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The maturing of autonomous technology has fostered
a rapid expansion in the use of Autonomous Under-
water Vehicles (AUVs). To prevent the loss of AUVs
during deployments, existing risk analysis approaches
tend to focus on technicalities, historical data and ex-
perts’ opinion for probability quantification. How-
ever, data may not always be available and the com-
plex interrelationships between risk factors are often
neglected due to uncertainties. To overcome these
shortfalls, a hybrid fuzzy system dynamics risk anal-
ysis (FuSDRA) is proposed. The approach utilises the
strengths while overcoming limitations of both system
dynamics and fuzzy set theory. Presented as a three-
step iterative framework, the approach was applied on
a case study to examine the impact of crew operating
experience on the risk of AUV loss. Results showed not
only that initial experience of the team affects the risk
of loss, but any loss of experience in earlier stages of
the AUV program have a lesser impact as compared
to later stages. A series of risk control policies were
recommended based on the results. The case study
demonstrated how the FuSDRA approach can be ap-
plied to inform human resource and risk management
strategies, or broader application within the AUV do-
main and other complex technological systems.

Keywords: autonomous underwater vehicle, hybrid sys-
tem dynamics, fuzzy set theory, risk analysis

1. Introduction

1.1. Autonomous Underwater Vehicle

The autonomous underwater vehicle (AUV) is best de-
scribed as self-powered robotic device that operates un-

derwater. Commonly shaped like a torpedo, it is unteth-
ered and is pre-programmed to perform a series of under-
water data acquisition missions. Apart from the ability
to operate autonomously, their versatility with customiz-
able payloads allows AUVs to perform a wide range of
tasks in scientific, commercial and military domains. The
commercialization of AUVs in recent years has fostered
a rapid expansion in AUV types, capabilities, and the use
of multi-AUVs [1]. Consequently, analysing the risk of
deployment becomes increasingly challenging, with the
need for tailoring the analysis to both organisational re-
quirements and specific AUV capabilities.

1.2. Risk Analysis of AUV Deployment
Since the first AUV was developed, there has been sig-

nificant progress in risk analyses methods to better con-
trol the risk of AUV loss. Losing an AUV is not only
financially costly, but it can also delay projects, damage
reputation of the AUV community, cause the loss of valu-
able data and has a possibility of harming the environ-
ment. Therefore, many aspects of an AUV deployment
had been examined in parts, both spatially and temporally,
in an attempt to control the risk of loss. Most risk analysis
approaches focused on technical aspects of AUVs to im-
prove robustness and reliabilities in areas such as the mis-
sion management software, navigation system, collision
avoidance system, emergency abort system, power sys-
tem, homing system, and communication system [2–11].
As AUV technology gradually made the transition from
research and development to operations, proactive and
systematic risk analysis approaches based primarily on
historical performance data of the AUV [12–14] emerge.
Also with improvement in technical reliability, risk anal-
ysis of AUV operations gradually broadens to other op-
erating uncertainties and phases of deployment [15–17].
This broadening scope of risk analysis meant that there
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Fig. 1. Generic risk structure influencing the risk of AUV loss with some taxonomies adapted from [25, 26].

is a need for reduced dependency on a vehicle’s perfor-
mance data, as relevant data may not always be available.
Especially during the early phases of an AUV program or
for an AUV which is relatively new in operation [18]. In
addition, recent risk studies have also begun to recognise
the importance of organisational and human factors in the
risk analysis of AUV deployments [19–24]. However, ex-
isting analysis to predict the risk of AUV loss remains
heavily dependent on historical performance data and ex-
pert’s opinion.

1.3. Areas for Improvements
To develop a more comprehensive and effective risk

analysis framework for AUV deployments, two areas for
improvement were identified. First, the time-dependent
nature of risks and the complex interrelationships between
risk factors of an AUV program needs to be examined col-
lectively as a whole. This includes the synergistic com-
bination of technical system(s), people associated with
the AUV program, operating environment, work activi-
ties, organisational factors as well as external influences
(Fig. 1). Consider an analysis focusing solely on a single
risk factor such as operating experience of the AUV team.
With the availability of relevant data, it would be intuitive
and statistically straightforward to investigate the inverse
relationship between operating experience and the risk of
loss (Fig. 2A). However, the inclusion of other risk factors
complicates risk analysis (Fig. 2B). The uncertain inter-
relationships between these risk factors, unclear degree
of causality, difficulty in quantification and their dynamic
behaviour resulted in an unknown combined effect on the

