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Abstract
We review palaeoenvironmental proxies and combinations of these relevant for 
understanding hunter-gatherer niche construction activities in pre-agricultural 
Europe. Our approach consists of two steps: (1) identify the possible range of 
hunter-gatherer impacts on landscapes based on ethnographic studies; (2) evalu-
ate proxies possibly reflecting these impacts for both the Eemian (Last Interglacial, 
Middle Palaeolithic) and the Early–Middle Holocene (Mesolithic). We found these 
paleoenvironmental proxies were not able to unequivocally establish clear-cut dif-
ferences between specific anthropogenic, climatic and megafaunal impacts for either 
time period in this area. We discuss case studies for both periods and show that pub-
lished evidence for Mesolithic manipulation of landscapes is based on the interpre-
tation of comparable data as available for the Last Interglacial. If one applies the 
‘Mesolithic’ interpretation schemes to the Neanderthal record, three common niche 
construction activities can be hypothesised: vegetation burning, plant manipulation 
and impact on animal species presence and abundance. Our review suggests that as 
strong a case can be made for a Neanderthal impact on landscapes as for anthropo-
genic landscape changes during the Mesolithic, even though the Neanderthal evi-
dence comes from only one high-resolution site complex. Further research should 
include attempts (e.g. by means of modelling studies) to establish whether hunter-
gatherer impact on landscapes played out at a local level only versus at a larger scale 
during both time periods, while we also need to obtain comparative data on the pop-
ulation sizes of Last Interglacial and Holocene hunter-gatherers, as these are usually 
inferred to have differed significantly.
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Introduction

Since the coining of the term Anthropocene for the current human-dominated geo-
logical epoch by Crutzen and Stoermer (Crutzen, 2002; Crutzen & Stoermer, 2000), 
the starting date for this period, as well as its geological relevance, has been under 
permanent debate. Suggestions for the beginning of the Anthropocene vary, from 
13,800 BP when significant vegetation transformations and megafauna extinctions 
occurred, to the mid-twentieth century with the introduction of plastics and concrete 
production (Lewis & Maslin, 2015; Ruddiman, 2013; Smith & Zeder, 2013; Waters 
et al., 2016; Zalasiewicz et al., 2015). The absence of consensus among researchers 
concerning relevant types of evidence (e.g. greenhouse gases, isotopes caused by 
nuclear weapons detonations, biosphere modified by species extinctions and inva-
sions, novel human-made ‘minerals’ such as bricks, ceramic, concrete, asphalt), as 
well as the need for a ‘golden spike’ (global boundary stratotype section), greatly 
complicate defining a starting point for the Anthropocene (Castree, 2017; Zalasie-
wicz et al., 2019). While the Anthropocene Working Group recently decided to use 
the stratigraphic signal of global distribution of primary artificial radionuclide signal 
due to atomic bomb explosions in the mid-twentieth century as the Anthropocene’s 
‘golden spike’ (Anthropocene Working Group, 2019; Zalasiewicz et  al., 2015), 
beyond the geological community, broader discussions stimulated by this ‘origins 
debate’ still continue.

In the context of the debate about the status and chronology of the Anthropo-
cene, questions about when and how humans began to shape the global earth sys-
tem, including how human subsistence and land use strategies affected land cover, 
ecosystems and other aspects of their environments, are identified as priorities for 
research in archaeology and paleoecology (Ellis et  al., 2021; Kintigh et  al., 2014; 
Seddon et  al., 2014; Thompson et  al., 2021). An early (Pleistocene) date for the 
Anthropocene seems unjustified, in terms of the scale of human impacts in the 
Pleistocene past, and, as some hold, because of the ideological implications (Lane, 
2015). However, this debate has highlighted the relevance of systematic studies of 
when humans began to have an impact on their landscapes, the spatial and temporal 
scale of these effects, and the nature of early impacts on the earth system.

Humans have a long prehistory of niche construction, defined as ‘the process 
whereby organisms, through their metabolism, their activities and their choices, 
modify their own and/or other species niches’ (Odling-Smee et  al., 2013). Given 
this definition, both agriculture and a foraging lifestyle can be considered human 
niche constructions. It is widely accepted that the emergence of agriculture strongly 
increased human impact on their environments, compared to that of foraging soci-
eties (e.g. Delcourt, 1987; Kirch, 2005; Roberts et  al., 2018; Ruddiman, 2013). 
Agricultural activities tend to replace diverse natural vegetation with relatively few 
domesticates with highly reduced habitat value for biodiversity, and can thereby 
increase species extinction rates and alter biogeochemical cycles (Lewis & Maslin, 
2015); this makes the shift to agriculture very relevant to discussions of the origins 
and the character of the Anthropocene (Lindholm et al., 2020).
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The focus of the current article is, however, on foragers, who also conduct both 
active and inadvertent niche construction (Smith, 2011). In this paper, hunter-gath-
erers (foragers) are defined as populations which mainly depend on food collection 
or foraging of wild resources (Ember, 2020). Foragers can and do actively transform 
land cover and ecosystems (e.g. Rowley-Conwy & Layton, 2011; Smith, 2011). In 
particular, the controlled use of fire, which is an important part of the technological 
repertoire of more recent forms of Homo (Alperson-Afil, 2017; Dibble et al., 2018; 
Gowlett & Wrangham, 2013; Roebroeks & Villa, 2011; Sandgathe et  al., 2011), 
could have facilitated landscape transformations. Anthropogenic fire could possibly 
be as significant as or, in later stages, exceeding the impact of natural fires (Scherjon 
et al., 2015; Thompson et al., 2021; Whelan, 1995; Wrangham, 2009). In addition, 
Late Pleistocene faunal extinctions, in which human hunting is often implicated 
(Andermann et  al., 2020; Sandom et  al., 2014b; Smith et  al., 2018), were associ-
ated with reduction of the structural diversity of vegetation (e.g. Bakker et al., 2016; 
Berti & Svenning, 2020; Sandom et al., 2014a), changed fire regimes and likely a 
range of other ecosystem processes. Thus, studying hunter-gatherer impact on their 
surroundings is of interest in terms of anthropogenic ecosystem modifications in for-
ager habitats as well as for contextualising and understanding the scale of Holocene 
agricultural transformation.

Identifying the possible impact of past hunter-gatherers on their environments 
to some degree calls for knowledge of ‘human free’ or ‘natural’ ecosystems, which 
arguably suggest the existence of a ‘natural palaeoenvironment’. Such a term implies 
that environments exist in a stable natural state until disrupted by humans. However, 
all environments are constantly changing, determined by a myriad of factors such as 
climate, faunal activities, natural fire regimes and hominins. This makes it difficult 
to discriminate between ‘natural’ and anthropogenic changes (Schreve, 2019). None-
theless, the Eemian interglacial, sometimes seen as an analogue for present-natural 
vegetation (Svenning, 2002), provides an interesting case study in this respect.

The Eemian interglacial (Last Interglacial; ~ 130,000–116,000 BP) is the most 
recent (before the Holocene or current interglacial) in a series of Pleistocene inter-
glacials  –  warm-temperate periods between glaciations (Schreve, 2019)  –  with 
a climate and vegetation comparable to the Holocene over major parts of Europe 
(Svenning, 2002). On a finer scale, however, there were differences: the Eemian 
interglacial witnessed a higher sea level than the Holocene, making for a somewhat 
more Atlantic climate in western and central Europe than during the Holocene (Zag-
wijn, 1989). The Late Pleistocene extinction of various larger mammals occurred 
after the Eemian interglacial, and the absence of specific large herbivores such as 
elephant and rhinoceros during the Holocene may have decreased overall herbi-
vore impact on vegetation during the current interglacial (Svenning, 2002). Study 
of Eemian vegetation structure may provide insights into the specific differences 
between the two interglacial periods and the factors responsible for these differ-
ences. At the same time, these differences make it challenging to understand the role 
of Neanderthal hunter-gatherers in this period.

The disappearance of megafaunal species during the latest Pleistocene and the 
Holocene was a complicated process that varied from region to region (e.g. Mann 
et  al., 2019; Sandom  et al., 2014b; Stewart et  al., 2021; Wang et  al., 2021), with 
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likely overkill by Homo sapiens (Sandom et al., 2014b). Still, Neanderthals’ game 
spectra were very much comparable to those of the first modern humans in Eurasia 
(Bar-Yosef, 2004; Wißing et al., 2019), and localised extinctions or potential reduc-
tion of populations of medium- to large-sized herbivores do seem to correlate to 
much earlier Pleistocene hominin range expansions (Speth & Clark, 2006; Staesche, 
1983; Surovell et  al., 2005). In addition, besides their potential impact on mega-
fauna, Neanderthals are considered to have possibly played a role in vegetation open-
ness around the Last Interglacial Neumark-Nord 2 lake area site (Germany) (Roe-
broeks et al., in press; Roebroeks & Bakels, 2015). While Neumark-Nord 2 provides 
us with an exceptionally high-resolution – but thus far unique – case (see below), 
it does suggest that Neanderthals elsewhere also could have transformed their sur-
roundings on a local scale, e.g. via burning practices. However, their inferred small 
population sizes, and the low population densities that these imply, suggest a limited 
impact.

Despite the problems differentiating between natural and anthropogenic changes 
in past environments, the quantity of research devoted to pre-industrial human 
impacts on landscapes is increasing (e.g. Dietze et al., 2018; Hamilton et al., 2019; 
Thompson et al., 2021), as a result of increasing interest in the role of past humans 
in landscape transformations and the environmental consequences this may have 
entailed (e.g. Oldfield & Dearing, 2003; Thompson et al., 2020). However, specific 
research on the environmental impact of prehistoric hunter-gatherers is relatively 
rare, and hampered by both theoretical issues (a tendency to contrast hunter-gath-
erers and farmers) and methodological ones (Lightfoot et al., 2013). For example, 
detecting past hunter-gatherer burning of landscapes may be difficult because the 
effects may be limited at low population densities, and tend to mimic or be com-
pletely concealed by natural fire regimes (Scherjon et al., 2015). Scherjon et al. (and 
comments therein) stress the need for more information combining various proxies, 
such as charcoal records and molecular markers, from well-sampled and well-dated 
sequences with archaeological records from the same area (ibid.). Standard require-
ments regarding the kinds of data that should be collected for such studies are lack-
ing, and there are obvious taphonomic limitations on the range of data that can be 
collected and documented from prehistoric sites. In this regard, it is important to 
include a wide variety of relevant methods and proxies suitable for understanding 
hunter-gatherer impact, evaluate the strengths and weaknesses of various approaches 
and establish the character of the association between proxies and hunter-gatherer 
activity: hence this review.

