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T H E IMPACTS OF A T M O S P H E R I C A L L Y DERIVED M E T A L S ON COASTAL 
MARINE SYSTEMS 

Mohammed Orif 

Abstract 

The total concentrations of trace metals (Al, Fe, Mn, Co, Na, Cu, Zn, Mo, Ni, V, Cd, Pb) 

have been determined in the marine aerosol at two contrasting coastal sites, Plymouth UK, 

(December 2001 to April 2003) and Jeddah, Saudi Arabia (August 2002-January 2004). 

Trace metal concentrations in the Plymouth urban aerosol were lower (2-13 times) than 

those observed at other comparative UK. urban locations and generally comparable with 

those observed at European coastal non-urban locations. Statistically significant 

differences were found in aerosol metal concentrations associated with populations of 

contrasting air mass sources (i.e. Atlantic and UK/European), being greatest in the 

UK/European air mass sector for Al , Fe, Mn, Cd, Mo and Pb, owing to enhanced source 

emission rates from continental Europe. Based on the current work, refined budgets for Ni 

and Pb for the English Channel were presented. The budgets clearly indicated the 

importance of the English Channel sediments as both a sink (Ni) and a source (Pb). 

Aerosol concentrations in the Red Sea Marine Aerosol (RSMA) for the crustally sourced 

elements Al , Mn and Fe were higher (typically 2.7-3.1 times) than those detected at other 

comparative sites (i.e. Eastern Mediterranean). The aerosol population associated with the 

Middle and Southern Saudi Arabia (SSA) air mass had the greatest concentrations of A l , 

Fe, Mn and Co, whereas, the lowest were found associated with the open Red Sea (RS) 

marine aerosol. Summer enhancement of aerosol metals was attributed to seasonal dust re-

suspension as documented in the literature. Red Sea trace metal budgets were presented 

and would suggest that the sediments are an important source for all elements to the Red 

Sea water column except for Co and Cd. This work has, therefore, provided unique 

insights into influences on the air/sea exchange of trace metals and their subsequent 

impacts and fates in two contrasting marine systems. 
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Chapter 1 

Introduction 



1.1 Importance of atmospheric transport to marine metal cycles 

Up until recently it was thought that rivers were quantitatively the most important source 

of trace metals from land into the oceans. However, from recent studies it is now accepted 

that trace metal atmospheric inputs are large enough to be equal to or exceed those of 

rivers (Duce et al., 1991; Martin et al., 1989; and Chester et al., 1993). In addition, 

atmospheric deposition of trace metals in surface open ocean waters has resulted in surface 

seawaler concentration enrichments. Classic examples of this have been documented for 

Pb (Veron et al., 1993) and P (Migon et al., 2001). Over the last decade it has also become 

apparent that the deposition of atmospheric mineral dust to the oceans may play an 

important role in primary productivity (Coale et al, 1996; Millero, 1996; Martin el aL, 

1991; Martin et al., 1990; Martin and Gordon 1988). More recently Spokes et al., (2001) 

demonstrated that the atmosphere is a source of trace metal nutrient constituents (e.g. Fe) 

to remote oceanic regions. 

The quantitative evaluation of trace metals fluxes and their fate are essential to our 

understanding of their impact on marine biogeochemical cycles. The flux of aerosol 

associated trace metals to the sea surface is controlled by 'dry' and 'wet' deposition 

modes. These fluxes will be influenced by the variability of aerosol trace metal 

concentrations, therefore it is important to define aerosol trace metal concentrations and to 

understand the processes which lead to both a high degree of spatial and temporal 

variability. Factors influencing aerosol trace metal concentrations include (i) aerosol 

source, (ii) aerosol emission strength, (iii) removal processes during aerosol transport from 

source to sampling site and (iv) air mass transport of aerosol material. These influences 

have been confirmed by a large body of work defining aerosol concentrations both in 

coastal and open ocean envirormients (e.g. Duce et al., 1991; Yaaqub el al. 1991; Spokes et 

al. 2001; Chester et al., 2000). 



In terms of European coastal systems, there are literature sources which describe aerosol 

concentrations in the Western Mediterranean (e.g. Chester et al., 1990; Guieu et al., 1997; 

Ridame et al., 1999), Eastern Mediterranean (e.g. fCubilay and Saydam 1995; Kubilay et 

al., 1997; Herut eta!., 2001), the North Sea (e.g. Yaaqub et aL, 1991; Chester et al., 1993), 

with additional findings for the Irish Sea marine atmosphere (Fones, 1996; Williams et al., 

1998), However there is relatively little known about the aerosol trace metal characteristics 

of the Western English Channel marine atmosphere, although Bertho et al. (1998) 

considered the lead content of the atmosphere above the Eastern Channel in terms of its 

seasonal variability and subsequent solubility in coastal seawater. Deboudt et al., (1999) 

subsequently assessed the sources of pollutant aerosols above the Straits of Dover using 

lead isotopes. The only reported extended work carried out in the Western English Channel 

was that carried out by Wells (1999). 

As one moves easlA^̂ ards from the English Channel to the Western and Eastern 

Mediterranean aerosol elements, particularly those derived from crustal sources (Al, Fe, 

Mn and Co) are enhanced (Ridame et al., 1999; Herut et al., 2001). These coastal regions 

are influenced by seasonal air masses originating from North Africa which are heavily 

loaded with Saharan desert material. Moving even fiirther east to the Red Sea region one 

would anticipate an even greater impact on the marine aerosol of these inputs. Limited 

amount of work has previously been carried out to measure the aerosol trace metal 

concentrations in the Red Sea aerosol. 

1.2 Aims and objectives 

Owing to the limited knowledge of aerosol trace metal concentrations in the Western 

English Channel and Red Sea atmospheres the following work was instigated. Aerosol 

sampling stations were established al Pl>Tnouth (December 2000- July 2002) and Jeddah 

(August 2002- January 2004) at which collection of high volume samples was carried out 



to; (i) define the temporal concentrations of aerosol associated trace metals (Al , Fe, Mn, 

Cd, Cu, Zn, Pb N i , Mo and Na) over a prolonged period of time (in excess of 1 year), (ii) 

determine the factors influencing the variability in concentrations and (iii) determine the 

dry deposition, flux and inputs of metals to the associated coastal zones (English Channel 

and Red Sea) and compare these inputs with other sources, (iv) determine the likely 

contrasting fates of trace metals post dry deposition, (v) model trace metal budgets in the 

English Channel and Red Sea. These aims wi l l be further placed into context in Chapter 2. 