Fig. 2. A: An analysis focusing solely on experience of
the AUV team. B: A more complex analysis involving addi-
tional risk factors with uncertain inter-relationships and un-
clear degree of causality.

risk of AUV loss. Consequently, these complex interrela-
tionships between risk factors, although critical, are often
neglected in existing risk analysis approaches. This leads
to the second identified area for improvement, which is
to reduce dependency on historical performance data by
accounting for vagueness and ambiguity in the elicitation
of expert’s opinion. This paper presents the application of
a hybrid fuzzy system-dynamics risk analysis approach to
address these two identified areas of improvements.
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1.4. Fuzzy System Dynamics
System dynamics is an objective-oriented determin-

istic approach used to study the behaviour of com-
plex systems. The dynamic nature of risk and inter-
relationships between risk variables influencing the risk
of AUV loss can be effectively modelled using system dy-
namics. However, uncertainties [27] may not be explicitly
taken into account by deterministic system dynamic mod-
els (Fig. 2B). To overcome this limitation, fuzzy logic is
integrated with system dynamics. The result is a hybrid
FuSDRA approach which utilises the strengths while over-
coming limitations of both system dynamics and fuzzy set
theory. The FuSDRA approach, presented as a framework
in this paper, provides a structured, robust, and effective
solution for risk analysis of AUV deployment. Applica-
tion of the approach can facilitate risk control policy rec-
ommendations which are expected to be more reliable and
effective than those put forward by existing risk analysis
approaches.

The hybrid FuSDRA approach was first proposed in the
AUV domain with a simple application aimed at demon-
strating its potential use [28]. In a more specific appli-
cation, the FuSDRA approach was used to analyze how
reducing government support and increasing technologi-
cal obsolescence can impact the risk of AUV loss [29].
There is a paucity of literature on its application in other
areas. Mostafa et al. [30] applied fuzzy system dynamics
for the analysis of risks and uncertainties affecting build-
operate-transfer infrastructure projects. Farnad et al. [31]
used fuzzy system dynamics models to simulate different
risk allocation strategies in construction projects. Michael
and Charles [32] demonstrated how manpower recruit-
ment and training strategies can be modelled using fuzzy
system dynamics. Notably, the authors emphasised that
the approach has the ability to solve real-world manpower
planning problems and help organisations design more ef-
fective manpower management strategies.

The objective of this paper is to apply the FuSDRA
approach for an in-depth analysis on the relationship be-
tween an AUV team’s experience and the risk of loss. To
our best knowledge, the FuSDRA approach has never been
used in the analysis of human factors. Section 2 presents
a brief overview of the FuSDRA approach. Section 3
presents the analysis. Section 4 discusses the benefits,
limitations and scope for future work. Lastly, Section 5
concludes the paper.

2. Methodology

The proposed FuSDRA approach follows a three-stage
iterative framework adapted from the generic risk analy-
sis process widely used in international standards such as
ISO31000 (Risk Management) [33] and ISO45001 (Oc-
cupational Health and Safety) [34]. An overview of the
framework is presented in Fig. 3.

Fig. 3. An overview of the FuSDRA framework.

2.1. Identification
The identification stage aims to gain familiarity with

the AUV program, determine domain knowledge sources,
identify risk factors, and establish causal relationships.
Domain knowledge sources can include both experts’
opinion and documentation such as safe work procedures,
technical specifications of the AUV, fault logs, and risk as-
sessment records. Tapping into these domain knowledge
sources, risk factors are identified. Causal relationships
between the identified risk factors are then established and
represented in a qualitative causal loop diagram (CLD),
similar to the those presented in Fig. 2.

2.2. Modelling
The modelling phase aims to quantify the risk of loss

through parameters’ estimation, formulation of causal re-
lationships and establishing initial conditions. Consider a
system dynamics stock and flow diagram (Fig. 4), which
is developed from a causal loop diagram.