The practice of interpreting past hunter-gatherer impact is best understood with 
the aid of concrete case studies, presented below, for the Last Interglacial and for the 
Holocene. The possibility that Mesolithic hunter-gatherers modified their environ-
ments has been explored since the late 1960s (Simmons, 1996; Woodburn, 1980; 
Zvelebil, 1994), and as a result a number of studies of relevant palaeoenvironmental 
evidence have been published. This possibility has also been considered for Upper 
Palaeolithic hunter-gatherers of the Last Glacial Maximum (Kaplan et al., 2016), but 
not, or very rarely, for earlier periods (see Thompson et al., 2021 for such an excep-
tional case-study from Lake Malawi, Africa). However, at least one Middle Palaeo-
lithic case study seems to provide high-resolution evidence minimally indicative of 
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Neanderthal impact on the local vegetation (Roebroeks et al., in press; Roebroeks & 
Bakels, 2015).

The aims of this paper are twofold: (1) to present the variety of available prox-
ies relevant for studying past hunter-gatherer environmental impacts, and (2) to 
examine the presence and usefulness of the various types of evidence within spe-
cific geographical and chronological settings. The structure of the article is the fol-
lowing: (1) first we describe hunter-gatherer niche construction activities based on 
ethnographic observations; (2) we then list and evaluate proxies for each category of 
niche construction activity; (3) we illustrate the use of proxies in Middle Palaeolithic 
(Neanderthal) and Mesolithic archaeological contexts dating to the Last Interglacial 
(~130,000–116,000 BP) and Early–Middle Holocene (~ 11,700–6,000 BP) respec-
tively; (4) finally, we discuss the validity of current understanding of Neanderthal 
and Mesolithic hunter-gatherer impact on warm-temperate landscapes.

Ethnographic Observations of Hunter‑Gatherer Impact 
on Landscapes

Ethnographic records constitute an important source for understanding relationships 
between (sub-)recent hunter-gatherers and their environments and can help to build 
solid inferences about the possible antiquity of such relationships. However, we 
do need to acknowledge that the application of ethnographic data in this way faces 
important limitations: firstly, it is likely that only a small part of past diversity in for-
aging subsistence activities is reflected in the record of (sub-)recent hunter-gatherers 
(Bettinger, 2001). Secondly, it is clear that many (sub-)recent hunter-gatherers were 
part of larger socio-economic systems in which hunter-gatherer subsistence strate-
gies were influenced by trade and communication across different regions, some-
times on a worldwide scale, as seen in the example of western European demand for 
South African bush products which directly impacted local hunter-gatherer hunting 
there (e.g. Stiles, 1992, 2001; Wolf, 2010). Thirdly, geographical biases and time-
limited observations restrict the scope of ethnographic records (Scherjon et al., 2015; 
Smith et al., 2013). While an attempt has been made here to include a wide range of 
geographical and temporal ethnographic contexts, this only partially addresses these 
limitations. One of the reasons is geographical bias, with hunter-gatherers having 
disappeared from temperate parts of the world such as Europe, the region at stake 
here, long before ethnographic or ethnohistoric documentation started. Neverthe-
less, ethnographic data helps in interpreting decision-making behaviour leading to 
the creation of the archaeological record as well as the roles which ecological, bio-
logical, social and cultural settings play in these processes (Kelly, 2013).

The categories of hunter-gatherer niche construction practices listed below are 
not intended to cover the whole range of foraging and resource procurement activi-
ties in detail: these general categories were identified to illustrate possible ways in 
which hunter-gatherer activities can lead to landscape transformations and to struc-
ture the discussion of ethnographically documented niche construction and the rel-
evant archaeological proxies. Based on review papers on ethnographic data (Row-
ley-Conwy & Layton, 2011; Smith, 2011), we identified the following categories 
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for hunter-gatherer niche construction and effects on landscapes, to be discussed 
below: (1) modification of vegetation communities via burning; (2) small-scale plant 
manipulation; (3) landscape modification to impact animal presence and their abun-
dance at specific locations.

Human-induced burning of vegetation сommunities, the first category, was a 
common practice which has been documented in all vegetation types except tundra 
(Scherjon et al., 2015), and with more cases for hunter-gatherers occupying forested 
or shrubland areas (Mellars, 1976). The ecological consequences of these practices 
are determined by the intensity, seasonality and frequency of burning and the fire 
resilience of plants, and mainly include improving the qualities and quantities of 
forage from a hunter-gatherer point of view (ibid.; Anderson, 2005). Burning activi-
ties are often carried out for short-term purposes (e.g. hunting) but their repetitive 
character can have major long-term consequences, such as the creation of mosaic 
vegetation, with increase of biodiversity and reduced risk of habitat loss. Such an 
approach transforms an occupation area into a mosaic with diverse foraging and 
hunting options for humans at a relatively small spatial scale (Anderson, 2005; Bird 
et al., 2008).

The second category is small-scale plant manipulation, which does not imply 
plant domestication and cultivation of domesticated plants in a broad agricultural 
sense (involving human intervention becoming essential for replanting and the plant 
food making a large contribution to human diet). This category rather includes sev-
eral smaller-scale activities such as broadcasting of wild annuals’ seeds, and trans-
plantation and in-place encouragement of fruit/nut-bearing species, plants that can 
be harvested for raw materials and perennial root crops via pruning, coppicing, 
thinning, clearing, weeding or fertilising (Feeney, 2019; Smith, 2011). While these 
actions can modify vegetation, it is often difficult to track which of these specific 
activities was carried out by hunter-gatherers in the deep past. Potentially, transfor-
mation of existing communities via these actions may be reflected in genetic trans-
formations of some cultivated species (e.g. size of seeds, thickness of seed coats) 
(Greaves & Kramer, 2014; Rowley-Conwy & Layton, 2011; Smith, 2011).

In contrast to these strategies that encourage growth, trees may be killed to ensure 
firewood supplies, with implications for vegetation cover (Henry et al., 2008; Pryor 
et  al., 2016). Construction of habitat improvement features (e.g. canals and dams, 
soil retention walls) has also been documented as a part of foragers’ plant manip-
ulation strategies, e.g. for Northern American hunter-gatherers (Anderson, 2005; 
Harrower, 2016). Other examples come from Australia where indigenous popula-
tions constructed small-scale water diversions, impoundments and dams (Jackson 
& Barber, 2016). Construction of such features can potentially leave more visible 
traces than small-scale activities involving plant transplantation, sowing or in-place 
encouragement.

The third category of hunter-gatherer niche construction consists of enhancing 
and/or expanding the geographic range of specific animal species and the manage-
ment of prey movements. These activities can include the construction of ‘clam gar-
dens’, fish weirs and traps, the transformation of fish streams via removing debris 
and translocation of fish eggs, and the use of fences to control herbivore move-
ments (Rowley-Conwy & Layton, 2011; Smith, 2011). These types of resource 
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manipulation have been documented ethnographically in various regions, particu-
larly in North and Central America, Siberia, Africa and Australia (e.g. Anderson 
et al., 2019; Campbell & Butler, 2010; Deur et al., 2015; Khomich, 1966; McKey 
et al., 2016; Pascoe, 2014).

Controlled burning is also a tool for prey management. In particular, fire was 
used to drive animals and fish towards a specific location or temporarily paralyse 
prey to make hunting or fishing easier (Lytwyn, 2001; Roos et  al., 2018; Scher-
jon et al., 2015). Recently burned areas are attractive for many herbivores because 
the increased visibility makes it easier to avoid predators and the new vegetation 
cover contains a higher nutrient level; these freshly burned areas also support hunt-
ing opportunities for some birds and insects (e.g. Allred et  al., 2011; Bird et  al., 
2008; Eby et al., 2014; Herzog et al., 2016; Komarek, 1969; Mellars, 1976; Reid, 
2012). People were then able to hunt prey animals attracted to recently burned areas 
(Scherjon et al., 2015). In addition, smoke from fireplaces around camps can provide 
animals such as reindeer with relief from biting insects, leading them to congregate 
within specific locations in the open air or inside specially constructed buildings 
(Groß et al., 2019).

Thus, hunter-gatherer subsistence strategies include a diverse set of niche con-
struction activities, which allows foragers to be flexible, adaptable and able to with-
stand change and which also debunk characterisations of these populations as pas-
sive consumers of natural resources (Hitchcock, 2019; Kelly, 2013; Smith et  al., 
2013). While these activities could increase the local abundance of the plant and 
animal resources on which hunter-gatherers rely, these and other foraging and hunt-
ing activities could also depress resources (Feeney, 2019). We do not assume that 
all Pleistocene and Holocene groups of foragers engaged in all the types of activ-
ity described here in their daily practices. In addition, there is no consensus about 
which specific practices were incorporated in Neanderthal and Mesolithic strate-
gies or differences/similarities between the niche construction activities of these two 
populations. To compare hominin impact on landscapes in these two periods, and 
begin to understand differences and similarities, we need to take the full range of 
possible activities into account. Therefore, the next section is devoted to the presen-
tation and evaluation of proxies for each type of niche construction activity.

