4-S150-A300(d/h0.25) 26281 D 28698 28588 25076 27040 1.05 0.97 

H150-L1200-T2.4-S50-A300(d/h0.5) 25952 D+L 28698 27820 24613 26388 1.05 0.98 

H150-L1200-T2.4-S100-A300(d/h0.5) 25811 D+L 28698 27820 24613 26388 1.05 0.98 

H150-L1200-T2.4-S150-A300(d/h0.5) 25703 D+L 28698 27820 24613 26388 1.04 0.97 

H150-L1200-T2.4-S200-A300(d/h0.5) 25663 D+L 28698 27820 24613 26388 1.04 0.97 

H150-L1200-T2.4-S400-A300(d/h0.5) 25512 D+L 28698 27820 24613 26388 1.04 0.97 

H150-L1200-T2.4-S800-A300(d/h0.5) 25493 D+L 28698 27820 24613 26388 1.04 0.97 

H150-L1200-T2.4-S1200-A300(d/h0.5) 25476 D+L 28698 27820 24613 26388 1.04 0.97 

H150-L1200-T2.4-S150-A300(d/h0.65) 24704 D+L 28698 26770 23978 25319 1.03 0.98 

H150-L1200-T2.4-S150-A300(d/h0.8) 22610 D+L 28698 25104 21489 22972 1.05 0.98 

H150-L1800-T2.4-S150-A150(d/h0.5) 25830 D+L 28698 27820 24186 25864 1.07 1.00 

H150-L1800-T2.4-S150-A200(d/h0.5) 25871 D+L 28698 27820 24418 26149 1.06 0.99 

H150-L1800-T2.4-S150-A250(d/h0.5) 25927 D+L 28698 27820 24539 26297 1.06 0.99 

H150-L1800-T2.4-S150-A300(d/h0.5) 25975 D+L 28698 27820 24613 26388 1.06 0.98 

H150-L1800-T2.4-S150-A350(d/h0.5) 25990 D+L 28698 27820 24663 26450 1.05 0.98 

H150-L1800-T2.4-S150-A400(d/h0.5) 25993 D+L 28698 27820 24699 26494 1.05 0.98 

H150-L1800-T2.4-S150-A450(d/h0.5) 26028 D+L 28698 27820 24726 26527 1.05 0.98 

H200-L1200-T1.4-S200-A300(d/h0.8) 16872 D+L 27213 23485 15956 16301 1.06 1.04 

H200-L1200-T1.6-S200-A300(d/h0.8) 22203 D+L 31100 26840 19385 19928 1.15 1.11 

H200-L1200-T1.8-S200-A300(d/h0.8) 27275 D+L 34988 30195 23004 23774 1.19 1.15 

H200-L1200-T2.0-S200-A300(d/h0.8) 31175 D+L 38875 33550 26413 27821 1.18 1.12 

H200-L1800-T2.0-S200-A0(d/h0) 31691 D 38875 38875 30022 31705 1.06 1.00 

H200-L1800-T2.0-S200-A300(d/h0.25) 31466 D+L 38875 38713 29850 31485 1.05 1.00 

H200-L1800-T2.0-S200-A300(d/h0.5) 30288 D+L 38875 37575 29076 30502 1.04 0.99 

H200-L1800-T2.0-S200-A300(d/h0.65) 29212 D+L 38875 36019 28153 29376 1.04 0.99 

H200-L1800-T2.0-S200-A300(d/h0.8) 27762 D+L 38875 33550 26413 27821 1.05 1.00 

H200-L1200-T2.2-S200-A0(d/h0) 39181 D 42763 42763 34339 36522 1.14 1.07 
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H200-L1200-T2.2-S200-A300(d/h0.25) 39142 D 42763 42584 34149 36274 1.15 1.08 