1.3 Structure of the thesis 

Chapter 2 reviews the recent literature, describing the trace metal composition of the 

marine aerosol and its sources; applied methods for the determination of aerosol trace 

metal sources (e.g. EFcmsi , back trajectory analysis); modes of atmospheric deposition of 

trace metals to the sea surface; seawaier solubility o f aerosol associated trace metals and 

their impact post-deposition. Chapter 3 describes and appraises the sampling and anal>lical 

procedures adopted for the current study. 

Chapter 4 presents the trace metal aerosol concentrations observed at the Plymouth coastal 

and semi-rural sampling site and the factors influencing their temporal variability (e.g. type 

and proximity of aerosol source contributions, air mass origins). Dry deposition fluxes and 

inputs to the English Channel were then calculated, along with the "bioavailable" fraction 

based on data derived from solid state speciation analyses of selected samples. 

Chapter 5 describes for the first time the trace metal aerosol composition of the Red Sea 

marine aerosol. Factors influencing its variability wil l be presented along with estimates of 

dry deposition fluxes and inputs to the Red Sea. 



Finally, Chapter 6 will highlight the main conclusions of the study and will compare and 

contrast the trace metal aerosol characteristics of the two marine systems considered in the 

current study, the English Channel and Red Sea. Suggestions for ftiture work wil l also be 

presented. 



Chapter 2 

Trace metals in the marine atmosphere 



2.1 Introduction 

The biogeochemical cycling of trace metals is of great importance in the marine 

environment. The compartment of this cycle that involves aerosol associated trace metals 

is the focus of the current work. This chapter summarises the importance of atmospheric 

metal inputs to marine biogeochemical processes. The magnitude and effects of 

atmospheric metal inputs from contrasting sources to the marine aerosol are presented, 

along with approaches to identify these sources. Different factors affecting the 

concentration of aerosol associated trace metals are discussed in conjunction with methods 

and procedures used in the calculation of atmospheric dry and wet deposition to the sea 

surface. Finally, the fate and impact of aerosol associated trace metals, post-deposition, is 

considered in relation to their bioavailability. Factors affecting the bioavailability of 

aerosol trace metals are briefly discussed. 

2.2 Global marine biogeochemical cycles of aerosol associated trace metals 

It was highlighted in Chapter 1 that atmospheric inputs of trace elements, up until the last 

two decades, was assumed to be quantitatively of minor importance. However numerous 

studies have now firmly established the significance of such inputs (Patterson and Settle, 

1987; GESAMP 1989; Martin et al., 1989; Duce et al., 1991). This is ftirther highlighted in 

Table 2.1, which illustrates the global deposition of dissolved and particulate trace metals 

to the ocean from both atmospheric and riverine sources. The importance of atmospheric 

inputs is particularly apparent for coastal seas bordered by arid / industrialised regions. 

These include European marine systems such as the Irish Sea, North Sea, Western and 

Eastern Mediterranean (Chester et al., 1984; Yaaqub et al., 1991; Guieu et al., 1997; 

Guerzoni et al., 1999; Kubilay et al., 2000; Kocak et al., 2004). 



Table 2.1. Comparison of atmospheric and riverine inputs of metals to the total ocean 
surface (10^ g/yr), (after Duce et al., 1991). 

Element Atmospheric Input Riverine Input 

Dissolved Particulate Dissolved Particulate 

Cd 

Cu 

Ni 

Zn 

As 

Fe 

1.9-3.3 

14^5 

8-11 

33-170 

2.3-5.0 

3.2x10^ 

0.4-0.7 

2-7 

14-17 

11-60 

1.3-2.9 

29x10^ 

0.3 

10 

11 

6 

10 

1.1 x lO' 

15 

1500 

1400 

3900 

80 

110x10^ 

The flux of aerosol associated trace metals to the sea surface is controlled by 'dry' and 

'wet' deposition modes. In the dry deposition mode, aerosols are delivered directly to the 

sea surface by gravitational settling. The extent and rate of trace metal dissolution from 

aerosol material post-deposition and hence their potential bioavailability (i.e. fate and 

impact) from dry deposition depends upon Iheir particle-seawater reactivity (Chester et al., 

1993; Spokes, 1994; Guerzoni et al, 1999). Likewise the impact of the trace metals 

deposited by wet deposition is constrained by the degree to which aerosol associated trace 

metals are soluble in rain water prior to deposition in seawater (Lim et al., 1994; Spokes et 

al., 1994). Further details of the importance of each of these atmospheric modes of input 

are presented in sections 2.5.1 and 2.5.2. Atmospheric inputs can influence marine metal 

biogeochemical cycles by (i) modifying the surface dissolved (e.g. Kramer et. al., 2004) 

and particulate (Dixon, 1998) trace metal concentrations and (ii) impacting upon the rate of 

primary productivity and phytoplankton community structure. 

The former effect has been illustrated for Al and Fe in the open ocean environment 

(Sarthou et al., 2003; Kramer et al., 2004). For example, Kramer et al., (2004) noted an 

increase in the dissolved Al concentration (up to 25 nM) in the surface waters o f f the 
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Canary Islands owing to atmospheric inputs from the Saharan desert. This is illustrated by 

Figure 2.1 which presents depth profiles highlighting a higher surface Al concentration 

(20.5 nM) at Station 11 (Figure 2.1 (a)) compared with that measured at station 35 (Figure 

2.1 (b)) (11.2 nM), which is less influenced by surface dust deposition during intense 

Saharan dust events. 

Some trace elements (e.g. Fe, Cd, Co, Cu, Zn) are crucial for the healthy growth of 

phytoplankton. These elements are required in trace amounts for proteins (e.g. ferrodoxin 

(Fe protein) and enzymes (e.g. carbonic anhydrase; Cu, Zn, Co; Miilero, 1996). The 

biological importance of these elements is illustrated by their open ocean depth profiles 

which generally exhibit a nutrient tynpe behaviour (Saito and Moffeti 2002; Morel and Price 

2003; Chen et al., 2005; Norisuye et al., 2007). Therefore in open ocean systems the 

atmosphere may be the only major source of these essential nano-nutrients. One 

extensively studied element is iron which has been found to be a limiting factor for 

primary production in extensive areas of the world oceans (e.g. equatorial Pacific and 

Northeast Pacific; Martin and Gordon, 1988; Coale et al., 1996). Iron plays an important 

role in phytoplankton metabolism where it is essential for photosynthetic and respiratory 

electron transport, nitrate reduction, chlorophyll synthesis and detoxification of reactive 

oxygen species (Sunda and Huntsman, 1995). 

Experiments to test the hypothesis that Fe limits primary production in high nutrient low 

chlorophyll (HNLC) regions have been conducted (de Barr et al., 1990, 1995; Martin et al., 

1990, 1991; Buma et al., 1991). Fe enrichment experiments being performed in the 

equatorial Pacific (IronEx I , II), the Southern Ocean (SOIREE, SOFEX, EisenEx) and 

Subarctic Pacific (SEEDS, SERIES). 