Types of Evidence Related to Past Hunter‑Gatherer Niche 
Construction Activities

The following sections (“Proxies for Identification of Modification of Vegetation 
Communities Via Burning”, “Proxies for Identification of Small-Scale Plant Manip-
ulation by Hunter-Gatherers” and “Proxies for Landscape Modifications to Impact 
Animal Presence and Their Abundance in Specific Locations”) are devoted to a 
review of proxies which correspond to three categories of hunter-gatherer impact 
defined on the basis of ethnographic studies (“Ethnographic Observations of Hunter-
Gatherer Impact on Landscapes” section). Tables 1, 2, and 3 reflect the availability 
of different proxies in relation to their spatial scale (i.e. which scale is reflected in 
a specific type of evidence) and for the two time periods (the Last Interglacial and 
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the Early–Middle Holocene). The local spatial scale is the most detailed, and this 
scale means that a proxy can be used to identify foragers’ niche construction activi-
ties at a site and in close proximity to the site. The regional scale corresponds to a 

Table 1  Proxies and their maximum possible temporal representation (availability) and spatial scale 
(scale which is reflected in specific type of proxy) for reconstruction of burning of vegetation communi-
ties by hunter-gatherers (category 1)

*this spatial scale can be reached via integration of data from multiple sites
○ – absence of proxies
● – low availability/spatial resolution
●● – average availability/spatial resolution
●●● – high availability/spatial resolution

Proxies Temporal scales Spatial scales

Last Interglacial Early–Middle 
Holocene

Local Regional (Sub-)continental

Pollen indicators ● ●●● ●●● ●●● ○*
AP/NAP ● ●●● ●●● ●●● ○*
Charcoal ● ●●● ●●● ●●● ○*
NPP ●● ●●● ●●● ○ ○
Plant macrofossils ● ●●● ●●● ● ○
DNA from sediments ●● ●●● ●●● ●● ○
Phytolith data ●●● ●●● ●●● ● ○
PAHs ●●● ●●● ●●● ●●● ●●●
Black carbon ○ ●●● ●●● ●●● ●●●
Levoglucosan ●●● ●●● ○ ●●● ●●●

Table 2  Proxies and their maximum possible temporal representation (availability) and spatial scale 
(scale which is reflected in specific type of proxy) for reconstruction of plant manipulation organised by 
hunter-gatherers (category 2)

○ – absence of proxies
● – low availability/spatial resolution
●● – average availability/spatial resolution
●●● – high availability/spatial resolution

Proxies Temporal scales Spatial scales

Last Interglacial Early–Middle 
Holocene

Local Regional (Sub-)continental

Tools for plant manipulation ○ ●● ●●● ● ○
Plant macrofossils ● ●●● ●●● ● ○
Pollen indicators ● ●●● ●●● ●●● ○
Phytolith data ●●● ●●● ●●● ● ○
Parenchyma analysis ○ ●●● ●●● ○ ○
Starch-grain analysis ●● ●●● ●●● ○ ○
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wider area, and this spatial scale can reflect processes around several sites within 
one region. The (sub-)continental level is the most general level of analysis, and this 
level corresponds to proxies which reflect processes taking place at the scale of a 
large subcontinental area or a continent. It is furthermore important to highlight that 
taphonomic processes as well as research strategies can cause under- or overrepre-
sentation and absence of proxies.

Records from marine cores are often used in studies devoted to environmental 
changes through Pleistocene time (Kotthoff et al., 2011; Martín-Puertas et al., 2010). 
However, in virtually all cases, the transformation of landscapes by hunter-gatherers 
did not trigger visible changes in proxies documented in marine sediments, such as 
charcoal concentrations in deep sea or off-shore cores (Daniau et al., 2009; Scherjon 
et  al., 2015). Therefore, marine cores are not included in this review, only inland 
proxies are considered. It is also important to note that identification of human 
impact on landscapes is only possible when a clear correlation between homi-
nin activities and proxies reflecting landscape changes can be established. In other 
words, in cases where we have several types of evidence for vegetation openness but 
where hominin presence could not be clearly identified, these events of vegetation 
transformation cannot be linked with anthropogenic impact.

Table 3  Proxies and their maximum possible temporal representation (availability) and spatial scale 
(scale which is reflected in a specific type of proxy) for identification of landscape changes to impact 
animal presence and their accessibility in specific locations (category 3)

○ – absence of proxies
● – low availability/spatial resolution
●● – average availability/spatial resolution
●●● – high availability/spatial resolution

Proxies Temporal scales Spatial scales

Last Interglacial Early–
Middle 
Holocene

Local Regional (Sub-)continental

Fishing and hunting constructions ○ ●● ●●● ● ○
Pollen indicators ● ●●● ●●● ●●● ○
AP/NAP ● ●●● ●●● ●●● ○
NPP ●● ●●● ●●● ○ ○
DNA ●● ●●● ●●● ●● ○
Stable isotopes ● ●●● ●●● ●●● ●●●
Zooarchaeological data ● ●●● ●●● ○ ○
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Proxies for Identification of Modification of Vegetation Communities via Burning

Biological Indicators

To clarify the transformation of vegetation cover, relative or absolute abundances of 
remains from plants are required (Birks & Birks, 2016), and these can be obtained 
from palynological studies, analysis of non-pollen palynomorphs (NPP), plant 
macrofossils, DNA from sediments and phytoliths. Although pollen analysis is an 
important tool in research devoted to human-environment interactions, palynologi-
cal data has thus far mainly been used to identify agricultural impact on past land-
scapes (Ledger, 2018), i.e. primarily crop cultivation and cattle grazing. Two major 
approaches have been used to identify these activities: the indicator species and the 
comparative approaches (Gaillard, 2013). These rely on the assumption that the eco-
logical preferences of plants were the same in the past as at present or in recent 
times. The indicator species approach uses a number of pollen taxa (plant species, 
genus, groups of species or genus, families) that are related to anthropogenic activi-
ties such as agriculture (e.g. Behre, 1981; Gaillard, 2013). Occurrence and changes 
in the amount of these pollen indicators can be related to human impact, i.e. occur-
rence and changes in the extent of cultivated, hay meadow and/or grazing lands. 
Gaillard (2013) provides a list of tree and herb pollen taxa (with a few fern spores 
often included in pollen analyses) grouped into land-use/land-cover types. How-
ever, the number and proportions of pollen indicators also depend on the pollen pro-
ductivity and dispersion characteristics of each plant taxon, the location of human 
activities in relation to the pollen site, and the type and size of the pollen site (e.g. 
Hellman et al., 2009; Hicks, 1992; Hicks & Birks, 1996). The comparative approach 
builds upon databases of modern pollen assemblages from traditional agricultural 
landscapes and compares them with fossil assemblages (e.g. Gaillard et al., 1994; 
Mazier et  al., 2006, 2009). For instance, the indicator species approach has been 
applied within Britain and Ireland to infer Mesolithic forest manipulation, includ-
ing identification of secondary woodland taxa following disturbance (Warren et al., 
2014) and open ground indicators (ibid.; Bishop et al., 2015). Interpretation of such 
pollen evidence generally relies on the context of certain pollen assemblage and sev-
eral lines of evidence within the pollen record, including decreases of tree taxa char-
acteristic of mature woodland followed by sudden, regular occurrence or increases 
of pollen from other tree taxa and woodland herbs favoured by clearance during a 
short period. To the best of our knowledge, the comparative approach has not been 
used in studies of hunter-gatherers.

Deforestation and increases in landscape openness can be reconstructed from 
the relationship between the percentages of arboreal and non-arboreal pollen taxa 
(AP/NAP). This index is traditionally used to infer changes in landscape openness 
over time around a pollen site. Inferences about a human role in creating vegetation 
openness by burning are based primarily on correlation of AP/NAP ratios with evi-
dence for human activity, the presence of proxies indicating burning and evidence 
for other factors (e.g. natural fire regime, megafauna activity). It has been shown, 
however, that this relationship is not straightforward and is strongly influenced by 
the character of the pollen assemblage, i.e. the composition and distribution of 
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vegetation patches, the type and size of the pollen site (lake or bog, large or small) 
and inter-taxonomic differences in pollen productivity and dispersal characteristics 
(e.g. Sugita et al., 1999; Sugita, 2007a, b; Cui et al., 2013; Hellman et al., 2009). 
Nevertheless, the combination of AP/NAP percentages with pollen indicators and 
other palaeoecological data can provide robust reconstructions (e.g. Svenning, 
2002). Recent developments in quantitative reconstructions of past plant cover make 
it possible to provide more realistic reconstructions of past landscape openness at 
both local and regional spatial scale using the Landscape Reconstruction Algorithm 
modelling approach (LRA, Sugita, 2007a, b). Among the pollen analytical methods 
reviewed above, the indicator species approach and the LRA are the most appropri-
ate to identify possible forager activities such as small-scale crop cultivation, use of 
wild plants for consumption or building material and utensils (e.g. Gaillard, 2013; 
Gaillard et  al., 1994; Regnell et  al., 1995), and reconstruct landscape transforma-
tions such as changes in regional and local vegetation openness and composition 
(e.g. Nielsen et al., 2012; Nielsen & Odgaard, 2010; Trondman et al., 2015).

An important proxy for reconstructing hunter-gatherer burning of vegetation is 
the concentration of carbonised remains in samples derived from archaeological 
sites and their surroundings. Although evidence of the use of fire is rare for hunter-
gatherers and less evidence is available for the Palaeolithic than for the Mesolithic 
(Goldberg et al., 2017), an increased amount of charcoal above a baseline level (i.e. 
reference level relative to which higher/lower charcoal concentrations are identified) 
is often considered an indication of human impact (Ledger, 2018). Distinguishing 
anthropogenic burning is easiest in contexts where vegetation is not prone to burn-
ing and natural charcoal production is low (Scherjon et al., 2015). Correlation with 
proxies indicating vegetation change and human activity is also key. Charcoal parti-
cles can travel distances varying from local to regional, with the distance influenced 
by particle size and shape, characteristics of the fire and wind speed (Vachula et al., 
2018; Vachula & Richter, 2018). However, hunter-gatherer burning is most likely 
to be detectable on a relatively small scale, particularly when population densities 
are low (Scherjon et al., 2015), and there are benefits to focusing on charcoal from 
depositional contexts (such as small lakes or colluvial settings) that reflect this scale. 
While both microscopic and macroscopic charcoal are of interest, the former is less 
often available/recorded: in the rest of this article, we do not distinguish the two size 
classes.

Charcoal records extend back to the Carboniferous period (Scott, 2000) and 
should be available equally for Palaeolithic and Mesolithic contexts. In interpret-
ing charcoal peaks, it is important to take into account non-anthropogenic factors 
that affect abundance: fire characteristics, environment, meteorological conditions, 
taphonomy (e.g. sediment mixing, bioturbation) and time gaps between a fire epi-
sode and charcoal deposition (Duffin et  al., 2008; Innes et  al., 2004). The size of 
charcoal particles is also influenced by the pH of their encasing matrix: alkaline 
sediments lead to fragmentation (Braadbaart et  al., 2009). Thus, interpretation of 
charcoal data in terms of anthropogenic factors is very problematic and any analy-
sis should take into account the many factors related to the specific area, sampling 
site and methods used. In our analyses, we focus on charcoal data from contexts 
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with a local-scale catchment, slow deposition rate, solid chronology and evidence of 
human activity-related proxies.