The stock variable ‘Average Experience of AUV Team’
(Exp) changes via flow variables ‘Experience Gain’ and
‘Experience Loss’ which are influenced by parameters
‘Gain Rate’ (GR) and ‘Loss Rate’ (LR). The correspond-
ing integral equation of the model up to this point can be
written as:

Exp(t) = Exp0 +
∫ t

0
(GR−LR)×Exp(t)×dt. (1)

Experience is a function of time, where Exp(t) stands
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Fig. 4. An example of stock and flow diagram to be mod-
elled with fuzzy system dynamics.

Fig. 5. The generic architecture of a fuzzy expert system
adapted from Mendel [35].

for experience as function of time and Exp0 stands for ex-
perience at the start of the process. It is calculated by tak-
ing into account the experience at the start of the program
and the change due to loss and gain rates.

Hypothetically, the experience gain rate is further influ-
enced by ‘Quality of Training’ and ‘Team Morale.’ The
average experience of the team also impacts the ‘Risk
of AUV Loss.’ However, these causal relationships are
harder to quantify deterministically due to uncertainty in
the causal relationship. To overcome this, fuzzy logic
is applied via a fuzzy expert system (Fig. 5), estab-
lished through elicitation of expert’s opinion. This in-
volves determining the universe of discourse, defining
fuzzy sets and membership functions, and constructing
fuzzy rules [35]. To define these, experts’ opinion can
be elicited using matrices. An example of the universe of
discourse, fuzzy sets and membership functions for ‘Av-
erage Experience of AUV Team’ is shown in Table 1.

For intuitive elicitation of fuzzy rules, a hypercube ma-
trix can be used. A hypercube is a geometric shape of
n-dimensions, determined by the number of input risk fac-
tors [36]. For instance, a 4D hypercube can be used for
a fuzzy system consisting of four input risk factors and a
3D hypercube for a three-input risk factor fuzzy system.

The fuzzy rules are elicited in the form of IF-THEN
rules such as:

IF Quality of Training is ‘Poor’
AND Team Morale is ‘Low’

THEN Experience Gain Rate is ‘Low’

Table 1. An example of the universe of discourse, fuzzy
sets and triangular membership function for the risk factor
‘Average Experience of AUV Team.’

Risk factor
Universe of
discourse

(units)
Fuzzy
sets

Membership function

Min Most
likely Max

Average
experience

of AUV
Team

0–50,
in practice

usually
ranges from
0–10 (years)

Low 0 0 5

Average 0 5 10

High 5 10 10

Fig. 6. Corresponding fuzzy system dynamics block dia-
gram of Fig. 4.

Defuzzification then translates ‘Low’ into a quantifi-
able level to be input back into the system dynamics
model. There are several defuzzification methods [37, 38]
and the appropriate defuzzification method should be cho-
sen based on nature of the problem, the number of input
and output variables and sensitivity of the method [39].

The fuzzy expert systems are integrated with the system
dynamics models to construct the hybrid fuzzy system dy-
namics risk models using block diagrams. An example of
the FuSDRA model based on Fig. 4 is shown in Fig. 6.
In the example, two fuzzy logic blocks represent the un-
certain causal relationships in the stock and flow diagram.
There is also an integrator block which outputs the inte-
gral of its input based on Eq. (2):

y(t) =
∫ t

0
u(t)dt + yo, . . . . . . . . . . (2)

where y is the output at simulation time t with input u and
initial condition yo.

The FuSDRA models are subsequently tested, reviewed
and calibrated before performing simulation and scenario
analysis. The output is a set of systemic behaviour influ-
encing the risk of AUV loss.

2.3. Evaluation
To evaluate the risk of loss, results from scenario anal-

ysis and simulation of the FuSDRA models are exam-
ined and compared against a pre-determined organisa-
tional evaluation criterion. For example, the acceptable
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probability of AUV loss based on the capital and operat-
ing cost of the AUV [12]. Insights gained through the risk
analysis process and simulation of the risk models can be
used for formulation of risk control policies. Lastly, reg-
ular review of the FuSDRA models is required to ensure
relevancy and long-term sustainability.

2.4. Software
Two software was used for the construction of FuSDRA

models presented in this paper. Vensim R© [40] was cho-
sen for system dynamics modelling due to its user-
friendly interface, dimensional checks and visual clarity.
MATLAB R© fuzzy logic toolbox 2017 [41] was used to
develop fuzzy expert systems. This tool provides a com-
prehensive and user-friendly environment to build and
evaluate fuzzy systems. To construct the FuSDRA mod-
els, System dynamics models from Vensim R© were con-
verted into block diagrams with the MATLAB R© Simulink
toolbox 2018 [42]. This tool allows for the construction
of mathematically complex systems involving many risk
factors. More importantly, it enables the integration of
fuzzy expert systems from MATLAB R© fuzzy logic tool-
box 2017 [41] in the system dynamics models with rela-
tive ease.

