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Abstract 

As the smartphone and the services it provides are becoming targets of cybercrime, it is 

critical to secure smartphones. However, it is important security controls are designed to 

provide continuous and user-friendly security. Amongst the most important of these is user 

authentication, where users have experienced a significant rise in the need to authenticate to 

the device and individually to the numerous apps that it contains.  Gait authentication has 

gained attention as a mean of non-intrusive or transparent authentication on mobile devices, 

capturing the information required to verify the authenticity of the user whilst the person is 

walking. Whilst prior research in this field has shown promise with good levels of recognition 

performance, the results are constrained by the gait datasets utilised being based upon highly 

controlled laboratory-based experiments which lack the variability of real-life environments. 

This paper introduces an advanced real-world smartphone-based gait recognition system that 

recognises the subject within real-world unconstrained environments. The proposed model is 

applied to the uncontrolled gait dataset, which consists of 44 users over a 7-10 day capture – 

where users were merely asked to go about their daily activities. No conditions, controls or 

expectations of particular activities were placed upon the participants. The experiment has 

modelled four types of motion normal walking, fast walking and down and upstairs for each 

of the users. The evaluation of the proposed model has achieved an equal error rate of 

11.38%, 11.32%, 24.52%, 27.33% and 15.08% for the normal, fast, down and upstairs and all 

activities respectively. The results illustrate, within an appropriate framework, that gait 

recognition is a viable technique for real-world use. 

Keywords: Smartphone authentication, Transparent authentication, Continuous 

authentication, Gait recognition, Biometrics. 

1 Introduction 

During the last decade, smartphones have become a ubiquitous technology, with more than 

6.3 billion users currently around the world (Statista, 2021). Currently, smartphones provide a 

wide range of services and features (e.g. personal communications, entertainment, and 

business) and are used to access and store sensitive and confidential information such as 

financial data and health-based records. Indeed, it is highly likely that the stored data is far 

more valuable than the device itself (Saevanee et al., 2015). As a result, smartphones should 

be kept secure against any illegitimate access. Current authentication approaches (e.g. 

password or fingerprint) that are deployed upon smartphones are typically intrusive, insecure, 

and fail to take into account user satisfaction and convenience (Clarke, 2011). Therefore, 

transparent and continuous biometric authentication systems have been proposed to provide 

more convenient, secure protections for mobile devices (Muaaz, 2013). 

 

                  



Transparent and continuous authentication schemes (TAS), also referred to as Active 

Authentication or Implicit Authentication seek to verify the identity of a user through 

capturing biometric-based information during a user’s normal interaction with a mobile 

device (Clarke, 2011). For example, capturing a facial image for use in facial recognition 

whilst the user is reading a web page. Rather than providing authentication at the point of 

entry (or request) these systems keep a constant or continuous confidence in the identity of a 

user and use this confidence when a user requests access to a service or information. Should 

they have sufficient confidence, a user can be granted access without having to explicitly 

provide a sample, and thereby reducing user inconvenience. In practice the TASs could be the 

gatekeeper to a password manager or keychain that subsequently releases the 

username/password pair to a service. Prior research has also explored the use of TAS across 

devices in an approach referred to as an Authentication Aura (Hocking et al., 2013). 

However, to enable this to take place seamlessly, it is important that the TAS can draw upon a 

range of biometric modalities, as users will be undertaking a range of activities where one or 

other biometric modalities would not be available. In contrary to traditional biometrics, where 

the conditions for capture can be highly controlled (e.g. facial recognition at border control, 

where light, height and distance from camera can be managed), transparent biometric systems 

require modalities that can adapt to the varying external environments they find themselves 

in. As such, the current focus of research is upon the identification and development of 

biometric techniques that would operate in this manner. 

One of those is Gait Recognition, in which people are verified by the way they walk. Many 

studies in the fields of psychology, medicine, and biometrics suggest that every person’s gait 

is unique (Derawi, 2012; Sprager and Juric, 2015)  and it can be deployed as a transparent 

technique for user identification and verification purposes (Gafurov, 2008). Currently, the 

majority of smartphones have built-in sensors (e.g. accelerometer and gyroscope) that can be 

used to record the user’s gait information (e.g. non-gravitational accelerations and rotational 

paces) (Rana, 2015) By using gait recognition for the purpose of user authentication, the user 

does not need an explicit action to authenticate as related data is continuously recorded while 

the person walks. Therefore, gait-based authentication can be a valuable approach, amongst 

other modalities (Al Abdulwahid, 2017), for providing a multimodal transparent and 

continuous protection for smartphones devices (Clarke, 2011). It is, however, the 

responsibility of the wider TAS to intelligently determine what modalities to use and when.  

The feasibility of using a mobile device for gait recognition has been explored by a number of 

researchers (Sprager and Juric, 2015). However, all the previous studies were applied within a 

highly controlled environment (i.e. a fixed set of activities for each participate to undertake, 

such as walking on a flat floor at their usual pace)(Phan et al., 2015; Watanabe, 2015). While 

this approach is arguably suitable when initially evaluating whether a biometric modality has 

merit (i.e. whether sufficient discriminate information exists), it does not reflect the type of 

use one might expect in practice where a large number of variables can impact the reliability. 