Percentages of non-pollen palynomorphs (NPP, e.g. fungi, zoological remains, 
plant fragments, algae) reflect the local ecological features of a site, because NPP 
are dispersed locally around the point of their origin (Cugny et  al., 2010; Innes 
et al., 2013; Menozzi et al., 2010). NPP can be preserved in Pleistocene (e.g. Bakels, 
2012; Sandom  et al., 2014a) and Holocene (e.g. Ryan & Blackford, 2010; Tunno 
& Mensing, 2017) deposits within all types of habitats. This makes NPP applica-
ble for Middle Palaeolithic and Mesolithic studies. NPP provide information about 
human-driven and natural processes (e.g. erosion, fire frequency, presence of pas-
tures) (Gelorini et al., 2012; Haas, 2010; Revelles & van Geel, 2016). In particular, 
the presence of some types of NPP, which appear after fires or can live within open 
habitats (e.g. Loughlin et al., 2018), constitutes one possible type of evidence of past 
fires.

Plant macroremains can be seen by the naked eye and identified under a micro-
scope: diaspores (seeds, fruits, some large spores) and vegetative parts such as 
needles, leaves, buds, budscales, flowers, bulbils and roots. Plants with low pollen 
production or vegetative reproduction can often be identified through plant macrore-
main analysis (e.g. Birks, 2001). These remains often indicate local processes when 
working with autochthonous assemblages from peat bogs and mires, with potential 
for more regional reconstructions based on allochthonous assemblages in specific 
environmental settings (fluvial and lacustrine deposits) when transportation is taken 
into account (Greenwood, 1991; Rawlence et al., 2014). Plant macroremains could 
be indicative of hunter-gatherer burning when they are charred, derived from open 
areas (i.e. are left by light demanding species) and/or from nutrient-rich, disturbed 
areas (i.e. are left by species that grow in burned areas), and if this type of proxy can 
be correlated with the presence of hunter-gatherers in the study area (Bos & Urz, 
2003).

DNA from sediments is another type of proxy that can be used in studies of 
anthropogenic burning. DNA can be extracted from different contexts such as fro-
zen soils, marine and lake deposits, peats, loess and archaeological sites. Biodiver-
sity changes, vegetation alteration and climatic fluctuations can be clarified based on 
extracted DNA from sediments (e.g. Dussex et al., 2021; Giguet-Covex et al., 2014, 
2019; Parducci et al., 2012; Rawlence et al., 2014). The current temporal limit of 
ancient DNA (aDNA) is up to 1 mya for samples from ice and permafrost (Callaway, 
2021). ADNA generally comes from plants and animals which were physically pre-
sent at or near the sampling location and therefore reflect a local signal. However, 
regional processes such as long-distance dispersal of pollen can also affect results. 
Depending on the taxon of a plant identified via aDNA, corrections should be made 
in accordance with information about the pollen productivity of this taxon and long-
distance dispersal. Currently, anthropogenic vegetation changes visible via aDNA 
have mainly been identified for past farming societies and their impact on landscapes 
via burning, logging and grazing (Dussex et al., 2021; Foster et al., 2020). ADNA 
allows one to identify plants to a high taxonomic resolution, and this approach is 
useful for small-scale vegetation changes (Niemeyer et al., 2017). Therefore, sedi-
mentary aDNA could be useful in studies devoted to hunter-gatherer fire events.
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Phytoliths are rigid, microscopic structures made of silica, present in some plant 
tissues and persisting after the decay of the plant. Although their production depends 
on taxa, phytoliths occur in many plants, especially grasses, sedges and palms 
(Albert & Cabanes, 2007). Phytoliths often represent stable plant remains which 
decayed in place, reflecting local processes (Rovner, 2001). However, phytoliths can 
be transported via wind or water, and it is important to decide which of those pre-
sent were formed in situ (Twiss, 2001). Phytolith analysis is often used in studies 
of farming societies (e.g. Piperno et al., 2009; Rosen & Weiner, 1994; Zhang et al., 
2010) especially when it is not possible to identify cereals via pollen. Regarding 
hunter-gatherer impact on landscapes via fire, phytoliths are a tool to study vegeta-
tion openness, fire fuel and past burning regimes (Strömberg et al., 2018; Thompson 
et al., 2021). The inorganic nature of phytoliths makes them resistant to most types 
of impact including burning and suitable for identification of plants to taxonomic 
and anatomical levels (Esteban et al., 2018), even though diagenesis can influence 
preservation of phytolith morphology and hence limit identification, especially 
in alkaline settings (Braadbaart et  al., 2020). Phytoliths have been used in studies 
devoted to fuel from fireplaces within foragers’ sites (e.g. Albert & Cabanes, 2007; 
Esteban et  al., 2018) and to burning of vegetation (e.g. Boyd, 2002; Roos et  al., 
2018) by hunter-gatherers.

Geochemical Indicators

Past fire activity can be estimated via several geochemical proxies. It has been sug-
gested that concentrations of polycyclic aromatic hydrocarbons (PAHs) in sediments 
reflect past fire activity (Brittingham et  al., 2019). Differences between light (3–4 
rings) and heavy (5–6 rings) PAHs can be used to separate the background signal 
from localised burning events. The limitation of this method is instrumental because 
detecting PAHs requires great sensitivity (Denis et al., 2012). Identification of PAHs 
has not become a standard research method in studies about hunter-gatherer impact 
on landscapes: a rare example of application focused on hominin burning during the 
Middle Palaeolithic (Brittingham et al., 2019).

Black carbon is a fire residue produced by incomplete combustion of organic 
matter (Brodowski et al., 2005; Kaal, Martinez-Cortizas, et al., 2008b). Black car-
bon has been used as a proxy for Holocene fire regimes and vegetation reconstruc-
tion in palaeoenvironmental and archaeological studies (ibid.; Kaal, et  al., 2008a, 
2011). Moreover, black carbon appears to be much more abundant in soils and sedi-
ments than macroscopic charcoal (Kaal et al., 2008a). Concentrations of black car-
bon reflect local anthropogenic activities (e.g. cooking, heating) and regional natural 
processes (e.g. long-distance emissions carried by winds and rainfall) (Ramachan-
dran & Kedia, 2010; Chen et  al., 2018). Therefore, interpretation of black carbon 
concentrations in sediments can be difficult. Potentially, black carbon can be used in 
studies about hunter-gatherer burning during the Holocene, but links between burn-
ing events on different scales and black carbon concentrations should be supported 
by data from other proxies.

Levoglucosan is a degradation product obtained from cellulose burning at tem-
peratures more than 300°C (Kehrwald et al., 2012). Levoglucosan and its isomers, 
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mannosan and galactosan, are considered robust indicators for biomass burn-
ing, because they can remain stable in the atmosphere for several days and can be 
transported over hundreds of kilometres (ibid.; Sang et al., 2016; Schreuder et al., 
2019). Levoglucosan then returns to the surface and becomes trapped in continental 
archives such as ice sheets (Kehrwald et al., 2012). Therefore, levoglucosan reflects 
regional and continental processes, rather than local-scale fire events such as hunter-
gatherer burning practices.

In summary, burning of vegetation communities by hunter-gatherers can be iden-
tified via several types of proxies. All biological indicators (Table 1) reflect fire epi-
sodes on the local scale, and some of them do so on the regional scale. This makes 
biological indicators suitable for studies of hunter-gatherer vegetation burning, 
because these events were conducted on local scales, and, therefore, may be vis-
ible via proxies with a local resolution. Geochemical data is either difficult to detect 
or can reflect events on all three scales from local to (sub-)continental. Therefore, 
hunter-gatherer impact on vegetation can be difficult to identify via this group of 
proxies.

Proxies for Identification of Small‑Scale Plant Manipulation by Hunter‑Gatherers

Tools as Indicators of Plant Manipulation

Discoveries of tools unambiguously related to plant manipulation during the Pleis-
tocene are very rare. Recent studies provided indirect evidence of such activities by 
hunter-gatherers from Ohalo II (Israel), at about 23,000 years ago: the earliest sickle 
blades for harvesting of cereals and proto-weeds (Snir et al., 2015). Combinations of 
different types of proxies (plant macrofossils and tools for plant processing) make 
this case study relatively unambiguous. While Neanderthals have been shown to 
be consumers of plant foods (e.g. Henry et al., 2011, 2014), stone tools interpreted 
as grinding stones are known from a number of Eurasian Upper Palaeolithic sites 
and suggest systematic exploitation of plant foods including grasses and tubers (Liu 
et al., 2013; Mariotti Lippi et al., 2015; Revedin et al., 2010).

In accordance with available data, hunter-gatherers included controlled, regu-
lar and intensive use of plant resources in their activities by the Late Mesolithic 
in Europe (Divišová & Šída, 2015), and even small-scale harvesting repeated over 
many episodes and distributed over a landscape could cause landscape changes. 
Plant manipulations can be identified via the presence of tools for soil-working, 
reaping and processing: digging sticks, hoes, mattocks and other tools for procur-
ing roots and tubers, clearing undergrowth, preparing the soil for planting and seed-
ing, and grating/grinding plants (Zvelebil, 1994). Tools can be studied via use-wear 
analysis, and identified traces on surfaces can show that some tools were used on 
both plant and animal materials (e.g. Solheim et al., 2018), and some only on plants 
(e.g. Osipowicz, 2019). Evidence of surface transformation (e.g. ditches, channels) 
within sites can also reflect plant manipulations organised by foragers (Denham 
et al., 2004).



1 3

Tracking Hunter-Gatherer Impact on Vegetation in Last…

Biological Indicators of Plant Manipulation

Biological indicators such as plant macroremains and microfossils (pollen, paren-
chyma, phytoliths and starch grains) do not necessarily represent plant manipulation. 
The presence of taxa outside their natural environment (i.e. archaeological sites can 
contain plant remains which were not local in the region where the site is located), 
overrepresentation of taxa, fragmentation of plants, their carbonisation and spatial 
distribution of remains within archaeological sites can help to clarify which species 
were available for hominins, and which plants were used (Divišová & Šída, 2015). 
In particular, analysis of plant macroremains from cultural layers shows important 
plant food resources for hunter-gatherers (e.g. ibid.; Divišová & Šída, 2015; Reg-
nell, 2012). In addition to macroremains, pollen spectra can also reflect which plants 
were available for populations (e.g. Finsinger et  al., 2006; Regnell, 2012). How-
ever, plant macroremains and pollen data do not indicate whether specific forms of 
manipulation were involved.