H200-L1200-T2.2-S200-A300(d/h0.5) 38830 D+L 42763 41333 33290 35153 1.17 1.10 

H200-L1200-T2.2-S200-A300(d/h0.65) 37564 D+L 42763 39621 32263 33857 1.16 1.11 

H200-L1200-T2.2-S200-A300(d/h0.8) 34678 D+L 42763 36905 29721 32054 1.17 1.08 

H200-L1200-T2.4-S50-A0(d/h0) 42922 D 46650 46650 38792 41511 1.11 1.03 

H200-L1200-T2.4-S100-A0(d/h0) 42805 D 46650 46650 38792 41511 1.10 1.03 

H200-L1200-T2.4-S200-A0(d/h0) 42798 D 46650 46650 38792 41511 1.10 1.03 

H200-L1200-T2.4-S400-A0(d/h0) 42643 D 46650 46650 38792 41511 1.10 1.03 

H200-L1200-T2.4-S800-A0(d/h0) 42605 D 46650 46650 38792 41511 1.10 1.03 

H200-L1200-T2.4-S1200-A0(d/h0) 42568 D 46650 46650 38792 41511 1.10 1.03 

H200-L1200-T2.4-S200-A300(d/h0.25) 42674 D 46650 46455 38585 41236 1.11 1.03 

H200-L1200-T2.4-S50-A300(d/h0.5) 42831 D+L 46650 45090 37644 39979 1.14 1.07 

H200-L1200-T2.4-S100-A300(d/h0.5) 42730 D+L 46650 45090 37644 39979 1.14 1.07 

H200-L1200-T2.4-S200-A300(d/h0.5) 42607 D+L 46650 45090 37644 39979 1.13 1.07 

H200-L1200-T2.4-S400-A300(d/h0.5) 42370 D+L 46650 45090 37644 39979 1.13 1.06 

H200-L1200-T2.4-S800-A300(d/h0.5) 42265 D+L 46650 45090 37644 39979 1.12 1.06 

H200-L1200-T2.4-S1200-A300(d/h0.5) 42160 D+L 46650 45090 37644 39979 1.12 1.05 

H200-L1200-T2.4-S200-A300(d/h0.65) 41492 D+L 46650 43223 36516 38513 1.14 1.08 

H200-L1200-T2.4-S200-A300(d/h0.8) 38048 D+L 46650 40260 33059 35834 1.15 1.06 

H200-L1800-T2.4-S200-A150(d/h0.5) 38378 D+L 46650 45090 36538 38621 1.05 0.99 

H200-L1800-T2.4-S200-A200(d/h0.5) 38539 D+L 46650 45090 37161 39385 1.04 0.98 

H200-L1800-T2.4-S200-A250(d/h0.5) 38764 D+L 46650 45090 37463 39757 1.03 0.98 

H200-L1800-T2.4-S200-A300(d/h0.5) 38748 D+L 46650 45090 37644 39979 1.03 0.97 

H200-L1800-T2.4-S200-A350(d/h0.5) 38825 D+L 46650 45090 37762 40124 1.03 0.97 

H200-L1800-T2.4-S200-A400(d/h0.5) 38700 D+L 46650 45090 37846 40227 1.02 0.96 

H200-L1800-T2.4-S200-A450(d/h0.5) 38771 D+L 46650 45090 37910 40304 1.02 0.96 

H300-L1200-T1.4-S300-A300(d/h0.8) 22144 D+L 54857 46471 23650 23561 0.94 0.94 

H300-L1200-T1.6-S300-A300(d/h0.8) 28792 D+L 62694 53109 28895 28960 1.00 0.99 

H300-L1200-T1.8-S300-A300(d/h0.8) 36522 D+L 70531 59748 34477 34739 1.06 1.05 

H300-L1200-T2.0-S300-A300(d/h0.8) 44918 D+L 78367 66386 40381 40881 1.11 1.10 

H300-L1800-T2.0-S300-A0(d/h0) 46642 D+L 78367 78367 47816 48228 0.98 0.97 
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H300-L1800-T2.0-S300-A300(d/h0.25) 46452 D+L 78367 78002 47407 47761 0.98 0.97 