Al(nM) 

10 20 

6̂C 

AI(nM) 

5 10 5̂ 

2C 

4CrW 20-W 0 20 E 

20 W 0 20 E 

l i i iure 2.1. \ ertical profile of Al at l a i station 11. h i stati(m 35 and ( o location of the 
sampling stations, (after Kramer et al., 2(MM). 
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By definition, the biomass of chlorophyll remains low in such regions regardless of the 

abundant amount of the major nutrients (nitrate, phosphate and silicate). Such iron 

experiments have illustrated that the enrichment of PfNLC regions with iron can stimulate 

phytoplankton growth in the short term. The findings from these experiments have caused 

global climate change modellers to seek ways in which to incorporate marine 

biogeochemical cycles into climate models. However, critical questions remain 

unanswered about the cycling of iron in seawater, in particular the different effects of 

chemical speciation on the availability of Fe to competing autotrophs, and thus its effects 

on ecosystem structure impacting upon the ultimate fate of the Fe. In remote surface ocean 

the atmospheric inputs (wet or dry) are the dominant external source of trace metals 

(Jickeils and Spokes, 2001). Recently for example, Sarthou et al., (2003) observed a 

correlation between mean sea surface dissolved iron and total atmospheric deposition 

fluxes, confirming the importance of atmospheric deposition on the iron cycle in the 

Atlantic. 

The above discussion highlights the importance of Fe in terms of primary productivity (de 

Ban- et al., 1995; de Barr et al., 1999; Morel and Price, 2003). However, recent studies 

have also shown that the phytoplankton community structure may also be affected (Baker 

et al., 2003; Mills et al, 2004). For example, Baker et al., (2003) have examined the role 

of the three nutrient elements N , P and Fe in the Atlantic Ocean and concluded that 

atmospheric inputs from the Saharan Desert drive the system to be dominated by fixing 

diazotrophs {Thchodesmium sp.). Although the N:P ratio in aerosol inputs was 

considerably higher than the Redfield ratio (16:1), the overall water column ratio suggested 

N limitation. Once the phyloplankton had consumed the N, excess P and Fe allowed 

productivity to continue with the proliferation of diazotroph communities via N2 fixation, 

providing their own N requirements for primary productivity. 
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A similar affect was also obsen^ed o f f the coast of Florida in October 1999, when a huge 

bloom of toxic red algae developed following a dust cloud, originating from the west coast 

of Africa (17 June 1999), arriving at the coast of Florida on the 1st of July 1999. The 

surface water was enriched by 300 percent with iron. As a result Trichodesmium counts 

increased 10 times, dominating the phytoplankton community. The Trichodesmium would 

have developed at low N concentrations as it has the competitive advantage over other 

species, being a diazotroph, of fixing its own nitrogen requirements from the atmosphere. 

As P was still available and Fe was in plentifril supply owing to the dust event, the species 

had ideal conditions for growth. 

In addition to Fe, other transition metals play important roles in marine biological cycles. 

Whitfield (2001), for example, described Co as an essential growth factor for 

phytoplankton, as it is an active metal centre of vitamin B12. Cobalt is also known to 

substitute for Zn in enzyme carbonic anhydrase (Sunda and Huntsman, 1995; Yee and 

Morel, 1996). 

Copper plays a major role in photosynthesis as a structural and electron exchange 

component of plastocyanin (the protein which takes part in photosynthetie electron 

transfer). Copper exhibits a nutrient type behaviour in the open ocean with surface 

depletion, followed by regeneration at depth through biotic uptake together with in-situ 

sub-surface scavenging onto SPM (both biogenic and lithogenic in origin) (Chester, 2000). 

Nickel shows a typical nutrient profile with surface depletion and deep water eru-ichment 

(Millero,1996). This behaviour is due to surface consumption by biota and regeneration in 

the sub-surface. Chester (2000) described the Ni vertical profile as a dual nutrient 

behaviour where it has surface depletion and a maximum concentration at a shallow sub­

surface depth (comparable to P and N) and another maximum concentration at deeper 
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depths (comparable to Si). This is a result of the involvement of Ni in soft and hard tissues 

(labile and refractory carriers) which decompose at deeper depths. Therefore the 

atmospheric input of these metals in remote open ocean systems may also be of 

importance. 

2.3 The trace metal composition of the marine aerosol and its sources 

Aerosols are defined as "A suspension of solid and liquid material in a gaseous medium" 

(Chester, 2000). Trace metals present in an aerosol population wi l l be derived essentially 

from a mixture of anthropogenic and natural sources (see sections 2.3.1 and 2.3.2), 

however the predominant sources wil l influence the aerosol trace metal concentrations at 

any one time and location. Prospero et al., (1983) classified atmospheric aerosols into 

natural (sea spray residues, windblown mineral dusl, volcanic effluvia, biogenic materials, 

smoke from the burning of land biota and natural gas-lo-particle conversion products) and 

anthropogenic aerosols (direct emission and anthropogenic gas-lo-particle conversion 

products). 

Elements such Al and Fe are primarily associated with naturally derived aerosol particles 

(e.g. Kocak et al., 2005; Chester 2000; Duce et al., 1991). This material is a result of low 

temperature physical and chemical weathering processes on crustal particles. 

Elements such as Pb and Cd are associated primarily with anthropogenically derived 

aerosol particles (e.g. Var et al., 2000; Kocak et al., 2005). Table 2.2 presents the 

geometric mean aerosol trace metal concentrations observed in different marine systems. It 

is apparent from Table 2.2 that there is a high degree of spatial variability between 

contrasting sampling locations. Studies carried out at individual sites have also highlighted 

the great temporal variability in aerosol trace metal concentrations. This is illustrated by 

the high range of observed aerosol metal concentrations presented in Table 2.2 at any one 
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Tabic 2.2. Literature data for geometric mean concentrations and (ranges) for trace elements in aerosols from a number of representative 
marine environments. Concentrations expressed as ng ni"' of air. 

