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ABSTRACT 

Name: T I M O T H Y SCOTT 

Ti t l e : B E A C H M O R P H O D Y N A M I C S A N D ASSOCIATED H A Z A R D S IN T H E U K 

In this thesis the relationship between beach morphodynamics and recreational hazards was 

investigated for the first time within the United Kingdom ( U K ) . Four field experiments, 

conducted during 2006-2008 provided new insights into the spatio-temporal dynamics o f U K 

beach types and their associated hazard signatures. The extent o f data collection ranged f rom 

national ( U K beach classification) to regional (temporal morphologic variation) to site specific 

(macrotidal rip current dynamics). 

Detailed morphodynamic characteristics o f 98 beaches wi thin the U K were collected. Twelve 

distinct beach groups were identified through cluster analysis, each having a unique 

morphodynamic signature. Conceptualisation wi thin a relative two-dimensional framework 

using the dimensionless fal l velocity (Q) and the relative tide range (RTR) required an absolute 

wave energy flux threshold to differentiate between intermediate beaches wi th (H'T > 5) and 

without (H'T < 5) three-dimensional bar morphology. The role o f geologic control, sediment 

abundance and drainage characteristics in constraining beach morphodynamics was shown to be 

significant wi thin the sites studied. 

Rip currents were responsible for 68% o f all recorded incidents between 2005-2007 throughout 

all 76 beaches patrolled by the Royal National Lifeboat Institution (RNLI ) . Hazard type and 

severity varied between morphodynamic beach types. Intermediate beaches wi th low-tide 

bar/rip morphology (Q = 2-5 and RTR < 7), including Low-Tide Terrace and Rip (LTT+R) and 

Low-tide Bar/Rip (LTBR) beaches, presented the greatest risk to the insea beach user. These 

high risk beaches, representing 59% o f the west coast beaches in Devon and Cornwall, also 

attracted the greatest visitor populations. 

Seasonal monitoring o f hydrodynamics and morphology at L T T + R and L T B R beaches in 

Devon and Cornwall (annual Hsio% = 3-4 m; mean spring tidal range = 4.2-8.6 m) identified 

key mechanisms controlling the temporal hazard signature (THS), a term used here to describe 

the spatio-temporal variation in type and severity o f bathing hazard within a specified region 

both in the alongshore as well as in the cross-shore (significant in macrotidal environments). 

The morphological template controlled the presence, extent and intensity o f beach rip current 

systems, where the development o f low/tide transverse and inter-tidal bar/rip systems during 

summer presented the greatest morphological hazard. Typical summer wave forcing by 



relatively small, long period swell {H, - 0.5-1 m; Tp ~ 6-10 s) over this morphology provided 

conditions conducive to hazardous rip currents. Under these conditions hazard exposure was 

increased due to the accessibility o f the relatively low energy surf zone. Both spring/neap and 

semi-diurnal tidal variations were identified as key controls on the THS. Variable tidal 

excursion modulates rip current activity, and tidal translation rates control the rate o f change o f 

the THS. The 'op t imum' combination o f these mechanisms results in the 'switching' on and o f f 

o f rip currents during spring low tides and the subsequent rapid alongshore migration o f rip 

channeL'hazard location as the surf zone inundates the landward inter-tidal bar system. In 

conjunction wi th high insea population, these 'optimum hazard scenarios' drove the high risk, 

coast-wide 'mass rescue' events identified in the incident records. 

This work provides a scientific, standardised basis for a beach risk assessment model and 

lifeguard training programs wi th in the R N L I . Improved understanding o f macrotidal rip currents 

has initiated new f ie ld and modelling efforts to further general quantitative understanding o f 

these systems, vital to the improvement o f beach safety services. 
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associated with monitored beach sites. Associated data relating to beach profile form and 
incident seasonal incident levels is also presented. Ranking is 2005 seasonal values of IRR/P 

(increasing from bottom to top) 109 
Figure 3.17- Overview of general risk level associated with broad beach type regimes observed during 

the study 111 
Figure 3.18- Annotated panoramic views of Chapel Forth (A) and Perranporth (C) at sping low tide. 

Digital Elevation Models (right) indicate measured morphology at Croyde Bay (B) and 
Perranporth (D) during September 2006 with mean tidal levels represented by solid red 
lines 112 

Figure 3.19- Annotated panoramic views of Constantine and Boobys Bay (A) and Sandymouth (C) at 
spring low tide. Associated Digital Elevation Models indicate associated measured 
morphology (B & D) during September 2006 with mean tidal levels represented by solid 
red lines 113 

Figure 4.1 - Overview map of study region, indicating all data sources and highlighting regions where 
wave modelling was conducted (Map image copyright 2009, Crown Copyright Ordnance 
Survey, and EDINA Digimap/Joint Information Systems Committee (JISC) supplied 
service) 119 

Figure 4.2 - Large scale views of selected beach sites within each region (Map image copyright 2009, 
Crown Copyright Ordnance Survey, and EDINA Digimap) 119 

Figure 4.3 - Flow diagram of research methodology for this beach classification study 121 
Figure 4.4 - Schematic of morphometric parameters 122 
Figure 4.5 - Classification of bar type and shape with associated examples of remote image dataset 124 
Figure 4.6 - MetOffice UK waters model output for M1 virtual buoy during 2007 132 
Figure 4.7 - MetOffice UK. waters model output for M2 vinual buoy during 2007 132 
Figure 4.8 - MetOffice,UK waters mode! output for M3 virtual buoy during 2007 133 
Figure 4.9 - MetOffice UK waters model output for M5 virtual buoy during 2007 134 
Figure 4.10 - MetOffice UK waters model output for M6 virtual buoy during 2007 134 
Figure 4.11 - Nearshore hydrodynamic conditions for each beach site moving anti-clockwise around die 

coast: (top) 50% exceedence significant wave height (triangles) and 10% exceedence 
significant wave height (circles); (middle) mean wave period (triangles) and peak wave 
period (circles); and (bottom) mean spring tidal range 136 

Figure 4.12 - Summary profile morphometries and sediment size for all beach sites moving anti­
clockwise around the coast: (top) mean spring inter-tidal beach slope; (middle) mean spring 
inter-tidal beach width; and (bottom) Djofor the lower inter-tidal zone at each beach site.. 137 

Figure 4 .13- (Top) Example oblique images of beach type variation within dataset (numbers correspond 
to example sediment sites. Red arrows indicate approximate location of sediment samples. 
(Bottom) Cross-shore profiles of the five example locations 138 

Figure 4 .14- Plots showing relationship between upper and lower D50 at all beach site (excluding Orford 
Ness where D^o upper = 26.32 mm and Djo lower = 21.05 mm): (left) all samples < 10 mm 
with exploded plot marked; (right) exploded view of all samples < 1 mm 139 
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Figure 4.15 - Photographic examples of sediment sample at sample beach locations 140 
Figure 4.16 - Map illustration the distribution of bar types around the study beaches 141 
Figure 4.17 - Dendrogram clustered using unweighted pair group average (UPGMA) method. Symbols 

represent discrete beach groups attained using a cut-off level of 80% similarity 144 
Figure 4 .18- MDS ordination plot, representing the rank order similarities in a two-dimensional space. 

Symbols indicate beach morphotypes generates through cluster analysis and dashed lines 
represent the groupings at the 80% similarity level 145 

Figure 4.19 - Cross-shore profiles of beach sites within each morphotype grouping: (above) fixed scale 
indicates relative cross-shore and vertical extents; (below) scale to fit plots show individual 
profile geomeiries. Numbers indicate group membership 146 

Figure 4.20 - MDS ordination of morphotype groups. Marker scaling with beach slope (tan^, MSR, 
//ijo5s» Tm and upper and lower beach Djo allows graphical assessment of trends within and 
between groups). Levels of 2D Stress provide an indication of goodness-of-fit 147 

Figure 4.21 - Relationships between tide range and slope are presented against both wave height and 
wave energy: (lop left) wave height {Hjsmi) against mean spring range (MSR); (lop right) 
wave energy scaling parameter {HjSffii Tm) against MSR; (bottom left) wave height against 
beach slope (tanp) parameter; and (bottom left) wave energy against slope. Boxes indicate 
modal values for each group and stems indicate values of the 25th and 75th percentiles of 
the group distribution 148 

Figure 4.22 - MDS ordination with markers indicating bar type; (left) bar number; (right) bar shape 149 
Figure 4.23 - MDS ordination with markers indicating values o f ihe surf scaling parameter describing 

wave dissipation characteristics in surf zone 155 
Figure 4.24 - Plot of wave energy scaling parameter {Hssmi.T„) against the surf scaling parameter. Boxes 

indicate modal values for each group and stems are values of the 25th and 75th percentiles 
of the group distribution 155 

Figure 4.25 - Top: Subplots show values of omega and RTR for each beach group. Grey and white circles 
indicate lower and upper beach values for omega, respectively. Framework o f grey lines 
indicate delineations as suggested by (Masselink and Short, 1993). Bottom: Beach types as 
defined in (Masselink and Short, 1993) 157 

Figure 4.26 - Plot of CI (upper beach) against RTR (left) and wave energy {Hsso'J.T^ against RTR (right). 
Boxes indicate modal values for each group and stems are values of the 25th and 75th 
percentiles of the group distribution 158 

Figure 4.27 - Summary o f data driven beach classification for low- and high-energy beaches (upper and 
lower panels, respectively) based on the UIC sample sites within this study with reference to 
prior work by (Masselink and Short, 1993). (right panels) Example cross-shore profiles and 
associated values of the surf scaling parameter, calculated for annual //jsow inshore wave 
conditions at each site, are presented (mean values of CI and RTR for each site are 
represented in the associated left panel). Within this investigation threshold of transition 
between low- and high-energy environments occurs approximately at around 0.8 m wave 
height, and 8 sec wave period (H'T= 5 m^s), essentially describing the level of Atlantic 
swell energy contributing to the wave spectrum. Arrows indicate temporal beach state 
transitions observed at some study sites 161 

Figure 4.28 - Conceptual morphodynamic framework for sampled UK beaches. Dark and light shading 
indicate transition fi-om reflective to dissipative surf zone conditions respectively. Black 
dashed box indicates region where high-energy conditions (H'T> 5 m^s) induce 3D bar 
formations and bold italics represent high-energy beach types 164 

Figure 5.1 - Map of all 76 RNLI beach locations active between 2005 and 2007. Subplots A and B 
display exploded views of the east coast and southwest regions respectively 174 

Figure 5.2 - Percentage occurrence of all environmental causes of incidents (recorded by RNLI) for 
observed UK beach type groupings (2005 to 2007) 176 

Figure 5.3 - Map showing the nine study sites where morphological monitoring was conducted: I ) 
Croyde Bay; 2) Sandymouth; 3) Northcott mouth; 4) Crooklets; 5) Constantine Bay; 6) 
Fistral Bay; 7) Perranporth; 8) Chapel Porth; 9) Porthtowan. Al l beaches in the west coast 
region are marked with circles. Black and dark white fill represent beach types with and 
without rip current morphology (LTT+R and LTBR) respectively 178 

Figure 5.4 - Environmental conditions observed during the monitoring period (From top) Offshore wave 
record (daily averaged) showing (upper) significant wave height (//,) and (lower) mean 
wave period (Tm)y mean wind speed (24-hour averaged) from Seven Stones Lightvessel, 
predicted tidal elevation at Perranporth measured to Chart Datum and surge residual 
recorded at Newlyn. Red regions indicate periods when annual winter/summer beach 
surveys were conducted and blue regions indicate the high resolution seasonal survey 
period 181 

Figure 5.5 - Summer/winter low-tide images of Chapel Porth beach, 10/09/06 to 05/03/07 182 
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Figure 5.6 - Seasonal morphological transition at Perranporth beach form summer 2006 to winter 2008; 
(lef)) cross-shore profiles illustrate profile and elevation change. Horizontal lines represent 
mean tidal levels; (right) rectified timex video images indicate observed 3D morphological 
changes 184 

Figure 5.7 - Seasonal morphological transition at Croyde Bay from summer 2006 to winter 2008; (left) 
cross-shore profiles illustrate profile and elevation change. Horizontal lines represent mean 
tidal levels; (right) panoramic photographic images indicate observed 3D morphological 
changes 185 

Figure 5.8 - Seasonal morphological transition at Sandymouth from summer 2006 to winter 2008; (left) 
cross-shore profiles illustrate profile and elevation change. Horizontal lines represent mean 
tidal levels; (right) panoramic photographic images indicate observed 3D morphological 
changes 186 

Figure 5.9 - Seasonal morphological transition at Constantine Bay from summer 2006 to winter 2008; 
(left) cross-shore profiles illustrate profile and elevation change. Horizontal lines represent 
mean tidal levels; (right) panoramic photographic images indicate observed 3D 
morphological changes 188 

Figure 5.10 - (Left) Annual variation in morphodynamic variables Q and RTR between sunmier 2007 and 
winter 2008 for the studied beaches. (Right) Conceptual UK beach classification 
framework (see Chapter 4) 189 

Figure 5 . 1 1 - (from the top) Offshore wave record (6 hour averaged) during study period (/ / , and Tp) 
Grey line shows simultaneous 6 hr averaged offshore wave record from Seven Stones 
Lighvessel; predicted tidal elevation (mCD); mean hourly wind speed and daily rainfall 
totals from St Mawgan airfield. Red regions highlight survey periods 190 

Figure 5.12 - (left) Plots show residual morphology from the mean beach surface with surveyed 
topography shown as black contours, mean tidal levels marked in magenta; (central 
column) Difference plots indicating regions of erosion/accretion between surveys; (right) 
Cross-shore profile taken from transects marked on central column shown two-dimensional 
beach morphological change, grey and black lines indicate before and after profiles while 
red lines indicate residual elevation. Horizontal grey lines indicate mean tidal levels 191 

Figure 5.13 - Panels A-D show, for selected region; (from top) alongshore averaged cross-shore profile; 
cross-shore variation in bathymetric non-uniformity (o^h); and three-dimensional surface 
elevation for Perranporth beach. A - 05/04/07; B - 18/07/07; C - 15/08/07; and D -
12/09/07 193 

Figure 5.14 - Contoured morphology from four surveys at Perranporth beach including; mean tidal levels 
(magenta); rectified timex image indicating regions of wave breaker dissipation 
(background); and extracted bar crest locations for inner breaker zone/shoreline (dashed 
blue) and outer breaker intensity maximum/bar crest (solid blue) 194 

Figure 5.15 - (left) Plots show residual morphology from the mean beach surface at Constantine Bay, 
with beach surface shown as black contours, mean tidal levels in magenta; (central column) 
Difference plots indicating regions of erosion/accretion between surveys; (right) Cross-
shore profiles (from marked transects) show two-dimensional beach morphological change, 
grey and black lines indicate before and after profiles while red lines indicate residual 
elevation. Horizontal grey lines indicate mean tidal levels 196 

Figure 5.16- (left) Plots show residual morphology from the mean beach surface at Crooklets Beach, 
with beach surface shown as black contours, mean tidal levels in magenta; (central column) 
Difference plots indicating regions of erosion/accretion between surveys; (right) Cross-
shore profiles (from marked transects) show two-dimensional beach morphological change, 
grey and black lines indicate before and after profiles while red lines indicate residual 
elevation. Horizontal grey lines indicate mean tidal levels 197 

Figure 5.17- Panoramic photograph of Crooklets beach on 16/07/07 illustrating surface and groundwater 
drainage through the inter-tidal beach 199 

Figure 5.18 - Panoramic photographs of Crooklets inter-tidal zone illustrating beach drainage 
characteristics under low-energy swell wave and high-energy storm wave conditions. 
Images captured (from top) on 01/08/07 and 11/03/08 201 

Figure 5.19 - Aerial images of Crooklets beach (September 2006) and associated constrained upper inter-
tidal morphology and open lower inter-tidal bar systems. Images provided by the 
Environment Agency 202 

Figure 5.20 - Panels A-D show, for selected region; (from top) alongshore averaged cross-shore profile; 
cross-shore variation in bathymetric non-uniformity (a^h)\ and three-dimensional surface 
elevation for Crooklets beach. A - 17/06/07; B - 14/07/07; C - 13/08/07; D - 09/09/07....203 

Figure 5.21 - (left) Plots show residual morphology fi^m the mean beach surface at Sandymouth, with 
beach surface shown as black contours, mean tidal levels in magenta; (central column) 
Difference plots indicating regions of erosion/accretion between surveys; (right) Cross-
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shore profiles (from marked transects) show two-dimensional beach morphological change, 
grey and black lines indicate before and after profiles while red lines indicate residual 
elevation. Horizontal grey lines indicate mean tidal levels 204 

Figure 5.22 - Plot shows data from all LTBR and LTT+BR beaches studied, from left to right; 
individuals rescued per week (total rescues and rip related rescues shown as dark and light 
bars respectively); averaged people in sea per hour for each week; /R, total and rip rescues 
divided by number of people in sea per hour (a measure of the probability of an incident 
occurring per hour); nearshore / / , and Tp (6hr average); and predicted tidal elevation 
(meters from Chart Datum). Grey bands highlight weeks of high IR. Argus Timex video 
images illustrating bar morphology and general morphological transition. Red lines indicate 
significant coast-wide *mass rescue' events 207 

Figure 5.23 - Histograms of tidal range characteristics (top left) and associated incident frequency (top 
right) and insea population (bottom left) leading to probability of incident IR against tidal 
range (bottom right) during the 2007 patrol season at studied west coast beaches. Dash lines 
indicate mean neap range (MNR), mean tidal range (MTR) and mean spring range (MSR).209 

Figure 5.24 - Incident occurrence at Perranporth, normalised by frequency of tidal elevation, within 0.5 m 
invervals for early, mid and late season. Dashed lines indicate mean tidal levels 210 

Figure 5.25 - 2D frequency matrices of joint wave distribution associated with; (top left) frequency; (top 
right) number of incidents; (bottom left) cumulative daily insea average; and (bottom left) 
probability of incident during the 2007 patrol season 212 

Figure 5.26 - (Inset) Scatter plot of rip incidents per day vs. people insea (daily mean), indicating linear 
fit and outliers. (Main) Stem plot of normalised rip incidents (daily) vs. date, with outliers 
(> I f f ) circled 214 

Figure 5.27 - (Left) Time averaged, rectified, low-tide video images of Perranporth during events C, D 
and G; sea is located at the bottom of each image, land at the top. West is oriented down-
page; black markers locale approximate positions of low-tide rip currents, white locates 
mid-tide rip channel morphology (Right) Histograms of incident times for each event from 
all beaches. Dark shading indicates 3 hour low-tide period and light shading the mid-tide. 216 

Figure 5.28 - Plots A and B show 15 minute shorelines at Croyde Bay, North Devon during spring tides 
on the 18/06/07 and 14/09/07 respectively. Bold red lines indicate regions of heightened rip 
current hazard 217 

Figure 6.1 - Rectified low tide ARGUS image of rip currents at Perranporth during experiment period. 
The dashed and solid black lines represent the shoreline position and the seaward edge of 
the surf zone. The four rips (arrows) are separated by transverse bars and retained within 
the surf zone by a longshore bar (sinuous bright band demarcating outer surf zone). The 
boxed area represents experiment region 220 

Figure 6.2 - Combined results of the inter-tidal morphology (RTK-GPS survey, LT3) and nearshore 
bathymetry indicating the instrtiment positions. PUVC positions where moved landward 
during LT7 due to the reduction of the spring tidal range, enabling access for post-
experiment recovery during LT9. Contours indicate beach surface elevation relative to 
Ordnance Datum Newlyn (mODN). Back contours indicate the approximate minimum low 
water elevation during deployment (-2.5 m) and mean sea level (0 m). Background example 
rectified Argus video image taken during the survey indicates typical wave breaking and 
dissipation patterns (bar configuration) within the surf zone during a spring low-tide 223 

Figure 6.3 - Free-standing mobile instrument frame (one of two) showing Nortek Vector 3D - Acoustic 
Doppler Velocimeter (ADV), Pressure Transducer (PT) and Optical Back Scatter probe 
(OBS). Image on left indicates sensor elevations above the bed. Bottom image shows 
instrument frame deployment 224 

Figure 6.4 - Picture (right - not to scale) and diagram (upper left) of the inexpensive surf zone drifter that 
the GPS was deployed on. The main body buoyancy is built of upvc nabe and welded end 
caps on top of a round, flat, plywood (marine) disk to dampen and prevent surfing. Below 
this a steel plate acts as ballast. The design is based on that of (MacMahan et al., 2009b; 
Schmidt et al., 2005) 226 

Figure 6.5 - Photograph (above) of GPS drifters in the surf zone during the experiment. Drifters circled in 
black, with wateriine at the base of the mast. Photograph (below) manpower required to 
safely conduct the experiment without PWC assisted pick-up 227 

Figure 6.6 - (Top) Tidal elevation record from a UoP prediction model (grey) and the TWR (black); 
(below) Wave record from the DWR (grey) and TWR (black), showed measured values for 
significant wave height (//,, Tp) and wave direction relative to shore normal. The DWR is 
located - 1 km from the shore in 10 m water depth 229 

Figure 6.7 - Summary of statistics of measured sea surface elevation from the in-situ instruments at 10 
minute intervals. (Top) Mean water depth above the instrtiment position. (Middle) 
Significant wave height, Hs. (Bottom) A measure of relative local relative wave height, 
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Hs/h. The dashed line on bottom panel at Hs/h > 0.4 indicates approximately value for the 
onset of wave breaking (Thornton and Guza, 1982) 231 

Figure 6.8 - Summary of statistics of measured flow from the in-situ instruments at 10 minute intervals 
for the rip (PUVCI) and feeder (PUVC2) locations. (From top) Water depth h; mean cross-
shore flow velocity (u), positive onshore; maximum cross-shore orbital velocity Uo,; mean 
longshore flow velocity (v), positive north; maximum longshore orbital velocity Vn,; and 
mean return speed. Numbers in the upper panel indicate the low tide number. LT4 is 
missing due to an instriunent failure 232 

Figure 6.9 - Histograms of 8.5 min mean velocities of; (top) cross-shore, onshore directed; and (bottom) 
longshore, northward flows from the rip (PUVCI) and feeder (PUVC2) instrument 
locations. Measurements represent observations from LT(3,4, 5, 7 and 8) 234 

Figure 6.10 - Return flow velocities Ur during the flood and ebb tides (top) for feeder and rip rigs (PUVC 
1 and 2 respectively). (Bonom) Comparison of observed significant wave height / / , during 
the flood and ebb tides. Data is observations from entire deployment 235 

Figure 6.11 - Scatter plots of (top) mean cross-shore current and (middle) mean longshore current vs. 
water depth; and (bonom) Froude number vs. relative wave height on the bar crest 
indicating linear fit 236 

Figure 6.12 - Plot illustrating the relationship between mean rip return flow, non-dimensionalised by 
wave steepness (H/Tp). Curve represents the exponential relationship of rip velocity scaling 
from Brander and Short (2001) 236 

Figure 6.13 - Alongshore bathymetric variability: (top) cross-shore profile envelope (grey) and mean 
profile (black) occurring within the study region; (bottom) alongshore bathymetric non-
uniformity, Oh"(x). Shaded regions represent the approximate breakpoint excursion (Hs = 1 
m) using the empirical relationship <Yb> = 0.3 + 3.2tanp from Sallenger and Holman 
(1985), during the highest and lowest tidal elevations during the study period. Darker 
shading indicates the region in which the rip current was typically active (z < - I mODN). 238 

Figure 6.14 - Mean drifter velocity observations for each deployment (LT3, LT5. LT7, LT9, LT13 
chronologically). Scaled vectors represent drifter velocity direction and strength. Each 
vector represents mean independent drifter observations (n) within 10 m x 10 m bins. Red 
vectors represent statistically significant velocities (n > 5). Beach morphology and 
bathymetry are contoured in the background (08/08/08 bathymetry) along with a rectified 
video timex image showing wave breaker intensity 240 

Figure 6.15 - Comparison of Eulerian and Lagrangian drifter speeds Ur. Mean rip current speeds at 
PUVCI (top) and PUVC2 (middle) during periods when the rip current was active irj<-\ 
mODN). (Bottom) Rip speed from the statistically significant mean drifter circulation 
during periods when drifter and in-situ instruments were synchronous 241 

Figure 6.16 - Examples of drifter track classifications 242 
Figure 6.17 - Comparison of predicted and measured sea-surface elevation. (Top) predicted tide (grey) 

and measured surface elevation, tj (black). A consistent lag on the falling limb of the tide 
can be seen in the TWR data. Lag is also observed on the rising limb to a lesser extent. 
(Bottom) The cross-correlation function of the time series in the upper panel indicating a 
negative lag of 20 mins (dotted line) 244 

Figure 6.18 - Drifter tracks for LT3 (02/08/08), separated into 0.5 m sea-surface elevation bins. Colours 
represent associated behavioural classification. Background rectified video image 
represents nearest capture to the bin midpoint 247 

Figure 6.19 - Drifter tracks for LT5 (03/08/08), separated into 0.5 m sea-surface elevation bins. Colours 
represent associated behavioural classification. Background rectified video image 
represents nearest capture to the bin midpoint 248 

Figure 6.20 - Drifter tracks for LT7 (04/08/08), separated into 0.5 m sea-surface elevation bins. Colours 
represent associated behavioural classification. Background rectified video image 
represents nearest capture to the bin midpoint 249 

Figure 6.21 - Drifter tracks for LT9 (05/08/08), separated into 0.5 m sea-surface elevation bins. Colours 
represent associated behavioural classification. Background rectified video image 
represents nearest capture to the bin midpoint 249 

Figure 6.22 - Drifter tracks for LT13 (07/08/08), separated into 0.5 m sea-surface elevation bins. Colours 
represent associated behavioural classification. Background rectified video image 
represents nearest capture to the bin midpoint 250 

Figure 6.23 - Combined drifter tracks from LT3, LT5 and LT7, separated into H/h bins of 0.5. Colours 
represent associated behavioural classification: rotation (black); alongshore (blue); and 
wash-up/meander (red). Measured bathymetry represented in background 253 

Figure 6.24 - Observed mean Lagrangian rip circulation associated with each H/h bin (width 0.5). Red 
vectors represent significant velocities (> 5 independent observations). Colours indicate 
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mean return speeds associated with each 10 m x 10m bin. Bathymetry is contoured in 
background 254 

Figure 6.25 - Morphological characteristics of the rip channel. (A) Residual morphology highlighting 
areas of positive (red) and negative (blue) relief; indicating the cross-section through the rip 
channel PI and transition to rip head P2 (white lines); and indicating in-situ instrument 
locations. (B) Cross-sections PI and P2 through the rip channel, PI indicates the profile 
used for derivation of the area available for rip flowv^^ and the morphological area of the 
channel A„. (C) Temporal variation in the percentage of AMm- Shaded regions indicate the 
periods of rip drifter deployment 258 

Figure 6.26 - Mean Lagrangian rip circulation separated into AMm classes. Shading indicates mean rip 
speed Ur within each spatial bin for all observations. Vectors (red) represent rip speed for 
those bins classified as statistically significant (> 5 independent observations). Residual 
bathymetry is contoured in the background 260 

Figure 6.27 - Definition of rip regions. (A) Indicates rip region area of interest in association with 
residual morphology. Residual morphology used as a rip neck boundary threshold. (B) 
Illustrates drifter bin allocation to each defined rip region. Black area indicates regions 
where insufficient data was available to calculate representative rip flows (rip head and 
northern shoal) 262 

Figure 6.28 - Mean and maximum rip speeds associated with rip neck (offshore-directed), bar 
(onshore-directed) and feeder regions. Values are separated into //y7i (left) and AjAr (right) 
classes. Dashed lines indicate class boundaries 262 

Figure 7.1 - Conceptual summary of principal controls of the temporal hazard signature (rip current 
hazard) for high risk beaches and key insea populations controls for a range of temporal 
scales. Summary is in specific relation to beaches monitored in this study and represents 
only the principal mechanisms identified to drive rip hazard levels 268 

Figure 7.2 - Conceptual sequence of the temporal evolution of the observed macrotidal rip current cell at 
Perranporih. Each schematic represents 30 min time step towards spring low-tide at (f) 
under average measured conditions (//, - 1 m). Black dots indicate approximate shoreline 
position, yellow dots indicate wave breaking on the northern shoal and rip head with yellow 
arrows approximating angle of wave approach. Generalised rip circulation patterns are 
marked in solid blue and red lines (and arrow heads) indicating rotational and alongshore 
behavior. Time step d) represents the optimum combination of wave forcing and 
morphological constraint to generate intense eddy vortex. Each snapshot covers the same 
beach region. Note the breaker dissipation patterns mimic a conceptual down-state 
transition, as observed by Brander (1999) as a function of tidal elevation a) LBT; b) RBB; 
c) RBB/TBR; d) TBR and e) TBR/LTT 274 

Figure 7.3 - Example of Rip Risk Plot showing the occurrence of offshore-directed mean nearshore 
currents exceeding 0.5 m/s. The plot was obtained using XBeach with standard parameters 
(uncalibrated) and the measured bathymetry (not derived from using the BeachWizard)... 277 
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1. INTRODUCTION 

1.1 P R E A M B L E 

Due to its location and geologic setting, the United Kingdom (UK) possesses a very 

broad spectrum of beach environments around its more than 5,000-km long shoreline. 

UK beaches attract a large number of visitors annually due to their aesthetic, sport and 

recreational appeal, providing pivotal support to the tourism industry in many regions. 

However, the beach environment is inherently hazardous and exposes people to risk. To 

manage this risk a comprehensive understanding of UK beach environments and their 

associated hazards is needed. 

Historically, beach hazards have been addressed in terms of the vulnerability of coastal 

areas to damage, often financially with regard to loss of property or infrastructure. 

Since the late I980's interest within the scientific community for developing 

understanding of hazards and risk to the beach user has grown (Engle et al., 2002; 

Hartmann, 2006; Lascody, 1998; Leahy et al., 1996; Lushine, 1991; Sherker et al., 

2008; Short, 2001; Short, 1999; Short and Hogan, 1994a) and the application of our 

improved knowledge of beach dynamics to the public domain and safety was initiated 

through the work of Short (1999). Nearshore currents such as rip currents have long, 

been documented as significant hazards to beach users swimming in the surf zone 

(McKenzie, 1958; Shepard, 1949). Lascody (1998) stated that, in Florida, rip currents, 

on average, result in more deaths than hurricanes, tropical storms, lightning and 

tornadoes combined. 

In the UK the significance of beach hazards has been considered serious enough for 

lifeguard provision to be deemed necessary around the nation's coasts for the past 50 

years. Therefore, the attention of the scientific community to this application of 

knowledge is long overdue. With increased professionalism within the lifeguarding 

community and increasing availability of both data collection techniques and advanced 

scientific quality datasets of the coastal environment, a higher quality dataset of the state 

of beach hazard is becoming available. 

This project is concerned with the nature of physical beach hazards at UK beaches, 

specifically hazard levels, their spatio-temporal distribution and the relationship 
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between beach hazard and type. This requires an assessment of the applicability of 
present understanding of beach morphodynamics to a UK beach environment that is 
dominated by large tides, a mixed often high-energy wave climate and a complex 
geological history. Identified as a knowledge deficit, Short (2006) highlighted the need 
for fiirther research in these afore-mentioned beach environments, endemic in the UK, 
which have morphodynamically received little previous attention. 

The Royal National Lifeboat Institution (RNLI), the principal provider of lifeguard 

services to the UK, commissioned this project. The project was conceived to further the 

understanding of beach morphodynamics and hazard within the UK to provide a basis 

for the development of practical hazard assessment tools and improved lifeguard 

training. These elements are an integral part of the risk assessment and mitigation 

programs within the RNLI. 



Aims and structure of thesis 

1.2 AIMS AND STRUCTURE OF THESIS 

The broad aim of this study is to improve our understanding of beach morphodynamics 

and associated hazards within a UK coastal environment. Through a revieu' of the UK 

coastal environment and relevant previous research specific to beach morphodynamics 

and hazards, specific targeted project aims were defined: 

1) Identify the nature and specific causes of beach hazards through the assessment 

of RNLI incident records and assess the resuhing hazard signatures. 

2) Identify beach type variability in UK and investigate the appropriateness of 

using a beach classification system to describe beach type groups though the use 

of traditional morphodynamic parameters. 

3) Investigate the spatial distribution of the identified beach types and their 

associated morphodynamic characteristics. 

4) Investigate the relationship between hazard and beach morphodynamics within 

the UK environment and assess whether it is similar to that observed in previous 

research. 

5) Identify the extent to which rip currents are a hazard in UK and identify and 

quantify the location, circulation and dynamics of high-risk rip current scenarios. 

The structure of the thesis, illustrated in Figure I . I , comprises four main sections, each 

representing distinct field campaigns and associated analysis. 

This chapter highlights the research problem, project aims and the process of 

development of a baseline understanding through a review of the UK coastal 

environment and relevant literature. Chapter 2 provides a description of field and 

laboratory techniques used to collect and analyse data that are either common to the 

varied field campaigns or more appropriate as reference material to avoid duplication in 

subsequent chapters. 

Chapters 3-6 pertain to each of the four field campaigns, each addressing the aims 

identified above. Chapter 3 provides an introduction to the physical environment of the 
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study region, the RNLl lifeguard service and documents an initial field campaign 

designed to provide the context for subsequent investigation by providing an assessment 

of the type and spatial distribution of beach morphology and environmental setting 

within the study region. This morphological assessment is combined with an analysis of 

UNLI beach incident statistics and beach population data to provide an insight into 

hazard characteristics and an initial assessment of the link between beach type and 

hazard. 

Chapter 4 examines in detail the diversity and spatial distribution of beach environments 

within England and Wales investigating their morphodynamic regimes and proposing a 

beach classification system and associated conceptual morphodynamic framework. 

Chapter 5 provides a comprehensive analysis of beach hazards in the context of the 

classified beach types identified in Chapter 4. This analysis informs the third field 

campaign that investigated the temporal variation of morphology and environmental 

forcing at a selection of the high hazard beach types within the study region, concluding 

with an assessment of the hazard and beach safety implications of temporal 

morphodynamic variation on a scale of years to minutes. 

Chapter 5 identified a number of high risk rip current scenarios which were investigated 

ftirther in Chapter 6 through a fourth field campaign, focussing on a low-tide, 

macrotidal rip current system that resembled, as close as was possible, the morphology 

and forcing conditions that were observed to generate 'optimum' high hazard scenarios. 

An investigation of the forcing mechanisms and tidal modulation under these conditions 

provided a new quantitative insight into a previously unstudied type of rip current 

system. 

Finally Chapter 7 provides a synthesis and discussion, bringing together the key 

findings and evaluating them in the context of the project aims and previous research, 

finishing with the key conclusions. 
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1.3 R E V I E W 

1.3.1 The UK coastal environment 

The coast of England and Wales is one of the most diverse coastlines in the world and a 

large variety of coastal landforms are represented, including dunes, sand and gravel 

beaches, barriers and spits, various types of estuaries, tidal flats and salt marshes, 

rapidly eroding soft-rock cliffs and resistant hard-rock cliffs with shore platforms. Many 

publications over the years have addressed the coastal geomorphology of England and 

Wales, such as the seminal work by Steers (1946) and regional guides pertaining to 

interesting stretches of coastline of particular relevance for this study (Bridges, 1998; 

Brunsden and Goudie, 1997; Castleden, 1996; Keene, 1996; Motterhead, 1996) 

The large variety in coastal systems along the coastline of England and Wales is mainly 

attributed to the along-coast variability in static and dynamic environmental factors, or 

boundary conditions. The three most important environmental factors are geology, 

sediments and external forcing (wind, waves, storms and tides), with sea level serving 

as a meta-control by determining where coastal processes operate. When contemporary 

coastal systems and processes are considered, human activity should also be taken into 

account. Spatial variability in the boundary conditions is responsible for geographical 

variations in coastal morphology and morphodynamics (Davies, 1980). 

1.3.1.1 Sea level 

Long-tenn coastal evolution is largely driven by changes in (relative) sea level. At the 

end of the glacial maximum, around 18,000 years ago, sea level started to rise rapidly 

from - 120 m below present sea level, attaining its present level around 4,000 years ago 

(Fairbanks, 1989). The effect of this sea-level rise on the coastline of England and 

Wales must be considered in combination with the changes in the land level associated 

with glacio-isostatic effects, in particular isostatic rebound of the formerly glaciated 

areas in the north, and collapse of the forebulge of areas near the ice margin in the 

south. Shennan and Andrews (2000) reconstructed the relative sea-level in NW Europe 

during the Holocene. The situation at 7,500 BP, when global mean sea level was - 1 5 m 

below present, highlights the contrast between the east coast of England and the rest of 

the country (Figure 1.2). At this time, the coastline of east England had a very different 

shape and was located more than 10 km seaward of the present coastline. Therefore the 

implication is that the modem day coast is very young, 
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Figure 1.2 - (a) Coastal configuration of NW Europe 7,500 years BP (Shennan and 

Andrews, 2000) and (b) estimated current relative land-level changes (mm yr ' ) in England 

and Wales obtained by combining current land-level change (Shennan and Morton, 2002) 

with current eustatic sea-level change (Church and White, 2006). The open and solid circles 

indicate rising and falling absolute land levels, respectively. 

and is unlikely to have equilibrated to present day sea-level conditions; therefore, it is 

likely to be significantly affected by relaxation time effects. The post-glacial sea-level 

rise ceased about 4,000 years ago, but over the last 130 years sea level has begun rising 

again by 0.2 m, equaling to a rate of rise of 1.5 mm yr ' (Church and White, 2006). The 

current rate of sea-level rise, based on a decade of satellite altimeter data, is 3 mm yr ' 

(Church and White, 2006). Combining the current rate of global mean sea-level rise 

with Shennan and Horton's (2002) recently revised estimates of rates of land-level 

change in England and Wales suggests that the relative rate of sea-level rise in north and 

south England is - 2 and 4 mm yr"', respectively (Figure 1.2). 

1.3.1.2 Geological history 

Steers (1960) attributed the diversity in coastal geomorphology in England and Wales 

mainly to the variety of rocks in the country. The large-scale solid geology, 

characterised by a decrease in age from west to east, forms the template of the overall 

coastal topography and the outline of the coast. The geology exerts its control on coastal 
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Figure 1.3 - Map o f Britain showing resistance o f the geology to denudation (Clayton and 

Shamoon, 1998). 

morphology mainly through the resistance of the rocks to denudation (Figure 1.3) and 

this provides the explanation for the contrast between the high-relief, mainly rocky 

coasts of west England and Wales, and the low-relief, mainly unconsolidated coasts of 

east England (Clayton and Shamoon, 1998). On a smaller scale, coastal landforms such 

as headlands, bays and inlets reflect contrasts in rock strength, and it is the local 

contrasts that lead to the detail and diversity of our coasts (May and Hansom, 2003). 

1.3.1.3 Sediments 

In addition to the solid geology, the drift geology is also important, mainly a legacy of 

the most recent and penultimate glaciations, the Devensian and Wolstonian, 

respectively. During deglaciation, large quantities of glacial and paraglacial sediments, 

comprising the full spectrum of sediment sizes from mud to boulders, were left by the 

retreating glaciers. The coarser material, most of which was deposited on what is now 
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the continental shelf has been transported onshore during the post-glacial transgression 

and has been incorporated in dunes, beaches, barriers and estuaries (Anon, 2002). This 

sediment source is now mostly depleted and offshore sediment supply to the coast by 

natural processes is very limited. However, most of the material that was deposited on 

what is now land is still present and represents an important sediment source to the 

nearshore system through cl i f f erosion (Bray and Hooke, 1997). The finer fractions of 

these eroded glacially-derived sediments (mud and silt) are being deposited on salt 

marshes and tidal flats in estuarine environments, or are transported to the southern 

North Sea by tidal currents (Dyer and Moffat, 1998). The coarser fractions (sand and 

gravel) enter the littoral system and are distributed along the coast. 

1.3.1.4 Coastal processes: waves, tides and extreme events 

Coastal sediment transport processes are the result of external forcing, mainly in the 

form of tide- and wave-driven currents. The wind climate is of significance as well, 

either indirectly through the generation of waves and currents, or directly by inducing 

aeolian sediment transport and dune development. The tidal regime and wave climate 

exhibit a large spatial variability (Figure 1.4) and play an important role in explaining 

the diversity in coastal landforms on England and Wales. 

The tidal range varies along the coast due to the presence of several amphidromic 

systems and the interactions between the tidal motion and the coastal topography. The 

largest tides occur in the Bristol Channel due to the 'furmelling effect' of the coastal 

topography and the smallest tides are experienced in the lee of the Isle of Wight in 

proximity to the degenerate amphidromic point near Bournemouth. For the majority of 

the coast, the amplitude of the M2 tidal component is larger than 1.5 m and the mean 

spring tide range exceeds 4 m. 

Within England and Wales the most energetic wave conditions are experienced in the 

southwest, where the 50% exceedence significant wave height (//,,5o%) is larger than I 

m and the wave climate is a mixture of Atlantic swell and locally-generated wind 

waves. The lowest wave conditions prevail in Northwest and East England, where 

waves are predominantly wind waves and //5.5o% is generally less than 0.5 m. The 

influence of exposure to the Atlantic Ocean in the southwest of England and to a lesser 

extent the Irish Sea increases the contribution of long-period, swell waves to the wave 

spectrum. The complexities of coastal orientation and exposure around the coasts of 
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Figure 1.4 - Map of Britain with: (a) M2 tidal amplitude (adapted from Proudman and 

Doodson, 1924); (b) 10% exceedence significant wave height, Hsur-, (Draper, 1991); and (c) 

l-in-50 year storm surge level (Flather, 1987). 

England and Wales lead to a dynamic balance of clearly defined high-/Iow-energy, and 

wind/swell wave components that is often characterised by a bi-modal wave energy 

spectrum (Figure 1.5) with multiple directional sources in many regions (Bradbury et 

al., 2004). Mean seasonal variation in wave climate is significant in many coastal 

regions with strong summer-winter wave energy variations illustrated in Figure 1.6 

where wave buoy data from the Atlantic southwest coast of England (2003-2008) 

shows 10% exceedence significant wave heights ranging from 2 m to 5 m from summer 

to winter, respectively. Joint wave distributions from the same location clearly show 

that a significant portion of the increase in energy during winter months is due to high-

energy storm events with associated mean wave periods of up to 14 s (Figure 1.7), 

whereas the modal joint wave events increase on average by approximately 1 m (1.5-

2.5 m) with a similar mean wave period. Characteristics of storm frequency variations 

are shown in Figure 1.8. 

Coastal morphological changes that occur as a result of extreme water level conditions 

during storms, such as coastal dune erosion and barrier breaching can be equally as 

important as waves and tides. Storm events are particularly relevant due to the 

associated flooding and indeed, the most serious natural hazard to have affected 

England during the last 100 years was the 1953 storm surge that struck the east coast of 

England (Baxter, 2005). The distribution of extreme surge height around the UK coast 
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Figure 1.5 - Typical spectral wave output from Looe on the South Cornwall Channel coast 

showing a bi-modal, bi-directional sea (data courtesy of the Channel Coast Observatory). 

is plotted in Figure 1.4 and indicates that the areas particularly prone to storm surge are 

the east coast of England with a 1:50 year storm surge height of 1.5-2.5 m, and the NW 

coast of England and the Bristol Chamiel with a 1:50 year storm surge height of-1.5 m. 

An analysis of storm wave characteristics along the Atlantic west coast from 2003 to the 

present illustrates the extreme high wave conditions experienced in west coast regions. 

On average, 17.4 storm events (peak f / j > 4 m) and 5 severe storm events (peak / / , > 

6 m) occur annually. Figure 1.8 illustrates the strong seasonal variation in both storm 

intensity and duration with the peak / / , of the highest storm events exceeding 8 m and 

on one occasion reaching > 10 m. Sustained periods of high-energy storm conditions 

during winter are common averaging > 40% of storm days per month (Figure 1.8). The 

seasonal high-energy character of much of the west coast of England and Wales plays a 

key role in the evolution of the coastal geomorphology of the region. 

I I 
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Figure 1.6 - Monthly wave height exceedence statistics for Seven Stones offshore wave 

buoy (50.I0°N 3 6.1°W) between 2003 - 2008. 
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Figure 1.7 - Seasonal joint distribution wave climate statistics for significant wave height 

and mean period for Seven Stones offshore wave buoy (50.10°N 3 6.1°W) from 2003 to 

2008. 

1 2 



Review 

o 2 0 

• • 

12 

10 

I 8 
X 

I ^ 
2 

B 

2004 2005 2006 
Year 

2007 2008 

Figure 1.8 - Temporal characteristic of storm events in the southwest of England (Seven 

Stones offshore wave buoy, 2003 - 2008). Storm duration defined as the time over which the 

mean hourly Hs remained above 2 m: (A) storm days per month, grey and white bars 

represent storm peak > 4 m and > 6 m, respectively; (B) Peak wave heights (//J for storms 

identified between 2003 and 2008. 

Table 1,1 - Storm event statistics for Seven Stones offshore wave buoy (SO.IO'̂ N 6 .rW) 

from 2003 - 2008. 

Storm frequency (2003-2008) Storm duraUon (2003-2008) 

Peak H, > 4 m Peak H, > 6 m Peak H, > 4 m Peak H, > 6 m 

Mean events Mean events Mean hrs sd Mean hrs sd 

Annual 17.4 5.0 100.1 89.2 162.9 101.4 

Winter 5.8 2.0 155.1 123.3 231.3 109.5 

Spring 5.4 1.6 78.1 51.3 82.2 46.9 

Summer 1.8 0.0 27.7 6.0 0.0 0.0 

Autumn 4.0 1.2 77.1 34.6 85.8 28.6 
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1.3.1.5 Coastal modirication 

Most of the coastline of England and Wales is developed, often modifying coastal 

morphodynamic systems (Figure 1.9). In England alone, the total length of man-made 

coastal defences is at least 860 km (Herlihy, 1982; MAFF, 1994). These defences 

restrict the natural landward movement of coastal systems under the influence of rising 

relative sea level, resulting in a steepening of the inter-tidal profile. In England and 

Wales, almost two thirds of the inter-tidal profiles have steepened over the past hundred 

years, whereas only one third has flattened (Taylor et al., 2004). Direct human 

intervention in nearshore and inshore sediment transport processes is also important. 

These include fragmentation of the coast by engineering structures that interrupt the 

littoral drift (e.g., groynes, breakwaters, marinas and jetties), removal of sediment by 

dredging and provision of sediment through beach recharge (French, 2004). 
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Figure 1.9 - Extent of coastal protection around England in 1993. Survey results courtesy 

of Ministry of Agriculture and Food (1994). 
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1.3.2 Beach morphodynamics and state 

Beaches, acting as the border between land and sea, are composed of mobile sediments 

from mud to boulders lying upon and constrained by their surrounding geologic 

framework and influenced by the dynamics and characteristics of the surrounding 

coastal and shelf systems. Beaches lie between a submerged seaward point at which no 

significant sediment movement occurs due to waves, and a landward point that marks 

the maximum height that the waves act on the beach sediment. Although driven 

principally by wave action, this sediment is also mobilized through tidal forcing and 

wind driven currents. Beach shape and characteristics vary greatly around the globe 

depending on numerous environmental factors and their complexity and beauty has 

been a source of fascination to coastal scientists for decades. 

Within a geologic timescale, many factors such as shelf dimensions and gradient, 

sediment supply, and relative changes in sea-level exact an overarching control on the 

coastal system within which a given beach resides (Reading and Collinson, 1996). 

These factors, among others, affect the coastal geomorphologic setting of beach 

environments within the UK, which include high hard-rock cliffs, low soft-rocks cliffs, 

embayed coves and open ocean coast beaches, river mouths, tidal inlets, estuaries, spits 

and barriers. The temporal context of beach systems considered within this thesis range 

from an 'instantaneous' morphodynamic response (a single forcing cycle of seconds to 

days), to one of intra- and inter-annual *event' change (Cowell and Thom, 1997). Due to 

this, the dominant characteristics under consideration are those that are known to have 

the greatest influence on the state of the beach system on this timescale, namely waves, 

tides and sediment size distribution. The geologic framework and rate of sediment 

supply of the beach are considered important, but stationary. 
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1.3.2.1 The morphodynamic approach 

An important concept in the understanding of beach processes and form is that of beach 

morphodynamics. This systems approach, now widely used within coastal research, was 

introduced to coastal morphology and evolution by, among others, Wright and Thom 

(1977) who stated 'Coastal evolution is the product of morphodynamic processes that 

occur in response to changes in external conditions', resulting in the 'mutual adjustment 

of topography and fluid dynamics involving sediment transport'. It is the close coupling 

and feedback between fluid dynamics and form that drives sediment transport and 

produces morphological change over time. This morphological change in turn alters the 

boundary conditions for the fluid dynamics, affecting further morphological changes 

(Figure 1.10). This hydrodynamic coupling enables the possibility of identifying 

particular nearshore morphologies through their characteristic nearshore dynamics (e.g. 

Wright and Short, 1984). Apart from energy input to the system through hydrodynamic 

processes, characteristics of the environmental setting exert an influence on the 

morphodynamic system through sediment properties (abundance and characteristics), 

geologic characteristics (solid boundaries and geometry) and stratigraphy (antecedent 

morphology). The spatio-temporal variations in these environmental conditions form the 

boundary conditions of the morphodynamic system (Masselink and Hughes, 2003 ). 

ENVIRONMENTAL SETTING (SEDiM£tm&geology) ENERGY INPUT 

i 

SEDIMENTTRANSPORT 

BEACH SYSTEM 

FLUID 
DYNAMICS 

{HYDRODYNAMIC PROCESSES) 

MORPHOLOGY 

Figure 1.10. - Primary components involved in beach morphodynamics. The feedback loop 

is responsible for the fundamental complexities in beach morphological evolution. At 

represents the time dependence inherent in morphological evolution due to the process of 

sediment redistribution. 
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While hydrodynamic processes respond instantly to changes in morphology, 
morphological change requires sediment redistribution that takes a finite time 
(relaxation time). Due to this lag in morphological adjustment and the constantly 
changing nature of the forcing conditions a beach may never attain its 'equilibrium' 
condition. With strongly stochastic forcing conditions, evolving morphodynamic states 
are affected by morphological inheritance from previous states due to memory effects 
associated with relaxation times. Due to this non-linear behaviour in addition to 
associated properties of feedback (positive and negative) and self-organisation (Cowell 
and Thom, 1994) inherent within the coastal morphodynamic system, prediction of 
coastal evolution is a very difficult task (Cowell and Thom, 1994; Masselink and 
Hughes, 2003). 

1.3.2.2 History 

Early investigations of beaches, often through analysis of sequential two-dimensional 

beach profiles, attempted to understand the relationships between environmental factors 

like waves, tides, and sediment size, and the beach systems under study. Work by King 

(1972) gave descriptions of a number of different beach systems in Europe and the 

USA, from high energy open-coast beaches, to fetch-limited ridge and runnel beaches, 

to those associated with cresentic bars. This work successftilly linked certain beach 

types to associated environmental conditions, but did not provide a relationship between 

the huge range of beach types seen globally and the variety in their morphodynamic 

response (Short, 1999). 

The first classification of beaches began in California where Shepard and LaFond 

(1940) observed distinct seasonal profiles. Termed 'cut and fill', describing a cycle of 

erosive and accretionary conditions, where winter storm waves remove sediment to an 

offshore bar and a summer calm promotes beach accretion and a steep barless beach 

form with berm. This basic model was only applicable in a climate where distinct 

differences in seasonal wave climate existed, i.e. the Northern hemisphere. The two end 

member profiles were not linked until the first work on sequential beach profiles was 

conducted by Sonu and van Beek (1971) in North Carolina where they generated a 

completely wave dominated ^vo-dimensionaI sequence of sub-aerial beach change 

involving an erosion and an accretion sequence (Figure 1.11). 
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^ Eroilon 

Figure 1.11. - Two-dimensional sequence of sub-aerial beach profile change (Sonu and 

VanBeek, 1971). 

The next development was to acknowledge the three-dimensional behaviour of beach 

systems and incorporate the sub-tidal beach and the role of bars (Figure 1.12). The 

recognition of sub-tidal rhythmic bar morphologies, which had been documented by 

researchers since 1938, led to the first three-dimensional sequence of beach change by 

Sonu (1973), driven by his previous interest in rip current systems on the Florida coast 

(Sonu, 1972). This model involved the formation of rhythmic bars and their subsequent 

migration towards, and welding to, the shoreface. These cycles were associated with 

edge waves and the cycle of erosion during storm events and accretion during calms. 

Increased understanding of surf zone hydrodynamics, such as sub harmonic and 

infragravity wave activity, originally termed 'surf beat* (Munk, 1949); standing waves 

and edge waves; and radiation stress and wave set up (Tucker, 1950) aided the 

improved understanding of rip current circulations (Bowen and Inman, 1969), swash 

and nearshore cell circulation. Following these advances the relationship between net 

bottom currents and resultant sediment transport was developed and coupled with beach 

morphodynamic states (Wright and Short, 1984). 

With the exception of sandy microtidal environments, which are almost completely 

wave dominated, in the vast majority of cases some kind of tidal effect will play a role. 

The degree to which tide related processes affect beach morphodynamics will be 

directly linked to tide range. Hence, as the tidal range increases from meso (2-4 m) to 
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Figure 1.12. Oblique time stack images from the Duck, Field Research Facility, North 

Carolina. High intensity pattems are suggestive of sub tidal bathymetry. A indicates a 

detached bar trough system with bar breaking and swash, B illusU^les a classic 

rhythmic/cresentic bar morphology (Lippman and Holman, 1989). 

macrotidal (>4 m) (Davies and Hayes, 1984) and megatidal (>8 m) beaches (Levoy et 

al., 2000), the system becomes progressively more tidally dominated (Short, 1999). 

Wright et al. (1982b) conducted experiments investigating low-energy macrotidal beach 

morphodynamics in Cable Beach, Western Australia (MSR = 9.5 m). They found that 

rhythmic and aperiodic longshore irregularities such as cresentic/transverse bar and rip 

channels, commonly associated with microtidal beaches were generally absent. They 

divided the inter-tidal beach into 3 zones, from a dissipative to an 

intermediate/reflective surf zone from the low- to high-tidal zones respectively. Each 

zone was characterised by its morphodynamic character, including frequency of 

inundation. Wright et al. (1982b) suggested that each zone is dynamically different, 

proposing that the dynamics of the lower inter-tidal zone is similar to the sub-tidal zone 

of a microtidal beach due to the dominance of shoaling wave processes. 
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Therefore, under macrotidal conditions, beach states could be considered to change 
morphodynamically throughout the tidal cycle. More recently, studies on the high-
energy, meso- to macrotidal Aquatine coast of France (e.g. Castelle et al., 2007; Castelle 
et al., 2009; Masselink et al., 2008) have described highly three-dimensional sub- and 
inter-tidal bar dynamics of similar form to their well-studied high-energy microtidal 
counterparts within an environment with a significant tidal range. Davidson et al. 
(1993) and others have suggested that key beach processes are essentially identical on 
both micro- and macrolidal environments, but differ in the extent of tidally induced surf 
zone translation. The concept of a 'shape function', developed by Russell et al. (1999) 
and later extended by Marino-Tapia et al. (2007) and Tinker et al. (2009), describes the 
cross-shore variation in cross-shore sediment transport across the shoaling and surf 
zones, and can be used to simulate bar building and bar migration processes. This 
concept of a morphodynamic template was used by Masseliak (2004) to simulate, with 
some success, the mechanisms of inter-tidal bar formation on macrotidal beaches in 
relation to surf zone processes, translating a 'shape function' across the inter-tidal 
profile to simulate the tidal-cycle. 

Inter-tidal bar morphologies, present on wave-dominated beaches with a significant tide 

range, have received less attention than sub-tidal bars in the coastal morphodynamic 

literature (Masselink et al., 2006). A range of inter-tidal bar formations have been 

observed around the coast of the UK (Davidson, 1997; King, 1972; King and Williams, 

1949; Kroon and Masselink, 2002; Selma van Houwelingen et al., 2006) and identified 

in literature (Carter, 1988; Short, 1991; Short, 1999; Wijnberg and Kroon, 2002). Three 

key types were useflilly defined by Masselink et al. (2006), based principally on 

morphology, as: ( I ) 'slip-face bars', with the largest amplitude (generally >1 m). These 

are the most dynamic and develop as breaker bars and move onshore through wave 

asymmetry (Roelvink and Stive, 1989). Common in higher-energy environments and 

mesotidal settings, slip-face bars are often fronted by/in the lee of sub-tidal systems. 

They usually form low on the inter-tidal beach after storm-induced beach erosion and 

develop into a berm under prolonged calm wave conditions. Often present as a single 

inter-tidal bar they represent the bar type that occurs in the ridge and runnel beach state 

defined by Wright and Short (1984); (2) the more static 'low-amplitude ridges' 

(generally <1 m). These occur as a series of shore-parallel bars, distributed across the 

inter-tidal profile, dissected by shore-normal drainage channels. This type of inter-tidal 

bar morphology, termed 'ridge and runnel' by King and Williams (1949), features in 
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Group II meso- and macrotidal intermediate beaches identified by Short (1991); and 
finally (3) the very subdued, marginal, 'sand wave' formations, which are not relevant 
in the context of this study. As well as wave forcing, inter-tidal bar morphology is 
significantly affected by relaxation time effects and morphodynamic feedback, 
particularly on multiple barred beaches (Masselink et a!., 2006). The main difference 
between inter-tidal and sub-tidal bar morphodynamics is the importance of tidal water 
level variations and shallow water surf zone processes (surf, bores and swash), rather 
than just wave height variability (surf and shoaling) (Masselink et al., 2006). The inter-
tidal bar forms should not be considered distinct, rather part of a continuum of 
morphologies. 

1.3.2.3 Morphodynamic state models 

Identification of beach morphodynamic states through classification schemes can be a 

usefiji conceptual tool to help assess the different forcing mechanisms and controls 

behind observed beach types globally. Much of the pioneering work on the 

classification and modelling beach morphodynamic states was conducted in Australia. 

Wright and Short (1984) developed a beach classification model that was the 

culmination of a large body of previous work (e.g. Short, 1975; Short, 1978 ; Wright et 

al., 1979; Wright et al., 1982a; Wright et al., 1982b; Wright and Short, 1983) to describe 

the morphodynamic character of a beach system. Based around morphodynamic states 

of surf zones and beaches, they identified a succession of intermediate states that exist 

with characteristic signatures of both beach morphology and associated surf zone 

dynamics. These states were constrained between the relatively stable fully dissipative 

and highly reflective extreme states corresponding to flat, fine grained, shallow beaches 

with large sub tidal sediment storage capacity and steep, coarser grained beaches with 

small sub tidal sediment storage capacity, respectively. These two extremes can be 

morphologically described through their surf zone characteristics using the surf scaling 

parameter (Carrier and Greenspan, 1958): 

s,=a,w'/gmn'p (1.1) 

where Ob is breaker amplitude, co is radian frequency (ITI/T, where T = period), g is 

acceleration due to gravity and tan^ is beach slope. The parameter recognizes that the 

continuum from surging to spilling breakers represents an increase in the amount of 

energy dissipation across the surf zone (Short, 1999). When eb < 2.5 surging breakers 
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and a highly reflective surf zone are expected, permitting strong standing wave and edge 
wave motion (Guza and Inman, 1975; Short, 1999), and when eb > 20 spilling breakers 
dominate a highly dissipative surf zone characterized by turbulent dissipation of 
incident wave energy across the surf zone, and an increased influence of infiragravity 
standing waves exists towards the shore, often dominating dynamic processes in the 
inner surf zone (Wright and Short, 1984). 

Wright and Short (1984) identified a link between wave height, period and sediment 

size, described by the dimensionless parameter Q, often termed the dimensionless fall 

velocity, first combined by Gouriay (1968), redefined by Dean (1973) and eventually 

adapted for use on natural beaches by Wright and Short (1984): 

Q-HjwJ (1.2) 

where is breaking wave height, Ws is sediment fall velocity and T is wave period. 

This attempted to describe the beach and surf zone morphology and the shoaling, surf 

and swash zones interacting with it for microtidal, wave-dominated coasts. This work 

was based upon datasets collected by both Wright et al .(1979), investigating a range of 

beach types, and Short (1978; 1979) who recorded 18 months of daily observations at 

Narrabeen beach, Australia. Q was used to differentiate between reflective (Q < 1), 

intermediate (^^ = 1-6) and dissipative (Q > 6) regimes. This work produced a series of 

sequential beach types (Figure 1.13) linking them to their associated environmental 

conditions (// , .w^ and T) and the sensitivity of H to each parameter (Figure 1.14). 

A series of sequential intermediate beach states are presented that illustrate the three 

dimensional evolution of bar morphology as environmental conditions change 

temporally and/or spatially. As Q reduces from a highly dissipative state, to a reflective 

state (Q > 6 to Q < 1) the intermediate beach states move fi-om a longshore bar and 

trough beach (LBT) state to the low tide terrace (LTT). This is represented by the 

onshore migration of a detached straight/rhythmic longshore bar towards the beach face 

setting up a rhythmic bar and beach (RBB) system characterised by the presence of well 

developed rip current cells that are enhanced as the bar attaches to the shoreline 

generating transverse bars, perpendicular to the shore and segregating individual rip 

current systems. Further onshore bar migration leads to the LTT beach state where a 

steeper upper beach (often coarser) is attached to a shallower flat or slightly convex 
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Figure 1.13. - Morphodynamic classification of micro tidal wave dominated beaches 

(Wright and Short, 1984). 
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Figure 1.14. - Sensitivity plot of the contribution of wave breaker height, wave period, and 

sediment size to Q and beach type (Short, 1999). 

terrace. Associated with the combined presence of dissipative and reflective wave 

breaker characteristics, intermediate beaches possess complex surf zone dynamics but 

generally move from a predominantly dissipative to predominantly reflective regime as 

n reduces. 

1.3.2.4 Tide-modified beach state model 

The majority of research relating to beach morphodynamic state and particularly bar 

dynamics, has been carried out in relatively tide-less (micro- and mesotidal) 

environments. As a result, the effects of large tidal range on beach morphodynamics 

have received relatively little attention until the last few decades. Beginning with the 

research from the B-BAND project in the UK (Davidson et al., 1993) and research 

along the macrotidal coast of Queensland, Australia (Masselink, 1993; Masselink and 

Hegge, 1995; Short, 1991; Turner, 1993) a number field experiments have been 

conducted in this study area in recent years addressing this identified gap in scientific 

knowledge (Anthony el al., 2005; Anthony et al., 2004; Caslelle et al., 2007; Kroon and 
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Masselink, 2002; Levoy et al., 2000; Masselink, 2004; Masselink and Anthony, 2001; 
Masselink et al., 2008; Michel and Howa, 1999; Reichmuth and Anthony, 2007; Sedrati 
and Anthony, 2007). 

Increasing the tidal range to a mesotidal (2-4 m) or macrotidal (< 4 m) beach 

environment significantly modifies morphodynamic processes in a number of ways. The 

lateral translation or *sweep' of surf zone processes (swash, breaker zone, shoaling) 

across the beach during the tidal cycle, controlled by the tidal range and beach slope, 

can be greater than 500 m in some macrotidal environments and acts to subdue 

morphological development. The extent of these smearing effects are controlled by the 

rate of tidal translation, determining the length of time any of the surf zone processes act 

on a specific point on the beach. The sinusoidal nature of the tidal oscillation means that 

maximum translation rates occur over the mid stages of the tide (Figure 1.15). In areas 

where tide ranges are in excess of 8 m, termed mega-tidal, as in Normandy, France 

(Levoy et al., 2000), translation rates can exceed running speed. Finally, tide induced 

fluctuation of the beach groundwater table determines the time varying saturation 

characteristics of the inter-tidal beach profile (Turner, 1993), where a saturated beach 

promotes erosion and an unsaturated beach, deposition. It is important to note that the 

tidal effects discussed above have an effect on both semi-diurnal and lunar spring-neap 

cycles. With increasing tidal range, these processes play a progressively more 

significant role in determining the character of the prevailing beach state. 