Real-world means completely unconstrained, with no experimental controls on the nature of 

the activity or where and when it would take place.  

This paper aims to investigate the extent to which gait recognition is feasible within 

uncontrolled, real-world use. The data was collected over 7-10 days using real-world 

smartphones and real-world use. A series of investigations were undertaken to assess the 

suitability and efficiency of utilising such gait data. As it was anticipated that real-world data 

might well be nosier/more variable than controlled data, the study sought to evaluate whether 

a multi-algorithmic based approach, based upon differing activities, would perform better 

than a single classification approach. Moving beyond classification, the study also sought to 

                  



evaluate the role a majority-voting based decision process could have upon overall system 

performance. 

The rest of the paper is organised as follows: Section 2 highlights the background and related 

work in the area of using smartphone motion sensors for authentication. Section 3 explains 

the data collection settings and experimental methodology. Section 4 presents the 

experimental results of the different tests undertaken to evaluate the proposed approach. 

Section 5 discusses the findings and the implications for future research directions.  he paper 

concludes in  ection  6. 

2 Background and Related Work 

Gait recognition is a wide research field, and initially focussed upon the use of video 

observation of a person’s gait. Such approaches are useful if the identify of a user is verified 

from a distance. More recent research has explored the use of personal devices, both wearable 

sensors and smartphones, to enable or facilitate local user authentication. In comparison with 

wearable sensors, a key advantage of Smartphones is that the sensors required to capture 

motion are embedded at no additional cost within the device itself. Indeed, more recent sensor 

additions such as the gyroscope provide the potential for additional motion-based data   

(Capela et al., 2016; Shoaib et al., 2016).  

Methodologically, studies that utilised smartphone-embedded sensors, the device is either 

placed in a pouch or inside the trouser pocket (Antos et al., 2014; Ganti et al., 2010). 

Typically, gait data is collected at a rate ranging from 20 to 50 samples per second, with an 

average of around 35 samples per second.  he recording of user’s gait information is 

typically gathered either on the same day (SD scenario) or across two different days (CD 

scenario). The dataset is an essential part of the authentication process, and an algorithm 

could give different results depending upon the tested data (Gadaleta and Rossi, 2010). One 

of the most extensive gait datasets, which are publicly accessible is from Osaka University 

(Ngo et al., 2014). It is based on three internal sensors placed on the subjects’ belt, with a 

triaxle accelerometer and gyroscope. However, a smartphone was worn in the centre back 

waist, and only measured triaxle accelerometer data. Although the collected data consists of 

744 subjects, it was collected in a controlled environment, and for each participant, there are 

only two data sequences available (each session lasting about 1 minute). With such limited 

signals for each individual, it is challenging to validate the approach extensively. Moreover, 

the gyroscope data was not included. As illustrated in Table 1 a number of other datasets are 

available, but for a much smaller number of participants. 

The data generated by embedded motion sensors are raw signals which are typically pre-

processed to enable feature extraction. The two principal approaches for the feature extraction 

process are cycle and segment-based techniques. In the cycle-based approach, the captured 

activity data are supposed to be a periodic signal in which each cycle begins once a foot 

touches the ground and finishes when the same foot touches the ground for the second time 

(i.e. two steps for a human) (Derawi and Bours, 2013). In the segment-based method, signals 

are divided into fixed time-length windows (e.g., 10 seconds) in which each segmented 

window is processed independently. Some gait activities signals are periodic, as each time 

segment is reasonably assumed to contain similar signal features. While other activity 

streams, such as standing and sitting, do not necessarily generate cycle-like patterns. The 

segmenting of the signal based on a time sequence requires less computational overhead than 

the cycle-based method. Numerous features from the time (TD) and frequency (FD) domains 

can be extracted from processing the raw data.  

                  



Table 1 presents an analysis of prior research in smartphone-based gait authentication. It can 

be seen that those studies that were carried out under the SD scenario achieved better 

performance than those that were under the CD scenario. This is understandable as for the SD 

scenario both the enrolment and testing data were collected on the same day/session, and the 

change or variability in user’s activities pattern would arguably be smaller than those 

collected on different days. 

                  



Table 1: Prior studies on gait authentication systems using mobile sensors. 