Element 

Al 

Pc 

Mn 

Ni 

Irish Sea 

(FonesJ996) 

210(101-586) 

159(65.1-486) 

4.42(0.40-31.6) 

3.71(1.12-12.3) 

North Sea 

(Chester and 

Bradshaw, 1991) 

219(21-887) 

230.5((2.0-I565) 

9.1(0.2-84.5) 

2.5(0.04-13) 

Coastal seas 

Western 

Mediterranean 

(Chester ct al., 

1990) 

370(40-2033) 

320(122-1184) 

11(2.3-50) 

2.8(0.4-8.9) 

Eastern 

Mediterranean 

(Kocak et al.,2004) 

567 (15-8278) 

407 (8-5601) 

7.9 (0.1-92) 

Arabian Sea 

(Chester et al., 

1991) 

1227(317-5148) 

790(317-3074) 

17(6.3-59) 

2.0(0.39-9.4) 

Open ocean 

Tropical North North Pacific 

Atlantic 

(Buta-Menard& 

Chesselet 1979) 

160 

100 

2.2 

0.64 

(Duce etal, 1983) 

21(1.3-150) 

18(0.66-91) 

0.29(0.025-1.7) 

Co 

C r 

V 

Cu 

Zn 

Pb 

Cd 

0.14(0.05-0.5) 0.19(0.01-0.79) 0.17(0.003-0.78) 

3.1(0.1-25) 2.5(0.8-5.2) 

4.57(1.27-14.9) 

25.3(6.72-100) 

15.1(3.59-82.4) 

0.19(0.04-0.85) 

4.4(0.4-37.5) 

26(0.7-250) 

20(0.6-189.5) 

6.2(1.1-19) 

41(6.1-210) 

58(15-255) 

0.36(0.02-1.5) 

3.9(0.1-39) 

8.9(1.0-65) 

15.9 (0.7-744) 

21.5 (0.3-586) 

0.17(0.01-2.36) 

0.38(0.037-1.9) 

3.0(0.77-14) 

6.3(0.91-30) 

2.6(0.96-12) 

10(4.2-29) 

4.3(1.1-12) 

0.045(0.024-0.099) 

0.08 

0.43 

0.54 

0.79 

4.4 

9.9 

0.008(0.001-0.044) 

0.091(0.034-0.390) 

0.082(0.019-0.270) 

0.044(0.005-0.29) 

0.180(0.031-0420) 

0.120(0.030-0.320) 

0.004(0.001-0.017) 



sampling location (e.g.; Buat-Menard and Chesselet, 1979; Duce et al., 1983; Arimoto et 

al., 1987; Chester et al., 1990; Chester and Bradshaw, 1991; Fones, 1996; Kocak et al., 

2004). The general trend for crustally derived aerosol trace metals (Al , Fe, Mn) is an 

increase in concentration from western Europe (Irish Sea, North Sea) to the eastern 

Mediterranean, whereas elements dominated by anthropogenic sources (e.g. Pb, Cd) 

generally decrease from Europe as one moves westwards. Crustal element concentrations 

(e.g. A l and Fe) are clearly much higher in the Eastern Mediterranean (owing to the close 

proximity of the Saharan desert belt to the south) and frequent seasonal desert dust events 

(Gehlen et al., 2003; Sarthou et al., 2003; Kocak et al., 2004). Whereas marine systems 

such as the tropical Pacific (a remote pristine area located far from continental 

industrialized areas and the influence of crustal inputs) experiences comparatively lower 

aerosol trace metal concentrations (t>T3ically one or two orders of magnitude lower). 

Generally, the overall composition and concentration of trace elements in a sampled 

aerosol population is controlled by (i) the predominating type of aerosol source, (ii) the 

emission strengths of the contributing sources, ( i i i) chemical and physical (wet and dry 

deposition) modifications of the aerosol population during transport from source to sink 

and (iv) atmospheric transport processes. 

The source type influence can be seen from the data in Table 2.2. One can divide the 

Marine systems (Duce et al., 1983; Chester and Bradshaw, 1991; Fones, 1996; Sarthou et 

al., 2003 Kocak et al., 2004) into three categories; (i) coastal seas close to anthropogenic 

sources (North Sea and Irish Sea) (ii) coastal seas influenced by cruslal and anthropogenic 

sources (i.e. westem and eastern Mediterranean) and (iii) open oceans influenced by crustal 

sources (i.e. Atlantic ocean, affected by the northeast trades of f West Africa and Arabian 

Sea). The use of air mass back-trajectories are important to trace such sources and to assess 

how contrasting aerosol sources might impact on variations in aerosol trace metal 
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concentrations. Table 2.3 illustrates this point by highlighting the obser\'ed differences in 

the aerosol associated trace metals concentrations at Mace Head (Ireland) (Spokes et al., 

2001). Air masses originating from the marine environment which have not recently 

passed over continental regions have comparatively very low trace metals concentrations 

(e.g. A l of marine source represent 19% of A l derived from the SE flow). In contrast, a 

southeasterly air mass which has passed over populated and industrialised areas has much 

higher (by typically 5-50%) trace metals concentrations. 

The potential effect of source emission strengths and their impact on aerosol metal 

concentrations is best described by Pb, a predominantly anthropogenically derived aerosol 

element emitted to the atmosphere mainly as a result of vehicular traffic. Over the last few 

decades in different regions of the world there has been a diminished usage of leaded fiiel 

(Spokes et al., 2001). This has impacted upon aerosol Pb concentrations and has created 

difficulties when making comparisons between literature datasets. Lead has been 

extensively studied due to its toxicity and long range atmosphere transport as it is mainly 

associated with the fine fraction anthropogenic aerosol (e.g. Pacyna et al., 1991; Injuk et 

al., 1992, 1993; Boutron, 1995; Shotyk, 1996). For example, Injuk et al., 1992 using a well 

equipped aircraft to collect atmospheric aerosol samples (total and size fractionated 

samples) concluded that Pb was primary associated with submicrometre size (in contrast to 

Zn). Lead was first introduced as a friel additive in the 1920s with its maximum input to 

the atmosphere around 1970 (Aberg et al., 2001). The increase during this period is 

exemplified by Figure 2.2 illustrating the chronological changes in lead emissions to the 

atmosphere of Switzerland, peaking in the 1970's followed by a decrease from traffic 

exhausts and industrial processes in Switzerland during the 1990's. Environmental 

legislation has subsequently been introduced as part of a strategy to reduce emissions from 

road traffic for the purpose of improving air quality, leading to a ban on the domestic sale 

of leaded fuel in the USA in the mid 1970s (Spokes et al., 2001). Its use in Europe was 
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later reduced by the introduciion of unleaded fuel in 1978 and then banned in Europe (and 

Saudi Arabia) around 2000. 

Table 2.3. Average concentration (pmol m'̂ ) of aerosol associated trace metals at 
Mace Head (Ireland) in two contrasting air masses; a polluted south easterly air mass 
and a marine dominated air mass (From Spokes et al., 2001). 

Air-mass Back Al 
Trajectory 

SEflow 1300 

marine air masses 248 

Pb 

140 

2.0 

Zn 

486 

45 

Mn 

100 

6.0 

2SW 

^ 20CP0 b 

1500 

lOOO 

500 

taca 

indus3ry 

BBBO 1900 1920 19^0 1960 1980 2000 2O20 

Calendar Year (AD) 

Figure 2.2. Lead emission (tonnes/annum) from traffic and industrial sources in 
Switzerland against time (BUWAL, 1995). 