3. Case Study

3.1. Overview
To demonstrate application of the hybrid FuSDRA ap-

proach, a case study based on the nupiri muka AUV pro-
gram is presented. Funded by the Antarctic Gateway Part-
nership and the University of Tasmania (UTAS), the pri-
mary objective of the nupiri muka AUV program is to ac-
quire high-resolution data under sea ice and ice shelves
in Antarctic regions for marine scientific research. Deliv-
ered in May 2017, the nupiri muka AUV is relatively new
at the time of writing, with very limited historical perfor-
mance data for meaningful probabilistic risk quantifica-
tion. The high level of uncertainty makes the FuSDRA
approach highly suitable to analyse the risk of AUV loss.

One of the main risk factors identified was the lack
of operating experience. The following quote was taken
from one of the interviews:

“I guess one of the big risk is that only one-
third of the team is experienced. Likely an engi-
neer from ISE will be joining us in the upcoming
Antarctic mission and that puts the experience
to 50:50, with polar AUV operators and non-
polar AUV operators. So it sort of evens the
odds a little bit more.”

Therefore, the FuSDRA approach is applied to examine
the impact of crew experience on the risk of AUV loss.

3.2. FuSDRA – Identification
The scope of analysis focuses on the operating experi-

ence of the AUV team. This includes factors associated

with the performance of the AUV team, UTAS’s policies,
processes and systems, and relevant external influences.
The time horizon for the analysis is set at 10 years, the
pre-determined target service life of the AUV.

For the most part, the task of familiarization and estab-
lishing domain knowledge sources were conducted con-
currently. Relevant information on the risk of AUV loss
was found to be scattered throughout various organisa-
tional documents such as UTAS’s risk management pol-
icy and framework, standard operating procedure, risk
assessment records, fault log, insurance policy, business
case for procurement of AUV, budget plans and meeting
minutes. Additionally, documents provided by the AUV
manufacturer (ISE Ltd.) also contained invaluable infor-
mation for identifying risk factors and causal structures.
These included various manuals, checklists, and technical
specifications associated with the nupiri muka AUV. Both
organisational and manufacturer documents were mainly
utilised as secondary sources of information, to calibrate
the risk models and complement the interviews of domain
experts. Additionally, several books and journal articles
were used to identify possible risk factors and their causal
structure. This included the recommended code of prac-
tice on the operation of AUVs [43], risk research articles,
such as those from the Autosub AUV program [13, 15, 16,
44–47], as well as others which had been referenced in
Section 1.2.

Although the available documentation and literature
provided useful information for the risk analysis, they
often lacked sufficient details about the causal relation-
ships between risk factors. Such information was sought
through a series of elicitation interviews with domain ex-
perts involved in the nupiri muka AUV program. They
come from the UTAS’s primary AUV team that consists of
three employees and an AUV researcher (Scientist) who
works closely with the AUV team. These domain ex-
perts had a combined experience of 24 years working with
AUVs and are currently responsible for or familiar with:

a. Implementing control measures based on the results of
the risk analysis

b. Resource allocation
c. Operation strategies and objectives of the nupiri muka

program
d. nupiri muka’s operating systems
e. Technical training, experience, knowledge of data and

theory on AUV
f. Analysis of risk through both qualitative and quantita-

tive judgement
g. Various aspects of the AUV program, either directly or

indirectly

The interviews, carried out through both unstructured
and semi-structured format, went through several itera-
tions. Early interviews focused on identifying risk fac-
tors relating to operating experience and causal relation-
ships while later sessions focused on establishing fuzzy
rules used to define model behaviour. To minimise the in-
trusion of biases in the interviews, constant comparisons
were made with information provided by other intervie-
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wees and data sources to check for consistencies and ac-
count for differences. The developed risk models were re-
viewed, calibrated and tested through discussion with the
interviewees until the models converge sufficiently to be
deemed acceptable by those who are interviewed. In to-
tal, the interview sessions generated close to 100 pages of
interview transcripts, minutes and observation notes. Ad-
ditionally, a research journal was kept to document both
verbal and non-verbal responses of interviewees to check
for signs of bias or heuristics.