H300-L1800-T2.0-S300-A300(d/h0.5) 45916 D+L 78367 75442 45552 45764 1.01 1.00 

H300-L1800-T2.0-S300-A300(d/h0.65) 42381 D+L 78367 71940 43398 43607 0.98 0.97 

H300-L1800-T2.0-S300-A300(d/h0.8) 39722 D+L 78367 66386 40381 40881 0.98 0.97 

H300-L2400-T2.0-S300-A0(d/h0) 46001 D+L 78367 78367 47816 48228 0.96 0.95 

H300-L2400-T2.0-S300-A300(d/h0.25) 45774 D+L 78367 78002 47407 47761 0.97 0.96 

H300-L2400-T2.0-S300-A300(d/h0.5) 45199 D+L 78367 75442 45552 45764 0.99 0.99 

H300-L2400-T2.0-S300-A300(d/h0.65) 41604 D+L 78367 71940 43398 43607 0.96 0.95 

H300-L2400-T2.0-S300-A300(d/h0.8) 39345 D+L 78367 66386 40381 40881 0.97 0.96 

H300-L1200-T2.2-S300-A0(d/h0) 63213 D 86204 86204 54990 55961 1.15 1.13 

H300-L1200-T2.2-S300-A300(d/h0.25) 62798 D 86204 85802 54530 55425 1.15 1.13 

H300-L1200-T2.2-S300-A300(d/h0.5) 60713 D+L 86204 82987 52439 53104 1.16 1.14 

H300-L1200-T2.2-S300-A300(d/h0.65) 57166 D+L 86204 79135 50004 50579 1.14 1.13 

H300-L1200-T2.2-S300-A300(d/h0.8) 52216 D+L 86204 73024 46587 47367 1.12 1.10 

H300-L1200-T2.4-S50-A0(d/h0) 72403 D 94041 94041 62459 64075 1.16 1.13 

H300-L1200-T2.4-S100-A0(d/h0) 72106 D 94041 94041 62459 64075 1.15 1.13 

H300-L1200-T2.4-S200-A0(d/h0) 71721 D 94041 94041 62459 64075 1.15 1.12 

H300-L1200-T2.4-S300-A0(d/h0) 71657 D 94041 94041 62459 64075 1.15 1.12 

H300-L1200-T2.4-S400-A0(d/h0) 70585 D 94041 94041 62459 64075 1.13 1.10 

H300-L1200-T2.4-S800-A0(d/h0) 70289 D 94041 94041 62459 64075 1.13 1.10 

H300-L1200-T2.4-S1200-A0(d/h0) 70093 D 94041 94041 62459 64075 1.12 1.09 

H300-L1200-T2.4-S300-A300(d/h0.25) 70518 D 94041 93602 61948 63467 1.14 1.11 

H300-L1200-T2.4-S50-A300(d/h0.5) 70814 D+L 94041 92531 59619 60689 1.19 1.17 

H300-L1200-T2.4-S100-A300(d/h0.5) 70798 D+L 94041 92531 59619 60689 1.19 1.17 

H300-L1200-T2.4-S200-A300(d/h0.5) 70377 D+L 94041 92531 59619 60689 1.18 1.16 

H300-L1200-T2.4-S300-A300(d/h0.5) 69873 D+L 94041 92531 59619 60689 1.17 1.15 

H300-L1200-T2.4-S400-A300(d/h0.5) 69116 D+L 94041 92531 59619 60689 1.16 1.14 

H300-L1200-T2.4-S800-A300(d/h0.5) 68876 D+L 94041 92531 59619 60689 1.16 1.13 

H300-L1200-T2.4-S1200-A300(d/h0.5) 68637 D+L 94041 92531 59619 60689 1.15 1.13 

H300-L1200-T2.4-S300-A300(d/h0.65) 65161 D+L 94041 86329 56903 57905 1.15 1.13 

H300-L1200-T2.4-S300-A300(d/h0.8) 59261 D+L 94041 79664 53081 54180 1.12 1.09 
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H300-L1800-T2.4-S300-A200(d/h0.5) 57233 D+L 94041 92531 57999 58733 0.99 0.97 

H300-L1800-T2.4-S300-A250(d/h0.5) 57789 D+L 94041 92531 59051 60002 0.98 0.96 

H300-L1800-T2.4-S300-A300(d/h0.5) 58091 D+L 94041 92531 59619 60689 0.97 0.96 

H300-L1800-T2.4-S300-A350(d/h0.5) 58230 D+L 94041 92531 59976 61121 0.97 0.95 

H300-L1800-T2.4-S300-A400(d/h0.5) 58769 D+L 94041 92531 60221 61418 0.98 0.96 

H300-L1800-T2.4-S300-A450(d/h0.5) 59027 D+L 94041 92531 60400 61635 0.98 0.96 

Mean 1.07 1.02 

COV 0.054 0.06 

Փb =0.9, Reliability index (β1)  2.823 2.627 
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E.3 Comparison of ultimate moment obtained from FEA with original and modified DSM prediction for CFS built-up beams with web 

perforations failed by lateral-torsional buckling 

Specimen 

FEA Yield moment DSM Comparison 

MFEA 

( kN·mm) 
Failure mode 

My 

( kN·mm) 

Mynet 

( kN·mm) 

MDSM,o 

( kN·mm) 