Masselink and Short (1993) extended this work to the development of characteristic 

meso-/macrotidal beach environments, ftirthering the previously discussed microtidal 

beach state model of Wright and Short (1984). An additional dimensionless parameter 

to describe the relative importance of shoaling, surf zone and swash processes across the 

inter-tidal profile was defined, the relative tidal range: 

RTR = MSR/H, (1.3) 

where MSR is mean spring tide range in meters, and Ht is wave breaker height in 

meters. This provided a useftil parameter with which to quantify the tidal effects within 

a beach system. The principal importance of the RTR is that it distinguishes the relative 

effects of waves and tides, a concept first established by Davis (1984), suggesting that 

coastal geomorphology is a ftinction of the relative contribution of waves and tides 
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Figure 1.15. - Relative occurrence of swash, surf and shoaling wave processes across the 

beach profile calculated over one tidal cycle where = I m, 7'= 8 s, vv, = 0.03 m s\ breaker 

criterion y = 0.8 and tide range TR = 6m from a simulated tidal excursion model by 

Masselink and Short (1993). 

(Short, 1999). The modified conceptual beach state model includes the parameter RTR 

and defines a number o f identified beach types through four physical constraints, the 

modal wave breaker height, modal wave breaker period, upper beach face sediment size 

and mean spring tidal range. Incorporated in the two parameters H and RTR, these 

variables describe the surf zone characteristics (reflective to dissipative) and the relative 

importance o f swash, surf and shoaling zone processes respectively. 

This extension enables the inclusion o f a number o f well documented beach types that 

commonly occur in regions o f meso- and macrotidal regimes (Figure 1,16). Masselink 

and Short (1993) took profiles observed f rom 19 beach sites f rom Australia and the UK. 

that represented mean spring tidal ranges fi-om 3.6 m to 9.5 m, and modal wave breaker 

heights f rom 0.3 m to 0.8 m to develop their model. From the classic reflective beach 

type, the increased RTR led to the compound profile o f a L T T beach type characterized 

by a distinct steeper upper beach and flat/convex low gradient terrace. Then the barred 

and barred dissipative states, represented within the Wright and Short (1984) model as 

intermediate and dissipative regimes, represent increasingly subdued morphology as 

RTR increases. As RTR increases fi^om 3 to 7 the bar/rip morphology is displaced 

seaward towards low water and becomes increasingly subdued until the beach is flat and 

26 



Review 

REFLECTIVE 

DIMENSIONLESS FALL VELOCITY O = Ht,lwJ 

INTERMEOrATE DISSIPATIVE 

Reflective 

Low tide terrace 

OJSpS 

Barred Barred dissipative 

eeeptmugt) 
0 100 200 

V sleep bcoMaco 
100 200 

HT t> 

dissipa^vtt tow tide ^ -

LT 0 

100 200 300 

100 200 

Low tide bar/rip 

aeeperbeaeti 

Ultra dissipative 

100 200 300 400 500 600 

j Transition to tide-dominated tidal flats | 

Figure 1.16. - Modified conceptual beach state model (Masselink and Short. 1993). 

featureless (RTR > 7). It is important to note that these points of division are not 

intended to be absolute. 

In summary, Masselink and Short (1993) generalised that beaches with an RTR < 3 are 

best classified according to the microtidal model o f Wright and Short (1984), whereas 

beaches with an RTR that lies between 7 and 15 are expressed as macrotidal beaches 

with planar, concave profiles with the transition to tidal flats occurring when RTR > 15. 

Where RTR is between 3 and 7 they suggest that beaches are typically high to moderate 

energy macrotidal beaches not included in previous beach state models. Inclusion o f 

relative values o f wave height and tide range enables the incorporation and description 

o f a number o f varieties o f beach type in a single model, although it is acknowledged 

that absolute values are o f importance in a number o f ways (Masselink and Short, 

1993). 

Wave height 

Absolute wave height is crucial in determining a minimum wave energy threshold for 

transport below which no morphological change occurs. There w i l l also be a threshold 

energy level required for the presence o f infragravity and edge waves (Guza and Inman, 

1975), potentially important in the generation o f the rhythmic and bar morphology 

described within all the beach classification models. Therefore, application o f models at 
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low energy levels, Hb < 0.25 m Masselink and Short (1993), should be pursued with 
care. 

Tide range 

The transition to a L T T beach, as documented in previous study by Turner (1993) and 

Masselink and Short (1993), is suggested to be related to the drainage capacity o f the 

beaches concerned, where the water table can become decoupled from the tide level 

during the fal l ing tide, resulting in a seepage face where the water table outcrops into 

the beach producing a saturated lower beach. Generally associated wi th fine sediment, 

mixed beaches often exhibit a seepage face at or near a textural break between coarse 

upper and fine lower beaches. This de-watering effect can have significant implications 

for cross-shore sediment transport pattern and hence the profile development 

exemplified by the L T T beach form and is controlled by complex beach sediment 

characteristics, beach slope and the absolute tide range. Masselink and Short (1993) 

state that: 'the RTR value o f 3 separating the reflective beaches from the L T T beaches 

is rather arbitrary'. 

Finally, at low values o f tide range and wave height, the morphological situation o f the 

beach system becomes very sensitive to small changes in environmental factors. This is 

an area where ftirther study is required to assess energy thresholds controlling the 

separation o f different morphological states (Masselink and Short, 1993). 

Masselink and Short (1993) also commented that unlike in previous models (Short, 

1991), *ridge and runnel' beach systems (low-amplitude ridges) are not identified as an 

individual beach type, but are a phenomenon that occur on any beach where the 

environmental conditions are characterised by fine sediments, limited fetch wind waves 

(short period), and a large tidal range, where RTR>3. 

It is important to note that this is a conceptual model, and is developed with a limited 

amount data that represents macro tidal regimes. Therefore threshold values separating 

beach types should be used with caution and with an understanding o f the nature o f the 

model as a ft^mework for future development (Masselink and Short, 1993). 
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13.2.5 Present perspectives: The U K beach environment 

A recent study by Jackson et al. (2005) has highlighted that although the Australian 

beach state models describe well processes in the highly dynamic, steep inner shelves o f 

the Australian coasts, there are a number o f other factors that may also control beach 

dynamics in other coastal environments. Their application o f these aforementioned 

classification models in the U K beach environment highlights some of these controlling 

factors and indicates areas where further study is needed (Jackson et al., 2005). 

Geologic features play a significant role in controlling beach morphodynamics, 

especially in the U K environment, where a huge number o f geologic settings and 

sediment sources are present. These factors constrain the shape and accommodation 

volume o f beaches. This affects their morphological evolution, and controls the often 

finite sediment supply to the system, characterising the sediment size and distribution. 

Constraining geologic features control beach length, shape and morphology through 

physical boundaries, such as headlands, islands and rock outcrops and shore 

platforms/reefs. Geologic inheritance also plays a major role in controls o f inner-shelf 

gradient and roughness, and hence wave energy transfer to the shore (reducing wave 

breaker height), coastal tidal currents and the modification o f nearshore hydrodynamics 

such as topographically controlled rip currents (Short, 2006). Further evidence o f the 

importance o f geologic control was provided by McMinch (2004) who identified a 

number o f shore-oblique sandbars along the North Carolina Outer Banks and 

Southeastern Virginia, through geophysical surveys suggesting that the underlying 

framework geology exerted a first order control on nearshore morphology, by 

influencing the stability and re-establishment o f large-scale sandbar morphology. 

Short (2006) has classified Australian beaches into 15 types, including those defined by 

Wright and Short (1984) and Masselink and Short (1993) as well as recently defined 

tide dominated and two geologically constrained states accounting for rock flats and 

fringing coral reefs. Short (2006) highlights Australia's lack o f tide-modified beaches 

exposed to higher ocean swell and storm seas and gravel beaches. 

The mixed sediment and gravel dominated beaches o f the U K coast, comprising 2900 

km o f the Nation's shoreline (May and Hansom, 2003) provide beach environments not 

present in the Australian studies. Many o f these beaches are composed o f relict 

structures (in some cases older than 5500 years old) created through post glacial marine 
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transgression and contemporary transport processes. Characterised by a range o f 
sediment sizes, these environments are being reworked over time scales o f years to 
minutes. 

The presence within U K and northern Europe o f tide ranges > 9 m, termed 'mega-tidal* 

by Levey (2000), in combination with high-energy open coast locations creates another 

unique beach environment. As documented by Levoy (2000) when studying beaches in 

Normandy, France, high-energy mega-tidal beaches often possess the classic 

combination o f a reflective upper beach and a dissipative lower beach exhibited by 

meso-/macrotidal beaches, but also show, at low-tide, an extremely dissipative zone that 

is characterised by very rapid tidal translation o f the shoreline. This low-tide zone, 

dominated by shoaling wave conditions during high-tide, is wave dominated due to the 

high-energy conditions. These environments are unlike many of the descriptions in the 

literature o f beaches characterised by large tides and tidal sand flats that are only 

affected by waves during storms. Strong tidally driven currents are therefore present in 

addition to wave driven processes. The study by Levoy (2000) provides extra beach 

types that are not present within the Australian beach state models. 

Finally, the contribution o f anthropogenic modification o f the beach environment can 

significantly alter the freedom o f sediment movement, constraining and distorting the 

reaction o f the beach environment to the forcing environmental conditions. This is a 

significant issue wi th in the U K as 23% o f the coastline o f England possesses coastal 

defence structures ( M A F F , 1994). 
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1.3.3 Rip currents 

Rip currents form an integral part o f many wave dominated surf zones and beach 

systems around the globe (Shepard, 1941; McKenzie, 1958; Sonu, 1972; Bowman, 

1988; Huntley et al., 1988; Aagaard et al., 1997; Brander, 1999; Brander and Short, 

2001; MacMahan, Thornton et al., 2005). Most often associated with the intermediate 

beach states within microtidal environments, as defined by Wright and Short (1984), rip 

current systems have also been observed in wave dominated systems in meso- and 

macrotidal environments (e.g. Castelle et al., 2007; Masselink et al., 2008; Masselink 

and Hegge, 1995) although, in comparison to their microtidal counterparts, relatively 

little is known about macrotidal rip currents, particularly in regions where tidal range 

exceeds 6 m. 

Rip currents, driven by cross-shore and longshore gradients in the mean water surface, 

result fi-om wave energy dissipation patterns associated with bar/rip morphology and 

wave-current interaction (Sonu, 1972) and are traditionally known as relatively narrow, 

seaward-flowing currents that originate in the surf zone and extend seaward o f the 

breaking region (Bowen, 1969). Rip currents are most often observed when the waves 

approach at near shore-normal incidence and where there are alongshore variations in 

bathymetry and incised sandbars. The pre-existence o f template morphology on the 

beachface w i l l act to drive alongshore gradients in radiation stress focusing wave energy 

over the bars forcing wave breaking and an associated increase in onshore directed 

radiation stress that decreases in the alongshore in the deeper incised channels. In the 

classic example, a nearshore circulation is set up comprising o f onshore mass transport 

over the bars, which then, via longshore currents, driven by the alongshore variations in 

pressure gradient in the feeder channels, most efficiently exits offshore through a rip 

channel creating a rip current (Figure 1.17). The seaward flow is generally characterised 

by the narrow jet through the ' r ip neck' that decelerates and widens into a ' r ip head' 

(Figure 1.17). 

Most rip currents are topographically constrained by bar morphology, rocky outcrops or 

coastal structures, but they also occur in the absence of topographic expression when 

they are referred to as 'transient rips' or 'flash rips'. Short (1985) classified rip systems 

into 4 categories: accretionary and erosional, associated with beach rips that are fixed 
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Figure 1.17 - Schematic of a simplified rip current system from MacMahan et al. (2006). 

(low-energy) and migratory (high-energy) respectively; topographic rips that are 

generated through the influence o f solid structures such as groynes or jetties; and large 

scale mega rips that occur during high waves. 

Our understanding o f rip current dynamics has increased significantly over the last 

decade due to a number o f comprehensive field and laboratory experiments (reviewed 

by MacMahan et a/., 2006). This has enabled a quantitative and theoretical evaluation o f 

previous more qualitative observations. Data from these laboratory and field 

experiments suggest that the rip current strength increases with increasing wave energy 

and decreasing water depths. Rip currents can occur under various bathymetric 

perturbations, even for beaches with subtle alongshore variations. 

Rip channels are a key component o f rhythmic nearshore morphology, such as 

transverse/crescentic bars, and are typical o f morphodynamically intermediate-type 

beaches (Wright and Short, 1984). Brander (2001) suggested rips are a key sediment 

transport mechanism, qualitatively associated with the development and migration o f a 

rip head bar during evolving beach states (accretionary down-state transition). He 

suggests elements o f morphodynamic feedback are critical in low-energy accrectionary 

beach rip current evolution. 
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Rip channel morphology is commonly observed to have a quasi-periodic alongshore 
spacing. Attempts to explain this observed alongshore spacing o f rip morphology, 
commonly 0 ( 1 0 0 m) in relation to measured wave height, period and sediment 
characteristics have not been particulariy successful (Ranasinghe et al., 2 0 0 4 ) . Recent 
modeling efforts suggest that the rip spacing may not be sensitive to wave height or 
mean period o f the incident waves, but is dependent on the alongshore length scale o f 
the wave group energy and the direction o f the incident waves. Reniers et al. ( 2 0 0 4 ) 
demonstrated that group wave forcing could produce low frequency vortices which 
perturbed the initially alongshore uniform barred beach at the length scale o f the groups. 
Subsequent morphological coupling and positive feedback with the hydrodynamics is 
then suggested to lead to the development o f the rip channel morphology. 

Flow velocities associated with cell circulation can be very significant with mean and 

maximum flows in the rip neck o f 0 . 2 - 0 . 6 5 m s'*and 1-2 m s ' respectively (MacMahan 

et al., 2 0 0 6 ) . The f low variation is due to a number o f mechanisms. When considering 

rip current f low contributions over a given morphology, an approach, suggested by 

MacMahan et al. ( 2 0 0 6 ) , provides a useful method o f summarising rip current f low 

characteristics by partioning frequency bands that represent key forcing mechanisms: 

Urip = Uig+UvLF + U,ide+U mean 
(1.4) 

where Uig is the contribution within the infragravity band 2 5 - 2 5 0 s, U v l f is the 

contribution within 4 - 3 0 min, Umcaa is the mean based on the rip current system and 

wave conditions, and Uiide is the modulation associated with slow variations in the water 

level. Uig and LTVLF are responsible for what is known as 'pulsing' o f the rip f low. 

Largely driven by Uig, the two main explanations o f this 'pulsing' phenomenon are 

standing infragravity waves, which are higher over the bar profile than the rip channel 

(MacMahan et ai, 2 0 0 4 ) and wave group related-variations in mass flux over nearshore 

bars, causing ponding o f water in the trough and periodic releases through the rip 

channels (Brander and Short, 2 0 0 1 ) . Hourly variations in f low are principally driven by 

the U,ide component, a phenomenon identified in a number o f field investigations (e.g. 

Sonu, 1 9 7 2 ; Aagaard et al., 1 9 9 7 ; Brander, 1 9 9 9 ; Brander and Short, 2 0 0 1 ; MacMahan 

et al., 2 0 0 5 ) , where decreasing tidal elevation over the bar crest corresponds to an 

associated increase in rip f low velocity through modulation o f the wave dissipation 

(MacMahan et al., 2 0 0 6 ) . Brander and Short ( 1 9 9 9 ) found a direct relationship between 
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rip morphology and flow wi th rip velocity increasing as cross-sectional rip channel area 
decreases due to tidal modulation. Finally, over a period o f days, Umran is controlled by 
the forcing wave conditions (e.g. wave height, period and angle). 

As well as being an integral component o f a range o f intermediate beach morphologies, 

the characteristics o f the rip current, as outlined above, represent a potential hazard to 

beach users interacting wi th the surf zone. As such, improving the understanding o f 

these systems and their spatio-temporal variation, specifically in environments with 

significant tidal ranges, is paramount when striving to improve management o f beach 

hazards. 
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1.3.4 Beach Safety 

1.3.4.1 Hazard and Risk Assessment 

The findings o f this thesis w i l l provide a scientific knowledge base o f beach 

morphodynamics and hazards within the UK coast that w i l l feed into the R N L I risk 

assessment and management program. This section outlines the approach to risk 

assessment within the R N L I and summarise some key internationally accepted concepts 

o f hazard and risk, crucial to understanding the framework o f the project aims and 

objectives. The Worid Health Organization offers the fol lowing advice in relation to the 

assessment o f hazard and risk in its Guidelines for safe recreational water environments 

(coastal and fresh waters) (WHO, 2003): 'Assessment o f hazard and risk inform the 

development o f policies for controlling and managing risks to health and well-being in 

water recreation. The assessment o f a beach or water should take into account several 

key considerations including: 

• the presence and nature o f naniral or artificial hazards 

• the severity o f the hazard as related to health outcomes 

• the availability and applicability o f remedial actions 

• the frequency and density o f use 

• the level o f development.' 

Several o f these considerations are being taken into account in the development o f the 

RNLI ' s risk assessment model for use on UK beaches. The RNLI ' s programme 

considers the implementation o f beach risk assessments/safety audits through a process 

that takes advantage o f established scientific principles, established best practice and 

benchmarking against available standards and guides. 

In developing a proactive approach to managing risks at beaches, the R N L I established 

a safety management system based on acknowledged good practice. After review, the 

best practice in risk management was assessed to be represented by the Australian/New 

Zealand Standard® Risk Management AS/NZS 4360:2004 (AS/NZS, 2004). This 

provides a generic framework illustrated in Figure 1.18. 

The scope o f the project documented in this thesis falls within the 'establishment o f 

context' and 'risk assessment' boxes in Figure 1.18. Within the risk management 

system, establishing the context requires an assessment o f the basic parameters within 
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ESTABLISH THE CONTEXT 

IDENTIFY RISKS 

ANALYSE RISKS 

EVALUATE RISKS 

TREAT RISKS 

Figure 1.18 - Risk management process - an overview (AS/NZS, 1999; AS/NZS, 

2004). 

which risks must be managed, setting the scope for the rest o f the risk assessment 

process. This study is concerned only with the risk posed to beach users that are 

interacting with the surf zone and specifically those risks that are driven by physical 

hazards (i.e. not biological or chemical). The context to be established is that o f the 

beach and near-shore environment and the specific types and levels o f hazard inherent 

wi th in that environment. The first two steps o f practical risk assessment guidance 

provided by the Health and Safety Executive (HSE, 2006) involve the identification o f 

hazard, who may be harmed, and how. 

In order to be clear in establishing terminology, it is useful to define the meanings o f 

both hazard and risk within the context o f this study: a 'hazard' is anything with the 

potential to cause harm and 'r isk' is the chance or probability that a person w i l l be 

harmed (HSE, 2006). It is therefore crucial to gain a comprehensive understanding o f 

the hazards in order to perform a successftil risk assessment. 

The risk assessment model under development by the R N L I w i l l allow beach managers 

to gain positive benefits fi*om conducting a risk assessment process. Managing risk in 

the coastal environment requires the systematic application o f management policies, 

procedures and practices to the tasks o f identifying, analysing, treating and monitoring 
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risk. Risk assessment must take a holistic approach when determining the most effective 
actions and control measures to implement. 

1.3.4.2 Beach hazard research 

As discussed previously, the beach is a highly dynamic environment, with constantly 

changing morphology and hydrodynamics, both spatially and temporally. Due to this, it 

is an inherently hazardous place for humans in many ways. Since the late I980's, 

interest within the scientific community for developing understanding o f hazards and 

risk to the beach user has grown (Engle et al., 2002; Hartmann, 2006; Lascody, 1998; 

Leahy et al., 1996; Lushine, 1991; Sherker et al., 2008; Short, 2001; Short, 1999; Short 

and Hogan, 1994) and the application o f our improved knowledge o f beach dynamics to 

the public domain and safety has begun (Short, 1999). 

Risk to the beach user entering the coastal/beach environment becomes a product o f the 

physical hazards present within the surf and nearshore zones and their severity, and the 

number o f beach users interacting with the beach system (frequency and density o f use). 

Identification o f these hazards is site specific and varies depending on a number o f 

environmental factors (Short and Hogan, 1994). Short (1999) highlights three main 

elements that put the beach user at risk o f harm: water depth, breaking waves and surf 

zone currents. 

• Water depth presents a hazard through I ) deep water, where an inexperienced 

non-swimmer can potentially drown, 2) shallow water, where a plunging or 

surging breaking wave can propel a swimmer into the seabed, creating an impact 

risk, particularly spinal injuries and 3) variable water depth, often present wi th 

bar/rip morphology whereby a beach user/swimmer may f ind themselves 

moving quickly into a zone o f different depth. 

• Breaking waves impact beach users in the surf zone, often disorientating them, 

and holding them underwater. High, more energetic waves are more hazardous, 

as are plunging or surging wave that release more energy in the shorter distance. 

• Surf zone currents, and particularly rip currents, represent the core threat to the 

beach user in the surf zone. Accounting for the vast majority o f documented 

rescues and drownings in nearly every nation with a lifeguard patrol network 

(Engle, 2003; Lascody, 1998; Short and Hogan, 1994), rip currents typically 

reach velocities o f I ms ' and some have been reported as high as 2 ms * at Palm 
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Beach, Australia (Short, 1985) moving bathers unwill ingly around the surf zone, 
and often into areas o f greater hazard. 

Further work by Short and Hogan (1994) identified specific hazards typically present 

wi th in a range o f beach types, documented in work by Wright and Short (1984) and 

Masselink and Short (1993), producing schematic illustrations o f key characteristics, 

hazards and risk ratings for each state for wave dominated (Figure 1.19) and tide 

modified beaches (Figure 1.20). 

Tides represent another key hydrodynamic components to hazard levels, tidal level 

oscillations modify the nature o f the surf zone potentially incurring marked changes in 

prevailing beach hazards in a single tidal cycle. It has been well documented in previous 

studies that rip current systems are modulated by tidal level, increasing in velocity with 

decreasing sea level (Brander and Short, 2001; MacMahan et al., 2005) whereby the 

presence o f rip current and their associated hazards are often synonymous with lower 

tide levels (Engle, 2002; Lascody, 1998; Lushine, 1991; McKenzie, 1958; Shepard, 

1941; Short and Hogan, 1994). 

Strong winds also create a number o f hazards within the surf and nearshore zone. 

Strong onshore and oblique winds generate surface currents that can manifest in strong 

alongshore currents potentially displacing bathers f rom a safe to a more hazardous zone. 

Onshore winds also cause premature breaking o f the wave crests, generating an 

apparently disorganized and confusing sea to the beach user (Short 1999). 

Headlands, inter-tidal hard rock exposures, sub-tidal reefs and man made structures like 

breakwaters, groynes, harbours and sea walls additionally present a significant hazard to 

the beach user. These features can modify wave breaking, fixing and intensifying surf 

zone currents (rip currents) and present collision and cut o f f hazards to the beach user. 

Eariy application o f this scientific knowledge o f beach processes to problems o f beach 

safety occurred in Australia in the late 1980's. Short (1993) constructed a database o f 

every beach in Australia with regard to its location, physical characteristics, modal wave 

climate and regional hydrodynamics, morphology, physical hazards, facilities and beach 

user risk rating. Conducted in collaboration with Surf Life Saving Australia (SLSA) this 
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Figure 1.20. - Key hazards illustrated for tide dominated and tide modified beaches (Short, 

1999). 
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project was called the Australia Beach Safety and Management Program (ABSAMP) , 
which, driven by this underlying dataset, provided lifeguards with a management tool 
for use in patrolling the popular Australian beaches. Incorporated in the A B S A M P is a 
beach hazard rating (Short, 1996; Short and Hogan, 1994b) developed to enable 
empirical quantification o f the level o f beach hazard present for wave dominated and 
tide modified beaches (Figure 1.21). Generated from a prevailing wave height value and 
a beach type class each location has an associated range o f hazard ratings (between I 
and 10). Modal hazard rating can be calculated from the modal wave height. To 
generate a more informed view o f the relative risk to the beach user associated with 
hazardous beach environments, the incorporation o f levels o f exposure, in this case 
population is required. This probabilistic/likelihood approach was used by Short and 
Hogan (1994), Short (1999) and Hartman (2006) in the assessment o f reported rescue 
levels and drowning statistics. 

Recent beach safety research in Florida (East Central Florida) has concentrated on the 

prediction o f rip currents along the Floridian coast. The empirical rip current forecasting 

technique LURCS (LUshine Rip Current Scale) developed by Lushine (1991), assuming 

strong onshore winds were the dominant mechanism for rip current generation, was 

developed and adapted for use in east central Florida (ECFL LURCS) by Lascody 

(1998) who reported the importance o f long period swell through an analysis o f east 

central Florida rip current rescues (75% occurred on days when long period swells were 

the primary formation mechanism). Engle (2002) examined lifeguard rescue logs from 

Daytona Beach, Florida. Rip current related rescues were correlated to concurrent 

hydrodynamic data on an intermediate shoreline where bar rip morphology is 

commonly observed. The study showed an increase in rip related rescues associated 

with shore normal wave incidence and lower tide levels. 

These results were applied to modifying the ECFL LURCS model, being used as the 

National Weather Service's (NWS) rip current forecasting model to include wave 

direction and tidal stage as predictive parameters. The inclusion o f these new 

parameters and the elimination o f two wind parameters resulted in more accurate 

forecasting o f days with a high number o f rip current rescues (Engle, 2002) (Figure 

1.22). A t present this model provides the basis for NWS's daily rip current forecasts in 

the United States that form part o f the NWS national Rip Current Program to inform the 

public when rip currents w i l l pose the greatest hazard to beachgoers. The daily rip 
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Figure 1.21. - Matrix for calculating the prevailing beach hazard rating, based on beach 

type and prevailing wave height and, on tide modified beaches, state of tide (Short, 1999). 

current risk is typically communicated via a 'Suif Zone Forecast* (termed SRF), which 

also provides forecasts for other beach hazards, weather, and surf conditions. Figure 

1.23 is an example of a Surf Zone Forecast produced by the Weather Forecast Office 

(WFO) in Tampa Bay with the qualitative rip current forecast highlighted. Within the 

SRF, a qualitative rip current outlook is provided using one of three tiers in a Low-

Moderate-High scheme: 

• Low Risk: Wind and/or wave conditions are not expected to support the 

development of rip currents. However, rip currents can sometimes occur, 

especially in the vicinity of groins, jetties, and piers. KJIOW how to swim and 

heed the advice of the beach patrol. 

• Moderate Risk: Wind and/or wave conditions support stronger or more frequent 

rip currents. Only experienced surf swimmers should enter the water. 
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• High Risk: Wind and/or wave conditions support dangerous rip currents. Rip 

currents are life-threatening to anyone entering the surf. 

Further examples of active beach hazard forecasting systems can be seen in Hawaii. 

Produced by the Hawaii Lifeguard Association in conjunction with several local 

authorities and the University of Hawaii these forecasts provide an overall beach hazard 

rating unique to distinct coastal regions based on wave model forecasts. Similar to the 

NWS forecast it uses a three-tiered rating system and is available to the media and the 

public (http://oceansafety.soest.hawaii.edu). 

Figure 1.22. 
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Figure 1.23 - Example SRF forecast for the WFO for Tampa Bay. Rip forecast is 

highlighted. 
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1.4 SUMMARY 

A number of general conclusions can be drawn from the reviewed material presented 

here: 

The coast of England and Wales is one of the most diverse coastlines in the 

world with varying combinations of sediment size (fine sand to boulders), tidal 

range (micro- to mega-tidal) and wave climate (low-energy wind wave to high-

energy swell wave dominated) imposed upon a coast with a broad spectrum of 

geologic characteristics from hard to soft rock, varying coastal geomorphology 

and contrasting sedimentary environments. 

There is a relative lack of knowledge of beach morphodynamic systems within a 

macrotidal context specifically relating to the UK environment where the 

characteristics of the coastal setting are not represented well within existing 

beach state models. 

Reviews of these traditionally used beach state/classification models by a 

number of authors suggest the situation may be more complex in environments 

which have significant influence from a complex geologic history, where recent 

glacial history has left antecedent morphological features, affecting sediment 

abundance and the nature of the bounding geologic fi^mework, a mixed (often 

high-energy) wind/swell wave climate and a high macro- to mega-tidal sea level 

excursion. 

Previous research has theoretically linked beach hazards to beach type through a 

basic understanding of the principal driving mechanisms posing a hazard to the 

surf zone bather and the typical surf zone characteristics associated with a 

variety of identifiable beach states. 

Drowning and rescue statistics in micro- and mesotidal environments indicate 

that rip currents are the principal hazard to bathers (approximately 80% in both 

the United States and Australia). 

Little is known about beach hazard characteristics and levels within the UK, a 

coastal environment that is very different from that of the United States and 

Australia. An introduction 50 years ago of a lifeguard service in England 

indicates that significant bathing hazards are present in many locations around 

the coast. 

Although there has been a increase in rip related research in recent years, much 

of the effort has been directed toward micro- and mesotidal environments. The 

documented role of rip currents in intermediate beach morphologies (especially 
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in recent studies of macrotidal environments) and as key drivers of hazard within 

microtidal environments indicates that a clear knowledge gap exists with regard 

to the influence and characteristics of rip current systems within macrotidal 

wave-dominated beaches of the UK. 

Some success at providing basic beach/rip hazard forecasts has been achieved in 

the US in recent years, although the forecast models, developed in a microtidal 

context, are based on empirically derived thresholds and do not include effects 

of morphological state. The author is unaware of testing of these models outside 

of the development region. 
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2. METHODOLOGY 

2.1 INTRODUCTION 

A wide range of data types and collection techniques were used during the course of this 

study. Many of these, specific to individual sections of the work, are described within 

the relevant chapters. This chapter details some of the principal methods that relate to a 

number of sections of the study and that are referred to throughout the thesis, as well as 

some technical descriptions of data types and collection techniques that are more 

appropriate for inclusion in this dedicated methods chapter. The data collection and 

processing techniques described within this chapter include: (1) inter-tidal 

morphological measurements and processing at a range of timescales; (2) Argus video: 

system overview and analytical techniques; (3) surface sediment collection and particle 

size analysis; and (4) UK wave climate analysis, wave models, buoys and analytical 

techniques. 

2.2 B E A C H SURVEYING 

2.2.1 Overview 

The acquisition of beach surface topographic measurements is an integral component of 

most field studies investigating coastal processes. Throughout this study, understanding 

of the morphological characteristics of the beach system is required for assessment of 

both beach type and hazard. Recent developments in the technical capability of remote 

sensing and surveying equipment have meant that the rapid measurement of an entire 

beach surface in three dimensions is now possible, something that was beyond the 

capacity for previous instrumentation traditionally limited to the collection of two-

dimensional data. 

For the purpose of this study a real time kinematic (RTK) Global Positioning System 

(GPS) was used. This system provided both a rapid, flexible, (inter-tidal) technique for 

collecting spatially high-resolution positional measurements of a desired accuracy that 

are appropriate for the spatial scale of the study sites (Bilker, 2002; Morton et al., 1993; 

Trimble, 2009). Due to the macro- and megatidal ranges and the 

intermediate/dissipative nature of the beaches within the study region a large component 

of the nearshore system is exposed during a spring tidal cycle, increasing the value of an 
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inter-tidal survey; however, surveying seaward of MLWS remained problematic due to 
the high-energy nature of the environment under study and the logistics and cost 
involved in regular bathymetric data acquisition. Improved understanding of nearshore 
morphological adjustment and the behavior of neashore bars was gained, largely 
qualitatively, within this study through oblique photography and more quantatively 
through use of remote video imaging techniques, of which details can be found in 
section 2.3. 

2.2.2 Survey equipment and accuracy 

Equipment used for beach surveys and analysis included: 

• 2 X Trimble 5800 RTK GPS (Dual frequency L1/L2) receivers (Figures 2.1 and 

2.2). 

• Trimble 4000 SSi Dual Frequency GPS Receiver and L1/L2 antenna with 

ground plane for acquisition of ground control points. 

• Yamaha Grizzly 450cc all terrain vehicle (ATV) with antenna mount and 

appropriate personal protective equipment (Figure 2.2). 

• Custom built trolley with receiver mount to conduct surveys on foot. 

• PC and data processing software packages Trimble Geomatics Office (TGO) and 

Matlab. 

RTK GPS systems have become recognised as standard beach survey tools and are now 

used routinely in both research and commercial coastal process survey applications. The 

RTK GPS system used here provides measurement accuracies well within that required 

to capture the dynamics of the beach environment in question. Published horizontal and 

vertical instrument measurement accuracies for the system are within ±10 mm and ±20 

mm, respectively (accuracy and reliability may be subject to anomalies such as 

multipath, obstructions, satellite geometry, and atmospheric conditions). To enable 

rapid acquisition of topographic data of the desired spatial coverage and resolution, 

beyond recording static point measurements, both mobile trolley and ATV based 

instrument platforms were introduced. This survey technique combined with the ability 

of the system to auto-acquire positions at set spatial or temporal intervals allowed 

collection of up to 30,000 data points (using ATV) within a 6-hour period. Ground point 

position determination using both ATV and trolley mounted systems simply involved 

mounting the GPS receiver and pole securely to the vehicle using a specifically 

engineered clamp Figure 2.2. A simple offset from phase centre of the vertically 
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II 

Figure 2.1 - Reference base station for the RTK GPS survey system. Trimble 5800 dual 

frequency receiver and radio with battery pack (12Ah). Perranporth beach in the background 

provides a good example of typical low-tide morphology in the region. 

Figure 2.2 - ATV mounted RTK GPS system in use conducting a beach survey. Trimble 

5800 dual frequency receiver is mounted on front bars and TSC survey controller on the 

handlebar mount. All data links are wireless via Bluetooth. 
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mounted receiver to the beach surface is required to compute the beach surface 
elevation. Within this system, there is a potential for the generation of systematic 
positional error through vehicle tilt due to beach slope. 

Within the intermediate to ultra-dissipative, macro- to mega-tidal envirorunents under 

investigation the maximum likely beach section slope would be expected to be in the 

range of 3°. A receiver elevation (z,) of 1.5 m (typical for ATV) under a tilt of 3° would 

create a receiver deviation with a horizontal position error (xe) of 0.08 m and a vertical 

position error (ze) of 0.002 m. To reduce error the trolley system (Zr - 0.75 m) was 

employed for beaches with slopes >1.5° where Xe = 0.039 m and Ze = 0.001 m on a 3° 

slope. Typical open beach slopes at selected study sites were between 0.5-1.5° where Xe 

= 0.018-0.052 m and Ze = 0.00008-0.0006 m. These errors were deemed acceptable in 

the context of the scale of the survey region and although localized errors could arise 

around defined bar morphology, the benefit of spatial coverage using the ATV 

outweighed the potential systematic errors. Of more significance are the elements of the 

survey open to human error: (1) measurement of rover antenna height; (2) measurement 

of base antenna height; (3) conducting comprehensive ground control point checks pre-

and post-survey to determine daily environmental and operator error; (4) resolution of 

survey grid and morphological coverage and (5) errors generated through selection of 

subsequent data interpolation technique. 

2.2.3 Experimental design and methods 

2.2.3.1 Ground control points 

In order to position the survey within a known context or co-ordinate system, reference 

points, termed *ground control points* (GCP) must be acquired or found, which provide 

a framework (co-ordinate reference frame) for the survey, enabling site calibration and 

error checking for positional accuracy. A control network is essential i f comparisons are 

to be made of multiple surveys at a site. In some cases Environment Agency 

benchmarks, with relevant specification documentation, were already established within 

proximity to the beach. In cases where no reliable GCPs where present they had to be 

installed. This process used a Trimble 4000 SSi Dual Frequency GPS Receiver and 

LI /L2 antenna with ground plane to make a static 3-hour observation over an installed 

permanent survey marker. This observation could subsequently be post-processed with 

positional data from the surrounding active GPS control network, maintained by the 

Ordnance Survey in combination with precise ephemeris information to generate three-
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1 C cm 

Figure 2.3 - Approximate horizontal accuracies as a ftinction of observation time and 

baseline length (image courtesy of Ordnance Survey). 

dimensional GPS baseline solutions between points, using post processing module 

within TGO (Trimble, 2002). Accuracies of the processed positions vary and are 

dependant on baseline length and number of satellites observed. Installed GCP locations 

were always within 30 km of the nearest reference station and occupations were at least 

3 hours in length (Figure 2.3). Re-occupation tests on selected GCPs gave accuracies of 

Xe<\ cm and <3 cm. 

The Ordnance Survey in the UK created the National Grid called OSGB36 (Ordnance 

Survey Great Britain 1936, based on the Airy 1830 ellipsoid). Great Britain's national 

co-ordinate system for topographic mapping. The local vertical datum in Great Britain 

is termed Ordnance Datum Newlyn and provides an orthometric height that refers to a 

historic reference elevation at the port of Newlyn, referring to a historic mean sea level 

that is now -K).2 mODN. In order to align collected GPS positions (WGS84) to this 

system a geodetic co-ordinate transformation is required. The most recent models 

OSTN02 (grid transformation) and OSGM02 (geoid model) were used to accomplish 

this. 

2.2.3.2 Survey plan 

Prior to surveying, an RTK GPS reference base station was established on a GCP within 

line of sight of the survey area in order to broadcast the RTK corrections to the roving 

unit on the beach. Before the commencement of each beach survey, control point checks 

were conducted to assess levels of environmental and operator-based error. At least two 

GCP's were used for each check with an accepted maximum error level of Xe = I cm 

and = 3 cm. I f RTK GPS positions were within tolerance the beach survey could 
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commence. Subsequent survey tracks varied depending on individual beach 
characteristics. Generally, observations began during the ebbing tide with shore parallel 
lines being recorded from at least MHWS (where possible as much of the active upper 
beach was included) progressing seaward. Cross-shore line spacings of 10-30 m were 
acquired depending on morphology and beach area. A flexible survey grid was followed 
as it was crucial to be able to follow and capture morphological features that often 
migrated between surveys. These morphologically based lines more accurately represent 
the true morphology when processing spatial data. Following this principle, wider cross-
shore spacing was permitted within more planar beach sections. Figure 2.4 illustrates a 
typical survey track at Perranporth beach. A small number of fixed cross-shore profiles 
were collected at each site. Large tidal ranges and rapid cross-shore tidal translation 
rates meant that timing was critical to enable maximum coverage at MLWS, which in 
many cases was the region of greatest morphological complexity. Regions of standing 
water greater than 0.5 m were surveyed on foot with telescopic pole. On completion of 
the survey, post survey error checks were conducted against site GCPs. 

Principle survey limitations and hazards were generated through I) adverse (storm) 

weather conditions driving increased sea surface elevation through set-up (reducing 

beach width) and increased infra-gravity swash excursions (extending up to 200 m on 

occasion during high-energy conditions) and 2) changing morphology and beach 

elevation creating standing water and hard rock obstacles limiting accessible survey 

region. Risk assessments were conducted prior to surveying. 

2.2.4 Data processing 

To enable analysis of spatial and temporal morphological variation at each of the study 

sites a certain level of processing of the geospatial data was required. Of primary 

importance was the ability to compare multiple surveys through time to assess sediment 

transport dynamics and to generate a digital elevation model (DEM) of the survey 

region that represented key morphological features of interest. To this end a process of 

cleaning, preparing and interpolating the dataset was established that produced a final 

surface that represented the real beach surface within acceptable error levels (Figure 

2.5). Data preparation involved a visual, three-dimensional inspection of the survey 

data, identifying and fixing/discarding obvious erroneous data points. Following this 

quality control process the data was transformed onto a local cross-shore/alongshore 

grid system for each site. Subsequently, a quadratic loess interpolation 
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Legend 
RTK-<3PS pos«00«(ATV 

Figure 2.4 - image showing typical survey U-ack at Perranporth beach. Alongshore 

orientated lines enable maximum morphological coverage throughout the low-tide region 

due to rapid cross-shore tidal translation rates. 

routine was applied within MATLAB (Plant et al., 2002; Schlax and Chelton, 1992) that 

enabled data interpolation onto a pre-defmed grid. This interpolation routine utilizes a 

scale-controlled interpolation method that minimizes the adverse affects of 

measurement errors and aliasing. A form of linear interpolation, in which the estimates 

are a linear combination of the observations, the quadratic loess interpolation allows for 

an estimation of unavoidable interpolation errors. Additionally, an analysis of 

interpolation errors can be performed independently of actual observations, which 

allows for optimization of survey sampling strategies by ensuring that dominant scales 

are either resolved or largely removed (Plant et al., 2002). 
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Figure 2.5 - Typical resultant interpolated surface DEM from Perranporth using quadratic 

loess interpolation routine. Interpolation scales (/.,) = [5; 10; 30; 50] m; Grid spacing (x) = 5 

m; and permissible vertical interpolation error levels set at 0.05 m. Magenta lines indicate 

mean tidal levels. Black lines are contoured elevation at 0.25 m intervals. 

A number a guidelines are suggested by Plant et al. (2002) to optimize grid spacing and 

interpolation window length scales in the context of desired morphological length 

scales: 1) smoothing scales (/.v) can be selected to preserve a length scale of interest (L), 

>lr<(L/2); 2) grid spacing (x) should be selected so as not to over-resolve the pass band, 

x= kx /4; and 3) in the case of high-density observations, over-sampling can reduce the 

accuracy of interpolation error estimates, re-sampling using a running average can 

reduce this effect (suggested running average half width of /8). 

With these recommendations in mind, a variety of interpolation length scales can be 

applied until the resolved data best suits the analytical needs. Finally, cross-shore 

profiles are extracted from the DEM at set intervals. Profiles are linearly interpolated at 

I m intervals in the cross-shore. 
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2.3 ARGUS VIDEO MONITORING 

During the course of the study, video data were made available fi-om an Argus 

monitoring station at Perranporth beach. The station was set up originally by the Coastal 

Imaging Lab at Oregon State University, as part of the CoastView Program (OSU; 

http://cil wvm.coas.oregonstate.edu: 8080), to develop tools to exploit the low-cost, 

long-term optical measurements available from Argus to solve a range of Coastal Zone 

Management problems (Holman and Stanley, 2007). The Perranporth video monitoring 

station, mounted on a headland to the south of the beach affording extensive visual 

coverage of the beach and nearshore, comprises two video cameras (based on Scorpion 

SC0R-I4S0C cameras) that record images of dimension 1024x768 pixels (Figure 2.6). 

One camera collects images of the low-tide and nearshore region, the other the mid- and 

high-tide regions (Figure 2.7). In addition, the system consists of a computer with 

communications link to the World Wide Web for control and data return plus a timing 

module to synchronize collections between the cameras. 

To enable the estimation of the geometry of each view. Ground Control Points (GCP) 

are also required in combination with predicted tidal levels for Perranporth (no real sea-

level elevation data were available for the duration of this study). These GCPs were 

collected throughout the inter-tidal image view using a total station to a target board 

identifiable in the captured images. The acquisition of geometries then allows for the 

transformation of the image information into a locally derived co-ordinate system for 

comparison and analysis in conjunction with additional data sources like topographic 

and bathymetric survey data (Figure 2.7). For the purposes of this study, effects of set­

up, run-up and surf beat are not accounted for in the image transformation, although 

previous work by for example Van Enckevort and Ruessink (2001), has generated 

models to improve accuracy of positions due to these phenomenon. These calculations 

and transformations are enabled through specifically designed ARGUS specific 

toolboxes for use within Matlab software. 

The principal image products from this system that are used in this study are the single 

snapshot and the time-exposure images. The single snapshot image, collected at 30-min 

interval provides a qualitative assessment of the image (Figure 2.7). The second image 

product, the time-exposure (or timex) images (Figure 2,7), collected at 30-min interval 

represent the mean of all of the fi^mes collected at 2 Hz over a lO-min period of 

sampling. Non-moving objects onshore are rendered as they appear in 
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Figure 2.6 - Argus video cameras at Perranporth at an elevation of 47.87 mODN (B) and 

indication of the extent of the field of view (inset A). 

a snapshot, but moving features such as waves are averaged out with only their mean 

brightness returned. These images provide mean wave breaking intensity patterns within 

areas of the surf zone where wave dissipation is occurring. As sandbars induce wave 

breaking, wave dissipation patterns can be used to extract information on bar crest 

locations and patterns of nearshore bar morphology and rip channels (Holman and 

Stanley, 2007; Lippmann and Holman, 1989). Further research has found some 

discrepancies in this link in the cross-shore due to tidal elevation and variations in wave 

height, but to an extent these errors can be quantified and corrected for i f required 

(Kingston et al., 2000; Van Enckevort and Ruessink, 2001). 

Quantitative data extraction from images within this study involved the identification of 

alongshore rip locations during mid- and low-tide water levels (see Chapter 6). The 

alongshore region of interest at Perranporth ranged from -1000-100 m. The pixel 

resolution within this region ranged from Xres < 5 m and Yrts < 5 m in the near-field to 

Xrts < 5 m and - 10-15 m in the far-field (Figure 2.8). Rip channels and their 

locations were the features of interest within this study. A sensitivity analysis of 

extracted alongshore low-tide rip locations was performed. Rip head locations were 

manually picked from the plan view timex image using a rip picking routine within 

Matlab (Figure 2.9). For each of three rip systems within the image (near-, mid- and far-

field), 50 manual assessments of the rip head location were conducted for each to 

identify to potential error in visual identification and point extraction throughout the 
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3) Timex (bme mposure) imag 
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Figure 2.7 - Example Argus video products from Perranporth station: (A) snapshot images; 

(B) timex images; (C) plan view (geo-rectified) image; and (D) example of low-tide plan 

image transformed into local co-ordinates for merge with survey data. 
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Figure 2.8 - Calculated pixel resolutions for the Argus video cameras at Perranporth. 
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Figure 2.9 - Sensitivity analysis of observational consistency during manual rip picking 

routine. Top three panels show picked rip head locations for 150 acquired points. The three 

rip locations are indicated on the Argus plan timex image in bottom panel. 
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field of view. The standard deviations of alongshore positions for each rip marked A, B 

and C in Figure 2.9 were 2 m, 2.7 m and 3.4 m respectively. The range of extracted rip 

head locations in the alongshore for each rip system was 8.1 m, 11.2 m and 12.2 m for 

rip A, B and C, respectively. This level of observational consistency was acceptable in 

the context of rip systems under investigation that were mostly 50-100 m in width. 

Little variation in observational precision was identified due to loss of image resolution 

in the far-field. 

2.4 SEDIMENT ANALYSIS 

The properties of beach sediments provide a fundamental control on the 

morphodynamic state of the beach system and as such surface sediment samples were 

taken during every topographic survey. Due to the macrotidal context of most of the 

study sites, multiple samples, covering the lower and upper beach, were taken so a 

representation of cross-shore variability in sediment characteristics was possible. 

Samples were collected along fixed cross-shore profiles for each site, so repeat samples 

were comparable, from the upper active layer of the beach (top 1 cm). Group averaging, 

where required, of multiple samples enabled an overall view of lower-, mid- and upper-

beach particle properties reducing local variations due to small-scale bedforms. 

Sediments were analysed using a settling tube to determine settling velocity and 

associated statistics. The settling velocity is a direct measure of interest in the 

consideration of the morphodynamic implications of sediment type in the nearshore. 

This sedimentologic measure also enables accurate calculation of morphodynamic 

indices traditionally used to parameterize the beach environment thus enabling a reliable 

assessment of collected data in the context of previous studies and morphodynamic 

frameworks. The settling tube used had a nominal height of 2.205 m and internal 

diameter of 0.22 m. Electronic scales recorded sediment weight from release point at 

2 Hz and data were logged directly to a PC. 

Prior to settling, the sediment samples were processed. Once collected, samples were 

washed over a 63 ^m sieve and oven dried. Samples were then sieved where necessary 

to remove any coarse fraction >2 mm prior to settling as it was deemed inappropriate to 

settle these grains because of insufficient tube width to accurately determine the settling 

velocity. Split into 10 sub-samples using a rotary splitter, alternate samples were taken 

59 



Chapter 2: Methodology 

Fij^ure 2.10 - Automated settling tube used to determine the sediment fall velocity 

distribution. 

for analysis. Approximately 10 g of sediment was used for each sample drop. The 

settling process was repeated three times and results averaged for each sample analysed. 

The fall velocity data were then used to characterize standard properties of the mean 

(Equation 2.1), sorting (Equation 2.2) and skewness (Equation 2.3) of the settling 

distribution using graphical methods as outlined by Folk and Ward (1957). The psi 

measure (v/ = -log2w) was used, as introduced by Middleton (1967), in place of the 

standard phi measure {(p = -\0g2d) for grain size. Percentiles were taken from the 

cumulative weight distribution. 

Mean 

Sorting ^"i^^^."^^^ 
4 6.6 

(2.1) 

(2.2) 

(2.3) 
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Sediment analysis 

Where estimates of grain size parameters were required during the study. Equation 2.4, 

developed by Furguson and Church (2004), was used. The equation results from a 

dimensional analysis that derived a simple explicit form for all grain sizes. The formula 

assumes that the relation must reduce to Stokes' law (fall velocity increasing as the 

square of particle diameter) for fine sediment and a constant drag coefficient (fall 

velocity varies as only the square root of particle diameter) for coarse sediment. 

RgD' 

C,v^{0.1SC^RgD') 3x0.5 (2.4) 

where w denotes the particle's fall velocity, D its diameter, R its submerged specific 

gravity (1.65 kg m"' for quartz in water), g the acceleration due to gravity, v the 

kinematic viscosity of the fluid (1.0 x 10"* kg m ' s ' for water at 20°C) and C/ a 

constant with a value of 20 for nominal grain diameters of natural sands. C2 is the 

constant asymptotic value of the drag coefficient Co = 4/?gD/3w^ at < Re < 10̂  

(where Re is the Reynolds number = wD/v) and is 1.1 for nominal diameters of natural 

sands. 

From Equation 2.4 a seventh order polynomial function was derived to enable the 

calculation of a reasonable estimate of grain size D from the graphical quantities of the 

settling distribution. Figure 2.11 plots a comparison of the calculation of grain size from 

fall velocity data using Equation 2.4 and that obtained from a laser sizer (Malvern 

Mastersizer 2000) for 40 samples from a range of study sites. Linear regression 

indicates a good fit with an of 0.93 and linear fit indicates that the settling values for 

grain size are consistently 20% smaller than that of laser derived sediment sizes. These 

systematic discrepancies can be attributed to the fundamentally different theoretical 

principals being used to determine the same statistic. Recent studies have documented 

the tendency for laser sizing to over predict size of platey grains as measured size can be 

dominated by their large projected area not borne out in their settling velocity (McCave 

et al., 2006). The estimation of grain size from settling using the above method was 

deemed suitable for the purposes of this study and is used throughout with the exception 

of particle size analysis of significant fractions greater than 2 mm, which was performed 

using traditional sieving techniques. 
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Figure 2.11 - Comparison of estimation of mean grain size from settling tube data and that 

derived from laser size analysis for 40 samples. Solid line indication results from a linear 

regression. 

2.5 W A V E C L I M A T E 

In order to understand the relationships and driving environmental mechanisms of beach 

type/morphology and state in the UK coastal environment, a realistic representation of 

dominant wave conditions is needed. In the UK. this is not straightforward due to the 

variability in both the character of the coastal morphology and wave climate throughout 

the country. Chapter 4 investigates beach types and their hydrodynamic setting within 

the UK where beach sites were sub-divided into 6 distinct wave climate regions: the 

North Sea (F), the English Channel (E), the Atlantic Ocean (C). the Irish Sea (B) and 

Liverpool Bay (A). A further sub-division is that of Lyme Bay (D) that is situated 

within the transition between the Atlantic and English Channel wave climates. The 

following wave climate analysis will treat these regions separately (Figure 2.12). 

Within the context of the investigation reported in Chapter 4 the required wave breaker 

characteristics for each beach site were calculated in a number of ways. For beaches 

within proximity of a near-shore directional wave buoy, an annual data record was used. 

For beaches where local nearshore recorded wave buoy data were not available, data 
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Figure 2,12 - Overview map of wave data sources used in the study. UK beach study sites 

are marked by black filled circles. Boxes indicate regions where nearshore wave modelling 

was performed using M11CE21. 

from the MetOffice UK waters wave model was used to drive a numerical wave 

transformation model (M1ICE21SW) providing simulated nearshore wave climate 

statistics. Figure 2.12 gives an overview of the wave climate regions and the data 

sources available for each region and Table 2.1 provides associated metadata connected 

to these data sources. A variety of offshore wave data sources, measured and modelled, 

were assessed and compared for their suitability for input as boundary conditions in the 

wave transformation model MIKE2ISW. 

2.5.1 Measured wave data 

2.5.1.1 MAWS Marine Automatic Weather Station net̂ vork 

The Met Office Marine Automatic Weather Stations (MAWS) was developed as part of 

an early waming system for severe weather and sea conditions. The network includes 

eleven moored wave and weather observing buoys and seven lightship and island 

systems, mostly located in open-ocean locations to the west of the British Isles (ODAS), 

and two in coastal inshore waters. Within this study, the Seven Stones Lightship 

(50°6'9" N 6°6'0" W, 60 m depth) and the Channel Lightship (49°54'0" N 2°54'0" W; 

66 m depth) were used to provide offshore wave climates for the Atlantic west and 
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Table 2.1 - Summary of wave data sources. 

Location Source Code Position Record 
type 

Record dates Water 
depth 

OFFSHORE 

Liverpool Say MetOfTice Ml 53.5'N 4.06*^ Model 01/01/07 - 31/12/07 -40m 

Irish Sea MetOfTice M2 53.06'N 4.92'W Model 01/01/07 - 31/12/07 -55m 

SW approaches MetOfTice M3 50.06"N e.OB'W Model 01/01/07 - 31/12/07 -60m 

Channel coast MetOfflcG M4 49.95'N 3.75»W Model 01/01/07 - 31/12/07 -66m 

Lyme Bay MetOfTice MS 50.5'N 3.25*^ Model 01/01/07 - 31/12/07 -25m 

East coast MetOfTice MS 53.5"N 1.09'E Model 01/01/02 - 31/12/02 -25m 

62107 WW3 M7 50'N 6.25*W Model 01/01/07 - 31/12/07 -60m 

62103 WW3 MB 50'N 3.75''W Model 01/01/07 - 31/12/07 -60m 

Seven Stones 
Buoy MAWS OBI 50.10'N3 6 . r w ODAS 

Buoy 01/01/03 - 31/12/07 -60m 

Channel Lightship MAWS 082 49.9"N 2.9'W ODAS 
Buoy 

01/01/07 - 31/12/07 -66m 

INSHORE 

Minehead c e o B1 51.2288rN 3.47136'W Datawell 
Buoy 01/01/07 - 31/12/07 -10m 

Perranporth c e o B2 50.35335'N 5.17518*W Datawell 
Buoy 01/01/07 - 31/12/07 -10m 

Penzance Bay c e o B3 50.1142rN 5.502B2'W Datawell 
Buoy 01/04/07 - 31/03/08 -10m 

Start Bay c e o B4 50.29143°N 3.61712'W Datawell 
Buoy 01/04/07 -- 31/03/08 -10m 

West Bay c e o B5 50.69311'N 2.74956'W Datawell 
Buoy 01/01/07 --31/12/07 -10m 

Chesil Beach c e o B6 50.60209°N 2.52336'W Datawell 
Buoy 01/01/07 --31/12/07 -10m 

Weymouth e c o B7 50.62300''N 2.41388'W Datawell 
Buoy 01/01/07 --31/12/07 10.6m 

Swanage Pier c e o B8 - Guage 01/01/07 --31/12/07 N/A 

Boscombe c e o B9 50.71 nB'N 1.B3959''W Oatawell 
Buoy 01/01/07 --31/12/07 10.4m 

Milford c e o BIO 50.71256'N 1.61503'W Datawell 
Buoy 01/01/07 --31/12/07 11m 

Donna Nook EA/Guardline B21 53'3r.80N 0'7'.20E Nortek 
AWAC 03/10/06 03/10/07 11m 

Theddlethorpe EA/Guardline B20 53'*24'.00N O'15'.OOE Nortek 
AWAC 06/OB/06 03/10/07 11m 

Sunk Sand CEFAS B19 52'57\30N 0'24'.70E Nortek 
AWAC 09/10/06-- 07/08/07 10m 

Walcott EA/Guardline B17 52'50'.64N r30'.42E EA gauge 08/09/02 - 07/09/03 7.5m 

Horsey CEFAS B16 52"'45'.52N r39'.77E Nortek 
AWAC 09/10/06--06/10/07 8m 

Off Bawdsey Cliff CEFAS B11 52'*0'.29N - 1'*26'.44E Valport 
730DT 21/08/03 - 21/08/04 4.2m 

Sudboume EA/Guardline B12 52*7\76N-r35'.B0E Nortek 
AWAC 03/10/06 - 22/09/07 6m 

Dunwich Bay EA/Guardline B13 52"17M9N-r38'.57E Nortek 
AWAC 12/10/06 - 22/09/07 5m 

North Southwold EA/Guardllne B14 52'22'.14N - r42'.75E Nortek 
AWAC 12/10/06 - 22/09/07 7m 

Southwold (North) EA/Guardline B15 52'22M4N - r42'.75E Valport 
730D 21/08/03 - 21/08/04 4.6m 

Scolt Head EA/Guardltne B17 53''0'.03N-0'41'.07E Nortek 
AWAC 10/10/06 -19/12/06 8m 

Scolt EA/Guardline BIB 53"'0'.OON-'41'.04E EA gauge 07/09/02 - 08/09/03 9m 
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southwest coasts (OBI and 0B2 in Figure 2.12). The significant wave height is 
calculated as four times the root mean square (RMS) value of a 17.5 min record leading 
up to the observation time. The wave period parameter is calculated from the average 
zero-crossing period. Historically with the buoys considered in this study the wave 
sensor has failed 4 times over a cumulative operational period of 125 years and 10 
locations (Halliday and Douglas, 2008). 

2.5.1.2 Channel Coastal Observatory: nearshore wave observations 

The Channel Coastal Observatory (CCO) maintains a series of observing stations 

covering the SW-SE coasts of England from Minehead in Somerset to the Isle of Grain 

in North Kent. The network comprises of a system of moored directional wave rider 

buoys spanning the region from the Solent to the Bristol Channel. The buoys are located 

in 10-15 m water depth with data being telemetered to shore in real-time. Standard 

integrated parameters representing wave conditions are generated from the directional 

wave spectrum (Bradbury et al., 2004). 

2.5.1.3 WaveNet wave monitoring network 

A Defra commissioned strategic wave monitoring nenvork for England and Wales, run 

by the Centre for Environment, Fisheries & Aquaculture Science (Cefas) provides a 

network of nearshore wave data recorders. Instruments include directional wave buoys 

and Nortek AWACs (Acoustic Wave And Current profilers). Data from the WaveNet 

archive provided annual measured nearshore ( - 8 m depth) wave statistics for the East 

Coast region. 

2.5.2 Modelled offshore wave data 

Within the UK waters, model data were obtained from both the third generation NOAA 

Wave Watch II I model and the second generation MetOffice UK Waters Wave Model. 

NOAA Wave Watch I I I uses a coarse (1.25x1 degree) model grid that gave insufficient 

resolution to successfully model the inshore wave conditions for UK coastal regions of 

interest. The MetOffice UK water model, which has a 12 km grid, was deemed adequate 

for use as boundary conditions for the regional wave transformation model used in this 

analysis (M1KE21). What follows is a summary and validation of the MetOffice UK 

waters wave model. 
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2.5.2.1 MetOffice second generation wave models: UK waters model 

The MetOffice second generation wave model data was used to simulate/hindcast the 

wave climate for this study. The Met Office 2nd Generation spectral wave model runs 

with both global and nested regional configurations. The UK Waters Wave Model is 

nested within and forced by the MetOffice Global Wave Model. The wave models are 

forced using hourly wind fields generated in Met Office Numerical Weather Prediction 

(NWP) models, which include observational data from satellite, ship and data buoy 

networks in their assimilation schemes. Based on the local wind speed and direction, 

energy is input to waves through a parameterisation of the exponential growth of 

existing wind sea energy (linear growth in the early development stage). Wind sea 

spectral peakedness and peak frequency are used to select an appropriate member of the 

JONSWAP family of spectra to describe the growing wind sea energy distribution in 

frequency space. Wave energy is advected through the model domain using a 2nd order 

Lax-Wendroff scheme. In shallow water (< 200 m depth) wave group speed depth 

dependency, bottom fiiction and refraction are represented in the model physics. 

Operationally, the models are configured with a spectral resolution of 13 frequency bins 

and 16 directional bins, representing waves with a range of periods between 25 seconds 

and 3 seconds (deep water wavelengths from 975 m to 15 m). 

Wave conditions worldwide are forecast using the Global Wave Model on a 5/9 degree 

latitude by 5/6 degree longitude grid (approximately 60 km square grid at mid-

latitudes), a further increase in resolution is made for the UK Waters Wave Model, 

which is nested using boundary conditions from the Global Wave Model. The UK 

Waters Wave Model grid covers the northwest European continental shelf from 12°W 

between 48**N and 63°N. The UK Waters Wave Model is forced by high resolution ( -

12 km grid) Mesoscale NWP 10m winds and includes effects of time-varying currents 

on the UK continental shelf as generated by the Met Office's operational Storm Surge 

Model. This model was introduced into the operational suite in March 2000 and is run 

four times daily using analysis times 0000, 0600, 1200 and 1800 UTC. 

From the two-dimensional frequency-direction spectrum standard integrated parameters 

representing wave conditions are generated (e.g. significant wave height, wave peak and 

zero up-crossing period and principal wave direction). 
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The coastline in the model is coarsely represented by the land ocean boundary of the 
model grid providing limited resolution of nearshore wave transformations. The nearest 
grid points to the land are generally too far away from the shoreline to be used directly 
in coastal process simulations (Bradbury et aL, 2004). Therefore wave transformation 
was performed using MTKE21 SW (Spectral Waves) to estimate the inshore wave 
climate. Wave model grid locations, for use in the regional wave transformation model 
were selected to best represent the coastal regions of interest and be co-located where 
possible with offshore wave buoys (non-directional) for validation. For more localised 
areas of interest, data from the most landward limit of the model grid was utilised 
(Lyme Bay). 

2.5.2.2 Model validation: Offshore waves 

The UKMO UK waters model was validated against the Seven Stones wave recorder for 

Ms and Tz during 2007 (Figure 2.13), The buoy location and model output node can be 

considered to be co-located. Validation of mean/peak wave direction and peak period 

was not possible as these integrated parameters are not recorded at this ODAS buoy 

location. Agreement between modelled and measured wave heights at this exposed west 

coast location (M3, OBI) was reasonable. The model tending to over predict 3hr 

average significant wave heights (23.2% on average during 2007), with low wave 

conditions (< 1.5 m) performing worse than high wave conditions. This phenomenon is 

attributed to the ability to predict the onset and decay of wave events. Annual average 

wave heights were over predicted by 18%. This tendency for over prediction by the 

model is consistent with other studies of model performance at deep water sites on the 

continental shelf (Bidlot et al., 2002) and has been attributed to the over estimation of 

10 m winds in the Met Office system. A direct comparison with zero up-crossing wave 

period (Figure 2.13) indicates that the model consistently under predicts wave period, 

on average by 25%. It is suggested that this is at least in part due to the representation of 

the frequency resolution within the model being coarse, impacting on the ability of the 

model to represent growth of the wave period in a well defined manner. The range of 

periods from 3,1-5.2 s is represented in the model by just 3 frequency bins and the 

lower limit of frequency resolution is 3.1 s. The frequency resolution of the UK Waters 

model is represented by only 13 frequency components in total, and the peak period is 

defined by the component with maximum energy. As the wave buoy record doesn't 

calculate peak period no comparison was possible but previous authors have conducted 

a global analysis of similar scatter diagrams indicating the Met Office models tend to 
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Figure 2.13 - Seven Stones Buoy (OBI) versus UKMO UK waters model (M3), 2007. Top 

panel shows significant wave height and bottom shows zero up-crossing wave period. 

overestimate the peak period (Bidlot et al., 2002). For the purpose of near-shore wave 

modelling using MIKE21 SW a requirement for a value of peak period is required for 

generation of the wave spectrum from integrated parameters. Therefore, as the only data 

source available, the MetOffice UK Waters Model record was used with caution. 
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Event time series 

Sample time series from both modelled and measured wave data at the co-located west 

coast location (M3. OBI) over two 40-day periods are illustrated in Figure 2.14. 

Representing a range of high- and low-energy conditions, it shows that for this sample, 

the UK waters model performs well at tracking the higher resolution fluctuations in 

wave height at the buoy. The model record appears to over predict wave heights during 

the falling limb of a high-wave event and in many cases during the sample time series 

over-predict the peak wave heights during significant wave events. There are examples 

where both models over-predict the peaks of wave events. This phenomenon has been 

assessed by Bidlot et al. (2002) to be due to inaccuracies in the forcing wind data in the 

associated atmospheric models, through grid resolution or ground-truthing problems. 