Phytoliths were mentioned above in relation to studies of hunter-gatherer impact 
on vegetation via burning. They are mainly used in studies of plant domestication 
and cultivation, because of morphological differences between phytoliths of domes-
ticated and wild species (Piperno & Stothert, 2003; Zeder et al., 2006). The abun-
dance of phytoliths in many plants (Albert & Cabanes, 2007) could make this proxy 
useful in studies of hunter-gatherer plant use, but there are currently much fewer 
studies of phytoliths for hunter-gatherer (e.g. Zurro et  al., 2009) than for farming 
societies.

Parenchyma analysis examines tissue and individual cells of parenchymatous 
storage organs (Harris, 2013) and reflects local activities of populations (Fuller & 
Lucas, 2014). The parenchyma is a part of plant tissue found in most non-woody 
plants (Pryor et al., 2013). Due to variability in both morphology and physiology, it 
is possible to identify the plant species and determine if the plant was wild, domes-
ticated or somewhere in between (Morris et  al., 2016). Nevertheless, parenchyma 
cells are often difficult to recognise and can be misinterpreted as burned cells from 
woody plants. If the parenchyma cells are recovered from a hearth, they may rep-
resent plant foods, but they may also have entered the record through animal dung 
burned as fuel (Pryor et al., 2013). Parenchyma has been recovered from Mesolithic 
and Epipalaeolithic contexts and some Upper Palaeolithic sites (e.g. Dolní Vĕstonice 
II) (ibid.). Their absence from earlier contexts may be related to the relatively recent 
archaeological use of this proxy (Fuller & Lucas, 2014). Regarding Mesolithic pop-
ulations, parenchyma analysis has made it possible to identify categories of avail-
able plant food such as Polygonum (buckwheat and knotweed family), Sagittaria el. 
sagittifolia (arrowhead) from Całowanie (Poland) and roots of dicotyledon plants 
from Halsskov (Denmark) (e.g. Kubiak-Martens, 1996, 2002).

Starch-grain analysis studies have found organic residue preserved on stone tools 
(Harris, 2013; Piperno et al., 2004; Pryor et al., 2013) and in dental calculus (Henry 
et al., 2011; Pryor et al., 2013). These grains are plant microremains such as spores, 
pollen and phytoliths (Kovárník & Beneš, 2018). Starch grains are particularly sig-
nificant because they can be found in all plants and are resistant to grinding and dry-
ing, can occasionally survive carbonisation (Cortella & Pochettino, 1994) and can 
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thus provide a list of species used at an archaeological site (Messner et al., 2008). 
However, starch grains are rarely present (or recovered) from archaeological sites, 
and often unidentifiable if deteriorated or fragmented (Cortella & Pochettino, 1994). 
Starch grains have been identified in the dental calculus of Lower Palaeolithic homi-
nins, with the oldest starch grains identified thus far, from the Sima del Elefante site 
at Atapuerca, Spain, being 1.2 Ma old (Hardy et al., 2017). More evidence is known 
from the Middle Palaeolithic, from sites such as Qesem Cave, Israel (Hardy et al., 
2016); Shanidar Cave, Iraq; and Spy Cave, Belgium (Henry et al., 2011, 2014). Plant 
food was an essential dietary component for the occupants of these sites, and indi-
cations of heat modification, probably by boiling, of starch grains were identified 
in Neanderthal dental calculus at Shanidar (Henry et al., 2011, 2014). More details 
about plant procurement have been obtained for Upper Palaeolithic sites. Analysis 
of grinding tools from Grotta Paglicci (Italy) showed that humans consumed Avena 
(oats) and conducted thermal treatment before grinding. Data from Bilancino (Italy) 
and Dolní Věstonice (Czech Republic) supported evidence of advanced plant exploi-
tation before the agricultural transition in Europe. In relation to the Mesolithic, 
starch-grain analysis made it possible to identify consumption of domestic cereals 
(Triticum monococcum, Triticum dicoccum, Hordeum distichon) before 8,550 BP in 
the Balkans (site of Vlasac) (Kovárník & Beneš, 2018).

Thus, specific types of plant manipulation by hunter-gatherers can be identified 
based on specific tools for these activities. The majority of biological proxies only 
reflect which plants were available, and which species were consumed. Specific 
types of manipulation are often not possible to identify based on biological indica-
tors alone.

Proxies for Landscape Modifications to Impact Animal Presence and Their 
Abundance in Specific Locations

The earliest archaeological evidence of fishing and hunting constructions are dated 
to the Early–Middle Holocene (e.g. Bailey et  al., 2020; Lozovski et  al., 2013; 
McQuade & O’Donnell, 2007; O’Shea & Meadows, 2009). Direct evidence of fish-
ing is rare and fragmentary for the Mesolithic in comparison with later periods, 
and the best sources of information are sites with high moisture content. Fishing 
structures (fish fences, weirs, screens, traps) were used in specific types of fishing 
without active human participation (Lozovski et al., 2013; Lozovski & Lozovskaya, 
2016) and served as a barrier to fish migration (Montgomery et al., 2015).

Almost no Mesolithic hunting fences have been discovered, but there are stone 
structures from the Great Lakes of North America (O’Shea & Meadows, 2009) and 
in the southeastern part of Jordan (al Khasawneh et al., 2019), likely dating to the 
Early Holocene. The low number of hunting fences discovered may be caused by 
their poor preservation, and dating difficulties as well as limited usage of such con-
structions by prehistoric hunter-gatherers and incorrect interpretations. Therefore, 
other evidence should be used to identify hunter-gatherer impact on animal presence 
and their abundance in specific locations. In particular, it can be identified via data 
related to changes in megafaunal populations due to overhunting, transportation of 
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animals or other factors, which can however be difficult to rule out (e.g. climatic 
fluctuations). A decrease in the number of herbivores causes changes in vegetation 
cover such as distribution of shrubs and forests, higher absorption of solar radiation 
and rises in temperature (Boivin et al., 2016). To detect megafaunal presence and to 
assess changes in their distribution and density, pollen spectra, NPP, DNA, stable 
isotopes, and the amount and spatial distribution of faunal remains in layers within 
archaeological sites should be used as proxies.

As mentioned above (“Proxies for Identification of Modification of Vegetation 
Communities via Burning” section), changes in the amount of pollen indicators can 
be related to changes in the extent of grazing land. Increasing percentages of NAP 
relative to AP reflect increases in landscape openness. Pollen indicators and AP/
NAP should be used together, and their quantitative changes can be caused by sev-
eral factors including megafaunal presence. In addition to changes in pollen spectra, 
animal presence can be identified via NPP (coprophilous fungi, eggs of parasites 
and beetles). These are deposited close to their point of origin (Cugny et al., 2010; 
Innes et al., 2013; Sandom et al. 2014a; Revelles & van Geel, 2016; Huang et al., 
2020). Both pollen data and NPP have been used to identify the role of herbivores 
in landscape transformations, past mammalian behaviour and herbivore extinction 
processes in the past (Gill et al., 2013; Sandom et al. 2014a; Loughlin et al., 2018).

Another proxy for assessing animal presence is DNA. It can be used to under-
stand human actions aimed at enhancing and/or expanding the geographic range of 
specific animal species and management of prey movements. DNA of animals can 
be extracted from sediments, and local presence of these species can be identified 
(Dussex et al., 2021; Haile et al., 2009). For example, parasite DNA from animal 
coprolites can chart the distribution of certain species and reflect human impact 
on them (Rawlence et al., 2014). DNA can be extracted from faunal remains, and 
this data can reflect the spatial distribution of animals based on geographic mark-
ers (Schlumbaum et  al., 2008). Finally, past intense hunting pressure may have 
influenced population size and the distribution of targeted species. Studying the 
population dynamics of prey species through time using genetic studies can provide 
information about effective population sizes and whether one is dealing with a con-
tinuous ‘chrono-population’ (individuals from older faunal assemblages are directly 
ancestral to the individuals from younger faunal assemblages) or whether faunal 
turnovers occurred, possibly as a result of hunting pressure. Such studies are in their 
infancy, but are promising.

Stable carbon, oxygen and strontium isotope data are used in studies of megafau-
nal mobility, their geographic range and anthropogenic and climatic factors influenc-
ing animals (Swift et al., 2019). Geographically and temporally different populations 
and subpopulations have distinct isotopic values (Hoppe, 2004; Price et al., 2017). 
Isotopes vary in terms of spatial resolution: hydrogen and oxygen are ‘global-spa-
tial’ assays; carbon, nitrogen, sulphur and strontium are ‘local-spatial’; and multiple 
isotopes can be combined to increase spatial resolution (Wassenaar, 2008).

Faunal remains studied via zooarchaeological methods can clarify hominin 
impact on animal populations within site-adjacent areas. Such research pays consid-
erable attention to taphonomy because this directly influences skeletal part represen-
tation, age and sex profiles, the visibility of markers caused by human activity and 
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other evidence used for inferences about past human behaviour (diet, subsistence 
practices, animal husbandry, food distribution, social and cultural variation in food-
ways) (Boethius, 2018; Landon, 2005). Preservation of bones and their information 
content varies between regions due to differences in soils and sedimentary geo-
chemistry. Nevertheless, the general trend is characterised by the progressive loss of 
material through time (Surovell & Pelton, 2016).

Finally, human-induced burning can be used as a tool for prey management as 
discussed above. Therefore, proxies related to anthropogenic burning (Table 1) can 
be used in research related to past relationships between humans and animals. How-
ever, these proxies should be used carefully; apart from the ubiquitous problem of 
differentiating natural from anthropogenic fires, humans used fires for varied pur-
poses. Therefore, evidence for hunter-gatherer burning per se does not equal human 
impact on animal populations; more evidence is needed to warrant conclusions here.

Direct evidence of hominin impact on landscapes to impact animal presence and 
their abundance are fishing and hunting constructions, but their remains are rarely 
available for periods studied. Therefore, other proxies should be used to assess ani-
mal presence within specific locations: pollen indicators, AP/NAP, NPP, DNA and 
stable isotopes. However, these types of evidence should be linked with hominin 
presence and activity, because such proxies can reflect both the natural distribution 
of animals and anthropogenic impact on their presence. Faunal remains studied via 
zooarchaeological methods can clarify specific practices which were used by homi-
nins to hunt and consume animals.