Through the domain knowledge sources, a causal loop
diagram which consists of four main subsystems, directly
and indirectly, influencing the risk of AUV loss was es-
tablished. Fig. 7 shows the overview of the subsystems
and their interrelatedness, with the arrows indicating cau-
sation relationships.

Experience of the AUV team falls under the human re-
liability subsystem, which captures the contribution of hu-
man error to the risk of loss, including possible underly-
ing causes of these errors. The interactions between the
four subsystems, risk of AUV loss and external influences
resulted in a causal loop diagram which is presented in
Fig. 8. The dotted boxes broadly marked the four main
subsystems and their associated risk factors.

3.3. FuSDRA – Modelling
3.3.1. Establishing FuSDRA Models

To construct the FuSDRA model, formulations, defini-
tions and initial conditions must be set in the system dy-
namics model. Such information was sought primarily
from interviews and supported by other identified domain
knowledge sources. Example of some parameters used
relating to operating experience are presented in Table 2.
Uncertain causal relationships were represented through
the application of fuzzy logic using fuzzy expert systems,
with an example of fuzzy rule base consisting of crew ex-
perience presented in Table 3.

The fuzzy expert systems were subsequently incorpo-
rated into the system dynamics model with the resultant
FuSDRA model shown in Fig. 9.

In an overall sense, the FuSDRA model consisted of
four sub-models, namely: ‘utilisation,’ ‘budget,’ ‘human
reliability,’ and ‘technical reliability,’ sixteen fuzzy logic
blocks representing causal relationships that are vague or
ambiguous, seven integrator ‘blocks’ that transform rate
of change into the level of stock variables, and six con-
stant and four gain blocks for ease of user inputs to allow
for calibration and testing of the model.

3.3.2. Model Testing

To build confidence in the developed FuSDRA model,
three main approaches were taken. First, local knowledge
and historical data were used to calibrate the model. Sec-
ond, a series of tests mostly adapted from [48] were un-
dertaken to uncover model errors and areas for improve-
ment. Last, results from scenario analysis were discussed
and compared with domain experts’ opinion.

Fig. 7. Overview of the causal loop diagram for the nupiri
muka AUV program.

With a focus on experience of the AUV team, a “one-
at-a-time” [49] univariate analyses were performed on the
risk factor ‘initial average experience of AUV team.’ Dif-
ferent input values ranging from 0.5 to 2 years were used
for ‘initial average experience of AUV team’ to examine
the effect on risk of AUV loss. The simulation results are
presented in Fig. 10 and Table 4.

The simulation results showed apparent differences in
the ‘risk of AUV loss’ with varying ‘initial average expe-
rience of AUV team’ with higher initial experience lead-
ing to lower risk of loss. However, the general oscilla-
tory behaviour of the risk of loss remained the same for
all four simulations, showing an overall initial decrease in
risk, followed by an increase in the middle phase and in
later phase of the AUV program. While all the simulations
showed an increase in risk from 3.5 years to 5.5 years into
the AUV program, the peak risk level for ‘initial average
experience of AUV team’ of 0.5 years and 1 year is no-
tably higher than that of 1.5 years and 2 years. There is
also a significant difference in risk of loss right at the start
of the AUV program between an AUV team of initial av-
erage experience of 0.5 years to 1.5 years and 2 years. Ad-
ditionally, the simulations showed a surprising behaviour
between 6.5 and 8.5 years into the program, with the
plateauing of risk level. This is the period where both
technical reliability of the AUV and human reliability re-
mains relatively stable in the mature AUV program.

Simulation results from this analysis have important
implications for human resource management, such as op-
timising recruitment criteria in terms of desirable expe-
rience level or assessing the impact of staff turnover or
attrition.

3.3.3. Scenario Analysis
Once sufficient confidence was gained in the FuSDRA

model through extensive model testing, custom scenarios
can be created and analysed through the model. There are
numerous scenarios involving different risk factor com-
binations and permutations that can lead to an increased
risk of AUV loss. A thorough analysis of all scenarios
is onerous, impractical and time-consuming. Therefore,
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Fig. 8. Overview of the causal structure relating to risk of AUV loss for the nupiri muka AUV program, categorised broadly into
four sub-models – A: Budget, B: Utilisation, C: Technical reliability, D: Human reliability.