As a result of this environmental legislation there has been a clear decline in lead aerosol 

concentrations. For example this has amounted lo a 30-40% decline in the North Atlantic 

Ocean (Veron el al.. 1993) between 1979 and 1989, and a similar decrease (30%) was 

found in the surface ocean waters near Bermuda between 1979 and 1993 (Wu and Boyle 

1997). Cave ei al.. (2005) also showed a decrease in the wei deposition of lead from 97 

tonnes/year in 1994 to 57 tonnes/year in 1999 to the entire Humber catchment (UK) (a 

decrease of 40%). As the European ban on leaded fuel was introduced after that introduced 

in the USA, the decline in European atmospheric Pb exhibited a similar time lag in its 

decline. Diminished aerosol Pb concentrations have been obser\'ed in European coastal 
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atmospheres (Ligurian Sea, 25-30%; 40% in the Levantine Basin of the Eastern 

Mediterranean, Migon and Nicolas, 1998; Ridame et al., 1999; Lammel et al. 2002; Kocak 

et al., 2004). hi addition Huang et al., (1996) suggested that 25% of lead inputs to the 

Sargasso Sea can be attributed to European sources in the mid 1990s. The above trend was 

also reported by Wu and Boyle (1997) who observed a decrease in lead concentrations in 

the surface ocean waters near Bermuda from around 150 p mol kg'' (in the 1970s) to 50 p 

mol k g ' (in the 1990s). 

The deposition of aerosol material during transport may also greatly impact on measured 

aerosol metal concentrations. Both wet and dry deposition are mechanisms by which air 

masses can be stripped of their associated aerosol population, the wet depositional mode 

being the more effective but more sporadic, the dry depositional mode being a constant 

mechanism. Chester et al., (1990) for example, investigated the influence of rainfall on 

trace metal concentrations in the Western Mediterranean marine aerosol. They observed a 

decrease in Zn, Cu and Pb by up to 60% between just before and after a rain event, with a 

two to three day recharge. This also confirmed the conclusions made by Bergametti et al., 

(1989) that a period of around two days is required to reload the atmosphere over the 

Western Mediterranean with aerosol from continental sources. 

2.3.1. Natural Background Aerosol material 

In the previous section contrasting sources were briefly discussed in terms of their impact 

on trace metal aerosol concentrations. Literature estimates of natural aerosol sources 

exhibited a wide range of values, which reflects the uncertainty of the applied assumptions 

in the calculations. Tables 2.4 and 2.5 illustrate the global emission estimates of particulate 

material and trace metals from natural and anthropogenic background sources. Natural 

sources include; (i) sea salts generated in the atmosphere by mechanical action (bubble 

bursting at the sea surface), (ii) crustal material (e.g. soil, desert dusts etc) transported by 

air mass movement from arid regions following the natural weathering of rocks and (iii) 
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volcanic activity resulting in the production of particulate (e.g. ash) and gaseous phases 

formed from high-temperature volatilisation processes. Moreover, volcanoes (major 

volcanic eruptions) can contribute aerosol material to the stratosphere (altitude from 11-50 

km). It is clear from Table 2.4 that nat^iral background aerosol sources are far higher than 

anthropogenic sources. Although there is variability in terms of which source is the more 

important (within the natural sources), however Table 2.4 clearly shows that the generation 

of sea salts and the re-suspension of cruslal material are by far the most important sources 

to the global aerosol. 

Table 2.4. Estimates of the global emissions of particulate material to the atmosphere 
(units, lO'^g yr ') (Chester, 2000). 

Source Global production 

Prospero et al., Nriagu 

(1983) (1979) 

Natural 

Total 

Direct particle 30 

production 

Particles formed 

from gases 

Converted sulphates 200 

Other 50 

Total anthropogenic 280 

Direct particle 

production 

Forest fires 5 36 

Volcanic emission 25 10 

Crustal eathering 250 500 

Sea salt 500 1000 

Particles formed 

from gases 

Converted sulphates 335 

Other 135 

Total Natural 1250 

1530 

Lantzy & 

Mackenzie (1979) 

200 



Table 2.5. Global atmospheric emissions of trace metals (adapted from Duce et al., 
1991). 

Elements Global Emissions 10^ g yr'' 

Anthropogenic Natural 

Pb 289-376 1-23 

Cd 3.1-7.6 0.15-2.6 

Cu 20-51 2.3-54 

Ni 24-87 3-57 

Zn 70-132 4-86 

2.3.2 Anthropogenically derived aerosols 

Anthropogenic contributions to the aerosol population are about 20 % of the natural source 

contributions (see Table 2.4). However, anthropogenic sources are geographically 

concentrated. Industrial and social activities leading to the injection into the atmosphere of 

anthropic aerosol material include fossil fuel burning, mining and the processing of ores, 

waste incineration, and the production of chemicals. In the case of some elements (Pb, Cd, 

Cu, Ni , Zn) anthropogenic source inputs may be equivalent to or exceed the natural sources 

(Duce etal., 1991; see Table 2.5). 

2.4 Methods of aerosol trace metal source identification 

The source type of aerosol associated trace metals can significantly impact upon their 

concentrations. It is also apparent that when attempting to make dry deposition 

calculations, knowledge of the predominant elemental source facilitates the assigrmient of 

the most appropriate settling velocities (see section 2.5.1 for more details). 

A combination of approaches can be adopted to evaluate the contribution made by 

different sources to an aerosol population. These include the following; (i) particle size 

determination, (ii) the calculation of air mass back trajectories and (iii) the calculation of 
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the elemental enrichment factor (EF). Each of these approaches is discussed in the 

following sections. 

2.4.1 Aerosol particles size distribution 

The type of source contributing to an aerosol population might, in addition to influencing 

the trace metal concentration, impact upon the particle size spectrum of an aerosol 

population. Aerosols particle sizes may can be divided into two broad categories; fine 

particles (d<2|im) and coarse particles (d>2 ^im) (see Figure 2.3). The fine particle 

category can be ftirther sub-divided into transient nuclei or Aitken nuclei range and 

accumulation modes (Whiteby, 1977). 

Particles in the transient nuclei (Aitken nuclei d<IOOnm) range originate predominantly 

from high temperature combustion processes, which are mainly derived from 

anthropogenic processes although volcanic emissions and biomass burning are also 

included. The accumulation mode is thought to result primarily from the coagulation of 

Aitkin nuclei into larger aggregates. In contrast, particles in the coarse mode have been 

formed by mechanical action (low and high temperature processes) and are mainly natural 

in origin (e.g. sea salts, crustal material). Coarse mode particles have shorter residence 

times in the atmosphere, in contrast to fine mode particles, owing to their comparatively 

higher settling velocities (e.g. Aximoto and Duce, 1986). 