Case Studies

The following sections aim to illustrate the use of proxies in actual Middle Palaeo-
lithic (Neanderthal) and Mesolithic archaeological contexts. These two types of 
context were chosen as an illustration because they were both formed under inter-
glacial conditions with comparable climate (Svenning, 2002). The “The Visibility 
of Hunter-Gatherer Activity in Last Interglacial Records at Neumark-Nord” and 
“Impact of Mesolithic Hunter-Gatherers on Their Surroundings” sections focus 
on describing which proxies were extracted from both contexts and how they were 
interpreted for each of our categories of hunter-gatherer niche construction activi-
ties. We then assess whether the full range of proxies and best proxies are obtained 
and analysed in practice, and the extent to which this varies in older and younger 
contexts. We also discuss the strengths and weaknesses of the analysis of these prox-
ies. A complete review of all relevant sites is beyond the scope of our paper, par-
ticularly for the Mesolithic; instead, we focus on case studies with large numbers 
of proxies that have a link to human activity. Finally, the current understanding of 
Neanderthal and Mesolithic impact on landscapes and common niche construction 
activities for both Neanderthals and Mesolithic humans are discussed.
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The Visibility of Hunter‑Gatherer Activity in Last Interglacial Records 
at Neumark‑Nord

The visibility of hunter-gatherer activities during the Eemian is heavily limited due 
to taphonomical factors affecting Last Interglacial records and as a result of research 
bias (Nielsen et al., 2015; Roebroeks & Speleers, 2002). Neumark-Nord (Germany) 
is a rare example of a very rich and well-documented Last Interglacial location 
where different types of proxies (palaeoenvironmental and archaeological) were 
extracted from a landscape in which Neanderthals left a large amount of traces of 
their activities. At this location, the infill of two sedimentary basins has been sub-
mitted to a systematic investigation of Neanderthal activities and their environmen-
tal settings in an ~ 25 ha large Last Interglacial lake landscape. The infill is dated by 
a series of independent methods, including Thermoluminescence studies of heated 
flint artefacts, Amino Acid Racemization studies of Bithynia opercula and palaeo-
magnetic analyses of the Neumark-Nord 2 sequence (see, e.g. Sier et al. (2011) and 
Gaudzinski-Windheuser et  al. (2018) for a summary of the dating evidence). The 
unique preservation at Neumark enables researchers to trace environmental change 
and human subsistence over a period of approximately 11,000 years, with a spatial 
and temporal resolution virtually unparalleled in the Pleistocene record. The Last 
Interglacial record of Neumark consists of a large water basin (NN1), recorded in 
a series of long-term rescue archaeology interventions by Dietrich Mania and his 
team during exploitation of a large brown coal quarry, and an adjacent smaller pool 
(basin NN2), studied in great detail during programmed excavations. Lake basin 
NN1 was about 24 ha large, while basin NN2 represents a small and shallow pond, 
of about 1.6 ha in size. The fine-grained sedimentary infill of the two basins covers 
the complete Last Interglacial cycle. Multidisciplinary analyses at NN2 and correla-
tions with the record from NN1 enabled accurate and high-resolution localisation of 
Neanderthal occupations and faunal assemblages in a palaeoecological framework. 
The Neumark archaeological record contains high-density evidence for flint knap-
ping, animal exploitation and fire use (at NN2) as well as low-density single activity 
death or kill sites, mostly accumulated during the first 7,000 years of the Eemian. 
Comprehensive coverage of the Neumark palaeoecological and archaeological stud-
ies are assembled in Mania et  al. (1990), Mania (2010), Meller (2010), Gaudzin-
ski-Windheuser and Roebroeks (2014), Gaudzinski-Windheuser et  al. (2018) and 
Kindler et al. (2020) (for various detailed studies of a wide range of proxies from 
Neumark-Nord, see Mania, 2010; Meller, 2010; Bakels, 2012, 2014; Britton et al., 
2012, 2019; García-Moreno et al., 2016; Milano et al., 2020).

Based on analysis of lithic assemblage and faunal remains, the NN2 site was 
characterised as a location where hundreds of medium-sized and large herbivores 
were processed during a well-constrained period of the Eemian Interglacial, with 
hominins revisiting the area over a period of minimally 2,000 years (Pop et  al., 
2016) and with a striking absence of traces of carnivore modification of the abun-
dant faunal remains (Gaudzinski-Windheuser et  al., 2018). The frequency and the 
duration of the occupation events is still an open question (Pop, 2014). Samples for 
analysis of pollen, charcoal and animal remains were taken every 5 cm from the 
lithostratigraphic units of Hauptprofil 7 (Main profile 7) in a deeper part of the basin 
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NN2 (Kuijper, 2014; Pop & Bakels, 2015). The rich archaeological find levels at the 
margins of the basin, located ~ 20 m from this profile, were easily positioned within 
the lithostratigraphy of Hauptprofil 7 thanks to the continuous exposures between 
the two locations (ibid.). Episodes with an open park-like forested area around the 
site were identified for NN2 during the period of hominin presence. It was suggested 
that such a type of environment could have been created via a combination of differ-
ent types of disturbances: herbivores, aridity and Neanderthal fire practices (ibid.). 
This suggestion was based on pollen data (high percentages of herb pollen), charred 
plant macrofossils, macroscopic charcoal, thermally altered lithics (charcoal parti-
cles correlate with altered lithics) (Fig. 1) and faunal remains (most remains from 

Fig. 1  Neumark-Nord 2 (Germany) HP 7 sequence, with lithological units and the archaeological find 
levels (Sier et al., 2011), the stratigraphical distribution of charcoal particles, carbonised seeds (Kuijper, 
2014), arboreal (AP) and non-arboreal pollen (NAP) and data regarding vegetation openness (Pop & 
Bakels, 2015); correlation of archaeological layers containing fire-related findings with vegetation open-
ness episodes shown in red
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the archaeological level NN2/2b belong to bovid and horse; wild ass, small cervid 
and roe deer may also be present, and several fragments attest to giant deer, wild 
boar, rhino and elephant) (Kindler et al., 2014). Kuijper’s (2014) detailed study of 
the charcoal particles in the infill of the NN2 basin showed their presence all through 
the interglacial sequence, but with a very noticeable peak at the beginning of Nean-
derthal presence at the site, with ten times the amount of charcoal of any other peak 
in the sequence (Fig. 1, archaeological level NN2/3). Importantly, this charcoal peak 
and the beginning of a strong Neanderthal presence also coincide with significant 
changes in the vegetation: following the earlier (pre-Neanderthal occupation) expan-
sion of taller deciduous forest, the landscape opens up, with a strong rise of upland 
herbs in the pollen curve and the beginning of a long Corylus avellana (hazel) 
period (Bakels, 2014; Gaudzinski-Windheuser & Roebroeks, 2014; Pop et al., 2016; 
Roebroeks & Bakels, 2015) (Fig. 1). Local-scale transformations of the natural land-
scape took place around the site when Neanderthals arrived, but it is not possible to 
establish if this correlation indicates causation (see below). The NN2 evidence how-
ever could reflect Neanderthal actions, specifically burning, to open up the area and 
attract game and increase plant food resources (Pop & Bakels, 2015; Roebroeks & 
Bakels, 2015). The hypothesis about creation of open habitats by Neanderthals was 
supported via comparative study of the Neumark-Nord basins with the records from 
comparable Last Interglacial basins in the area: Gröbern, Grabschütz and Rabutz 
(Roebroeks et al., in press). NN2 and these sites have common characteristics: simi-
lar soil conditions, basin forms, climatic conditions and presence of large mammals 
which preferred both closed forest conditions and open areas. However, data from 
the Neumark-Nord area demonstrates unusual vegetation openness around basins, 
whereas there was relatively closed forest vegetation around other sites. Continu-
ous vegetation openness around Neumark-Nord basins matches with 2,000 years of 
Neanderthal presence, and, therefore, this vegetation change cannot be explained 
only by climatic shifts or megafauna impact.

Close-range hunting of large herbivores by occupants of this larger lake area was 
identified based on hunting lesions on fallow deer bones (Gaudzinski-Windheuser 
et  al., 2018) at NN1. Neanderthals also played an almost exclusive role in bone 
accumulation at NN2 where large amounts of bone fragments with cutmarks accu-
mulated (archaeological level NN2/2b, Fig.  1) (Gaudzinski-Windheuser & Roe-
broeks, 2014; Pop et al., 2018). Molluscs (discovered in units 18–16, 6, 4), fish (dis-
covered in units 18–top 15, 6, 5, 4) and bird remains (egg fragments were discovered 
in units 19–17, 11, 6 and 5) are also abundantly present in the infill. The diet of 
the occupants may have included Prunus spinosa (blackthorn), Quercus sp. (acorn), 
and hazelnut, as their charred macroremains were discovered during excavations of 
archaeological level NN2/2 (Kuijper, 2014). Charred hazelnuts are also known from 
the neighbouring Last Interglacial archaeological site Rabutz (Toepfer, 1958). Based 
on analysis of coarse gravel- and cobble-sized stones transported by Neanderthals 
to the NN2 location, mainly quartzite and sandstone, some of these manuports were 
used for percussive tasks (lithic production and potentially bone processing) without 
contact with soft materials (e.g. nut processing) (Pop et al., 2018).

Thus, the subsistence activities of hunter-gatherers at Neumark-Nord were clari-
fied based on a multi-proxy approach, applied to a series of sediments preserved 
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in rather unique basin structures over large areas beneath a cover of Weichselian 
loess, with a spatial and temporal resolution unparalleled in the Pleistocene record. 
These taphonomically unique sediment traps allowed a detailed study of Neander-
thal subsistence activities, identified via faunal remains with preserved anthropo-
genic traces, lithic assemblages and plant macrofossils. Local-scale transformations 
of the natural surroundings of the small lake of NN2 occurred when Neanderthals 
arrived, a correlation for which there are two plausible explanations: either Neander-
thals started to frequent the location because the landscape had been opened up by 
natural fires as testified by the large charcoal peak in the lower part of the sequence 
(see Fig. 1) or their arrival opened up the landscape, e.g. by their use of fire (Pop & 
Bakels, 2015; Roebroeks & Bakels, 2015). Sedimentation of the infill of the central 
part of the NN2 basin was rapid and nearly continuous, with estimated sedimenta-
tion rates for the archaeology-yielding deposits varying from 0.11 to 0.24 cm/year 
(Sier et al., 2011), yielding a high-resolution NN2 sequence. That is why this case 
study provides an example of the dynamic character of environments and how they 
can be transformed via the impact of several agents (hominins, herbivores and cli-
mate), with likely Neanderthal impact on surroundings. Currently, despite the large 
amount of high-resolution environmental data, it is not possible to identify which 
agent caused which types of changes at this particular location. Situating the local 
Neumark-Nord evidence within the wider regional record, by comparing it with 
similar Last Interglacial basins without an archaeological record, may enable better 
identification of the specific roles of the various actors, including large mammals 
and hominins (Roebroeks et al., in press).