Comparison of the UK waters wave model record with measured data for 2007 shows 

reasonable overall agreement. Although several limitations in model accuracy have 

been highlighted it was concluded that the UK Waters Wave Model would provide an 

acceptable tool for estimating regional offshore wave climate. 
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Figure 2.14 - Significant wave height sample timeseries comparison between the OBI 

buoy (1-hr timestep) and M3 Met Office UK waters model record (3-hr timestep). 
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Importantly, it provides the desired temporal and spatial coverage and the required 
integrated parameters (Hs, Tp, Dirp) for the near-shore wave model (MIKE2I SW). 

2.5.3 Regional wave climate analysis 

Regional wave climates were assessed with attention paid to the orientation of the 

coastal region o f interest, and the requirements o f the wave transformation model to 

enable the best and most appropriate estimation of near-shore wave climates for the 

selected beach study sites. Assessment criteria were to define: 

• swell wave, mixed swell/wind or wind dominated wave climate 

• directional modality, separate relevant modal segments (max width 90°) 

• 5̂.50%, ffs.\o%, /̂ 5.9o%, Tp and mean and residual energy flux direction for each 

defined directional segment. 

Wave energy flux (wave power), defined as the power per unit wave crest, was 

calculated as (Komar, 1998): 

2kh 
1 + sinh(2W)) 

(2.5) 

C ^ l l t a n h f ^ l (2.6) 

where p is the density of sea water (1025 kg m'^), g is gravitational acceleration 

(9.81 ms"^), k is the wave number, h is the water depth and C is the wave celerity. As the 

wave outputs are located in intermediate depth the full general expression for C is used 

and Lini (wave length, intermediate depths) was calculated using an approximation 

derived from the dispersion equation given by (Eckart, 1952). 

tanh 
'2jth 

0.5 
(2.7) 

The regional wave characteristics were assessed for all previously defined study regions 

using data from the MetOfTice UK waters wave model for 2007. Due to issues of data 

availability only one year of data was used to approximate the typical annual wave 
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climate. The majority of morphological and sedimentological data collection, in regions 
where modelled wave data were used to represent the wave climate, occurred in October 
and November of 2007, with the exception of data from Anglesey, North Wales. As 
mclllel run times prohibited calculating a complete annual time series, the annual 
direction spectrum was broken down into identifiable segments, each representing a 
percentage of the annual observations. These segments and associated integrated wave 
parameters were transformed to the coast and recombined to approximate the annual 
wave climate in the near-shore. This procedure was deemed suitable and a vast 
improvement on previous investigations that estimated wave breaker heights from 
offshore wave data using linear wave theory (e.g. Jackson et al., 2005), without 
considering the effects of regional and local coastal and beach orientation on the inshore 
wave transformations and hence the accuracy of breaker height estimation for individual 
sites. Each region was assessed separately and a characteristic wave climate generated. 

2.5.3.1 Near-shore wave transformation using MIKE21 

At locations where near-shore wave buoy data was unavailable the MIKE21 Spectral 

Wave Model was used. The model was used to transform characteristic values of the 

offshore wave statistics for each region for 2007. Due to the representative nature of the 

forcing boundary conditions the inclusion of regional wind forcing was not possible. 

Some previous studies have indicated that the exclusion of the local wind forcing 

generally has little effect within a high-energy swell wave dominated environment 

(Strauss et al., 2007). 

The offshore wave data were analysed as described above for each region and broken 

down into key directional bins with regard to the dominant conditions affecting the 

region of interest and the orientation of the coastal zone. Within each discrete zone, 

mean wave power direction, annual 10% and 50% exceedance significant wave heights, 

along with the mean peak period and an approximation of directional spreading in the 

region are needed to drive the spectral wave module in MIKE21. Wave output nodes in 

the model were located over the 15 m depth contour or I km from the mean shoreline, 

depending on the distance of the 15 m contour from the beach. These gave good 

estimates of regional variations in wave conditions but were not able to resolve local, 

small scale 0(100m) variations in wave climate, due to the regional nature of the model 

domain (computational efficiency) and limitations in bathymetric resolution. To 

generate the final breaker wave values for each beach site, the percentage annual 
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contribution of each wave sector was taken into account when calculating and annual 
weighted value for each parameter. 

Model description 

MIKE 21 SW is a third-generation spectral wind wave model based on unstructured 

meshes. The model was developed by the Danish Hydraulic Institute (DHI) and the 

model simulates the growth, decay and transformation of wind generated waves and 

swells in offshore and coastal areas. The discretisation in geographical and spectral 

space is performed using a cell-centered finite volume method. The source functions 

take into account the near-shore effects of refraction, shoaling, wave breaking, bed 

friction, and wind wave growth (Holthuijsen et al., 1989; Sorensen et al., 2004). 

Mesh generation 

The model is based on flexible mesh and therefore is particularly applicable for 

simultaneous wave analysis on both regional and local scale. Flexible mesh allows for 

coarse spatial resolution for offshore area and high resolution mesh in shallow water 

and at the coastline. This dramatically reduces the computation load and enables the 

generation of large regional model domains. A depth controlled mesh was generated for 

each wave climate region with a coarse offshore grid size increasing in resolution 

shoreward to the nearshore. Figure 2.15, an example of the mesh for the Atlantic west 

coast model run, represents at typical mesh with 30367 elements and 15623 nodes. The 

mesh resolution at the shoreline is approximately 200-300 m. Depth information within 

the model domains was obtained from Edina Marine Digimap in the form of digital 

bathymetric charts. This dataset, largely digitized from original bathymetric charts has a 

resolution of 100 m x 100 m and provides an appropriate source for the regional scale 

modeling performed in this study, but lacks both the detail and accuracy in the 

nearshore to perform more high resolution modeling than described here. This 

bathymetric data is interpolated onto the generated mesh for each model domain (Figure 

2.16). 

Model inputs 

Further to the model formulation and mesh generation, careful consideration of 

boundary conditions and model settings were essential in order to obtain reliable results 

from the model. An open offshore boundary is specified for each model domain to 

which values of offshore wave conditions / /„ Tp, mean wave direction and a value for 

the directional spreading index (not available from MetOffice model, therefore 
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Figure 2.15 - Example of MiKE21 flexible mesh model domain for the Atlantic west 

coast. 
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Figure 2.16 - Example interpolated bathymetry for the Irish Sea and Liverpool Bay model 

domain. 
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estimated from available wave buoy deployments in the region) are inputted. On each 
side of the open boundary, lateral boundaries are specified where a one-dimensional 
calculation of the basic equations is solved along the boundary line. The information of 
the incoming waves in the start point and the end point of the line are obtained from the 
connected boundary lines. Finally the land boundary is regarded as a closed boundary, 
where there is no wave transmission and all waves are ftilly absorbed. Wave breaking 
and bottom friction are the two key calibration factors within the model. For wave 
breaking the default values for a (rate of energy dissipation after breaking) and y 
(amount of depth-related breaking) were used as the initial settings (Battjes and Janssen, 
1978). A calibrated value for bed roughness (Nikuradse roughness, kN) of 0.01 m was 
applied uniformly across the model domain; this value is commonly used in literature 
for sandy beds (Martinelli et a!., 2006). Finally, the model was run with a fixed water 
level to simulate mean sea level and within the spectral discretisation the directional 
sector 0°-360° was resolved into 16 directions. Figure 2.17 illustrates examples of four 
model runs. 

Model validation 

The wave model results using MIKE21 were validated for the Atlantic west coast and 

South coast model domain against recorded nearshore wave data from the directional 

waverider buoys at Perranporth (west coast) and Penzance Bay (southwest coast) 

respectively. Model results for the Lyme Bay model domain were validated against the 

only available wave data in that region from a Rosemount WaveRadar Rex, located on 

Teignmouth Pier covering the period March 2008 to Present. The latter only afforded a 

general wave climate comparison due to the mismatch between the observed record date 

and the more shoreward location of the WaveRadar compared to the model output node. 

The resultant calibrated value for bottom friction was applied to all domains, including 

the Irish Sea and Liverpool Bay domains, even though no near-shore wave data was 

available for model verification. Table 2.2 shows annual wave statistics for both 

measured and modelled data for each of the calibration sites using kN =0.01 m constant 

in domain. 

A comparison between modelled and, measured values for Hsio% and Hsso% at all sites in 

Table 2.2 show a satisfactory skill when applied to both open (Perranporth) and 

sheltered (Penzance Bay and Teignmouth) locations with the largest difference being an 

under prediction of 17% occurring in //,50% at Perranporth. In both co-located data sets 
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Figure 2.17 - Example of four model runs for the Atlantic west coast representing the 

//j.iov.and //v.5o«>o exceedence levels (left to right) for both west and southwest swell 

directions (top to bottom). 

(Perranporth and Penzance) values for peak wave period Tp are reasonably predicted 

with an over prediction of 17% at Penzance, possibly due to the value for bottom 

friction being too high to represent the fine sediments of Penzance Bay leading to an 

increase in Tp and reduction in In sheltered cases values for !„, are over estimated, 

up to 93% at Penzance Bay and this may be attributed to local wind fields not being 

included in the model. In these regions with a mixed wind/swell wave climate only the 

swell component is represented in the model. In the Lyme Bay region this effect is 

partially resolved by driving the model using a UKMO model node from within the 

sheltered region where a bi-directional wind/swell wave spectrum allows for an 

improved separation of the wind (easterly) and swell (westerly) components. 

Fortunately for all wind dominated mixed wind/swell beach locations outside of Lyme 

75 



Chapter 2: Methodology 

Table 2.2 - Final measured and modelled values for; 10% and 50% exceedence significant 

wave height; and peak and mean wave period for selected calibration sites. 

Data source Data type (annual) (annual) (annual) (annual) 

Atlantic west coast model - Perranportti model 3.58 1.30 10.0 8.3 

1 Peoanporth nearshore wave buoy measured 3.45 1.57 11.4 6.2 

South coast model - Penzance model 1.29 0.47 10.0 8.3 

Penzance wave buoy measured 1.23 0.48 8.5 4.3 

Lyme Bay model - Telgnmouth model 1.14 0.50 7.4 6.2 

j Teignmouth wave recorder measured 1.05 0.45 9.1 3.7 

Bay, measured wave buoy data was available. Model predictions for exposed swell 

dominated coasts were deemed satisfactory for nearshore wave climate estimation. 

2.5.3.2 Resultant nearshore wave climate 

Combining transformed wave model data and measured nearshore buoy data, an 

approximation of the nearshore wave conditions (proxy to breaker height) were 

obtained for all beach study sites within each region. In cases where a beach location is 

considered equidistant between two wave buoy locations, a linear interpolation was 

made between the two resultant annual wave records. Appendix 1 contains calculated 

nearshore integrated wave parameters for all beach sites. 

2.6 SUMMARY 

Within the study a wide range of hydrodynamic and morphodynamic data were 

collected and analysed using an array of techniques, in many cases generating novel and 

expansive datasets new to the UK environment. The analysis, evaluation and synthesis 

of these data enabled new insights into UK beach morphodynamics, associated hazards 

and characteristics of risk to the beach user. These form the basis of the subsequent 

chapters. 
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3. BEACH RESCUE STATISTICS, NEARSHORE 

MORPHOLOGY AND HAZARDS: A CASE 

STUDY FOR SOUTHWEST ENGLAND 

3,1 INTRODUCTION 

As alluded to in Chapter I . due to its location and geologic setting, the UK possesses a very 

broad spectrum of beach environments around its more than 5,000-km long shoreline. This 

provides an important public amenity that attracts visitors throughout the year. However, 

the beach environment is inherently hazardous and exposes people to risk and to understand 

and manage this risk, a comprehensive understanding of UK beach environments and their 

associated hazards is needed. A lifeguard service is a response to these risks posed within 

the beach environment, and aims to protect and educate the beach user. To best perform this 

task a comprehensive knowledge of site-specific physical beach hazards, hence beach 

morphodynamics, is needed. 

Beach hazards in this study represent any phenomena that place the beach user at risk, 

henceforth termed the 'insea' beach user, of harm through interaction with the shoreline 

and surf zone. These bathing hazards are related to beach morphology and nearshore 

hydrodynamics and their definitions are in line with those investigated in studies relating to 

beach safety in Australia (Short and Hogan, 1994) and the US (Lushine, 1991; Lascody, 

1998) (see Section 1.3.4.2). The character and combined severity of these bathing hazards 

can vary spatially in the alongshore between regions of high and low hazard, and also in the 

cross-shore between high and low tide (potentially significant on macrotidal beaches). The 

nature of this spatio-temporal variation in bathing hazard within a specified region is hereon 

in referred to as the ^temporal hazard signature' describing the instantaneous distribution of 

type and severity of hazard along the shoreline of interest. The temporal hazard signature 

may vary throughout a range of timescales from incident waves to decades. This chapter 

addresses the annual spatial (between beach) variation in bathing hazard throughout the 

southwest region of England. Chapter 5 addresses the sub-seasonal variation of the 

temporal hazard signature in this region. 

77 



Chapter 3: Beach rescue statistics, nearshore morphology and hazards 

This chapter focuses on the coasts of Devon and Cornwall in the southwest of England. 
This region, as well as being a popular tourist destination during the spring/summer months 
with over 20 million visitors in 2005 (Devon County Council, 2006) exhibits a broad range 
of tide, wave and sedimentological environments. On western coasts 10% exceedence wave 
heights (//i.io%) reach 2.5 to 3 m (Draper, 1991) and MSR ranges from 4.2 to 8.6 m 
(Admiralty, 2005). This wave climate is characterised by a mixture of Atlantic swell and 
locally generated wind waves. The spectrum of beach environments and the location of the 
majority of RNLI patrol units within the region mean it is ideally suited as a study area for 
this project and provides the setting for Chapters 3, 5 and 6. 
This specific aims of this chapter are: 

• to improve understanding of the spatial variation in beach systems (morphology, 

hydrodynamics and sediments) and beach hazards in Devon and Cornwall (and by 

proxy the UK); 

• to quantify the various environmental hazard types within the recorded incident 

record for 2005; 

• to make a preliminary assessment of the level of association between hazard and 

beach type within the regions patrolled beaches; 

• to draw comparisons between the investigated beach envirormients and those that 

have been the subject of previous related research. 

The outputs of this investigation form the baseline rational for the subsequent investigations 

documented in the following chapters. 

3.1.1 Lifeguarding in the UK 

Surf life saving began in Australia in the early 1900s as a response to the increase in 

drowning events, partly due to the growth in coastal urban populations and an interest in 

swimming in the sea. Starting as a group of local residents rescuing people from the sea, 

over the years the beach lifeguard service provision has became a more professional 

operation. In the UK, beach lifeguard services first began in 1955 when the Surf Life 

Saving Association of Great Britain was formed (SLSGB) as volunteer clubs began to 

patrol beaches in Bude and St Agnes in Cornwall and Brighton on the south coast of 

England. At present, the RNLI represents the contemporary face of beach lifeguarding, 

providing well-equipped and highly-trained services to beaches around the UK. The RNLI 

Lifeguards, a sub-division of the established RNLI Lifeboats founded in 1824, began 
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ORNWALI 

Figure 3.1 - Map of the southwest peninsula indicating the location of RNLI beach patrols, 

and their associated regions, in operation within the southwest region during the period of the 

study in 2005. 

providing beach lifeguard services within the UK in 2001 with 37 beaches. By 2005, when 

the data for this study were collected, the RNLI lifeguarding services had expanded to 

include 62 beaches throughout south and southwest England (Figure 3.1). In 2009, the 

RNLI has expanded around the UK providing services to 141 beaches throughout Wales 

and the east, northeast, south and southwest of England. They respond to more than 9,000 

incidents per year and since its inception in 2001 the service has assisted a total of 68,658 

people and saved 367 lives (RNLI, 2009). The RNLFs vision is to be recognised 

universally as the most effective, innovative and dependable lifeboat and lifeguard service, 

existing to save lives at sea. To this end, their commitment to funding work to improve the 

core understanding of the physical environment they are working in and the hazards it 

presents, indicates their belief that a strong scientific base is essential in expanding and 

improving their service. 

3.1.2 Beach classification and safety management 

The merging of lifeguarding and the physical sciences is not new. As detailed in Section 

1.4.3, Australian studies have associated physical hazards with beach state and temporal 

variation in environmental conditions leading to the development of the Australian Beach 

Safety And Management Program (ABSAMP), aimed at improving safety services for 

Australian beaches (Short, 1993; Short, 2001). Introducing the concept of beach 

morphodynamics to physical bathing hazards enabled an improved understanding of the 

variability of hazard with beach state, which in turn led to methods of hazard assessment 
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for vast swathes of the Australian coastline and the collection of physical beach data, led by 
Short (1998) of the Coastal Studies Unit, University of Sydney, for every beach throughout 
the entire coastline of the nation (Short, 1993; Short and Hogan, 1994; Short and McLeod, 
1998; Short, 1999; Short, 2001). 

This union was based largely on conceptual models of beach state and its dynamic 

transition under varying hydrodynamic and morphological conditions, developed in the late 

1970's and early 1980's. The culmination of this pioneering work on modelling beach 

morphodynamic states was represented by the seminal and widely cited paper of Wright 

and Short (1984) in Australia who developed a beach classification model for microtidal, 

wave-dominated coasts using the dimensionless fall velocity (Q) shown in Equation 1.2. 

This was further extended by Masselink and Short (1993) to include meso/macrotidal 

environments by defining an additional dimensionless parameter, the relative tidal range 

(RTR) shown in Equation 1.3 (for detailed review see section 1.4.1). Incorporating both 

morphological and hydrodynamic factors, a sequence of characteristic beach morphologies 

can be identified on the basis of Q and RTR, leading to the identification of distinct 

morphodynamic states. Jt is the understanding of these states that was central to the early 

work on association of beach hazards and beach type (Short, 1993; Short and Hogan, 1994; 

Short, 1999; Short, 2001). Chapter 1 provided a summary of the hazard rating matrix 

produced by Short and Hogan (1994) whereby identified beach types, within the continuum 

of reflective to dissipative surf zone regimes, were allocated generic hazard ratings 

dependant on the prevailing wave conditions. In general, hazard levels increased from 

reflective to dissipative beach types, and from low to high wave conditions. Some attempt 

was made to incorporate tide-modified and tide-dominated beaches, based on those 

occurring around the Australian coast. Specifically, it was acknowledged that levels of 

hazard can vary from low- to high-tide within a macrotidal environment. 

3.2 STUDY S I T E : SOUTHWEST ENGLAND 

3.2.1 Introduction 

Regardless of the importance of its beaches to the local and regional economy and the fact 

that the majority of the RNLI lifeguard patrols are located within it, as a study site, the 

region of Devon and Cornwall, within the southwest of England, provides a valuable 

insight into the geomorphology of the UK coast. As a region, it possesses a wide spectrum 
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Figure 3.2 - Photographs illustrating the coastal diversity within the study region: A) Sennen 

Cove, West Comwall (sand only); B) Seaton beach. East Devon (mixed sand/gravel); and C) 

Spekes Mill Mouth, West Devon (gravel/boulder, shore platform). 

of beach environments both in terms of wave height, tide range and sediment 

size/abundance, as well as contrasting coastal geomorphology (Figure 3.2). What follows in 

this section is a brief review of the geologic and sedimentary characteristics of the region, 

both onshore and offshore, followed by a summary of the spatial distribution of the beaches 

within the region in association with their sedimentology and backshore morphology and 
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some indication of the regional hydrologic and hydrodynamic character. Geographical 
locations for location names referred to in the text can be viewed in Figure 3.3. 

3.2.2 Coastal geomorphology 

Due to Holocene sea-level rise and the downward movement of the coastline of southern 

Britain (see Section 1.3.1 for more details), the south-west peninsula is a drowned 

landscape. The majority of the coast from Start Point on the South Devon coast to Porlock 

in the Bristol Charmel to the north is composed of hard Devonian and Carboniferous rocks 

with no cover of glacial material. Headlands are derived from harder sediments, geological 

structure and volcanic rocks. In combination with drif\ filled river valleys, that are drowned 

(or partially drowned) in their lower reaches, the observed highly indented coastline can be 

explained by regions composed of sedimentary rock that show a marked variability in 

hardness (lower Devonian and Culm measures). This, combined with the large number of 

complex sills and dykes as well as many minor faults, drive the present physiology of the 

coast creating the headlands and bays apparent around the entire coastline (Futurecoast, 

2002). 

3.2.2.1 South Coast overview 

The south coast, specifically the region between Start Point in the east and Lands End in the 

west, is a highly indented coastline dominated by small embayed coves often within larger 

scale headland controlled bays. On a regional scale, the intersection of numerous rias of 

varying sizes (of which the Fal, Helford, Tamar, Emie and Yealm are good examples) 

along this coastal stretch characterises the complexity of the coastal planform that has been 

little affected by any of the Pleistocene glaciations and shows an absence of glacial deposits 

along the coasts. The presence of long intermittent exposures of raised beaches and head 

deposits have been suggested as a potential sediment source along this coast and the 

continued presence of these deposits indicates the lack of coastal erosion during the 

Holocene (c. 10,000 years BP). In many places these head and raised beach deposits sit on a 

fossil beach platform c. 2 to 5 m ODN in front o f rock cliffs. 

Further east, stretching from Start point to Portland Bill , the coastline has been retreating, 

eroding and changing orientation over the last millennia in response to sea level 

fluctuations, dominated by the inundation of the English Channel associated with marine 

transgression throughout the Holocene (Keen, 1998). This region is broadly defined by the 
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Figure 3.3 - Map indicating geographical locations of feaUires relating to the coastal system of 

Devon and Comwall. Estuaries, coastal division and bays only represent those referred to in the 

text. 

large, shallow embayment of Lyme Bay to the east, associated with a sequence of Permo-

Triassic and Jurassic strata to Portland Bill , and a region to the south of the Teign estuary 

that is defined by a succession of smaller, headland embayments. This stretch of coast is 

dominated by cliffs, rocky platforms and mostly coarse clastic beaches. The only 

exceptions are the two major estuaries (Exe and Teign), where banks, bars and shoals have 

accumulated both landward and seaward of estuary mouths (SOCPAC, 2004). The only 

stretches of coastline where geological structure and lithology are not controlling the 

coastal morphology are where gravel barrier beaches have been driven shorewards through 

rising sea-level. Slapton Sands, between Torcross and Strete provides a classic example. It 

has been suggested that prior to the Holocene transgression, when sea levels were 100-120 

m below present, a prototype continuous * super' barrier between Portland Bill and Start 

Point may have been present (Hails, 1975; Morey, 1983; SDADCAG, 2009). 
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Figure 3.4 - Vector plot of mean tidal residuals around the southwest peninsula and onshore 

solid geological characteristics, from Futurecoast (2002). 

3.2.2.2 North Coast Overvie\> 

The north coast of the southwest region can be divided into four different sections based on 

the solid rock lithology illustrated in Figure 3.4. The stretch from the most southern point at 

Lands End to St Ives Bay is composed of granite throughout, followed by the silty and 

sandy slates, mudstones, sandstones with lower order igneous and limestone sections up to 

the promontory of Boscastle near Tintagel. Subsequently, moving northward, the section 

extending to the headland of Baggy Point (associated with Croyde Bay, North Devon) is 

dominated by Carboniferous mudstones and sandstones, moving up the Bristol channel into 

Devonian slates, sandstones with mudstones, mudstones with siltstones, and thin limestones 

reaching Minehead (Steers, 1946; Keene, 1996; Futurecoast, 2002). The regional variations 

in lithology described above determine the form of the coast, with the massive jointed 

granite coast around Land's End having a different form from the steeper cliffed coast of 

sandstone and slate south of Hartland Point. The detailed form of the coast is commonly the 

result of the local joint and fault patterns (the coastline around Tintagel being a good 

example) (Wilson, 1971). 
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3.2.2.3 Drainage 

On a regional scale this cliffed form is broken only by occasional river valleys. Along the 

south coast of Devon and Cornwall, the lower courses of these valleys have been inundated 

by the sea to form rias (e.g. the Fal estuary). The north coast, well known for its high steep-

cliffed, high-energy coastline, only provides shelter through a handflil of estuarine systems 

(e.g. Hayle, Camel and Taw/Torridge estuaries) that are also, in many cases, associated 

with regions of higher sediment abundance. More locally, drainage networks within the 

region (Figure 3.5), both cutting across the geological trend and following the faulting and 

joint trends (north coast granite regions) have a significant role in coastal geomorphology, 

especially beach morphology, as rivers and streams flow out over and through the beach 

sediment accumulations at the drowned lower reaches of drainage systems and indented 

bays. This has implications from the event to seasonal temporal scale for the hydraulic 

characteristics of the beach and hence its morphodynamic response. 

3.2.2.4 Sediments 

The southwest peninsula lay at the southern limit of the main Pleistocene ice sheets. Late 

Devensian ice sheets extended to the Isles of Scilly and apart from deposits of large erratic 

boulders on the modem coast by ice sheets or icebergs during the Pleistocene, glacial 

sediments are largely absent from the sea bed within the offshore regions. This has led to 

the presence of only a thin covering of Holocene sediment and for many kilometres off the 

coast, typically only a metre deep. Thicker accumulations of sediment are found within 

some bays (e.g. Mount's Bay). Some estuaries have sand bars at their entrance (e.g. 

Salcombe and Yealm) but other estuaries (Helford) display no such bar. Most of the region 

underwent a prolonged period of deep weathering through the Tertiary and Pleistocene, the 

products of which were not removed by subsequent glacial erosion. The weathering of 

granites leads to the release of quartzitic sands that were washed onto the continental shelf 

and provided a sediment source for the region's beaches. Because of the resistant nature of 

the bedrock forming the coast, natural recession, and hence locally derived sources of 

sediment, is negligible. The shallow inshore rock platform typical of areas around Britain 

formed of softer rocks, is very narrow or absent within the southwest region. Measurable 

coastal retreat is found very locally where unconsolidated Quaternary sediments are subject 

to marine erosion. The nearshore zone off the south coast of Devon is largely comprised of 

thin gravel sediment with a more sandy nature at increased depth. This has a carbonate 

content of between 25 to 50%, decreasing eastwards. On the north Cornwall coast sandy 
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Figure 3.5 - Offshore seabed sediments and onshore hydrological characteristics for the 

southwest peninsula, from Futurecoast (2002). 

gravel and gravely sand predominate throughout with a carbonate content commonly 

reaching 75%. Early effects of human influence of sediment supply were seen when 

substantial volumes of sand and mud were contributed to the coastal system through the 

extensive mining for tin and china clay in the 19'̂  and 20*̂  centuries. Subsequent cessation 

over recent decades has led to beach sediment depletion on some locations. Apart from 

some of the beaches and seafront associated with the bays and estuaries of Lyme Bay (e.g. 

Torbay, Teignmouth and Exmouth), there are relatively low levels of large-scale coastal 

defence/protection when compared to other parts of Britain, but human influences in this 

regard have been apparent in the region from the mid/late 19'*̂  century to protect the urban 

development and infrastructure related to tourist amenities and resources. Other human 

influences within the region include removal of beach sediment for engineering projects 

and dredging of navigation channels. 

3.2.2.5 Offshore processes and bathymetry 

From Start Point in the southeast, through Land's End to Hartland Point in the northwest, 

the coast is open and exposed to Atlantic wave energy. This region is affected by stronger 

wave action than any other part of southern Britain. The sea bed falls steeply away from the 
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coast and water depths in excess of 50 m are reached within a few kilometres of shore 
around most of the coast. At depths of 50 to 70 m the seabed flattens, continuing to the 
inner continental shelf Tidal currents in the area are generally less than 0.75 ms ' o f f the 
north Cornwall coast and less than 0.5 ms * of f the southern coast of the peninsula 
(Futurecoast, 2002). They increase close to the headlands, exceeding 1.5 ms ' off Land's 
End, and locally at estuary mouths (e.g. Exe and Teign) where maximum spring ebb current 
velocities can exceed 3.0 ms ' (Duvivier, 1998; SDADCAG, 2009). The tidal residual flows 
deduced by Pingree and Griffiths (1979) from numerical modelling suggest the only areas 
of significant, although generally weak, net sand transport were to the northwest along the 
north Cornwall coast and to the east along the east Devon coast (east of the Teign) (Figure 
3.4). In the context of its effect on coastal geomorphology, the tidal control on sand 
transport is weak and regionally uncertain, with the volumes of sand involved being less 
than that of other parts of the English coast. Wave induced currents are more important in 
controlling sediment movement. This motion is largely derived from the west and 
southwest components of the wave climate composed of fetch-unlimited swell and local 
short-fetch waves driven by prevailing winds from the south and west. Although less 
frequent winds with an easterly component can produce significant movement of sediment 
in south coast regions. Storm events can drive sediment movement on the inner shelf but 
the effects are greatest in shallower nearshore zone. 

3.2.3 Beaches of Devon and Cornwall 

To obtain an overview of all the beach systems in Devon and Cornwall, an inventory of all 

beaches >50 m in length was established. A combination of topographic and geological 

maps, site visits, web material including online envirormiental CIS databases (Defra, 2006) 

and geo-referenced aerial imagery, was used for assessment of beach geometries, sediment 

types, physical beach characteristics and associated estimates and predictions of the local 

mean tide/wave conditions. Each beach was assessed in terms of wave/tide conditions, 

sediment texture, and coastal setting, geometry, structures and backshore geomorphology. 

The total number of beaches >50 m in length is 690. Of these, 204 (30% by number) 

possess predominantly sandy inter-tidal zones, of which 59 (9% by number) have an upper 

beach composed of gravel^oulder sediments (Table 3.1; Figure 3.6). Spatially, these sand-

dominated beach forms are well distributed throughout the entire coastline with the 

exception of east Devon (east of the Exe), the Bristol Channel coast and the southern 
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Table 3.1 - Geological and stmctural statistics of beach groups represented in Figure 3.6 

(modified group is not exclusive and represents beaches modified by engineering stmctures). 

High-water Inter-tidal Number (n) 

total % 

Area (m') 

mean % 

•• 

Length (m) 

mean % 

Width (m) 

mean 

Gravel / boulder Sand 59 9 116000 14 600 11 150 

Sand Sand 145 21 155500 47 600 28 200 

Gravel / boulder Gravel / boulder 135 20 35000 10 450 21 50 

Beach Rock 253 37 25000 13 200 15 50 

Other 98 13 29100 16 300 25 72 

Modified 151 23 140011 45 700 37 150 

Stretch of Bideford Bay (Hartiand Point to Westward Ho!). But those beaches entirely 

dominated by sand (upper and inter-tidal) are more prevalent on the west facing coasts of 

Devon and especially Comwall. With average widths of 200 m, these beaches represent an 

important economic resource of the region as they attract the largest number of visitors 

representing 45% of the entire region's beach area (at mean spring low tide). In contrast, 

beaches with gravel/boulder sediments throughout are on average only 50 m in width and 

represent 20% by number of the region's beaches (n = 135) but only 10% by inter-tidal 

area. 

Due to the limited sediment supply to much of the coast and its geomorphological history, 

the presence of shore platforms and inter-tidal rock outcropping is not uncommon. This is 

confounded by the observation that 37% of all beaches by number (n = 253) possess some 

form of inter-tidal rock formation, which were on average, associated with beaches 50 m 

wide, A survey of coastal geomorphology (Table 3.2) showed that the majority of these 

beaches were associated with shore platforms (n = 240). It is also worth noting that 11% 

(by number) of beaches are submerged at high water. These beaches are found in cliff-

backed regions and can drive the segmentation of beaches into a number inaccessible coves 

during the upper limit of the tide. This can be a significant source of hazard and will be 

discussed in detail later in the chapter. 

The prevailing hydrodynamic regime varies in its level of wave and tidal energy 

constituents. Figure 3.7 illustrates the estimated hydrodynamic character for each beach 
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Figure 3.6 - Plots display range of beach sediment types and their distribution around Devon 

and Cornwall. Sediment categories represent a selection of the total. G = Gravel; B = Boulders; 

Sa = Sand; and Modified beaches are those that have being anthropogenically altered by hard 

engineering structures including: groynes; breakwaters; piers; seawalls; harbours; and jetties. 
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Table 3.2 - Coastal morphology and hydrodynamics associated with the beaches of Devon and 
Comwall. Beach database combined with coastal classification from Masselink (2004). 
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Barrier beach 16 2.4 5 3 12 1497 24 8.1 184 0.8 1.6 4.9 

Mainland beach 229 35 30 163 19 630 143.1 48.6 124 0.7 1.5 5.3 

Tidal flat beach 4 0.6 0 0 1 325 1.3 0.4 263 0.7 1.4 6.5 

Shore platform + beach 240 36.7 25 181 4 374 88.9 30.2 129 0.9 1.7 5.9 

Cove (with bench) 93 14.2 4 76 0 225 20.9 7.1 82 0.5 1.2 4.9 

Low diffs + sub-beach 7 1.1 0 0 0 371 2.6 0.9 86 0.7 1.5 4.9 

High diffs sub-t}each 65 9.9 0 0 1 215 13.8 4.7 70 0.9 1.7 5.7 

derived from NOAA*s WaveWatch I I I 3G model output for each region identified. 50% 

exceedence significant wave height clearly indicate the effect of exposure to the Atlantic on 

the west coast with values of up to 1.5 m decreasing along the south coast moving east until 

reaching Lyme Bay, where very little westerly swell reaches the beaches that are largely 

dominated by southern and eastern wind wave events. A similar situation occurs within the 

Bristol Channel where increased shelter from the predominant westerly swell reduces 50% 

exceedance significant wave heights to below 0.9 m. These wave energy variations occur 

alongside a marked variation in mean spring tidal range, which is at its peak in the mega-

tidal Bristol Charmel beaches (>9 m) reducing sharply southward to the southern limit of 

the west coast 5.4 m). Eastwards along the southern coasts the reduction continues at a 

reduced gradient to 3.7 m in the far southeast of Devon. 

The combination of hydrodynamic regime and sediment distribution plays a significant role 

in the spatial distribution of beach width characteristics, which can be seen in Figure 3.8. It 

is clear that the region's macrotidal high-energy west coast beaches with a sufficient supply 

of sandy quartzite and carbonate material are the the regions widest beaches (>150 m) 

representing 15.8% of all beaches. These wide inter-tidal zones are significant, both 

because of their increased beach user carrying capacity and their rates of horizontal 

shoreline translation. It is also noted that the region's widest beaches (>300 m) are 

predominantly located in proximity to estuaries and regions of abundant finer sandy 

sediments. The majority of narrow beaches (<50 m) are largely confined to meso-

/macrotidal south coast and are associated with coarser sediments and shore platforms. 
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Figure 3.7 - 50% exceedence wave height (calculated from a simple linear regression model 

relating the effect of wave exposure to modelled offshore/nearshore wave heights in the region 

and applied to modelled offshore waves from the period 2003 - 2008), and mean spring tidal 

range (linear interpolation between standard and secondary ports around the coast) for all 

beaches in Devon and Cornwall (Admiralty, 2005). Beach number represents *along-coast' 

beach sequence and red line separate coastal regions of interest. 

The sandy and mixed sediment mainland beaches and beaches with shore platforms account 

for 72% of all beaches around the region. It is the aesthetic and practical attraction (access, 

infrastructure and scale) of these beaches, often spectacularly backed by high cliffs (73% > 

20 m high) and dune systems (5%), which draw the largest visitor numbers during the 

summer season. Hence, these beaches are seen as having high economic importance to the 

region. Due to this, in an attempt to manage risk posed to the beach user within the beach 

environment, the RNLI lifeguard patrol units are often associated with these types of 

beaches. 

3 . 3 METHODOLOGY 

Data collection consisted of two main phases: 1) the collection of RNLI lifeguard incident 

records and daily logs for the 2005 patrol season at all locations within the southwest 

region; and 2) collection of associated beach morphological, sedimentary and 

hydrodynamic data to enable a physical characterization of beaches and hazards. An 
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Figure 3.8 - Plots display the range of beach width and their spatial distribution within Devon 

and Cornwall. 
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overview of hydrodynamic conditions throughout the region was obtained both through 
visual observations of wave breaker heights recorded hourly by the R N L I lifeguards, use of 
statistical wave conditions from Draper (1991) and predicted tidal information from the 
Admiralty (2005). 

3.3.1 Beach hazards: RNLI data 

This study uses RNLI incident statistics and logs of observed daily conditions collected for 

62 locations within the southwest of England for the 2005 patrol season (Ist May to Ist 

October). This is a comprehensive dataset that was collected by the lifeguards through the 

use of incident forms and daily logs. 

3.3.1.1 Incident data 

RNLI lifeguards log number of people and the environmental cause for every incident that 

they attend throughout the patrol season. This information was used in this study to indicate 

the nature of the hazards affecting the insea beach user during the 2005 patrol season. Each 

incident recorded is associated with an event containing one or more individuals that 

required RNLI lifeguard assistance beyond solely preventative actions and incorporates 

details of the number of people assisted. Termed the environmental cause of incident, the 

main physical (morphological/hydrodynamic) drivers to be associated with the assist/rescue 

were assessed by the lifeguards involved and categorised into specific physical hazards. 

• Rip currents: incident caused in part by the potential to transport the insea beach 

user through the rip current surf zone circulation and associated seaward-directed 

current flow to deeper water and hence a region of increased hazard. 

• Littoral currents: alongshore current hazard, causing the relocation of the insea 

beach user parallel to the shoreline. This is often associated with a rip current hazard 

as rip current hazard levels are commonly variable in the alongshore. 

• Estuarine currents: current hazard associated with hydrodynamics of estuaries, inlets 

and river mouths. 

• High seas / heavy surf: high surf zone energy and waves can increase submersion, 

and disorientation limiting the ability of the insea beach user to escape the region of 

elevated hazard. 

• Surging waves: associated with swash events and surging waves, the rapid lateral 

movement of the shoreline acts to overpower the beach user either transporting 
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them seawards to a region of increased hazard, or creating a collision hazard 
through falling (e.g. on slipway). 

• Plunging / dumping waves: responsible for increased submersion, disorientation and 

seabed collision hazard through more energetic wave breaking, 

• Bed return flow: term for any offshore current flow at bed-level that acts to 

undermine the beach user, increasing susceptibility to submersion and 

disorientation. 

• Strong winds: effect of strong winds through level of visibility, surface transport of 

floating bather and any craft and effect of wind chill on body temperature. 

• Offshore winds: transports floating bather/craft offshore, often to a region of 

increased hazard. 

• Tidal cut-off: modulation of tidal level creates a temporal reduction in beach area 

and can increase water depth that needs to be passed to reach a region of reduced 

hazard (dry beach), often associated with headlands and cliff-foot beaches that are 

submerged at high water. 

• Sandbars / sandbanks: beach morphology in the form of sandbars and sandbanks 

creates a hazard through spatially variable water depth within the inner surf zone. 

3.3.1.2 Daily logs 

Supplementing the incident report records, all lifeguard units make a series of hourly 

observations relating to the environmental conditions and visitor population dynamics at the 

beach. These hourly logs, running between 10:00 - 18:00 hrs for each day for the season 

(P* May to October in 2005) and for all of the 63 lifeguard patrols, provide a valuable 

dataset for the assessment of beach user activity and prevailing wave conditions. The beach 

user count provided a key dataset for this study. The proportion of the population which is 

interacting with the surf- and nearshore zone is critical in making any comment on relative 

hazard levels, environmental risk, or incident probability/likelyhood within the beach 

envirormient. Beach user numbers represent an estimate through lifeguard observation each 

hour. The R N L I commissioned an external study to investigate the accuracy of beach user 

counts across a range of beaches indicating that, on average, beach user counts were 

accurate to within 10% of the true population. It was suggested that the largest source of 

error was introduced during the estimations of very large beach populations. This error was 

suggested to be due to the adoption of different visual estimation techniques when dealing 

with high, densely populated beaches. Within this investigation, the interest lies in the insea 
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beach user population estimates (smaller population sizes), providing hourly values for the 
surf- and nearshore zone population. 

Hourly breaking wave heights were also visually estimated by the lifeguards on patrol and 

were designated one of 5 categories: flat; 1-2 ft; 3-4 ft; 5-6 ft; and >6 ft. Unfortunately, no 

measured nearshore wave data were available within the region during the study period to 

validate the observations. The large volume of data collected throughout the season at each 

beach (--2420 hourly observations per beach) may go some way to reducing the influence 

of observational error at any particular location, enabling the calculation of more reliable 

seasonal statistics, although this will have no effect on any systematic error present within 

and between lifeguard patrols. 

3.3.2 Beach environment: morphology, waves and tides 

In order to investigate the extent to which identifled hazards are associated with nearshore 

morphology, a campaign of data collection of regional beach morphology was conducted. 

Twelve beaches were selected to complement the principal research goals (Figure 3.9). The 

range of beach sites were chosen to represent examples of both key high and low risk 

beaches, indicated through the assessment of RNLI incident records, as well as those 

representing examples of the significant spatial morphological variation observed 

throughout the region. 

The morphological assessment of these 12 selected sites involved a combination of 3D 

beach surveys using an A T V mounted Trimble R T K GPS system conducted during several 

spring tide cycles from August to September, 2006, enabling the generation of a digital 

terrain model of each selected beach site. This was combined with sediment sampling, low-

tide photographic imagery and time averaged coastal images fi*om an Argus video station 

(Perranporth only) enabling a comprehensive morphological assessment. The beach survey 

procedures and techniques, as well as sediment sample strategy, collection techniques and 

particle size analysis employed have been discussed in Chapter 2. 

The assessment of the hydrodynamic climate required both annual mean wave statistics as 

well as a time series, synchronous with the recorded incident events, associated with the 

2005 lifeguard season. Data from Draper (1991) collated numerous measured and 

shipbome observed wave data from around the U K , defining exceedence wave height 
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Figure 3.9 - Regional map and schematic plan views of each selected study site indicating 

beach shape, aspect of the coast and inter-tidal geology 

statistics and associated periods for the entire coast of Britain. At the time of the study, 

these data provided the best available estimate of the general annual offshore wave climate 

around the southwest peninsula. The requirement for an increased temporal and spatial 

resolution to assess wave conditions in relation to RNLI incidents meant that the 

houriy/daily wave height observations recorded in the Daily Log as described above 

represented the only available dataset and were therefore used to define wave breaker 

height characteristics for the assessment of hazards. 

3,3-3 Beach type: reference to literature 

Morphodynamic parameters n and RTR (Equations 1.2 & 1.3), associated with the 

conceptual models of Wright and Short (1984) and Masselink and Short (1993) were used 

to gain an understanding of the observed beach morphologies and hydrodynamics of the 

study region as well as to place the systems in the context of previous research. 
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3.4 RESULTS AND DISCUSSION 
3.4.1 Beach population dynamics 

Seasonal trends within the records of beach population dynamics throughout the region's 

62 RNLI patrolled beaches are illustrated in Figure 10. The average seasonal beach 

population was significantly correlated (/?^= 0.91;/? < 0.01) with the insea user population. 

Throughout the season, including all beaches, the insea user population was 19% of the 

whole beach population. Figure 3.11 illustrates the spatial variation among the R N L I 

beaches. This data provided a number of insights into the spatial distribution of insea 

population numbers throughout the study region: 

• The lowest seasonal average for insea population (8 people) coming from Torcross, 

a reflective gravel beach on the low energy Lyme Bay coast, South Devon. 

• Those beaches with a seasonal average of between 15 and 30 people insea occur 

across the south and north coasts of Devon and Comwall. The lower insea 

population at these beaches is often due to a reduction in the accommodation space 

of the surf zone because the beaches are either embayed and relatively small (<300 

m in length), for example Challaborough in South Devon, or submerged at high 

water creating a significant temporal variation in carrying capacity (surf zones often 

closed by lifeguards at high-tide in these cases). 

• Beaches accommodating > 30 people on average are predominantly located on the 

west coasts. These beaches are typically longer (> 300 m) with a lower inter-tidal 

gradient and higher tidal range, resulting in larger inter-tidal and surf zone widths. 

• Those with insea populations of between 30 and 50 people where mostly associated 

with the more rural locations, with limited facilities (e.g. Sandymouth beach and 

Constantine Bay in North Comwall). At these popular beaches the limited 

infrastructure and access controls levels of beach use. 

• Increases up to an average of 100 people insea appears to be again related to the size 

(length and width) of the beach and surf zone, but also the predominance of sandy 

beaches without significant inter-tidal rock exposures and increasing inft^structural 

capacity to accommodate large numbers of beach visitors. 

• Finally, those beaches with >100 people insea on average were all wide (> 500 m) 

high-energy Atlantic coast sandy beaches popular for surfing. 

97 



Chapter 3: Beach rescue statistics, nearshore morphology and hazards 

15000 

If 10000 

i | 

To
ta

l ir
 

(a
ilt

> 5000 

26-Mar 23-Apr 21-May ia-Jun 16-Jul 13-Aug 10-Sep CB-0-! 

150t 

23-Apr 21-May 18-Jun 16-Jul 13-Aug 10-Sep 08-Oct 26-Mar 
Date (2005) 

lag number 

Figure 3.10 - A) seasonal distribution of total insea population per day throughout all RNLI 

beaches; B) seasonal distribution of mean insea population per beach; and C), the autocorrelation 

function of mean insea population, for the lags up to 30 days. Red lines represent distributions 

with 7-day moving average applied in both A and B. 

The insea population in this study is a combination of the surfing and bathing populations, 

but the data suggest there is no significant relationship between the proportion of surfers 

and the size of the insea population. Although, among the sandy west coast beaches with 

insea populations >100 people, all are located in proximity to town or localities that cater 

for large numbers of tourists and are very popular surfing destinations for all abilities (e.g. 

Perranporth, Polzeath and North Fistral). For these locations the surfing population 

accounts for at least 50% of the insea population (most have a surfing population that is on 

average larger than that of bathing) and all have a high level of facilities and services that 

enable increased contact with the surf zone, for example surf/wetsuit hire, water sports 

retail outlets and surf schools. 
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Figure 3.11 - Spatial distribution of the average number of people insea at any given RNLI 

beach location between 10:00 and 18:00 during the 2005 patrol season (1st May to 1st October). 

Number codes represent regional boroughs. 
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An understanding of the temporal variation of the insea user population is valuable in 
improving the understanding of variations in risk (vulnerability to hazard) and for the 
effective resource management of R N L I staff and equipment. Figure 3.10 shows the 
seasonal time series of the total (regional) insea population during 2005. There is a clear 
increase in the insea population during the summer months (late July to early September), 
peaking in August at over 10,000 people insea at all RNLI beaches at any one time. A clear 
picture of relative beach population loadings is given by plot B, where the per beach user 
populations (season lengths can vary slightly from beach to beach) indicate some higher 
resolution peaks and troughs in population numbers. Although it is possible these are linked 
to wave and weather conditions the general trends appear to coincide in part with school 
and public holidays occurring 26**' May - 3"* June, 25* July - 2"̂ * September. On a shorter 
timescale (< 7 days), there is a strong indication that a weekly periodicity is present within 
the data as indicated through the autocorrelation function (r) in Figure 3.10 with significant 
lag peaks around 7 (r = 0.65) and 14 days (r = 0.4), indicating consistently higher insea 
populations at weekends. 

3.4.2 Incident statistics 

Analysis of incident data clearly shows that during 2005 both the environmental cause of 

incident and the number of incidents vary significantly around the coasts of Devon and 

Comwall (Figure 3.12). A dominance of rip current related incidents (47% of all incident 

events for 2005) is seen in most regions. Rip currents account for 49% of incident events in 

west coast regions where //r.io% is 2.5-3 m and MSR = 7 m, as opposed to the south coast 

regions where, //s.io% = 0.5-2.5 m, MSR = 4.7 m and rip currents cause 25% of total 

incident events. In south coast regions surging waves and tidal cut-off, account for 8% and 

10% of total recorded incident events respectively, showing an increased prevalence 

compared to west coast regions where the role of surging waves (3% of total incidents) and 

tide cut off (3% of total incidents) is less significant. In many cases on the south coast, the 

increase in tidal cut-off is associated with beaches that have significant portions of their 

length submerged or segmented at high-tide. 

When incidents are broken down into the number of individuals assisted/rescued within 

each event (Figure 3.13), rip currents are shown to play a role in 71% of incidents occurring 

within Devon and Comwall during the 2005 season. Offshore winds, sandbars, bed return 

flow, high surf, strong winds, tidal cut-off and dumping waves individually represent no 
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Figure 3.12 - Plots illustrating percentage distribution of the environmental cause of incident 

for all cases of active assistance at RNLI-paU-olled beaches in Devon and Cornwall during 2005. 

Total number of individuals (indv.) assisted and relative risk posed by physical beach hazards 

(IR=incidenls.hr''/ insea.hr'') are displayed for each region. Circles represent 10% exceedence 

significant wave height (Draper, 1991), mean zero up-crossing wave period (Draper, 1991) and 

mean spring tidal range (UlCHO, 2003). The histograms show the environmental cause of 

incident. 
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Figure 3.13 - Plot illustrates percentage frequency distribution of environmental cause 

contributing to each individual assisted during the 2005 season (some assists involve more than one 

environmental cause) 
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more than 15% of all incidents. Some of these environmental causes occur in conjunction 
with rip currents in 30% of incidents, suggesting risk to the beach user is often compounded 
with a combination of hazards, such as large waves and littoral currents, that can drive the 
spatially unaware beach user into areas of increased rip current hazard. 

Individual locations were analysed to further understand the beach hazard characteristics 

and specifically the influence of rip currents in rescue incidents. This analysis includes 

calculation of a level of risk for each location for the 2005 season. A risk parameter IR is 

derived through two statistics: ( I ) the average number of people estimated to be in the 

water at hourly intervals (F) between 10:00 and 18:00 hrs during the 2005 season; and (2) 

the average number of individuals assisted/rescued per hour (Re) at a specific location 

(calculated from the total number of insea assists/rescues per season divided by the number 

of hours in a season at each location). The ratio between these two statistics is the 

probability of an incident occurring: 

IR=Re/P (3.1) 

The probability of rip current related incidents IRRIP was also calculated: 

/ R^p = R t f u p / P ( 3 - 2 ) 

where RCRIP is the number of rip incidents per hour at each location. Figure 3.14 illustrates 

the spatial distribution of IRRW around the region highlighting a number of interesting 

points. Firstly, it is evident from the spatial distribution that most beaches with a high IRRIP 

are located on the high-energy west coast region. Secondly, these beaches within the west 

coast regions, and in fact those with the highest IRRJP on the south coast, are the most 

exposed to the dominant swell direction (west and southwest). This phenomenon can be 

clearly seen in Figure 3.14b and Figure 3.14c, where more sheltered north and northwest 

facing beaches have low values of /7?fl//> compared to their more exposed counterparts, even 

when the beaches are within close proximity. 
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Figure 3.14 - Spatial distribution of rip risk {IRnw) within RNLI beach sites in Devon and 

Cornwall. Calculated from incident statistics collected during the 2005 patrol season (Isl May to 

1st October). Insets A, B, C and D represent regional enlargements. 
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3.4.3 Beach hazards and morphology 

To better understand mechanisms behind these spatial variations in IR and specifically IRRJP 

a number of beach sites were chosen for further investigation. A morphological and 

hydrodynamic assessment of these sites enabled insights into the role that waves, tides and 

morphology play in modifying the hazards and hence risk of these lifeguarded beaches. 

Selected beaches, marked in grey in 

Table 3.3 and highlighted in Figure 3.9 and Figure 3.15 were targeted to elucidate these 

aims and hence they included beaches that represented the end members of the IRRJP 

spectrum and those that displayed a marked difference in IRRJP within the same visitor 

catchments and locality. In addition, these sites represented a cross-section of the beach 

morphologies and coastal environment within the study region, and to this end, two non-

R N L I beaches were included in the morphological analysis, Croyde Bay and Saunton Sands 

that represented an example of an ultra-dissipative end member. 

Reviewing the R N L I incident data, it is clear that the type and level of hazards vary with 

location. Morphological data from the survey data collection at these sites is shown in 

Figure 3.15. The exposed intermediate beaches on the west coast (2, 3, 5, 6 and 7), having a 

Hsio% of approximately 2.5-3 m, represent some of the highest values of IRR}P, with values 

at locations 6 (Constantine) and 7 (Perranporth) reaching 3.76 and 2.01 (per 1000 

individuals) respectively. Perranporth and Constantine also received the most incidents 

during 2005 with 379 and 201 individuals rescued, respectively. Low IRRIP values consist 

of beaches located within sheltered areas of the west coast (location 4) and the south coast 

(see Figure 3.15). These areas have a reduced Hsim due to the aspect of the coast. The 

high-energy westerly Atlantic swell waves which are dominant throughout the year have to 

refract through 45-90** to arrive at the sheltered north and south facing beaches. Hariyn Bay 

(location 4) had an average of 80 individuals insea hr ' during the season compared to 48 at 

the neighboring Constantine Bay, but only 14 environmentally driven rescues occurred 

during the season as opposed to 201 at Constantine Bay. At south coast locations mean 

observed Ht was between 0.1 m and 0.4 m at patrolled beach locations 8, 9, 10, 11 and 12 

during the 2005 season. These locations had the lowest calculated rip current risk values. In 

some cases other environmental hazards were more prevalent. On the south coast, in 

combination with lower energy conditions, the dominant winds from the western quadrant 

blow offshore in many locations, increasing the risk of the beach user 
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Figure 3.15 - Summary of cross shore profiles and tide ranges at study sites around Devon and 

Comwall (height measured in meters above Ordnance Datum Newlyn). 

drifting offshore. Significant tidal cut-off hazards are present at many locations where the 

large tidal range causes submerged high water beaches. The ease of beach access and 

characteristics of backshore geology control the severity of this hazard. Much of the tidal 

cut-off hazard is also present on the west facing coasts but levels of hazard are dwarfed by 

those posed through rip currents. 

Surveyed cross-shore profiles (Figure 3.15) and wave, tide and sediment characteristics 

(Figure 3.16) provide a general insight into the two-dimensional inter-tidal geometry at all 

the sample beaches. Inter-tidal widths range from - 600 m at exposed fine sand high-energy 

west coast beaches, with morphology most similar to the Ultra-Dissipative beach type (e.g. 

Saunton Sands) to < 40 m at coarse sand/gravel steep beaches that are observed along the 

sheltered southeast facing coasts (e.g. Torcross) that would be termed a Reflective beach. 

Between these end members a number of beach profile geometries were observed from 

those with distinct breaks in slope, associated with significant changes in beach gradient 

(steep upper beach; wide, shallow lower beach) resembling the Low-Tide Terrace beach 

form, to those with significant inter-tidal and sub-tidal bar systems. The medium- to high-
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Table 3.3 - Table of incident statistics for all RNLI beaches in 2005 in Devon and Cornwall. 

Incident numbers represent individuals. Risk indicator defines level of risk (total and rip current 

related) through; IR = RdP. Shaded rows indicate selected study sites. Crackington (highest risk 

beach) was not used as a study site due to the short length of the patrol season at that location. Only 

10 of the 12 beaches are highlighted because 2 beaches (Saunton Sands and Croyde Bay did not 

have RNLI lifeguard patrols during the study period. Region number relates to borough that is 

displayed in Figure 3.11. 
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9 Crackington 135 113 195.0 33.2 5.8 39.0 24.353 22.198 6.24 5.69 1 

Constantine 201 192 403.3 35.4 12.7 48.1 18.182 18.087 3.78 3.76 
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7 Porthtowan 201 187 341.3 33.5 35.8 69.3 17.444 15.485 2.52 2.23 4 

7 Chapel Porth 83 81 134.8 15.2 14.0 29.3 7.556 6.157 2.58 2.10 5 

- ' Perranporth 379 334 749.1 72.5 45.3 117.6 26.763 23.718 2.27 2.01 

10 Crooklets 59 55 169.0 27.6 7.6 35.2 5.413 5.413 1.54 1.54 7 

9 Treyamon 62 57 298.3 47.1 3.9 50.9 5.610 5.118 1.1 1.00 8 

1 - -| -
V Bantham 86 . 78 281.8 29.7 14.5 44.3 6.250 4.247 1.41 0.96 9 

10 Summerieaze 89 84 345.8 36.5 15.9 52.4 6.731 4.968 1.28 0.95 10 

10 Black Rock 26 23 111.4 21.0 6.3 27.3 2.264 2.165 0.83 0.79 11 

10 Northcott 9 9 77.0 21.8 4.7 26.6 1.940 1.940 0.73 0.73 12 

10 Widemouth 67 41 197.5 31.5 19.6 51.1 3.285 3.285 0.64 0.64 13 

7 Perran Sands 41 27 134.8 16.9 17.8 34.7 2.519 2.146 0.73 0.62 14 

5 Mawgan Porth 50 47 350.5 44.1 25.7 69.8 4.451 3.504 0.64 0.50 15 

5 Porth 13 12 149.1 20.9 0.8 21.7 1.136 0.947 0.52 0.44 16 

5 North Fistral 97 76 701.0 51.5 126.9 178.5 6.169 5.682 0.35 0.32 17 

5 Watergate Bay 43 37 385.9 38.9 84.7 123.6 3.504 2.841 0.28 0.23 19 

5 Crantock 81 72 1014.1 239.3 25.0 264.3 6.818 5.777 0.26 0.22 20 

5 Great Western 22 13 95.0 11.1 23.3 34.5 1.231 0.568 0.36 0.16 23 

4 Sharrow 4 3 77.7 14.9 1.3 16.3 0.264 0.264 0.16 0.16 24 

10 Westward Ho! 35 30 155.7 34.0 15.1 49.1 2.841 0.758 0.58 0.15 25 

1 ' ' ' " T ' T 

•'• .8 ^ ; Sedgewell Cove 40,: ' 30 290.3 24.2 9.3 33.5 2.953 0.492 0.88 0.15 26 

9 Polzeath 52 35 525.9 76.8 88.5 165.3 2.804 1.923 0.17 0.12 28 
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9 Porthcothan 5 3 150.5 24.9 5.1 30.0 0.295 0.295 0.1 0.10 29 

9 Trevone 16 3 204.9 21.5 8.9 30.3 0.295 0.295 0.1 0.10 30 

r 
} 

8 Burgh Island 5 4 177.6 23.6 5.9 29.4 0.394 0.197 0.13 0.07 31 

I 8 Chaflaborough • .R:- 43 19 , 198.7 20.8 5.0^ 25.8 1.870 0.098 ^ 0.73 0.04 34; 

4 Tregonhawke 67 55 98.6 20.3 5.2 25.5 5.208 0.095 2.04 0.04 35 

10 Sandymere 11 4 129.7 31.7 19.8 51.6 0.379 0.189 0.07 0.04 36 

7 St Agnes 27 21 100.2 18.0 9.9 28.0 1.959 0.093 0.7 0.03 37 

5 Tolcame 10 7 200.3 36.2 24.9 61.1 0.663 0.189 0.11 0.03 38 

5 South Ftstral 6 5 232.3 47.0 50.6 97.5 0.473 0.284 0.05 0.03 39 

5 Towan 10 1 228.6 25.5 3.5 29.0 0.081 0.081 0.03 0.03 40 

4 Tregantle 4 4 221.2 51.9 7.3 59.1 0.442 0.000 0.07 0.00 48 

4 Freathy 2 2 61.6 15.1 1.6 16.6 0.439 0.000 0.26 0.00 49 

7 HolyweD 11 1 296.6 46.6 17.4 64.0 0.095 0.000 0.01 0.00 50 

7 Gyllyngvase 37 28 261.9 25.6 5.4 31.1 2.612 0.000 0.84 0.00 51 

8 Thurtestone 16 8 222.0 22.1 6.3 28.4 1.538 0.000 0.54 0.00 52 

r. 9 Booby's o 2 1 75.9 14.3 6.2 20.6 0.098 0.000 0.05 0.00 56 

9 Trebarwith 3 1 374.3 51.7 9.5 61.3 0.098 0.000 0.02 0.00 57 

r* 

w 
9 Harlyn 13 . 5 496.5 61.3 18.5 79.8 0.401 0.000 0.05 0.00 58 

r* 

w '- C 
8 Torcross 20 7 157.7 6.9 0.6 7.6 1-346 0.000 1.78 0.00 59 

TOTALS 2955 2216 

energy, medium to coarse sand beach systems commonly displayed clear bar/rip 

morphologies in the M L W N to M L W S region (beaches 2, 3, 5, 6, 7 and 11) in addition to 

inter-tidal bars (most commonly slip-faced bars) of varying significance. The beaches were 

characterized by a wide range of coastal morphologic settings including enclosed/embayed 

(locations 2, 4, 6 and 8), quasi-open coast (locations I , 3 and 7), estuarine influenced 

(locations I , 10 and I I ) , barrier (location 12) and significantly geologically constrained 

(locations 3, 5 and 6) beaches which in combination with varying sediment abundance, 

characteristics and hydrodynamic conditions generated a diverse range of beach systems 

and forms, all of which experience surf zone bather interaction. 

A summary of the combined general morphologic and hydrodynamic and incident 

observations ranked by IRRIPIS displayed in Figure 3.16. The highest levels of IRR/P during 

the season were associated with those beaches with well-developed low-tide bar/rip 
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systems, high-energy wave conditions and in many cases with a significant presence of 
hard rock geologic features within and bounding the inter-tidal zone (locations 6 and 3). 
With decreasing IRRIP and IR, hazards other than rip currents are observed to drive 
incidents. Tidal cut-off and strong winds have a significant influence within Bigbury Bay 
(locations 10 and 11), which is characterized by significant systems of slip-face bars and 
low-amplitude ridges, and experiences submerged beach sections during high water 
associated with an estuarine outflow system between beach units. Finally, those beaches 
with both low IRRJP and IR commonly display little or no rip current presence due to a 
combination of beach type (no rip current morphology) and low-energy and wave climate 
(oriented away from westerly swell source) with a increasing influence from short period 
wind waves. The hazard signature at these beaches is controlled mainly through offshore 
winds and tidal cut-off. 
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Figure 3.16 - Summary of morphodynamic, hydrodynamic, sediment size and hazard 

parameters associated with monitored beach sites. Associated data relating to beach profile form 

and incident seasonal incident levels is also presented. Ranking is 2005 seasonal values of IRRJP 

(increasing from bottom to top). 
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3.4.4 Beach Types and Risks 

These results indicate that the physical characteristics of the beach and its location within 

the hydrodynamic setting of the region play a key role in defining physical environmental 

hazards that are posed to the insea beach user, especially that caused by rip current activity. 

In turn, through human interaction with these hazards on the selected beaches studied, a 

general appreciation for the levels of risk within a variety of these beach environments has 

been assessed. The southwest coast of England displays a wide variety of medium to high 

energy beach types amongst varying tidal ranges. Through the use of traditional 

morphodynamic parameters commonly used to differentiate between a variety of beach 

types and surf zone regimes, the observed range of beaches within the study can assessed in 

the context of these specific surf zone hazards. Values of Q and RTR for the studied 

beaches are shown in Figure 3.16. These values lead to some general observations on the 

distribution of measured levels of risk during this study illustrated in Figure 3.14. Beaches 

within the study can be crudely separated into three general types. Those that occupy 

characteristics typical of the two end members of a morphodynamic continuum displaying 

either highly dissipative (termed here 'ultra-dissipative') regimes or those representing 

highly reflective morphodynamic characteristics. These two end members were assessed, 

within the limited context of this study, to represent relatively low levels of risk to the insea 

beach user. In contrast, those beaches that fell into an increasingly dynamic intermediate 

group, characterized by varying levels of reflective and dissipative characteristics, often 

varying temporally with the tide, and commonly possessing significant bar/rip 

morphologies, were more likely to exhibit higher levels of risk to the beach user. Figure 

3.17 summarizes these findings. 

3.4.4.1 Ultra-dissipative Beaches 

Ultra-dissipative high energy surf zones, for example Saunton Sands = 7.1 and RTR = 

6.3), that are not well represented within previous Australian studies (Wright and Short, 

1984; Masselink and Short, 1993), exhibit a very wide (> 500 m), low gradient, featureless 

inter-tidal profile with no significant bar morphology (Figure 3.15). Saunton Sands is 

characterized by a low gradient fine sand beach {Dso= 0,29 mm), has an MSR of 7.9 m and 

shows very subdued inter-tidal morphology, in part due to the significant cross-shore 

translation of high-energy surf zone processes during the tidal cycle. Ultra-dissipative surf 

zones typically have limited rip current activity due to the non-barred, dissipative nature of 

the wide surf and inter-tidal zone. Incident wave energy is greatly reduced when it reaches 
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Risk: Low 
Q = 7.1 

R T R = 6 3 

e.g. Saunton Sands 

Risk: Low-High 
Q = 3 . 5 - 7 . 0 

RTR = 4.1 - 6.5 

e.g. Chapel Forth 

Risk: Low 
Q = 0.5 

RTR = 8.6 

e.g. Torcross 

Figure 3.17 - Overview of general risk level associated with broad beach type regimes 

observed during the study. 

the bathing zone, which under medium- to high-energy conditions is fully saturated. This 

means an increase in incident wave height would have little effect on the prevailing risk 

levels, although potentially an increase in infragravity energy at the shoreline can generate 

an increased swash hazard through large cross-shore excursion. 