Defining the aerosol particle size spectrum of an aerosol population is important because 

this information allows; (i) more representative settling velocities to be assigned to the 

aerosol population and hence more accurate calculation of aerosol dry deposition (see 

ftirther section 2.5.1) and (ii) a better evaluation of the contributions made to the aerosol 

population of contrasting sources (Chester et al., 1993; Spokes et al., 1994; Paoletti et al., 

2003; Conner and Williams, 2004). 
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A number of researchers have used scanning electron microscopy (SEM) to identify the 

physico-chemical properties of aerosol material such as grain size and, morphology (e.g. 

Kasparian et al., 1998; Ebert et al., 2000; Biscombe 2004; Dordevic et al., 2004; Hoffman 

et al., 2004; Niemi et al., 2004; Desboeufs et al., 2005). SEM can be coupled with energy 

dispersive X-ray analysis (EDX) to yield a rapid, easy and nondestructive approach to 

surface elemental analysis (Toyoda et al., 2004). 
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The dusl samples are fixed on a carbon tape then either coated with carbon or gold before 

SEM obser\'ation. SEM images can highlight the size and shdpe o f airbome panicles. 

Figure 2.4a. for example, illustrates a fly ash particle as being spherical in shape and 

comparatively small (-0.5 ^m) . whilst soot aggregates fo rm irregular shap)ed. 

comparatively larger particles (> 1 f im) . In addition naturally derived particles are larger 

then anthropogenic particles as is clear f rom images (Figure 2.4) of sea salts (-5 ^m) and 

soil derived kaolinite agglomerates, both being larger than 2 ^ m (Figure 2.4 b and d). 

Therefore, it is clear that SEM can provide useful guideline information o f the physical 

characteristics o f aerosol populations. 

I I 
OSurn 

Fijiure 2.4. SKM Photomicrographs of airborne particles, l a l a fly ash particle i h i 
solid-drived kaloinite agglomerates (c) soot aggregates (d) cubes of sea salts Images 
(a), (b) and (c) after Xie et al., (2005). Image d is f rom Moreno et al., (2(MM). 
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2.4.2 Air mass movement 

Knowledge of air mass movement is of great importance in enhancing our understanding 

of source contributions to aerosol populations and hence trace metal aerosol concentrations 

(Methven et al., 2001). Simple and complex models (HY-split4, CAPITA Monte Carlo) 

have been used to predict air mass movement. The trajectory model is usefijl for (1) 

determining the possible history of a given air parcel using back trajectories (2) studying 

mixing and transport processes in the atmosphere (3) combining obser\'ations made over a 

wide variety of places into a consistent map representing the state of the atmosphere at any 

one period (i.e., a synoptic map), and (4) providing a dynamic component to a 

photochemical box model so that the chemical evolution of an air parcel can be reliably 

studied. 

Trajectory models are important tools for studying transport phenomena in the atmosphere 

(Stohl, 1998) and establishing the relationship between air mass origin and chemical 

composition (Kubilay and Saydam, 1995; Methven et al., 2001). Interpreting the chemical 

composition of atmospheric aerosols is a key factor in understanding their atmospheric 

cycling. Mathematical models have been widely used to evaluate the transport of aerosols 

in the atmosphere (Chiapello et al., 1997; Spokes et al., 200!; Baker et al., 2003; Jickells et 

al., 2003; Oikonomou et al., 2003;), but few offer the flexibility, broadness and accuracy 

the user requires. Accuracy is the most important factor for aerosol studies. Errors in 

trajectory calculations result from a number of factors (see Stohl, 1998): numerical 

truncation (e.g. Seibert, 1993), interpolation (Kuo et al., 1985; Rolph and Draxler, 1990; 

Stohl et al., 1995), treatment of the vertical velocity (for instance, use of isobaric or 

isentropic approximation) (Stohl and Seibert, 1998), errors in the underiying wind fields 

(Kahl el al., 1989; Pickering et al., 1994, 1996) and sometimes inaccurate specification of 

the starting positions and times which lead to subsequent growth of errors (Merrill et al., 

1985). 
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The model used in this study is HYSPLIT (Hybrid Single-Particle Lagrangian Integrated 

Trajectory) which was designed by ARL-NOAA in the USA and the Bureau of 

Meteorology in Australia. This model can: 

• Compute Single or multiple simultaneous trajectories 

• Project forward and backward in time 

• Incorporate other options which are not of particular interest for this project 

Moreover, this model is free to use and has been adopted by many researchers (e.g.; Baker 

et al., 2003; Capulo et al., 2003; Oikonomou et al., 2003; Sarthou et al., 2003; Li et al., 

2004) in the field of aerosol study. 

2.4.3 Use of the Enrichment Factor to identify sources 

A classical way in which the source has been determined is by invoking the use of the 

enrichment factor (e.g. Guieu et al., 1997; Chester et al., 1999; Kocak et al., 2004). The 

enrichment factor is generally defined in the following manner: 

EFsourcc=(E/I)3ir / (E/I)source 2.1 

Where (E/I)air is the ratio of the concentration of the element of interest and the 

concentration of an indicator element 1 in the aerosol sample and (E/l)sourcc is the ratio of 

their equivalent concentrations in the precursor source material. The most appropriate 

indicator element will vary depending upon the type of enrichment factor to be calculated. 

The most commonly applied enrichment factor is the crustal enrichment factor (EFcmsi). 

The indicator element usually adopted is aluminium. Hence the EFcnjsi can be defined as: 

E F c n . . = (E/Al)air / (E/Al)crus, 2.2 
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where (E/Al)cmsi is taken from the global elemental concentrations in the crusl (Taylor, 

1964; Wedepohl, 1995). Because A! is used as the crustal reference element the 

conlribuiion of anthropogenic Al should theoretically be negligible for an accurate 

determination of EFcmsi- Moreover, the chemical composition of the continental crust will 

vary from one location to another and the average concentration in the crustal rock is an 

approximation of the regional value. It is demonstrated that the concept of normalizing 

element concentrations to an average total crust value is of doubtful merit, for theoretical 

considerations alone serious flaws with EFs have been discussed by Reimann and De 

Caritat (2000). More recently Kocak et ai., (2005) calculated the EFcmsi for the Eastern 

Mediterranean aerosol using elemental ratios taken from an end-member Saharan dust, to 

better represent the regional crustal elemental / A l ratios and hence obtain a more accurate 

representation of the EFcmsi for the Eastern Mediterranean aerosol. Guieu and Thomas 

(1996) also used the local abundance of elements from the source to calculate a more 

representative EFcmsi- Therefore, considering the various limitations involved in the 

calculation of EFcrusi, values should be treated only as order of magnitude indicators of the 

crustal source (Chester 2000). Once the EFcmst has been calculated, elements having an 

EFcrusi of> 10 are assumed as having a predominantly non-crustal source (e.g. Pb and Cd) 

whereas elements having an EFcmsi < 10 are assumed to have a predominantly crustal 

source (e.g. Fe and Al). Elements having EFcmsi < 10 are referred to as "non-enriched" 

elements, whereas elements having EFcmst of > 10 are referred to as "enriched" elements. 