MDSM,m 

( kN·mm) 
MFEA/MDSM,o MFEA/MDSM,m 

H150-L4000-T1.4-S200-A0(d/h0) 8843 LTB 16740 16740 4792 8997 1.85 0.98 

H150-L4000-T1.4-S200-A300(d/h0.25) 8842 LTB 16740 16672 4562 8652 1.94 1.02 

H150-L4000-T1.4-S200-A300(d/h0.5) 8810 LTB 16740 16228 4326 8668 2.04 1.02 

H150-L4000-T1.4-S200-A300(d/h0.65) 8760 LTB 16740 15616 4180 8774 2.10 1.00 

H150-L4000-T1.4-S200-A300(d/h0.8) 8673 LTB 16740 14644 4032 8570 2.15 1.01 

H150-L4000-T1.6-S200-A0(d/h0) 10246 LTB 19132 19132 5584 10483 1.83 0.98 

H150-L4000-T1.6-S200-A300(d/h0.25) 10229 LTB 19132 19058 5304 10055 1.93 1.02 

H150-L4000-T1.6-S200-A300(d/h0.5) 10186 LTB 19132 18546 5020 10060 2.03 1.01 

H150-L4000-T1.6-S200-A300(d/h0.65) 10139 LTB 19132 17846 4844 10168 2.09 1.00 

H150-L4000-T1.6-S200-A300(d/h0.8) 10098 LTB 19132 16736 4668 9921 2.16 1.02 

H150-L4000-T1.8-S200-A0(d/h0) 11644 LTB 21522 21522 6416 12045 1.81 0.97 

H150-L4000-T1.8-S200-A300(d/h0.25) 11627 LTB 21522 21440 6082 11528 1.91 1.01 

H150-L4000-T1.8-S200-A300(d/h0.5) 11612 LTB 21522 20864 5742 11505 2.02 1.01 

H150-L4000-T1.8-S200-A300(d/h0.65) 11554 LTB 21522 20076 5534 11616 2.09 0.99 

H150-L4000-T1.8-S200-A300(d/h0.8) 11509 LTB 21522 18828 5324 11316 2.16 1.02 

H150-L4000-T2.0-S200-A0(d/h0) 13143 LTB 23914 23914 7292 13690 1.80 0.96 

H150-L4000-T2.0-S200-A300(d/h0.25) 13136 LTB 23914 23822 6896 13072 1.90 1.00 

H150-L4000-T2.0-S200-A300(d/h0.5) 13130 LTB 23914 23184 6496 13015 2.02 1.01 

H150-L4000-T2.0-S200-A300(d/h0.65) 13020 LTB 23914 22308 6252 13123 2.08 0.99 

H150-L4000-T2.0-S200-A300(d/h0.8) 12944 LTB 23914 20920 6006 12765 2.16 1.01 

H150-L4000-T2.2-S200-A0(d/h0) 14692 LTB 26306 26306 8214 15420 1.79 0.95 

H150-L4000-T2.2-S200-A300(d/h0.25) 14646 LTB 26306 26206 7750 14689 1.89 1.00 

H150-L4000-T2.2-S200-A300(d/h0.5) 14608 LTB 26306 25502 7284 14594 2.01 1.00 
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H150-L4000-T2.2-S200-A300(d/h0.65) 14548 LTB 26306 24538 7000 14693 2.08 0.99 