Study Device Approach 
Feature 
Domain 

Classification 
methods 

Users Performance % 
Data 

duration 

Sprager and Zazula, 2009 Nokia N95 C TD SVM 6 CCR 93.30  CD 

Derawi et al., 2010 Google G1 C TD DTW 51 EER 20  CD 

Frank et al., 2010a HTC G1 S TD SVM 6 CCR 85.48  CD 

Frank et al., 2010b - S TD Nearest neighbours 40 CCR 100  SD 

Kwapisz et al., 2010 Nexus One, HTC Hero, 
Motorola  

S TD J48 decision trees 
&Neural network 

36 CCR 90  SD 

Kwapisz et al., 2011 Nexus One, HTC Hero, 
Motorola 

S TD J48 decision trees 
&Neural network 

5 CCR 100  SD 

Nickel et al., 2011a Google G1 S FD SVM 48 EER 6.1 CD 

Nickel et al., 2011b Motorola milestone  S TD&FD SVM, HMM 36 EER 10 & 2.36 CD 

Nickel et al., 2011d Motorola C TD Manhattan & DTW 48 EER 21.7 CD 

Nickel et al., 2011e Google G1 S TD HMM 48 EER 6.15 CD 

Hestbek et al., 2012 Motorola Milestone S TD&FD SVM 36 EER 10.1 CD 

Nickel et al., 2012 Motorola Milestone S TD&FD K-NN 36 EER 8.24 CD 

Hoang et al., 2013 HTC Nexus One S TD&FD SVM 38 EER 1.95 SD 

Muaaz and Nickel 2012 WS &Google G1 C TD DTW 48 EER 29.39 CD 

Hoang et al., 2013 Google Nexus C TD SVM 32 CCR 100 SD 

Derawi and Bours, 2013 Samsung Nexus  C TD Euclidean distance and 
DTW 

5 CCR 89.3 SD 

Muaaz and Mayrhofer 2013 Google G1 C TD DTW 51 EER 33.3 CD 

Hoang et al., 2013 
 

HTC Nexus One & LG 
Optimus G 

C TD&FD SVM& RBF                                                                                                                                                                                                                          14 CCR 91.33 SD 

Nickel and Busch 2013) Google G1 S FD HMM 48 EER 6.15 CD 

Watanabe, 2014 IOS  S TD Neural Network 5 EER 1.82    SD 

(Hoang et al., 2012) 
 

HTC Google Nexus one C TD Hamming distance 34 EER 8.09  SD 

(Watanabe, 2015) iOS iPhone 5 S TD Neural Network 8 CCR 97.9  SD 

Legend: C: Cycle-based; S: Segment-based; TD: Time Domain; FD: Frequency Domain; DTW: Dynamic Time Warping; HMM: Hidden Markov Model; SVM: Support 

Vector Machine; K-NN: k-nearest Neighbour; EER: Equal Error Rate; CCR: Correct Classification Rate; SD: Same-Day; CD: Cross-Day; -: not defined.

                  



Studies to date have used data recorded under laboratory conditions and have sought to 

profile a range of activities to explore the recognition performance. For example, carrying 

extra weight, climbing stairs, jogging, and running (Kwapisz et al., 2010; Kwapisz et al., 

2011; Nickel et al., 2011c). The results from the same-day and cross-day experiments 

demonstrate a high degree of variance within the feature vector, which raises the concern 

whether successful classification could be achieved in practice over time and across a range 

of differing activities. The composition of the feature vector itself, time and frequency-based 

features will also play a significant role in recognition performance; however, far too little 

attention has been paid to explore this across accelerometer and gyroscope sensors in both 

time and frequency domains. 

Nakano and Chakraborty (2017) studied the impact of the dynamic features on the activity 

recognition system performance. Their analysis revealed that the performance of the 

efficiency of dynamic features is better than static features in classifying different types of 

activities. 

Notably, none of the previous studies explored the viability of a multi-algorithmic approach 

(separation of the classifiers depending upon activities) compared with a single classifier 

approach. Furthermore, none of the prior art attempted to evaluate their approach using data 

captured over a prolonged period of time under real-life conditions (i.e. days rather than 

minutes). This includes completely unrestricted movement that could include changes to 

clothes and shoes, being in a rush, carrying luggage, running and exercising, variations in 

human mood, time of day effects and ground/surface changes, to name but a few.  

3 Experimental Methodology 

The study sought to investigate the following: 

● Whether real-world use of gait recognition would be a feasible authentication 

approach 

● To investigate the impact upon performance by using a multi-algorithmic approach to 

classification over a single classifier 

● To identify where feature vector variability exists to appreciate under what 

circumstances gait recognition might or might not be successfully achieved 

● To investigate the impact of a decision-based majority voting scheme would have on 

overall performance. 

In each case, where available, the results are compared against the prior art as a baseline to 

understand the relative merits of the approach. 

This study builds upon the outcomes of two prior papers published by the authors: 

● In (Al-Obaidi et al., 2018), the authors undertook an investigation into gait recognition 

using a controlled data capturing environment. This study enabled the authors to 

propose and evaluate a feature vector algorithm, explore both gyroscope and 

accelerator sensors feeds and optimise the classification performance. The feature 

vector algorithm and configurations established in this paper form the baseline starting 

point in this study. 

● In (Alruban et al., 2018), the authors propose and evaluate an activity recognition 

system which, from core motion data provided by the gyroscope and accelerator, is 

able to identify what activity an individual is undertaking at any point (e.g. walking, 

running, going up or down stairs). This system was used as a basis for sampling the 

real-world dataset into differing sets of activity. 

                  



Figure 1 presents the biometric system and flow of data from initial capture through to final 

decision. The capture, processing, segmentation and feature generation processes have been 

taken from the authors prior study (Al-Obaidi et al., 2018) (which itself is taken from the 

prior art). The Activity Identification Model is taken from the second study by the authors  

(Alruban et al., 2018). This paper seeks to focus upon the classification and decision phases 

of the biometric system using a unique real-world dataset. 