Having said that some authors (e.g. Guieu and Thomas 1996; Chester 2000) treat this 

assumption with reservation as elements may have an EFcmsi of 10 or less but still have a 

significant anthropogenic source contribution (e.g. Kocak et al., 2005). 

In addition, "enriched" elements under special conditions may exhibit "non-enriched" 

behaviour (i.e. EFcmsi < 10). This has been observed when an aerosol population is heavily 

loaded with crustally derived material (e.g. Saharan dust pulses see Chester et al., 1996). bi 
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conlrasl it is also possible that non-enriched elements may apparently become enriched, 

Mn being a recent example. Spokes et al., (2001) sampled manganese in the fine (<2iim 

diameter) and coarse (>2p.m diameter) modes and found that in some events the fine mode 

exceeded the coarse mode. Fine mode (d<2)im) manganese would be generated from high-

lemperature combustion of manganese rich fuel enhancers or smelting and this suggestion 

was supported with a high crustal enrichment factor value (i.e. southeasterly air; EFcmst ^ 

45). 

Table 2.6 highlights typical EFcmsi values in marine aerosols at contrasting locations and it 

is apparent that the EFcmsi are genrally higher in marine systems in the vicinity of 

industrialised regions (e.g. North Sea). This is due to the effect of dominating anthropic 

sources. However, in the case of the North Atlantic, EFcmsi for elements in samples 

collected during the North East Trade winds are lower than for samples collected from 

westerlies due to the domination by crustal material from the westem Sahara desert. 

2.5 Modes of deposition of atmospheric trace metals to the sea surface 

Atmospheric trace metal deposition to the sea surface occurs by dry and wet deposition. 

Wet deposition comprises of dissolved constituents together with insoluble particles 

contained therein. Both modes of deposition (wet and dry) plus the gas phase make up the 

total deposition. 

2.5.1 Dr>' deposition 

Dry deposition is simply the gravitational settling of aerosol particulate associated trace 

metals to the receptor surface, being either terrestrial or marine. Table 2.7 highlights the 

spatial variability in the aerosol mineral fiux and deposition to the global ocean system. 

The relative importance of wet and dry fluxes varies (Table 2.7) from region to region and 

from metal to metal. WHiere arid regions influence open ocean systems, dry deposition of 
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mineral dust becomes increasingly more imponanl, such that in these regions it becomes 

the predominant deposition transport mechanism. 

This is apparent for the N Atlantic, which experiences periodic intense pulses of Saharan 

dust events leading to, on average, three times greater dry deposition rates for mineral dust 

compared with wet depositional rates. Moreover, in arid regions and surrounding areas rain 

events are rare and consequently the dry flux will dominate in these regions (see Table 

2.8). As a result elements such as A l and Fe have high aerosol concentrations and dry 

depositional rates. 

The dry removal of particles from the atmosphere is a continuous process that is affected 

by a number of factors, which include particle size, wind speed, relative humidity and 

particle concentration (Cawse, 1981; Fitzgerald, 1991; Wesely and Hicks 2000). Table 2.8 

shows the wet/dry elemental daily flux in different regions influenced by diverse sources. 

Elemental dry deposition is generally calculated from the following equation 2.3 (Duce et 

al., 1991): 

F {\xg cm"- s"') = Vd (cm s'') • C (ng cm"^) 2.3 

where Vd is the elemental deposition or settling velocity, F is the rate of dry deposition and 

C is the concentration of the element in the air. The deposition velocity (Vd) comprises of 

all processes of dry deposition including gravitational settling (which is affected by particle 

size), impaction, and difliision. As presented in Figure 2.5 (Slinn and Slinn, 1980), particle 

size would influence the modelled dry deposition velocity. This is also emphasised by 

Cawse (1981) (Figure 2.6) who defined the relationship between enrichment factor and dry 

deposition velocity (cm s''). A mean value of 0.025 cm s'' was found for a SO4 "̂ aerosol 

with a size range of 0.1-1 |im, whilst larger particles (1-20 iim) showed a higher velocity. 

from 0.06-2.5 cm s*' 
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Tabic 2.6. EFcrusi values for sonic anomalously enriched crustal (AEE) elements in marine aerosols of contrasting locations. 

Eletncnl North North North Sea W. Med. W. Med. Corsica Cap Ferrat Vignola Sardinia li. Med. Jeddah 

Atlantic Atlantic Chester et Chester et (Spain) (W. Med.) (Med.) (W. Med.) (VV. Med.) (Erdenili) (S.W. Asia; 

Ocean Ocean al., (2000) al., (2000) Chester et al ., Qerganietti Chester et al., Migon et al., Migon et al., Kiibilay El Saycd 

Westerlies N.E Trade (1993) et al., (1990) (1993) (1993) and al.,(2004) 

(1989) Saydani, 

(1995) 

Cu 120 1.2 58.5 22 29 18 24 26 - - 49 

Zn n o 3.8 280 155 148 133 130 130 52 33 27 

Cd 730 9.4 - 628 1633 676 423 260 116 22 

Pb 2200 9.1 1825 955 837 635 1045 550 194 294 6 



Table 2.7. Atmospheric flux of mineral aerosol to the ocean (After Duce et al., 1991) 
(Brackets show the % contribution of dry and wet to the total). 