3.4.4.2 Intermediate (Reflective/Dissipative) Beaches 

The more common intermediate beach types, with large tidal ranges (MSR - 6.1-7.9 m) 

and an energetic wave climate, are represented by low tide terrace, low tide terrace and rip, 

and low tide bar/rip morphologies. They are characterized by a steeper, of̂ en coarse, more 

reflective high water beach face, a wide (400-600 m) subdued dissipative inter-tidal zone 

(low-amplitude ridges and slip-face bars often present) and well developed intermediate 

low water bar/rip circulation systems (Figure 3.15). The beaches with the highest calculated 

IRRIP were observed to possess morphology typical of that reported within the low-tide 

bar/rip and low-tide terrace and rip beach types (e.g. Constantine Bay, Perranporth, 

Sandymouth and Chapel Forth). These sites had values of Q. between 4.8 and 7 and RTR of 

between 4.1 and 4.5. Examples of these morphologies are illustrated in Figure 3.18 and 

Figure 3.19. Observations indicated that backshore geomorphology and exposed inter-tidal 

rock formations have a significant influence on the morphologic character and surf zone 

regime throughout the nearshore, but especially within the mid- to upper inter-
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Chapelporth beach 

Croyde bay 

Perranporth beach (bme averaged) 

Figure 3.18 - Annotated panoramic views of Chapel Forth (A) and Perranporth (C) at sping 

low tide. Digital Elevation Models (right) indicate measured morphology at Croyde Bay (B) and 

Perranporth (D) during September 2006 with mean tidal levels represented by solid red lines. 

tidal zone of many of the beaches of Devon and Cornwall. Hard rock formations at both 

Sandymouth and Constantine Bay (Figure 3.19) appear fundamental in generating the 

beach hazards. Sandymouth, with a gravel and boulder reflective high water beach, 

possesses an inter-tidal rock platform which topographically constrains circulation within 

the surf zone, consequently driving fixed topographic rip current systems. The geologic 

constraints at Constantine Bay act to influence surf zone circulation from high to low water, 

affecting morphological development modifying flow velocities and of̂ en generating deep 

rip channel morphologies. The combination of incised low-tide beach rips and constrained 

mid- to high-tide topographic rips led to Constantine Bay having the second highest rip 

current risk level in the region for 2005. 

High rip current risk was also observed on intermediate/dissipative beaches that were 

relatively unconstrained by hard geologic structures like Perranporth and Chapel Porth 

(Figure 3.18). Both locations receive similar hydrodynamic forcing with a MSR = 6.1 m 

and an annual Hsio% = 2.5 m (Draper, 1991), and have a well defined, often rhythmic 

unconstrained bar and rip morphology that is commonly exposed at MLWS. During the 
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Figure 3.19 - Annotated panoramic views of Constantine and Boobys Bay (A) and 

Sandymouth (C) at spring low tide. Associated Digital Elevation Models indicate associated 

measured morphology (B & D) during September 2006 with mean tidal levels represented by 

solid red lines. 

survey period, the unconstrained rhythmic bar and rip morphology, present at many west 

coast beaches had a wavelength of 300-400 m and amplitude of 1.5-2 m. With an incident 

breaker height of 0.5-2 m during the observation period, intense topographically driven rip 

systems can potentially develop as narrow rip feeders traveling within the channels between 

the bars, creating hazardous conditions for water users around low water at these locations 

(Short and Hogan, 1994; MacMahan et al., 2006). Figure 3.18 shows the observed low-tide 

bar and rip morphology at Perranporth (located between MLWN and M L W S ) and 

associated oblique timex image from the Perranporth Argus station, indicating the presence 

of a detached sub-tidal bar system fronted by inner bar/rip morphology. Incident records 

suggest that rip hazards may be enhanced within the low water tidal phase during a period 

of maximum wave dissipation over the low-tide bar/rip morphology that, when exposed, 

can accommodate and attract beach users. Exposed bars are subsequently submerged during 

the flooding tide, activating rip currents as the surf zone passes over the morphologic 

template. These hypotheses are further developed and tested within Chapters 5 and 6. 
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3.4.4.3 Reflective Beaches 

The steep reflective beaches on the south channel coast like Slapton Sands (Q = 0.5 and 

^77? = 8,6) are coarse grained (Dso = 4.2 mm), narrow (- 40 m) and associated with 

plunging and surging breakers within a small surf zone. Dominated by wind waves 

(observed summer Hi,= OA m), no significant rip current hazards present themselves. 

3.4.5 Comparison of Australian and UK beaches 

The beaches of southwest England possess a number of significant differences from those 

documented in previous Australian studies that form the basis of many of the commonly 

used morphodynamic beach models (Wright et al., 1982; Wright and Short, 1984; Short, 

1986; Masselink and Short, 1993; Short, 2001; Short, 2006): I ) fine, wide, high-energy 

ultra-dissipative beaches like Saunton Sands; 2) steep reflective gravel beach types, like 

Slapton Sands of the protected south coast, with a comparatively low O of 0.5 but a high 

RTR of 8.6; and 3) wide largely featureless, high-energy intermediate/dissipative beaches 

{Q = 4.8-7; RTR = 4.1-4.3) with more developed high and low water bar morphology, are 

not well represented within the Australian coastal environment. These differences are 

generated largely by the coupling of a high-energy wave climate and large tidal ranges in 

the UK.. As a result, these beaches do not become tide-dominated with a large tidal 

excursion. Also, the variation in coastal geology and the present and historic sediment 

supply to beaches constrains the level of hydrodynaraic control on beach type. 

Not observed within this study and uncommon in the southwest of England but common to 

the U K (especially the east coast of England), are 'ridge and runnel' beaches (characterized 

by low-amplitude ridges) and those modified with inter-tidal coastal structures are 

environments that have also received limited coverage within Australian beach type models 

(Wright and Short, 1984; Masselink and Short, 1993). They are, however, known to 

represent unique U K beach morphologies and potentially unique hazard signatures. 

3.5 CONCLUSIONS 

As beach visitor numbers increase in the U K , understanding the physical hazards and risks 

posed to the beach user within a national context becomes paramount. This will underpin 

deployment of safety resources and enable improved understanding of the national beach 

environment that contributes to thousands of rescues aimually. The south and southwest of 

England beach hazards have been found to be driven by a number of environmental factors; 
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Conclusions 

Strong/offshore winds, sandbars, bed return flow, large waves, tidal cut off and 
dumping/surging waves, but most significantly rip currents. Based on diis preliminary 
study of the beach types, hazards, rip current characteristics and lifeguard rescue statistics 
the following conclusions can be drawn. 

• Rip currents represented the greatest environmental threat to the insea beach user 

during the study. This threat can be compounded by a series of hazards working 

together. 

• There is a significant variation in beach hazards and their severity depending on the 

nature of the hydrodynamic conditions and beach type. The intermediate/reflective 

low tide terrace and rip and intermediate/dissipative, low tide bar/rip morphologies 

similar to those described by Masselink and Short (1993) possess the high risk rip 

current systems, that are most active during wave heights of 0.5 - 2 m above which 

beaches are often closed to bathers. 

• Moderate energy (0.5-1,5 m) Atlantic swell waves during spring and summer 

enable the development of rhythmic bar morphology on the intermediate beaches at 

the low water stand, generating morphologically controlled rip current systems. 

• Large tidal ranges introduce hazards such as tidal cut-off through high water levels 

and rate of cross-shore shoreline movement, potentially enhancing rip current 

velocities on the ebbing tide. 

• There is a great variation in surf zone characteristics due to beach boundary and 

inter-tidal hard-rock geologic structures, often constraining sand and water 

movement and enhancing rip current systems. With high-energy surf zones and 

large tidal ranges, the southwest of England experiences different hydrodynamic 

forcing than observed within the Australian datasets, thus generating beach 

environments unique to this climate. 

This chapter has found that ( I ) there is some evidence for a link between beach type and 

hazard and (2) that many of the beach environments observed in the U K are fundamentally 

different from those observed in Australia, upon which many of the traditionally used 

conceptual beach state models are based. Therefore there is a need for a more 

comprehensive understanding of beach morphodynamics within the context of the U K 

beach environment to enable the successftil development of a hazard referenced beach type 

classification that is applicable in the U K coastal environment. These issues are addressed 

in the following chapter. 
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4.1 INTRODUCTION 

An analysis of beach hazards and rescue statistics for the Devon and Cornwall coasts in 

the previous chapter alluded to the influence of beach type in defining die hazard 

signature. Thus, an understanding of the spectrum of these beaches observed along the 

U K coast, with regard to their morphometries, backshore morphology and wave, tide 

and sediment characteristics is integral for hazard assessment. 

As previously highlighted, recent decades have seen an increase in beach research 

spanning a wide range of coastal environments, but attention has focussed on 

understanding beach morphodynamic response in micro- and meso- tidal sandy 

environments with relatively few studies in macrotidal regimes until recent years. Short 

(2006 p.27) stated that 'The 15 beach types that occur around the Australian coast also 

occur in similar wave-tide-sediment environments throughout the worid and provide a 

framework for identifying many of the world's beaches. What the Australian coast does 

not possess, however, are tide-modified beaches exposed to higher ocean swell and 

storm seas, resulting in similar though higher energy beaches. It also has relatively few 

gravel and cobble beaches'. Short (2006) also highlighted the lack of *ridge and runner 

beaches within the Australian environment. The diversity in wave and tide regimes, 

sediment distributions and geological inheritance around the U K coast make it a 

valuable study region within which to improve understanding of beach 

morphodymamics in these lesser studied environments. 

The commonly used method of beach type description follows work by Wright and 

Short (1984) and Masselink and Short (1993) using n (Equation 1.2) and RTR 

(Equation 1.3) to position beaches within a 2D conceptual matrix based upon wave, tide 

and sediment characteristics. These two parameters attempt to differentiate between the 

forcing physical processes and the observed beach state. Recent studies (Gomez-Pujol et 

al., 2007; Jackson et al., 2005) have suggested that this does not explain the whole story. 

They state that the influence of geological inheritance and sediment supply can have a 

significant, if not dominant, controlling effect on observed beach state. 



Chapter 4: UK beach classification 

The three principal aims of this chapter are: 

• To identify beach type variability and distribution in the UK. 

• To define a range of beach groups that represents a cross-section of U K beaches 

and their associated hazards. 

• To investigate the appropriateness of using a beach classification system to 

describe beach groups through the use of traditional morphodynamic parameters. 

These aims were achieved through the collection and analysis of a high-quality, robust 

dataset capturing the spatial variability of beach types and their associated sedimentary, 

geometric and hydrodynamic conditions within England and Wales. This chapter 

identifies a number of common beach groups and proposes a conceptual 

morphodynamic framework as a tool to understanding beach group characteristics. 

4.2 DATA C O L L E C T I O N AND ANALYSIS 

Understanding the coastal setting of England and Wales is fundamental when 

investigating the spatial distribution of beach types and their associated morphodynamic 

characteristics (see Chapter 1 for a detailed description of the coastal setting of England 

and Wales). Antecedent environmental conditions shape the systems in which each 

beach site resides and will set the boundary conditions with respect to both sediment 

supply and sink, having a controlling effect on the morphodynamic system. To 

successfully summarise the beach types and associated morphodynamic regimes found 

in England and Wales it was deemed essential to sample from a wide cross-section of 

the contrasting coastal environments. With this in mind, a comprehensive campaign of 

data collation and collection was undertaken to generate a representative and robust 

dataset of morphometric and hydrodynamic attributes. The following section describes 

the design and process of data collection and introduces the subsequent analytical 

techniques used. 

The study collected data fi-om 92 beach sites within England and Wales (Figure 4.1; 

Figure 4.2). These sites were broken down into 5 main regions: Irish Sea and Liverpool 

Bay, the Atlantic southwest, Lyme Bay, the Channel Coast and the East Coast. These 

different regions represent a broad cross section of beach types and environmental 
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Figure 4.1 Overview map of study region, indicating all data sources and highlighting 

regions where wave modelling was conducted (Map image copyright 2009, Crown 

Copyright Ordnance Survey, and EDINA Digimap Joint Information Systems Committee 

(JISC) supplied service). 

Figure 4.2 - Large scale views of selected beach sites within each region (Map image 

copyright 2009, Crown Copyright Ordnance Survey, and EDINA Digimap). 
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settings observed in the U K , possessing a marked difference in wave climate, sediment 
type and abundance, geological history and tidal range. Within each of these regions a 
campaign of data collection was undertaken between late September and eady 
December 2007. Morphological, sedimentological and hydrodynamic datasets were 
collected for each beach, as well as information on the local environmental setting and 
extended morphological characteristics. For regions where primary data could not be 
collected (due to time constraints), reliable third party sources were utilised 
(Environment Agency, Channel Coastal Observatory, University of Wales Bangor). The 
data collection programme was designed to be as temporally synchronous as possible to 
minimise potential between site temporal variations in collected data due to changing 
forcing conditions. 

Figure 4.3 illustrates the structure of research methods applied to this investigation. The 

required environmental data could be broken into two categories; 1) beach morphology, 

which encompassed the collection of beach profiles, sediment samples and remote 

imagery; and 2) hydrodynamic setting, which included the nearshore wave climate and 

tidal regime. The next sections detail the data collection mediods and subsequent 

analytical techniques employed. 

4.2.1 Beach morphology and sedimentology 

4.2.1.1 Beach profiling 

Beach profiling, using an R T K GPS system (see section 2.2 for detailed methodology), 

was conducted in October 2007 at locations indicated in Appendix 2, additional beach 

profiles were collected from third party sources (Appendix 2). Each transect was 

surveyed during spring low-tide to maximise the inter-tidal exposure and to enable 

collected profiles to extend from MHWS to MLWS. Elevations along each profile were 

collected at 1 m intervals, this high resolution sampling was required to resolve primary 

and secondary beach morphology on the range of beach sites surveyed where beach 

widths ranged from 15-1000 m. Collected profiles were then used for the calculation of 

selected morphometric variables illustrated in Figure 4.4. 

4.2.1.2 Beach morphometries 

Cross-shore profiles were separated into four sections corresponding to the local mean 

tidal levels (MHWS, MHWN, M S L , M L W N and MLWS). The gradient for each beach 

section was calculated using standard linear least-squares regression techniques. The 
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Figure 4.3 - Flow diagram of research methodology for this beach classification study. 
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Figure 4.4 Schematic of morphometric parameters. 

cross-shore distance relating to each beach section, measured from the cross-shore 

locations of the profile intersection with mean tidal levels, were derived in conjunction 

with the overall width, height and slope of the inter-tidal zone ( M H W S - M L W S ) . While 

other techniques were assessed, including delineation of sections using observed 

morphological features (Hegge et al., 1996), and the use of non-linear functions for 

regression analysis (Travers, 2007), the simple technique employed for this study 

provided a robust and consistent method which successfully reduced the profile form. 

4.2.1.3 Sediment settling analysis 

Sediment data for each profile were obtained. Where possible sediment samples were 

collected on the same day the beach profile was surveyed. In cases where third party 

survey data were used, sediment samples were generally collected within a month of the 

profile acquisition with five exceptions where sample separation was up to three 

months. Within the East coast, Liverpool Bay and Irish Sea regions, both third party 

survey and sedimentological data were used, both of which were collected 

synchronously. Summaries of sedimentological data sources for each region are 

displayed in Appendix 2. Surface sediment samples, collected for upper and lower 

beach locations (Figure 4.4) where taken from the top 1 cm of the beach surface and 

processed using a settling tube to acquire a mean settling velocity, sediment distribution 

statistics and inferred median grain diameter (Dsn) for each sample (Ferguson and 

Church, 2004). A detailed description of settling tube and sediment sieving analysis, as 

well as calculation methods, are provided in Section 2.4. It was not appropriate to settle 
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sediment fractions > 2 mm therefore the coarse fraction (> 2 mm) was removed prior to 
settling and then weighed and sieved to calculate the percentage mass contribution and 
size distribution of the sample. For those samples with a significant gravel fraction, the 
coarse sediment distribution was included in the final calculation of D50. All third party 
sediment size data were derived using standard sediment sieving techniques for particle 
size analysis (Blott and Pye, 2001). 

4.2.1.4 Assessment of bar morphology 

The assessment of bar morphology was crucial to the quality and usefulness of this 

dataset, due to the intrinsic relationship between bar morphology, surf zone circulation, 

rip current dynamics and hence beach hazards, alluded to in Chapter 3. Although the 

two-dimensional beach profiles provide an adequate measure of the beach morphology 

in the majority of cases, many of the beaches in the study displayed pronounced three-

dimensional bar morphology. Remote imagery, acquired through oblique site 

photographs and aerial imagery, was utilised to assess this three-dimensionality at each 

site. Qualitative assessment of sub-tidal bar systems has been employed in a number of 

prominent studies investigating beach morphodynamics and state (Lippmann and 

Holman, 1990; Wright and Short, 1984) due to the difficulties in quantifying bar 

morphology. Ranasinghe et a!. (2001) highlighted the problems associated with using 

qualitative techniques and presented a quantitative phenomenological scheme using 

video derived images to classify four intermediate bar morphologies. A similar scheme 

could not be employed in the present study due to the requirement of georectified time-

averaged images for each site. Visual assessment of bar presence and type, for the 

purpose of this study, was deemed appropriate due to the relative ease in identifying the 

marked differences between the different bar states of interest. Figure 4.5 illustrates how 

the remote imagery was used to assess bar characteristics. Bars were classified in terms 

of type and shape (Figure 4.5). Bar type is defined by the presence of bars and their 

number. Bar shape describes the three-dimensional nature of the bar systems from linear 

two-dimensional to linear intersected and fmally rhythmic bar systems that possess 

highly three-dimensional characteristics, commonly associated with rip current 

circulation and intermediate morphodynamic regimes (crescentic, rhythmic and 

transverse bar systems). 

123 



Chapter 4: UK beach classification 

Bar type Beach image 

no bar 

single bar 

multiple bar 

Bar shape 
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Figure 4.S - Classification of bar type and shape with associated examples of remote image 

d a l a s c l . 

4.2.2 Wave climate 

Reliable information on wave climate is required in order to understand the 

morphodynamic relationships between beach types and hydrodynamic forcing. For the 

U K , this is not straightforward due to the variability in both the character o f the coastal 

morphology and the variability o f the wave climate around the coast. The beach sites in 

this study have been sub-divided into 6 distinct wave climate regions: the North Sea (F); 

the English Channel (E); the Atlantic Ocean (C); the Irish Sea (B) ; Liverpool Bay (A) 

and Lyme Bay (D). The lack o f measured data, varying coastal orientation/exposure and 

the complexity o f the changing magnitude o f the bi-modal components o f the regional 

wave spectrum meant that Lyme Bay had to be treated as a separate region. Within the 

context o f this study the required wave breaker characteristics for each beach site were 

calculated using both measured and modelled nearshore wave statistics. Figure 4.1 gives 
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an overview o f the wave climate regions and the data sources available for each region. 
Chapter 2 contains a comprehensive description o f wave data sources (Table 2.1) and 
nearshore wave modelling using MIICE2I (Section 2.5.3). 

Combining transformed wave model data and measured nearshore buoy data, 

estimations o f the nearshore wave conditions (proxy to breaker height) were obtained 

for all beach sites within each region. In cases where a beach location is considered 

equidistant between two wave buoy locations, a linear interpolation was made between 

the two resultant annual wave records. Appendix 1 contains all calculated nearshore 

integrated wave parameters and associated metadata for all beach sites. 

4.2.3 Tidal range 

Within the U K coastal environment, an accurate understanding o f the temporal variation 

in water level is vital to understanding the spatial variation in beach morphotypes. Mean 

tidal levels (MHWS, M H W N , M L W N and M L W S ) were linearly interpolated between 

selected open coast ports at 100 m intervals to provide a continuous record o f mean 

water elevations around England and Wales. Estimates o f mean tidal elevations for 

individual beach sites were then extracted from this record using a minimum distance 

approach (Appendix I ) . Resultant tidal elevations were transformed from Chart Datum 

(CD) to Ordnance Datum Newlyn (ODN), to enable cross-referencing with the beach 

profile dataset. Chart Datum, normally approximately the level o f the lowest 

astronomical tide, varies from port to port with tidal range around the coast. Offsets to 

CD, published for each port, were also estimated for all individual beach sites through 

the same interpolation method as described above. Due to the availability o f 98 standard 

and secondary ports within the study regions the accuracy o f calculated values was 

considered sufficient at capturing the steep spatial gradients in tidal range. 

4.2.4 Identification of morphodynamic groups 

The interrelationships between morphological and environmental variables were 

examined to assess the presence or absence o f distinct morphodynamic groups within 

the beach sites in the study region. Techniques o f observation classification are an 

important suite o f multivariate analysis and are widespread in science and industry and 

spread across a wide range o f disciplines; examples include correlating tephra by means 

o f geological fingerprinting in tephrachronology (Hermanns et al., 2000), employing 

multivariate cluster analysis in micropaleontology to compare microfossil assemblages 
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such as pollen, foraminifera or diatoms (Birks and Gordon, 1985), and assessment o f 
surrogate approaches to vegetation description in ecology (Ramsay et al., 2006) used in 
data mining. 

For this investigation a combination o f mathematical and graphical techniques were 

used to interrogate the dataset and validate the resultant groupings. Firstly, the inter­

relationships between morphodynamic variables were investigated through the 

calculation o f Pearson product-moment correlation coefficients for all variables within 

the dataset (Pearson, 1896). Cluster analysis was then used as an exploratory tool to aid 

in the classification o f morphodynamic variables into groups. Validations o f the results 

from the cluster analysis were then performed using a method o f non-metric mult i­

dimensional scaling. Finally, the ability o f traditionally used predictive indices to 

describe distinctions in morphodynamic character between resultant beach groups was 

assessed. 

4.2.4.1 Cluster Analysis 

As a technique for identifying structure within a multivariate dataset, cluster analysis 

has been successftilly employed in previous research in the field o f beach 

morphodynamics and classification (Hegge et al., 1996; Travers, 2007). Cluster analysis 

is best thought o f as a technique for illustrating graphically the relationships inherent in 

a distance or similarity matrix. Relationships within a correlation or similarity matrix 

can be represented as an easily understandable graphical tree (dendrogram), but the 

disadvantage is that for a large dataset some oversimplification is unavoidable 

(Middleton, 2000). For this investigation, a method of agglomerative hierarchical 

clustering analysis was used, which progressively reduces a similarity matrix to a 

smaller and smaller order. The reduction in matrix size is carried out by initially 

merging the two largest mutual similarities. These two samples are then expressed by 

some method o f 'averaging* the similarities. This process is then repeated until all 

samples are represented by a single measure o f similarity. The results are then expressed 

in the form o f a hierarchical tree (Middleton, 2000). The groups resulting from this 

hierarchical cluster analysis are such that the most similar cases are linked most closely 

together. A number o f authors provide comprehensive reviews o f a wide range o f 

cluster analysis techniques (Cormack, 1971; Everitt, 1980; Gordon, 1981; Middleton, 

2000). 
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There are four main stages to performing a cluster analysis, and at each stage a range o f 
options are available that can dramatically alter the outcome o f the grouping 
(Middleton, 2000): 

Variables and scaling 

The chosen variables included within the cluster analysis were optimised through 

analysis o f the correlation matrix where care was taken to avoid bias as much as 

possible by reducing the number o f inter-dependant variables that were significantly 

correlated {p < 0.01). The inclusion o f categorical, as well as continuous, variables 

within the dataset created some limitations in the methods available to calculate the 

similarity or distance measures between samples that were appropriate in this case. 

Similarity measure 

In literature, Gower's General Similarity Coefficient remains one o f the most popular 

measures o f proximity for mixed data types and has been successfully employed in 

cluster analysis, often in the biological sciences where mixed data types are common 

(Ramsay et a!., 2006). This measure treats continuous and binary variables separately in 

the calculation o f similarity, and pre-treatment o f the continuous variables is 

unnecessary as they are scaled by range (normalised) within the algorithm. Gower's 

General Similarity Coefficient 5y compares two cases / andy, and is defined as follows: 

n 

^ U ° ^ n (4.1) 

^ik ^ jk 
where: s... = I for quantitative data, Sijk = I for matches o f binary or 

range{k) 

multistate data and 0 for all mismatches. Wijk = 0 for negative matches o f binary data 

and 1 for all other situations (Gower, 1971). 

Clustering method 

The clustering method is the choice o f algorithm used to average the similarities after 

merging the variables. A l l clustering techniques are based around this generated 

association matrix that defines the distance or, in the case o f the present investigation, 

similarity between samples within a dataset, where higher values indicate increased 

proximity. This association provides a measure o f multivariate proximity between 
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samples. As suggested by (Hegge et al., 1996) a sensible approach to clustering is to 
experiment wi th a range a clustering techniques. Such an approach both reduces the bias 
o f selecting just one technique and increases the researcher's understanding o f the 
grouping structure o f the observations. Each clustering technique operates slightly 
differently and can give unique insights into the dataset. In this investigation four 
clustering methods were employed: Average linkage (weighted and unweighted). 
Ward's minimum variance, nearest and farthest neighbour. The statistical analysis 
software package Multi-Variate Software Package (MVSP) f rom KCS was used to 
perform this analysis. 

Selection of cluster level 

The final stage is to select the optimum number o f groups for the particular application. 

Although there are many documented ways to perform this statistically, logic and 

experience o f the dataset in question must be employed when analysing the results o f 

the final cluster analysis. In practice this means that the onus remains on the researcher 

to select a realistic level that is most appropriate to the underlying research question 

(Chatfield and Collins, 1980). 

When analysing the results o f clustering techniques, it is important to keep in mind that 

a solution o f structured groups w i l l be produced regardless o f whether real grouping in 

the data exists. Therefore, it is important to investigate and validate results thoroughly 

through an informed assessment as well as application o f further analytical techniques. 

4.2.4.2 Non-metric multi-dimensional scaling 

The group structure o f the resultant classification was examined using a method o f non-

metric muiti-dimensiona! scaling (MDS) introduced by Kruskal (1964) and Sbepard 

(1962) for application to problems in psychology. This is just one o f a suite o f 

multivariate tools designed to represent the samples in a data set in a reduced 

dimensional space (usually two-dimensional) to aid data summarization. MDS was 

chosen in this case due to its capacity to handle mixed data types (as discussed above). 

Unlike factor analysis, which requires the underlying data to be distributed as 

multivariate normal with linear relationships, MDS makes few assumptions about the 

distribution o f the underlying variables. As long as the rank-ordering o f distances (or 

similarities) in the matrix is meaningful, MDS can be used. MDS represents the samples 

as points in low-dimensional space such that the relative distances between the points 

are in the same rank order as the relative dissimilarities f rom the similarity matrix. 
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Therefore the proximity o f samples within an MDS defines their similarity in 
community composition. The algorithm recognises the arbitrariness o f absolute 
similarities, instead basing the ordination solely on the relative, ranked similarities 
(Clarke, 1993). To ensure convergence on an optimal solution the algorithm is run for 
multiple random restarts. The MDS ordination was performed using the PRIMER 6 
software (Clarke and Godey, 2006). 

The measure o f goodness-of-fit o f the MDS ordination is termed the stress value for the 

required number o f dimensions. This value ranges from 0 to 1 (where 0 is a perfect 

ordination). The stress value describes the level o f scatter about the fitted non-

parametric regression line o f distance against dissimilarity according to 

—iE,zK - ^ . r /E , x4 (4-2) 

where dj^ is the distance predicted from the fitted regression line corresponding to the 

dissimilarity Sj^. I f djj^ = dj^ for all the n(n-I)/2 distances in this summation, the stress 

is zero (Clarke and Gorley, 2006). Stress levels o f under 0.1 are considered to indicate 

an excellent ordination and levels o f over 0.1 are considered unacceptable (Clarke and 

Gorley, 2006). 

4,2.4.3 Morphodynamic indices 

The suitability o f a number o f morphodynamic indices for describing the grouping 

resulting f rom the multivariate analysis was assessed. These indices are commonly used 

to describe and classify a continuum o f beach morphologies and their associated 

morphodynamic regimes, There has been much discussion in literature o f the validity o f 

some o f these indices in beach environments outside o f those assessed in the original 

studies and the applicability o f their use in mixed and sediment limited, low- and 

mixed-energy environments (Anthony, 1998; G6mez-Pujol et a!., 2007; Hegge et a!., 

1996; Jackson et al., 2005; Jimenez et al., 2008; Levoy et al., 2000; Short, 2006; 

Travers, 2007). 

This study w i l l assess the use o f three o f these parameters. Firstly, the surf scaling 

parameter (e) (Equation I . I ) , used to describe the continuum between the reflective and 

dissipative surf zone regimes (Guza and Inman, 1975), recognizes that the transition 
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f rom surging to spilling breakers represents an increase in the amount o f energy 
dissipation across the surf zone (Short, 1999). Secondly, the dimensionless fal l velocity 
(Q) (Equation 1.2), adapted by Wright and Short (1984) from Gouriay (1968) for use in 
describing beach and surf zone morphology and associated shoaling, surf and swash 
zones. Finally, the relative tidal range (RTR), defining the relative importance o f 
shoaling, surf zone and swash processes across the inter-tidal profile. 

Both the Q and the RTR require a value o f Mb for their calculation. In this investigation 

both modelled and measured wave data represent an inshore wave height ( - 10 m water 

depth). Previous investigations have estimated breaker height from the semi-empirical 

relationship provided by Komar and Gaughan (1973), based on A i r y wave theory. This 

method significantly over predicts Ht,. due to reft^ction and bed friction being ignored. 

Also, offshore non-directional wave data, used in some previous studies (e.g., Jackson 

et al. 2006), can potentially include wave travelling away f rom the coast. 

4.3 SUMMARY O F ENVIRONMENTAL CONDITIONS 

The final processed set o f data included 92 beach sites throughout England and Wales 

representing a broad cross-section o f morphodynamic settings enabling assessment o f 

both beach type variability and distribution, but also associated morphodynamic 

regimes. This section describes the data set through a summary o f the spatial 

morphological and hydrodynamic variability within England and Wales. 

4.3.1 Regional offshore wave climate 

Hydrodynamic forcing varies around the coastline o f the U K . The fol lowing summaries 

o f annual wave statistics for each study region provide an insight into this variation o f 

offshore wave climate throughout the 5 study regions (Figure 4.1). Divisions o f the 

directional spectrum obtained from offshore wave model records ( M I - M 6 , Figure 4.1) 

represent sectors used for the inshore wave modelling within each region. The 

integrated wave parameters for each sector are included in Table 4 .1 . 

L ive rpoo l Bay (Region A , Ml mode! record) - Liverpool bay is a fetch-limited 

environment (100-150 km) with a directionally multi-modal, wind dominated wave 

regime. The highest energy wave events come predominantly f rom the W & W N W 

direction (peak energy direction) with a distinct second mode occurring in the E. Due to 

the wind-wave 
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Table 4.1 - UKMO model output statistics for selected directional sectors during 2007. 
Significant wave height A/̂ , peak wave period 7},, wave power P and resultant wave power 
vector angle for each sector DirP. Sectors represent wave rose divisions (Figure 4.6-4.10) 

Sector Obs (%) H-(m) rp(s) P (kW m') 

Mean a 10% 50% 90% Mean a Mean a 

Liverpool Bay (Ml, 50 m depth) 

A 46.3 1.33 0.84 2.62 1.09 0.44 6.6 2.1 19 28.2 293 

B 10.7 1.06 0.6 1.91 0.97 0.38 5.0 1.2 8.9 12.3 14 

C 11.2 0.92 0.46 1.66 0.88 0.38 4.6 1 5.7 7.5 87 

Irish Soa (M2. 55 m depth) 

A 63.3 1.59 1.02 3.09 1.34 0.5 7.8 2.3 31.4 44.0 216 

Southwest coast (M3, 60 m depth) 

A 68.4 2.42 1.69 5.08 1.81 0.81 10.3 2.3 114.1 195.4 263 

B 12.3 2.81 1.62 5.06 2.5 0.84 9.1 2.1 116.4 168.5 221 

Lyme Bay (M5. 25 m depth) 

A 61.2 1.34 0.90 2.62 1.12 0.34 7.9 2.5 25.2 36.1 197 

B 18.7 0.88 0.51 1.59 0.78 0.31 5.5 1.2 6.8 9.4 112 

East coasr (M6. 25 m depth) 

A 27.7 1.17 0.55 1.88 1.06 0.59 8.2 2.7 15.3 17.2 2.7 

B 23.5 1.45 0.79 2.69 1.19 0.62 6.6 1.43 23.0 27.5 79.2 

C 20.9 1.37 0.65 2.28 1.22 0.66 5.7 1.26 16.6 20.6 153.8 

dominated regime, wave energy is spread over a wide range o f directions. Overall 

modal joint distribution events have a Hs o f l-1.5 m and Tp o f 4.75-5.75 s (Figure 4.6). 

The directional spectrum was separated into 3 main sectors (A , B and C) defining key 

wave source directions experienced by the NE coast o f Anglesey (Figure 4.6). 

Irish Sea (Region B, M l model record) - The Irish Sea is largely a fetch-limited sea to 

the west and north (100-150 km), but extended fetch and exposure to the Atlantic 

Ocean from the south, beneath the Republic o f Ireland, allows the addition o f a 

medium- to high-energy storm/swell wave signal to the wave spectrum. The Irish Sea is 

a mixed wind/swell wave regime. During 2007 the highest energy wave events came 

predominantly from the SSW & SW segments (peak energy direction) and overall 

modal joint distribution events had a Hs o f 1.25 m and Tp o f 6.25 s (Figure 4.7). The 

directional spectrum was separated into one main sector ( A ) defining the key wave 

source direction experienced by the SW coast o f Anglesey (Figure 4.7). 
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Figure 4.6 - MetOfilce UK waters model output for M l (Liverpool Bay) virtual 

buoy during 2007. 
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Figure 4.7 - MetOfllce UK waters model output for M2 (Irish Sea) virtual buoy 

during 2007. 
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T p | » l 

Figure 4.8 - MetOffice UK waters model output for M3 (southwest coast) virtual 

buoy during 2007. 

Southwest coast (Region C, M 3 model record) - The Atlantic west coast is a high-

energy, predominantly fetch-unlimited environment, except from the N & NW where 

fetch is limited (100-400 km) due to the wave shadow of Wales and Ireland. The data 

indicates a directionally uni-modal, mixed wind/swell wave regime. During 2007 the 

highest energy wave events came from the W & WSW segments (peak energy 

direction) and overall modal joint distribution events had an H, o f 1.75-3 m and Tp o f 

7.5-8.75 s. The directional spectrum was separated into 2 main sectors (A and B) 

defining key source directions for the SW coast o f Devon and Comwall (Figure 4.8). 

Lyme Bay (Region D, M 5 model record) - Lyme Bay sits along a coast experiencing a 

mixed windswel l wave climate. The bay is characterised by a change in coastal 

orientation from east-facing at the western end to progressively south-facing at the 

eastern end (Figure 4.2). With the predominant swell direction approaching from the 

west and wind waves from the southern and eastern quadrants, the region has a 

directionally bi-modal, mixed wind/swell wave regime. The relative contributions f rom 

both the swell and wind component varies spatially within the region due to variable 

shelter and fetch playing a key role in regional and local sediment transport pathways. 
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Figure 4.9 - MetOffice UK waters model output for M5 (Lyme Bay) virtual buoy during 

2007. 

Figure 4.10 - MetOffice UK waters model output for M6 (East coast) virtual buoy during 

2007. 

134 



Summary of environmental conditions 

During 2007 the highest energy wave events came predominantly from the S & SSW 
segments (peak energy direction). Overall modal joint distribution events had a / / , o f 
0,75-1 m and Tp o f 4.25 s. The dominant swell-waves came from the SSW & S 
segments with a bi-directional wind-wave distribution from the SSW & S as well as 
from the ESE. The directional spectrum was separated into two main sectors (A and B) 
defining key wave source directions experienced by the SE coast o f Devon and Dorset 
(Figure 4.9). 

East coast (Region F , M6 model record) - The East coast has a directionally mult i­

modal, mixed wind/swell wave regime. Highest energy wave events come 

predominantly f rom the E & ENE segments (peak energy direction). During 2007 the 

overall modal joint distribution events had a / / , o f 0.75-1 m and Tp o f 4.25 s. The 

dominant swell-waves came from a fetch-unlimited northerly direction with wind waves 

being spread around all directions. The directional spectrum was separated into 3 main 

sectors (A, B and C) defining key wave source directions experienced by the E coast o f 

Lincolnshire, Norfolk and Suffolk (Figure 4.10). The broad nature o f the annual 

directional spectrum and the variation in the coastal orientation within the East Coast 

region meant that the available nearshore wave buoy data for the region were 

considered more appropriate than the transformed offshore model data. 

4.3.2 Nearshore hydrodynamic climate 

The coupling o f nearshore wave buoy records and transformed wave model data, 

enabled an estimation o f the nearshore wave climate for each individual beach. Figure 

4.11 illustrates the *round coast' variation in wave height, wave period and MSR. The 

six discrete regions (A - F) each represent unique combinations o f these parameters 

describing a wide spectrum o f hydrodynamic regimes, Nearshore wave characteristics 

for each region are a strong reflection o f the offshore wave climates described 

previously. Region A represents a coast o f low-energy, short-period waves (//j5o% < 1 

m; Tm < 7 s) with //yjovo values greater than 2 m at beaches on SW Anglesey (Region B). 

A macrotidal range exists throughout the region. Region C I receives high-energy 

Atlantic swell waves. In the north, the Bristol Channel beaches are low-energy wind-

wave dominated with an extreme mega-tidal regime (MSR ~ 10 m). In the west, the 

contribution o f Atlantic swell and high-energy storm events to the wave climate is at a 

maximum. Within Region C I , fluctuations in nearshore wave height are due to local 

variations in beach orientation and the relative exposure (open coast, embayed or 
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Figure 4.11 - Nearshore hydrodynamic conditions for each beach site moving anti­

clockwise around the coast: (top) 50% exceedence significant wave height (triangles) and 

10% exceedence significant wave height (circles); (middle) mean wave period (triangles) 

and peak wave period (circles); and (bottom) mean spring tidal range. 

protected). Increased shelter from the Atlantic swell source in the west (regions C2 to E) 

drives a wave climate transition from swell-wave to wind-wave dominance. / / , i o « o 

remains high in a number o f locations due to greater sea bed gradient relative to region 

C I allowing for increased wave energy transmission to the surf zone. Finally, region V 

is characterised by the semi-enclosed North Sea wave climate and experiences similarly 

small, short period waves as region A (//,5o«, < 0.6 Tn, < 5 s). Although exposed to 

swell f rom N . Atlantic and Arctic Oceans to the north, limited amounts o f swell energy 

reach this region due to the shallow nature o f the southern North Sea, where water 

depths, even up to 100 km offshore o f region F remain on average less than 30 m. 

MSR throughout the study sites is 4.9 m on average with a standard deviation o f 1.9 m. 

This wide variance is largely due to the continental setting o f the British Isles that is 

surrounded by constricting channels and semi-enclosed seas, modifying the N . Atlantic 

tidal oscillation. Figure 4.11 highlights these variations, in particular showing the results 

o f tidal constriction in the Bristol Channel (region C I ) squeezing the MSR at the 

selected beach sites above 10 m, as well as the effects o f a degenerative amphidromic 

point, positioned inland o f Bournemouth on the coast o f southern England (region E) 

where a microtidal regime is observed with MSRs reaching as low as 1.2 m. A steady 
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Figure 4.12 - Summary profile morphometries and sediment size for all beach sites 

moving anti-clockwise around the coast: (top) mean spring inter-tidal beach slope; (middle) 

mean spring inter-tidal beach width; and (bottom) for the lower inter-tidal zone at each 

beach site. 

regional transition o f MSR can be observed within the study sites from 9.77 m the 

Bristol Channel (Minehead) to 1.37 m in the English Channel, near Boumemouth 

(Fisherman's Walk). Another *along-coast' transition occurs on the East coast where 

MSR is increasing northwards from 1.9 m to 6.35 m, away from the amphidromic point 

located in the eastern English Channel. 

4.3.3 Beach morphology and sedimentology 

It has been noted that within the UK, contrasting geologic environments exist with 

specific antecedent sedimentary characteristics. The interaction between these two 

environmental components provides a spatially dynamic nearshore setting throughout 

the U K . To some degree, the zonation on the basis o f hydrodynamic parameters, 

depicted in Figure 4.11, is also reflected in the beach morphological parameters by 

gradient, width and D^o (Figure 4.12). Examples o f the variability in profile form within 

the dataset are shown in Figure 4.13. Beaches throughout regions A, B and C I are 

characterised by wide, flat and gently sloping profiles. Beach widths reach a maximum 

o f 1013 m in the mega-tidal Bristol Channel and a minimum (162 m) at beaches in the 

sheltered macrotidal St Ives Bay. The average lower inter-tidal sediment 
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Figure 4.13 - (Top) Example oblique images of beach type variation within the dataset 

(numbers correspond to example sediment sites). Red arrows indicate approximate location 

of sediment samples. (Bottom) Cross-shore profiles of the five example locations. 
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size within regions A - B and C I is 0.26 mm and 0.32 mm respectively and samples were 
in the sand size fraction throughout, with maximum Dso o f 0.38 mm and 0.52 mm 
respectively. The south coast regions o f C2, D and E show a progressive reduction in 
beach width in an eastward direction. Beach slopes within these regions were observed 
to be highly variable with an increasing occurrence o f steep inter-tidal beach slopes. The 
steepest beach slopes occur, in most cases, with a corresponding increase in grain size. 
The micro- and mesotidal regions within Region E and F have a propensity for steeper, 
narrow beaches (minimum widths o f 11 m and 13 m in Regions E and F respectively). 
The average lower inter-tidal sediment size within regions C2, D and E is 0.54 mm, 
1.23 mm and 0.32 mm respectively with the highest grain sizes observed associated 
with steep gravel beaches. In region F the average grain size is 2.82 mm, but this region 
exhibits extremes in beach characteristics with very steep (maximum tan^ = 0.168 at 
Orford Ness) beaches in Suffolk and wide, macrotidal, fine grained (minimum D50 = 
0.19 mm at Theddlethorpe) beaches reaching widths o f -800 m. 

Bi-modal, mixed sediments commonly occur throughout the U K coast. In many cases 

these multi-modal distributions manifest themselves as contrasting grain size 

distributions for the upper and lower beach sections. The different populations have 

different physical properties and are preferentially acted upon by different sediment 

transport mechanisms within the near-shore. Figure 4.14 illustrates the distribution o f 

upper and lower beach median grain sizes {Dso), examples o f which are shown in Figure 

4.15, illustrating the broad variance o f size, sorting, skewness and mineralogy within the 

10 

E 
£ 6 

I -

Q . 
3 A 

lower (mm) 
10 

lower (mm) 

Figure 4.14 - Plots showing relationship between upper and lower Dso at all beach site 

(excluding Orford Ness where Z)jo upper = 26.32 mm and Dso lower = 21.05 mm): (left) all 

samples < 10 mm with exploded plot marked; (right) exploded view of all samples < I mm. 
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Djo (mm) 0.28 0.65 8 - 1 6 1.42 0.47 

% m a s s >2mm 0.0 19.6 72.1 10.8 0.7 

Mean (psi) -1.79 -3.09 -2.88 -3.92 -2.64 

Sorting kv, (psi) 0.40 0 5 3 0.45 0.24 0.84 

Skewness kv, (psi) 0.19 0.40 -0.06 -0.08 0.66 

Location 
Minehead 

(1) 

Constantine 

(2) 

Sandymouth 

(3) 

South Milton 

(4) 

Paignton 

(5) 

Region C ! C I C I C2 D 

Dso (mm) 0.19 0.36 0.33 1.52 0.22 

% m a s s >2mm 0.0 0,0 0.0 37.4 0.2 

Mean tv, (psi) -0.92 -2.22 -2.09 -3.98 -1.32 

Sorting w, (psi) 0 4 6 0.47 0.32 0 18 0.60 

Skewness w, (psi) 0.24 0.12 0.25 0.05 -0.08 

10cm 

Figure 4.15 - Photographic examples of sediment sample at sample beach locations 

region (examples correspond to those in Figure 13). Two themes seem to be apparent: 

within sites where sediment is coarse (gravel) throughout, the lower beach is more often 

coarser than the upper beach; and where one of both regions are within the sand fraction 

the lower beach is generally the finer. 
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Summary of environmental conditions 

Bar types are crucial to understanding the surf zone characteristics and hence potential 
bathing hazards. Broken down into observed presence/absence and abundance and 
three-dimensionality (non-linearity), bar characteristics can indicate the dominant 
hydrodynamic forcing mechanisms at each beach. Figure 4.16 maps the distribution of 
the simplified bar characteristics as observed from available remote imagery and field 
visits. The swell dominated regions of the west coast of England are the only region 
where strongly three-dimensional bar systems were observed (generally associated with 
rhythmic transverse bar/rip systems). Beaches with few or no bar features were 
predominantly found in lower energy mixed or wind dominated locations. Multiple bar 
systems were found in macrotidal, and predominantly low-energy environments in 
regions of sediment abundance associated with ebb-tidal deltas at estuary mouths 
(Masselink, 2004; Masselink et al., 2006; van Houwelingen et al., 2006). Observed 
cases of single linear bars were few; in all cases they were in micro- to mesotidal 
regimes in Poole Bay and southern Norfolk (Figure 4.16). 

I CP 

Figure 4.16 - Map illustration the distribution of bar types around the study beaches. 

Terminology refers to Figure 4.5. 
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4.4 C L A S S I F I C A T I O N O F MORPHODYNAMIC GROUPS 
4.4.1 DifTerentiation of morphotypes 

Cross-correlation of morphodynamic variables shown in Table 4.2 gave an insight into 

inter-dependencies within the dataset. As expected, many of the morphometric variables 

(segment slope and width) were significantly correlated {p < 0.01) due to inter­

dependence. Also, slope and width segments were a subsection of the inter-tidal slope 

and width so would be expected to provide the strongest correlations. These part-whole 

correlations are commonly observed in the natural world and as long as one is aware of 

these associations, Sokal and Rohlf (1995) state that there is nothing inherently wrong 

with calculating these correlations. The well documented, traditional relationship 

between grain size and beach slope (Bascom, 1951; McLean and Kirk, 1969) is 

reinforced within the sample sites where both upper and lower slope Dso and 

%mass >2 mm are strongly positively correlated with all slope parameters at the p < 

0.01 level, with the exception of the upper beach coarse fraction and the spring low 

water slope. Interestingly, both lower and upper D50 were negatively correlated with Tp 

at -0.3 and -0.32 respectively (p < 0.01), indicating that finer grained beach profiles 

were in general associated with the regions of higher peak wave period. When 

interpreting these associations, one must be mindful of the effect the sampling strategy 

where regional distribution of various sites may be driving apparent dependencies. For 

example, fine grained beaches in the west may be due to regional sediment abundance 

and independent of the higher values of peak wave period associated with the region. 

Bar type relationships show dependencies that may have been expected: propensity for 

three dimensional bar/rip morphologies increases with all wave parameters (Hsmi> 

Hsso%, Tm and Tp) within the dataset; and multiple inter-tidal bar systems are positively 

correlated (r = 0.55) with Hsso% and MSR (r = 0.45) and negatively correlated with 

inter-tidal slope (r = -0.45). 

The beach sites were grouped through cluster analysis on the basis of profile geometry, 

sedimentology and annual wave/tide climate. Analysis of the dendrogram, the graphical 

product of the cluster analysis and its associated agglomeration levels (Figure 4.17), 

enabled the grouping of beach sites based on the environmental variables detailed in 

Table 4.2. From the cluster analysis nine beach groups were defined at the 80% 

similarity level. 
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Table 4.2 - Correlation coefficients of environmental parameters used in the group classification. Red box highlights variables that are correlated by definition due 

to their inter-dependancies. Grey shading indicates correlations where /7-values that are significant to the 0.01 level. 
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Beach groups 

80 
Similarity 

Figure 4.17 — Dendrogram clustered using unweighted pair group average (UPGMA) 

method. Symbols represent discrete beach groups attained using a cut-off level of 80% 

similarity. 

The cut- o f f level was selected with knowledge of the beach sites in mind and 

represented the most appropriate resolution of classes for the number of beach sites and 

their observed morphological variance. Verifications of the significance of the 

clustering and the level of dissimilarity between groups were assessed by a graphical 

MDS (Figure 4.18) (Kruskal, 1964; Shepard, 1962). The ordination, with a 2D and 3D 

stress of 0.1 and 0.07 respectively (a measure of the goodness-of-fit), indicates a very 

good ordination with little possibility of additional information being gained through a 

three- or higher-dimensional solution (Kniskal, 1964; Clarke and Gorley, 2006). Figure 

4.18 displays a reasonable level of separation within the defined beach groups (80% 

separation from Figure 4,17 represented as dashed lines) with the exception of groups 1, 
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Beach groups 
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Figure 4.18 - MDS ordination plot, representing the rank order similarities in a two-

dimensional space. Symbols indicate beach morphotypes generated through cluster analysis 

and dashed lines represent the groupings at the 80% similarity level. 

2 and 4 that exhibited some overiap. This suggests that there are indeed some clear 

distinctions in environmental and forcing characteristics between the grouped beach 

types. The MDS analysis indicated that the clustering results were acceptable. 

To investigate further the individual character of the defined groups the next step was to 

assess the within-group and between-group morphodynamic characteristics. Figure 4.19 

plots all of the cross-shore profiles of group members relative to MHWS. This 

assessment of profile form shows immediately that beach morphometries have a strong 

delineating influence on beach group membership. It is evident that both scale (MSR 

and inter-tidal width) and intra-profile variance of slope (i.e. beaches with clear break in 

slope or those with distinctive bar morphology) are important group variables. The 

profile groups at first glance appear to display a classic continuum from reflective to 

ultra-dissipative morphotypes first defined by Wright and Short (1983). Although 

between-group profile distinctions between: groups with steep profiles and smaller tidal 

ranges ( I , 2 and 3); intermediate groups (4 and 5); and groups representing the 

transition to dissipative (6 and 7) remain unclear. This suggests that these groupings are 

not purely morphometric and that hydrodynamic and sedimentological parameters are 

also important. 
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Figure 4.19 - Cross-shore profiles of beach sites within each morphotype grouping: 

(above) fixed scale indicates relative cross-shore and vertical extents; (below) scale to fit 

plots show individual profile geometries. Numbers indicate beach group. 
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Figure 4.20 - MDS ordination of morphotype groups. Marker scaling with beach slope 

(tany9), MSR, Hssm. T„ and upper and lower beach Dso allows graphical assessment of trends 

within and between groups). Levels of 2D Stress provide an indication of goodness-of-fit. 

Numbers indicate beach group. 

The range of values of hydrodynamic and sedimentalogical variables associated with 

each group were assessed through MDS analysis (Figure 4,20). Clear trends in 

environmental conditions can be seen across the groups. Beach slope, a principle 

controlling mechanism in the reflective or dissipative nature of the surf zone, as was 

suggested through observation in Figure 4,19, contributes to the definition of clustered 

groups in one dimension, but hydrodynamic variables appear to be a controlling 

delineation between groups with common slope characteristics. Analysis of the 

relationships between wave height and tide range in Figure 4.21 indicates that in 

addition to beach slope, many of the beach groups are hydrodynamically distinct, with 

characteristic ranges of wave height and tide range. Due to the interdependence 
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Figure 4.21 - Beach group relationships between tide range and slope are presented against 

both wave height and wave energy: (top left) wave height {H,s()% ) against mean spring range 

(MSR); (top right) wave energy scaling parameter {H.ur '.Tm) against MSR; (bottom left) 

wave height against beach slope (tanfi) parameter; and (bottom right) wave energy against 

slope. Boxes indicate modal values for each group and stems indicate values of the 25th and 

75th percentiles of the group distribution. 

apparent in tide range, beach slope and grain size; wave height, and hence wave energy, 

seems to be a key environmental control on the clustered beach types. 

The ability of wave height and energy flux to define groups through MSR and beach 

slope was graphically explored in Figure 4.21. Beach slope appears to better distinguish 

between groups than MSR. Values for beach slope were significantly correlated to MSR 

and grainsize parameters within the dataset suggesting that slope provides more 

information on beach morphodynamics than MSR in this case. Figure 4.20 shows that 

wave height and MSR vary through the groups upon the same axis (both variables 

decrease from top left to bottom right) whereas slope and grain size vary perpendicular 

to the hydrodynamics (both decreasing from top right to bottom left) suggesting that it 

should be expected that wave energy fiux and slope provide a better definition of 

groupings. In fact, wave height and slope in Figure 4.21 provide the best separation of 
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Figure 4.22 - MDS ordination with markers indicating bar type; (left) bar number; (right) 

bar shape. 

groups with the least overlap, effectively differentiating beaches with observed three-

dimensional bar morphology. Interestingly, bar type distribution throughout the groups, 

summarised in Figure 4.22, differentiates between beach groups of similar slope angle. 

As bar morphologies are known to be strongly dependant on absolute values of wave 

forcing it is not surprising that distinction of wave energy flux levels may also be 

important in defining bar characteristics between groups with similar slope, A number 

of trends within the dataset due to sampling must be borne in mind when viewing these 

relationships, particularly for application in a broader context, firstly, the high-energy 

sampled beaches are nearly all upper macrotidal and secondly, low-energy sampled 

beaches are mostly lower macro- to microtidal. 

The improved understanding of the relative contributions of the morphodynamic 

variables that define beach group character (grain size, wave energy flux, beach slope 

and bar morphology), enable the classification of the identified groups (1-9). Where 

appropriate, for consistency, these group characterisations follow those well 

documented in literature (Masselink and Short, 1993; Wright and Short, 1984): 

Reflective gravel: R(G) (group 1) 

Highly reflective, steeply sloping beaches with slope angles ranging from 4° to 9°. 

Characterised by medium to coarse gravel on the upper and lower beach face, the grain 

size appears to be a significant controlling factor in beach type widi sites occurring 

throughout micro- to macrotidal environments. Beaches occur in low-energy regions of 

Lyme Bay and the East Coast (Hsso% ~ 0.5 m, - 6-7 s). These beaches typically 

observed to maintain a step feature at the base of the swash-zone (Wright and Short, 

1984). 
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Reflective sand: R(S) (group 2) 

Reflective, steeply sloping beaches comprised of beach slopes ranging from 5° to 6.5°. 

Occurring in micro- to macrotidal environments, grain sizes range from medium sand to 

fine gravel (commonly 10-15% gravel content) and one difference from group 7 is the 

occasional presence of a finer submerged terrace. These beaches occurred in a wave 

climate where Ms5o% and Tm range from 5-1,1 m and 6-10 s respectively. These beaches 

were found along the southwest, south and east coasts of England. 

Linear sub-tidal barred: STB (group 3): 

A predominantly reflective beach face with inter-tidal slopes observed between l .2°-

7.2'' and a sub-tidal linear bar characterise this group of beaches. They occur in a mainly 

microtidal environment. They appear to represent the transition to the classic linear 

barred beach type, more often observed in microtidal beaches worldwide, and 

associated with the two-dimensional end of the intermediate spectrum (Masselink and 

Short, 1993; Wright el al., 1986). Upper beaches observed consisted of medium sand 

with a medium to coarse sand lower beach. Little or no coarse fraction was found at the 

sites. Due to the apparent requirement of a microtidal range for development, it is no 

surprise that these beaches were contained within the south (Poole Bay) and east coasts 

of England. 

Low-tide terrace / non-barred dissipative (low-energy): LTT/NBD(LE) (group 4) 

A group, containing a range of beach morphologies fi^om low-tide terrace with a distinct 

break in slope to highly featureless dissipative, is characterised throughout by a lack of 

significant bar systems. The group represents a bar-less transition through intermediate 

and dissipative regimes with inter-tidal slopes ranging from 0.8°-3,l** degrees. 

Observed in meso- and macrotidal settings, grain sizes {Dso) range from medium to 

coarse sand/gravel in the upper beach with gravel fraction reaching up to 50% in some 

cases, and a lower beach of fine to medium sand with coarse fractions reaching up to 

25% on occasion. A textural discontinuity in some samples is often associated with a 

break in slope and a low-tide terrace beachfonm and groundwater seepage face (Turner, 

1993) and is reported as being commonplace within high-latitude coasts (Carter, 1988). 

The group has a low-energy mixed wave climate with Hssm from 0,2-1.1 m, and 

from 4-8 s. Separated through observed profile geometry, 38% of beaches could be 
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considered dissipative with no significant slope break during period of observation. 
Beaches were found in Wales (Liverpool Bay, Irish Sea) and southwest, south and 
Lyme Bay regions of England. 

Low-tide terrace and rip: LTT+R (group 5) 

A small collection of beaches within the southwest coast of England appear to possess 

the required setting within the study to form beaches with a low-tide terrace structure in 

addition to three-dimensional bar systems, often characterised by rip current activity. 

Ranging from 1.4°-3'' in slope, these beaches occur within a macrotidal (4-5m), regime 

with medium sand size and negligible coarse material (<5%). Importantly, the wave 

climate is higher energy than group 4 {Hsso% - 0.7-1.4 m, ^ 8 s), specifically 

characterised by a large increase in Hsio% (1.8-3.5 m). 

Low-tide bar rip: L T B R (group 6) 

Representing the largest sample group, these high-energy {Hsso% - 0.8-1.6 m, - 8 s, 

and Hsio%'^ 1.5-3,5 m) beaches predominantly exist on the west and southwest coasts of 

England. With slopes of 0.57°-1.26'' and inter-tidal zones 200-450 m wide, these 

macrotidal beaches can be considered dissipative in overall nature. In many cases the 

dissipative characteristics are tidally induced (increase in RTR). The presence of mid-

and particularly low-tide bar and rip current morphologies display many characteristics 

of high-energy barred micro- to mesotidal intermediate beaches in literature (Masselink 

and Short, 1993; Wright and Short, 1984). Sample sites had medium-coarse sand upper 

beaches with occasionally a significant gravel component. Lower beaches were of 

medium sand with no coarse fractions. Although common in overall slope, this group 

exhibits a range of profile forms from those approaching a low-tide terrace to those 

closer to a dissipative beach. 

Non-barred dissipative: NBD(HE) (group 7) 

Bar morphology is generally absent from these dissipative beaches. Located on the 

high-energy Atlantic west coast, with Hsso% - 1-12 m and - 8 s these beaches are 

swell dominated. The presence of homogeneous fine to medium sands throughout all 

sites meant beach slopes were observed between 0.63°-0.92° degrees, leading to very 

wide (300-700 m) inter-tidal zones within the macro- to mega-tidal settings. 
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Multiple inter-tidal barred: MITB (group 8) 

The occurrence of multiple inter-tidal barred beaches appears to be associated with 

abundant sediment sources, often in proximity to ebb-tide deltas of estuaries occurring 

throughout the coastal regions (Masselink, 2004). Sites occurred in macrotidal 

environments where sand was fine to medium throughout (samples taken on bar crests). 

Beaches were typically characterised by slopes of 0,52°-l.26°, widths of 300-800 m, 

and a low-energy wave climate with Hs5o% in the range of 0.4 - 0.7 m, and Tm from 3 -

5 s. The only exception to this is Hayle where Tm = 7.7 s. 

Ultra-dissipative and tidal flats: UD(+TF) (group 9) 

With only 3 samples identified, this is a small sample of a group of beaches that are 

isolated to mega-tidai regions. Tidally dominated, they generally occur in channels and 

mouths of large estuaries/inlets. Examples include the Bristol Channel and southern 

English Channel (Levoy et al., 2000), which have the required basin structure and/or 

*funnel effect' to generate extremely high tidal ranges. This often leads to low-energy, 

semi-sheltered wave climates like the Bristol Channel, where Hs5o% = 0.5 m and = 4 

s. These mega-tidal (MSR = 9.7 m) sites had flat and wide inter-tidal zones of 800-1000 

m with slopes of 0.52°-0,63° and no bars. The tidally dominated lower inter-tidal zone 

had slopes of 0.34*^-0.4° throughout the sites. Sediments were medium sand in the 

upper beach and very fine - fine sand in the lower beach. These beaches represented the 

transition to tidal flats as identified in Short (1999). 
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Discussion 

4.5 DISCUSSION 

4.5.1 Morphodynamic domains 

The beach dataset was analysed within the context of traditional morphodynamic 

indices expressed in Equations 1.1-1.3. This enabled important comparisons with 

previous work and created a context by which to assess the morphodynaraic 

relationships between the identified beach groupings. 

4.5.1,1 Surf scaling parameter 

Values of the surf-scaling parameter (e) for each beach site (Figure 4.23) were in 

general agreement with surf zone conditions observed at each site, confirming E is 

useftil in discriminating between reflective and dissipative extreme beach states, 

although, as identified in previous studies, e performed pooriy in characterizing 

intermediate states (Bauer and Greenwood, 1988). It was expected that e would be an 

effective discriminant, due to its inclusion of beach slope as well as wave steepness in 

its generation, shown in section 4.4,1 to be a reasonable group descriptor. 

Some disagreement occurs within the reflective beach types, where many fall into the 

reflective end of intermediate. These beaches represent, in most cases, the first features 

of the transition to a low-tide terrace form with the slope break often located around 

MLWS, In addition, as e does not account for grain size, some gravel reflective beaches 

(type-controlled by grain size) have values in the intermediate range. The LLT/NBD 

group also displays values of e that indicate intermediate and dissipative surf zone 

conditions highlighting the effect that extending the width of the low-tide terrace, often 

through an increase in tidal range, has on the overall surf zone regime. The range of 

values seen in the STB type can be explained by both, the difficulty in establishing a 

representative inter-tidal beach slope within the microtidal climate and resolution of the 

tidal interpolation routine within the highly spatially variable tidal characteristics within 

Poole Bay. The surf scaling parameter defines the overall regime well, indicating that 

the defined beach groups delineate differences in morphodynamic regimes and that in 

one dimension, beach groups are separated by means of a combination of wave 

steepness and inter-tidal beach slope. 

Figure 4.21 shows that the beach groups are in part defined by the average annual 

hydrodynamic conditions and the MSR. The wave height and period indicate the 
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absolute level of wave energy flux, and hence level of infi^gravity energy within the 
surf zone (Goda, 1975; Guza and Thornton, 1985). Therefore, the combined effect of 
these variables have an impact on: beach scale, characteristics of bar morphology 
(through wave dissipation, long wave dynamics) and tidal translation rates (sweeping of 
surf zone processes across the inter-tidal profile). Figure 4.24 indicates that when 
plotted against deep water wave energy flux (// '7), group definition is improved though 
the separation of groups with different bar morphologies. The rhythmic barred 
intermediate beaches (groups 5 and I ) clearly occur within the higher energy wave 
climates differentiating between the LTT/NBD and STB (groups 9 and 4) beach types in 
lower energy conditions. O f course, it is important to recognise that additional factors 
associated with individual regions, specifically the geological setting, nearshore slope 
characteristics and sediment size distribution and mineralogy could also be controlling 
factors in bar presence as well as wavelength variability (Short, 1999). The principal 
drawback of E is that it requires the knowledge of beach slope. Previous studies have 
indicated that the dimensionless fall velocity Q can be used to predict the occurrence 
(Dalrymple, 1992; Dean, 1973; Sunamura and Trenhaile, 1989) and type (Wright and 
Short, 1984) of bar morphology, although some have suggested this may not be the case 
in low energy and Q fluctuating environments (G6mez-Pujol et al., 2007; Masselink and 
Pattiaratchi, 2001; Masselink and Short, 1993). 

4.5.1.2 Dimensionless fall velocity and relative tidal range 

The next approach was to assess the ability of the combination of the Q and RTR to 

describe and categorise the morphodynamic characteristics of the beach groups. This 

approach, proposed as a two-dimensional conceptual matrix for beach classification by 

Masselink and Short (1993) is used widely but in some cases caution of its uncritical 

application has been urged due to the limited number of beach sites originally 

incorporated into the model and its simplistic nature (Jackson et al., 2005). A number of 

researchers have suggested its application is not always practical in the presence of 

constraining or modifying conditions such as the presence of very coarse sediments, 

nearshore reefs and low energy conditions (Hegge et al., 1996; Sanderson and Eliot, 

1999). 