Activities 
Identification 

Model

Activity Based 
user 

Authentication 
Model

Voting 
Method 

Decision

Fast walk

 Normal walk

Normal& 
Fast

Down Stairs

Upstairs

All Activities

 

Figure 1: Gait-Based Biometric Process 

3.1  Data Collection 

Motion data from both the gyroscope and accelerometer were captured during the study. A 

gyroscope is used to maintain a reference direction in the motion by sensing the degree of 

orientation in the x, y, and z directions of the smartphone. The axis signal is affected by the 

direction of the devices orientation. The accelerometer sensor measures the acceleration in 

metres per second squared (m/s
2
) in the x, y, and z directions of the smartphone. An Android 

application called ‘Andro ensor’ was used to record the sensor data as it supports most of the 

sensors that the Android device can offer (AndroSensor, 2018). A Samsung Galaxy S6 

smartphone was carried by each to record the sensor data generated by different human 

physical activities. Each user was asked to place the smartphone in a belt pouch, as presented 

in Figure 2. Whilst this does not necessarily reflect normal placement for the participants, it 

was felt an important variable to control and to ensure it remained on the participant (and not 

placed in a bag). All participants utilised identical handsets and pouches purchased by the 

authors for the project. The generated data was collected continuously at a rate of 30-32 Hz 

for the x, y, and z-axes across both the accelerometer and gyroscope sensors. They were 

asked to start recording using the ‘Anro ensor’ application each day and stop recording at the 

end of the day (in order to reduce the size of the resulting dataset capture). 

 

 

                  



Figure 2: Phone is placed in the right or left belt pouch 

The study recruited 44 participants, with a 23/21 male/female split and all were aged between 

18 and 56 years old. The collection exercise last for between 7-10 days for each user. This 

was to help ensure a minimum of 7 days of movement data was collected, as some users 

would not walk anywhere on a particular day or possibly forget to take the device. Overall, an 

average of 8 days of data was captured per participant. Figure 3 illustrates the distribution of 

daily gait activities in minutes for all users per day in which the median of the dataset is 80 

minutes a day. 

 

Figure 3: The Average of Daily Gait Activities Time in Minutes for All Users 

Having processed the raw data, Table 2 presents the total number of samples of each gait 

activity as classified by the Activity Identification Model. A significant proportion of the 

samples were identified as normal walking, as would have been expected. The Activity 

Identification Model was able to identify a total of 174,396 samples, an average of 3,963 

samples per participant. Notably the other samples category comprised of 576,439 samples. 

Whilst it would have been useful to be able to classify these samples, either within the 

existing samples or through the creation of more activities, this does not impact the research 

being presented in this study. The concept behind a viable continuous and transparent 

authentication model is to have a sufficient number of samples to be able to perform 

authentication, not that every sample that has been identified is actually used. At an average 

of 3,963 samples across an average 8-day capture results in 495 samples per day – this is 

arguably a more than sufficient volume to achieve the stated goal in this stage of the research. 

Future research will focus on opportunities to improve the Activity Identification Model 

recognition. 

Table 2: Percentage of Identified Real life Activities Samples 

Activity Type No. of Samples Samples Utilised (%) 

Normal 139,907 80% 

Fast 12,315 7% 

Downstairs 5,175 3% 

Up Stairs 16,999 10% 

Other samples 576,439 - 

3.2 Feature Extraction & Selection 

The raw signal data generated by the gyroscope and accelerometer were processed by 

computing the time and frequency domain features using features identified from the prior 

art. Table 3 presents a full list of the features. The time-domain features were calculated 

                  



directly from the raw data samples, while a Fourier transform was applied to the raw signals 

across the three sensor axes before computing the frequency domain-based feature set. This 

process generated 304 unique features from the two domains.  

                  



Table 3: Generated Features 

Features  Domain Description  

Mean (3) TD, FD The mean values in the segment. 

Standard Deviation (3) TD, FD The standard deviation of the data in the segment. 

Median (3) TD, FD The median values of the data points in the segment. 

Variance (3) TD, FD A measure of how far each value in the segment points is from 

the mean. 

Covariance (3) TD, FD A measure of how much two variables change together. 

Zero crossing rate 

Minimum 

TD, FD The rate value of sign changes in the segment. 

Interquartile range TD, FD The range amidst the data. It is the distinction between the upper 

and lower quartiles in the segment. 

Average Absolute 

Difference (3) 

TD, FD Average absolute difference between the value of each of the 

segment points from the mean value over the segment values (for 

each axis). 

Root mean square (3) TD, FD Square root of the mean of the squares of the acceleration values 

of the segment. 

Skewness (3) TD, FD A measure of the symmetry of distributions around the mean 

value of the segment. 

Kurtosis (3) TD, FD A measure of the shape of the curve for the segment point’s 

values. 

Percentile 25 (3) TD, FD The percentile rank is measured by the following formula: R= 

(P/100)*(N+1). Where R is the rank order of values, P percentile 

rank, N total number of the data points in the segment. 

Percentile 50 (3) TD, FD Similar to the Percentile 25feature; but with the setting of P=50. 

Percentile 75 (3) TD, FD Similar to the percentile 25 feature but with the setting of P=75. 