Table 2. Example of some parameters used in the human
reliability sub-model.

Risk factor Definition Equation

Change in
average
experience of
AUV Team

The amount of experi-
ence gained or lost due
to turnover, recruitment
policies or hands-on ex-
perience.

Function of (Fraction
of Budget Approved)
and (Annual Utilisation
Rate)
Fuzzy Logic1

Average
experience of
AUV Team

Average experience of
the primary AUV team
in AUV operations.

INTEG (Change in
Average Experience of
AUV Team)
Initial value = 1

Quality
maintenance
and repair

The level of quality
maintenance and repair,
including both reactive
and preventive mainte-
nance.

Function of (Average
Experience of AUV
Team) and (Fraction of
Budget Approved)
Fuzzy Logic1

Risk of AUV
Loss

Likelihood of losing the
nupiri muka AUV dur-
ing a deployment to the
Antarctic.

Function of (Likeli-
hood of Human Error)
and (Reliability of
AUV)
Fuzzy Logic1

1 Represents the presence of random factors in the functional relation-
ships which may not be deterministically defined at this point in time.
Causal relationships are therefore modelled with inputs from domain
experts in the form of fuzzy rule bases.

Table 3. An example of fuzzy rule base for the output ‘Like-
lihood of Human Error.’ The output variable “Likelihood of
Human Error” is given against the input variables “Average
Experience of the AUV Team” and “Risk Perception.”

Risk perception
Very
poor Poor Ave High Very

high

Av
er

ag
e

ex
pe

ri
en

ce
of

A
U

V
Te

am

Inexperience Extreme High High High Ave
Some

experience
Very
high High High Ave Low

Average
experience High Ave Ave Low Low

Very
experienced Ave Ave Low Low Very

low

Expert Low Low Low Very
low

Very
low

the choice of scenarios for analysis was based primarily
on the operating experience of the AUV team. Here, the
impact of experience loss due to turnover of the facility
manager was examined. This concern was raised by sev-
eral interviewees who highlighted strong reliance on the
facility manager for the current nupiri muka AUV pro-
gram. The following quote was taken from another one of
the interviews:
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Fig. 9. The resultant FuSDRA model, categorised into four sub-models.
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Fig. 10. Risk of AUV loss for different ‘Initial average expe-
rience of AUV team.’ A: 0.5 yrs, B: 1 yr, C: 1.5 yrs, D: 2 yrs.

Table 4. Risk of AUV loss for different ‘Initial average
experience of AUV team.’ IE: Initial experience.

Year
Risk of AUV Loss

IE = 0.5 IE = 1 IE = 1.5 IE = 2

0 0.150 0.146 0.132 0.100

1 0.112 0.111 0.110 0.085
2 0.096 0.094 0.085 0.077
3 0.100 0.084 0.076 0.060

4 0.095 0.086 0.080 0.078

5 0.109 0.105 0.101 0.078
6 0.133 0.124 0.101 0.085
7 0.131 0.120 0.100 0.100

8 0.128 0.109 0.100 0.100

9 0.134 0.120 0.114 0.095
10 0.150 0.142 0.126 0.100

“One thing that we have talked about in the
past, is the risk of over-reliance on one per-
son. It highlights the issue, like being one per-
son deep across the board, like so many organ-
isations are. His approach is to make sure the
training and knowledge of how to run the vehi-
cle is passed on the operational team. But it is a
risk we have been vocal about but what are we
going to do? Are we going to hire two people?
Three people?”

To simulate the turnover of the facility manager, a loss
of 2 years ‘average experience of the AUV team’ was in-
troduced at the 2nd, 4th, 6th, and 8th year of the AUV
program in the FuSDRA model. A hiring period of one
year was subsequently applied in the model to simulate
the recruitment of a replacement with similar experience
level. The results are shown in Figs. 11 and 12.