When applied in this relative context, the beach sites within this study exhibited some 

clear distinctions in their location within the two-dimensional matrix (Figure 4.25). 
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Figure 4.24 - Plot of deep water wave energy flux scaling parameter {Hsun.'. T„) against 

the surf scaling parameter. Boxes indicate modal values for each group and stems are values 

of the 25th and 75th percentiles of the group distribution. 
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Vainations in O from group to group describe the transitions from reflective to 
dissipative beach types quite well although in some cases a degree of scatter was 
observed. The use of ^77? to define the additional importance of tidal effects enabled 
the definition of the transition from R to a LTT/NBD beach state and eventually to 
UD+TF. Significantly, the beach group identified as LTT/NBD appeared to show a 
large degree of within-group division. The use of Q and RTR appears to clearly 
distinguish between a low-tide terrace form with a significant reflective upper beach and 
a non-barred dissipative form where the reflective upper beach has all but disappeared 
(Q dimension). In essence, the group contains a range of low-energy beach forms that 
display no significant bar morphology and are of similar scale (MSR and inter-tidal 
width) where values for CI and RTR are very sensitive to changes in hydrodynamic and 
sedimentary conditions. Due to the low-energy waves, mixed sediments and relatively 
high tidal ranges that characterise many of these beaches, relative contributions of each 
wil l be significant in controlling beach form and scale. Also, a higher variation in values 
of Q and ^77? is unavoidable within expected error levels through point sediment 
sampling and nearshore wave estimation. Therefore, the significance of this grouping 
within this relative context must be viewed with appropriate caution. 

Absolute wave energy 

Considering all beach groups, Q appears to struggle to define the bar morphologies 

within the intermediate groups. Q seems capable of describing the sequence of 

morphologies from R (no bars), through LTT+R and LTBR with bar/rip systems to 

NBD(HE) (planar) within the high energy environments, but the STB and LTT/NBD 

beaches plot within a similar relative context and have contrasting bar morphologies. 

This may suggest the role of absolute wave energy flux, as indicated in Figure 4.26 is an 

important factor in differentiating between barred and non-barred beaches within a UK 

context. Absolute wave energy, historically correlated with infragravity wave motion in 

the surf zone, is considered key to the formation of three-dimension bar systems 

associated with rip currents and cell circulation (Wright et al., 1979). Typically in a 

microtidal (intermediate/dissipative beaches) environment, infragravity wave height in 

the surf zone is 20 - 60% of the offshore wave height (Goda, 1975; Guza and Thornton, 

1985). Masselink and Short (1993) highlighted this issue of the potential importance of 

absolute wave energy level as a cautionary note in the context of their conceptual beach 

state model. 
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Figure 4.26 - Plot of 12 (upper beach) against RTR (left) and deep water wave energy flux 

iHs5(r^' T„) against RTR (right). Boxes indicate modal values for each group and stems are 

values of the 25th and 75th percentiles of the group distribution. Numbers indicate beach 

group. 

Absolute tide range 

Absolute values of tidal range, within a coastal environment such as the UK, will also 

be a significant controlling factor in beach type and indeed it appears to be an important 

factor in the grouping of beach types through the cluster analysis (Figure 4.20; Figure 

4.21). Absolute tide range has two key influences on beach morphology. It controls 

scale, as increasing tide range wil l inevitably increase the beach inter-tidal width, 

leading to the presence of an increasingly lower gradient, wider and eventually more 

tidally dominated lower beach. Also, increased tidal translation rates, the rate of change 

of the shoreline and surf zone across the beach, have a strong influence in the capacity 

of the surf zone processes to develop beach morphology at any given location (Short, 

1999). High levels of tidal translation inhibit resonant growth of sub-harmonic and 

infragravity oscillations deemed important in moulding beach morphologies especially 

in microtidal environments (Guza and Davis, 1974; Wright et al., 1982). Therefore, 

development is restricted to the high- and low-tide periods of relative stationarity. It is 

also interesting to note that a lower level of infragravity energy is experienced in 

macrotidal environments as opposed to microtidal intermediate-dissipative beaches 

(Masselink and Hegge, 1995; Wright et al., 1982). This may be an influencing factor in 

any designation of threshold values to separate beach groups. 
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Grain size 

Scatter and overlap of beach sites within Figure 4.25, after consideration of wave 

energy levels, occurs principally among the R(S) and LTT/NBD beach groups. These 

beach groups exemplify the effects of absolute values on position within a relative 

context like that of Q. and RTR. The two groups contain beaches from a wide number of 

regions with tide ranges from 1 m to > 4 m. Specifically, within these sites, the role of 

sediment size and between-site and within-site distribution will have a significant 

control on beach form and stability through the contrasting sediment transport pathways 

of the often multi-modal sediment fractions and hence the effect of beach drainage on 

form and stability (Turner, 1993). Variants of the R to LTT/NBD beachform are in 

many cases controlled by the tide range and sediment characteristics, as well as the local 

coast geomorphology and drainage characteristics. Groundwater outcropping mid-beach 

often occurring at the slope break on LLT beaches leads to a highly saturated lower 

beach and a comparatively dry upper beach. This contrast affects drainage capacity and 

inflltration/exfllltration characteristics, and in turn sediment mobility and 

morphodynamic characteristics (erosive/accretionary) of the two zones. This effect is 

enhanced by the decoupling of the groundwater table within the beach face in regions of 

higher tide ranges where water levels decrease faster than the drainage capacity of the 

beach (Short, 1999; Turner, 1993). 

Environmental setting 

Finally, consideration must also be paid to beach system boundary conditions limiting 

the development of potential beach forms, particularly geological control (G6mez-Pujol 

et al., 2007; Jackson et al., 2005). The underlying geology establishes the framework 

within which the beach forms is set. The geometry of the substrate boundary can limit 

the morphological evolution via the shape and volume of accommodation space 

(McNinch, 2004), and the nature, source and abundance of beach materials. Where there 

is an abundance of re-workable sediment available to the beach, and the substrate 

constraints are limited, the beach form will be largely controlled by the prevailing and 

antecedent hydrodynamic conditions. In cases where this is not the case, profile 

development may be constrained. This is exemplified by the MITB sometimes termed 

'ridge and runnel' beach forms (low-amplitude ridges), that, although requiring a low 

gradient (dissipative/ultra-dissipative) are known to occur largely in regions of high 

sediment abundance, often in proximity to ebb-tide deltas associated with estuaries 

(Kroon and Masselink, 2002; Short, 1991). 

159 



Chapter 4: UK beach classification 

4.5.1.3 Overview 

With the previous description of the UK coastal environment and its Holocene evolution 

in mind, sediment type, source and abundance, as well as drainage characteristics 

through local coastal geomorphology and absolute tidal and wave energy 

characteristics, will almost certainly have a role in the measured beach forms within this 

investigation. The role of absolute wave height has been highlighted as a key factor in 

differentiating beach types and highlights some of the drawbacks of using the relative 

parameters Q and RTR. Figure 4.26 provides an overview of the beach group locations 

within the H and RTR and H^T and RTR two-dimensional space. The combined 

representations provide a comprehensive overview of the beach group 

morphodynamics. On one hand, Q. accounts for the important influence of sediment 

size, and wave energy flux accounts for bar type distinctions, providing a useful tool for 

developing an understanding of beach morphodynamics within the context of this study 

and the UK coastal environment. On the other hand, the addition of a wave energy flux 

parameter, in this case, enables the improved difTerentiation of beach groups based on 

bar type. To enable a simplified three-dimensional view, it would be useful to derive a 

threshold wave energy value {H^T), which could distinguish between high- and low-

energy environments. In this case, a threshold wave energy flux (deep water) of H'T= 5 

m ŝ is the most appropriate to differentiate between these beach groups. 

4.5.2 Classification of UK beach systems 

A conceptual summary of the beach groups, within the context of Q and RTR^ are 

shown in Figure 4.27. Due to the important role of absolute wave energy flux, beach 

types are broken down into two groups; those occurring in a low-energy environment; 

and those occurring in a high-energy environment. In this case the deep water wave 

energy flux threshold of H'T = 5 m^ s was used. In the study dataset this was 

represented approximately by values of Ht, and Tm of 0.8 m and 8 s, respectively. 

Although this provides a useful idealised summarising tool for this dataset, it must be 

remembered that it is data driven and group boundaries are largely dependant on the 

selected beach sites. It is therefore not designed to be a predictive tool, rather an aid to 

understanding the relative contributions of wave, tide and sediment characteristics to the 

morphodynamic system. The nature of generating static boundaries between the beach 

types is unrealistic, and these beach types truly represent a dynamic spectrum that is 

subjected to local and regional variation in constraining and modifying factors. Within 

this summary, the LTT/NBD beach type was split into two sub-groups: LTT and NBD 
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Figure 4.27 - Summary of data based beach classificalion for low- and high-energy 

beaches (upper and lower panels, respectively) based on the UK sample sites within this 

study with reference to prior work by (Masselink and Short, 1993). Example cross-shore 

profiles and associated values of the surf scaling parameter (right panels), calculated for 

annual H^swi inshore wave conditions at each site, are presented (mean values of il and RTR 

for each site are represented in the associated left panel). Within this investigation threshold 

of transition between low- and high-energy environments occurs approximately at around 

0.8 m wave height, and 8 sec wave period {H'T= 5 m^s), essentially describing the level of 

Atlantic swell energy contributing to the wave spectrum. 
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(low-energy) to better aid interpretation. With this in mind the group characteristics can 
be summarised as follows. 

Reflective groups: il<2 (R(S), R(G)) 

Reflective beaches fall into two categories. Firstly those strongly sediment-driven 

gravel beaches with their dynamic control being RTR (enabling an extension to 8 in 

cases of gravel beaches) as insufficient wave energy would feasibly be available to 

modify the type. This is the dominant reflective type on higher-energy coasts. Secondly, 

finer, sandy reflective beaches which are dynamic in both Q and RTR, and where an 

increase in Hb lead to a transition to LTT or STB types. These types were restricted to 

the rare microtidal low-energy coasts. 

Intermediate groups: 1 < H < 5 (STB, L T T , LTT+R, L T B R ) 

The most wide ranging subset, containing beaches that are most commonly identified by 

dynamic profile morphology and seasonal adjustment, frequently found in environments 

of mixed sediment types, and in many cases defined by their bar systems. Mostly 

variants of the LTT form, they are broken into low- and high-energy types within the 

classification. The largely planar low energy forms display a clear break in slope, 

separating a reflective upper beach and dissipative (ultra-dissipative) lower beach, often 

with the presence of a strong seepage face, in many cases separating contrasting grain 

size distributions. This can create a tidally decoupled saturated lower beach encouraging 

an erosive dissipative morphodynamic regime contrasting with the accretionary upper 

beach (Turner, 1993). At the other extreme, the inter-tidal zone can be dominated by a 

wide dissipative/ultra-dissipative beach, driven by either sediment fining, or increase in 

tide range. Within microtidal regions, an increase in incident wave height can create a 

STB beach type with single linear bars developing, backed by a runnel at the base of the 

reflective upper beach. With increasing tide, the transition from STB to LTT can lead to 

the presence of subdued inter-tidally exposed linear bars cut by drainage channels. The 

high-energy forms, predominantly occurring within meso- to macrotidal regions in the 

UK, in most cases possess three-dimensional bar/rip morphologies. These bar systems 

are enabled by the increased presence of infragravity frequency energy within the surf 

zone. Many of the beaches within the study fell into a dynamic equilibrium between the 

LTT+R and LTBR beaches where, potentially, small changes in wave height, tide range 

and/or sediment size could drive beach state variation on occasion reaching the 

extremes of LTT and NBD states. The transition within the predominantly 
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intermediate/dissipative LTBR form comes through the generation of a reflective berm 
feature in low-energy spring/summer swell wave conditions and generation of an of^en 
three-dimensional mid-tide bar. This transition can, in some cases, be enabled though 
lunar sea-level fluctuations, rapidly returning to a flat planar beach through the onset of 
storm wave conditions. 

Dissipative groups (high- and low-energy): n>S (NBD(LE+UE)) 

Inevitably, within a country where the average spring tidal range is > 4 m and in many 

systems fine sediments are in abundance, beaches that are dissipative in nature are 

widespread. In this classification, the NBD beach type is almost entirely dominated by a 

flat, wide, featureless inter-tidal zone. In some cases a relatively small reflective coarse 

upper beach may be present due to locally derived or relict coarse sediments. Typically 

occurring in high-energy macro- to mega-tidal regions (RTR > 3), the rate of tidal 

translation of surf zone processes inhibits the formation of any bars. Under low-energy 

conditions, NBD (LE) forms occur due to the presence of fine sediments. 

Ultra-dissipative groups: ft > 2; RTR > 7 ( MITB, UD+TF) 

Where n > 5, the UD beach is an extension of the NBD type sharing similar 

morphological features. Where Q. is between 2 and 5 an increasingly concave upward 

profile is present. Although not exclusively, many of the 'ridge and runnel' or MITB 

beaches occur within this space. Controlled by additional factors like sediment 

abundance, these low-energy beach forms are often spatially clustered in proximity to 

ebb-tide deltas (Short, 1999). Finally, when RTR > 15, confined within mega-tidal 

regions, the lower beach can begin to become tidally dominated. Beach processes may 

persist to higher values of RTR within higher-energy wave climates. The surf zone 

regimes of these beaches vary greatly from high- to low-tide. Lower beach gradients, 

and very wide surf zones drive breaker height down due to bed ftiction (Levoy et al., 

2000) increasing the tidal dominance, while at high-tide, a reduction in wave attenuation 

and surf zone width can lead to a more intermediate surf zone character. 

4.5.3 Conceptual morphodynamic framework 

Figure 4.28 presents a conceptual morphodynamic overview that represents the dynamic 

relationships between beach types, and their transitions in relation to the relative 

contribution of waves, tides and sediments. The lack of defining thresholds is in 
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Figure 4.28 - Conceptual morphodynamic framework for sampled UK beaches. Dark and 

light shading indicate transition from reflective to dissipative surf zone conditions 

respectively. Black dashed box indicates region where high-energy conditions {ffT> 5 m^ s) 

induce 3D bar formations and bold italics represent high-energy beach types. 

response to the observed scatter within the dataset (lack of clear boundaries) that has 

been suggested to be a result of both the role of absolute values of wave energy, tides 

and sediment characteristics, as well as the controls exerted by geological setting in 

many locations and the awareness o f potential error in the estimation of environmental 

parameters. Absolute wave energy is represented through the presence or absence of 

three-dimensional bar morphology within the intermediate beaches where within high-

energy environments LTT+R and LTBR beaches occur; under low-energy conditions 

STB and LTT beaches may be observed. 

4.5.4 Limitations 

The sample of beaches from the UK coastal environment highlight the contrasts in the 

geological settings and hydrodynamic systems associated with the broad spectrum of 

beach forms that exist. In the quest to provide a comprehensive assessment and 

subsequent classification of this observed spectrum of beach forms and their general 

morphodynamic characteristics, a high-resolution dataset of environmental parameters 

for nearly 100 beaches was generated. Limitations in the techniques in estimating and 
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sampling of these complex environmental parameters induced a significant amount of 
bias into the dataset. This was reduced as much as possible, but some key assumptions 
must be borne in mind when assessing the dataset. 

• Temporal stability: analysis of groups assumed that sampled profiles and 

sediments represented an equilibrium state with respect to the annual average 

nearshore wave climate. 

• Wave climate approximation: in many regions where calculation of wave 

climate was based on model data, limited measured data was available for 

validation. Particular attention must be paid to the use of the modelled wave 

period, which in sheltered locations over-represented the swell wave fraction 

due to absence of local wind fields over model domains. 

• Sediment uniformity: sediment sampling, particularly of coarse fractions 

assumed spatial and temporal uniformity. In many of the mixed beaches, 

sediment composition was observed to have has strong cross-shore spatial 

gradients. 

• Two-dimensional beach profiles: assessment of beach profiles assumes 

alongshore uniformity. This limitation was reduced by representative on-site 

profile selection, although a two-dimensional approach is limited in highly 

three-dimensional systems. A qualitative assessment of bar type using 

observations and photographs from site visits and remote imagery provided 

some information on three-dimensional beach form. 

• Seaward extent: due to surveying constraints, profile information was limited 

to the inter-tidal zone dovm to MLWS. Due to the importance of sub-tidal 

morphology in both the morphodynamic signature of the beach and the 

prevailing bathing hazards, a visual assessment of the sub-tidal and inter-tidal 

bar morphology was performed. 
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4.6 CONCLUSIONS 

This chapter has documented an investigation to further the understanding of the 

spectrum o f beaches observed along the UK coast. The collection and analysis of a 

high-quality, robust dataset including 98 beaches provided insights into the spatial 

variability of beach types and their associated sedimentary, geometric and 

hydrodynamic conditions within England and Wales. The morphodynamic relationships 

between these groups were then assessed in the context of traditional morphodynamic 

parameters. The investigation provided the following insights: 

• 9 distinct beach groups were identified through the analysis of the 

collected dataset that included 92 beaches fi^om England and Wales, each 

having a unique morphodynamic signature. 

• Beach groups could be defined well, based upon the characteristics of 

environmental forcing i.e. tide, wave and slope. 

• An assessment of the ability of relative morphodynamic parameters to 

distinguish between beach groups identified the need for an 

understanding of absolute wave energy when trying to differentiate 

between the presence/absence of three-dimensional bar morphology. A 

threshold deep water wave energy flux level of H^T= 5 m^ s was used to 

define this group boundary. 

• Analysis of the applicability of morphodynamic indices to distinguish 

between groups suggested that while e performed well in combination 

with H'T, its reliance upon beach slope was a disadvantage. Q. and RTR 

provided an acceptable conceptual morphodynamic framework within 

which to describe the relationships between beach groups and associated 

environmental forcing and characteristics within the UK. In addition, the 

use of an energy flux threshold was useful to distinguish between low-

and high-energy intermediate/dissipative beach types. 

• In addition to the roles of waves, tides and sediments in driving beach 

type, other important site-specific controls were identified. The effects of 

geologic setting, absolute energy contribution of waves and tides and the 

limitations in the accuracy of estimation of environmental and 

morphological variables suggest that the application of fixed beach group 

boundaries is impractical and an imnecessary exercise. With this in mind, 
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a simple conceptual framework describing the morphodynamic 

relationships between the beach groups identified within this study is 

presented in Figure 4.28. 
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5. B E A C H MORPHODYNAMICS AND HAZARD 

5.1 INTRODUCTION 

In this chapter, an attempt is made to further the understanding of the relationship 

between beach type and hazard through an assessment of both the between-group and 

within-group relationships of the beach types identified in Chapter 4. The investigation 

focuses on beach types characterised by rip current morphology (LTT+R and LTBR). 

An improved understanding of the temporal variation in beach morphodynamics is 

paramount in assessing the spatio-temporal variation of rip current activity and hence 

hazard. Observations from Chapter 4 suggest the within-group variations in morphology 

amongst the identified intermediate beaches in this study are similar to bar type 

transitions documented in previous studies amongst intermediate beach sequences in 

micro-tidal environments (Bowen and Inman, 1971; Sonu, 1973; 1984; Lippmaim and 

Holman, 1990). These macrotidal intermediate beaches are of particular interest to 

beach safety managers and the RNLI due to their prevalence and popularity within the 

Atlantic west coasts of the UK.. 

The three principal aims of this chapter are: 

• to improve the understanding of how the environmental hazard signature varies 

throughout the classified UK beach types, associated with RNLI beaches, 

through an assessment of all RNLI incident data collected between 2005 and 

2007; 

• to investigate the extent of the temporal variation of beach morphology and its 

affect on type and levels of hazard among the high risk RNLI beaches; 

• to generate an improved understanding of the key environmental forcing 

mechanisms behind temporally varying hazards; specifically identifying key 

high risk 'scenarios'; 

• to investigate the hypothesis generated in Chapter 3 that rip hazards are 

enhanced during the low tidal phase through tidal modulation of rip currents. 

To address these aims and objectives, field campaigns were conducted to assess 

temporal (annual and seasonal) morphologic and hydrodynamic variation at selected 

RNLI beaches in the southwest between 2006 and 2008 with particular focus on the 

2007 lifeguard season from May-October. The implications of these findings to beach 

safety were then examined through an analysis of lifeguard incident and beach user 
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data, leading to the identification of key environmental factors affecting temporal 

variation in beach hazard. The next section details an analysis of incident records across 

all RNLI beaches, grouped using the classification framework specified within Chapter 

4. These findings provide the basis with which beach sites were selected for further 

assessment within this chapter. 

5.1.1 Beach type and hazards 

In Chapter 3 the levels of hazard presented to the beach user were determined through 

incident counts and the levels of usage throughout a spring/summer/autumn season. The 

combination of these data enabled an approximation of the level of beach risk as a 

function of the hazard and usage levels. In this section the distribution of hazards and 

risks across the wide range of RNLI beach types were analysed using all RNLI incident 

reports recorded between 2005 to 2007 and the beach group classifications defined in 

Chapter 4. Sub-dividing the LTT/NBD beach group (Group 4 in Section 4.4.1) into 2 

sub groups; LTT and NBD(LE), as described in Section 4.5.2, was continued in this 

chapter as it aided hazard characterisation and assessment within a beach safety context. 

Figure 5.1 illustrates the locations of all RNLI patrol units that were active between 

2005 and 2007. 71 of 76 active beaches during this period were located in the southwest 

of England. Within the southwest region, 38 units were located on the south coasts of 

Cornwall, Devon and Dorset and 38 on the Atlantic west coasts of Devon and Cornwall. 

Classified beach types are not distributed evenly among these various geographical 

regions. Table 5.1 shows that of the 32 LTT+R and LTBR beach types present, 25 are 

located on the Atlantic west coasts of Cornwall and Devon with the more sheltered 

regions (SE. Devon, Dorset and Norfolk) being dominated by R and LTT types. 

Schematic conceptual representations of each beach type where there was an RNLI 

presence (there were no patrolled ultra dissipative beaches during the study period) are 

presented in Figure 5.2, highlighting key morphological features that have been 

assessed to have controlling influences on hazard levels. Some representation of 

observed temporal variation in principal morphological features is included, derived 

from a monthly photographic records of beach state, collected throughout the study 

period at a number of beach locations in Devon and Cornwall. This has enabled 

qualitative morphological assessments of the region's beaches. The greatest 
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Figure 5.1 - Map of all 76 RNLI beach locations active between 2005 and 2007. Subplots 

A and B display exploded views of the east coast and southwest regions respectively. 

Table 5.1 - Count of beach types associated with the various regions containing RNLI 

pau-ol units between 2005 and 2007. 

County 
R R LTT STB 

Beach types 

LTT+R LTBR Mrrs NED NBD 
(HE) UD(+TF) 

Dorset 3 3 8 10 0 0 0 0 0 0 

N.ComwatI 0 0 1 0 16 7 0 0 6 0 

N.Devon 0 0 0 0 0 2 0 0 2 0 

Norfolk 0 0 3 1 0 0 1 0 0 0 

S. Cornwall 0 0 1 0 4 0 0 0 0 0 

S.Devon 2 1 0 0 3 0 1 1 0 0 
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morphological variation, with respect to sandbar morphology, occurred among the 

LTT+R and LTBR beaches. LTT+R and LTT represent the highest proportion of the 76 

RNLI beaches totalling 23 and 12 respectively. Least represented with only I beach is 

the NBD (LE) beach type as well as the MITB type (2 beaches). 

Analysis of the incident data indicates that 68% of all recorded incidents (individuals 

rescued/assisted) were due to rip currents, supporting preliminary findings fi^om Chapter 

3 and representing a similar percentage to beach rescues in Australia and the USA. 

Figure 5.2 illustrates the percentage cause of incident over the same period for the 

different beach types patrolled. Incidents driven by strong and offshore winds, as well 

as littoral currents, present the greatest cause of incident on beaches that are commonly 

without rip current activity. Interestingly, beach type division through absolute wave 

energy, in some cases, also reveals significant differences in the hazard signature. LTT 

and NBD beaches both show a strong dominant influence of incidents driven by the 

effects of offshore winds as well as strong winds within the low-energy beaches, with 

the high-energy beaches being more influenced by rip currents and high-energy surf 

zone hydrodynamics like plunging/dumping waves and bed-return flow/swash events. 

Reflective beaches show fewer differences between high- and low-energy types 

although the low-energy beaches are accompanied by an increase in incidents driven by 

offshore winds. This is likely to be related to the reduced shoreline energy within the 

low-energy beach allowing increased bathing and inflatable access; this is supported by 

the higher insea user numbers at the low-energy as opposed to high-energy beach (11.3 

and 3.6 people per hour respectively). Although tidal cut-off does not appear to be a 

significant contributor to the overall beach hazard levels, the high levels of incident due 

to sandbank/sandbars on beach types with low wave heights and typically large tidal 

excursions suggests cut-off through sandbank and zonal isolation is an important hazard 

driver on low-energy LTT and MITB types. 

LTBR and LLT+BR beaches have greater than 80% of all incidents being caused by rip 

currents, and with 2269 and 3253 incidents fi-om 2005 to 2007, respectively, they 

constitute 78.1% of all recorded incidents over that period. LTBR and LLT+BR beaches 

represent 46.6% of all patrolled beaches and with an average of 33.6 and 42.9 people in 

the sea per hour (May to October) during the 3-year period making these the most 

popular bathing beaches that are patrolled by the RNLI. 
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Figure 5.2 - Percentage occurrence of all environmental causes of incidents (recorded by 

RNLI) for observed UK beach type groupings (2005 to 2007). There were no RNLI patrolled 

ultra dissipative beaches during the study period. 

Due to the high levels of rip current hazard, dynamic bar morphology, popularity and 

large carrying capacity, the intermediate LTBR and LLT+BR beaches on the high-

energy west coast of Devon and Cornwall are the focus of field investigations within the 

rest of this chapter that investigates the temporal morphodynamic variation and 

associated hazard within these beach environments. 
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5.2 M E T H O D O L O G Y 

5.2.1 Site selection 

An inventory was conducted of all beaches within Devon and Cornwall. Within the west 

coast regions LTBR and LTT+R beaches represent 59% (62% by length) of all beaches 

with sandy lower inter-tidal zones. These beaches with rip morphologies are mostly 

located on the high-energy west facing coasts (Figure 5.3) with lower and upper beach 

sediment grain sizes ranging from 0.3-0.48 mm and 0.29 mm-g^avel^oulder 

respectively. Nine field sites were selected that were patrolled by the RNLI, represented 

a range of LLT+R and LTBR beaches and experienced high beach user numbers. In 

addition the chosen sites possessed a variety of rip current types (beach and topographic 

rips) and varying degrees of geologic control. These beaches were located on the west 

coasts of Devon and Cornwall (Figure 5.3). Of these nine beaches, six were chosen as 

core monitoring stations for quantitative assessment of beach morphodynamics. 

5.2.2 Data collection 

An evaluation of beach morphodynamics and hazards for six field sites, four LLT+R 

beaches (sites 2, 4, 6 and 8) and two LTBR beaches (sites I and 7) were made between 

July 2006 and March 2008 through analysis of hydrodynamic forcing, wind conditions, 

beach morphology, rip current activity and RNLI incident and hourly beach population 

counts (Figure 5.3). A higher resolution assessment of seasonal morphodynamic 

variation was conducted during the 2007 lifeguard season (May-October). 

5.2.2.1 Hydrodynamic and wind conditions 

Hydrodynamic conditions during 2007 were monitored with a Datawell near-shore 

directional waverider buoy at Perranporth beach (50.35379°N, 5.17497°W; 10 m water 

depth) maintained by the Channel Coastal Observatory (Figure 5.3). Offshore (-30 km) 

non-directional wave conditions, spanning the entire monitoring period, were provided 

by the Seven Stones Lightship (50.103°N, 6.100''W; 60 m water depth). Sea surface 

elevations throughout the period were obtained from a combination of predicted tides 

for Perranporth beach (Admiralty, 2005; Admiralty, 2006; Admiralty, 2007) and surge 

residuals recorded by the Newlyn tide gauge located at the tip of the southwest 

peninsula in Cornwall. Surge residual levels are produced for each high- and low-tide 

and calculated from the difference between predicted and observed sea level. The surge 
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Figure 5.3 - Map showing the nine study sites where morphological monitoring was 

conducted: 1) Croyde Bay; 2) Sandymoulh; 3) Northcott mouth; 4) Crooklets; 5) Constantine 

Bay; 6) Fistral Bay; 7) Perranporth; 8) Chapel Forth; 9) Porthtowan. All beaches in the west 

coast region are marked with circles. Black and dark white f i l l represent beach types with 

and without rip current morphology (LTT+R and LTBR) respectively. 

data were supplied by the British Oceanographic Data Centre as part of the ftinction of 

the National Tidal & Sea Level Facility. Hourly mean wind statistics were recorded 

both at St Mawgan airfield near Perranporth and at the Seven Stones Lightvessel, and 

were supplied by the MetOffice. 

5.2.2.2 Beach morphology 

Beach morphology was measured both bi-annually (summer/winter) during the 

monitoring period and monthly during the 2007 season (May to October). Surveys were 

conducted using ATV based RTK GPS survey system (see section 2.2 for detailed 

survey methodology) at the sites which had appropriate access points and agreements in 

place (beaches 1, 5 and 7). Those beaches where ATV access was not possible or 
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agreements were not in place, trolley based RTK GPS surveys were conducted on foot. 
Each monthly survey campaign lasted approximately 6 days. Sites were surveyed as 
close to monthly intervals as possible. 

Survey data were analysed using the Loess interpolation procedure, developed by Plant 

(2002) to generate a digital elevation model of the beach surface (Section 2.2.4). A pre­

existing Argus video station at Perranporth beach provided both snapshot and 'timex' 

(time averaged) rectified beach and surf zone images at 30-minute intervals (Section 

2.3). Background photographic monitoring of all 9 selected west coast beach sites was 

conducted throughout the monitoring period. Frequency of the photographic data 

collection was increased during the 2007 patrol season when each location was 

photographed at bimonthly intervals. Photographic monitoring entailed capturing 

panoramic photographs from fixed locations at each study site. Images were 'stitched* 

using Autostitch software, developed by Brown and Lowe (2007) at Columbia 

University. This dataset enabled a qualitative assessment of beach morphology that gave 

supporting information on beach conditions, bar state and drainage characteristics. 

5.2.2.3 Rip current activity 

Daily assessments of rip severity at all tidal levels were estimated by the RNLI 

lifeguards at 4 sites that represented LTBR and LTT+R morphologies, with both beach 

and topographically controlled rip currents (beaches 2, 5, 6 and 7 shown in Figure 5.3), 

providing a qualitative comprehension of spatial and temporal variation in rip current 

characteristics. Rip current assessment forms were completed daily for low-, mid- and 

high-tide when possible within patrol hours. The assessment required the lifeguard to 

enter details on rip presence, number of rips within a defined area and an estimation of 

the severity of those rips from 1-5 (Appendix 3). Each patrol was provided with a 

document clearly describing the assessment routine and providing descriptions in real 

terms of the rip strength severity levels to improve continuity in assessment between 

units. It is acknowledged that this technique is open to subjectivity but it was deemed to 

provide a valuable insight into a system that is rarely monitored daily over a period of 

months. 

5.2.2.4 incidents and beach population 

The assessment of beach hazards and beach user numbers used the same data source as 

described in Section 3.3.1. Comprehensive RNLI lifeguard incident records provided 

information of hazard levels. Hourly estimated beach user counts, recorded within 
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RNLI patrol hours, provided temporal insea beach usage statistics throughout the 
monitoring period. 

5.3 R E S U L T S AND DISCUSSION 

5.3.1 Annual beach change 

5.3.1.1 Environmental conditions 

The wave climate of the west coast of Devon and Cornwall is both high-energy and 

highly seasonal. Mean significant wave heights between 2006 and 2008 at Seven Stones 

Light Vessel vary from 3.1 m in winter to 1.3 m during summer (Table 5.2). During the 

high-energy winter months 10% exceedance wave heights reach 5.1 m. An annual mean 

wave period of 8.2 s varies from 9.3 s in winter to 7.3 s in summer. Macro-tidal (> 4 m) 

and mega-tidal (> 8 m) mean spring tidal ranges exist along the entire west coast of 

Devon and Cornwall from 4.1 m at the southern tip to 9.6 m in the northwest. The west 

coast beaches studied are all approximately west facing £ind receive similar wave energy 

throughout the year. This high-energy climate drives the seasonal sediment transport 

observed along the coast. 

The study period includes two high-energy winters (Figure 5.4). Between October 2006 

and April 2008 daily averaged offshore significant wave heights were frequently 

between 4 m and 6 m and mean wave periods above 10 s. Two significant storm events 

occurred in December 2007 and March 2008 where daily averaged offshore wave 

heights exceeded 6 m. During both observed summer periods (June to August), daily 

averaged offshore wave heights never exceeded 4 m. Near-shore wave heights, 

available from January 2007, recorded mean significant wave heights of 2.3 m and 

1.2 m for winter and summer respectively. Zero up-crossing wave periods ranged from 

6.8 s in winter to 5.5 s in summer and peak wave periods from 13.2 s to 8.6 s 

respectively. Wave conditions during both the annual and seasonal survey periods are 

illustrated in Figure 5.4. 

The mean wave angle (bathymetrically controlled) was 280°. During the energy peak of 

the winter 2007/2008 storm events, in - 10 m water depth, 30-min averaged significant 

wave heights exceeded 7 m and maximum wave heights exceeded 9 m. Mean offshore 

winds recorded from Steven Stones Light Vessel display a clear seasonality where mean 

houriy 10 m wind speeds exceeded 34.9 kts 10% of the time in winter months and 22.9 
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Table 5.2 - Offshore wave climate statistics from 2006 to 2008 at Seven Stones Light 

Vessel. is significant wave height and T„ mean wave period. 
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Figure 5.4 - Environmental conditions observed during the monitoring period (From top) 

Offshore wave record (daily averaged) showing (upper) significant wave height (H,) and 

(lower) mean wave period (7^,), mean wind speed (24-hour averaged) from Seven Stones 

Lightvessel, predicted tidal elevation at Perranporth measured to Chart Datum and surge 

residual recorded at Newlyn. Red regions indicate periods when annual winter/summer beach 

surveys were conducted and blue regions indicate the high resolution seasonal survey period. 
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kts in summer. Mean 10 m winds reduced from 23.2 kts in winter to 14.1 kts in summer 
throughout the monitoring period. 

5.3.1.2 Morphological transition 

During the study period, high volume sediment transport was observed as beach 

morphologies adjusted to the changing hydrodynamic climate. A general trend of large 

scale erosion of sediment from the inter-tidal zone occurred at all monitored LLT+BR 

and LTBR beaches along the west coast of Devon and Cornwall. This took the form of 

beach lowering from 0.2-0.5 m which locally exceeded 1 m at some locations. Beach 

lowering occurred in association with transition from highly developed low-tide bar/rip 

systems and enhanced mid-tide bar systems during the lower energy swell-wave 

dominated summer months, to increasingly shore parallel offshore bars and planar 

featureless mid-tidal zones during the high-energy, storm dominated winter months. 

This transition is well illustrated in the captured 2006/7 summer/winter photographic 

series from Chapel Porth, West Cornwall (Figure 5.5). The following sections illustrate 

and quantify, with examples, this seasonal winter/summer transition at four contrasting 

beach sites between 2006 and 2008. 

10/09/2006 Chapel Perth LW = 0.4mCD 

05/03/2007 Chapel Porth LW = 0.8mCO 

1- i«;ure 5.5 - Summer/winter low-tide images of Chapel Porth beach, 10/09/06 to 05/03/07. 
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Perranporth - An exposed beach in West Cornwall with an average grain size (Dso) of 
0.32 mm. Classed as a LTBR beach, it experienced a marked annual transition, both in 
beach morphology and volume between the 09/06 and 02/08 (Figure 5.6). Erosion of -
154 and -210 m^ m ' occurred from 11/09/06 to 20/03/07 and 12/09/07 to 08/02/08 
respectively along a cross-shore profile between MLWS and MHWS (Table 5.3). This 
erosion constituted a mean reduction of the beach elevation of 0.25 and 0.45 m. During 
the winter/summer transition beUveen 20/03/07 and 12/09/07 an accretion of 146.2 m^ 
m ' was recorded, with a mean beach elevation change of 0.42 m. Argus timex images 
(Figure 5.6) illustrate the amiual variation in bar morphology with a tendency for more 
shore-parallel longshore sub-tidal bar/trough systems during months of high wave 
energy and more well-developed transverse bar/rip systems during lower energy 
periods. 

Table 5.3 - Annual winter/summer beach volume and surface elevation changes for the 

studied beaches 

Dates Volume change 

from to m V AZ 0(AZ) 

Perranporth 

11/09/06 05/03/07 -154 -0.25 0.19 

05/03/07 12/09/07 146.2 0.42 0.12 

12/09/7 08/02/08 -210.3 -0.45 0.33 

Croyde 

07/09/06 02/02/07 -100.7 -0.25 0.37 

02/02/07 14/09/07 82.68 0.19 0.39 

14/09/07 12/02/08 -110.76 -0.24 0.39 

Sandymouth 

06/09/06 23/01/07 -163.57 -0.69 0.29 

23/01/07 13/09/07 103.38 0.42 0.6 

13/09/07 07/02/08 -97.484 -0.42 0.4 

Constantino 

09/09/06 23/01/07 15.966 0.04 0.52 

23/01/07 13/09/07 -63.87 -0.19 0.59 

13/09/07 07/02/08 -55.164 -0.17 0.44 
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-1000 atongshore (m) 200 

Figure S.6 - Seasonal morphological transition at Perranporth beach from summer 2006 to 

winter 2008; (left) cross-shore profiles illustrate seasonal beach change and along-profile 

elevation change (Az). Horizontal lines represent mean tidal levels; (right) rectified timex 

video images indicate observed 3D morphological changes associated with each profile 

(image date is closest available). 

This transition is illustrated by the development of inter-tidal bar formation within the 

neap low-tide region at a cross-shore location (X) of 400-450 m. Under low-energy 

conditions the accumulation of sediment in the form of secondary bar morphology 

within the mid-tide region is common. Subsequent removal of these inter-tidal 

secondary bar formations occurs with the onset of higher energy conditions. 

Croyde Bay - The beach volume dynamics at Croyde Bay {D^, = 0.38 mm), another 

LTBR beach, display similar trends to Perranporth (Figure 5.7). Croyde Bay 

experienced erosive transitions during both winters of -100.7 and -110.76 m^ m*' 

respectively (Table 5.3), with an accretion of 82.86 m^ m ' during the intervening 

winter/summer period. Mean elevation changes were of the same order as Perranporth 

although the development and destruction of the bar morphology, present throughout 

the entire inter-tidal profile, was more pronounced with a standard deviation of cross-
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F igure 5.7 - Seasonal morphological transition at Croyde Bay from summer 2006 to winter 

2008; (left) cross-shore profiles illustrate seasonal profile change and along-profile elevation 

change (Az). Horizontal lines represent mean tidal levels; (right) panoramic photographic 

images indicate observed 3D morphological changes. 

shore surface elevation change between surveys of 0.37 m to 0.39 m. Photographs in 

Figure 5.7 show large regions of saturated beach during summer and winter periods. 

Sandymouth - As an example of a LTT+R beach type, Sandymouth possesses a coarse, 

steep, gravel/boulder high water beach (A' - 50-100 m) and a wide sandy lower inter-

tidal zone (Dsn = 0.39 mm), characterised by significant bar formations below mean low 

water neaps. Inter-tidal geologic exposures of hard substrate, often part of a shore 

platform, are a significant feature at the beach due to limited sediment availability. This 

was exemplified during the summer/winter transitions that occurred during the 

monitoring period where inter-tidal erosion volumes of -163.57 and -97 m^ m ' (Table 

5.3) were measured along one cross-shore profile (Figure 5.8). These transitions 

amounted to mean reductions in surface elevation of -0.69 m and -0.42 m respectively 

during the 2006/7 and 2007/8 seasons. Profiles show that in the region of mean low 
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Figure 5.8 - Seasonal morphological transition at Sandymouth from summer 2006 to 

winter 2008; (left) cross-shore profiles illustrate seasonal profile change and along-profile 

elevation change (Az). Horizontal lines represent mean tidal levels; (right) panoramic 

photographic images indicate observed 3D morphological changes. 

water neaps to mean high water neaps erosion of more than I m occurred in some 

locations during 2006/2007. The transitions at Sandymouth were characterised by the 

increase in bedrock exposure during the winter surveys. The removal of sediment 

offshore of MLWS, between 06/09/06 and 01/02/07, left 35% bedrock exposure on 

01/02/07 (an increase fi-om 4% on 06/09/2006). Bedrock exposure between MHWN and 

MLWN in the 23/01/07 survey restricted the ability of the beach to respond to the 

prevailing hydrodynamic conditions, constraining sediment transport pathways, 

reducing depths to bedrock and hence altering drainage properties and sediment 

mobility, and driving bedrock constt^ined surf zone currents (rip currents) during the 

mid and high tide. An appreciation of the spatial extent of the observed morphological 

transition and bedrock exposure can be gained from the panoramic images in Figure 5.8. 

Subsequent to the high-energy winter of 2006/2007 the beach volume did not recover to 

its previous level before the onset of the next winter season. Little evidence of the 
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presence of low-tide and sub-tidal bar morphology can be found in the cross-shore 
profiles, although the panoramic images and field observations suggest their presence 
through three-dimensional morphology and breaker dissipation patterns observed. 
Accretional transitions appear to drive a steepening and raising of the coarse upper 
beach face and berm crest, accompanied by an observed landward movement of the 
gravel/sand transition (slope break) of up to 25 m. 

Constantine Bay - An example of another LTT+R beach type, the morphologically 

dynamic Constantine Bay is sandy throughout the inter-tidal profile {Dso = 0.48 mm) 

and, like Sandymouth, is influenced by hard rock exposures to the north and south of 

the bay constraining sediment transport pathways narrowing the beach width seaward 

from high-water to low-water. Panoramic images and field observations show that well 

defined berm growth (X - 100-200 m) and highly dynamic and developed three-

dimensional bar/rip system, present throughout the beach and particularly around low-

and sub-tidal regions are common. Interestingly, given these observations, no evidence 

of significant volume changes along a selected cross-shore profile were evident during 

the monitored summer/winter transitions. This could be due to the significant three-

dimensional nature of the morphodynamic change at the beach limiting the 

effectiveness o f a two-dimensional monitoring approach. Observed highly active bar 

dynamics at and below mean low water within the photographic record suggest much of 

the morphological change is not captured within the surveyed inter-tidal profile. The 

three-dimensional nature of beach change is investigated further in the next section. 

The ability of morphodynamic indices Q and RTR to describe the observed temporal 

morphological transitions is explored in Figure 5.10. The values are calculated for the 

summer/winter transition from 09/07 to 02/08 due to availability of nearshore wave 

buoy data for this period (Perranporth wave buoy). Statistical wave parameters were 

calculated from a 3-month period prior to the survey date to take account of antecedent 

wave conditions. Sediment fall velocities were taken from the mid-tide region for each 

survey and tidal ranges were obtained from the mean spring tidal range values published 

for each beach. Results compare well to the observed morphological changes. As 

observed, the beaches assessed to be LTBR translate to the LTBR region of the UK 

beach classification framework (Figure 5.10) with a ^summer values of 5.1-5,2, and those 

that were classed LTT+R (Constantine Bay and Sandymouth) have lower values of 

^summer = 3.4-4.8. Calculated parameters for the winter measurements show a clear 
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Figure 5.9 - Seasonal morphological transition at Constantine Bay from summer 2006 to 

winter 2008; (left) cross-shore profiles illustrate seasonal profile change and along-profile 

elevation change (Az). Horizontal lines represent mean tidal levels; (right) panoramic 

photographic images indicate observed 3D morphological changes. 

translation to higher values of Q and lower values of RTR putting most of the beaches 

within the NBD category. Interesting, the one exception is Constantine Bay which 

remains within the LTBR region, potentially giving some explanation for the continuing 

three-dimensional bar/rip activity observed during the winter surveys. The calculated 

morphodynamic indices indicate that Perranporth should theoretically experience the 

greatest transition in beach state during the measurement period. 
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Figure 5.10 - (Left) Annual variation in morphodynamic variables Q and RTR between 

summer 2007 and winter 2008 for the studied beaches. (Right) Conceptual UK beach 

classification framework (see Figure 4.28). 

5.3.2 Seasonal morphological transition 

5.3.2.1 Environmental forcing 

The hydrodynamic and meteorological conditions during the winter/summer period of 

2007 are summarised in Figure 5.11. The timeseries of environmental conditions 

illustrates the transitions from high-energy conditions during the winter/early spring 

period A (01/01/07-20/04/07) where nearshore, 6-hr averaged, significant wave heights 

and peak periods regularly exceeded 4 m and 12 s respectively. During this period high-

energy wave events were typically associated with rainfall rates of over 10 mm/day. The 

subsequent period until 05/05/07 was dominated by low waves and rainfall. Long period 

low- to medium-energy swell waves continued during period B until approximately 

15/06/07 when the first topographic surveys began. The period C between the first and 

second survey campaigns was characterised by unseasonably high levels of rainfall 

throughout. Mean wind speeds increased to 11.9 kts during this interval accompanied by 

higher, steeper wave conditions (//, ~- 1.5 m and Tp - 8.4 s) with three storm wave 

events where / / , > 3 m. A decrease in mean wave height (Hs - 1.0 m and Tp - 8.4 s), 

wind speeds (V - 8.3 kts) and rainfall characterised the following period (D) between 

the second and third survey campaign. Finally, period E between the third and forth 

survey campaigns consisted of a continuation of low-energy wave conditions (Hs -

0.8 m and Tp - 7.6 s) and very low rainfall levels. With a mean //^ of 1.1 m and 

maximum Hs of 4.4 m during the survey period, the nearshore wave record shows high-
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j 1 1 1 1 1 r -

Figure 5.11 - (from the top) Offshore wave record (6 hour averaged) during study period 

(//, and Tp) Grey line shows simultaneous 6 hr averaged offshore wave record from Seven 

Stones Lighvessel; predicted tidal elevation (mCD); mean hourly wind speed and daily 

rainfall totals from St Mawgan airfield. Red regions highlight survey periods. 

energy wave events during the first half of May and start of July, followed by relatively 

low-energy conditions until the end of September. A mean and maximum Tp of 8.2 s 

and 16.7 s respectively indicates the presence of swell wave conditions throughout the 

smdy period. The mean spring tidal range at Perranporth is 6.1 m, typically decreasing 

by approximately 2 m during neap tides. Towards the end of the study period (autumnal 

equinox) the tidal range varies from 1.67 m (20/9) to 7.17 m (28/9). 

5.3.2.2 Bar morphology 

Surveyed morphology and video image capture during the monitoring period at 

Perranporth recorded the seasonal transition of beach and bar morphology at an open 

coast, LTBR beach. Residual and difference surfaces from each of the survey 

campaigns, shown in Figure 5.12, capture the seasonal inter-tidal morphological 

transition where a planar beachface, observed during survey A (05/04/07) shows a 

general accretionary trend throughout the season toward the development of highly 

three-dimensional low- to mid-tide bar systems that are observed in the final survey D 
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Figure 5.12 - (left) Plots show residual morphology from the mean beach surface with 

surveyed topography shown as black contours, mean tidal levels marked in magenta; (central 

column) Difference plots indicating regions of erosion/accretion between surveys; (right) 

Cross-shore profile taken from transects marked on central column show two-dimensional 

beach morphological change, grey and black lines indicate before and after profiles while red 

lines indicate residual elevation. Horizontal grey lines indicate mean tidal levels. 
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(12/09/07). Within the survey region, a net monthly accretion was observed. Rates o f 
accretion increased during the survey period f rom Az = 0.03 m (9175 by volume 
within survey area) between survey A - B , to = 0.08 m (21375 by volume within 
survey area) and Az = 0.34 m (90025 m^ by volume within survey area) between B-C 
and C-D respectively. The largest accretion event between surveys C-D occurred in 
conjunction with a period o f low-energy wave conditions and low rainfall (highlighted 
as period E in Figure 5.12), The bar morphology within the mid- and low-tide regions is 
shown to be highly dynamic. Within the cross-shore, profiles associated with each 
survey (Figure 5.12) indicate surface elevation changes, through bar dynamics, o f 
greater than 0.5 m in many cases. Initially these morphological changes appear to be 
restricted to the lower inter-tidal zone (below M L W N ) during the first two survey 
periods, subsequendy bar systems are present up to M H W N . To investigate the 
distribution o f the topographic variability within the along as well as cross-shore 
components a measure o f alongshore bathymetric non-uniformity (BNU) was calculated 
(Feddersen and Guza, 2003), which is the alongshore depth variance, defined as: 

where z(x,y) is the surface elevation, ^(jr) is the alongshore mean cross-shore profile, Ly 

is the alongshore integration distance and dy the alongshore grid spacing. Data f rom the 

RTK surveys are used to compute BNU. 

Approximately representing a region below M H W N , developments o f the alongshore 

mean cross-shore profile in Figure 5.13 show a clear accretion between X 375-475 m 

through time. The values o f BNU in the cross-shore indicate regions o f increased 

alongshore surface variance from the mean profile associated with bar/rip presence. 

Figure 5.13 shows a growth and landward progression o f peaks in BNU through 

subsequent surveys from a single low-tide peak in survey A, developing into a double 

(C-D) and then triple peak by survey D. These peaks were confirmed through 

observations in the three-dimensional survey data (Figure 5.14). The peaks in BNU can 

be attributed to the development o f bar/rip systems throughout the inter-tidal zone. 

Combining these findings with observations from the sub-tidal zone, through inclusion 

o f rectified timex video images, provided evidence o f an accretionary bar state 
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Figure 5.13 - Panels A-D show, for selected region; (from top) alongshore averaged cross-

shore profile; cross-shore variation in bathymetric non-uniformity (o'h); and three-

dimensional surface elevation for Perranporth beach. A - 05/04/07; B - 18/07/07; C -

15/08/07; a n d D - 12/09/07. 
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100 200 300 400 900 600 7 0 0 K X > 

Figure 5.14 - Contoured morphology from four surveys at Perranporth beach including; 

mean tidal levels (magenta); rectified timex image indicating regions of wave breaker 

dissipation (background); and extracted bar crest locations for inner breaker zone/shoreline 

(dashed blue) and outer breaker intensity maximum/bar crest (solid blue). 
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transition typical to those observed in micro-tidal environments as classified by Wright 
and Short (1984). In this case the bar morphology is constrained to the low-tide region 
where tidal stationarity is sufficient to enable their development. The observed down-
state transition, as displayed in Figure 5.14 and identified f rom the breaker dissipation 
patterns, is f rom a longshore bar/trough ( L B T ) through rhythmic bar/beach (RBB) to 
transverse bar/rip (TBR) bar state. Bar state transitions o f this type have been observed 
in upper meso-tidal environments, for example on the high-energy French Aquataine 
coast (Castelle, Bonneton et al., 2007) a spectrum of bar states from L T T to D were 
recorded throughout a number o f investigations but few observations o f these bar state 
transitions have been reported in strongly macro-tidal settings. 

The observed temporal variations in bar states drive the changing template morphology 

that w i l l influence location and characteristics o f rip current circulation characteristics 

throughout the season. The supposition is that there is indeed a significant temporal 

variation in rip current beach morphological characteristics throughout a sample 

lifeguard season, and hence this could induce a temporal rip current hazard signal. Also, 

the observation that, during an accretionary phase, it is possible to generate a quadruple 

bar/rip system extending f rom M H W N seaward, w i l l lead to a highly complex temporal 

variation in rip current characteristics throughout the tidal excursion. 

5.3.2.3 Sediment supply, geological control and beach drainage 

A t many o f the studied locations there are significant modifications o f the general 

morphological transition observed. The beaches o f Devon and Cornwall, and indeed the 

U K , are highly variable in their sediment characteristics and abundance, as well as in 

backshore geology. Many beaches within the study region accommodate drainage 

systems, mostly in the form of streams, f rom local catchments, which during periods o f 

heavy rainfall , provide additional sediment transport mechanisms and also cause the 

beaches to be saturated throughout the tidal cycle affecting the mobility o f the beach 

sediment. The fo l lowing examples highlight the importance o f the role o f inter-tidal 

geology and beach drainage in modifying the capacity o f a beach to respond to the 

prevailing hydrodynamic conditions within this study area within a single 

spring/summer season. 

As observed at the L T B R beach sites, significant morphological adjustment occurred 

during the season at the LTT+R beaches monitored (Section 5.3.1.2). These beaches 
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also had significant geological constraints and were influenced by beach drainage 
systems; they were highly dynamic in all cases. Geologic intervention between mid- and 
high-tide regions, in addition to beach drainage fluctuations, generated seasonally 
dynamic mid-tide bar/rip systems that appeared largely decoupled from the low-tide and 
sub-tidal bar state. 

At both Constantine Bay and Crooklets beach large-scale erosion was measured 

throughout the inter-tidal beach between the first and second survey periods (surveys A 

and B in Figure 5.15 and Figure 5.16). It is thought that the scale o f the measured 

erosion (A-B) was in part due to the preceding 3-month accretionary period o f relatively 

small waves and low rainfall (period B in Figure 5.11) where monthly rainfall records 

were 97% and 29% o f the long-term means for March and Apr i l , respectively. This 

period o f accretion was subsequently followed by a period o f high waves and 

unseasonably high rainfall rates (period C in Figure 5.11) during which rainfall totals 

were 202% and 230% o f the monthly means for June and July, respectively. 

This response was not evident in the Perranporth record, possibly due to the earlier date 

o f the first survey. This erosive period accounted for inter-tidal volume changes o f -

64,300 m^ (Az = -0.51 m) at Constantine Bay and -4580 m^ (Az = -0.09 m) at Crooklets 

Beach. A t Constantine Bay local surface elevation changes o f up to -2 m were 

measured. Both these locations have geological constraints within the mid-tide region, 

through which drainage systems discharge. During rainfall events discharge 

mechanisms were observed as both surface run-off within a stream channel and 

groundwater outflow, with a seepage face commonly being associated with the break in 

slope at approximately M S L - M H W N (Figure 5.17). 

Volume changes at both sites during this event (A-B) were principally through incising 

and deepening o f drainage/rip channels. In both sites the charuiel morphology developed 

adjacent to hard rock constrictions at both sides o f the embayment (Figure 5.15 and 

Figure 5.16). In the case o f Constantine Bay, erosion occurred through a recession o f 

the berm in the vicinity o f the principal drainage source [X, - [150 m, 320 m] , where 

A'and / a r e the local cross-shore and alongshore co-ordinates. Figure 5.17 illustrates the 

extent o f the surface drainage and beach saturation during the 16/07/07 survey at 

Crooklets Beach. Further visual examples o f the extent o f beach saturation and surface 

drainage during periods o f high rainfall are displayed in Figure 5.18 under both low-
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CONSTANTII 
N.Cofnwall 
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\z (D-C) 

Figure 5.15 - (left) Plots show residual morphology from the mean beach surface at 

Constantine Bay, with beach surface shown as black contours, mean tidal levels in magenta; 

(central column) Difference plots indicating regions of erosion/accretion between surveys; 

(right) Cross-shore profiles (from marked transects) show two-dimensional beach 

morphological change, grey and black lines indicate before and after profiles while red lines 

indicate residual elevation. Horizontal grey lines indicate mean tidal levels. 
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Figure 5.16 - (left) Plots show residual morphology from the mean beach surface at 

Crooklets Beach, with beach surface shown as black contours, mean tidal levels in magenta; 

(central column) Dift'erence plots indicating regions of erosion/accretion between surveys; 

(right) Cross-shore profiles (from marked transects) show two-dimensional beach 

morphological change, grey and black lines indicate before and after profiles while red lines 

indicate residual elevation. Horizontal grey lines indicate mean tidal levels. 
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Figure 5.17 - Panoramic photograph of Crooklets beach on 16/07/07 illustrating surface 

and groundwater drainage through the inter-tidal beach. 

and high-energy wave conditions. These images provide evidence, unlike observations 

at Perranporth, o f instances where mid-tide morphology appears de-coupled from the 

low- and sub-tidal bar morphology, under environments where a degree o f geological 

control exists (example o f constrained upper and open lower beach morphology is 

shown in Figure 5.19). 

Analysis o f the monthly variation in 5A7/at Crooklets (Figure 5.20) shows peak values 

at A' - 200-250 m associated with the point o f maximum geological constriction. This 

peak remains within this region throughout the season but steadily decreases. It is 

suggested that this decrease in B N U could be due to the steady reduction in rainfall and 

hence drainage discharge through the beach throughout the season, with channel 

in f i l l ing occurring under accretionary conditions. 

Subsequent surveys at both sites recorded an initial accretionary response in the third 

survey campaign (survey C in Figure 5.15 and Figure 5.16) with a mean elevation 

change o f 0.09 m and 0.18 m and Constantine Bay and Crooklets Beach respectively. 

The fourth survey period (D), associated with a preceding period o f low wave energy 

and low rainfall (period E in Figure 5.11), measured no significant net volume change 

(measured change is less than that due to potential instrument error) within the surveyed 

region. Unfortunately no quantitative information is available for beach elevation on or 

below M L W S . Therefore limited comment can be made on the dynamics and state o f 

low- and sub-tidal bar/rip systems at these sites. Qualitative field observations and 

bimonthly photographic records suggest the unconstrained low-tide bar/rip systems at 
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all nine study sites possess similar dynamic characteristics to those previously discussed 
at Perranporth (Section 5.2.2.8). 

A surveyed beach section o f the open, but geologically constrained Sandymouth beach 

is presented in Figure 5.21. This set o f beach surveys provides ftirther evidence o f the 

dynamic nature o f inter-tidal bar morphology within the region. Headland constraint in 

association with a surface drainage system at Y ^ 200 m drives dramatic monthly 

morphological changes o f the order +/- 1 m. Large-scale variations in alongshore 

location o f low- and sub-tidal bar/rip morphology are observed throughout the 

monitoring period. 

Throughout the study sites, observations show that confined mid- and upper-beach 

regions often flow into open coast domains within the lower-beach. When the 

constrained beach width is less than the alongshore wavelength o f the low-tide bar/rip 

system, the lower-beach in these cases can be in phase with either the larger scale open 

coast rip embayment or the adjacent shoal. The alongshore configuration o f this system 

potentially has a significant effect on the rip current hazard signature at low-tide. 
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Figure 5.18 - Panoramic photographs of Crooklets inter-tidal zone illustrating beach drainage characteristics under low-energy swell wave and high-energy 

storm wave conditions. Images captured (from top) on 01/08/07 and 11/03/08. 
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A 
Figure 5.19 - Aerial images of Crooklets beach (September 2006) and associated 

constrained upper inter-tidal morphology and open lower inter-tidal bar systems. Images 

provided by the Environment Agency. 
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Figure 5.20 - Panels A-D show, for selected region; (from top) alongshore averaged cross-

shore profile; cross-shore variation in bathymetric non-uniformity ((T/,); and three-

dimensional surface elevation for Crooklets beach. A - 17/06/07; B - 14/07/07; C 

13/08/07; D -09/09/07. 
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Figure 5.21 - (left) Plots show residual morphology from the mean beach surface at 

Sandymouth, with beach surface shown as black contours, mean tidal levels in magenta; 

(central column) Difference plots indicating regions of erosion/accretion between surveys; 

(right) Cross-shore profiles (from marked U-ansects) show two-dimensional beach 

morphological change, grey and black lines indicate before and after profiles while red lines 

indicate residual elevation. Horizontal grey lines indicate mean tidal levels. 

201 



Chapter 5: Beach morphodynamics and hazard 

5-3.2,4 Rip current type, variability and density 

Observed daily at low-, mid- and high-tide, a scaled, qualitative assessment o f rip 

current severity was made by experienced lifeguards at 4 beach sites shown in Table 

5.4. Severity was estimated by determining the hazard the rip current would pose to an 

average swimmer (Appendix 3). Rip current types for the purpose o f this assessment 

were classified as accretionary and erosive beach rips (B) and 

geologically/topographically controlled rips (G). Beaches dominated by beach rips (B) 

show a decrease in mean rip severity and mean rip number from low- to high-tide. 

Sandymouth and Constantine, both LTT+R beaches, possess geologically controlled rip 

systems in the mid- and high-tide regions. This appears to be reflected in the mean 

severities that are similar throughout the inter-tidal zone at Sandymouth and enhanced 

in the mid-tide region at Constantine. Interestingly, the low-tide beach rips at all sites 

have a similar mean rip wavelength o f Xnp = 267-280 m where beach widths are greater 

than two mean wavelengths. Mean wavelengths decrease at higher tidal stages within 

the embayed and constrained beaches where values of embaymentisation (Short, 1999), 

the ratio between arc and chord dimensions, increase as does the likelihood o f 

topographic rip currents at embayment boundaries. In addition, temporally exposed 

constraining rock outcrops within the shore platform at Sandymouth drive fixed rip 

currents within the mid- and high-tide regions reducing the mean rip wavelength. 

Variations in severity between beaches were not considered significant at the recorded 

levels due to the level o f subjectivity in visual assessment. 

Table 5.4 - Mean rip current severity and rip number with tidal stage at selected Atlantic west 

coast beaches. Data represents all observations collected during the 2007 patrol season. 

Low^lde Mid-tide High-tide 

„ . Beach Rip Beach name Rip Rip Mean A 
severity number (m) 

Rip Rip Mean A 
severity number (m) 

Rip Rip Mean X 
severity number (m) 

Perranporth ^ T B R B 

NorthFlslral ^ L T ^ R B 

Sandymouth ^ L J . R B + G 

Constentlne ^^^^^ 

3.9 3.6 278 

3 2 .5 280 

3.2 1.5 267 

2.9 1.7 294 

3.5 2.6 385 

2.4 1.7 4 1 2 

3.2 1.7 176 

3.8 1.9 211 

3 1.9 316 

2.1 1.6 2 5 0 

3.3 2 150 

3 2.6 192 

Rip types indicate the presence of Accretionary and Erosional Beach rip systems (B) and Geologically controlled rip systems (C): Rip 

severity represents mean observed rip strength daily at three tide levels (where data was available). Data scaled from 0 (no rips) to 5 

(extreme). Rip number is mean observed number of rip present at each observation. 
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S.3.3 Implications for beach safety 

5.3.3.1 Incident records and environmental conditions 

What is important for beach safety is the link between temporal changes in beach 

morphology and surf zone characteristics and the temporal hazard signature. Through an 

assessment o f hazard levels throughout the season, temporal and spatial correlations o f 

the hazard signature with morphologic, wave, tidal and weather conditions were 

investigated. 

R N L l lifeguard incident and beach usage records, logged between 01/05/07 and 

01/10/07 for all the LTT+BR and LTBR beaches studied (Figure 5.3), were analysed in 

combination with hydrodynamic (near-shore wave buoy data and predicted tidal 

elevations for Perranporth beach), mean wind speed (St Mawgan airfield, Newquay) 

and rip current morphology at Perranporth (Figure 5.22). Weekly averaging o f the insea 

user numbers reduced bias occurring due to high weekend counts and individual rescue 

events providing an insight into background incident forcing. 

Values for P are highest during July and August, the main holiday season, where values 

reach 500 insea/hr. This period is also associated with the highest weekly incident 

counts peaking at over 200 incidents during the week surrounding 31/07/07. The 

timeseries o f JR shows a general upward trend throughout die 2007 lifeguard season 

until the end o f August when a sharp reduction in IR occurred. Amongst the background 

trends, three significant peaks in IR were recorded during weeks surrounding 03/07/07, 

31/07/07 and 28/08/07. A separation o f rip related rescues in the analysis (Figure 5.22) 

showed that they consistently contributed to almost all incidents recorded in the weekly 

totals. 

The availability o f video data at Perranporth enabled assessment o f morphological 

changes at a high sample rate throughout the monitoring period. Due to this, 

Perranporth was used as an indicator o f general morphological trends throughout the 

studied beaches. To assess the temporal variations in rip number and configuration at 

Perranporth, all time-averaged rectified video images available at low- and mid-tidal 

stages during the monitoring period were used to extract the location o f the rip head 

which was used to represent the rip current location in the alongshore (Figure 5.22). 
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Figure 5.22 - Plot shows data from all LTBR and LTT+BR beaches studied, from left to right; individuals rescued per week (total rescues and rip related rescues 

shown as dark and light bars respectively); averaged people in sea per hour for each week; IR, total and rip rescues divided by number of people in sea per hour (a 

measure of the probability of an incident occurring per hour); nearshore H, and Tp (6hr average); and predicted tidal elevation (meters from Chart Datum). Grey 

bands highlight weeks of high /R. Argus Timex video images illustrating bar morphology and general morphological transition. Red lines indicate significant 

coast-wide 'mass rescue' events. 
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Data gaps are due to either lack of image (technical); very small (no wave breaking) or 
large wave conditions (wave breaking occurred in rip channels). Rips were located 
through a reduction in alongshore pixel intensity associated with reduced wave breaking 
(for methodology see Section 2.3). 