Maximum (3) TD, FD The largest four values of the segment are calculated and 

averaged. 

Minimum (3) TD, FD The largest four values of the segment are calculated and 

averaged. 

Correlation coefficients (3) TD, FD The relationship between two axes is calculated. The correlation 

coefficient is measured between X and Y axes, X and Z axes and 

Y and Z axes. 

Average resultant 

acceleration (1) 

TD, FD Average of the square roots of the sum of the values of each x, y 

and z axes in the segment squared. 

Difference (3) TD Difference of maximal and minimal value of the segment (each 

axes). 

Maximum value (4) TD The largest four values of the segment are calculated and 

averaged. 

Minimum value (4) TD The smallest four values of the segment are calculated and 

averaged. 

Binned distribution (3)  TD Relative histogram distribution in linear spaced bins be- tween 

the minimum and the maximum acceleration in the segment. Ten 

bins are used for each segment. 

Maximum peaks (3) TD The average of the largest 4 peaks in the segment. 

Minimum peaks (3) TD The average of the smallest 4 peaks in the segment. 

Peak Occurrence (3) TD Calculate how many peaks are in the segment. 

Time between peaks (3) TD Time in milliseconds between peaks in the sinusoidal waves 

associated with most activities is calculated and averaged (for 

each axis). 

Interquartile range (3) TD Calculating the median of the lower and upper half of the data. 

Entropy (3)  FD The average amount of information produced by a probabilistic 

stochastic source of data 

Energy (3)  FD The signal energy is equal to the summation across all frequency 

components of the signal's spectral energy density. 

 

                  



Features were normalised prior to use within the classification stage into a 0-1 range using the 

maximum value of the feature in the dataset as a base of 1. To validate the effectiveness of 

the generated feature vectors (comprising of a possible 304 unique features), the dataset was 

divided to form the reference/training and testing datasets). Due to the large number of 

samples, undertaking training on 60-70% of the data (which is typical in many biometric-

based studies) would have resulted in a very large training dataset (comprising of tens of 

thousands of samples), which would impact the time taken to create an appropriate classifier 

in a practical implementation. It also had an impact experimentally, as training a single 

classifier across the population was taking 3-4 days to complete. However, given the 

variability in the data particularly over time, it was felt merely taking samples from day 1 and 

then testing against the remaining days might not be the most appropriate strategy. As shown 

in the prior art, same and cross-day results illustrated the impact of using data from a single 

day. As such, the methodology deployed in this study would utilise data from the first x days 

but would sample only 10% of the data for training. It was hoped this would provide a better 

capture of a participant’s walking style. Each experiment was repeated 10 times in order to 

establish a baseline performance and remove any bias introduced in one iteration of the 

sampling. 

Recognising a large number of features would place a burden on the classification 

(particularly on processing/battery limited mobile devices), a dynamic feature selection 

approach was incorporated within the experiment to explore the impact upon performance of 

different lengths of feature vector. The algorithm used to create the per user dynamic feature 

vector was from the authors’ prior work (Al-Obaidi et al., 2018). It envisaged that the 

effectiveness of each feature towards the classification for each user could vary; with some 

features having a more significant impact for some users over others. The dynamic feature 

selection mechanism selects features based upon a calculation of the standard deviation of a 

user’s features with the smaller standard deviation chosen to prioritise features 

3.3  Classification  

The prior art and indeed the authors prior work had identified a number of candidate 

classifiers. The decision was to focus upon the Feed-Forward Multilayered Perceptron 

(FFMLP). Whilst other classifiers, such as SVM had demonstrated good performance in the 

prior work (highlighted in Table 1), SVM suffers when there are large training sets and also 

lacks the ability to optimise and refine the generalisation and subsequently classification 

performance (Karatzouni 2014; Saevanee et al. 2015). For each identified activity, eleven 

different FF MLP neural network configurations were evaluation (hidden layer size varying 

from 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, and 60).  

For each classification, one user was selected as the authorised user and all remaining users 

were used as unauthorised. Each user in the population would have the chance of acting as the 

authorised user, with performance rates averaged across the population. Table 4 illustrates a 

break down of the experimental configurations: 

Table 4: Experimental Configuration 

Variable No. of Configurations 

Network size 11 

Feature size 8 

Activity 6 

Participants 44 

Training (repeated) 10 

                  



Total 232,320 

 

4 Experimental Results 

The following two sections will provide an extraction of the key results resulting from all the 

experimental tests performed, with a focus upon addressing each of the identified research 

questions. Results will be presented using the Equal Error Rate (EER) as is typical for 

biometric-based studies to enable comparison between the results themselves and the prior 

art. 

4.1 Classification Results 

The first set of results, sought to explore the feature vector and the impact upon performance. 

As illustrated in Table 5, the general performance achieved increased as the number of 

features increased (to the maximum of 304). This is true against all three activities of normal, 

fast and the combined normal and fast walking activities. In the authors’ prior work (Al-

Obaidi et al., 2018) utilising the controlled data, the results demonstrated that a dynamic 

feature vector of between 10-160 features provided the best classification performance and 

presents an interesting insight into the realisation of a gait recognition scheme, moving from 

controlled data to actual real-life data. The results would suggest, a longer feature vector is 

beneficial in such circumstances, with the possible effect of helping to mitigate against the 

impacts of larger signal variations that exist in real-life data.  