Figure 11 shows the ‘troughs’ in ‘average experience
of AUV team’ with the turnover of the facility manager
at different point of the AUV program. Fig. 12 shows the
impact on the risk of loss as compared to the base sce-

Fig. 11. The ‘average experience of AUV team,’ with an 1 yr
replacement period for the departed facility manager at dif-
ferent time points of the AUV program. A: 2 yrs, B: 4 yrs,
C: 6 yrs, D: 8 yrs.

nario, with the increase in risk highlighted by an arrow.
Notably, the turnover in the earlier stages (2nd year) of
the AUV program appears to have a lesser impact to the
risk of loss as compared to the later stages (4th, 6th, and
8th year). It is very conceivable that departure of the fa-
cility manager in mature stages (>4 years) of the AUV
program has a greater impact to the risk of loss due to
higher maintenance activities and budgetary constraints.

3.4. FuSDRA – Evaluation
The base scenario of the FuSDRA model showed that

the risk of AUV loss lies between 0.147 and 0.080. Us-
ing the evaluation criteria associated with UTAS’s semi-
quantitative risk matrix (Fig. 13), this falls between the
likelihood scale of likely and possible. With the loss of
the nupiri muka AUV falling under the consequence scale
of 〈 Major 〉, the overall risk level was evaluated to be
〈 Extreme 〉, as circled in Fig. 13.

To reduce the risk of loss, a set of effective control
measures are required. Simulation results from both the
sensitivity analysis (Fig. 10) and scenario analysis sug-
gested that experience of the team plays a critical role in
influencing the risk of AUV loss. In particular, the cur-
rent facility manager is influential over the AUV program
because of his relevant and extensive polar AUV experi-
ence. The following recommendations are therefore of-
fered with the aim of retaining experienced employee, se-
cure any replacement in a shorter period, and promote an
effective knowledge transfer process.

With the program currently supported primarily by a
lean team of three, the departure of any crew can nega-
tively impact the workload and morale of the team. There-
fore, it is recommended that an effective employee reten-
tion program be implemented to improve retention. This
may include open lines of communication, provision of
training and professional development and fostering of
teamwork. In addition, considerations can be made to pro-
vide an option for the facility manager to convert existing
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Fig. 12. Impact on ‘risk of AUV loss’ (arrow) as compared to the base scenario (dotted) with an 1 yr replacement period for the
departed facility manager at different time points of the AUV program. A: 2 yrs, B: 4 yrs, C: 6 yrs, D: 8 yrs.

Fig. 13. Risk evaluation based on UTAS’s semi-quantitative
risk matrix.

contractual arrangement into a permanent role, under the
condition that the facility manager is found to be suitable
for the job. As the simulation results show, providing such
an option to the facility manager, especially in later stages
of the AUV program (>4 years) may improve retention
and consequently, a lower risk of AUV loss.

Sourcing for an employee replacement specialising in
AUV operations means dipping into a very niche talent
pool. To reduce the hiring time and achieve a lower

risk of loss (Fig. 11), strategies are recommended to at-
tract niche talents. This may include sourcing internation-
ally with competitive relocation packages, hosting AUV-
related conferences to create networking opportunities
and offering flexibility in working arrangements. It is also
important to note that a more experienced team at the be-
ginning of the program translates to a lower risk of loss
throughout the entire program (Fig. 10). Therefore, re-
cruitment criteria in terms of desirable experience level
can be established early in the program using the simula-
tion results.

Last, an ongoing effective knowledge transfer plan
should be executed to mitigate the risk of experience
loss in the event of employee departure. The transfer
of both tacit knowledge and explicit knowledge should
be included in the plan, which may include mentorship,
work shadowing, knowledge repository or rotational as-
signments. It is also critical to evaluate and measure the
effectiveness of the knowledge transfer regularly to iden-
tify gaps and make improvements to the plan.

Although these recommendations may seem intuitive
and obvious to any organisations, they can be overlooked
in routine organisational practices, especially in the event
where commitment to the AUV program decreases over
time.
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4. Discussion and Limitations

In the case study, the FuSDRA approach was applied
to examine the impact of AUV team’s experience on the
risk of loss. When compared to common probabilistic risk
analysis approaches, the FuSDRA approach showed more
robust results by considering a wide range of risk factors.
It can, therefore, enable the AUV owner to anticipate, re-
spond and adapt human resource strategies to differing
circumstances. More importantly, the case study shows
that application of the FuSDRA approach not only facili-
tates analysis of risk, but also allows for deeper qualitative
understanding of the overall system of the AUV program.
The process itself presents an invaluable learning oppor-
tunity to reveal insights on possible leverage points, indi-
cators and decision rules to better manage the risk of AUV
loss.

