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ABSTRACT

Name: TIMOTHY SCOTT
Title: BEACH MORPHODYNAMICS AND ASSOCIATED HAZARDS IN THE UK

In this thesis the relationship between beach morphodynamics and recreational hazards was
investigated for the first time within the United Kingdom (UK). Four field experiments,
conducted during 2006-2008 provided new insights into the spatio-temporal dynamics of UK
beach types and their associated hazard signatures. The extent of data collection ranged from
national (UK beach classification) to regional (temporal morphologic variation) to site specific

(macrotidal rip current dynamics).

Detailed morphodynamic characteristics of 98 beaches within the UK were collected. Twelve
distinct beach groups were identified through cluster analysis, each having a unique
morphodynamic signature. Conceptualisation within a relative two-dimensional framework
using the dimensionless fall velocity (€2) and the relative tide range (RTR) required an absolute
wave energy flux threshold to differentiate between intermediate beaches with (4T > 5) and
without (T < 5) three-dimensional bar morphology. The role of geologic control, sediment
abundance and drainage characteristics in constraining beach morphodynamics was shown to be

significant within the sites studied.

Rip currents were responsible for 68% of all recorded incidents between 2005-2007 throughout
all 76 beaches patrolled by the Royal National Lifeboat Institution (RNLI). Hazard type and
severity varied between morphodynamic beach types. Intermediate beaches with low-tide
bar/rip morphology (€2 = 2-5 and RTR < 7), including Low-Tide Terrace and Rip (LTT+R) and
Low-tide Bar/Rip (LTBR) beaches, presented the greatest risk to the insea beach user. These
high risk beaches, representing 59% of the west coast beaches in Devon and Cornwall, also

attracted the greatest visitor populations.

Seasonal monitoring of hydrodynamics and morphology at LTT+R and LTBR beaches in
Devon and Cornwall (annual H. = 3—4 m; mean spring tidal range = 4.2-8.6 m) identifted
key mechanisms controlling the temporal hazard signature (THS), a term used here to describe
the spatio-temporal variation in type and severity of bathing hazard within a specified region
both in the alongshore as well as in the cross-shore (significant in macrotidal environments).
The morphological template controlled the presence, extent and intensity of beach rip current
systems, where the development of low/tide transverse and inter-tidal bar/rip systems during

summer presented the greatest morphological hazard. Typical summer wave forcing by
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relatively small, long period swell (H, ~ 0.5-1 m; T, ~ 6-10 s) over this morphology provided
conditions conducive to hazardous rip currents. Under these conditions hazard exposure was
increased due to the accessibility of the relatively low energy surf zone. Both spring/neap and
semi-diurnal tidal variations were identified as key controls on the THS. Variable tidal
excursion modulates rip current activity, and tidal translation rates control the rate of change of
the THS. The ‘optimum’ combination of these mechanisms results in the ‘switching’ on and off
of rip currents during spring low tides and the subsequent rapid alongshore migration of rip
channel/hazard location as the surf zone inundates the landward inter-tidal bar system. In
conjunction with high insea population, these ‘optimum hazard scenarios’ drove the high risk,

coast-wide ‘mass rescue’ events identified in the incident records.

This work provides a scientific, standardised basis for a beach risk assessment model and
lifeguard training programs within the RNLI. Improved understanding of macrotidal rip currents
has initiated new field and modelling efforts to further general quantitative understanding of

these systems, vital to the improvement of beach safety services.
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the GPS was deployed on. The main body buoyancy is built of upvc tube and welded end
caps on top of a round, flat, plywood (marine) disk to dampen and prevent surfing. Below
this a steel plate acts as ballast. The design is based on that of (MacMahan et al., 2009b;
Schmidt et al., 2005). ...t e e e 226
Figure 6.5 — Photograph (above) of GPS drifters in the surf zone during the experiment. Drifters circled in
black, with waterline a1t the base of the mast. Photograph (below) manpower required to
safely conduct the experiment without PWC assisted pick-up. ...t 227
Figure 6.6 — (Top) Tidal elevation record from a UoP prediction model (grey) and the TWR (black);
(below) Wave record from the DWR (grey) and TWR (black), showed measured values for
significant wave height (H,, 7,) and wave direction relative to shore normal. The DWR is
located ~1 km from the shore in 10 m water depth..........c..cooniiiiiiiinc e 229
Figure 6.7 — Summary of statistics of measured sea surface elevation from the in-situ instruments at 10
minute intervals. (Top) Mean water depth above the instrument position. (Middle)
Significant wave height, Hs. (Bottom) A measure of relative local relative wave height,
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Hs/h. The dashed line on bottom panel at Hs/h > 0.4 indicates approximately value for the

onset of wave breaking (Thomton and Guza, 1982). .......ccovvvininiie e 231
Figure 6.8 — Summary of siatistics of measured flow from the in-situ instruments at 10 minute intervals

for the rip (PUVC1) and feeder (PUVC2) locations. (From top) Water depth h; mean cross-

shore flow velocity (u), positive onshore; maximum cross-shore orbital velocity Uy,; mean

longshore flow velocity {v), positive north; maximum longshore orbital velocity V,; and U,

mean return speed. Numbers in the upper panel indicate the low tide number. LT4 is

missing due to an instrument fallure. ..o s 232
Figure 6.9 — Histograms of 8.5 min mean velocities of; (top) cross-shore, onshore directed; and (botto