 

Table 5: Population Average EER (%) of Normal, Fast and Normal and Fast Walking Activity 

Utilising Different Feature Subsets (with a fixed 40 hidden node neural network) 

No. of 

Features 

Normal Walking  

(EER (%)) 

Fast Walking 

(EER (%)) 

Normal & Fast Walking  

(EER (%)) 

10 28.69 26.8 27.74 

50 17.50 19.47 17.56 

100 16.39 17.56 15.20 

110 14.53 15.20 14.45 

160 15.90 14.60 14.56 

200 14.50 13.84 14.17 

250 14.04 13.38 13.69 

304 11.38 11.32 12.49 

Drawing upon the best configuration from Table 5 and the full feature vector, Table 6 

presents a comparison of the EERs obtained against the activities listed. For typical walking 

(normal and fast), the use of an individual classifier rather than a single classifier for all 

walking data, provides a clear advantage, supporting the use of an activity recognition and 

multi-algorithmic approach to classification. The error rates themselves are also in a similar 

range to many of the prior studies that utilised highly controlled datasets, which is promising. 

It is clear however, the classifiers struggle with walking activities involving stairs. In one 

sense, the rhythmic gait cycle which this biometric utilises is arguably disrupted, which a 

single classifier would subsequently struggle with, given quite differing signals all linked to 

the authorised user. However, notably, the results using the single activity classifier 

performed very poorly, suggesting even though the cycle is different to walking, the classifier 

is struggling to identify a suitable discriminate signal from the data. 

 

                  



 

Table 6: EER (%) for Individual per activity for all features 

Activity Type EER (%) 

Normal 11.38 

Fast 11.32 

Down Stairs 24.52 

Upstairs 27.33 

Normal & fast 12.49 

All Activity 15.08 

 

Figures 4 and 5 present a breakdown of individual EERs across the normal and all activity 

classifiers. An analysis of the general pattern of results against both classifiers illustrates a 

strong correlation. This is largely a result of the normal walking data representing the largest 

proportion of the dataset. The multi-algorithmic approach using single activity based 

recognition has a clear improvement in performance across a significant proportion of the 

population. The largest impact was User 30 that experienced +10% worsening in the 

performance. Further analysis of this user showed a relatively higher proportion of fast 

walking samples over normal walking. Figure 4 exhibits that a significant proportion of user’s 

performance was under 10% EER (a value typically linked to positive viability of the 

approach given its continuous evaluation). User 29 achieved the best performance of 1.94% 

EER. In comparison User 30 achieved the worse EER of 46.80%. It was found that 12 

participants (Users 5, 10, 15, 16, 20, 23, 25, 26, 28, 29, 39 & 42) achieved an EER of less 

than 5% each whilst another 6 (Users 26, 22, 30, 33, 37 & 38) accomplished an EER of more 

than 20% each. As with most behavioural-based biometric modalities, the results suggest that 

for a proportion of the population, the technique proves viable; however, for a smaller 

proportion it is not. 

 

 

Figure 4: The EER (%) of Individual Performance for Normal Walking Activity 

                  



 

Figure 5: The EER (%) of Individual Performance for All Activities 

From the analysis (illustrated in Table 7) , it is clear that the majority of the participants score 

less than 10% EER with a multi-algorithmic approach. In contrast, with a single classifier, the 

majority of participants scores were greater than 10% EER, possibly pushing it outside of the 

area of viability. 

Table 7: Summary of Individual Performance for Each Activity 

Activity 

Type 

# Users 

ERR (%) 

<=5 

ERR (%) 

>5-10 

ERR (%) 

>10-15 

ERR (%) 

>15-20 

ERR (%) 

>20 

Normal 12 16 4 6 6 

Fast 13 13 7 5 6 

Normal and Fast 8 18 7 5 6 

All Activates 5 12 10 7 10 

 

4.2 Decision Results – Applying Majority Voting 

In a continuous authentication scheme, it becomes less critical to make a final authentication 

decision on a single sample (as would be the case in most point-of-entry approaches). With a 

sufficient frequency of samples, it is possible to make a final identity decision based upon a 

range of samples. The prior art have primarily focussed upon two approaches – majority or 

quorum voting, with the former having achieved stronger performance and therefore was 

utilised in this study (Nickel et al. 2011a).  

Table 8 presents the results of applying the majority voting scheme. The results present both 

the mean and median averages – the former providing a good illustration of overall average 

performance and the latter enabling a greater insight into the impact of outliers on the mean 

average performance. The results produce significant enhancements on the system 

performance. In comparison with a single- sample evaluation, normal, fast, down and upstairs 

walking activities are improved by an average rate of 53%, 46%, 53% and 25% respectively. 

Moreover, analysing the performances for the merged normal and fast and the four combined 

activities also demonstrates a significant improvement with an average rate of 47% and 49% 

accordingly. 