Impact of Mesolithic Hunter‑Gatherers on Their Surroundings

It is widely accepted that Mesolithic populations impacted their surroundings via 
burning in different parts of Europe (Davies et al., 2005; Mason, 2000). Anthropo-
genic burning has been identified around such sites as Meerstad (the Netherlands) 
(Woldring et  al., 2012), the Lahn valley complex (Germany) (Bos & Urz, 2003), 
Dudka Island (Poland) (Gumiński & Michniewicz, 2003), Star Carr (England) (Mel-
lars & Dark, 1998; Milner et  al., 2018), Dumpokjauratj and Ipmatisjauratj (Swe-
den) (Hörnberg et al., 2006), Vingen sites (Djupedalen, Vingeneset and Vingen ter-
race in Norway) (Hjelle & Lødøen, 2017) and the rock art park of Campo Lameiro 
(Spain) (Kaal et al., 2013). Table 4 shows that vegetation burning was mainly identi-
fied based on increased charcoal concentrations and the presence of pollen produced 
by species indicative of open/disturbed areas. These types of evidence were asso-
ciated with archaeological records of human activity within and around sites, and 
therefore these burning events were interpreted as human-induced fire episodes (Bos 
& Urz, 2003; Gumiński & Michniewicz, 2003; Hjelle & Lødøen, 2017; Hörnberg 
et al., 2006; Kaal et al., 2013; Mellars & Dark, 1998; Milner et al., 2018; Woldring 
et al., 2012). As we can see, one type of evidence (pollen spectra) dominates in such 
studies; in fact, the data from the Lahn valley is outstanding because more types of 
proxies were related to human-induced burning there. Therefore, this case study is 
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discussed in more detail below in accordance with the article published by Bos and 
Urz (2003).

Archaeological sites from the Lahn valley area in Germany were investigated at a 
high chronological resolution. Niederweimar 6 (NW6) and Niederweimar 8 (NW8) 
are two early Mesolithic archaeological sites discovered in 1994 during gravel min-
ing. They are both located on river terraces along Holocene residual channels. Lith-
ics and carbonised animal teeth were found within NW8, and a Mesolithic campsite 
was identified within NW6 where concentrations of artefacts and a fireplace were 
found. Geomorphological and palaeobotanical research was conducted in conjunc-
tion with pollen analysis and radiocarbon dating to reconstruct vegetation transfor-
mations in this area. Plant microfossils were collected from different well defined 
and dated residual channel fills, and pollen data was collected from three sediment 
profiles along a transect at different distances (75–200 m) from the archaeological 
sites. Pollen samples were taken from palaeochannel fills of the river Lahn. Char-
coal concentrations and NAP totals were calculated. Nineteen samples were AMS 
dated to obtain a chronostratigraphical framework which covers the period between 
11,640 BP and 8,830 BP. Mesolithic settlement existed in this area between around 
10,940 BP and 10,360 BP.

Several proxies were combined to make hunter-gatherer landscape changes vis-
ible in the records. Correlation between different types of evidence was conducted 
via absolute dating, fluvial geomorphology and comparison of diagrams. As a result, 
large amounts of charcoal, high percentages of light demanding taxa and plants indi-
cating a nitrogen- and nutrient-rich environment (i.e. disturbed surroundings and 
input of organic material) (Fig. 2), along with the presence of Mesolithic occupa-
tion traces in the area, were interpreted as evidence of human impact on landscapes 
via clearance and burning. In particular, high percentages of charcoal and macrofos-
sils reflecting nutrient-rich and disturbed places, and the reduction of woody plant 
macrofossils around 10,420 BP (Fig.  2), were interpreted as indicating clearance 
and deliberate burning of the pine, birch and hazel-rich woodlands leading to the 
expansion of more open vegetation. The second phase of human impact in the oak, 
elm and hazel-rich woodlands took place around 10,350 BP, based on the identifica-
tion of the second-highest charcoal peak along with a relatively high percentage of 
macrofossils from nutrient-rich and disturbed places. In addition, several periods of 
openness in hazel woodlands were discovered based on the pollen spectrum (Fig. 2).

The presence of bones (some with cutmarks) of wild animals reflect the impor-
tance of hunting for occupants from the Lahn area. Hence, game attraction may 
have been one of the main reasons for vegetation burning. Ease of human move-
ment could also be mentioned as a possible reason for fire practices. The discov-
ery of hazelnut fragments (both charred and uncharred) in archaeological layers led 
the authors to the conclusion that promotion of the growth of edible plants such as 
hazel was one more reason for burning vegetation (Bos & Urz, 2003). However, it is 
important to highlight that coppicing and pruning were important ways to promote 
edible plants, and these techniques were quicker ways to increase plant growth in 
comparison with vegetation burning (Bishop et  al., 2015). Additionally, naturally 
good growing conditions could promote hazelnut growth (Groß et al., 2019).
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Regarding plant manipulation, macrofossils of plants have been found in Meso-
lithic layers within sites in the Netherlands and Great Britain (e.g. Ficaria verna, 
lesser celandine), Denmark (e.g. Allium cf. ursinum, ramsons and Conopodium 
majus, pignut), and Poland (e.g. Sagittaria cf. sagittifolia, arrowhead) (Klooss 
et al., 2016; Kubiak-Martens, 2015). Due to the fact that tubers and roots of these 
plants were discovered as charred remains, researchers have concluded that these 
plants were part of the Mesolithic diet. Roots and tubers could have been abun-
dant, starch-rich and easily available foods in temperate Europe. The starch content 
of these plants would have made a significant dietary contribution and made their 
enhancement worthwhile. Macrofossils of hazel and nut processing equipment were 
discovered in Mesolithic layers within different sites (e.g. Divišová & Šída, 2015; 
Groß et al., 2019; Holst, 2010; Regnell, 2012), and, therefore, this plant is currently 
considered one of the most important vegetable components of the Mesolithic diet. 
However, intensive exploitation of hazelnuts may be a response to good growing 
conditions rather than a result of human intervention (Groß et al., 2019). Not only 
nuts but also other parts of plants have been found in Mesolithic assemblages which 
indicate that variable parts of plants were available for people, though specific types 
of plant manipulation are difficult to identify based on such evidence. Additionally, 
tools potentially related to Mesolithic plant manipulation were discovered within 
different European sites: wooden hoes and mattocks, antler artefacts interpreted as 

Fig. 2  Pollen analysis (pollen percentage of trees, shrubs, upland herbs and Corylus avellana) from Wei-
mar-Niederweimar II.2 profile and macrofossil evidence (percentage of wood, charcoal and remains from 
plants occupying open, disturbed and nutrient-rich areas) from different palaeochannel fills at Weimar-
Niederweimar (Germany). The sequence shown here is dated to the Younger Dryas (11,640 BP, gravel 
layer), Preboreal (11,400–10,970 BP, gravel layer) and Boreal periods (10,420–9,510 BP, sand/gyttja and 
gyttja layers); phases of Early Mesolithic anthropogenic impact within the Lahn valley area are shown in 
red (after Bos & Urz, 2003)
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tools for a range of purposes including digging, and blades and microblades with 
traces of plant processing (Zvelebil, 1994). However, these tools could have been 
used for varied purposes, and unambiguous identification of their actual use is dif-
ficult to achieve. Mesolithic populations may have carried out small-scale plant 
manipulation for purposes other than obtaining food. In particular, the number of 
wooden artefacts discovered increased in the Mesolithic in comparison with preced-
ing periods. Coppicing and forest clearing have been mentioned as possible methods 
to obtain wood materials of the properties required to produce tools or construct 
structures for variable purposes (e.g. McQuade & O’Donnell, 2007; Warren et al., 
2014; Bamforth et al., 2018). Overall, it is difficult to distinguish unmanaged wood 
from coppicing remains left by humans (Out et al., 2013).

Animal presence within specific locations is often difficult to link directly with 
hunter-gatherer activity without evidence of special constructions (e.g. fences or 
traps) for the management of animal movements and distribution. Constructions 
for management of aquatic resources were identified within Mesolithic sites such 
as North Wall Quay in Ireland (McQuade & O’Donnell, 2007), and Zamostje 2 in 
Russia (Lozovski & Lozovskaya, 2016). The importance of aquatic resources for 
some Mesolithic groups was also supported via a combination of different proxies: 
several types of evidence were obtained as the result of zooarchaeological analy-
sis interpreted in conjunction with ethnographic analogues (evidence of fish extrac-
tion in large quantities, year-round seasonality indicators, determination of species, 
etc.), archaeological (presence of mass catching equipment and a fish fermentation 
facility) and isotope studies (high dietary intake of aquatic resources by humans) in 
southern Scandinavia (Boethius, 2018). Terrestrial structures have not been discov-
ered in Europe yet. An example of a study in which a link has been made to hunter-
gatherer activity for terrestrial animals without the presence of special construc-
tions is the North Gill site in England (Innes & Blackford, 2003). There are several 
exposed peat sections at the site, the base of which is rich in charcoal and contains 
evidence of fire disturbance. One of the previously defined basal disturbance phases 
at the site was studied via analysis of fungal spores in conjunction with already-
published charcoal and pollen counts. Samples were extracted from the basal dis-
turbance phase at core North Gill 5B. Fungal spores were counted from the same 
slides as for the pollen and charcoal data derived from the basal disturbance phase 
at core North Gill 5B. Post-disturbance phases after burning were reflected in pol-
len (abundance of Melampyrum as the initial post-fire flora), charcoal concentrations 
and fungi (Neurospora and Gelasinospora) counts (Fig.  3). An increased amount 
of dung fungus (e.g. Sporormiella) and pollen of Succisa and Potentilla-type dur-
ing the post-disturbance transitional phases may reflect the presence of herbivores 
and intensive grazing. This data supports the view that recently burned areas were 
attractive for game. Two factors were considered causes of burning events leading to 
an increase in grazing activities: anthropogenic burning and climatic impact (ibid.; 
Innes & Blackford, 2017).