No systematic alongshore migrations of rip current locations were identified. The 

largest changes in rip morphology occurred during prolonged periods of high winds and 

large waves (> 2 m). Mid-tide rip systems were more dynamic and were absent for a 

large part of the record. They are distinct from the low-tide systems and are 

predominantly phase offset in the alongshore. A period of high waves in May was 

associated with mobile rip locations both in the low- and mid-tide regions. The 

subsequent cessation of wave energy during June led to the development of distinct 

fixed rip current channels within the low-tide ( / - [-730; -600; -450; -150 m]) and mid-

tide (Y- [-750; -550 m]) regions. The increase in wave energy, wind and precipitation 

during end June/early July drove a reset of bar morphology, removing identifiable rip 

morphology in the mid-tide region and reducing the low-tide rip number to two (Y - [-

700; -150 m]). From this point to the end of the patrol period environmental conditions 

led to the development of low- and mid-tide bar systems that reached an apparently 

stable state during the low-energy wave conditions and large spring tidal ranges 

between 21/8 and 18/9. During this period, morphological enhancements of the mid-tide 

rip systems under low waves and high spring tidal conditions, suggests they may be 

incised by tidal drainage. Lack of rip current activity under the small wind waves during 

this period was observed to be accompanied by infilling of low-tide rip channel 

morphologies. 

The three peaks in IR shown in Figure 5.22 indicate weeks in which risk associated with 

environmental hazards was high. The environmental conditions associated with these 

periods, also shown in Figure 5.22, indicated that spring tidal conditions occurred 

during all three high risk weeks. Considering the statistics associated with individual 

incidents and the corresponding tidal range (Figure 5.23) it is evident that there is 

indeed a greater number and a higher probability of incidents occurring during tidal 

ranges greater than the mean for the monitoring period. Both incident count and 

probability of incident peaked at the 5 m tidal range. When considering the 

morphological characteristics and cross-shore tidal excursion at Perranporth it is clear 

that tide range is a key factor driving temporal hazard levels. From video observations, 
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Figure 5.23 - Histograms of tidal range characteristics (top left) and associated incident 

frequency (lop right) and insea population (bottom left) leading to probability of incident IR 

against tidal range (bottom right) during the 2007 patrol season at studied west coast beaches. 

Dash lines indicate mean neap range (MNR), mean tidal range (MTR) and mean spring range 

(MSR). 

it appears that only under tidal ranges greater than the mean is the low-tide level such 

that the low-ride bar/rip systems become active, hence increasing levels of hazard. 

In addition to the spring/neap variation, it is important to understand the semi-diurnal 

tidal controls on the temporal hazard signature. Tidal levels associated with individual 

incidents throughout the season showed some temporal variarion, which can be 

associated with the changing morphology presented in Section 5.3.2.2. Figure 5,24 

provides evidence of this temporal response, with values of incident, normalised by tidal 

elevation frequency, showing incident signatures throughout the tidal range for early 

(May-June), mid (July-August) and late season (Sept-October). The change in response 

shows some relarion to morphological change quantified at Perranporth through values 

for BNU (Figure 5.13). Peaks in the inter-ridal BNU lie within the low-ride region 

during early season and progressively develop throughout the mid and upper inter-tidal 
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Figure 5.24 - Incident occurrence at Perranporth, normalised by frequency of tidal 

elevation, within 0.5 m invervals for early, mid and late season. Dashed lines indicate mean 

tidal levels. 

zones as the season progresses. Significantly, the levels of BNU are unknown for the 

spring low-tide and sub-tidal regions where video evidence has already indicated the 

presence of well-developed rip systems. Figure 5.24 indicates the presence of a 

persistent low-tide rip hazard throughout the season identified through high normalised 

incident values, especially between MLWN and MLWS. Through video observations 

shown in Figure 5.22 the time series of rip channel locations throughout the monitoring 

period suggests rip current activity at low-tide. The significant variation in normalised 

rip incident levels comes in the mid-tide region as bar development between -1-1 

m, indicated by peaks in BNU, during July-August leads to associated increases in 

normalised incident levels. Within September-October low-tide incidents dominate 

again with a significant signal maintained within the well developed mid-tide bar 

systems as indicated by heightened values of BNU below - I m and a continuing 

intersected bar presence within the mid-tide region. Analysis of morphological, incident 

and tidal data at Perranporth provides evidence in support of the hypothesis that incident 

occurrence is linked to morphology and particulariy bar/rip presence and that temporal 

variability in morphology and sea level control hazard levels. 
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Trends in wave conditions and their role in controlling hazards were less clear. The two 
mid-season IR peaks highlighted in Figure 5.22 (31/7 and 28/8) were dominated by low 
wave heights (associated with low-energy swell wave conditions). The early season IR 
peak was dominated by higher energy swell waves, Ms ~~ 2 vc\. Conditions during the 
high IR weeks ( I " , and 8**̂  August) surrounding those mid-season peaks were 
dominated by low-energy swell waves / / , - I m and Tp >8 s. 

The joint wave distribution of the entire patrol season showed that the highest frequency 

wave heights were between 1.5-2 m with peak wave periods between 4-12 s (Figure 

5.25). Joint distribution clusters identified short period medium-energy events and low-

energy long period events as most common. Incident counts show long period low-

energy wave conditions {H, - 0.5-1 m; Tp - 6-10 s) to be associated with the highest 

number of incidents (241 incidents) representing 28% of all incidents at the selected 

beaches during the season. Unsurprisingly, the largest number of people were insea 

during low-energy conditions (//y < 2 m), under peak wave periods of 4-12 s. 

Probability of incident, where insea populations are applied, yield the highest risks 

associated with high-energy wave conditions and peak wave periods > 10 s. These 

results reflect a small number of incidents occurring during the eariy season when insea 

population totals are very low. This highlights the well known hazardous nature of high-

energy conditions on bar/rip beach types, although typically under these conditions, due 

to the low insea population exposure to these hazards are often minimal. On the other 

hand, illustrated by the insea population statistics and incident counts, it is clear that 

75% of beach users during the season were in the sea during low-energy wind and swell 

wave conditions {Hs - 0.5-1.5 m; Tp - 6-12 s) and that it is under the longer period 

swell component of these conditions that a large proportion (36%) of the seasons 

incidents occurred. This highlights the importance of understanding hazard levels 

associated with lower-energy conditions where there are high levels of beach user 

interaction with the surf zone. 

5.3.3.2 Mass rescue events 

Throughout the season a number of high daily incident totals appeared to stand out from 

the background trends discussed in this section. These events have a large effect of the 

seasonal statistics and contribute significantly to the annual rescue totals. Anecdotal 

evidence from the RNLI suggested that frequently during summer months, coast-wide 
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Figure 5.25 - 2D frequency matrices of joint wave distribution associated with; (top left) 

frequency; (top right) number of incidents; (bottom left) cumulative daily insea average: and 

(bottom left) probability of incident during the 2007 patrol season. 

*mass rescue' (MR) events were reported to occur. Whether or not they were driven by 

specific environmental conditions, they evidently stretched lifeguard resources and 

hazard identification and mitigation procedures and therefore warranted further 

investigation. Within the context of MR events, the next section aims to identify the 

potential environmental forcing behind specific scenarios responsible for generating 

short-lived high risk events. 

Reported MR events during the study period occurred at multiple locations on the same 

day and were reported to be caused by rip currents. To identify and assess these 

observations it was important to investigate rip incidents in relation to the number of 

people in-sea on any given day. Houriy people counts at each beach enabled calculation 

of daily mean estimates for people in-sea over the entire west coast during 2007 (27 

RNLI sites). During the course of the monitoring period, short periods of high rip 

current incident density were recorded. These events can be seen in Figure 5.26 (inset) 

as 7 outliers from the bulk of the data which displays a good linear relationship (/?' = 
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0.54) considering the inherent scatter expected in the data. By normalising incidents by 
the associated insea population these outlier events can be clearly identified in time. Al l 
occurring in July and August, the 7 highlighted events exceed 2 standard deviations 
fi-om the mean. 

Identification 

This analysis was specifically interested in identifying events where high levels of rip 

incidents were occurring at multiple locations on the same day, enabling an insight into 

regional environmental conditions that may be key drivers in the cause of these events, 

identifying environmental conditions in this way, of course, will not identify all the 

days when these optimal environmental conditions exist as identification requires an 

insea population, hence Figure 5.26 shows a higher density of normalised rip incidents 

during the peak summer months of July and August. Likewise, an assumption is made 

that all locations are proportionally staffed with lifeguards of equal ability to mitigate 

against incidents. 

Event characterisation 

Assessment of the incident characteristics and environmental conditions during the 

highlighted (A to G) MR events in Figure 5.22 indicated that except for A, all events 

involved slO beaches (Table 5.5) with 15 beaches contributing to event D. Event A 

included only 3 beaches, one of which contributed 90% of the incidents, and is 

therefore not considered a spatially widespread incident. The remaining events fall into 

3 distinct periods: 1) B, C and D, occurring on consecutive days totalled 264 rip 

incidents, with between 12 and 15 beaches involved each day; 2) E and F occurred on 

consecutive days totalling 171 rip incidents and involved 10 and 11 beaches 

respectively; 3) event G, saw 151 incidents in one day spread among 12 beach sites. 

These events had a number of key environmental characteristics in common. Small to 

medium sized swell waves {Hs = 0.5-1.7 m; Tp = 7.6-12.8 s) were the dominant wave 

conditions during all the MR events. Al l the MR events occurred during a tidal range 

large enough to expose the low tide bar/rip morphology (spring) and in this region 

spring low water always occurs during patrol hours, often coinciding with the middle of 

the day, leading to higher potential hazard exposure. All events occurred during a period 

of high rate of change of tidal range. Events D, C, D, E and F occurred during a period 

where tidal range varied by 3.7 m within 6 days and event G occurred during a period 

where tidal range varied by 4.6 m in 6 days. These dramatic temporal variations create a 
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Figure 5.26 - (Inset) Scatter plot of rip incidents per day vs. people insea (daily mean), 

indicating linear fit and outliers. (Main) Stem plot of normalised rip incidents (daily) vs. 

date, with outliers (> 2<T) circled. 

Table 5.5 - Outlier rip incident event ('mass rescue') data. 

Event 
LW times 

(height 
mCD) 

Date 
(2007) 

No. of 
beache 

s 
Incidents 

Highest 
contnbutors (%) 

primary(secon<jary 

H. (m) 
6hr avg. 

Tp (s) 
6hr avg 

Wind 
(Ms) 

mean 

Wind dir 
(•) 

A 1218(1.3) 2/7 3 31 90(7) 2 3 10.9 13 7 235 

B 1046(1.5) 29/7 13 62 23(21) 1.0 76 65 10 

C 1124(1.2) 30/7 12 106 59(10) 0 7 8.2 5 5 259 

D 1203(1.0) 31/7 15 96 20(14) 0.5 10.1 5.6 113 

E 1452(1.2) 4/8 10 77 26(26) 1.7 109 10.5 174 

F 1540(1.6) 5/8 1 1 -4 30(17) 1 7 12.8 10.8 252 

G 0947 (1.8) 26/8 12 151 22(17) 1.0 9,6 8.3 12 
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very different temporal hazard signature at a given beach from one day to the next, 
leading to a potential situation where, under similar wave forcing, low-tide rip systems 
may be inactive under one tide and active under the subsequent tide. Wind speeds 
during the MR events were commonly on or below the average of the study period (10 
kts) with direction showing no trend. 

In all the examined MR events, 3D survey and photograph/video imagery supported the 

observation that the low- and mid-tide bar/rip systems were well developed along the 

coast as illustrated in the example plan view video images of Perranporth in Figure 5.22 

and Figure 5.27. Perranporth, the only beach to be implicated in all MR events had both 

well developed rip feeder systems that enabled isolation of the seaward bar crests at 

low-tide and mid-tide bar/rip systems that were well developed and offset in the 

alongshore from the low-tide rip channels (highlighted in Figure 5.27). 

Times of rip incident occurrence, related to tidal stage during each MR event (Figure 

5.27), indicate that the majority of rip incidents occurred within the mid- and low-tide 

periods and in D, E, F and G the transition between low- and mid-tide generated the 

highest incident frequency. This finding was similar to the general background incident 

trend throughout the season discussed in 5.3.3.1. During this transition period, locations 

of rip current hazard can migrate rapidly through high tidal translation rates, tidal 

elevation can modulate rip current velocities 'switching' systems on and off, and tidal 

cut-off on exposed low-tide bars during the flooding tide can force bathers to return 

landward through the active rip feeder channel once a critical depth over the bar in 

reached (1-2 hours after low-tide). The presence of phase offset three-dimensional bar 

systems within the mid-tide region adds complexity to the system with rapidly 

migrating alongshore rip locations and increased temporal persistence of rip hazards 

throughout the semi-diurnal cycle. The importance of the rate of change of the temporal 

hazard signature is illustrated in Figure 5.28. During a spring tide in 18/06/07 and 

14/09/07 at Croyde Bay, Devon, the rate of tidal translation reaches up to 5 m min ' 

within the mid-tide region in both surveys. This causes dramatic alongshore translation 

of rip hazards throughout the tidal cycle. Understanding these hazard variations is 

crucial in safely managing recreational beach users. 

MR events appear to occur under certain scenarios when the combination environmental 

conditions and insea population dynamics are optimum for generating high hazard and 
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Figure 5.27 - (Left) Time averaged, rectified, low-tide video images of Perranporth during 

events C, D and G; sea is located at the bottom of each image, land at the top. West is 

oriented down-page; black markers locate approximate positions of low-tide rip currents, 

white locates mid-tide rip channel morphology. (Right) Histograms of incident times for 

each event from all beaches. Dark shading indicates 3 hour low-tide period and light shading 

the mid-tide. 

particulariy high risk bathing conditions. The generation of these optimum conditions is. 

encouraged by the fact that during the peak summer period where maximum insea 

population counts are observed, small swell wave conditions are most common and 

proximity to the autumnal equinox means large spring tidal ranges are commonly 

experienced. In addition, specific to the region, low tide during spring tides periods 

occurs during patrol hours and commonly around midday 
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soo aoo TOO 

Figure 5.28 - Plots A and B show 15 minute shorelines at Croyde Bay, North Devon 

during spring tides on the 18/06/07 and 14/09/07 respectively. Bold red lines indicate regions 

of heightened rip current hazard. 
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5.4 CONCLUSIONS 

An assessment of the temporal variation in beach volume and morphology along the 

high-energy (10% exceedence significant wave heights of 3-4 m), macro/mega-tidal 

(4.1-6.9 m) west coast of Devon and Cornwall, southwest England were made between 

summer 2006 and winter 2008. Significant temporal morphological change was 

observed: 

• Low-energy summer morphologies with low tide bar/rip systems and three-

dimensional mid-tide bars (RBB & TBR) were modified through high volume 

offshore sediment transport during winter causing inter-tidal beach lowering of 

- 0.5-1 m along all studied beaches. Planar inter-tidal beach morphologies with 

quasi-linear, shore-parallel, sub-tidal bars (LBT) occurred during winter. 

• Sediment supply, geologic exposure and drainage characteristics modified and 

restricted the envelope of potential morphological transition at some locations. 

The collation of detailed lifeguard incident data with that of beach morphology and 

hydrodynamic conditions enabled an assessment of both the implications of temporal 

morphological transition for beach safety and the spatial extent and characteristics of rip 

currents within the study region. From this investigation of the period between 01/05/07 

and 01/10/07 the following key insights were gained: 

• High risk LTBR and LTT+R beaches represent 59% (62% by length) of all 

sandy west coast beaches within Devon and Cornwall. 

• Beach rip severity was observed to be highest at low tidal levels and 

geologically constrained rips highest at mid- and high-tidal levels. 

• Temporal variation in the severity and location of rip current hazards were 

shown to be controlled by the characteristics of the bar morphology, specifically 

the development of low-tide bar/rip systems throughout the winter/summer 

transition. Variability in exposure of inter-tidal geologic formations in sediment 

poor environments controlled levels of constrained rip current hazard. While 

development of mid-tide bar systems during summer accretion extended the rip 

hazard further into higher inter-tidal regions. 

• The forcing wave conditions that present the risk to the insea beach user were 

relatively small, long period swell waves ( / / , - 0.5-1 m; Tp - 6-10 s) that allow 
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for shoaling to extend to the inner transverse bar and the development of strong 
rip currents. These conditions also maintain easy surf zone access and have a 
high occurrence during the summer season (hazard exposure). 
Tidal elevation played a significant role in controlling the temporal hazard 
signature, principally through the modulation and activation of rip currents 
throughout the lower inter-tidal zone. Spring tides increased exposure of low-
tide bar/rip morphologies increasing rip hazards during the lower tides. 
Variations in tidal range from neap to spring tides created significant semi­
diurnal variations in the temporal hazard signature. 

The rate of cross-shore translation of the surf zone during spring tides increased 

the rate of change of the temporal hazard signature, having significant 

implications for lifeguard beach safety management. 

Analysis of 6 coast-wide 'mass rescue' events identified that under 'optimum' 

combinations of the above environmental conditions as well as high insea 

populations, peak hazard and risk levels can overstretch lifeguard services. 

Specifically, these high risk scenarios were identified to be driven by the effect 

of spring/neap and semi-diurnal tidal variations on the interaction with the 

'optimum' template morphology controlling the temporal hazard signature under 

the 'optimum' wave forcing conditions. 
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6. R I P C U R R E N T D Y N A M I C S A N D H A Z A R D S 

6.1 INTRODUCTION 

Previous chapters have clearly established the importance of rip currents in contributing 

to beach bathing hazards in the UK and worldwide. In Chapter 5, key environmental 

conditions were identified which appear to control the level of hazard, particulariy rip 

current hazard over scales of months down to days and hours through assessment of 

beach morphological state, nearshore hydrodynamics (waves and tides) and remote 

video imagery. Throughout this approach both observed RNLI incidents and qualitative 

lifeguard observarions have been the only measures of rip current strength and acrivity. 

Therefore, the direct measurement of a rip system, within the context of these previous 

findings enabled flirther hypothesis tesring through quantitarive hydrodynamic 

observations. 

During periods of high rip current hazard, it has been suggested that environmental 

controls present themselves as an 'oprimum' combinarion of beach morphological state 

(presence of bar and rip morphology) and the prevailing hydrodynamic conditions 

(wave and ride). These 'oprimum' environmental condirions as well as the temporal 

variation of the hazard signature are observed to be a key factor driving periods of high 

bathing risk levels during the busy summer months when these conditions have been 

shown to be associated with coast wide 'mass rescue' events. It is hypothesized here 

that one of the principal causes of these events is the ddal modularion of rip currents, 

where periods of low water have been qualitarively associated with increased rip current 

acrivity and the 'switching' on and off of rip currents leading to high numbers of rip 

current incidents. This chapter, while continuing to focus on the macrotidal west coasts 

of Devon and Cornwall, documents a field invesrigarion measuring Eulerian and 

Lagrangian flows in a rip current system at Perranporth beach during August 2008 to 

invesrigate the circulation and dynamics and assess the forcing mechanisms behind a 

typical macroridal low-ride beach rip system. 

Rip currents, a well studied phenomenon in micro- and mesoridal tidal regions (1997; 

Bowman, 1988; Brander, 1999; Brander and Short, 2001; Castelle et al., 2006; Huntley, 

1988; MacMahan et al., 2005a; McKenzie, 1958; Shepard, 1941; Sonu, 1972), have 

been shown to be an integral component of nearshore cell-circularion, returning water 
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seawards from within the surf zone, largely as a confined energetic jet. While many 
field experiments, like those using dye and person floats conducted in Australia and 
New Zealand (Brander and Short, 2000; Brander and Short, 2001), generally support 
such circulation, recent work by (2004; MacMahan et al., 2006; MacMahan et al., 2005) 
has demonstrated the rotational nature of rip currents within the surf zone, illustrated by 
high levels of retention of Lagrangian drifters. MacMahan et al. (in press) extended 
these observations to locations in both micro/meso and macrotidal environments. This 
observation runs contrary to common advice given to both lifeguards and the public 
worldwide, suggesting that the classic scenario may be an oversimplification of the true 
circulation occurring in some environments. 

Increasing rip current attention and improved technological capabilities in the last 

decade have led to a greater number of quantitative investigations of rip current 

dynamics, but few of these have been in macrotidal environments. Rip currents are 

known to be modulated by tidally-induced changes in water level (Brander and Short, 

2000) and while rip currents are forced by the incoming wave energy, they may be 

strongly influenced by tidal elevation (Aagaard, 1997; Brander and Short, 2001). The 

tide may modulate rip currents such that decreases in tidal elevation increase rip current 

flows to a relative maximum (Aagaard, 1997; Brander, 1999; MacMahan et al., 2005a). 

Brander and Short (2001) presented evidence that topographic confinement enhanced 

rip flow at low tide, raising the question as to whether morphological control is manifest 

by distinct flow channelization or by the enhancement of set-up gradients caused by 

wave dissipation over varying morphology. Sonu (1972) states that wave breaking over 

nearshore bars is essential to the formation of rip circulation and that the intensity of 

breaking, controlled by the tide, corresponds to a proportionally stronger circulation. 

However, the findings of Brander and Short (2001) provide some support for the idea of 

morphologic flow constriction, with the observation that narrow rip channels with 

pronounced banks were more sensitive to tidally-induced water depth changes. Short 

(1985) hypothesizes that flow velocity is stable whilst constrained within the channel, 

but that once the banks are overtopped with increasing water depth the flow 

dramatically reduces. Perhaps more importantly, tidally induced changes in water depth 

modify the interaction of incident waves and existing morphology. The presence of 

transverse or significantly incised shore parallel sandbars in the intertidal/nearshore 
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zone affect wave breaking and changes in water depth create a temporal pattern of wave 
breaking over these bars. 

When considering the extent of the typical breakpoint excursion within a macrotidal 

environment where significant transverse bar and rip systems are present within the 

low-tide region, at high- and mid-tide the proportion of waves breaking over the bars 

will be small and hence there will be little in the way of an alongshore gradient in set­

up. As the water level falls, wave breaking increases over the bar crests and an 

alongshore set-up gradient is established. Therefore at some critical water depth over 

the bar, the set-up gradient and hence rip current flow will be maximized. This 

hypothesized ^switching' on and off and the apparent alongshore movement of rips as 

the tide translates through mid-, low- and mid-tide would increase the temporal 

beachface hazard signature and could be a key driver in 'mass rescue events' occurring 

on certain beaches. 

This chapter aims to investigate: 

• the extent to which the typical rip current system, observed at Perranporth, 

exhibits rotational circulatory behaviour, and the variation of rip circulation 

behaviour in relation to bathing hazard; 

• the effect that tidal modulation of the sea surface has on both rip current 

dynamics and circulatory behavior; 

• the relative contribution of mechanisms controlling rip current flow velocities, 

wave breaking and morphological constraint. 

The chapter begins with a brief introduction of the field site at Perranporth (detailed in 

previous chapters) and an overview of experiment logistics, followed by a description of 

the data collection methods and instrument used. Results are then summarized for both 

the Eulerian (in-situ) and Lagrangian observations at which point selected data are 

presented that investigate the stated hypotheses. The principal findings are then 

discussed with reference to the implications they have for beach safety. Finally the 

chapter is summarized in a set of brief conclusions. 

It is acknowledged here the collaborative team that provided both logistical support in 

the design and planning of the experiment, practical assistance in the field and guidance 

and technical support in processing and analysing the collected datasets. Dr Martin 
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Austin was co-investigator with the author for this experiment. His accumulated 
expertise in surf zone field deployments and collection and analysis of hydrodynamic 
data enabled the provision of key support and guidance throughout. Dr Austin provided 
significant contributions to Section 6.2.2.2 and Section 6.3.3. Specifically, his technical 
contribution with the Eulerian instrument deployment and data processing (MatLab 
code) and subsequent analysis was essential to the viability and success of this research 
within the time period available. Dr Jamie MacMahan provided technical support during 
the preparation, deployment and processing of the lagrangian GPS drifter deployments 
through the provision of GPS logging units and echo sounder, graduate students Jeff 
Brown and Jenna Brown (field assistance) and technical support (MatLab code) with 
drifter GPS data processing. The team of field assistants from the University of 
Plymouth and the University of Southampton also provided the man power during the 
experiment that was essential to make it a success. 
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6.2 METHODOLOGY 

6.2.1 Field site 

A 10-day field experiment was conducted at Perranporth, Cornwall, UK during August 

2008. As described in previous chapters, Perranporth is a macrotidal beach wi th a mean 

spring tide range o f 6.3 m and it falls at the transition between the low tide bar/rip and 

dissipative morphological states and exhibits pronounced low-tide bar/rip morphology 

(Chapter 5). In order to better understand the key driving mechanisms and 

characteristics o f rip current systems similar to those representing the highest hazard to 

beach users as discussed in Chapter 5, it was critical to target the experiment during the 

fol lowing combination o f conditions: a period o f well developed rip morphology that is 

commonly associated with the low energy spring/summer period; spring tides; as well 

as low-energy swell wave conditions. To improve the probability o f collecting 

observations under these conditions, beach morphological state was monitored at 

Perranporth over a 3-month period between June and August, 2008, to assess the 

optimum experiment t iming and rip system location. Held between 31^* July and 9'^ 

August, this period coincided with large spring tides and summer swell wave conditions 

{Hs = 0.83 - 1,32 m; Tp=l.\ - 9 . 1 s). The low-tide, transverse bar/rip morphology was 

well developed during this period (Figure 6.1). The experiment period coincided with a 

period o f high visitor numbers leading to the potential for an associated rescue signal. 

Perranporth was considered an ideal site due to its high incident levels, consistent 

bar/rip morphological presence, infrastructure and association with an Argus video 

monitoring program. 

6.2.2 Data collection and instrumentation 

MacMahan et ai (2006) stated that a complete rip current experiment requires three 

types o f measurements, assuming the conditions exist for the generation o f rip currents: 

1) comprehensive velocity measurements within the rip channel and neighboring shoal, 

2) accurate measure o f the bathymetry, and 3) offshore directional waves. With this in 

mind the fol lowing section details the data collection program for this study. 

6.2.2.1 Beach morphology and bathymetry 

Regular inter-tidal beach-face surveys were carried out using a survey-grade real-time 

kinematic global positioning system (RTK-GPS) mounted on an all-terrain vehicle 

( A T V ) during low tide. Surveys o f the inter-tidal beach morphology were conducted 
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LANDWARD 

Figure 6.1 - Rectified low tide ARGUS image of rip currents at Perranporth during 

experiment period. The dashed and solid black lines represent the shoreline position and the 

seaward edge of the surf zone. The four rips are separated by transverse bars and retained 

within the surf zone by a longshore bar (sinuous bright band demarcating outer surf zone). 

The boxed area represents experiment region. 

during LT3, LT8 and LT13; a more detailed explanation of the beach survey techniques 

and technical specifications can be found in Chapter 2. A survey-grade RTK-GPS 

system mounted on a single-beam sonar-equipped R N L I inshore rescue boat enabled a 

bathymetric survey o f the studied rip current system and surrounding morphology, 

conducted during the high-tide period on 8'*̂  August, 2008, covering the low-tide 
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transverse bar system to approximately 600 m offshore o f M L W S and 500 m 
alongshore o f the rip system both to the north and south via the collection o f cross-shore 
lines at 50 m intervals. Adverse weather and logistical restrictions allowed for only one 
bathymetric survey during the study period. A l l positions were transformed into a local 
co-ordinate system [X. Y]. The morphology during the field experiment was 
characterized by extensive bar/rip systems located around the low water level (-3 m) 
and a sub-tidal bar located in 7 m water depth (Figure 6.2). The incised rip channels 
were quasi-periodic with a spacing 0(400 m) (Figure 6.1). 

6.2.2.2 Eulerian measurements 

In-situ measurements o f surf zone hydrodynamics during the experiment were collected 

using an RBR TWR2050 pressure transducer (Tide Wave Recorder) located on the crest 

o f the inter-tidal bar recorded water depth for 8.5 min bursts every 10 min (TWR in 

Figure 6.3). The TWR was mounted on a secure vertical steel tube with a sensor height 

o f 0.7 m above the bed with a sensor elevation o f -2.54 mODN. A l l nearshore 

instruments were sampled synchronously and logged at 4 Hz. Offshore waves were 

measured by a directional waverider buoy (DWR) moored in 10 m water depth. Rip 

current dynamics were monitored using a small array o f current meters and pressure 

transducers located within the low tide transverse bar/rip system. Flow dynamics within 

a rip channel and adjacent incised shore-parallel low-tide bar/feeder region were 

measured with two Nortek Vector 3D-ADVs (Acoustic Doppler Velocimeter) with 

integrated pressure transducers also equipped with an external PT, OBS and battery 

pack (PUVC). The head o f the A D V s and co-located sensors were mounted 0.2 m above 

the bed (Figure 6.3). This configuration enabled observations o f pressure p, cross-shore 

current u and alongshore current v in burst logging mode. Two fi-ee-standing stainless 

steel mobile rigs were used to mount the equipment (Figure 6.3), enabling the ability to 

adjust the rig position between low-tides in case o f morphodynamic re-configuration o f 

the rip system and well as for ease o f deployment and recovery (for data download and 

adverse conditions). Deployment occurred between tides 3 and 9 within the region, X = 

650 m, y = -800 m (Figure 6.2). 

The instrument rigs were located in the feeder flow at the bar edge to the north o f the 

T W R and in the rip channel adjacent to the TWR. The extent o f the spring/neap tide 

range variations in this region means that only a small window is available in which 

instruments can be deployed and recovered to the required depth, after which they are 
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Figure 6.2 - Combined resuUs of the inter-tidal morphology (RTK.-GPS survey, LT3) and 

nearshore bathymetry indicating the instrument positions. PUVC positions where moved 

landward during LT7 due to the reduction of the spring tidal range, enabling access for post-

experiment recovery during LT9. Contours indicate beach surface elevation relative to 

Ordnance Datum Newlyn (mODN), Back contours indicate the approximate minimum low 

water elevation during deployment (-2.5 m) and mean sea level (0 m). Background example 

rectified Argus video image taken during the survey indicates typical wave breaking and 

dissipation patterns (bar configuration) within the surf zone during a spring low-tide. 

inaccessible without a inshore vessel for the subsequent lunar cycle, during which 

period they present a hazard to bathers/surfers and are vulnerable to storm damage and 

burial. Wi th this in mind PUVC positions were moved landward during LT7 due to the 

reduction o f the spring tidal range, enabling access for post-experiment recovery during 

LT9 (Figure 6.2). 

A certain amount o f processing o f the A D V current data was required to generate a 

dataset that was suitable for analysis. Once collected, calibration constants were set for 

each sensor as well as sensor offsets for the deployments (taking into account 

redeployments o f rigs). The raw A D V velocity data (v, w and w) was then quality 
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Figure 6.3 - Free-standing mobile instrument frame (one of two) showing Nortek Vector 

3D - Acoustic Doppler Velocimeter (ADV), Pressure Transducer (PT) and Optical Back 

Scatter probe (OBS). Image on left indicates sensor elevations above the bed. Bottom image 

shows instrument frame deployment. 

checked by filtering using minimum amplitude and correlation cut-offs that are set as 

minimum data quality standards. The filtered data was then despiked removing outliers 

exceeding two standard deviations f rom the mean. Once the quality checking procedure 

was completed tide, wave and current statistics were calculated and the data records 

from the ADVs were combined with the TWR data and separated into individual tides 

for analysis. Additional processing o f the TWR data required correction for depth 
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attenuation. A l l sensor records were visually inspected before and after quality checking 
and despiking to ensure that all sensors were functioning correctly and that only poor 
data was removed prior to data analysis. 

6.2.2.3 Lagrangian GPS drifters 

Lagrangian flows in the nearshore were measured using GPS drifters similar to the 

design o f Schmit (2005) and MacMahan (2009b). Drifters were constructed o f a 10 cm 

UPVC buoyancy cylinder, 0.4 m in height, mounted on a circular plywood dampener, 

reducing vertical motions and surfing effects. Ballast was added through the addition o f 

a steel bottom plate to maintain the water level at the base o f the 0.7 m mast which was 

aff ixed to the top o f the central buoyancy cylinder (Figure 6.4). Low-cost, hand-held, 

L I (1575.42 M H z ) Global Positioning Systems were used to track the drifter positions, 

specifically using a Dolorme Earthmate Blue Logger (DEBL) GPS encased in a 

waterproof Otterbox attached to the base o f the mast. The external GPS patch antenna 

was fixed on a 7 cm diameter aluminium disk, acting as a groundplane, on top o f the 

mast to reduce the effects o f multi-path. The DEBL has both internal battery and data 

logger allowing for the recording o f 5400 positions including carrier phase information 

(MacMahan et al., 2009a; MacMahan et al., 2009b) which amounts to a potential 

deployment period o f --3 hrs at the maximum sampling rate o f 0.5 Hz. The positional 

accuracy was increased through post-processing GPS location data using a fixed, high-

precision Trimble 5800 RTK GPS base station (1-2 cm horizontal accuracy). Af te r 

investigation, MacMahan (2009b) stated the position error for dynamic surveys using 

this configuration to be 0.4 m and the velocity error on land relative to a survey-grade 

system was 0.01 m s ' . MacMahan (2009b) also conducted experiments combining 

drifter and dye releases indicating that drifter observations are valid Lagrangian 

estimates as well as comparing well with stationary in-situ observations (MacMahan et 

al., 2008). The positional data were quality controlled to remove erroneous points 

(greater than 3 velocity standard deviations f rom mean), and gaps in the time series 

were interpolated linearly when greater than 10 s and spline interpolated for gaps less 

than 10 s, consistent wi th surf zone drifter observations by Spydell et al. (2007). 

12 drifters were constructed for this experiment (Figure 6.4) and were released in 

groups o f 4. During the experiment period a deployment area boundary was 

implemented that surrounded the rip system, approximated by the dashed box indicated 

in Figure 6.1. Treated as 'soft* boundaries, drifters were retrieved once they passed 
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Figure 6.4 - Picture (right - not to scale) and diagram (upper left) of the inexpensive surf 

zone drifter that the GPS was deployed on. The main body buoyancy is built of upvc tube 

and welded end caps on top of a round, flat, plywood (marine) disk to dampen and prevent 

surfing. Below this a steel plate acts as ballast. The design is based on that of (MacMahan et 

al., 2009b; Schmidt et al., 2005). 

through these lateral boundaries or washed up onto the shoreline and then re-released as 

clusters o f four wherever possible. Drifters exiting the surf zone offshore were collected 

once they were judged to have permanently left the influence o f the rip circulation. Due 

to the proximity o f the lifeguarded bathing zone to the north o f the experiment these 

limits had to be strictly adhered to for safety reasons. Drifters were deployed during 5 

low-tides (LT3, LT5, LT7, LT9 and LT13). No deployment occurred during low-tides 

10-12 due to the onset o f energetic wave conditions l imiting the ability to manually 

recover the drifters. 

Drifter deployments occurred during the low-tide period when the rip currents were 

observed to be active over the low-tide bar/rip morphology. Deployment durations 

ranged fi-om 46 to 199 minutes covering both ebb and flood transitions through the low-

and mid-tides. Typical wind speeds during drifter deployments were approximately 2 m 

s"' with a maximum o f 6 m s'\ MacMahan et al. (2008) experienced similar wind 

speeds to this study and assuming wind slippage is similar to that o f Murray (1975), 
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Figure 6.5 - Photograph (above) of GPS drifters in the surf zone during the experiment. 

Drifters circled in black, with waterline at the base of the mast. Photograph (below) 

manpower required to safely conduct the experiment without PWC assisted pick-up. 

w ho had used a similar drifter with a longer mast o f the same diameter, they estimated 

the maximum biased error for the experiment to be 0.06 m s ' . The drifter design proved 

robust with no losses or breakages during the experiment. 

6.2.2.4 Remote imagery 

A n Argus video monitoring system, maintained by the University o f Plymouth, was 

present at the Perranporth site. Images were collected at 30 minute intervals and 

provided rectified time-averaged plan views o f the study area indicating regions o f wave 
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breaking, providing qualitative information on bar configuration and wave dissipation 
(especially at the rip head). 

6.3 RESULTS 

6.3.1 Tide and wave climate 

The experiment was conducted over the peak spring tide period and tidal ranges were in 

excess o f 5.5 m (Figure 6.6). Significant wave height and peak period were 1-2 m and 

7-12 s, respectively and were similar at both offshore and inshore locations, which is 

indicative o f swell conditions. Between 04/08 and 05/08, Tp reduced sharply as strong 

N W winds caused local wave generation accompanied by an increase in / / , observed to 

be wind wave dominated (Figure 6.6). A significant swell wave event occurred between 

the 5^ and 7* August (H 

smax ~ I '9 m j Tpmax 12.5 s) during which time no equipment 

was deployed. The mean wave direction was -19** (south o f shore normal), except for 

during periods o f local wave generation when it was - 0 ° (Figure 6.6). Although the 

swell waves approached slightly oblique to the shoreline, reflection due to the local 

bathymetry between the DWR and the shoreline created near-normal incidence and 

resulted in relatively weak net alongshore currents, although alongshore currents 

associated with rip circulation were present. The experiment period experienced 

diminishing tidal ranges throughout f rom a spring-tide peak during LT3 o f 6.35 m 

(Table 6.1). 

6.3.2 Morphology and bathymetry 

Morphological change, monitored throughout the experiment, was deemed insignificant 

in context o f its effect o f rip channel morphology. Due to the decreasing tidal range, 

collecting comparative surveys o f die exposed inter-tidal region o f the rip morphology 

at low-tide was not possible. A detailed bathymetric survey was conducted on the 8*̂  

August after previous attempts to survey the bar/rip morphology around the study 

region were aborted due to poor wave conditions. Representative bathymetry f rom here 

in is compiled from a detailed survey conducted during the largest spring tide on 2"^ 

August merged with the bathymetry collected on the 8^ August as presented in Figure 

6.2. 

6.3.3 Eulerian flow observations 

A range o f statistical hydrodynamic parameters was computed from the 2048 samples 

(-8.53 min) collected every 10 minutes (Figure 6.7). The in-situ instruments were 
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Figure 6.6 - (Top) Tidal elevation record from a UoP prediction model (grey) and the 

TWR (black); (below) Wave record from the DWR (grey) and TWR (black), showed 

measured values for significant wave height {H^, Tp) and wave direction relative to shore 

normal. The DWR is located --1 km from the shore in 10 m water depth. 

deployed below the M L W S elevation and water depth over each tide varied between 0.5 

and 7.5 m (Figure 6.7). The offset in water depth after the data gap during the 4'*' 

August is due to a shoreward relocation o f the mobile rigs (PUVCs). //$ at all instrument 

locations was typically - 1 m during high-tides and increased to a maximum -1.8 m 

during 4"" August at the bar crest (TWR) position. Wave height was cleariy modulated 

by water depth, consistently decreasing during low-tide (sensor within the surf zone). 

This is more apparent on the bar than in the deeper rip and feeder rigs as the sensor was 

dry at spring low-tide. 

Several field studies have demonstrated that a dimensionless parameter for local relative 

wave height is useful when describing wave energy and wave breaking characteristics 

wi th in the surf zone. Thornton and Guza (1982), amongst others, illustrated the 

relationship between root-mean-squared wave height {HRSIS) and local water depth, 

termed the attenuation coefficient, <y>. The parameter <Yb> = Ht^t is widely used as 
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Table 6.1 - Wave and tidal observations during the experiment where / / , is mean significant 

wave height, Tp is peak period, and 6 is mean wave direction from the DWR (1 

predicted tidal range associated with the tide number. 

1 W n • t m h A w — 
H. rp e n 

un nuiTiOGr (m) (s) (') (m) 

3 0.83 B.3 274 6.35 

5 0.B4 9.1 280 6.2 

7 1.31 7.1 286 5.97 

9 1.32 9.1 272 5.47 

13 0.85 9.1 271 4.12 

breaking criterion (Osborne and Greenwood, 1992). Values f rom field and laboratory 

work in literature range widely, largely driven by the dependence on beach slope due to 

hydraulic hysteresis, allowing waves on steeper slopes to break in shallower water 

(Galvin, 1968). Hence <Yb> increases with steeper slopes and decreases with increasing 

wave steepness. As well as indicating the point o f wave breaking and saturation, <y> 

can also be used across the inner surf zone to describe surf zone characteristics and 

energy dissipation (relative contribution o f unbroken, breaking, unsaturated wave and 

saturated bores) as H/h is predicted (Keller et al., 1960; Vincent, 1985), and has been 

observed in the field to increase shoreward (Vincent, 1985). On a quasi-planar beach, 

this enables the use o f H/h as an indication wave breaking and o f cross-shore location 

within the surf zone. H/h was used here to provide a spatial and temporal context for 

the comparison o f wave breaking characteristics during the experiment. Values for 

relative wave height {Hs/h) suggest that wave breaking occurred at all instrument 

locations during low-tide {H/h > 0.4^, although at the rip rig (PUVC2) minimal 

breaking occured during LT4 and LT5. Observed values for relative wave height at all 

locations increase inversely to water depth with PUVC2 reaching a maximum during 

LT3 and LT4 o f - 1 m. Truncated values for T W R position are due to sensor elevation 

relative to the low-tide level. After shoreward movement o f PUVCI during LT5, 

pressure observations indicate sensor drying (0.2 m above bed) during the LT8 

elevation minima. 

Analysis o f the f low velocity data from the 2 mobile instrument rigs shown in Figure 

6.8 indicates significant tidal modulation o f the currents with maximum flows around 

low water at both PUVC rigs. Mean cross-shore flows {u) are generally offshore and 
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Figure 6.7 - Summary of statistics of measured sea surface elevation from the in-situ 

instruments at 10 minute intervals. (Top) Mean water depth above the instrument position. 

(Middle) Significant wave height, (Bottom) A measure o f relative local relative wave 

height, Hs/fh The dashed line on bottom panel at H/h > 0.4 indicates approximately value for 

the onset of wave breaking (Thornton and Guza, 1982). 

reach -0.5 m s ' , whilst cross-shore orbital velocities are 0.5-1.5 m s ' . Mean alongshore 

currents (v) were recorded up to 0.5 m s"' to both the north and south with maximum 

orbital velocities o f 0.6 m s '. Due to the circulation around the bar/rip, f low was not 

always directed in either a cross- or alongshore direction so the mean return speed Ur 

was computed as ( = -\/w^ + v ^ ) . Maximum values o f Ur where recorded up to 0.7 m s"' 

and coincided wi th the lowest tidal stages. 

Histograms in Figure 6.9 show 8.5 min mean cross- and alongshore current velocities 

throughout the entire experiment for both PUVC instrument rigs. The feeder rig 

( P U V C l ) observed 4 1 % offshore directed cross-shore velocities and 5 1 % northward 

directed alongshore velocities during the experiment. The rip rig (PUVC2), as expected, 

observed an increased percentage o f offshore-directed cross-shore velocities at 44% and 
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Figure 6.8 - Summary of statistics of measured flow from the in-situ instruments at 10 

minute intervals for the rip (PUVCl) and feeder (PUVC2) locations. (From top) Water depth 

h; mean cross-shore flow velocity (u), positive onshore; maximum cross-shore orbital 

velocity U„; mean longshore flow velocity (v), positive north; maximum longshore orbital 

velocity and Ur mean retum speed. Numbers in the upper panel indicate the low tide 

number LT4 is missing due to an instrument failure. 
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a reduced number o f northward directed alongshore velocities at 47%. The large 
proportion ( - 5 0 % in cross-shore; - 3 0 % in alongshore) o f velocities - 0 m s * at both rigs 
represents the high-tide periods where instruments are in deep water and the rip current 
was inactive. 

Comparison o f mean return flow Un and significant wave height Hs wi th water depth h 

was investigated for the flood and ebb tide phases. Figure 6.10 shows that this 

phenomenon was not apparent during the experiment. In fact, Ur was consistently 

greater on the flood tide at both r ig locations. This appears to be matched by higher 

flood values o f Hs up until the point o f breaking, after which values for Hs are similar 

for both flood and ebb tides. Measured values for Hs/h at the point o f breaking are 

consistent wi th the adopted threshold o f 0.4. Interestingly, observations o f Ur^om both 

rigs indicate a reduction in velocity f rom -0.5 m to 0 m. 

6.3.3.1 Rip scaling 

The rip flow velocity is clearly dependant on the tidal elevation. In this study, observed 

mean cross-shore currents begin to increase in the offshore direction once a threshold 

depth o f -3 m is reached, and although more variable in direction, the alongshore 

currents also increase below this threshold. As described previously, this is a 

phenomenon that has been observed during previous field investigations (Aagaard, 

1997; Brander, 1999; Brander and Short, 2001; MacMahan et al,, 2005; Sonu, 1972) 

over a range o f morphologies, wave forcing and tidal elevations. The variety o f wave 

and tidal conditions experienced during the experiment has indicated the existence o f a 

relationship between wave energy and water depth within the studied rip system. The 

calculation o f a dimensionless measure o f rip current velocity (Froude number), 

introduced by Haller (2002) and MacMahan (2005) 

^r=uJ4^i (6.1) 

where Ur is the mean return speed, g is gravity and h the local water depth, when 

assessed as a function o f the local relative wave height Hs/h, parameterizing the forcing 

intensity, enabled the assessment o f rip current velocities under variety o f wave and 

tidal conditions. The dimensionless rip current velocity was observed to have a good 
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Figure 6.9 - Histograms of 8.5 min mean velocities of; (top) cross-shore, onshore directed; 

and (bottom) longshore, northward flows from the rip (PUVCI) and feeder (PUVC2) 

instmment locations. Measurements represent observations from LT(3, 4, 5. 7 and 8). 

linear relationship with the relative wave height H/h wi th values o f 0.59 and 0.73 for 

PUVCI and PUVC2, respectively (Figure 6.11). Note the relative wave height has been 

computed using the significant wave height and water depth as measured on the bar 

crest rather than the offshore wave height as used by MacMahan et al. (2005); however, 

the wave height on the bar crest and at the DWR in 10 m water depth are very similar. 

A n alternative scaling o f the rip velocity was suggested by Brander and Short (2001) as 

(6.2) 

where hhi is the water depth at high tide. This scaling, which normalizes the rip speed 

with the wave steepness, provides a similar result to the Froude scaling and offshore 

directed current observations, with the rip speeds increasing significantly below h/hht -

0.5, from mid-tide, peaking at the minimum tidal elevation {h/hht - 0.1) (Figure 6.12). 
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Figure 6.10 - Return flow velocities Ur during the flood and ebb tides (top) for feeder and 

rip rigs (PUVC I and 2 respectively). (Bottom) Comparison of observed significant wave 

height Hs during the flood and ebb tides. Data are observations from entire deployment. 
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Figure 6.11 - Scatter plots of (top) mean cross-shore current and (middle) mean longshore 

current vs. water depth; and (bottom) Froude number vs. relative wave height on the bar 

crest indicating linear fit. 

U/(H n̂-p) = 2.0 exp(-1.7(Wĥ )l 

Figure 6.12 - Plot illustrating the relationship between mean rip return flow, non-

dimensionalised by wave steepness {H/Tp). Curve represents the exponential relationship of 

rip velocity scaling from Brander and Short (2001). 
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6.3.3.2 Bathymetric non-uniformity 

The strong linear correlation between Ur and / / / / i observed in this study suggests that 

the modulation of the intensity of wave breaking on the bar crest has a significant 

control on rip current strength (SONU, 1972). Therefore, it can be hypothesized that the 

variation in alongshore wave breaking intensity should give some indication of rip 

current activity. With an established link between wave breaking and water depth, it 

follows that a measure of the alongshore variation in depth (morphological elevation) 

throughout the nearshore, could be a controlling factor in rip current activity. 

Alongshore bathymetric non-uniformity (Feddersen and Guza, 2003) is the alongshore 

depth variance, Oh{x\ defined as 

where z{x,y) is the bottom elevation, z{x) is the alongshore mean cross-shore profile, Ly 

is the alongshore integration distance and dy the alongshore grid spacing. Data from the 

RTK-GPS inter-tidal beach and bathymetric surveys and are used to compute Oh{x). 

The cross-shore profile envelope and distinct maxima in the alongshore depth variance 

can be seen in Figure 6.13. Maxima correspond to the nearshore incised bar/trough 

morphology associated with the instrument locations at X -630 m and the outer extent 

of the rhythmic bar system associated with the seaward extend of the surf zone during 

the experiment (// , ~ l m) at X -730 m. An estimation of the theoretical break point 

locations and cross-shore excursion throughout a tidal cycle were calculated following 

the empirical breakpoint criterion (Sallenger and Holman, 1985): 

<X,) = 0.3 + 3.2tan/9 (6.4) 

where tan/? is beach slope (tan/? = 0.017) giving a breaker index ( j ' j ) = 0.36. Assuming 

a significant wave height of I m (approximate for study period) breaker depth can be 

calculated as /f/, = HJ{y^) = 2.8 m. The calculated breakpoint excursion throughout the 

tide extends --400 m to X -720 m. Cross-shore velocities from the rip rig indicate that 

rip activation occurs below -3 m water depth (-1 mODN). Under these theoretical 

conditions, it is clear that the onset of rip activity occurs in association with wave 
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Figure 6.13 - Alongshore bathymetric variability: (top) cross-shore profile envelope (grey) 

and mean profile (black) occurring within the study region; (bottom) alongshore bathymetric 

non-uniformity, Oh^x). Shaded regions represent the approximate breakpoint excursion (Hs = 

1 m) using the empirical relationship <Yb> = 0.3 + 3.2tanp from Sallenger and Holman 

(1985), during the highest and lowest tidal elevations during the study period. Darker 

shading indicates the region in which the rip current was typically active (z < - I mODN). 

breaking at the shoreward maximum in alongshore depth variance extending to the 

seaward maxima (rhythmic bar) at the low-water extreme, where wave breaking occurs 

on the rip head bar in conjunction with an observed temporary decrease in mean return 

flows. 

6.3.4 Lagrangian GPS drifters 

Lagrangian observations obtained using GPS drifters enabled a synoptic assessment of 

rip circulation patterns and velocities over the larger spatial extent of the system than 

the in-situ Eulerian observations. Observations provided an insight into the temporal 

variation of the rip current circulation patterns and tracked drifter trajectories within the 

surf zone. 

239 



Chapter 6: Rip current dynamics and hazards 

6.3.4.1 Mean circulation 

To enable the calculation of a mean circulation pattern the spatial extent of the 

nearshore was split into 10 m x 10 m bins and the drifter observations during each low-

tide deployment (LT3, LT5, LT7, LT9 and LT13) averaged within each bin. A drifter 

was considered as an independent observation when within a particular bin. I f a drifter 

re-entered the same bin, it was considered a new independent observation i f / > Ig/Uhad 

elapsed, where Ig is the length of the bin and U is the average speed for all drifter 

observations in that bin. Bins with at least 5 independent observations were considered 

statistically significant (Spydell et al., 2007). 

It is clear from Figure 6.14 that a large rotational rip current circulation was present 

within the surf zone during the course of the experiment with cross- and alongshore 

length scales of -200 m. The rip circulation was counter-clockwise and traveled 

offshore through the surf zone under an angle to the south until reaching the seaward 

breaker line. The flow then turned alongshore for -75 m before returning through the 

surf zone over the shallow intertidal bar at approximately [X, Y] = [650 m, 750 m]. 

There were several points in the circulation pattern where drifters would exit the surf 

zone to seawards, be ejected into adjacent rip systems or meander in very shallow water 

to landwards. For all tides, except LTI3 (07/08/08), the rotational eddy was observed to 

be present with varying degrees of persistence and velocity. LT5 and LT7 exhibited the 

most developed circulation cells with mean velocities indicating high levels of surf zone 

retention and only a few surf zone exits. LT9 and LT13 appear to be dominated by 

alongshore current movement with very limited significant surf zone eddy circulation 

observed during the deployments. 

The mean significant flow speeds (per tide) recorded by the surf zone drifters from 

within the rip current circulation are within the range 0.01-1.27 m s * with the 

maximum tide integrated speeds recorded during LT5 and LT7, which were the tides 

associated with the most intense rip circulation. Modal drifter speeds during the 

experiment ranged from 0.3-0.5 m s ', peaking at 0.55 m s ' during LT7. Mean return 

speeds are comparable with the mean rip return speeds recorded by the in-situ 

instrumentation (0.35-0.4 m s ' ) , but there is a greater proportion of higher speeds and 

lower speeds (Figure 6.15). This is probably due to the higher number of spatial 

observations recorded by the drifters in the region of maximum and minimum 

circulation compared to the single points of current measurement intentionally deployed 
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r i j»ure 6.14 - Mean drifter velocity observations for each deployment (LT3, LT5, LT7, 

LT9, LTI3 chronologically). Scaled vectors represent drifter velocity direction and strength. 

Each vector represents mean independent drifter observations (n) within 10 m x 10 m bins. 

Red vectors represent statistically significant velocities (n > 5). Beach morphology and 

bathymetry are contoured in the background (08/08/08 bathymetry) along with a rectified 

video timex image showing wave breaker intensity. 
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Figure 6.15 - Comparison of Eulerian and Lagrangian drifter speeds Ur. Mean rip current 

speeds at PUVCI (top) and PUVC2 (middle) during periods when the rip current was active 

(T) < -\ mODN). (Bottom) Rip speed from the statistically significant mean drifter 

circulation during periods when drifter and in-situ instruments were synchronous. 

within the feeder and rip channels. With a limited morphological variation it is clear that 

variations in circulation pattern are driven by changes in the wave and tide conditions. 

6.3.4.2 Circulation pattern classification 

A variety of drifter track behaviors was observed during the experiment. In order to 

understand the dominant behavior of released drifters during each deployment, 

circulation patterns were divided into 6 categories (Figure 6.16; Table 6.2): (1) Wash-

up, where dominant motion of drifter is shoreward, washing up on the shoreline; (2) 

Meandering, where drifter paths follow no significant circulation and meander around 

the inner surf- and swash-zone at low speed; (3) Alongshore, where subsequent to 

release drifter travels alongshore, without circulating or moving offshore within the rip 

circulation; (4) Rotation, where drifter tracks indicate rotational (including offshore 

directed) trajectories associated with the rip current cell circulation; (5) Exit, where a 

track exits the surf zone through the rip neck; and finally (6) Exit and re-entry, where an 

exiting drifter subsequently, possibly through Stokes drift and/or wind slippage, re­

enters the surf zone. The number of cycles within the surf zone was calculated for those 

that entered the rip circulatory system (Rotation and Exit). Rotational rip current tracks 
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Figure 6.16 - Examples of drifter track classifications. 
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Table 6.2 - Statistics of drifter track classifications during each deployment. Duration is lime 
between release of first and last drifter in each deployment. Mean and max cycles represents the 
number of ftill cycles of the rip system on a single release (only includes those drifters within the 
rotation class). 

LW number Duration Wash-up Meandering Alongshore Rotation Cycles 

min % % % % % exit mean max 

3 46 3.85 7.69 69.23 19.23 3.85 1 2 

5 144 10.26 2.56 0 79.49 23.07 2.96 10 

7 146 25 3.13 3.13 59.38 18.75 6.63 24 

9 120 4.26 8.51 78.72 6.38 2.13 4.67 9 

13 199 20 7.5 70 2.5 2.5 0 0 

dominated the circulation for LT5 and LT7 (79% and 59% respectively), with 

alongshore tracks dominating for LT3, LT9 and LT13 (69%, 79% and 70% 

respectively). During LT5 and LT7 when the most significant rip cell vortices were 

observed, surf zone retention was high, with mean cycles per drifter within the rip 

current of 3 and 6.6 for LT5 and LT7 respectively. In some cases the drifters would 

exceed 10 cycles over periods greater than 45 minutes. A maximum of 24 cycles was 

observed during LT7. Although this aids the understanding of the characteristics of the 

specific rip current circulation over a period of time, the key question is: what is the 

effect of tidal modulation on these observed rip circulation behavioral patterns? 

Hydrodynamic conditions for each drifter deployment are summarized in Table 6.3. 

6.3.4.3 Tidal modulation of circulation pattern 

In order to investigate tidal modulation of rip circulation, Lagrangian drifter 

observations for each deployment were divided into elevation bins of 0.5 m. An 

unbroken tidal record was required. The fixed in-situ TWR provided the most accurate 

sea-surface elevation record in the surf zone. This record had data gaps during extreme 

low-tides, during which the sensor was dry, therefore the predicted tidal curve for 

Perranporth was considered. A cross-correlation of the predicted and measured record 

shows a high correlation with a lag of -20 mins (Figure 6.17). The offset predicted 

record was subsequently used to simulate the missing data. Drifter tracks were 

categorized into designated elevation bins associated with their release times. For 

illustration, tracks were classified into one of three behaviors; wash-up/meander; 

alongshore; and rotation/exit. Video images represent those captured during the 

associated elevation period. 
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Figure 6.17 — Comparison of predicted and measured sea-surface elevation. (Top) predicted tide 

(grey) and measured surface elevation, tj (black). A consistent lag on the falling limb of the tide 

can be seen in the TWR data. Lag is also observed on the rising limb to a lesser extent. (Bottom) 

The cross-correlation function of the time series in the upper panel indicating a negative lag of 20 

mins (dotted line). 

Table 6.3 - Summary of hydrodynamic conditions observed during drifter deployments at a 

water depth of 10 m. Shoreline orientation is 293°. 

LW number 

3 

5 

7 

9 

13 

(m) 

0.83 

0.84 

1.31 

1.32 

0.85 

(s) 

8.3 

9.1 

7.1 

9.1 

9.1 

n 

274 

280 

286 

272 

271 

(m) 

6.35 

6.2 

5.97 

5.47 

4.12 
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L T 3 (02/08/08) 

Dominated by small swell waves ( f / , = 0.83 m; Tp = 8.3 s) and large spring tides (A;/ = 

6.35 m), alongshore drifter movement dominated during a deployment (46 mins) that 

did not include the extreme low-tide. Wave angle in 10 m depth is -19 degrees to shore 

normal. Elevations between -1 and 0.5 mODN were captured. Video images indicate a 

reduction in wave breaking on adjacent bars as tidal elevation increases, accompanied 

by a reduction in rotational drifter tracks. Alongshore movement was the only behavior 

between -0.5 and 0.5 mODN. Rotational tracks associated with rip current activity only 

occurred between - I to -0.5 mODN (Figure 6.18). 

L T 5 (03/08/08) 

Under similar conditions to LT3, small swell waves dominated the deployment (// , = 

0.84 m; Tp = 9.\ s) during large spring tides (Atj = 6.2 m). Wave angle in 10 m depth is -

13 degrees to shore normal. Deployment spanned the ftill extent of the low-tide (144 

mins). Elevation fi-om -3 to -0.5 mODN were entirely dominated by a highly retentive 

rotational rip current vortex accounting for greater than 80% of drifter circulation 

patterns with a mean and maximum of 3 and 10 cycles, respectively, during the 

deployment. No evidence of the presence of an alongshore dominant current was 

observed. Between -2 to - I mODN a reduction in rotational behavior occurred ending in 

100% wash-up/meandering beUveen -1.5 and - I mODN. A reduction in wave breaking 

over the bar/rip system was observed simultaneously to the observed reduction in 

rotational behavior. Of the rotational tracks, 23% exited the surf zone at some point. 

L T 7 (04/08/08) 

The deployment during LT7 extended throughout the ebb and flood limbs surrounding 

the low-tide stand (deployment of 146 mins) with a spring tidal range of A;/ = 6 m With 

an increase in wave height and reduction in period {Hs = 1.31 m; Tp=l.\ s) with a wave 

angle of -7 degrees from shore normal. Rotational circulation dominated throughout 

with only 3% alongshore tracks. The deployment observed tracks between tidal 

elevations of -3 to -2 mODN. High levels of surf zone retention led to rotational track 

cycling 6.6 times on average with a maximum of 24 cycles during one release, retaining 

the drifter for 153 mins. Of the rotational tracks 18.8% exited the surf zone at some 

point. Evidence of a smaller counter circulation to the north was observed. 
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LT9 (05/08/08) 

After LT7, tidal ranges began to significantly reduce. An increase in wave period 

signaled the onset of a higher energy wave climate (//, = 1.32 m; Tp = 9A s) with wave 

angles increasing to -21 degrees from shore normal. A 120 min deployment during the 

low-tide period covered a single tidal elevation bin of -2,5 to -2 mODN. During this 

deployment, 79% of tracks were classified as alongshore (to the north) and only 6.3% 

entering a rotational behavior. Wave breaking (observed on the associated video image 

indicates) occurred predominantly on the seaward extent of the rhythmic longshore bar, 

including in the rip head. 

LT13 (07/08/08) 

Deployment during LTI3 occurred during low-energy swell waves (//, = 0.85 m; Tp = 

9.1 s), after a period of higher energy waves, before which the instrument rigs were 

decommissioned (LT9). The mean wave angle was -22 degrees to shore normal in 10 m 

water depth. Alongshore track behavior to the north dominated (70% of releases) during 

the 199 min deployment, with only one release indicating a rip circulation between tidal 

elevations -2 and -1.5 mODN that exited the surf zone immediately. The smaller tidal 

range led to little or no morphological isolation of rip channel and adjacent shoals at 

low-tide. 

Significant variations in drifter track behavior were observed during varying tidal 

elevation. Strong rotational behavior, associated with rip current vortices within the surf 

zone, was observed to be more prevalent during low-tidal levels, particularly during 

tidal elevation of less than -2 mODN. The reduction of tidal elevation led generally to 

increased wave breaking over the adjacent bars and particularly wave breaking in the rip 

head on the low-tide. On the lowest tides, the reduction in tidal elevation increasingly 

isolated the rip circulation morphologically. Significantly, the bar to the north begun to 

dry below -2 mODN, constricting alongshore current flow. 
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Figure 6.18 - Drifter tracks for LT3 (02/08/08), separated into 0.5 m sea-surface elevation 

bins. Colours represent associated behavioral classification. Background rectified video 

image represents nearest capture to the bin midpoint. 
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Figure 6.19 - Drifter tracks for LT5 (03/08/08), separated into 0.5 m sea-surface elevation 

bins. Colours represent associated behavioral classification. Background rectified video image 

represents nearest capture to the bin midpoint. 
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Figure 6.20 - Drifter tracks for LT7 (04/08/08), separated into 0.5 m sea-surface elevation 

bins. Colours represent associated behavioral classification. Background rectified video 

image represents nearest capture to the bin midpoint. 
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Figure 6.21 - Drifter tracks for LT9 (05/08/08), separated into 0.5 m sea-surface elevation 

bins. Colours represent associated behavioral classification. Background rectified video 

image represents nearest capture to the bin midpoint. 
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Figure 6.22 - Drifter tracks for LT13 (07/08/08), separated into 0.5 m sea-surface 

elevation bins. Colours represent associated behavioral classification. Background rectified 

video image represents nearest capture to the bin midpoint. 
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6.3.4.4 Environmental controls of mean rip circulation and dynamics 

To gain an insight into mean rip current circulation and dynamics under various wave 

and tidal conditions, all collected Lagrangian drifter observations were integrated using 

the dimensionless parameter of the local relative wave height Hs/h. Ms and h were taken 

fi-om the bar crest TWR, approximately adjacent to the rip neck, giving an appropriate 

scale of wave forcing. Gaps in Hs/h record (water depth on bar crest < 0.3 m) during the 

low-tide stand were linearly interpolated. 

Drifter track classifications 

Separated into Hs/h bins of 0.5, deployments cover the range 0.2 to 0.8. Figure 6.23 

details combined tracks from LT3, LT5 and LT7 (deployments with simultaneous in-

situ measurements). From the data available during these deployments for the rip 

current system under study, it is clear that rip current activity is related to local relative 

wave height. The observed rip current eddy circulation begins to be active at Hs/h - 0,4 

where a combination of rotating and alongshore drift was observed. Values greater than 

0.5 were associated with dominant rotational track patterns, and values below 0.4 were 

characterized by alongshore drift, meandering and wash-up behaviors. Although data is 

limited, there is some evidence to suggest an isolation of the rip circulation occurs at 

values of Hs/h greater than 0,7. This is hypothesized to be a result of drying of adjacent 

bar crests and an increase in wave breaking in the rip head, isolating the rip into an 

apparent morphological 'hole'. This may explain the apparent reduction in mean return 

flow fi-om Eulerian measurement during the lowest tides as the drying bar crests 

indicate the seaward movement of maximum rip velocities toward the center of the rip 

vortex. Also, no surf zone drifter exits were observed while Hs/h was greater than 0.7. 