                  



Focusing on the median, which is less sensitive to outliers, it can be seen that EER median-

based is quite a bit better than the EER mean values. The EER dropped down to 2.14%, 

1.89%, 5.65% and 14.81% for individual activities (i.e. normal, fast, down and upstairs). 

These results demonstrated the negative impact of outliers and the importance of removing 

outliers during the pre-processing stage of the biometric process (as is typically recommended 

in practice). With the exception of the activities involving the stairs, performance rates across 

the board are on average in the sub-5% range which is more than sufficient to support the 

viability of the approach within a TAS (Transparent Authentication System) (Clarke, 2011). 

With respect to the number of samples required to achieve this, whilst specific best results are 

achieved from 17 samples (2 minutes 50 seconds) onwards, the results generally support the 

use of as many samples as possible. With the additional samples helping to provide the 

additional confidence. In practice the decision over the time-window would be left to the 

wider TAS and the risk management processes – which would manage the samples and 

biometric modalities within the system to provide comprehensive and continuous identify 

verification. 

Table 8: Majority Voting Results for each Number of Samples across All Gait Activities 

    Activity Type 

 

# Samples 

/Time (second) 

 

Normal 

 

Fast 

 

Down 

Stairs 

 

Upstairs 

 

Normal 

And 

Fast 

All 

Activities 

3 

(30) 

Median 7.93 5.50 15.65 24.72 8.02 8.53 

Mean 9.90 9.77 18.97 26.48 9.99 11.99 

5 

(50) 

Median 6.41 4.19 13.24 21.08 7.39 7.50 

Mean 8.52 7.95 15.85 23.41 8.82 10.60 

7 

(1:10) 

Median 5.38 3.38 10.57 18.69 6.64 7.08 

Mean 7.78 7.96 15.08 23.62 8.07 9.95 

9 

(1:30) 

Median 5.29 3.38 8.74 18.98 5.48 6.27 

Mean 7.30 7.35 13.95 23.05 7.54 9.52 

11 

(1:50) 

Median 4.52 2.91 7.02 19.05 5.10 4.93 

Mean 7.06 7.11 12.71 23.10 7.37 9.04 

13 

(2:10) 

Median 3.56 2.96 6.32 16.13 4.70 5.24 

Mean 6.62 6.96 12.05 21.28 6.99 8.72 

15 

(2:30) 

Median 4.65 3.30 6.65 16.64 4.57 4.70 

Mean 6.44 6.79 12.75 21.65 6.79 8.24 

17 

(2:50) 

Median 3.46 1.89 5.71 16.18 4.26 4.71 

Mean 6.34 6.40 13.24 21.79 6.80 8.33 

19 

(3:10) 

Median 3.13 2.24 6.88 14.81 3.92 4.10 

Mean 6.05 6.89 13.67 20.55 6.37 8.04 

21 

(3:30) 

Median 3.06 2.48 6.48 15.12 4.05 3.96 

Mean 5.79 7.16 13.69 20.49 6.35 7.74 

23 

(3:50) 

Median 3.21 3.25 5.94 16.58 4.06 3.95 

Mean 6.08 7.59 12.54 21.59 6.26 7.84 

25 

(4:10) 

Median 3.32 2.48 5.65 18.42 3.82 3.52 

Mean 5.80 7.04 12.12 22.27 6.11 7.61 

27 

(4:30) 

Median 2.48 3.48 6.59 19.02 3.67 3.36 

Mean 5.37 7.05 12.03 23.22 6.19 7.48 

29 

(4:50) 

Median 2.90 3.15 6.15 16.25 3.99 3.49 

Mean 5.55 7.09 11.43 21.89 6.34 7.69 

31 

(5:10) 

Median 2.14 2.89 6.06 16.76 3.50 3.38 

Mean 5.31 6.43 11.91 22.33 5.87 7.45 

                  



 

5 Discussion 

The study sought to consider four research question revolving around evaluating the viability 

of gait recognition using uncontrolled real world data – the first such study that has both 

removed the controlled capturing of gait-based samples but also introduced the use of an 

Activity Identification Model to process and label the data so that a multi-algorithmic 

approach to classification could be examined. 

Overall, the results from the classification stage demonstrate average performances that fall 

within the scope of viability. The results also demonstrate that the use of individual classifiers 

for each activity, does provide for an improvement in overall performance. However, 

examining the performance difference from normal, fast and the combined normal and fast 

walking show only a marginal improvement. Given the current activities that are identified by 

the Activity Identification Model, the results suggest that removing the stair-based activities 

(whose performance is not good) from being classified at all and then subsequently applying 

a single classifier for all walking based activities identified would result in a similar 

performance than using individual classifiers for normal and fast walking. So the evidence for 

a multi-algorithmic approach based upon the currently identified activities is less strong. 

However, if a desire exists to include stair-based activities and in the future the Activity 

Identification Model can differentiate a wider set of activities, the data does suggest a multi-

algorithmic approach would be a better performance classification strategy. 

It is worth recognising and highlighting the user variance that exists within the results. Whilst 

a good proportion have achieved error rates that would make the approach viable for them, a 

proportion of the population have not – as per the majority of behavioural based biometric 

modalities. Whilst the wider TAS should still be able to support these users through the use of 

other biometric modalities to which they can achieve a good recognition performance against, 

it also worth acknowledging that the individual techniques need to establish a mechanism for 

self-evaluating the viability of individual users, so it is able to determine whether the 

approach is viable or not. 