H150-L4000-T2.2-S200-A300(d/h0.8) 14426 LTB 26306 23012 6712 14265 2.15 1.01 

H150-L4000-T2.4-S200-A0(d/h0) 16287 LTB 28688 28688 9184 17241 1.77 0.94 

H150-L4000-T2.4-S200-A300(d/h0.25) 16313 LTB 28688 28588 8648 16378 1.89 1.00 

H150-L4000-T2.4-S200-A300(d/h0.5) 16229 LTB 28688 27820 8108 16236 2.00 1.00 

H150-L4000-T2.4-S200-A300(d/h0.65) 16141 LTB 28688 26770 7780 16325 2.07 0.99 

H150-L4000-T2.4-S200-A300(d/h0.8) 16016 LTB 28688 25104 7450 15835 2.15 1.01 

H150-L4000-T1.4-S200-A150(d/h0.5) 8756 LTB 16740 16228 4326 8668 2.02 1.01 

H150-L4000-T1.4-S200-A200(d/h0.5) 8793 LTB 16740 16228 4326 8668 2.03 1.01 

H150-L4000-T1.4-S200-A250(d/h0.5) 8807 LTB 16740 16228 4326 8668 2.04 1.02 

H150-L4000-T1.4-S200-A300(d/h0.5) 8810 LTB 16740 16228 4326 8668 2.04 1.02 

H150-L4000-T1.4-S200-A350(d/h0.5) 8820 LTB 16740 16228 4326 8668 2.04 1.02 

H150-L4000-T1.4-S200-A400(d/h0.5) 8814 LTB 16740 16228 4326 8668 2.04 1.02 

H150-L4000-T1.4-S200-A450(d/h0.5) 8826 LTB 16740 16228 4326 8668 2.04 1.02 

H150-L4000-T2.4-S200-A150(d/h0.5) 16112 LTB 28688 27820 8108 16236 1.99 0.99 

H150-L4000-T2.4-S200-A200(d/h0.5) 16218 LTB 28688 27820 8108 16236 2.00 1.00 

H150-L4000-T2.4-S200-A250(d/h0.5) 16221 LTB 28688 27820 8108 16236 2.00 1.00 

H150-L4000-T2.4-S200-A300(d/h0.5) 16261 LTB 28688 27820 8108 16236 2.01 1.00 

H150-L4000-T2.4-S200-A350(d/h0.5) 16268 LTB 28688 27820 8108 16236 2.01 1.00 

H150-L4000-T2.4-S200-A400(d/h0.5) 16308 LTB 28688 27820 8108 16236 2.01 1.00 

H150-L4000-T2.4-S200-A450(d/h0.5) 16302 LTB 28688 27820 8108 16236 2.01 1.00 

H150-L4000-T1.6-S200-A150(d/h0.5) 10089 LTB 19132 18546 5020 10060 2.01 1.00 

H150-L4000-T1.6-S200-A200(d/h0.5) 10103 LTB 19132 18546 5020 10060 2.01 1.00 

H150-L4000-T1.6-S200-A250(d/h0.5) 10134 LTB 19132 18546 5020 10060 2.02 1.01 

H150-L4000-T1.6-S200-A300(d/h0.5) 10186 LTB 19132 18546 5020 10060 2.03 1.01 

H150-L4000-T1.6-S200-A350(d/h0.5) 10204 LTB 19132 18546 5020 10060 2.03 1.01 

H150-L4000-T1.6-S200-A400(d/h0.5) 10234 LTB 19132 18546 5020 10060 2.04 1.02 

H150-L4000-T1.6-S200-A450(d/h0.5) 10278 LTB 19132 18546 5020 10060 2.05 1.02 

H150-L4000-T1.4-S50-A0(d/h0) 9079 LTB 16740 16740 4792 9240 1.89 0.98 

H150-L4000-T1.4-S100-A0(d/h0) 8962 LTB 16740 16740 4792 9155 1.87 0.98 

H150-L4000-T1.4-S200-A0(d/h0) 8843 LTB 16740 16740 4792 8997 1.85 0.98 
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H150-L4000-T1.4-S400-A0(d/h0) 8694 LTB 16740 16740 4792 8720 1.81 1.00 