It is acknowledged that there is an apparent contradiction between the linear correlation 

between Fr and Hs/h illustrated in Figure 6.11 and the concept of a threshold to activate 

the rip current. This appears to be due to the use of Ur to calculate Fr therefore 

including the longshore current component of velocity. It is this longshore component 

which is observed to increase steadily, during the ebbing tide, prior to rip current 

activation in the form of surf zone generated alongshore current. The rip current 

activation Hs/h threshold then refers to the initiation of the rip current cell circulation 

observed in the drifter data. This explanation is supported by the PUVC2 (feeder) 

instrument rig, located in the longshore current prior to rip activation, showing a 

stronger linear correlation in Figure 6.11. 
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Mean circulation and rip speeds 

As a function of H/h, the combined mean rip circulations observed during L T 3 , L T 5 

and L T 7 , displayed in Figure 6.24, provided further insight into circulation dynamics 

and particularly drifter velocities and their spatial distribution. Mean flow velocities 

highlight regions in which spatially consistent flows were generated throughout the 

experiment during similar ranges of Hs/h. As established through the drifter track 

behaviors, the mean circulation scales with the local relative wave height, in this case 

indicating the spatial velocity distribution. Once the circulation is active at H/h > 0.4 

until H/h --0.7, the alongshore directed flow from the bar crest to the bar edge is 

consistently strongest with maximum velocities of 0.71 m s"' (0.5 < / / J / T J < 0.6) 

increasing to 0.85 m s * (0.6 < Hs/h < 0.7). Mean return speeds within the rip channel 

are initially strong at activation {0.5 < Hs/h < 0.6) reaching - 0 . 6 m s*' but as Hs^ 

increases to 0.7 southward directed alongshore velocities associated with the eddy 

transition from the rip head to bar crest [X, Y ] = [680 m, 750 m] and the northward bar 

crest to bar edge flow {X, Y ] = [620 m, 770 m] begin to dominate widi maximum 

velocities of 0.85 m s"'. Finally, the highest significant mean flow velocities were 

observed when Hs/h > 0.7 corresponding to the lowest tide levels where all parts of the 

rip circulation recorded significant mean flows of > 0.6 m s"' reaching a maximum of 1 

m s ' . 
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Figure 6.23 - Combined drifter tracks fi-om LT3, LT5 and LT7, separated into H/h bins of 

0.5. Colours represent associated behavioural classification: rotation (black); alongshore 

(blue); and wash-up/meander (red). Measured bathymetry represented in background. 
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Figure 6.24 - Observed mean Lagrangian rip circulation associated with each H/h bin 

(width 0.5). Red vectors represent significant velocities (> 5 independent observations). 

Colours indicate mean retum speeds associated with each 10 m x 10 m bin. Bathymetry is 

contoured in background. 
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6.4 DISCUSSION 

6.4.1 Rip current circulation and dynamics 

This chapter has presented results of a rip current experiment during typical wave, tidal 

and morphological conditions associated with summer (low-energy; mean Hs < \ m) 

accretionary conditions at Perranporth Beach, a low-tide bar/rip macrotidal west coast 

beach in the U K (mean annual - 2.5 m), classified following Short (1986) as a high-

energy beach. The low-tide region during the experiment was in a transverse bar/rip 

morphodynamic state (Wright and Short, 1984). The results have shown that, as 

traditionally associated with these beach morphologies in micro- and mesotidal regions, 

rip current systems are present within the low tide bar/rip morphological system at the 

study site. These morphologies are characteristic of many beaches within the region; 

therefore, associated findings suggest that qualitative observations of rip current flows, 

commonly associated with these beach morphological systems, have some validity. 

When at its most active during the experiment, the rip current system under 

investigation showed cross- and alongshore length scales of - 200 m. The rip circulation 

was counter-clockwise and traveled offshore through the surf zone, at approximately 

45° to shore normal towards the south, until reaching the seaward breaker line. The flow 

then turned alongshore to the south for - 75 m before returning through the surf zone 

over the shallow inter-tidal bar at approximately [X, Y] = [650 m, 750 m]. Although 

there was presence of a subdued rip feeder channel, much of the flow feeding into the 

rip channel was observed to come from the side of the bar. These rip dimensions fall 

between recent rip current investigations in low-energy systems where alongshore rip 

spacing was -125 m and surf zone widths were -ICQ m during experiments conducted 

by MacMahan et al. (2009a) in Monterey Bay, C A and 200 m and 120 - 150 m during 

experiments by Brander (1999) at Palm beach Australia and dimensions recorded within 

high-energy rip systems where rip spacing was 500 m and surf zone width was 400-500 

m recorded by Brander and Short (2000) in Muriwai, New Zealand. With mean and 

maximum Lagrangian flow velocities of 0.01-0.8 m s 'and 0.6-1 m s*' respectively, rip 

current speeds were, in general, of similar magnitude during the period of this study to 

previous low-energy rip current experiments mentioned above where / / , ranged from -

0.5-1.5 m and mean and maximum instantaneous rip flow velocities were of the order 

of 0.2-0.6 m s ' and 0.8-1.2 m s ' respectively (Brander and Short, 2000). 
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In contrast, this investigation used novel techniques for investigating Lagrangian rip 
current circulation patterns within a macrotidal environment. The recent development of 
low-coast GPS imits enabled the use of drifters to quantify rip circulation behaviour 
with an increased spatial coverage. Observations by MacMahan et al. (2009b) using this 
technique provided new insights about the behaviour of rip currents and surf zone 
exchange for open coast rip channeled beaches. They observed beach rip current 
circulation consisting of semi-enclosed vortices that retained material within the vortex 
center and remained within the surf zone. Their drifter observations support findings by 
Talbot and Bate (1987) that indicate that despite the large velocities in the rip channel, 
diatoms, pollution, and other floating material are only rarely transported offshore and 
are instead retained and concentrated within the rip current vortices inside of the surf 
zone. The present study lent more support to these findings where during periods of rip 
current activity strong rotational eddies were observed within the surf zone, which 
exhibited high levels of surf zone retention. Thus suggests cross-shore material 
exchange outside the surf zone was limited under the observed conditions. In the most 
extreme case a single drifter was retained within the rip current circulation for 24 cycles 
over a period of 144 min. During tides when the rip eddy circulation was the dominant 
drifter behavior, surf zone exits were - 20%. This exit rate is of the same order as that 
observed in recent drifter deployments in Monterey Bay, C A and True Vert, France 
where exit percentages of 20-30% were commonly observed (MacMahan et al., 2009b). 

It has been well documented that rip current velocities are modulated at the tidal 

frequency (Brander, 1999; Brander and Short, 2000; Brander and Short, 2001; 

MacMahan et al., 2006) explained by both a modification of the cross- and alongshore 

location of wave breaking as well as the variable effect of morphological constraint on 

the rip current channel flow. The effect of variable sea surface elevation during the 

present study, located within a macrotidal regime, was significant. Throughout the 

experiment, modulation of rip current dynamics and circulatory behaviour were 

quantitatively observed, in a macrotidal setting. The observed modulation is 

significantly more step-wise than previous observations of tidal modulation (e.g. 

Brander and Short, 2001) and indicates that in addition to the flow velocity modulation 

the rip is essentially being 'switched' on and off by tidal-frequency water level 

variations. In general, flow velocities increase with the falling tide from approximately -

I mODN from which point rip current flows were active during a 3-hour period around 

low tide. The maximum mean Eulerian flows were recorded at low water and were 
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directed offshore with peak velocities of -0.5 m s '. Alongshore flow velocities were of 
the same order of magnitude and also peaked at low water. No evidence of increased 
mean return velocities were observed during the ebb tidal phase, in fact a slight velocity 
increase on the flood phase was measured. 

Rip current speed, parameterized as a Froude number, scaled well with the relative 

wave height on the inter-tidal bar crest (r^ - 0.65). This suggests that wave breaking 

across the regions adjacent to the rip channels is necessary to drive the rip currents. An 

estimation of the break point location during the period of rip current activity (i; < -1 

mODN) indicated that wave breaking occurred over the region of maximum alongshore 

bathymetric non-uniformity associated with the low-tide transverse bar/rip morphology 

and maximum alongshore gradients in wave energy dissipation. 

Tidal modification of rip circulation behavior, as a function of local relative wave height 

over the bar crest, correlated well with in-situ velocities throughout the study period. 

Although initially velocity increases were associated with alongshore drifter behavior at 

HJh - 0.4-0.5, above this rip circulation surf zone vortices develop, fixed over the rip 

current morphology. As H/h increases to 0.8 (associated with a relative lowering of 

sea-level) the surf zone eddy becomes increasingly isolated with decreasing alongshore 

movements and increased surf zone retention until circulation is entirely confined to the 

surf zone with minimal cross-shore exchange. This suggests that although wave 

breaking over the rip morphology is driving the circulation, the local rip system 

morphology plays a significant role in combination with the tide in the temporal 

modification of circulatory behavior. 

To further quantitatively investigate the role of morphological constraint in the 

modification of the rip current a planar trend surface was computed and local 

bathymetry was de-trended identifying the residual bar/rip morphology. As the study 

region represented a section of a relatively wide flat inter-tidal zone, a planar surface 

performed better than a higher order surface. The resulting residual morphology, shown 

in Figure 6.25, clearly indicates the bar/trough configuration around the active rip 

current highlighting the seaward extent of the northern adjacent shore-connected shoal, 

which appears to merge with the offshore sub-tidal bar. Significantly, there is a 

relatively deep incised channel between these two regions of 
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F igure 6.25 - Morphological characteristics of the rip channel. (A) Residual morphology 

highlighting areas of positive (red) and negative (blue) relief; indicating the cross-section 

through the rip channel PI and transition to rip head P2 (white lines); and indicating in-situ 

instrument locations. (B) Cross-sections PI and P2 through the rip channel, PI indicates the 

profile used for derivation of the area available for rip flow Ar and the morphological area of 

the channel A^. (C) Temporal variation in the percentage of AMn,- Shaded regions indicate 

the periods of rip drifter deployment. 

positive relief, which constitutes the rip neck area. A dimensionless parameter 

representing the level of morphological constraint on the rip current neck was computed 

as a percentage of morphological cross-sectional area within the rip neck {Am) to the 

total cross-sectional area available for rip flow (Ar). An alongshore oriented cross-

section was located by the residual morphological peak over the rip bar (TWR location) 

at [X. Y] = [630, -720 m] and the northern extent of significant drifter data [X, Y] = [630, 

-1000 m] (Figure 6.25) A„, was calculated at the tidal elevation where both adjacent bar 

crests were dry ( x ] = -3.38 m) meaning that under these sea-level elevations the 

morphology must be a controlling factor if the rip is active. The lowest tide during the 

experiment was -3.1 m. At higher tidal levels, the morphological area is relatively 

insignificant when compared to the total area available for flow, so the morphology 

could be regarded as a less significant flow constraint. This parameter provides a means 
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to quantify the morphological control of the rip during changing tidal elevations. A 
timeseries of Arr, /Ar was generated for the whole experiment using constructed tidal 
record from the bar crest (Figure 6.25C). Interestingly, /.4r decreased rapidly during 
successive tides with the onset of smaller tide ranges (neap tides). 

To assess the relationship between mean Lagrangian rip circulation and morphological 

constraint drifter observations were classified in relation to their associated Am /Ar 

values. As expected. Am /Ar classified circulation characteristics (5% < Am /Ar < 45%) 

show significant relation to the underlying morphology (Figure 6.26). Circulation 

patterns show similar characteristics to Hs /h as both are affected by sea-level elevation. 

Circulation patterns defined by the morphological index show more defined structure 

suggesting the morphology may exert a stronger role on the specifics of vortex shape. 

As seen through the relation with wave breaking, there appears to be a critical Am /Ar 

threshold {Am /Ar = 15%) where rip circulation activates below which alongshore 

currents dominate. The active rip vortex center is consistently located at [X, Y\ [650, -

800]. Beginning with a strong alongshore dominance, the offshore flow through the rip 

neck becomes increasingly confined at higher values of Am /Ar, reducing the northerly 

alongshore flows and deflecting them offshore through the rip neck. Background 

residual morphology in Figure 6.26 indicates significant morphological control of flow 

through the well-defined rip neck. The strongest rip neck flows are located on the 

northern side of the incised channel. As Am /Ar increases the feeder channel area 

decreases and the rotational nature of the circulation (apparent vorticity) increases and 

reaches an observed maximum between 30% < Am/Ar< 35%, after which the rotational 

circulation appears to become increasingly isolated. 

Rip speeds relative to contributions of wave breaking and morphological control were 

calculated by defining feeder, bar and rip neck regions within which flow statistics 

could be extracted for each class. Defined rip regions, illustrated in Figure 6.27 were 

based on observed circulation/data limits which were well defined by residual 

morphological thresholds. Hs/h binned mean and maximum rip speeds for each region 

presented in Figure 6.28 show an increasing offshore directed Ur after rip circulation 

becomes active up to a mean and maximum of 0.57 m s ' and 1 m s"' in the highest 

recorded bin (0.7 < Hg/h < 0.8). Am/Ar also shows a critical activity threshold 
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Figure 6.26 - Mean Lagrangian rip circulation separated into AJAr classes. Shading 

indicates mean rip speed Ih within each spatial bin for all observations. Vectors (red) 

represent rip speed for those bins classified as statistically significant (> 5 independent 

observations). Residual bathymetry is contoured in the background. 
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{Am/A r> 10%) and mean and maximum rip neck speeds increase to a peak between 25% 
and 40% at 0.55 m s ' and 0.89 m s \ but reduce towards maximum Arr/Ar 
(40% < Am/Ar < 45%). Bar speed characteristics in relation to both Am /Ar and H J h show 
a similar trend to the rip neck region although onshore-directed bar speeds are generally 
higher than the rip neck under both cases when values are just above the critical 
activation threshold. At high values of both indices rip neck speeds are generally greater 
than over the rip bar region. 

This phenomenon is thought to be due to the complex roles of both wave dissipation 

and morphological constraint driven by sea-level elevation. Initially, before a critical rip 

activation depth threshold is reached, alongshore (named feeder in Figure 6.27) flows 

dominate, then as sea-level lowers past a threshold elevation, wave breaking over the rip 

bar drives alongshore set-up gradients initiating cell circulation. Initially the depth over 

the adjacent morphology is not sufficient to constrain and redirect offshore flows 

through the rip neck then subsequently, as the water level lowers, channelization of flow 

increases through constraint at which point the rip current vortex is most intense. As 

feeder area reduces and the rip bar becomes exposed the rip is increasingly fed directly 

through bar side drainage. Finally, at the lowest tidal elevations, the rip becomes 

increasingly isolated until the seaward migration of the surf zone leaves the rip bar crest 

dry and wave breaking on the sub-tidal bar and in the rip head reduced the alongshore 

set-up gradient and the cell circulation loses intensity and becomes a 'hole*, free of 

wave dissipation within the surf zone. 

During this study morphological flow constriction was tidally-modulated at the semi­

diurnal and spring- neap timescales. The overall morphological configuration of the 

nearshore bars and troughs varies at the seasonal and storm-event timescales. Brander 

(1999) describes this variation in terms of down-state morphological transitions during 

the accretionary phase of the Wright and Short (1984) model, during which there is a 

steady decrease in the cross-sectional area of the rip channel, infilling of the alongshore 

feeder channels and an increase in rip flows. It is clear that during this experiment the 

reduction in tidal elevation around low water acts conceptually in the same manner as 

the wide-spread accretion during beach state changes to maximise bar relief, flow 

chamielization and rip speeds at the semi-diurnal timescale. Further modulation of the 

rip occurs at the spring-neap timescale due to the reduction in tidal range from > 6 m 

during springs to < 3 m during neaps. The effect of this is two-fold in that it influences 
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Figure 6.27 - Definition of rip regions. (A) Indicates rip region area of interest in 

association with residual morphology. Residual morphology used as a rip neck boundary 

threshold. (B) Illustrates drifter bin allocation to each defined rip region. Black area indicates 

regions where insufficient data was available to calculate representative rip flows (rip head 

and northern shoal). 
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Figure 6.28 - Mean and maximum rip speeds Ur associated with rip neck (offshore-

directed), bar (onshore-directed) and feeder regions. Values are separated into H / f j (left) and 

AJAr (right) classes. Dashed lines indicate class boundaries. 
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both the dissipation and morphological control mechanisms. During the neap tide phase, 
greater water depths are maintained over the inter-tidal bars during low-tide, minimizing 
the morphological control and preventing depth-limited wave breaking. This was clearly 
evident during the later period of the field experiment ( L T 9 and 13) where rip 
circulation was replaced by a strong net alongshore current. It should be noted that there 
is no rip-head bar such as that described by Brander (1999) at the seaward end of the rip 
channel, rather it is suggested that this bar has ah-eady welded to the seaward slope of 
the adjacent northern bar and forms part of the secondary sub-tidal bar system. Wave 
breaking observed in the rip head during the lowest tides is though to be in part due to 
wave-current interaction.(Yu and Slinn, 2003). 

6.4.2 Implications for beach safety 

Put simply, rip current bathing hazards are concerned with the transport of a person 

within the surf zone from a situation of a known ha2^rd to one with an increased hazard. 

The mechanism for this is generally the transport of the person willingly or unwillingly 

by the rip current circulation from shallow to deep water, in some cases this may 

involve a significant alongshore as well as offshore-shore directed component. It has 

been established that the vast majority of incidents on RNLI beaches are driven by rip 

currents, and previous chapters have identified scenarios of 'optimum' conditions where 

rip current hazard and risk to the bather are at their highest. The quantitative results 

from this field experiment have provided dynamical basis by which these qualitative 

and conceptual relationships can begin to be tested. Although only a snapshot of a 

single system over a limited number of tides, the findings from this dataset provide an 

insight into the mechanisms that are driving bathing hazard within the surf zone. 

Findings that are of direct relevance to beach safety are as follows: 

• The observed ^switching' on and off of rip activity through the mid- to low-tide 

phases associated with low-tide bar/rip morphology drives increased variation 

and rate of change of the temporal hazard signature. This observation, where rips 

were active for 3-4 hours around low-tide, confirms the presence of a 

phenomenon that was hypothesized to be a key mechanism driving observed 

'mass rescue' events. 

• Interestingly, strongest flows in many cases occurred in an alongshore direction 

across the bar directly into the rip channel. This finding, if found to occur within 

similar rip systems, supports anecdotal evidence (RNLI lifeguards, personal 
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communication) that the alongshore currents associated with the flow off the bar 
crest and potentially feeder channel are a principal driver in the initiation of 
'mass rescue' events displacing the bathing/surfing population laterally towards 
a region of increased hazards (rip channel). 

• Tidally induced temporal variations in flow speed and circulation patterns create 

rapid variations in the temporal hazard signature. The dynamic rotational 

structure of the rip circulation is more complex than conveyed through present 

public safety advice. 

• Relatively high rip velocities (up to 1.2 m/s) were observed during relatively 

small wave events during which access to the surf zone for recreational bathing 

is improved, and therefore exposure to hazard and hence risk increases. 

• Surface rip circulation diminished under higher waves, driving alongshore 

current 

• Surf zone drifter exits were low during the experiment and surf zone retention 

very high. Exit mostly occurred for the period when the rip was active but little 

wave breaking was occurring over the bar. 

• The sensitivity of rip flow characteristics to the morphological index indicated 

that as previously suggested the effect of the spring-neap tidal range variation 

can have significant implications on the temporal rip current characteristics 

maintaining the temporal rip hazard signature in constant flux, even under 

identical wave and morphological conditions. 

6.5 CONCLUSIONS 

Field observations of rip current flows have been obtained to investigate their dynamic 

behaviour within a macrotidal environment. A number of key hypotheses were 

investigated resulting in new insights into rip circulation and dynamics: 

• This study has emphasized the strong tide-induced modulation of the rip flows 

and in common with previous investigations has highlighted that the strongest 

flow speeds occur around low water; moreover, it has indicated that there was a 

threshold depth of 3 m, above which the rip flows appeared to cease. 

• Lagrangian drifters demonstrated that the rip current flow was strongly 

rotational, consisting of a large 0(200 m) eddy contained within the limits of the 

surf zone. 

• During the high- and mid-tide periods when the rip was not active, strong 

alongshore currents dominated. 
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• The results of this study also indicate that with the large spring-neap variations 
in tidal height, there are periods during the neap tides when water depths remain 
too deep to permit rip circulation. 

• The rip current dynamics appear to be controlled by a combination of wave 

dissipation and morphological flow constriction driven by tidal elevation. 

Measurements indicate that local relative wave height over the inter-tidal bar 

crest was generally well correlated with rip flow speed where the rip circulation 

activate above 0.4 initiating with peak rip flows occurring over the bar (onshore-

directed); however, in shallower water morphological constriction increases to 

what appears to be an optimum combination of wave and morphology producing 

an intense rotational eddy vortex (25 < Am Mr < 40). At lowest water levels wave 

dissipation over the adjacent bars reduces and feeder area reduces, leaving the 

rip isolated within the incised channel and fed from the bar edge. Eventually, in 

this example, wave breaking on the sub-tidal bar and in the rip head reduced the 

alongshore set-up gradient and the cell circulation loses intensity and becomes a 

'hole', free of wave dissipation within the surf zone. 

• The study has provided quantitative evidence supporting hypothesized 

mechanisms for the generation of high hazard signatures under 'optimum' MR 

conditions and illustrated how the temporal hazard signature for a single rip 

system may be highly dynamic. 

Although this study has attempted to determine whether macrotidal rip circulation 

can be attributed to either wave dissipation or morphological control, it seems that 

both processes ultimately combine to force the rip current. Variations in the pattern 

of wave dissipation and hence set-up gradients seem to trigger the rip circulation, 

but there are periods, as water depth shallows when morphology appears to exert the 

greater control on rip circulation and characteristics. The combination of forcing and 

constraining mechanisms is complex, and it is noted that this is a single case and it 

is suggested that this balance may vary from system to system, largely due to the 

template morphology through spatial dimensions and orientation of bar, feeder 

channel, rip channel and rip head bar morphology. In addition, the cross-shore 

location in relation to tidal phase will affect the temporal residence of wave 

breaking over the maximum non-uniformity and the extent to which 

morphodynamic interaction with swash, surf and shoaling zone processes can 

maintain or disperse the rip template morphology throughout the tidal cycle. This 
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study represents a snapshot in both forcing conditions and evolutionary 

morphological state of a macrotidal rip system. Obviously, much more investigation 

is required to make general statements of macrotidal rip morphodynamics. 
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7. S Y N T H E S I S 

7.1 INTRODUCTION 

Throughout this thesis, the relationship between beach hazards and the prevailing 

morphodynamic/environmental conditions have been investigated on a range of 

temporal and spatial scales within the U K coastal environment. A number of important 

findings and new concepts have been revealed that represent insights into beach 

morphodynamics and hazards on three key timescales: amiual, seasonal and tidal. In 

Chapter 4, a new beach classification system for beaches in the U K is presented 

consisting of 12 beach types, each characterized by a distinct annual morphodynamic 

expression and associated hazard signature. In Chapter 5, then, the characteristic 

seasonal morphologic and hydrodynamic transitions at selected sites have been 

identified in association with their dynamic hazard signatures for the high-risk beach 

groups. Furthermore, in Chapters 5 and 6, the dynamics and characteristics of the beach 

rip current systems within spring/neap and semi-diurnal timescales were investigated at 

these selected sites. This provided new insights into the environmental, morphologic 

and forcing mechanisms behind observed incidents and coastal-wide, high-risk, *mass 

rescue' scenarios. 

The aim of this chapter is to synthesize the key project outcomes to provide important 

new insights into the fijndamental controls on the temporal hazard signature within high 

risk beach environments in the UK. It will also highlight some of the implications and 

applications of this research summarizing these outcomes in relation to the stated 

project aims. 

7.2 T E M P O R A L HAZARD SIGNATURE 

Beach hazards, like beach morphodynamincs, vary on a range of timescales. For the 

successful provision of beach safety services it is crucial to have an understanding of the 

temporal variability of the prevailing hazards from a strategic and operational 

viewpoint. Figure 7.1 provides a conceptual summary of the key findings of the project 

within the context of the temporal hazard signature for the highest risk recreational 

bathing beaches in the UK. This framework provides a structure for beach hazard 

assessment where hazard characteristics are initially defined by beach type and 

environmental setting, and modified by temporal variation in morphology and 

hydrodynamic forcing. 
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Figure 7.1 - Conceptual summary of principal controls of the temporal hazard signamre (rip 

current hazard) for high risk beaches and key insea population controls for a range of temporal 

scales. Summary is in specific relation to beaches monitored in this study and represents only 

the principal mechanisms identified to drive rip hazard levels. 

This approach represents an extension of that used by Short and Hogan (1994) that 

provided modal, and wave height-modified, beach hazard ratings for each beach state 

described by Wright and Short (1984) and Masselink and Short (1993). While they 

tentatively included tidally-modified and tide-dominated beaches, the approach taken 

was one derived from micro-tidal environments, defining hazard levels increasing 

linearly from reflective to ultra-dissipative states, and increasing from low to high 

waves (Figure 1.19, page 34). In contrast, this investigation considers the intermediate 

beach groups (LTT+R and LTBR) as the most hazardous with the dissipative and ultra-

dissipative groups representing some of the lowest hazard. Rip currents represent the 

largest recreational beach hazard at RNLI beaches, and the relatively low hazard rating 

for (ultra-) dissipative beaches is attributed to the lack of bar morphology and a fully 

saturated surf zone, leading to low rip current activity. 
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7.2.1 Beach type 

Few researchers, other than Short (1993, 1994, 1999 and 2001) and Short and Hogan 

(1994), have included concepts of morphological state and beach type in hazard 

evaluation. In many cases only wave height, period and direction have been used (e.g. 

Lushine, 1991). Eight of the nine identified beach groups were represented within the 

RNLl lifeguard service during this study. These contrasting beach environments 

provided a unique opportunity to identify specific hazard characteristics associated with 

beach types that have received little attention in previous hazard research (Section 

4.5.2). In line with rescue statistics from the US and Australia, RNLI incident records 

revealed the dominance of rip current activity as the causal hazard for 68% of all 

reported incidents between 2005-2007. Unique hazard signatures were apparent on 

beaches where rip activity was low, for example, in regions characterized by low-energy 

wind waves, mega-tidal ranges and/or sediment distributions that were restrictive of bar 

formation. These non-rip hazards were mainly tidal cut-off (increased by low-sediment 

supply/hard rock exposures and large tidal range) and offshore winds (increased by 

dominant meteorological climate and beach orientation). It is clear, therefore, that a 

single hazard rating for the beach groups defined in this study that is solely based on the 

wave height will not provide sufficient information to effectively characterize the 

general hazard signature required for representative beach hazard assessments. 

Previous beach hazard research used the morphodynamic indices Q and RTR, and 

conceptual beach state models of Wright and Short (1984) and Masselink and Short 

(1993) to identify beach types. Prior to this study the usefulness of these parameters to 

delineate beach type in the UK beach environment was unknown. Several recent studies 

have challenged the applicability of n to define and predict beach state change, and 

have highlighted confounding factors such as response times (e.g., Gomez-Pujol et al., 

2007; Jimenez et al., 2008) and geological control (Jackson et al., 2005). This 

investigation of UK beach types assumed that sampled beaches were in equilibrium 

with their annual mean wave and tidal conditions, and due to the wide range of beach 

types under investigation, the observed intra-annual fluctuations in beach form were less 

significant than the spatial differences between sites. Even under these assumptions, Q 

and ^77? proved useful in parameterizing the environmental conditions that 

characterized the different beach groups. However, the absolute wave height was also 

found to be important. The importance of wave energy levels is related to minimum 

wave energy thresholds for transport (Masselink and Short, 1993) and specifically in the 
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beach groupings presented in Chapter 4 threshold energy levels required for generating 
infragravity waves (Guza and Inman, 1975) and rhythmic bar morphology. Low- and 
high energy intermediate beach groups, characterised by absence and presence of bar/rip 
morphology, respectively, were separated by a critical wave energy threshold H'T= 5. 
Masselink and Short (1993) tentatively suggested a threshold of Hh < 0.25 m as a 
minimum energy level for model applicability. The beaches studied here all exceeded 
this, suggesting that the latter threshold is not sufficiently restrictive. 

Jackson et ai (2005) and McNinch (2004) suggested that hard geology constrains and 

modifies morphodynamic processes through sediment abundance and depth to geologic 

substrate. Identified to be of key importance within the often sediment-limited UK 

environment, the influence of hard rock exposure and underlying framework controlled 

the scope of both morphologic adjustment and hydrodynamic processes within the surf 

zone. The environmental setting of a beach, including geologic control, drainage 

characteristics and backshore geomorphology were all revealed to influence beach 

response to forcing conditions and hence, in many cases, will significandy modify surf 

zone conditions and hazards throughout a range of temporal scales. 

The combination of beach type and environmental controls (geologic/structural 

constraint, sediment abundance, drainage and backshore geomorphology) define the 

potential for rip current activity. As identified by Short (1985), rips can take on a 

number of forms based on their forcing and controlling mechanisms. This study has 

identified accretionary beach rips and topographically controlled rips as the greatest 

contributor to observed beach hazards. The critical importance of the temporal and 

spatial variations of these rips was revealed throughout the study sites where, due to the 

large tidal excursion, distinct hazard signatures were defined from low- to high-tide. 

Low-tide regions were dominated by beach rips within the sub- and low-tide rhythmic 

bar systems. At high tide these systems were often in > 8 m water depth and surf zone 

processes interacted with a steeper upper beach (LTT+R examples). In cases with 

significant geologic control, separate bar systems and/or geologic constraints drove 

beach and topographic rips located up to 500 m landward of the low-tide shoreline 

(Table 5.4). Observations in Section 5.3.2.3 (Figures 5.19 and 5.20) suggested the 

combination of geologic constraint and stream drainage constrained morphological 

adjustment within the upper beach resulting in the decoupling of the high/mid- and low-

tide rip systems. These observations emphasize the importance of accounting the 
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temporal variation in the hazard signature throughout the tidal cycle within macrotidal 
beaches. Illustrated in Figure 1.18, this approach was initiated by Short (1999) for 
macrotidal beaches in Australia. 

Section 5.3.3.1 showed that the distribution of incidents with respect to tidal elevation 

varied with the rip morphology throughout the spring/summer season (using regions of 

maximum alongshore bathymetric non-uniformity as a proxy to the cross-shore location 

of bar/rip morphology). This indicated that for the sites studied, beach rips were the 

greatest cause of incident. These systems occurred within LTT+R and LTBR beaches 

that represented 59% of sandy beaches along the west coasts of Cornwall and Devon. 

Unlike some of the more reflective or ultra-dissipative beach groups, where state change 

is restricted by large tidal ranges or sediment size, the intermediate dynamic LTT+R 

and LTBR beaches exist around critical thresholds of Q (Davidson and Turner, 2009). 

Variation of Q around these threshold values is driven by typical intra-annual wave 

conditions, controlling the dominance of erosive or accretionary surf zone conditions. 

7.2.2 Temporal morphodynamic change 

Data collection in Chapter 5 documented key inter-annual and seasonal morphological 

change within studied LTT+R and LTBR beaches. Offshore sediment transport (below 

MLWS) and inter-tidal beach lowering occurs during high-energy winter periods, 

resulting in flat featureless inter-tidal zones and quasi-linear LBT sub-tidal bar systems. 

Accretion and re-establishment of rhythmic, and then transverse, lower inter-tidal bar 

systems occurs during the lower energy summer period (Section 5.3.2.2). Also 

development of inter-tidal bars (slip-face bars) within the MLWN-MSL region 

provided the template morphology to extend rip current activity throughout more of the 

tidal cycle, playing an important role in magnifying temporal rip hazards. 

It is wave forcing over the dynamic template morphology that drives the identified rip 

current systems (Haller et al., 2002; Sonu, 1972). This concept is the basis for all 

present rip prediction tools (Section 1.4.3). Previous research suggests rip current flow 

speeds scale with wave height (MacMahan et al., 2006). While this may be true, when 

considering rip strength relative to wave energy, it has been observed here that rips in 

combination with significant morphological constraints can have high flow speeds in 

relation to the forcing wave energy through flow channelization by rip channel 

morphology. In particular, low-energy long period swell wave conditions, associated 
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with summer accretionary periods, shoal to the inner transverse bars generating strong 
alongshore variations in wave breaking and are responsible for these relatively strong 
rip flows. These typical summer low-energy conditions {Hs - 0.5-1 m; 7), - 6-10 s), 
commonly occurred in conjunction with high insea populations (75% of insea beach 
use), were responsible for a large proportion (36%) of incidents recorded in 2007. 

7.2.3 Tidal control 

Recent approaches to rip hazard prediction have begun to incorporate an element of 

tidal modulation (Engle, 2002). Tidal level has been widely observed to modify rip 

flows in previous studies, enhancing flow speeds at lower tides (e.g. Sonu, 1972; 

Aagaard et al., 1997; Brander, 1999; Brander and Short, 2001; MacMahan et al., 2005). 

The role of tidal control on rip dynamics within the studied macrotidal beaches has been 

identified as a principal mechanism controlling the instantaneous and event scale 

dynamics of the temporal hazard signature. In combination with the template 

morphology and wave forcing conditions, tidal modulation of hazards is exerted through 

two principal key mechanisms: 

Tidal excursion 

In many cases tidal excursion across the low-tide bar/rip system was observed to control 

a conceptual morphological down-state (ebb tide) and up-state (flood tide) transition, 

similar to that observed by Brander (1999), but as a function of tidal level and observed 

through the wave dissipation patterns (Figure 7.2). Observed at Perranporth during 

August 2008, at the MLWN level the typical wave dissipation pattern represented a 

LBT/RBB system and rip circulation was weak with alongshore flows dominating. As 

tidal elevation decreased towards the MLWS level, the wave dissipation pattern 

represented TBR morphology and the combination of wave dissipation and 

morphological constriction resulted in the strongest rip flows. Finally, during the lowest 

observed tides the rip system became isolated, representing the TBR/LTT configuration. 

Within this model there are two hazardous transitions: (1) falling tide from LBT/RBB to 

TBR (down-state); and (2) rising LTT to TBR (up-state). The extent of tidal excursion 

within the spring/neap cycles will control the extent of these transitions and hence the 

levels of low- and mid-tide rip activation. In addition, the exposure of the low-tide bar 

crest attracts bathers onto the low-tide bar/rip systems. During the subsequent flood, the 

bar crest submerges and the feeder channel and rip system become active (TBR stage) 

as the insea population pass through the feeder channel to reach the beach. This 
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represents a key peak hazard, high risk scenario. This highlights the importance of tidal 
level and particularly the role of the spring/neap cycle in driving daily modification to 
rip activity. 

Tidal translation 

Tidal translation refers to the rate of change in the shoreline location and is identified 

here as a key mechanism driving the high risk scenarios investigated (Section 5.3.3). 

While the tidal excursion defines the extent of rip channel exposure throughout the tidal 

cycle, the tidal translation controls the rate at which changes in the hazard signature 

occur. Many of the studied beaches have a tidal range > 6 m with a horizontal tidal 

excursion of up to 600 m. An example from Croyde Bay (Figure 5.28) illustrates that 

translation rates during large spring tides can reach 100 m in 15 minutes. This has 

significant implication for beach safety management when, during 'optimum' 

morphological configurations, low-tide bar/rip systems are backed landwards by 

alongshore phase-offset inter-tidal bar/rip systems, driving a rapid alongshore migration 

of rip channel location throughout the tidal cycle. In addition, the large variation 

be^veen spring and neap tidal range around the autumnal equinox, where tidal range at 

Perranporth can vary from 2 m to 7 m within 7 days, suggesting the tidal excursion, 

tidal translation and hence the temporal hazard signature will vary significantly on a 

daily basis, even under identical wave forcing conditions. 

7.2.4 Rip circulation 

Investigation of rip circulation and dynamics on the smallest spatial and shortest 

temporal scale revealed that strongly rotational eddy structures represent the principal 

circulation of the transverse rip current system studied. A similar circulation pattern was 

observed by MacMahan et al. (in press) at beaches from micro- to mesotidal 

environments, and represents a new concept which contradicts the long-standing notion 

of seaward flowing jets expelling bathers from the surf zone. In addition, the present 

study observed alongshore-directed rip flows over the bar edge of equal, often with 

greater speeds than the offshore flowing rip neck, revealing an additional hazardous 

component of the rip system potentially driving bathers from the 'safe' bar crest 

laterally toward a region of higher hazard. 

These identified complexities of rip current circulation patterns, flow speeds and the 

tidal modulation of the system are rarely understood by experienced lifeguards. Without 
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Figure 7.2 - Conceptual sequence of the temporal evolution of the observed macrotidal rip 

current cell at Perranporth. Each schematic represents 30 min time step towards spring low-

tide at (0 under average measured conditions (//, ~1 m). Black dots indicate approximate 

shoreline position, yellow dots indicate wave breaking on the northern shoal and rip head 

with yellow arrows approximating angle of wave approach. Generalised rip circulation 

patterns are marked in solid blue and red lines (and arrow heads) indicating rotational and 

alongshore behavior. Time step d) represents the optimum combination of wave forcing and 

morphological constraint to generate an intense eddy vortex. Each snapshot covers the same 

beach region. Note the breaker dissipation pattems mimic a conceptual down-state transition, 

as observed by Brander (1999) as a function of tidal elevation a) LBT; b) RBB; c) 

RBB/TBR; d) TBR and e) TBR/LTT. 
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this fundamental scientific knowledge of surf zone processes and the temporal hazard 

signature, the experienced lifeguard can only realistically provide a reactive service. 

7.2.5 Controls of population 

Without exposure to hazard there is no risk, therefore, a consideration of the beach 

population dynamics in combination with an understanding of the temporal hazard 

signature provides a useful tool for beach safety management. Figure 7.1 highlights 

population controls identified within the study region on a range of temporal scales. 

This project has made a number of assumptions regarding the uniformity of the insea 

population and its effect on the likelihood of incident. Insea population has been used 

purely as a tool to normalize the incident record and provide a baseline concept of 

hazard levels and risk. In reality the bathing population is demographically diverse, with 

a range of swimming abilities and experience. Undoubtedly, this will have an effect on 

individual risk levels. Understanding the effects of demographically variable insea 

populations, and the effects of conflicting activities in the surf zone, on levels of risk 

would be a useful area of further research. 

7.3 R E S E A R C H APPLICATIONS AND FURTHER WORK 

Close collaboration with the partnering institute has been crucial to the applicability of 

the project outcomes to the RNLl. The transfer of new scientific knowledge generated 

by this project to the RNLI can be divided into two areas: 1) The RNLFs risk 

assessment program for use on UK beaches which addresses the seasonal to annual 

timescales of the temporal hazard signature; and 2) incorporation of relevant new 

understanding of UK beach types and dynamics, associated hazards and macrotidal rip 

currents into the lifeguard/risk assessor training curriculum. 

7.3.1 RNLI risk assessment program 

The development of a beach classification and hazard assessment procedure has 

provided the RNLI with a structured approach to providing baseline data on 

environmental and hazard characteristics of a specific beach to the risk assessors. The 

procedure comprises an assessment model and a comprehensive, standardized and 

scientific database containing physical environmental information about beaches in the 

UK. The database holds information regarding beach group classification (Chapter 4), a 

modal and high energy (10% exceedence) hazard characterization of that beach type 

(Appendix 4), details about the environmental setting (hard rock intervention, drainage, 
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backshore geomorphology, embaymentization), as well a statistical representation of 
wave, tide and wind forcing for the specific location. This information is intended to 
provide the beach risk assessor with a comprehensive set of background data on a given 
beach location, to enable the establishment of a broad picture of the physical beach 
environment prior to a field visit and assessment, that cannot be learnt from a single 
beach visit, as well as a standardized approach to assessing beach hazard within the UK. 

The beach and hazard database is hosted by the Marine Conservation Society and 

integrated as part of their online *Good Beach Guide' (www.goodbeachguide.co.uk). 

Through a secure interface, risk assessors are able to download a report of a specific 

beach prior to field visits or to aid in the generation of the RNL! beach audits. In 

addition, a coastal hazard summary, including beach type, associated hazard and 

modifying environmental setting for a specific location, is directly included in RNLl 

beach risk assessment reports. 

7.3.2 Lifeguard training 

Education of lifeguards remains one of the most effective tools for transmission of 

scientific advances in beach hazard research. Providing the lifeguard with the 

knowledge required to understand the basic principles and processes that drive various 

phenomena they observe, for example rip currents, can enable improved ability to learn 

from observation and enable more proactive and predictive insights into the temporal 

hazard signature. This research has initiated ongoing improvement to training material 

for lifeguards and risk assessors which will result in a number of printed resources 

(posters, booklets) to be located at relevant patrol units providing reference material. 

7.3.3 Hazard prediction 

While an improved understanding of the environmental controls of beach risk levels due 

to rip current activity has been achieved, the level of understanding required to provide 

accurate prediction of rip hazard levels within a macrotidal setting has not yet been 

reached. Further investigations including extending field monitoring and modelling 

efforts are required throughout a range of rip current systems, under a broad spectrum of 

forcing conditions to enable more general statements to be made regarding macrotidal 

rip current systems. Indeed, due to the success of this PhD project partnership with the 

RNLl, a 3-year NERC funded partnership project with the RNLl has been proposed, to 

test and extend ideas generated within this present work by measuring and modelling rip 
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currents under a variety of wave, tide and beach conditions. Key outcomes of this 

proposed project are the development of rip hazard scenarios and prediction tools to 

assist the RNLI to better resource its rescue assets and personnel. These include simple 

generic rip hazard scenarios, but also a first attempt at developing a decision-support 

system for predicting rip hazards several days in advance that would integrate Argus 

video image acquisition as a tool (called 'Beach Wizard') to update template bar 

morphology within the XBeach model domain. Figure 7.3 shows an example rip risk 

plot, generated using the XBeach numerical model as a proof of concept (Austin, 

personal communication). Such a map can be used to manage lifeguard resource 

deployment, inform lifeguard decision making and provide public information. This has 

the potential to significantly improve public safety. 

Figure 7.3 - Example of Rip Risk Plot showing the occurrence of offshore-directed mean 

nearshore currents exceeding 0.5 m/s. The plot was obtained using XBeach with standard 

parameters (uncalibrated) and the measured bathymetry (not derived from using the 

Beach Wizard). 
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7.4 CONCLUSIONS 

The UK beach environment has been shown to be highly diverse and relatively pooriy 

understood, both in terms of beach hazards and morphodynamics. Dominated by 

macrotidal, of^en mixed sediment beaches, exposed to a wide range of wave climates, 

the understanding of the complex morphodynamics of UK beaches remains a challenge. 

Masselink (1993) stated that, contrary to eariy notions that macrotidal beaches were 

fundamentally different to their micro-tidal counterparts, in fact they share many things 

in common. It is with this concept in mind that the morphodynamics and associated 

hazards of macrotidal beaches within the UK were investigated, initially through an 

assessment of the validity of previous knowledge and understanding of beach 

morphodynamics within micro- to macrotidal environments and extending this through 

newly acquired data and understanding of macrotidal beaches and associated hazards 

within the UK. 

The following project aims were identified in Section 1.5: 

1) Identify the nature and specific causes of beach hazards through the assessment 

of RNLI incident records and assess the resulting hazard signatures in relation to 

previous research. 

2) Identify beach type variability in UK and investigate the appropriateness of 

using a beach classification system to describe beach type groups though the use 

of traditional morphodynamic parameters. 

3) Investigate the spatial distribution of the identified beach types and their 

associated morphodynamic characteristics. 

4) Investigate the relationship between hazard and beach morphodynamics within 

the UK environment and assess whether it is similar to that observed in previous 

research. 

5) Identify the extent to which rip currents cause hazard in UK and identify and 

quantify the location, circulation and dynamics of high-risk rip current scenarios. 

The preceding chapters have satisfied these aims and provided new insights into both 

the morphodynamics of beaches common to the UK and beach recreational hazards. 

The nature of the UK beach environment and the presence and characteristics of 
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recreational beach hazards has been established. The following summarises the key 
findings in relation to the initial project aims: 

Beach hazards 

• Rip currents were responsible for 68% of all recorded incidents between 2005-

2007 throughout all 76 beaches patrolled by the Royal National Lifeboat 

Institution (RNLl). 

• Hazard type and severity varied between morphodynamically distinct beach 

types. Intermediate beaches with low-tide bar/rip morphology (where 

dimensionless fall velocity (Q) = 2-5 and relative tide range (RTR) < 7), 

including Low-Tide Terrace and Rip (LTT+R) and Low-tide Bar/Rip (LTBR) 

beaches, presented the greatest risk to the insea beach user. 

• These high risk beaches, representing 59% of the west coast beaches in Devon 

and Cornwall, also attracted the greatest visitor populations. 

• Hazards driven by tidal-cut o f f (large tidal ranges) and offshore winds (coastal 

orientation, low wave environments) are dominant on beaches in the absence of 

rip currents. 

UK beach types 

• Detailed morphodynamic characteristics of 92 beaches within the UK were 

collected. Nine distinct beach groups were identified through cluster analysis, 

each having a unique morphodynamic signature. 

• Traditional morphodynamic indices Q and RTR were found to be effective in 

discriminating between beach groups. However, it was found be to important to 

account for absolute wave energy flux, here in the form of a threshold 

parameter, H'T, whereby a critical value of 5 m^ s was derived to differentiate 

between intermediate groups with (> 5) and without (< 5) three-dimensional bar 

systems within the presented dataset. 

• The role of geologic control, sediment abundance and drainage characteristics in 

constraining beach morphodynamics was shown to be significant within the sites 

studied. It is acknowledged that, due to this site specific influence exerted by the 

environmental setting on beach state evolution, defining beach group boundaries 

within conceptual morphodynamic models is often inappropriate. Furthermore, 

models should be used as tools for understanding morphodynamic systems 

rather than beach type prediction. 
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Beach morphodynamics and hazards 

• Seasonal monitoring of hydrodynamics, morphology and lifeguard incidents at 

LTT+R and LTBR beaches in Devon and Comwall identified key mechanisms 

controlling the temporal hazard signature (THS): 1) the dynamic morphological 

template; 2) wave forcing; and 3) tidal excursion and translation. 

• The morphological template controlled the presence, extent and intensity of 

beach rip current systems. Observed transition from a LET sub-tidal bar system 

and planar beach during high-energy winter months to the development of 

low/tide transverse and inter-tidal bar/rip systems during summer represented an 

increase in morphological hazard. Seasonal transition from an erosive to 

accretionary system drove significant beach elevation changes in many cases 

having significant implications for levels of hard rock exposure. 

• Typical summer wave forcing by relatively small, long period swell (// , - 0,5-1 

m; Tp - 6-10 s) over this high hazard template morphology provided conditions 

that drove hazardous rip currents. Under these conditions hazard exposure was 

increased due to the accessibility of the relatively low energy surf zone. 

• Both spring/neap and semi-diurnal tidal variations were identified as key 

controls on the THS. Variable tidal excursion modulated rip current activity, and 

tidal translation rates controlled the rate of change of the THS. The 'optimum' 

combination of these mechanisms results in the 'switching* on and off of rip 

currents during spring low tides and the subsequent rapid alongshore migration 

of rip channel/hazard location as the surf zone inundated the landward, often 

alongshore phase offset, inter-tidal bar system. 

• In conjunction with high insea population, these 'optimum hazard scenarios' 

drove high risk, coast-wide 'mass rescue' events identified in the incident 

records that in some cases caused > 150 incidents across 12 beaches during one 

day. 

Rip current circulation, dynamics and hazard 

• Incident occurrence was shown to be strongly influenced by the location, 

elevation and development of bar/rip morphology within the tidal cycle. 

Throughout the 2007 spring/summer season incident occurrence was observed to 

be strongly controlled by regions of maximum alongshore bathymetric non-

uniformity, a proxy to the cross-shore location of bar/rip morphology. 
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While topographic rip currents were observed to extend rip hazards into mid-
and high-tide regions of beaches with hard rock geologic constraints, the low-
tide accretionary beach rips were responsible for most incidents throughout the 
2007 spring/summer season. 

Lagrangian drifters experiments, within a typical low-tide transverse bar/rip 

system demonstrated that the rip current flow was strongly rotational, consisting 

of a large 0(200 m) eddy contained within the limits of the surf zone. Observed 

strong onshore/alongshore flow speeds over the sides of the bar revealed an 

important mechanism for driving bathers from the bar crest into the rip 

circulation. 

These quantitative measurements of rip dynamics identified strong tide-induced 

modulation of the rip flows. In common with previous investigations the 

strongest flow speeds occurred around low water (peak lagrangian Ur - \ m s"'). 

Moreover, it has indicated that there was a threshold depth of 3 m (when Ht -

1 m) above which the rip flows appeared to cease, effectively 'switching* of f 

and remaining inactive apart from a period of 3-4 hrs around spring low-tide. In 

fact, under some neap low-tide conditions, depths over the bar crest remained 

too deep for the rip currents to activate. 

A complex interplay of wave dissipation, constraining rip channel morphology, 

adjacent shoal elevation, feeder channel geometry and cross-shore bar crest 

location have all been shown to influence the specific character of rip circulation 

and its temporal signal under variable combinations of tidal level and wave 

forcing. These observations provided an insight into rip circulation and 

dynamics under conditions similar to those identified to be responsible for the 

recorded 'mass rescue' events. 
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APPENDIX 

Appendix 1 - Calculaced representative wave climate statistics for each of the beach study 

sites in Chapter 4. 

Beach 

iodei Location Region 

Wave 

data 

name 

Data 

source 
% 

10% 

Annual 

H. 

50% 
T . MSR 

I Traclh Bychan Anglesey Ml Model 68.2 0.7 0.35 5.9 4.9 6.60 

2 Traeth Lligwy Anglesey Ml Model 68.2 0.82 0.41 5.8 4.8 6.50 

3 Forth Trecastell Anglesey M2 Model 63.3 2.1 0.92 7.6 6.3 4.31 

4 AberfTraw Anglesey M2 Model 63.3 2.4 1.05 7.7 6.4 4.27 

5 Newbo rough Anglesey M2 Model 63.3 1.14 0.77 5.8 4.8 4.20 

5 Dunster Beach Someset B l Measured 1.09 0.48 6.5 3.9 9.77 

6 [>unster Someset B l Measured 1.09 0.48 6.5 3.9 9.77 

8 Mineheod Someset Bl Measured 1.09 0.48 6.5 3.9 9.64 

9 Woolacombe N.Devon M3 Model 80.7 3.09 1.2 9.7 8 8.11 

10 Croyde Ruda N.Devon M3 Model 80.7 3.2 1.28 9.5 7.9 7.93 

11 Croyde Downend N.Devon M3 Model 80.7 3.2 1.28 9.5 7.9 7.94 

12 Saunton Sands N.Devon M3 Model 80.7 2.81 1.24 9.2 7.7 7.81 

13 Sandymouth Bude M3 Model 80.7 3.47 1.61 9.7 8.1 6.96 

14 Crooklets Bude M3 Model 80.7 2.95 1.6 9.6 8 6.88 

15 Widemouth Bude M3 Model 80.7 3.17 1.41 9.7 8 6.74 

16 Crackington N.Comwall M3 Model 80.7 2.74 1.22 9.8 8.1 6.58 

17 New Polzeath N.Cornwall M3 Model 80.7 2.04 0.97 9.5 7.9 6.52 

18 Polzcath N.Comwall M3 Model 80.7 2.04 0.97 9.5 7.9 6.52 

19 Harlyn N.Comwall M3 Model 80.7 2.37 0.91 9.8 8.1 6.49 

20 Constant! ne N.Comwall M3 Model 80.7 3.42 1.38 9.8 8.1 6.49 

21 Cons tan tine N.Comwall M3 Model 80.7 3.42 1.38 9.8 8.1 6.49 

22 Treyamon N.Comwall M3 Model 80.7 3.42 1.38 9.8 8.1 6.48 

23 Porthcothan N.Cora wall M3 Model 80.7 3.35 1.38 9.8 8.1 6.47 

24 Watergate W.Cora wall M3 Model 80.7 3.15 1.21 9.8 8.1 6.42 

25 Towan Newquay Bay M3 Model 80.7 1.55 0.63 9.7 8.1 6.39 

26 Fistial W.Comwall M3 Model 80.7 2.95 1.14 9.8 8.1 6.40 

27 Crantock W. Com wall M3 Model 80.7 3.44 1.34 9.8 8.1 6.34 

28 Penan porth W.Cora wall M3 Model 80.7 2.95 1.24 9.7 8.1 6.10 

29 Chapel Porth W.Corawall M3 Model 80.7 3.04 1.32 9.7 8 6.02 

30 Porthtowan W.Comtt-all M3 Model 80.7 2.55 1.23 9.5 7.9 6.01 

31 Godrevy Hayle Bay M3 Model 80.7 1.92 0.97 9.1 7.6 5.88 

32 Hayle Hayle Bay M3 Model 80.7 1.35 0.6 9.3 7.7 5.83 

34 Corbis Bay St Ives M3 Model 80.7 0.94 0.38 9.6 7.9 5.81 

35 Porthmeor W.Comwall M3 Model 80.7 2.1 0.79 9.8 8.1 5.78 

36 Sennen Cove SW Cornwall M3 Model 80.7 2.17 1.24 9.6 8 5.37 

37 Penzance SW Comwall M4 Model 80.7 0.54 0.23 10 8.3 4.79 

38 Marazion S.Comwall M4 Model 80.7 1.53 0.62 10 8.3 4.77 

39 Pernui Sands S.Comwall M4 Model 80.7 1.82 0.73 10 8.3 4.75 

40 Proa Sands S.Comwall M4 Model 80.7 2.85 1.13 9.8 8.1 4.73 

41 Perth! even S.Comwall M4 Model 80.7 2.96 1.15 10 8.3 4.70 
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42 Church Cove Gunwalloe M4 Model 80.7 3.45 

43 Looe Looe Bay M4 Model 80.7 0.92 

45 Miltandreath Looc Bay M4 Model 80.7 1.61 

46 Seaton Whitsands Bay M4 Model 80.7 1.76 

47 Downderry Whitsands Bay M4 Model 80.7 1.76 

48 Tregantle Whitsands Bay M4 Model 80.7 1.9 

49 Challaborough S.Devon M4 Model 80.7 2.5 

50 Bigbury West Bigbury Bay M4 Model 80.7 2.46 

51 Bigbury Easi Bigbur>' Bay M4 Model 80.7 2.46 

52 Sedgewelt Bigbury Bay M4 Model 80.7 2.46 

53 Bantham Bigbuiy Bay M4 Model 80.7 2.72 

54 Leesfoot Bigbury Bay M4 Model 80.7 2.92 

56 South Milton Bigbury Bay M4 Model 80.7 2.92 

59 Hope Cove S.Devon M4 Model 80.7 2.92 

60 North sands Salcombe M4 Model 80.7 2.56 

62 Torcross S.Devon B4 Measured 1.32 

63 Strete S.Devon B4 Measured 1.32 

64 Blackpool Sands S.Devon B4 Measured 1.32 

65 Broadsands Torbay M5 Model 79.5 0.27 

66 Paignton Torbay M5 Model 79.5 0.45 

67 Tcignmouth E.Devon M5 Model 79.5 1.14 

68 Dawlish E.Devon M5 Model 79.5 1.27 

69 Dawlish Warren E.Devon M5 Model 79.5 1.38 

70 Lyme Regis W.Dorset B5 Measured 2.06 

71 Charmouth Lyme Bay B5 Measured 2.06 

72 Shore Road Poole Bay B8-B9 Measured 0.5 

73 Branksome Chine Poole Bay 
B8-B9 

int 
Measured 0.65 

74 Bournemouth Pier Poole Bay 
B8-B9 

int 
Measured 0.8 

75 EastClifr Poole Bay 
B8-B9 

int 
Measured 0.95 

76 Boscombe Poole Bay B9 Measured 1.07 

77 Manor Steps Poole Bay B9 Measured 1.07 

78 Fishermans Walk Poole Bay B9 Measured 1.07 

79 Milford Poole Bay BIO Measured 1.45 

80 Main Beach Weymouth B7 Measured 0.85 

81 Greenhill Weymouth B7 Measured 0.85 

82 PakeHe Id Suffolk B14 Measured 1.04 

83 Covchiihe Suffolk BI4 Measured 1.04 

84 Oxford Ness Suffolk B l l Measured 1.12 

85 Boyton (Oxford Ness) Suffolk B l l Measured 1.12 

86 Dunwtch Suffolk BI3 Measured 0.93 

87 Size we II Suffolk BI3 Measured 0.93 

88 Great Yarmoih Norfolk BI6 Measured 1.29 

89 Newport South Norfolk B16 Measured 1.29 

90 Overetrand Norfolk B16 Measured 1.29 

91 Walcott Norfolk B16 Measured 1.29 

92 Horsey Norfolk B16 Measured 1.29 

93 Salthouse Norfolk B17 Measured 1.02 

94 Holme-Next-The-Sea Norfolk BI7 Measured 1.02 

95 Holme-Next-The-Sea Norfolk BI7 Measured 1.02 

96 Mablethorpe Lincolnshire B20 Measured 1.09 
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97 Theddlethorpe Lincolnshire B20 Measured 1.09 0.49 6.4 3.2 6.19 

98 Donna Nook Lincolnshire B2I Measured 0.9 0.46 5.8 2.8 6.27 
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Appendix 2 — Summary of data sources for beach profile and sediment data used in Chapter 4. 

Location Sediment Beach profile 

Source Date Analysis Source Date Method 

Traeih Bychan Dixey 1965 sie\*e Dixey 1965 Level 

Traeth Lligwy Clark.M 1995 sie\'e aarlc.M 1971 Level 

Forth Trecastell Dixcy 1965 sieve Dixey 1965 Level 

Abeiffraw Dixey 1965 sieve Dixey 1965 Level 

Newbo rough Davis 11/04/1975 sieve i^ivis 11/04/1975 Level 

Dunster Beach Scott 12/11/2007 sealing FCO 12/11/2007 RTK GPS 

Dunster Scon 12/11/2007 settling FCO 22/05/2007 RTK GPS 

Minehead Scon 12/11/2007 settling PCO 13/11/2007 RTK GPS 

Woolacombe Scoti 12/11/2007 settling PCO 29/09/2007 Lidar 

Croyde Ruda Scott 14/09/2007 settling Scon 14/09/2007 RTK GPS 

Croyde Downend Scon 14/09/2007 settling Scon 14/09/2007 RTK GPS 

Saunton Sands Scon 01/08/2006 settling PCO 03/02AZ007 Ltdxu-

Sandymouth Scon 10/11/2007 settling Scon 10/09/2007 RTK GPS 

Crooklets Scon 10/11/2007 settling Scon 26/07/2007 RTK GPS 

Widemouih Scon 10/11/2007 settling PCO 01/10/2007 RTK GPS 

Crackington Scott 10/11/2007 settling FCO 24/03/2007 Lidar 

New Polzeath Scon 09/11/2007 settling PCO 12/09/2007 RTK GPS 

Polzeath Scon 09/11/2007 settling PCO 12/09/2007 RTK GPS 

Hariyn Scon 09/11/2007 senling Scott 05/04/2007 RTK GPS 

Constantine 1 Scon 17/07/2007 settling Scon 17/07/2007 RTK GPS 

Constaniine 2 Scon 17/07/2007 senling Scon 25/10/2007 RTK GPS 

Treyamon Scon 09/11/2007 settling Scott 25/10/2007 RTK GPS 

Porthcothan Scon 09/11/2007 senling PCO 28/10/2007 RTK GPS 

Watergate Scon 09/11/2007 settling PCO 26/09/2007 RTK GPS 

Towan Scon 09/11/2007 senling PCO 27/09/2007 RTK GPS 

Fistral Scon 09/11/2007 settling PCO 27/10/2007 RTK GPS 

Cnintock Scon 09/11/2007 settling PCO 01/04/2007 RTK GPS 

Perranporth Scon 15/11/2007 settling Scon 12/10/2007 RTK GPS 

Chapel Forth Scon 14/07/2007 settling Scott 14/07/2007 RTK GPS 

Porthtowan Scott 08/11/2007 settling Scon 30/09/2007 RTK GPS 

Godrevy Scoti 08/11/2007 senling PCO 14/10/2008 RTK GPS 

Hayle Scon 08/11/2007 senling FCO 28/09/2007 RTK GFS 

Carbis Bay Scon 08/11/2007 senling PCO 28/09/2007 RTK GPS 

Porthmeor Scon 08/11/2007 settling PCO 29/09/2007 RTK GPS 

Sennen Cove Scon 13/11/2007 settling PCO 14/09/2007 RTK GPS 

Penzance Scott 13/11/2007 senling PCO 28/10/2007 RTK GFS 

Marazion Scon 13/11/2007 senling FCO 28/10/2007 RTK GFS 

Penan Sands Scon 13/11/2007 senling Scon 29/10/2007 RTK GFS 

Fraa Sands Scon 13/11/2007 senling FCO 30/10/2007 RTK GPS 

Forth 1 even Scon 13/11/2007 settling PCO 26/10/2007 RTK GPS 

Church Cove Scon 13/11/2007 settling FCO 27/10/2007 RTK GPS 

Looe Scon 07/11/2007 senling PCO 10/10/2007 RTK GFS 

Miltondreath Scon 07/11/2007 senling PCO 10/10/2007 RTK GFS 

Seaton Scon 07/11/2007 senling FCO 10/10/2007 RTK GPS 

Downdcrry Scon 07/11/2007 settling PCO 10/10/2007 RTK GFS 

Tregantle Scon 07/11/2007 settling PCO 10/10/2007 RTK GPS 

Chailabo rough Scon 30/08/2006 settling Scon 10/09/2007 RTK GPS 
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Sedgewell Scott 11/11/2007 sen ling Scott 01/09/2007 RTK GPS 

Bantham Scott 17/11/2007 settling Scott 30/08/2007 RTK GPS 

Lees foot Scott 11/11/2007 settling PCO 27/10/2007 RTK GPS 

South Milton Scott 11/11/2007 settling PCO 27/10/2007 RTK GPS 

Hope Cove Scott 11/11/2007 settling- PCO 04/12/2007 RTK GPS 

Nonhsands 1 Scon 11/11/2007 settling PCO 24/02/2008 RTK GPS 

Northsands 2 Scott 11/11/2007 settling PCO 19/05/2007 RTK GPS 

Torcross Buscombe 12/10/2007 sieve PCO 20/10/2007 RTK GPS 

Strete Buscombe 12/10/2007 sieve PCO 20/10/2007 RTK GPS 

Blackpool Sands Buscombe 21/1/2007 sieve PCO 28/10/2007 RTK GPS 

Broadsands Scott 16/11/2007 settling PCO 26/10/2007 RTK GPS 

Poignton Scott 16/11/2007 settling PCO 27/10/2007 RTK GPS 

Teign mouth Kulkami Nov-99 sieve PCO 13/09/2007 RTK GPS 

Dawlish Scott 17/11/2007 settling PCO 11/09/2007 RTK GPS 

Dawlish Warren Scott 17/11/2007 settling PCO 12/09/2007 RTK GPS 

Lyme Regis Scott 17/11/2007 settling CCO 23/03/2007 RTK GPS 

Charmouth Scon 17/11/2007 settling c e o 07/03/2007 RTK GPS 

Shore Road Scon 19/11/2007 settling CCO 13/09/2007 RTK GPS 

Branksome Chine Scon 19/11/2007 settling CCO 13/09/2007 RTK GPS 

Bournemouth Pier Scott 19/11/2007 settling CCO 13/09/2007 RTK GPS 

East Cliff Scon 19/11/2007 settling CCO 13/09/2007 RTK GPS 

Boscombe Scon 19/11/2007 settling CCO 13/09/2007 RTK GPS 

Manor Steps Scott 19/11/2007 settling CCO 13/09/2007 RTK GPS 

FIshermans Walk Scon 19/11/2007 settling CCO 13/09/2007 RTK GPS 

Main Beach Scott 20/11/2007 senling CCO 05/03/2007 RTK GPS 

Greenhill Scott 20/11/2007 settling CCO 05/03/2007 RTK GPS 

Pakeficld EA 01/08/2003 sieve EA 10/08/2003 RTK GPS 

Covchithe EA 01/08/2003 sieve EA 12/08/2003 RTK GPS 

Oxford Ness EA 01/08/2003 sieve EA 04/08/2003 RTK GPS 

Dunwich EA 01/08/2003 sieve EA 23/07/2003 RTK GPS 

Sizewell EA 01/08/2003 sieve EA 09/08/2003 RTK GPS 

Great Yarmoth EA 31/10/2002 sieve EA 18/11/2002 RTK GPS 

Newport South EA 23/08/2002 sieve EA 18/11/2002 RTK GPS 

Overstrand EA 23/08/2002 sieve EA 18/11/2002 RTK GPS 

Walcon EA 19/08/2002 sieve EA 18/11/2002 RTK GPS 

Horsey EA 19/08/2002 sieve EA 18/11/2002 RTK GPS 

Salihouse EA 10/08/2002 sieve EA 18/11/2002 RTK GPS 

Holme-Next-The-
Sea 1 EA 31/10/2002 sieve EA 18/11/2002 RTK GPS 

Holme-Next-The-
Sea2 EA 31/10/2002 sieve EA 29/03/2002 RTK GPS 

Mablethorpe van Houwelingen Feb 2001 sieve van Houwelingen Oct-01 RTK GPS 

Theddlethorpe van Houwetingen Feb 2001 sieve von Houwelingen Oct-01 RTK GPS 

Donna Nook van Houwelingen Feb 2001 sieve van Houwelingen Oct-01 RTK GPS 
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Appendix 3 - Example of rip current assessment form for N.Fistral, Cornwall (Chapter 5). 