Despite the advantages of the FuSDRA approach in an-
alyzing risk of AUV loss, several challenges were encoun-
tered. First, the model building required the use of mul-
tiple software, namely Vensim R© [40] for system dynam-
ics modelling, MATLAB R© fuzzy logic toolbox 2017 [41]
for developing fuzzy expert systems, and MATLAB R©

Simulink toolbox 2018 [42] to construct the final FuSDRA
risk model. The lack of an all-inclusive multifunctional
software can impede the extensive use of FuSDRA in real-
world systems. Therefore, commercial quality software
should be developed to facilitate the three-stage iterative
FuSDRA process. The second challenge encountered in
application of the FuSDRA framework lies in the elicita-
tion of fuzzy rules. Domain experts may have incomplete
and episodic knowledge from their experience, causing
incorrect or incomplete fuzzy rule bases. These experts
may also hold different assumptions, resulting in incon-
sistent or conflicting opinions. Therefore, the elicitation
of fuzzy rules can be improved by considering varying
degrees of trust in the domain experts, such as using intu-
itionistic fuzzy logic. Lastly, the inability of the FuSDRA
model to self-learn means that regular review of fuzzy
rules is required to ensure relevance. This can be car-
ried out through optimisation methods such as a genetic
algorithm, neural networks or simulated annealing among
others.

It is believed that the generic nature of the FuSDRA
approach will be useful to different types of AUV opera-
tions. However, differing organisational needs and vehi-
cle characteristics can result in a wide variety of risk fac-
tors. This implies that it is crucial to tailor the FuSDRA
approach according to the identified problem and context,
with potentially vastly differing results from the presented
case study.

5. Conclusion

Effective management of the risk in AUV deployments
is a challenge characterised with dynamic, fuzzy risk fac-
tors and their complex interrelationships. Existing risk
analysis approaches tend to focus more on technicali-

ties of the AUV and depended heavily on historical data
for statistical analysis or experts’ opinion for probability
quantification. However, data may not always be avail-
able and the complex interrelationships between risk fac-
tors are often neglected due to uncertainties. It is un-
der such dynamic, complex and fuzzy situations that the
AUV owner often has to devise risk control measures and
make difficult deployment decisions. Therefore, the for-
mulation of effective risk control policies requires a new
analysis tool which addresses these shortcomings. The
FuSDRA approach is proposed here as a solution. Lever-
aging on the strengths of both fuzzy logic and system dy-
namics, FuSDRA enables the dynamic inter-relationships
between risk factors from different dimensions to be mod-
elled, furthermore account for vagueness and ambiguity.
The use of fuzzy logic allows human perceptions to be
incorporated in the system dynamics models, offering ro-
bust human judgements useful in situations where histor-
ical data may be imprecise or lacking.

To demonstrate application of the proposed FuSDRA
approach, a case study based on the nupiri muka AUV
program, managed by UTAS was presented. A risk model
was constructed and simulated to examine the impact of
operating experience on the risk of AUV loss. Results
showed that experience of the team plays a critical role
in influencing the risk of AUV loss. It is, therefore, rec-
ommended that UTAS optimises recruitment strategy in
terms of desirable experience level and attracting niche
talents. Additionally, human resource policies to improve
retention and knowledge transfer should be implemented.
In particular, measures should be considered for the facil-
ity manager to improve his or her retention in later stages
of the AUV program (>4 years), such as providing the op-
tion to convert contractual arrangement into a permanent
role.

The FuSDRA methodological framework was created
based on AUV operations. However, it is believed that the
generic nature of the approach will be useful for managing
risks of other complex technological systems similar to
that of the AUV. For instances, in the budding field of au-
tonomous cars, unmanned aerial vehicles and unmanned
vessels. It is anticipated that further research in this direc-
tion will significantly expand the repository of risk factors
found to be relevant in other systems, providing cross-
disciplinary insights which are useful for both practition-
ers and academics. Further advancement of this work to
enhance the FuSDRA approach can focus on the develop-
ment of an all-inclusive multifunctional software, improv-
ing the elicitation of fuzzy rules by considering varying
degrees of trust in the domain experts and means of self-
learning to ensure long-term relevancy of fuzzy rules.
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