H150-L4000-T1.4-S800-A0(d/h0) 8045 LTB 16740 16740 4792 8306 1.68 0.97 

H150-L4000-T1.4-S1600-A0(d/h0) 7580 LTB 16740 16740 4792 7833 1.58 0.97 

H150-L4000-T1.4-S4000-A0(d/h0) 5148 LTB 16740 16740 4792 5203 1.07 0.99 

H150-L4000-T1.4-S50-A300(d/h0.5) 9011 LTB 16740 16228 4326 8902 2.08 1.01 

H150-L4000-T1.4-S100-A300(d/h0.5) 8912 LTB 16740 16228 4326 8821 2.06 1.01 

H150-L4000-T1.4-S200-A300(d/h0.5) 8810 LTB 16740 16228 4326 8668 2.04 1.02 

H150-L4000-T1.4-S400-A300(d/h0.5) 8622 LTB 16740 16228 4326 8402 1.99 1.03 

H150-L4000-T1.4-S800-A300(d/h0.5) 7852 LTB 16740 16228 4326 8003 1.82 0.98 

H150-L4000-T1.4-S1600-A300(d/h0.5) 7285 LTB 16740 16228 4326 7548 1.68 0.97 

H150-L4000-T1.4-S4000-A300(d/h0.5) 4805 LTB 16740 16228 4326 5014 1.11 0.96 

H150-L4000-T2.4-S50-A0(d/h0) 17046 LTB 28688 28688 9184 17707 1.86 0.96 

H150-L4000-T2.4-S100-A0(d/h0) 16653 LTB 28688 28688 9184 17544 1.81 0.95 

H150-L4000-T2.4-S200-A0(d/h0) 16287 LTB 28688 28688 9184 17241 1.77 0.94 

H150-L4000-T2.4-S400-A0(d/h0) 15904 LTB 28688 28688 9184 16712 1.73 0.95 

H150-L4000-T2.4-S800-A0(d/h0) 14907 LTB 28688 28688 9184 15918 1.62 0.94 

H150-L4000-T2.4-S1600-A0(d/h0) 13896 LTB 28688 28688 9184 15012 1.51 0.93 

H150-L4000-T2.4-S4000-A0(d/h0) 10062 LTB 28688 28688 9184 9972 1.10 1.01 

H150-L4000-T2.4-S50-A300(d/h0.5) 16890 LTB 28688 27820 8108 16675 2.08 1.01 

H150-L4000-T2.4-S100-A300(d/h0.5) 16522 LTB 28688 27820 8108 16522 2.04 1.00 

H150-L4000-T2.4-S200-A300(d/h0.5) 16229 LTB 28688 27820 8108 16236 2.00 1.00 

H150-L4000-T2.4-S400-A300(d/h0.5) 15826 LTB 28688 27820 8108 15738 1.95 1.01 

H150-L4000-T2.4-S800-A300(d/h0.5) 14708 LTB 28688 27820 8108 14990 1.81 0.98 

H150-L4000-T2.4-S1600-A300(d/h0.5) 13587 LTB 28688 27820 8108 14137 1.68 0.96 

H150-L4000-T2.4-S4000-A300(d/h0.5) 9441 LTB 28688 27820 8108 9391 1.16 1.01 

H150-L4000-T1.6-S50-A0(d/h0) 10512 LTB 19132 19132 5584 10767 1.88 0.98 

H150-L4000-T1.6-S100-A0(d/h0) 10392 LTB 19132 19132 5584 10668 1.86 0.97 

H150-L4000-T1.6-S200-A0(d/h0) 10246 LTB 19132 19132 5584 10483 1.83 0.98 

H150-L4000-T1.6-S400-A0(d/h0) 9916 LTB 19132 19132 5584 10162 1.78 0.98 

H150-L4000-T1.6-S800-A0(d/h0) 9301 LTB 19132 19132 5584 9679 1.67 0.96 

H150-L4000-T1.6-S1600-A0(d/h0) 8733 LTB 19132 19132 5584 9128 1.56 0.96 
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H150-L4000-T1.6-S4000-A0(d/h0) 6063 LTB 19132 19132 5584 6063 1.09 1.00 