North Fistral 
Rip Current Assessment Form Observer(s) 

Date \ \ Time' : Tide height: L o w Q M i d Q HighD 

Are rip currents present? Yes ^ No 

How many rip currents are present?^ 

Tide times High water 

Low water 

What area of the beach is being assessed? Whole beach ^ 
Patrol area ^ 
Other r 

Strength/Severity of rip current(s): I I Weak (present but no hazard posed to swimmer) 
Mild (potential hazard to weak swimmer) 
Strong (current faster than average swimmer speed) 
Severe (hazardous to any swimmer) 
Extreme (extremely hazardous to any water user) 

Fil l in sketch map with symbols below: 

Arrow marks location 
and direction of 

rip current 

X 
Cross marks flagged 

bathing zone 

Box cross morks flagged 
surOcrofl zone 

The circle identifies the 
location 

of a sandbar/sandbank 

Low water 

iQh water 

Comments: 
(i.e. wove/wind 

conditions) 
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Appendix 4 - UK beach type classification system for the RNLl risk assessment program. 
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H]gh-«nergy UK beach types to be used with University of Plymouth Beach Hazard Assessment Model. 
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Low-energy UK beach types to be used with University of Plymouth Beach Hazard Assessment Model. 
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Appendix 5 - First author publications. 
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A B S T R A C T 
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relation to ncarshore morphology and hazards: a case study for southwest England. Journal of Coastal Research, 
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The coasts of Devon and Cornwall in the southwest of England experience some of the most energetic wave 
conditions (Hj_,a.i = 2-3 m) and largest tide ranges MSR = (4.2-8.6 m) in the UK. They are also a popular tourist 
destination during the summer months with over 10 million visitors per year. The energetic wave/tide conditions 
pose a considerable physical risk to beach users and 62 beach environments in this region are therefore patrolled 
by Royal National Lifeboat Institution (RNLI) lifeguards. Beach rescue statistics collected by the RNLl during 
spring and summer ( I May to I October) were analysed to examine and quantify the risk posed by physical 
beach hazards to beach users. Rip currents were found to be the main hazard and were responsible for 7 1 % of all 
recorded incidents. The most hazardous beaches were found on the exposed west coast of the study area. 
Beaches here can be classified as morphodynamically intermediate and are characterized by low-tide tide bar and 
rip systems, often topographically-constrained by intenidal geology. The rip currents are generally most active 
around low tide. Beaches in Devon and Cornwall exhibit morphologies that are significantly different from 
previously studied beaches in Australia due to the combination o f high energy surf zones, large tides and variable 
coastal geology. This work represents a first step towards the generation of standardized beach risk assessments 
in the UK. 

A D I T I O N A L INDEX WORDS: Beach safety. Rip currents. Beach type. High energy. Macro-tidal. 

INTRODUCTION 
Due to its location and geological setting, the United Kingdom 

(UK) possesses a very broad spectrum of beach environments 
around its more than 5,000 km long shoreline. UK beaches attract 
a large number of visitors annually for their aesthetic, sport and 
recreational appeal, providing pivotal support to the tourism 
industry in many regions. However, the beach environment is 
inherently hazardous and exposes people to risk. To understand 
and manage this risk, a comprehensive understanding of UK beach 
environments and their associated hazards is needed. 

Beach hazards in this study represent any phenomena which 
place the beach user in danger and are related to beach 
morphology and nearshore hydrodynamics. Hydrodynamically-
driven hazards manifest themselves as breaking waves, bores and 
set up: variable water depth: and nearshore currents, driven by 
waves, tide and wind. In association with beach morphology, 
these forces can move people unwillingly around the nearshore 
zone, placing them at risk. Intertidal and backshore geology 
constrains the characteristics of the beach and surf zone, and 
introduces localised hazards such as reefs, rocks and shore 
platforms (SHORT and HOGAN, 1994) . 

As one of the most diverse coastlines in the worid, the UK 
experiences Mean Spring tide Ranges (MSR) of 1 . 5 - 1 5 m, and a 
wave climate gradient from exposed ocean swell to fully protected 
wind-wave environments. Wind, wave and tidal processes produce 

dynamic nearshore current systems that play an important part in 
forming the wide range of beach morphodynamic states that exist 
around the U K . The geological setting of these beach 
environments includes high hard-rock cliffs, low soft-rocks cliffs, 
embayed coves and open ocean beaches, river mouths, tidal inlets, 
estuaries, spits and barriers. Beach sediments range from fine sand 
to boulders, and gravel beaches are particularly well represented in 
the U K due to its glacial history ( M A Y et al., 2 0 0 3 ) . With high 
population density in coastal areas, human modification is a 
significant feature around the U K beaches and has acted to alter 
beach shape and hydrodynamics through the implementation of 
groynes, breakwaters and sea walls (FRENCH, 2 0 0 1 ) . 

This study focuses on the coasts o f Devon and Cornwall in the 
southwest of England. This region, as well as being a popular 
tourist destination during the summer months with over 1 0 million 
visitors a year, experiences some of the most energetic wave 
conditions in the U K with 1 0 % exceedence wave heights (//,.io?i) 
reaching 2.5 to 3 m on western coasts (DRAPER, 1991) . This wave 
climate is characterised by a mixture of Atlantic swell and locally 
generated wind waves, and exhibits a MSR ranging from 4.2 to 
8.6 m ( U K HYDROGRAPHIC OFRCE, 2003) . In conjunction with the 
Royal National Lifeboat Institution (RNLI), who provide beach 
lifeguarding services to 6 2 beaches in the region, this study 
analyses the beach rescue statistics in association with physical 
beach characteristics and hydrodynamic conditions, examining the 
hazards posed to the beach user through interaction with the beach 
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Figure 1. Plots illustrating percentage distribution of the environmental cause of incident for all cases of active assistance at RNLI-patrolled 
beaches in Devon and Cornwall during 2005. Total number of individuals (indv.) assisted and relative risk posed by physical beach hazards 
(IR=incldenls.hr''/pcople in-sea.hr*') are displayed for each region. Circles represent 10% exceedence significant wave height (DRAPER, 
1991), mean zero up-crossing wave period (DRAPER, 1991) and mean spring tidal range (UKHO, 2003). The histograms show the 
environmental cause of incident 

and nearshore zone under typical spring/summer season 
conditions ( l " May to 1** October). An improved understanding of 
beach hazards in Devon and Cornwall represents an initial step 
towards the generation of a standardised beach risk assessment for 
the UK. 

Lifeguard services began in the UK in 1955 when the Surf Life 
Saving Association of Great Britain was fomicd ( S L S A ) as 
volunteer clubs began to patrol beaches in Bude and St Agnes in 
Cornwall and Brighton on the south coast of England. At present, 
the RNLI represent the contemporary face of beach lifeguarding, 
providing well-equipped and highly-trained services to 62 beaches 
in the southwest of England. A lifeguard service is a response to 
the risks posed within the beach environment and it aims to 
protect and educate the beach user. To best perform this task a 
comprehensive knowledge of site-specific physical beach hazards, 
hence beach morphodynamics, is needed. 

Much of the pioneering work on modelling beach 
morphodynamic states and iheir associated hazards was conducted 
in Australia. WRIGHT and SHORT (1984) developed a beach 
classification model for micro-tidal, wave-dominated coasts using 
the dimensionless fall velocity ( n = HtJwjT, where Hf, is breaker 
height, Wf is sediment fall velocity and T is wave period) to 
differentiate benvecn reflective ( n < I ) , intermediate ( f i = 1-6) 
and dissipative ( n > 6 ) regimes. MASSELINK and SHORT (1993) 
extended this work to meso/macro-tidal environments by defining 
an additional dimensionless parameter, the relative tidal range 
(RTR = MSR/Z/A) , to describe the relative importance of shoaling, 
surf zone and swash processes across the intertidal profile. 

Incorporating both morphological and hydrodynamic factors, a 
sequence of characteristic beach morphologies can be identified 
on the basis of Ci and RTR, leading to the identification of distinct 
morphodynamic slates. Recent Australian studies have associated 
physical hazards with beach state and temporal variation in 
environmental conditions, and have led to the development of the 
Australian Beach Safety and Management Program (ABSAMP), 
aimed at improving safety services for Ausutilian beaches (SHORT, 
2001). 

M E T H O D O L O G Y 
This study uses RNLI incident statistics and logs of observed 

daily conditions collected for 62 locations within the southwest of 
England for the 2005 lifeguarding season (1 si May lo Isl October) 
to investigate the specific hazards present within this coastal 
environment. Data of physical beach characteristics were collected 
through a campaign of 3D beach surveys using a quad mounted 
Trimble RTK GPS system conducted during several spring tide 
cycles from August to September, 2006. This was combined with 
sediment sampling, low-tide photographs and video from an 
Argus station (Perranporlh only). Hydrodynamic conditions were 
obtained both through visual observations of wave breaker heights 
recorded hourly by the RNLI . statistical wave conditions from 
DRAPER (1991) and tidal information from the UK HYDROGRAPHIC 
OFFICE (2003). Estimation of beach user numbers was obtained 
from the RNLI daily logs where the number of beach users was 
estimated each hour between 10:00 and 17:00 hrs. 
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Figure 2. Plot illustrates percentage frequency distribution of 
environmental cause contributing to each individual assisted 
during the 2005 season (some assists involve more than one 
environmental cause) 

R E V I E W OF R E S U L T S 

Incident statistics 
A comprehensive database has been compiled, containing 

information on all RNLl incidents (a logged event of active 
assistance which can involve multiple individuals), daily 
conditions and beach population during the 2005 season from late 
April to early October (dales within which RNLl scr\iced beaches 
are patrolled). Incidents recorded range from a situation requiring 
assistance to a life threatening rescue. Detailed information is 
logged for each incident including the cause of incident and 
specific environmental factors. Figure 1 summarises the 
environmental cause of incident statistics for all recorded incidents 
during the 2005 season w ithin each regional division. 

This dataset clearly shows that during 2005 both the 
environmental cause of incident and the number of incidents vary 

significantly around the coasts of Devon and Cornwall. A 
dominance of rip current related incidents (47% of total incidents 
for 2005) is seen in most regions. Rip currents account for 49% of 
incidents in west coast regions where //, lo-, is 2.5-3 m and MSR 
- 7m. as opposed to the south coast regions where. //,.io«^ = 0.5-
2.5 m. MSR = 4.7m and rip currents cause 25% of total incidents 
(Figure I ) . In south coast regions surging waves and tidal cut-off. 
account for 8% and 10% of total recorded incidents respectively, 
show ing an increased prevalence compared to west coast regions 
where the role of surging waves (3% of total incidents) and tide 
cut o f f (3% of total incidents) is less significant. When incidents 
are broken down to the number of individuals assisted/rescued 
(Figure 2). rip currents are shown to play a role in 7 1 % of 
incidents occurring within Devon and Cornwall during the 2005 
season. Offshore winds, sandbars, bednehm flow, high surf, strong 
winds, tidal cut-off and dumping waves individually represent no 
more than 15% of all incidents. Some of these environmental 
causes occur in conjunction with rip currents in 30% of incidents, 
suggesting risk to the beach user is often compounded with a 
combination of hazards i.e. large waves and littoral currents can 
drive the spatially unaware beach user into areas of increased rip 
current hazard. 

To further understand the beach hazard characteristics and 
specifically the influence of rip cuaents in rescue incidents, 
individual locations were analysed (Table I ) . This analysis 
included calculation of a coefficient of risk for each location for 
the 2005 season. This risk coefficient IR was derived through two 
statistics: (1) the average number of people estimated to be in the 
water per hour (P) between 10:00 and 17:00 hrs during the 2005 
season: and (2) the average number of individuals assisted/rescued 
per hour (Re) at a specific location (calculated from the total 
number of insea assists/rescues per season divided by the number 
of hours in a season at each location). Ihe ratio between these two 
statistics represents the probability of an incident occurring: 

l ahic 1: Siiniinan ol hc.ich sM'cly and beach t>pe slalislics for selected locations in IXnon .uiJ C oriu'..Lll 

I D Lficatioo P 
(hr ') 

Rt 
(iodv.season ') 

I K 
(xio^) (indv.srason') ("lO') 

Hb 
(m) 

MSR 
(m) 

Dvi 
(mm) K I K 

\ \ esi coast 
1 Saunton Sands - - - - - - 7.9 0 19 7 1 6.3 

2 Croyde - - - - - - 79 0,37 5,2 63 

3 Sandy mouth 31 102 0.324 98 0.321 0.7 68 0.36 6.3 4.5 

4 Harlyn 80 13 0.005 0 0.000 0,3 6,5 0.43 3.5 65 

3 Booby's Bay 21 2 0.005 0 0.000 0,6 65 0,39 4 8 4,3 

6 Constanlinc Bay 48 201 0.378 191 0.376 0.6 6 0.39 48 43 
7 Pcrran Sands 35 41 0073 23 0.062 0.6 6 1 - 7.0 4 1 
8 Pcrranporth 118 379 0.227 296 0.201 06 6 1 0 33 - -
9 Chapel Perth 29 83 0,258 66 0,210 07 6 1 0,47 48 4.1 

South coast 
10 Challatwrough 26 43 0.073 1 0.004 0,4 4,7 0.92 17 63 

11.12 Bigbury (wesUeasl) 29 5 0.013 2 0.007 0,2 4 7 0.30 49 63 
13 Sedgewell Cove 33 40 0.088 5 0.015 03 4,7 0.32 46 6,3 
14 Bantham 44 86 0 141 53 0096 0,4 4 7 0.29 5,3 6,3 
15 Torcross 8 20 0,178 0 0,000 0 1 4 3 4.20 0 5 8 6 

P = average number of people insea per hour: Re - total number of individuals assisted per season: IR = Re./ P (risk ratio): RCnc = total number of 
individuals assisted in rip related incidents per season: IRnp = RCnp ^ P (rip risk ratio): Hb = mean observed breaker height during 2005 season; 
D « ) " grain diameter: Q = dimensionless fall velocity ( Hi/WtT):RTR = relative tidal range (MSR/Hb)) 
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IR = Re /P 

The risk of rip current related incidents IR^pWas also calculated: 
Steep HW 

RCrip/P 

where Re^p is the number of rip incidents per hour at each 
location. West coast tjeach locations 6, 3, 8 and 9 have the highest 
rip current risk of all RNLI patolled beaches, whereas sheltered 
west coast beaches (4) and south coast locations 10, I I , 12, 13 and 
15 have the lowest values for rip current risk with only 8 rip 
current related incidents between Ihem in 2005. 

Beach Hazards 
Reviewing the RNLI incident data, it is clear that the type and 

level of hazards vary with location. The beaches listed in Table I 
were chosen for further analysis as they represent the high and low 
risk extremes of the RNLI beaches within the study region, and 
contain a representative spread of the beach types present around 
the coast 

The exposed intcnnediaie beaches on the west coast (2, 3, 5, 6, 
8, and 9), having a Hj,«', of approximately 2.5 to 3m, represent 
some o f the highest rip risks, with values at locations 6 
(Constantine) and 8 (Perranporth) reaching 0.376 and 0.201 
(probability of rip related rescues per hour) respectively. 
Perranporth and Constanlinc also received the most incidents 
during 2005 with 379 and 201 individuals rescued, respectively. 

The low rip current risk values consist of beaches located within 
sheltered areas of the west coast (location 4) and the south coast 
(see Figure 4). These areas have a reduced H.iow due to the aspect 
of the coast. The powerful westerly Atlantic swell waves which 
are dominant throughout the year have to refract through 45-90^ to 
arrive at the sheltered north and south facing beaches. Harlyn Bay 
(location 4) had an average o f 80 individuals inseahr ' during the 
season compared to 48 at the neighbouring Constantine Bay, but 
only 14 environmentally driven rescues occurred during the 
season as opposed to 201 at Constantine Bay. At south coast 
locations mean observed Hb was between O.lm and 0.4m at 
patrolled beach locations 10, I I , 12, 13, 14 and 15 during the 
2005 season. These locations had the lowest calculated rip current 
risk values. In some cases other environmental hazards were more 

fl^'^t^'^^' Intenidal rocV. L W bar/rip s'y^lcmg. 
- 7 " ' • ^ptatform. • v 

^ (ConstahUnt! Bay 
Steopfte^Sfface Intcrtida) rock 

L W baf / r ip ls7»icms 

Figure 3. Annotated panoramic views of Sandymouth (above) 
and Constantine and Boobys Bay (below) at low tide. 

prevalent On the south coast, in combination with lower energ>' 
conditions, the dominant winds from the western quadrant blow 
offshore in many locations, increasing the risk of the beach user 
drifting offshore. Significant tidal cut o f f hazards are present at 
many locations where the large tidal range causes submerged high 
water beaches. The ease of beach access and characteristics of 
backshore geology control the severity of this hazard. 

Beach types and rip risks 
The physical characteristics of the beach and its location within 

the hydrodynamic setting of the region play a key role in defining 
rip current hazards and risks to the beach user. The southwest 
coast of England displays a wide variety of medium to high 
energy beach types amongst varying tidal ranges. 

1. Saunton Sands 2.CrorteBay 3. Sflfld/fimiJi hsou 
OiniBfMalradi. 
• H a r t gooecigiKrtJOTO MHWS) 
O Bexti u d m m (uuvs ID MHWS) 

4. KartynBay A 

l1.Blgt)Ufy(vwttll tO^Oa3at»rough S. Pofranponh 

IS. Sbpun Sonth l2.Bigt)mv{C3sl) 

too 4oa 
Crass shore dbtsnco (m) 

Figure 4. Summary of cross shore profiles and tide ranges at selected locations around Devon and Cornwall (height measured in meters 
above Ordnance Datum Newlyn), and schematic plan views of each site indicating beach shape, aspect of the coast and intertidal 
geolog\\ 
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Figure 5. Digital Terrain Model of Perranporth Beach with mean tidal statistics and annotations marking main morphological features. 
Inset: Rectified timex image of low tide bar morphology and surf zone at Perranporth Beach from the Droskyn Argus camera station. 

Ultra-dissipative beaches 
Ullra-dissipalive high energy surf zones like Saunton Sands 

(ti=7.1 and RTR=6.3) that are not represented within previous 
Australian studies (MASSHI.INK and SHORT, 1993; WRIGHT and 
SHORT. 1984b). exhibit a ven wide (=500 m). low gradient 
featureless intertidal profile with no significant bar morphology 
(t-igure 4). Saunton Sands, characterised by a low gradient fine 
sand beach (D5o=0.19 mm), has an MSR of 7.9 m and shows ver\ 
subdued intertidal morphoIog\ due to the cross shore translation 
of high energy surl'zonc processes during the tidal cycle. Intertidal 
/ones of this width do not occur in high energy wave climates in 
Australian examples. Although there is no lifeguard service at 
Saunton Sands, it presents a lower risk to the water user due to the 
lack of intense rip curtent systems and the non barred, dissipativc 
nature of its w ide surf zone. Thus incident wave energy is greatly 
reduced when it reaches the bathing zone. Consequently it is 
popular w ilh novice surtcrs. 

Intermediate (Reflective/Dissipative) Beaches 
The more common intermediate beach types, with large tidal 

ranges (MSR between 6.1 to 7.9 m) and an energetic wave 
climate, are represented by low tide terrace, low tide terrace and 
rip. and low tide bar/rip morphologies. They are characterised by a 
steeper, often coarse, more rcfiectivc high water beach face, a 
wide (400-600 m) subdued dissipative intcrtidal zone (swash bar 
sometimes present) and well developed intermediate low water bar 
and rip circulation systems (l-igure 4). The beaches with the 
highest calculated rip current risk fall into the low tide bar/rip 
beach type (Constanline Has. Perranporth, Sandymouth and 
Chapel Forth), with a ^ i of between 4.8 and 7 and an RTR 
between 4.1 and 4.3. 

Backshore geologv and intertidal rock formations have a 
significant infiuence on the characteristics of the beaches of 
Devon and Cornwall. At boxh Sandvmouth and Constantine Bay 

(Figures 3 and 4) these formations are fundamental in generating 
the beach hazards that are present. Sandymouth. with a gravel and 
boulder refiective high water beach, possesses an intertidal rock 
platform which topographically constrains circulation within the 
surt" zone, consequentiv driving fixed rip current sy stems. The 
geological constraints at Constantine Bay act to influence surf 
zone circulation from high to low water, generating deep rip 
channels. Ihese arc especialh severe at low water when the 
ebbing tide enhances rip current velocities, leading to the highest 
rip current risk in the region. 

Other beach tvpes associated with high rip current risk are those 
represented by Perranporth (Figure 5) and Chapel Forth (Figure 
6). Both locations receive similar hydrodynamic forcing with a 
MSR of 6.1 m and an lUio*. of 2.5 m (DRAPHR. 1991). and have a 
well defined often rh\ thmie unconstrained bar and rip morphologv 
that is exposed al MLWS. During the survey period, the 
unconstrained rhy thmic bar and rip morphology, present at many 
west coast beaches had a wavelength of 300-400 m and amplitude 
of 1.5-2 m. With an incident breaker height of 0.5-2 m. intense 
topographicalI\ driven rip systems can develop as narrow rip 
feeders travelling within the channels between the bars, creating 
high risk conditions for water users around low water at these 
locations (SHORT and HOGAN, 1994: M A C M A H A N et al.. 2006). 
Figure 5 and inset shows the low tide bar and rip morphology at 
Perranporth and a rectified timex image from the Perranporth 
Argus station, indicating the presence of a detached sub tidal 
rhythmic bar system. Rip hazards are enhanced at low water as the 
bars, accommodating beach users, are submerged during the 
flooding tide, activating morphologically constrained rip feeder 
currents in the lee trough placing the beach user at risk. 

Reflective Beaches 
The steep reflective beaches on the south, channel coast like 

Slapton Sands (0=0.5 and RTR=8.6) are coarse grained 
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Figure 6. Annotated panoramic image of Chapel Forth at low 
tide. 

(Dso'^4.2 mm), narrow (=70 m) and associated with plunging and 
surging breakers within a small surf /one. Dominated b> wind 
waves (Hb=0.I m). no significant rip current hazards present 
themselves. 

Comparison of Australian and UK beaches 
The beaches of southwest England pt>ssess a number of 

significant ditTerences to those documented in previous Australian 
studies (WRIGHT el al.. 1984a; WRIGHT and SHORT. 1984b; 
SHORT, 1986: MASSELINK and SHORT. 1993; SHORT. 2001; 
SHORT. 2006). Firstly, fine. wide, high energy ullra-dissipative 
beaches like Saunton Sands: secondly, sleep reficclive gravel 
beach l> pes. like Slapton Sands of the protected south coast w ith a 
comparatively low Q of 0.5 but a high R I R of 8.6: and thirdly, 
wide largely featureless, high energy intermediate beaches 
( i i -4 .8-7, RtR-4.1-4.3) with more developed high and low waier 
morphology, are not well represented \\ i lhin the Australian coastal 
environment. These differences arc generated largely by the 
coupling of a high energy wave climate and large tidal ranges in 
the UK. As a result, these beaches do not become tide dominated 
with a targe tidal excursion. Also, the variation in coastal geology 
and the present and historic sediment suppK to beaches constrains 
the level of hydrodynamic control on beach type. 

Rare in the southwest bui common lo the UK (especially the 
east coast of l-^ngland). ridge and runnel beaches and those 
modified with inlcrlidal coastal structures are environments that 
have also received limited coverage within Australian beach type 
models (WRIGHT and SHORT. 1984b: MASSELINK and SHORT, 
1993) but represent unique UK beach morphologies and 
associated hazards. 

CONCLUSIONS 
As beach visitor numbers increase in the UK. understanding the 

physical hazards and risks posed lo the beach user within a 
national context becomes paramount. This \sU\ underpin 
deployment of safety resources and enable improved 
understanding of the national beach environment that contributes 
to thousands of rescues annualU. I he south and southwest of 
England beach hazards are posed b\ a number of environmental 
factors: strong/offshore winds, sandbars, bednehm flow, large 
waves, tidal cut o f f and dumping/surging waves, but the most 
significant is rip currents. Based on this study of the beach types, 
ha/iirds. rip current characteristics and lifeguard rescue statistics 
the following conclusions can be drawn. 

1) Rip currents represent the greatest environmental threat to the 
insea beach user. This threat can be compounded by a series of 
hazards working together. 

2) Ihere is a significant variation in beach hazards and their 
severity depending on the nature of the hydrodynamic conditions 
and beach type. The reflective low tide terrace and rip and 

intermediate, low tide bar/rip morphologies as described by 
MASSKLINK and SHORT (1993) possess the high risk rip current 
systems, that are most active during wave heights of 0.5-2 m after 
which the beaches are often closed to bathers. 

3) Surf zone morphologies arc not as predictable as in previous 
Australian studies (SHORT. 1994). Ihere is a great variation in 
surfzone characteristics due lo beach boundary and interlidal 
geology, often constraining sand and water movement and 
enhancing rip current systems. With high energy surf /ones and 
large tidal ranges the southwest of England experiences different 
hydrodynamic forcing than Australia, thus generating beach types 
unique to this climate. 

4) Moderate energy (0.5-1.5 m) Atlantic swell waves during 
spring and summer enable the development of rh\thmic bar 
morphology on ihc intermediate beaches al the low water stand, 
generating morphologically controlled rip current systems. 

5) Large tidal ranges intrixiucc ha/nrds such as tidal cut of f 
through high water levels and horizontal speed of shoreline 
movement, and enhance rip current velocities on Ihe ebbing tide. 
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HIGH VOLUME SEDIMENT TRANSPORT AND ITS IMPLICATIONS 
FOR RECREATIONAL BEACH RISK 

Tim Scott'. Paul Russell', Gerhard Masselink', Adam WooleH and 
Andrew Short^ 

In a coastal region where there are large pressures on the beach resouices through 
recreational usage, understanding the levels and characteristics of risk to the beach user 
is paramount A morphodynamic evaluation of beaches in the high-eneigy, macro-tidal 
southwest of England was made between July 2006 and Febniary 2008. Levels of 
physical beach hazards presented to the beach user, both spatially and temporally, by 
waves, tides end surf-zone currents were assessed and calibrated against lifeguard rescue 
and usage data. Large seasonal variations in wave energy lead to significant annual 
morphodynamic transition of the popubr west coast beaches from a erosive planar beach 
face with linear shore parallel bare in winter to a highly three dimensional accretionaiy 
system in spring/summer with pronounced low-tide bar/rip systems and enhanced mid-
tide bar morphologies. In many locations this general transition is modified through 
sediment supply, geological consuiction and freshwater drainage. This annual transition 
drives temporal variations in beach hazard through (1) the temporal variability 
morphology (especially rip currents, the cause of 68% of all incidents during 2005-
2007); and (2) large tidal excursion during spring tide periods exposing low tide rip 
systems increasing the rate of change of the temporal hazard signature. Periods of high 
morphologically driven beach hazard coincide with seasonal peaks in beach user 
numbers, increasing recreational beach risk. 

INTRODUCTION 
Large-scale beach volume changes associated with morphodynamic 

variations occur on beaches along the high-energy (10% exceedence significant 
wave heights of 3-4 m), macro-tidal (mean spring tidal ranges of 4.2-5.6 m) west 
coast of Devon and Cornwall, in the southwest of England. This seasonal 
sediment movement can have significant safety implications in a region of 
outstanding natural beauty which receives 10 million visitors per year and has 
experienced a growing pressure of recreational and leisure activities in the beach 
environment. While providing pivotal support to the tourism industry in many 
regions, issues of risk to the beach user are increasingly important as the beach 
usage season now extends from the early spring to autumn. The Royal National 
Lifeboat Institution ( R N L I ) , who provide lifeguarding services to 69 beaches in 
the region (2007), commissioned this project realising that beach safety could be 

' Coastal Processes Research Group. Centre for Coastal Dynamics and Engineering (C-
CoDE), University of Plymouth. UK. 
^ Surf Ufe Saving Great Britain (SLSGB). Exeter. UK ('fomierly with the Royal National 
Lifeboat InstituUon. Poole. UK) 
^ Coastal Studies Unit. University of Sydney. NSW 2006. Australia. 



improved through developing imdersianding of physical beach hazards in the 
U K . 

The Wright and Short (1984) conceptual beach classification model, based 
on the Australian beach environment, has been increasingly used to describe 
morphological transition of beach types through the use of the dimensionless fall 
velocity parameter (Q = Hi/WsT), where Hi, is breaker height, is sediment fall 
velocity and T is wave period). This differentiates between reflective {Q < 1), 
intermediate {Q = 1-6) and dissipative (Q > 6) regimes. Masselink and Short 
(1993) extended this work to meso/macro-tidal environments by defining an 
additional dimensionless parameter, the relative tidal range {RTR = MSR/Hi,), to 
describe the relative importance of shoaling, surf and swash zone processes 
across the intertidal profile. 

These models apply to high energy micro-tidal and low energy meso/macro-
tidal environments with abundant sediment supply. Indeed, much of the present 
understanding of beach risk is confined to these sediment rich, medium/high 
energy micro-tidal environments (Short and Hogan, 1994; Short, 2001). Short 
(2006) identifies macro/mega-tidal beaches that are exposed to high ocean swell 
and storm seas and those with gravel and cobble sediments, and exposed 
intertidal geology, as environments requiring further investigation. With a 
significantly different sedimentary and hydrodynamic setting, U K beaches 
represent a new challenge in the understanding of beach morphodynamics and 
their association with risk to the recreational beach user. 

In the present study annual and monthly beach morphology, hydrodynamic 
and coastal image data are used to quantify the seasonal variation in beach 
volume and morphology at six selected beaches that present high hazards to the 
recreational beach user. The implication of this transition for recreational beach 
risk is then assessed through the addition of detailed lifeguard incident records. 

SITE SELECTION AND DATA COLLECTION 

Beach type and hazards 
Field sites were chosen based on the levels of hazard presented to the beach 

user and the levels of usage throughout the spring/summer/autumn season with 
the level of beach risk a function of the hazard and usage levels. The R N L I 
routinely records the environmental causes of every incident made at their 
beaches. Analysis of incident reports for all R N L ! units from 2005 to 2007 
indicates that 68% of all recorded incidents (individuals rescued) where due to 
rip currents, a similar percentage to beach rescues in Australia and the USA. 
Figure 1 illustrates the percentage cause of incident over the same period for the 
different beach types patrolled. These beach types are modified from the 
Masselink and Short (1993) conceptual model to better describe the beach 
environments in the U K . Rip currents are the lai^est cause of incident at all 
beach types that commonly suppoil rip current systems. Incidents driven by 
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Figure 1. Percentage occurrence of all environmental causes of incidents {recorded by RNLI) for beach type groupings (2005 to 2007). 



strong and offshore winds as well as littoral currents present the greatest cause 
on beaches that are commonly without rip current activity. 

L o w tide bar rip ( L T B R ) and L o w tide terrace + bar/rip ( L L T + B R ) beaches 
have greater than 80% o f all incidents being caused by rip currents, and wi th 
2269 and 3253 incidents f rom 2005 to 2007 respectively they constitute 78.1% 
o f all recorded incidents over that period. L T B R and L L T + B R beaches represent 
46.6% o f all patrolled beaches and wi th an average o f 33.6 and 42.9 people in 
the sea per hour (May to October) during the 3 year period making these the 
most popular bathing beaches that are patrolled by the R N L I . Due to the high rip 
current hazard, popularity and large carrying capacity o f these beaches, the 
dynamic intermediate L T B R and L L T + B R beaches on the high-energy west 
coast o f Devon and Cornwall (Figure 2) are the focus o f this study. 

Field moni to r ing 
A morphodynamic evaluation o f six f ie ld sites (three L L T + B R and three 

L T B R ) was made between July 2006 and February 2008 through analysis o f 
hydrodynamic forcing using long term (2003 to 2008) non-directional offshore 
( -30km) and short term (2007 to 2008) directional nearshore ( - I k m ) wave 
buoys, seasonal and monthly 3D RTK-GPS surveys, sediment sampling, digital 
photography and Argus video imagery (only on Perranporth). High resolution 
(fortnightly) monitoring focused on the 2007 season (May to October) during 
which time levels and characteristics o f hazard were then assessed using detailed 
rescue and beach usage statistics f rom the R N L I lifeguards incident reports and 
daily logs. 

Figure 2. Field locations In Devon and Cornwall. Beaches: (1) Croyde Bay (2) 
Sandymouth (3) Crooklets (4) Constantine Bay (5) Perranporth (6) Chapel Perth. 



ANNUAL BEACH CHANGE 

Hydrodynamic climate 
The wave climate of the west coast of Devon and Cornwall is both high-

energy and highly seasonal. Mean significant wave heights between 2003 and 
2008 at Seven Stones Light Vessel (50°6'9" N, 6*6'0" W, see figure 2) vary from 
2.4m in winter to 1.2m during simimer. During the high-energy winter months 
10% exceedance wave heights reach 4.8m. An annual mean wave period of 8.4 s 
varies from 9.2 s in winter to 7,6 s in summer. 

Table 1. Offshore wave climate statistics from 2003 to 2008 at Seven Stones Light 
Vessel. H 5 is significant wave height and T m mean wave period 

H . (m) H . exceedance (m) T n , (sec) 
Mean s.d. 10% 50% 90% Mean s.d. 

Annual 1.9 1.3 3.7 1.6 0.7 8.4 1.8 
Winter 2.7 1.5 4.8 2.4 1.1 9.2 1.8 
Spring 1.9 1.2 3.5 1.7 0.7 8.4 1.8 

Summer 1.2 0.7 2.2 1.1 0.6 7.6 1.4 
Autumn 1.8 1.1 3.3 1.5 0.7 8.3 1.7 

Macro-tidal (>4m) and mega-tidal (>8m) mean spring tidal ranges (MSR) 
exist along the entire west coast of Devon and Cornwall from 4.1m at the 
southern lip to 9.6m in the northwest. The west coast beaches studied receive 
similar wave energy throughout the year. This high-energy climate drives the 
seasonal high volume sediment transport seen along the coast. 
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Flgure 3. Offshore wave record (24 hour averaged) during study period. Plot shows 
(upper) significant wave height (Ms) and (lower) mean wave period ( T m ) . 

The study period experienced two high-energy winters. Between October 
2006 and April 2007 24 hour averaged off-shore wave heights were frequently 
between 4m and 6m and mean wave periods above 10s. Two significant storm 
events occurred in December 2007 and March 2008 where 24 hour averaged off­
shore wave heights were greater than 8m. During both observed summer periods 
(June to August) 24 hour averaged off-shore wave heights never exceeded 4m. 



Near-shore wave heights, available from January 2007. recorded mean 
significant wave heights of 2.3m and 1.2m for winter and summer respectively. 
Zero up-crossing wave periods ranged from 6.8s in winter to 5.5s in summer. 
The mean wave angle (bathymetrically controlled) was 280°. During the energy 
peak of the winter 2007/2008 storm events, in -10m water depth. 30 minute 
averaged significant wave heights exceeded 7m and maximum wave heights 
exceeded 9m. 

MORPHOLOGICAL TRANSITION 
During the study period high volume sediment transf>ort was observed as 

beach morphologies adjusted to the changing hydrodynamic climate. A general 
trend of large scale erosion of sediment from the inter-tidal zone occurred at all 
studied LLT+BR and LTBR beaches along the west coast of Devon and 
Cornwall. This took the form of beach lowering and transition from highly 
developed low-tide bar/rip systems and enhanced mid-tide bar systems during 
the lower energy swell-wave dominated summer months to increasingly shore 
parallel offshore bars and planar featureless mid-tidal zones during the high-
energy, storm dominated winter months (Figure 4). 

10/09/2006 Chapel Porth LW = 0-4mCD 

05/03/2007 Chapel Porth LW = O.SmCO . 

Figure 4. Summer/winter low-tide images of Chapelporth beach, 10/09/06 to 05/03/07. 

TTie example of Perranporth beach (D5o-0.32mm) in Figure 5 illustrates this 
transition. Erosion of 210mVm occurred from 12/09/07 to 08/02/08 along the 
cross-shore profile between MLWS and MHWS. This constituted a mean 
reduction of the beach elevation of 0.45m. Argus TIMEX images and 3D RTK 
GPS surveys (Figure 6) show the transition during the spring /summer season of 
2007 where a planar beachface with linear sub-tidal bar systems during April 
transforms toward highly three dimensional low-to-mid-tide bar systems as the 
beach accretes towards September. 
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Figure 5. Morphological transition at Perranporth beach; (upper) cross-shore 
profiles illusUate transiUon between 12/09/07 and 08/02/08. 

Figure 6. (left) 3D RTK GPS surveys at Perranporth shown as residual elevations 
from a mean surface at the start and end of the 2007 spring/summer season and 
(right) monthly spring low tide Argus TIMEX images give overview of observed 
changes during the 2007 spring/summer study period. 
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Figure 7. Morphological transition at Sandymouth l>each: cross-shore profiU 
illustrate annual transition between 06/09/06 and 23/01/07. 

Figure 8. Summer/winter images of Sandymouth beach. 

Sediment supply, geological control and beach drainage 
At many of the studied locations there are significant modifications of the 

general morphological transition observed. The beaches of Devon and Cornwall, 
and indeed the UK, are highly variable in their sediment characteristics and 
abundance, as well as in backshore geology. For example, Sandymouth beach. 



Cornwall, experienced high volume sediment transport between 06/09/06 and 
01/02/07: removal of l63.6mVm of sediment, from the cross-shore profile in 
Figure 7, offshore of MLWS, left 35% bedrock exposure on 01/02/07 (an 
increase from 4% on 06/09/2006). Figure 8 illustrates the large scale beach 
volume changes during this period at Sandymouth beach. The photographs 
clearly show the mixed nature of the beach sediment with a gravel/boulder high 
water beach and sandy inter-tidal/low water zone (D5o=0.36mm). Bedrock 
exposure of approximately 100m in the cross shore between M H W N and 
M L W N in the 23/01/07 survey restricted the ability of the beach to respond to 
the prevailing hydrodynamic conditions, constraining sediment transport 
pathways, reducing depths to bedrock and hence altering drainage properties and 
sediment mobility, and driving bedrock controlled surf-zone currents (rip 
currents) during the mid and high tide. 

Many beaches within the study region also acconmiodate small steams from 
local catchments which, during periods of heavy rainfall, cause the beaches to be 
completely saturated throughout tidal cycle affecting the mobility of the beach 
sand. This case study highlights the importance of the role of intertidal geology 
and beach drainage in the modifying the capacity of a beach to respond to the 
prevailing hydrodynamic conditions within this study area. 

BEACH SAFETY IMPLICATIONS 
Overview 

Of key importance to beach safely managers is the understanding of the 
implications these changes in beach morphology, generalised in the beach type, 
have on temporal hazard signatures presenting the recreational beach user at any 
given time. Once an understanding of the potential hazards is gained, temporal 
and spatial modification of these hazards through morphological, wave, tidal and 
weather variations, on the scales of minutes to seasons, need to be assessed in 
order to safely manage beach users in these highly dynamic beach environments. 

To investigate this RNLl lifeguard rescue and beach usage records, logged 
between 01/05/07 and 01/10/07, for all the LLT+BR and LTBR beaches studied 
(Figure 2) were analysed in combination with beach elevation and hydrodynamic 
records (near-shore wave buoy at Perranporth, and predicted tidal elevations). 
Illustrated in Figure 9 are the rescue totals (total and rip-related) for each week 
normalised by the average number of people in the sea per hour at a location 
during that week, and the corresponding wave (6 hour average) and tidal record. 
Weekly averaging of in the sea user numbers reduces bias occurring due to high 
weekend counts. The right panel qualitatively illustrates the morphological 
change seen along the coast at every spring tide during the season through a 
photographic series from Chapelporth beach. The results highlighted some key 
environmental factors controlling rescue numbers. 
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Figure 9. Plot shows data from all LTBR and LTT+BR beaches studied, from left to right; individuals rescued per week (total rescues and 
rip related rescues shown as dark and light bars respectively), averaged people in sea per hour for each week, total and rip rescues 
normalized by number of people in sea per hour, nearshore H . and T p (6hr average) and tidal elevation (meters from Chart Datum). Light 
grey bands highlight regions of interest. Photo series of Chapel Porth illustrates general regional morphological transition. 



While lifeguard records indicate the number of rescues, many assumption s 
have to be made to utilize the data. A range of factors can affect rescues that 
occur on any given day including the number and experience of lifeguards on the 
beach per beach user, the nature of the beach user, the size of the bathing zone 
and local complexities in morphologies that generate hazards to the beach user. 
By analysing the data from a large number of locations within weekly temporal 
bins, the ability to assess broad trends in the data is improved. Finally, in 
normalising the rescues against people in the sea per hour, risk is assumed to be 
independent of the number of people in the sea. 

Temporal variability of rip currents 
Normalised rescue values show a general upward trend in rip rescues 

throughout the 2007 lifeguard season until the end of August when a sharp 
reduction in rip rescues occurred (Figure 9). The vast majority of rip incidents 
on the LTT+BR and LTBR beaches occur over the low tide rip systems, and the 
photo series of Chapelporth illustrates the presence and development of these 
systems until the end of August when the onset of small, short period wind waves 
that dominate until mid September lead to inter-tidai accretion and the infilling 
of the constraining rip channels (images 7 and 8 in Figure 9). This infilling of rip 
channels, seen in survey data at the majority of studied sites, can be associated 
with the reduction in rip rescues throughout late August and September. 

Tidal effects 
Macro-tidal and mega-tidal ranges within the region lead to large variations 

in the temporal hazard signature throughout the semi-diurnal cycle. Significantly, 
during spring tide periods, low tide bar/rip systems are exposed leading to 
intensification of rip current circulations. During neap tide periods, low tide 
bar/rip systems often remain submerged and inactive. This effect is demonstrated 
in the data shown in Figure 9 where peaks in the normalised rip rescue panel, 
highlighted in grey are all associated with weeks experiencing spring tides. The 
two largest peaks in normalised rip rescues during the beginning and end of 
August were also associated with the largest rate of change of tidal elevation 
from neap to spring tides (equinox tides), leading to rapid daily variation in 
beach exposure and horizontal translation rates. 

The importance of the rate of change of the temporal hazard signature is 
exemplified by Figure 10 that shows 15 min shoreline contours at Croyde Bay, 
Devon, during a spring tide in 18/06/07 and 14/09/07. Locations of potential rip 
current hazards are highlighted. The rate of tidal translation reaches up to 7 
m.min ' within the mid-tide region in both surveys. This causes dramatic 
alongshore translation of rip hazards throughout the tidal cycle. Understanding 
these hazard variations is crucial in safely managing recreational beach users. 
Figure 10 also highlights the development of the low tide bar/rip morphology at 
Croyde Bay between 18/06/07 and 14/09/07. 



Figure 10. Plots A and B show 15 minute shorelines at Croyde Bay, North Devon 
during spring tides on the 18/06/07 and 14/09/07 respectively. Bold grey lines 
indicate regions of heightened rip current hazard. 

CONCLUSIONS 
An assessment of the seasonal variation in beach volume and morphology at 

locations along the high-energy (10% exceedence significant wave heights of 3-
4m), macro/mega-tidal (4.1-6.9m) west coast of Devon and Cornwall, southwest 
England were made between summer 2006 and winter 2008. Significant 
morphological change was observed. Low-energy summer morphologies with 
low tide bar/rip systems and three dimensional mid tide bars were modified 
through high volume offshore sediment transport during winter causing inter-
tidal beach lowering of ~-0.5m-lm along all studied beaches. Planar inter-tidal 
beach morphologies with quasi-linear, shore-parallel, sub-tidal bars occurred 



during winter. Sediment supply, geological exposure and drainage characteristics 
modified and restricted the envelope of potential morphological transition at 
some locations. 

Implications of temporal morphological transition for beach safety were 
assessed. Rip current hazards were shown to increase as low-tide bar/rip systems 
developed throughout the winter/summer transition. Variability in exposure of 
inter-tidal geology in sediment poor environments controlled levels of 
constrained rip current hazard. Tidal elevation played a significant role in 
controlling the temporal hazard signature. Spring tides increased exposure of 
low-tide bar/rip morphologies increasing rip hazards during the lower tides. With 
wide inter-tidal zones and large mean spring tidal ranges, the rate of cross-shore 
translation of the surf-zone during spring tides increases the rate of change of the 
spatio-temporal hazard characteristics, having significant implications for 
lifeguard beach safety management. Periods of high morphologically driven 
beach hazard coincide with seasonal peaks in beach user numbers, increasing 
recreational beach risk. 
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The role of beach safely management is becoming increasingly important along much of the macro-tidal, high-
energy Atlantic coast of England, which experiences mean spring-tidal ranges of 4.1-7.4 m and average 
significant wave heights of 1.2 m and 2.7 m in summer and winter, respectively. Growing pressures on beach 
resources due to increasing visitor numbers means an understanding of the nature of ha/.ards surrounding the 
recreational beach user is paramount. Rip currents are responsible for 80% of all recorded incidents (2005-2007) 
along this coast. Most investigations into rip current dynamics have been reported from micro- and meso-tidal 
environments and macro-tidal rip systems have rarelv been considered. This research assesses the spatio-
temporal variabilitN of macro-tidal rip current systems and their associated ha/ards along the west coasts of 
Devon and Cornwall between Ma\ and October 2007. Analysis of seasonal morphological and hvdrodynamic 
datasets coupled with detailed lifeguard incident data and daily rip observations have identified some key drivers 
of recreational rip hay.ards and "mass rescue' events on low-tide bar/rip and low-tide terrace and bar/rip beaches: 
I) Small long-period swell-waves, that favour development of accretioar> rip systems, shoal to the inner 
transverse bars generating strong alongshore variations in wave breaking and enhancing rip current activity; 2) 
Well developed, phasc-olTsct low- and mid-tide bar/rip morphologies lead to the generation of active rip sy stems 
during low- and mid-tidal stages: 3) Large (spring) tidal ranges expose low-tide bar/rip systems, activating rip 
currents and increasing tidal cut-off potential and the rale-of-change of alongshore rip location through low- and 
mid-tide. Low-tide times during spring tides coincide with lifeguard patrol hours and hence times of high beach 
usage. 
ADDITIONAL INDEX \> ORDS: Beach safety, rip currents, beach type, high energy, macro-iiiLil 

INTRODUCTION 
With a high level of pressure from recreational beach usage 

along the Atlantic coast of England, the role of beach safety 
management is becoming increasingly important as the period of 
intense leisure use of the surf-zone persists into the spring and 
autumn months. An understanding of the physical hazards posed 
to the in-sea beach user b\ the surf-zone environment is integral to 
the ongoing improvement of the beach safety management service 
and is the key motivator for this research. 

Previous investigations into beach hazards in the UK. Australia 
and the USA (SHORT. 1999: SCOTT et ai. 2007: SCOTT et ai. 
2008) have indicated that rip currents are the cause of the majority 
of rescues and fatalities within the beach environment Scott et al. 
(2008) found that 68°o of all recorded incidents by the Ro>al 
National Lifeboat Institution (RNLI) in the UK were due to rip 
currents. 90% of these incidents were related to the contribution 
from beaches with identifiable rip channel morphologies: Low tide 
bar/rip (LTBR) and Low tide terrace + bar/rip (LLT+R) beaches 
(see Figure 1 and 2). In general, these two beach types share a 
propensity for rhv thmic bar and rip current s\ stems below mean 
low water neaps (MLWN) where the tidal stationaritv within a 
high-energy, macro-tidal environment is such that the bar/rip 

Figure I . Exposed spring low-tide bar'Yip morphologv al 
Perranporth. Cornwall. A large number of recreational beach 
users can be seen populating the low-tide bars (T Scott). 

morphological systems have the chance to develop. Tidal 
smearing restricts morphological development throughout the 
mid-lide region. Accompanying investigations (ScOTT et a/.. 
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2008) record the dynamic nature of these systems within the 
seasonal wave climate cycle as the systems often transition from a 
featureless, linear sub-tidal multi-bar state with low frequency 
r>'thmicity during high-energy storm conditions, to highly 
developed low-tide bar/rip systems with increasingly developed 
lower mid-tidal bars during lower energy swell conditions (Figure 
2). Short (1985) has classified rip systems into 4 categories: 
Accretionar>' and erosional. associated with beach rips that arc 
fixed (low-energy) and migrator) (high-energy) respectively, 
topographic rips that that generated through the inftuence of solid 
structures (groynes, jetties) and large scale megarips that occur 
during high waves. Scott et al.. (2007) examined rip types within a 
UK beach hazard context and dilTcrcntiatcd between the low- to 
mid-tide accretionarv' beach rips and geologically 
(topographically) constrained rip systems thai are generated at mid 
and hide tide due to hard rock intrusions into the surf-zone as 
those key to understanding levels of hazard posed to the beach 
user. 

Most investigations into rip current dynamics have been 
reported from micro- and meso-tidal environments (SHORT and 
BRANDER. 1999; BRANDER and SHORT. 2001; MACMAHAN ei al., 
2006) and macro-tidal rip systems have rarely been considered. 
This research assesses the spatio-temporal variability of macro-
tidal rip current systems and their associated hazards along the 
west coasts of Devon and Cornwall, which experience mean 
spring-tidal ranges of 4.1-7.4 m and average significant wave 
heights of 1.2 m and 2.7 m in summer and winter, respectively. 
The principal aim of this investigation is to assess the contribution 
of key mechanisms that force and control rip current circulations 
with respect to their effect on the temporal hazard signature within 
a given spatial extent. Specifically, the study aims to investigate 
the reports of occasional "mass rescue' events during the summer 
period. 

DATA C O L L E C T I O N 
A campaign of data collection was undertaken between 

01/05/07 and 01/10/07 at 27 beach sites that represent both, LTBR 
and LTF+R beach morphologies along the Atlantic west coast of 
Devon and Cornwall, southwest England (Figure 3). 
Hydrodynamic conditions were monitored with a near-shore 
directional waverider buoy at Perranporth beach (50.35379°N, 
5.17497°W; 10m water depth). Houriy wind statistics were 

DEVON 

CORNWALL 

0 » M 30 B m 

Figure 3. Map of study region and study site locations. 

recorded at St Mawgan airfield. Beach morpholog>' was measured 
monthly through ATV based RTK GPS surveys at selected sites, 
and Argus video data at Perranporth beach provided beach and 
surf-zone images at 30 minute intervals. Rip hazard and severit> 
of rip currents were assessed through analysis of comprehensive 
incident records and beach u.ser counts collected by the RNLl 
lifeguards al all 27 (indicated by numbered black bars in Figure 3) 
studied beach locations on a daily basis. Daily assessments of rip 
severity at all tidal levels were estimated by the RNLl lifeguards 
at 4 sites representing both L I BR and LTT+R morphologies, 

REVIFAV OF R E S U L T S 

Low tide terrace bar/rip Low tide bar/rip 

Fistral Beach (LTT+R) 

Figure 2. Illustrated description and examples of LTBR and 
LT1+R beach types in the UK (T Scott). 

Rip current morphology and distribution 
L I BR and LTI +R beaches represent 59% (62% by length) of 

all west coast beaches with sandy lower inter-lidal zones. These 
beaches with rip morphologies are mostly located on the high-
energy west facing beaches (Figure 3) with lower-beach sediment 
sizes ranging from 0.3 mm to 0.48 mm and upper-beach from 0.29 
mm to gravel/boulder. Monthly GPS surveys collected between 
May and October 2007 indicate that these beach types exhibit a 
degree of synchronicit> in their response to changes in wave 
climate throughout the winter/summer morphological transition 
(see Scon et al.. in press, for further information). A general 
accretionar)' trend during the spring/summer transition was 
observed whereby low-energy swell wave conditions during 
summer months led to the generation of deep transverse low-tide 
bar/rip morphology and complex phase offset incised inter-tidal 
bar/rip systems (Figure 2). 

Rip current severity and density 
Observed daily al low-, mid- and high-tide, a scaled, qualitative 

assessment of rip current severity was made by experienced 
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Table 1: Mean rip current severit>' and rip number with tidal stage at selected Atlantic west coast beaches. 

Low tide Mid tide High tide 
Beach name Beach type Rip types Rip severity Rip number Rip severit>' Rip number Rip severity Rip number 

Perranporth (7) LTBR B 3.9 3.6 3.5 2.6 3.0 1.9 
North Fistral (6) LLT+R B 3.0 2.5 2.4 1.7 2.1 1.6 
Sandymouth (2) LLT+R B+G 3.2 1.5 3.2 1.7 3J 2 
Constantine (5) LLT+R B+G 2.9 1.7 3.8 1.9 3.0 2.6 

Rip types indicate the presence of Accretionary and Erosional Beach rip systems (B) and Geologically controlled rip systems (G): Rip 
severity represents mean observed rip strength daily at three tide levels (where data was available). Data scaled from 0 (no rips) to 5 
(extreme). Rip number is mean observed number of rip present at each observation. 

lifeguards at 4 beach sites shown in Table 1. Severity was 
estimated by determining the hazard the rip current would pose to 
an average swimmer. Beaches dominated by beach rips (B) show 
a decrease in mean rip severity and mean rip number from low- to 
high-tide with Perranporth (LTBR) having a higher mean rip 
severity at each stage of the tide than North Fistral (LLT+R). 
Sandymouth and Constantine, both LTT+R beaches, possess 
geologically conU-olled rip systems in the mid- and high-tide 
regions. This appears to be reflected in the mean severities that are 
similar throughout the inter-tidal zone at Sandymoulh and 
enhanced in the mid-tide region at Constantine. 

Lifeguard rip incident records 
Reported 'mass rescue' (MR) events during the study period 

appeared to occur at multiple locations on the same day. To 
identify and assess these observations it was important to 
investigate rip incidents in relation to the number of people in-sea 
on any given day. Houriy people counts at each beach enabled 
calculation of daily mean estimates for people in-sea over the 
entire coast (all 27 sites). During the course of the monitoring 
period, short periods of high rip current incident density were 
recorded. These events can be seen in Figure 4 (inset) as 7 outliers 
from the bulk of the data which displays a good linear relationship 
(R^=0.54) considering the inherent scaner expected in the data. By 
normalizing incidents by people in-sea these outlier events can be 
clearly identified in lime. All occurring in July and August, the 7 
highlighted events exceed 2 standard deviations from the mean. 

'Mass rescue' events 

Identification 
For the purpose of this study we were interesting in identifying 

events where high levels of rip incidents were occurring at 
multiple locations on the same day. This should give some insight 
into regional environmental conditions that may be key drivers in 
the cause of these events. Identifying environmental conditions in 
this way, of course, will not identify all the days when these 
optimal environmental conditions exist as identification requires 
people in-sea, hence Figure 4 shows a higher density of 
normalised rip incidents during the summer holiday months of 
July and August Likewise, an assumption is made that all 
locations are proportionally staffed with lifeguards of equal abilit>' 
to mitigate against'incidents. 

Environmental conditions 
Figure 5 shows a timeseries of environmental conditions 

(hydrodynamic, morphodynamic and wind) throughout the study 
period with the MR events labeled A to G. With mean H,=1.2 m 
and maximum Hs=4.4 m, the nearshore wave record shows high-

energy wave events during the first half of May and start of July, 
followed by relatively low-energy conditions until the end of 
September. A mean and maximum Tp of 8.8 s and 15.7 s 
respectively indicates the presence of swell wave conditions 
throughout the study period. The mean spring tidal range at 
Perranporth is 6.1 m, decreasing in the order of 2 m during neap 
tides. Towards the end of the study period (autumnal equinox) the 
tidal range varies from 1.67 m (20/9) to 7.17 m (28/9). Rip current 
locations at Pcrranporlh were calculated from all time-averaged 
rectified video images available at low- and mid-tidal stages. Data 
gaps are due to either lack of image (technical) or very small (no 
rip activity) or large wave conditions (wave breaking occurred in 
rip channels). Rips were located through a reduction in alongshore 
pixel intensity associated with reduced wave breaking. The rip 
head was used to locate the rip in the alongshore. No systematic 
alongshore migration of rip current was identified. Largest 
changes in rip morphology occurred during prolonged periods of 
high winds and large waves (>2 m). Mid-tide rip s>'stems were 
more dynamic and were absent for a large part of the record. They 
are distinct from the low-tide systems and are predominantly 
phase offset. Morphological enhancement of mid-tide rip systems 
during the low waves and high spring tidal ranges of August and 
September suggests they may be incised by tidal drainage. 

R">0,»4 

E 0,07 

&003 

25/06 2*07 
Dale (2007) 

Figure 4. (Inset) Scatter plot of rip incidents per day vs. people in-
sea (mean), indicating linear fit and outliers. (Main) Stem plot of 
normalised rip incidents (daily) vs. date, with outliers circled. 
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Figure 5. Overview of environmental conditions during the study period. (From top) Significant nearshore wave height (m) at 
Perranporth; Peak wave period (s); Predicted tidal elevation (meters relative to Chart Datum) for Pcrranporth; 10 m hourly mean wind 
speed (kts) for St Mawgan airfield; Alongshore low and mid tide rip head locations (m) at Perranporlh from Argus cameras. Grey lines A 
to G indicate days in which outlier rip incidents ('mass rescues') occurred. 

Event characterisation 
Assessment of the incident characteristics and environmental 

conditions during the highlighted (A to G) MR events in Figure 5 
indicated that except for A, all events involved SIO beaches 
(Table 2) with 15 beaches contributing to event D. Event A 
included only 3 beaches, one of which contributed 90% of the 
incidents therefore is not considered a spatially widespread 
incident The remaining events fall into 3 distinct periods; I) B, C 
and D, occurring on consecutive days totaled 264 rip incidents, 
with between 12 and 15 beaches involved each day; 2) E and F 
occurred on consecutive days totaling 171 rip incidents and 
involved 10 and 11 beaches respectively; 3) Event G, saw 151 
incidents in one day spread among 12 beach sites. These events 
had a number of key environmental characteristics in common. 
Relatively small swell waves (Hs=0.5-1.7 m; Tp=7.6-12.8 s) were 
the dominant wave energy during all the MR events. All the MR 
events occurred during a tidal range large enough to expose the 
low tide bar/rip morphology (spring) and in this region larger tidal 
ranges always coincide with low water occurring during patrol 
hours leading to higher potential hazard exposure. Wind speeds 
during the MR events were commonly on or below the average of 
the study period (10 kts) with direction showing no Ux;nd. In all 
the examined MR events, 3D survey and photograph/video 
imagery supported the observation that the low- and mid-tide 
bar/rip systems were well developed along the coast as illustrated 
in the example plan view video images of Perranporth in Figure 6. 
Well developed rip feeder systems isolated the bar crests at low-
tide and mid-tide bar/rip systems, incised by tidal drainage, are 

well developed and offset in the alongshore from the low-tide rip 
channels (highlighted in Figure 6). Times of rip incident 
occurrence related to tidal stage during each MR event (Figure 6) 
indicate that the majority of rip incidents occurred within the mid-
and low-tide periods and in D, E, F and G the transition between 
low- and mid-tide generated the highest incident frequency. 
During this transition period, locations of rip current hazard can 
migrate rapidly through high tidal translation rates, tidal elevation 
can modulate rip current velocities 'switching* systems on and off, 
and tidal cut-off on exposed low-tide bars during the flooding tide 
can force bathers to retum landward through the active rip feeder 
channel once a.critical depth over the bar in reached (1-2 hours 
after low-tide). It is suggested that this period presents a challenge, 
both in beach safety management and on-site interpretation and 
prediction of surf zone processes, as when critical thresholds are 
reached, a rapid mitigating response is required. 

CONCLUSIONS 
The results present an insight into the rip current variability and 

hazard along the Atlantic west coast of southwest England. The 
coalition of detailed lifeguard incident data with that of beach 
morphology and hydrodynamic conditions enabled an assessment 
of the spatial extent and characteristics of rip currents within the 
study region and the identification and investigation of reported 
multi-location 'mass rescue' events. From this initial investigation 
of the period bemeen 01/05/07 and 01/10/07 the following has 
been identified: 

• LTBR and LTT+R beaches represent 59% (62% by length) 
of all west coast beaches with sandy lower inlcr-tidal 
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Table 2: Outlier rip incident event ("mass rescue') data. 

Event LW limes 
(height mCD) 

Dale 
(2007) 

No. of 
beaches Incidents Highest contributors (%) 

primary( secondary) 
Hs (m) 

6hr avg. 
Tp(s) 

6hr avp. 
Wind (kts) 

mean 
Wind I 

n 
A 1218(1.3) 2/7 3 31 90(7) 2.3 10.9 13.7 235 
B 1046(1.5) 29/7 13 62 23(21) !.0 7.6 6.5 10 
C 1124(1.2) 30/7 12 106 59(10) 0.7 8.2 5.5 259 
D 1203(1.0) 31/7 15 96 20(14) 0.5 lO.I 5.6 113 
E 1452(1.2) 4/8 10 77 26(26) 1.7 10.9 10.5 174 
F 1540(1.6) 5/8 11 94 30(17) 1.7 12.8 10.8 252 
G 0947(1.8) 26/8 12 151 22(17) I.O 9.6 8.3 12 

zones, mostly located on the high-energy west facing 
beaches. A degree of synchronicil> in their response to 
changes in wave climate throughout the winter/summer 
morphological U^sition was observed. 
A general accretionary trend during the spring/summer 
transition was observed whereby low-energy swell wave 
conditions during summer months led to the generation of 
deep transverse low-tide bar/rip morphology and complex 
phase offset incised inter-tidal bar/rip s\'stems. 
Beach rip severity was observed to be highest at low tidal 
levels and geologically constrained rips highest at mid- and 
high-tidal levels. 
Analysis of 6 coast-wide 'mass rescue' events identified 
possible key environmental components that when 
combined could be a driver for these events which 
overstretch lifeguard services. I) Relatively small, long 
period swell waves means shoaling extends to the inner 
transverse bars generating increased alongshore gradient in 
wave breaking and therefore rip current activity. Under 
these conditions increased wave groupiness increases the 

9 00 11 00 13 00 15:00 17;00 
Time 

'lOOO 200 
Distance alonqshore (m) 

Figure 6. (Left) Time averaged, rectified, low-tide video images 
of Perranporth during events C. D and G: sea is located al the 
bonom of each image, land at the top. West is oriented down-
page; black markers locate approximate positions of low-tide rip 
currents, white locates mid-tide rip channel morphology (Right) 
Histograms of incident times for each event. Dark shading 
indicates 3 hour low-tide period and light shading the mid-tide. 

complexity of rip current dynamics: 2) Well developed, 
phase offset low- and mid-tide bar/rip morphologies, 
present during the MR events lead to the generation of 
active rip systems during low- and mid-tidal stages; 3) 
Large tidal ranges during spring tides increase the rate of 
change of alongshore rips position, reducing the time for 
lifeguards to respond to time varving intensity and 
alongshore translation of rip cunenls during the transition 
from low- to mid-tide. Large spring tidal ranges allow 
wave breaking on low-tide bar/rip systems and enable 
accessibility to. and subsequent tidal cut-off of low-tide bar 
crests. During spring tides, low water times coincide w ith 
lifeguard patrol hours and hence times of high beach usage. 

Further investigations of macro-tidal rip currents in this region 
are being conducted using Argus video. GPS surveying, in-situ 
sensors and GPS-tracked Lagrangian surf zone drifters to quantify 
the rip flow dynamics and circulation over a low-tide bar/rip 
system under optimal high hazard conditions. 
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