Exploring the composition and length of the feature vector raised an interesting result over 

the prior art and previous studies undertaken by the authors. The prior art had suggested there 

was value in prioritising and reducing the feature vector – with the consequential advantage 

of reducing classification complexity (and the curse of dimensionality). However, using real-

life data and consequently the increased variance in the gait signal data that existed, the study 

has demonstrated that using a feature dense sample is critical to achieving a more reliable and 

consistent performance. Whilst this will of course have a practical impact, longer training 

times and more complex classifiers, the size and nature of these samples and classifiers is 

arguably not beyond the majority of modern Smartphones. Furthermore, TAS are often 

implemented in a cloud-based infrastructure to permit off-boarding computational complex 

actions into the cloud (Al  Abdulwahid, 2017). 

 able 9 compares the controlled experiment results achieved from the authors’ prior work  

(Al-Obaidi et al., 2018), which itself is amongst the best performing results from the prior art, 

with the performance achieved using the real world data. The results do show there is a 

significant difference in performance achieved using real-life versus controlled data, which 

raises some questions over the viability of the approach and the conclusions that prior studies 

have drawn. However, the table also shows that the addition of the majority voting decision 

                  



scheme, for use in a continuous authentication scheme, does subsequently reduce this error 

rate down to a more acceptable level of performance for normal/fast walking based activities. 

 

Table 9: Comparing Controlled and Realistic System Performance  

Activity Type 

Controlled 

Dataset 

(Cross Day) 

Realistic System 

Without Voting 

Realistic System 

Best Voting 
Decision 

Time 

EER (%) 

Normal 2.09 11.38 
Median 2.14 5:10s 

Mean 5.31 5:10s 

Fast 3.91 11.32 
Median 1.89 2:50s 

Mean 6.43 5:10s 

Down Stairs 23.45 24.52 
Median 5.65 4:10s 

Mean 11.43 4:50s 

Upstairs 23.32 27.33 

Median 14.81 3:10s 

Mean 20.55 3:10s 

Mean 5.87 5:10s 

All Activities 6.58 15.08 
Median 3.50 4:30s 

Mean 7.45 5:10s 

 

Finally, it is worth reflecting upon a number of limitations and restrictions associated with the 

study in order to appreciate the opportunities for further research:  

● The collected dataset was acquired using a single type of mobile device (Samsung 

Galaxy S6). Whilst different devices will likely exhibit differing sensor sensitivities, as 

the devices are personal to individuals (i.e. both training and test data will be captured 

using the same device), any differences that might exist should not impeded 

recognition performance. However, further investigation of this would be worth while 

as would the wider collection of a larger volume of participants to aid in better 

generalising the results. 

● The Activity Identification Model is able to provide sorting of raw signal data into a 

series of simple walking activities. For future work, it would be useful for this system 

is recognise a wider set of activities and in particular introduce context into into the 

recognition process. For example, recognising the difference of when an individual is 

walking uphill, downhill or on the flat using signal data from the GPS sensor. Or when 

an individual is walking with someone else and whose gait might adapt accordingly – 

for example when a parent is walking with a young child. The addition of this context 

sensitive approach will likely enable a more refined set of classifiers, remove 

variability within each and subsequently lead to stronger classification performance. 

● The evaluation of this study involved a large number of iterative tests to evaluate 

differing feature vectors, classification approaches and decision schemes. What this 

highlighted was that individual performances differed across configurations. It is 

therefore important when looking to deploy this practically to define a process by 

which a user’s individual classification configuration can be optimised. This is likely to 

have a computational overhead which will need to be explored in further depth to 

appreciate where such functionality should reside – on the device or in the cloud. Once 

the classifiers have been created, it is anticipated that the authentication process will be 

easier achieved on the mobile device. 

                  



6 Conclusions and Future Work 

The evaluation of real-world smartphone-based gait recognition has revealed that it could 

provide a secured and appropriate user authentication system for a significant proportion of 

individuals. The use of real-world data does introduce an increased variability into the gait-

based signal data and based upon classification results alone, does introduce some questions 

over it’s general variability. However, incorporated within a decision-based majority voting 

scheme, population-based performances are very encouraging and aligned to existing 

behavioural-based biometric modalities.  

The use of additional sensor data, both within the gait-based system and within the wider TAS 

will arguably provide a useful resource of additional context sensitive information which can 

help inform the decision logic and provide more refined classification strategies. The 

combination of which will provide for more robust techniques that are able to adapt and better 

manage a wider set of circumstances the user might find themselves in. 

Finally, future research should also focus upon how robust the technique is against targeted 

attacks. The study utilised a standard research methodology for determining the rate at which 

impostors are accepted onto the system, but this approach does not incorporate targeted 

attacks (e.g. when individuals specifically look to mimic an authorised users behaviour) to 

understand how susceptible the technique is to this type of attack. Indeed, there is little work 

to date looking at the susceptibility of behavioural based biometrics that are used in a 

continuous authentication schemes.  
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