H150-L4000-T1.6-S50-A300(d/h0.5) 10499 LTB 19132 18546 5020 10331 2.09 1.02 

H150-L4000-T1.6-S100-A300(d/h0.5) 10337 LTB 19132 18546 5020 10237 2.06 1.01 

H150-L4000-T1.6-S200-A300(d/h0.5) 10186 LTB 19132 18546 5020 10060 2.03 1.01 

H150-L4000-T1.6-S400-A300(d/h0.5) 9885 LTB 19132 18546 5020 9751 1.97 1.01 

H150-L4000-T1.6-S800-A300(d/h0.5) 9283 LTB 19132 18546 5020 9288 1.85 1.00 

H150-L4000-T1.6-S1600-A300(d/h0.5) 8627 LTB 19132 18546 5020 8759 1.72 0.98 

H150-L4000-T1.6-S4000-A300(d/h0.5) 5671 LTB 19132 18546 5020 5818 1.13 0.97 

H150-L3200-T2.0-S200-A300(d/h0.25) 17249 LTB 23914 23822 10360 17158 1.66 1.01 

H150-L3200-T2.0-S200-A300(d/h0.5) 17227 LTB 23914 23184 9802 17283 1.76 1.00 

H150-L3200-T2.0-S200-A300(d/h0.65) 16692 LTB 23914 22308 9462 17579 1.76 0.95 

H150-L3200-T2.0-S200-A300(d/h0.8) 16630 LTB 23914 20920 9116 17175 1.82 0.97 

H150-L5000-T2.0-S200-A300(d/h0.25) 9787 LTB 23914 23822 4666 9980 2.10 0.98 

H150-L5000-T2.0-S200-A300(d/h0.5) 9724 LTB 23914 23184 4370 9822 2.23 0.99 

H150-L5000-T2.0-S200-A300(d/h0.65) 9638 LTB 23914 22308 4190 9820 2.30 0.98 

H150-L5000-T2.0-S200-A300(d/h0.8) 9554 LTB 23914 20920 4008 9500 2.38 1.01 

H150-L6000-T2.0-S200-A300(d/h0.25) 7800 LTB 23914 23822 3444 7992 2.26 0.98 

H150-L6000-T2.0-S200-A300(d/h0.5) 7701 LTB 23914 23184 3206 7789 2.40 0.99 

H150-L6000-T2.0-S200-A300(d/h0.65) 7612 LTB 23914 22308 3062 7735 2.49 0.98 

H150-L6000-T2.0-S200-A300(d/h0.8) 7562 LTB 23914 20920 2918 7449 2.59 1.02 

H200-L4000-T1.6-S200-A0(d/h0) 19352 LTB 31100 31100 12012 19272 1.61 1.00 

H200-L4000-T1.6-S200-A300(d/h0.25) 19378 LTB 31100 30970 11482 18649 1.69 1.04 

H200-L4000-T1.6-S200-A300(d/h0.5) 19111 LTB 31100 30060 10936 19033 1.75 1.00 

H200-L4000-T1.6-S200-A300(d/h0.65) 18703 LTB 31100 28814 10600 19466 1.76 0.96 

H200-L4000-T1.6-S200-A300(d/h0.8) 18606 LTB 31100 26840 10256 18862 1.81 0.99 

H200-L4000-T1.8-S200-A0(d/h0) 21956 LTB 34998 34998 13646 21893 1.61 1.00 

H200-L4000-T1.8-S200-A300(d/h0.25) 21920 LTB 34998 34840 13028 21180 1.68 1.03 

H200-L4000-T1.8-S200-A300(d/h0.5) 21868 LTB 34998 33818 12394 21581 1.76 1.01 

H200-L4000-T1.8-S200-A300(d/h0.65) 21771 LTB 34998 32416 12004 22048 1.81 0.99 

H200-L4000-T1.8-S200-A300(d/h0.8) 21274 LTB 34998 30194 11606 21340 1.83 1.00 

H200-L4000-T2.0-S200-A0(d/h0) 24595 LTB 38874 38874 15324 24585 1.60 1.00 
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H200-L4000-T2.0-S200-A300(d/h0.25) 24559 LTB 38874 38712 14614 23734 1.68 1.03 

H200-L4000-T2.0-S200-A300(d/h0.5) 24412 LTB 38874 37574 13884 24163 1.76 1.01 

H200-L4000-T2.0-S200-A300(d/h0.65) 24308 LTB 38874 36018 13436 24672 1.81 0.99 

H200-L4000-T2.0-S200-A300(d/h0.8) 23832 LTB 38874 33550 12982 23876 1.84 1.00 

H200-L4000-T2.2-S200-A0(d/h0) 27281 LTB 42762 42762 17052 27357 1.60 1.00 

H200-L4000-T2.2-S200-A300(d/h0.25) 27239 LTB 42762 42584 16240 26375 1.68 1.03 

H200-L4000-T2.2-S200-A300(d/h0.5) 27175 LTB 42762 41332 15408 26815 1.76 1.01 

H200-L4000-T2.2-S200-A300(d/h0.65) 26928 LTB 42762 39620 14900 27361 1.81 0.98 

H200-L4000-T2.2-S200-A300(d/h0.8) 26449 LTB 42762 36904 14382 26450 1.84 1.00 

H200-L4000-T2.4-S200-A0(d/h0) 30008 LTB 46700 46700 18834 30216 1.59 0.99 

H200-L4000-T2.4-S200-A300(d/h0.25) 29939 LTB 46700 46454 17912 29181 1.67 1.03 

H200-L4000-T2.4-S200-A300(d/h0.5) 29746 LTB 46700 45090 16970 29591 1.75 1.01 

H200-L4000-T2.4-S200-A300(d/h0.65) 29586 LTB 46700 43222 16396 30131 1.80 0.98 

H200-L4000-T2.4-S200-A300(d/h0.8) 29022 LTB 46700 40260 15812 29059 1.84 1.00 

H200-L4000-T2.4-S200-A150(d/h0.5) 29724 LTB 46700 45090 16970 29591 1.75 1.00 

H200-L4000-T2.4-S200-A200(d/h0.5) 29813 LTB 46700 45090 16970 29591 1.76 1.01 

H200-L4000-T2.4-S200-A250(d/h0.5) 29658 LTB 46700 45090 16970 29591 1.75 1.00 

H200-L4000-T2.4-S200-A300(d/h0.5) 29746 LTB 46700 45090 16970 29591 1.75 1.01 

H200-L4000-T2.4-S200-A350(d/h0.5) 29852 LTB 46700 45090 16970 29591 1.76 1.01 

H200-L4000-T2.4-S200-A400(d/h0.5) 29857 LTB 46700 45090 16970 29591 1.76 1.01 

H200-L4000-T2.4-S200-A450(d/h0.5) 29859 LTB 46700 45090 16970 29591 1.76 1.01 

H200-L4000-T1.6-S200-A150(d/h0.5) 19002 LTB 31100 30060 10936 19033 1.74 1.00 

H200-L4000-T1.6-S200-A200(d/h0.5) 19032 LTB 31100 30060 10936 19033 1.74 1.00 

H200-L4000-T1.6-S200-A250(d/h0.5) 19067 LTB 31100 30060 10936 19033 1.74 1.00 

H200-L4000-T1.6-S200-A300(d/h0.5) 19111 LTB 31100 30060 10936 19033 1.75 1.00 

H200-L4000-T1.6-S200-A350(d/h0.5) 19176 LTB 31100 30060 10936 19033 1.75 1.01 

H200-L4000-T1.6-S200-A400(d/h0.5) 19203 LTB 31100 30060 10936 19033 1.76 1.01 

H200-L4000-T1.6-S200-A450(d/h0.5) 19234 LTB 31100 30060 10936 19033 1.76 1.01 

H200-L4000-T2.4-S50-A0(d/h0) 30860 LTB 46700 46700 18834 31032 1.64 0.99 

H200-L4000-T2.4-S100-A0(d/h0) 30450 LTB 46700 46700 18834 30748 1.62 0.99 

H200-L4000-T2.4-S200-A0(d/h0) 29994 LTB 46700 46700 18834 30216 1.59 0.99 
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H200-L4000-T2.4-S400-A0(d/h0) 29475 LTB 46700 46700 18834 29289 1.56 1.01 