Therefore, data from several European archaeological sites has been interpreted 
by researchers as evidence of vegetation burning organised by hunter-gatherers 
during the Mesolithic. Such evidence mainly includes increases in charcoal con-
centrations and pollen of species occupying open/disturbed areas while Mesolithic 
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people were present in the areas. Anthropogenic burning was mostly local and dur-
ing favourable conditions for the spread of fire could impact surroundings more dra-
matically. The high importance of plants in the Mesolithic diet was mainly identified 
based on the presence of charred and not charred plant remains within cultural lay-
ers. Specific types of plant manipulation could be suggested based on tools discov-
ered in different archaeological sites in Europe. Mesolithic people also used aquatic 
and terrestrial animal resources, but the direct evidence (e.g. traps, fences) of hunter-
gatherer impact on animal presence and their abundance in specific locations is only 

Fig. 3  Pollen analysis (pollen percentage of Corylus, Melampyrum, Succisa, Potentilla-type and micro-
charcoal) and NPP evidence (percentage of Gelasinospora, Neurospora, Sporormiella) from a profile at 
North Gill 5B (North York Moors within England and Wales). This evidence reflects post-disturbance 
phases after burning and intensive grazing during the Late Mesolithic at North Gill. The profile consists 
of amorphous peat resting on sand at 100 cm. The inferred age of the basal peat lies within the Late 
Mesolithic based on dates available for a section a few tens of metres away from North Gill 5 (5,270 BP) 
and higher section of this site (4,540 BP at 73 cm) (after Innes & Blackford, 2003). Red shows the phase 
with the highest herbivore concentrations; this follows a phase with intensive burning
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available for the former. NPP and pollen spectra reflected high grazing activity, but 
a strong link between human activity and high concentrations of herbivores around a 
specific site has not been established.

Discussion

Currently, identifying what niche construction activities Last Interglacial and 
Early–Middle Holocene hunter-gatherer populations had in common is complicated 
due to the scarcity of well-documented sites, especially for the Last Interglacial. A 
further issue lies in weaknesses in the argument connecting proxies with landscape 
management activities: anthropogenic burning provides a good example.

Anthropogenic burning of the immediate surroundings of Eemian and Meso-
lithic camp sites was identified in a series of inferential steps. Firstly, proxies were 
observed reflecting changes in the vegetation cover. Secondly, further interpretation 
emphasises that these vegetation transformations were caused by burning. A next 
step in the interpretation linked these fire events to hominin activity, and to hominin 
firing of the landscape. Finally, this burning was interpreted in terms of intentional 
landscape transformation by hunter-gatherers.

The first and the second steps are reproducible and relatively easy to support 
with empirical data, built on various proxies (“Proxies for Identification of Modi-
fication of Vegetation Communities Via Burning” section) and their analyses. The 
transition from the second interpretation step towards linking the specific fire with 
human activity is much more difficult, but can ideally be inferred on the basis of a 
high-resolution archaeological context and/or setting of the proxies. However, due 
to the time-averaged nature of the archaeological records even for high-resolution 
data associated with evidence of hominin presence, it is not possible to definitively 
establish if this correlation reflects anthropogenic landscape changes or hominins 
occupied the area right after or during landscape changes caused by natural factors. 
The last step, leading to the conclusion about intentional hunter-gatherer landscape 
management, is the most difficult, because this step needs to be supported by robust 
evidence regarding the intentions of past populations. In the absence of such robust 
data, the Eemian and Mesolithic case studies lack a solid link between data and con-
clusions about the intentional nature of anthropogenic burning, be it Last Intergla-
cial or Early–Middle Holocene in age.

What one can minimally observe is that a similar set of proxies was available for 
both the Last Interglacial and the Holocene case studies. The main evidence used to 
assess hunter-gatherer vegetation burning in these periods are increases in charcoal 
concentrations, as well as pollen and macrofossils indicative of open/disturbed areas 
when hominins were present (Table 4). Both Neanderthals and Mesolithic humans 
were considered by researchers as possible agents of landscape transformations, and 
currently local-scale vegetation burning could be considered a common niche con-
struction activity for both Neanderthals and Mesolithic populations.

Regarding other niche construction activities, we suggest that plant manipulation 
and control of animal presence were common activities for Neanderthals and Meso-
lithic populations, because charred plant microfossils, stone tools with evidence of 
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plant manipulation (e.g. from the Middle Paleolithic site of Payre in France; Hardy 
& Moncel, 2011; Osipowicz, 2019), plant microremains from dental calculus (e.g. 
Cristiani et al., 2016; Henry et al., 2011, 2014) and large numbers of animal bones 
accumulated through butchering activities were identified within both Middle Pal-
aeolithic and Mesolithic sites. Additionally, management of aquatic resources by 
Mesolithic populations has been demonstrated based on several types of evidence 
including fish traps and faunal remains. Manipulation of wood raw materials has 
also been suggested in the Mesolithic, but is difficult to demonstrate.

Given the available evidence, one cannot postulate significant differences 
between the categories of niche construction practices conducted by Neanderthals 
and Mesolithic humans, and likewise there exists no unambiguous proof that the 
observed fire events were the intended outcomes of vegetation burning by popula-
tions during both periods. While this suggests that both populations influenced their 
landscapes on a local scale at least, it is not clear whether there is any difference 
on larger spatial scales. Currently, the main way of assessing possible larger-scale 
differences lies in estimates of population sizes, but these are notoriously difficult 
to establish. Additional studies are necessary to assess whether repetitive landscape 
transformation activities on a local scale could have caused shifts in vegetation com-
position on regional – and possibly (sub-)continental – levels during the Eemian and 
the Holocene, and which population densities of hunter-gatherers are needed for 
such changes to become visible on such scales.

To fill existing gaps in research about dynamic interglacial environments and 
the role of Homo with different demographic settings in landscape changes, further 
research endeavours could include not only standard procedures such as palynologi-
cal analysis and estimation of charcoal concentrations, but also extraction of less 
common proxies (e.g. DNA from sediments, phytoliths, parenchyma and other evi-
dence mentioned in the “Types of Evidence Related to Past Hunter-Gatherer Niche 
Construction Activities” section). However, the possibilities for using a combination 
of proxies for such studies depend on taphonomic processes and on data availabil-
ity determined by previous research. Such a multi-proxy approach could potentially 
help to overcome the specific resolution limitations of each method, to make the 
hunter-gatherer signal more visible, and to separate human-induced changes from 
transformations caused by other processes (climatic fluctuations, megafauna activi-
ties, etc.). Modelling efforts might be helpful in making the transition from local to 
regional to (sub-)continental research. Depending on the modelling type, local-scale 
evidence could form one of the inputs into a model, or could be used later at a vali-
dation stage.

Conclusion

Three categories of hunter-gatherer niche construction activities were described in 
accordance with ethnographic observations: (1) modification of vegetation commu-
nities via burning; (2) small-scale plant manipulation; (3) landscape modification 
to impact the presence of large animals and their abundance in specific locations. 
Every niche construction practice can potentially be identified via several types of 
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evidence. However, the actual visibility of these activities depends on several fac-
tors. These include the impact of taphonomic processes on the extraction and analy-
sis of evidence (i.e. over-representation of some proxies or indicators and under-
representation or complete absence of others); spatial scale (i.e. reflection by some 
proxies of past processes on local and regional scales, others on (sub-)continental 
scales); temporal representation (i.e. the tendency for younger things to be better 
represented than younger things in the archaeological record); and research strategy 
during field studies which defines further analysis.

Case studies showed that similar sets of proxies (mainly charcoal concentrations, 
pollen and macrofossils of species reflecting open and disturbed areas) exist for pos-
sible Neanderthal and Mesolithic firing of vegetation. Anthropogenic (intentional) 
changes of vegetation during the Mesolithic are commonly accepted on the basis 
of these proxies. The Neumark-Nord case study illustrated that data exists for the 
Last Interglacial that in terms of their information quality match the best Mesolithic 
cases known. Hence, Last Interglacial Neanderthals’ impact on their surroundings 
was occasionally very much comparable to that of Mesolithic hunter-gatherers. 
However, the absence of unambiguous methods to clearly distinguish between homi-
nin, climatic and megafaunal local impact on vegetation during both periods forces 
us to be careful in interpreting these firing activities. In general, many studies have 
inferred a relationship between observed proxies for vegetation transformation via 
burning and hominin activities identified based on the archaeological context and/
or setting of the proxies. These correlations were then translated into conclusions 
about hunter-gatherer intentional landscape transformations via burning. However, 
the intentional nature of anthropogenic landscape changes is difficult to verify, even 
in high-resolution cases. The currently available data and amount of research could 
allow researchers to consider local-scale vegetation burning as a common niche con-
struction activity for both Neanderthals and Mesolithic populations. Other sugges-
tive niche construction activities organised by foragers during both time periods are 
plant manipulation and impact on animal presence and their abundance.

In short, given the significance of the Eemian interglacial as an ‘analogue for 
present-natural vegetation’ for the Holocene, clarifying the role of fire using Nean-
derthals in the past landscapes under scrutiny is important. To identify the extent of 
past hunter-gatherer impact on surroundings, more precise estimations of popula-
tion sizes are necessary, hence the need for further research. In addition to long-
established research methods (e.g. pollen analysis and the study of charcoal parti-
cles), future research endeavours should try to make use of less common techniques 
such as sediment DNA, phytoliths and starch grains. Studies of past hunter-gatherer 
landscape changes should mainly rely on evidence with a local spatial resolution 
(Tables 1, 2, and 3), reflecting the scale at which hunter-gatherer activities had an 
impact. The transition from local to regional to (sub-)continental research can be 
made via modelling which can include information obtained from proxies as an 
input to models or as the way to test modelling results. Additional studies are nec-
essary to assess whether repeated activities by hunter-gatherers causing landscape 
transformation on a local scale led to shifts in vegetation composition on regional 
and (sub-)continental scales, or not, and which population density of foragers could 
cause such significant changes.
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