H200-L4000-T2.4-S800-A0(d/h0) 27808 LTB 46700 46700 18834 27898 1.48 1.00 

H200-L4000-T2.4-S1600-A0(d/h0) 26514 LTB 46700 46700 18834 26309 1.41 1.01 

H200-L4000-T2.4-S4000-A0(d/h0) 19090 LTB 46700 46700 18834 17476 1.01 1.09 

H200-L4000-T2.4-S50-A300(d/h0.5) 30238 LTB 46700 45090 16970 30390 1.78 0.99 

H200-L4000-T2.4-S100-A300(d/h0.5) 30032 LTB 46700 45090 16970 30112 1.77 1.00 

H200-L4000-T2.4-S200-A300(d/h0.5) 29834 LTB 46700 45090 16970 29591 1.76 1.01 

H200-L4000-T2.4-S400-A300(d/h0.5) 28752 LTB 46700 45090 16970 28683 1.69 1.00 

H200-L4000-T2.4-S800-A300(d/h0.5) 27390 LTB 46700 45090 16970 27320 1.61 1.00 

H200-L4000-T2.4-S1600-A300(d/h0.5) 26115 LTB 46700 45090 16970 25765 1.54 1.01 

H200-L4000-T2.4-S4000-A300(d/h0.5) 17791 LTB 46700 45090 16970 17114 1.05 1.04 

H200-L4000-T1.6-S50-A0(d/h0) 19789 LTB 31100 31100 12012 19793 1.65 1.00 

H200-L4000-T1.6-S100-A0(d/h0) 19597 LTB 31100 31100 12012 19611 1.63 1.00 

H200-L4000-T1.6-S200-A0(d/h0) 19352 LTB 31100 31100 12012 19272 1.61 1.00 

H200-L4000-T1.6-S400-A0(d/h0) 19082 LTB 31100 31100 12012 18681 1.59 1.02 

H200-L4000-T1.6-S800-A0(d/h0) 18108 LTB 31100 31100 12012 17793 1.51 1.02 

H200-L4000-T1.6-S1600-A0(d/h0) 17071 LTB 31100 31100 12012 16780 1.42 1.02 

H200-L4000-T1.6-S4000-A0(d/h0) 11839 LTB 31100 31100 12012 11146 0.99 1.06 

H200-L4000-T1.6-S50-A300(d/h0.5) 19619 LTB 31100 30060 10936 19547 1.79 1.00 

H200-L4000-T1.6-S100-A300(d/h0.5) 19297 LTB 31100 30060 10936 19368 1.76 1.00 

H200-L4000-T1.6-S200-A300(d/h0.5) 19111 LTB 31100 30060 10936 19033 1.75 1.00 

H200-L4000-T1.6-S400-A300(d/h0.5) 18670 LTB 31100 30060 10936 18449 1.71 1.01 

H200-L4000-T1.6-S800-A300(d/h0.5) 17617 LTB 31100 30060 10936 17573 1.61 1.00 

H200-L4000-T1.6-S1600-A300(d/h0.5) 16824 LTB 31100 30060 10936 16572 1.54 1.02 

H200-L4000-T1.6-S4000-A300(d/h0.5) 11278 LTB 31100 30060 10936 11008 1.03 1.02 

H200-L5000-T2.0-S200-A300(d/h0.25) 17984 LTB 38874 38712 9608 17865 1.87 1.01 

H200-L5000-T2.0-S200-A300(d/h0.5) 17881 LTB 38874 37574 9096 17978 1.97 0.99 

H200-L5000-T2.0-S200-A300(d/h0.65) 17783 LTB 38874 36018 8784 18210 2.02 0.98 

H200-L5000-T2.0-S200-A300(d/h0.8) 17614 LTB 38874 33550 8468 17579 2.08 1.00 

H200-L6000-T2.0-S200-A300(d/h0.25) 13817 LTB 38874 38712 6884 14172 2.01 0.97 

H200-L6000-T2.0-S200-A300(d/h0.5) 13684 LTB 38874 37574 6492 14128 2.11 0.97 
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H200-L6000-T2.0-S200-A300(d/h0.65) 13535 LTB 38874 36018 6254 14217 2.16 0.95 

H200-L6000-T2.0-S200-A300(d/h0.8) 13475 LTB 38874 33550 6012 13684 2.24 0.98 

Mean 

 

 

 

 

1.826 1 

COV 0.15 0.022 

Փb =0.9, Reliability index (β1)  4.32 

32 

2.592 
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