Flux, 10-̂  gm'^ Deposition, 10 

Ocean Wet Dry Total Wet Dry Total 

North 3.8 (72) 1.5 (28) 5.3 340 140 480 

Pacific 

South 0.23 (63.9) 0.13(36.1) 0.35 25 14 39 

Pacific 

North l . I (27.5) 2.9 (72.5) 4 61 160 220 

Atlantic 

South 0.27 (57.4) 0.20 (42.6) 0.47 14 10 24 

Atlantic 

North Indian 5.1 (71.8) 2.0(28.2) 7.1 73 29 100 

South Indian 0.60 (73.2) 0.22 (26.8) 0.82 32 12 44 

Global Total 1.5 (60) 1.0 (40) 2.5 550 360 910 

e 2.8. Elemental flux (wet dr>' and total) expressed as m' 

Element South Pacific' Med. Sea 2 North Seâ  Med. Sea** 
Wet Dry Wet Dry Wet Dry Wet Dry 

Al 749 1200 

Fe 3300 2800 89000 22000 

Mn 44 38 1730 890 

Cu 20 2.6 14.6 11.9 880 420 584 1606 

Cd 3.9 0.51 32.85 32.85 

Zn 22 2.9 5030 1470 38690 41610 

Pb 31 4.1 19.1 18.5 3200 490 584 2555 

Ni 3.6 3.3 880 330 693.5 657 

Co 0.6 0.24 32.85 94.9 

V 880 170 

(1- Halstead et al., 2000, 2- Chester et a!., 1999, 3- Injuk et al., 1998 , 4- Migon el al., 1997) 
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The dry deposition velocity has been calculated using different approaches; (i) models 

(Hicks and Williams, 1980; Dulac et al., 1987; and Slinn and Slinn 1980) (ii) experimental 

cascade impactor (Bergametti, 1987) (iii) surrogate surfaces (Dolske and Gatz, 1985; 

Baeyens ei al., 1990; Kim et al., 2000) (iv) calculated difference between total and wet 

deposition field data (Migon ei al., 1997). Table 2.9 gives a summary of the settling 

velocities used in the literature. The results are ver>' different and hence their comparability 

is generally invalid due to the uncertainties in the applied approaches. 
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Figure 2.6. Relationship between enrichment factors and dry deposition velocities of 
elements in aerosols (Cawse, 1981). 
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Table 2.9. Summary of the elemental settling velocities (cm s ') used to calculate elemental dry deposition fluxes in recent studies 

llleinenl Flamanl Dulac et al., Remouduki Guicu et Ouley and Roja.s ct al., Injuk et Migon ct Guerzoni Wells Spokes ci 

(1985) (1989) (1990) al., Harrison (1993) al . , ( l998) al., 1997 etal., (1999) al . , (200l) 

(1991) (1993) (1999) 

Al - 0.69-3.8 - - 0.46 - - - 2 1.08 1.3 

l-e _ _ _ 0.45 - 0.32-0.55 - 2 -
Mn _ - - - - 0.21-0.53 - - 0.69 I.1-1.4 

Cii 0.49 _ I . I 0.8 0.7 0.48 0.21-0.5 1.19 - 0.44 -

Zn 0.5 _ - 5 0.52 0.35 0.20-0.4 4.38 - 0.09 0.71-0.92 

Pb 0.17 0.041 1.9 0.1 0.17 0.25 0.07-0.11 0.19 0.2 0.02 0.36-0.63 

Cd 0.49 0.053 - 7 0.38 0.39 0.42 0.2 0.04 -



For example, Duce et al., (1991) used three categories of aerosol particles and calculated 

the deposition velocity based on the Slinn and Slinn (1980) model. Category one was the 

sub-micrometer aerosol particles and the calculated deposition velocity was 0.1 cm s"' (± a 

factor of 3). The second category was super-micrometer crustal particles (not associated 

with sea salts) and the calculated deposition velocity was 1.0 cm s'' (± a factor of 3). The 

third category was large sea salt particles and material carried by them with a calculated 

deposition velocity of 3.0 cm s ' (± a factor of 2). Anthropogenic sources are the dominant 

source of metals such as zinc and therefore the dry deposition velocity for zinc using the 

Slinn and Slinn (1980) model should be 0.1-0.3 cm s'\ Whereas, Migon et al., (1997) 

calculated the zinc deposition velocity to be 4.4 cm s'' for the western Mediterranean, 

using the difference between total bulk deposition and wet deposition. Moreover, Rojas et 

al., (1993) estimated the dry deposition velocities for Cd, Cu, Pb and Zn using a modified 

version of the two-layer of Slinn and Slinn (1980) and the particle size distribution 

obtained from size-fractionated samples (see Table 2.9). 

Generally it is assumed however that elemental gravitational settling velocities for 

elements associated with natural particles (e.g. A l , Cu, Fe) (EFcmsi < 10) have higher 

settling velocities than those elements associated with anthropogenic particles (e.g. Pb, Zn) 

(EFcmsi > 10). Therefore, knowledge of trace metals aerosol sources (as defined by the 

EFcmsi), as well as their aerosol concentrations, is essential in order to accurately assess 

quantitatively dry deposition fluxes (Figitre 2.6). 

2.5.2. Wet deposition 

Wet deposition is when particulate matter (solid aerosols) is removed from the atmosphere 

by collision with, and capture by, falling precipitation (below-cloud), or via the particles 

themselves acting as condensation nuclei (in-cloud). Table 2.10 presents the trace metal 

concentrations in rainwater from different marine sites. Aerosol concentration and rainfall 
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intensity are the prominent factors controlling the wet deposition flux. Aerosol 

concentrations may vary by orders of magnitude over short time scales, which will lead to 

a high variability in the trace metal concentration in rainwater (Lim, 1991). In view of this 

some authors quote their trace elements concentration data as a volume-weighted mean 

(VAVM) (e.g. Kane et al., 1991). The V W M is defined in equation 2.4: 

V W M = S CsVsA ,̂ (ng m'^) 2.4 

Where Cg is the concentration of each sample, is the volume of each collected sample 

and Vi is the total volume of collected samples. 

Wet deposition is a major contributor to the atmospheric deposition of trace metals (Table 

2.10). Table 2.10 presents the regional trend of elemental rainwater concentrations with 

mainly crustal sourced elements (e.g. Al and Fe) being comparatively high in the vicinity 

of arid regions (North Atlantic) and lower in remote areas (e.g. Bermuda), whereas 

elements with a predominately anthropogenic source (e.g. Cd and Pb) are higher in the 

vicinity of industrial areas (e.g. Irish Sea), Both dissolved and particulate trace metals are 

deposited to the sea surface during precipitation events. 

The wet deposition flux can be calculated as follows (Duce et al., 1991): 

Fr = P-Cr (ngcm"-yr' ') 2.5 

Where P is the precipitation rate, Cr is the concentration of the substance of interest in rain 

and Fr is the wet deposition trace metal flux. It is often expressed as a scavenging ratio 

(washout factor), instead of Cr: 

Fr=P-S-Cpa - p ' 2.6 
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where S is the scavenging ratio (uniiless), Cpa is the concentration of particles in air (^g 

cm'"̂ ) and p is the density of air (air density at STP is 1.2929 kg m'**). In the literature the 

scavenging ratio is defined either as Cy Cpa or CJ Cpa* p (Chester 2000). 

The scavenging ratio is affected by several factors, which include the size of the particles 

being scavenged, their chemical and physical form and cloud properties (droplet size, 

temperature and cloud type). 

2.6 Aerosol fate in seawater and rainwater 

The post-deposiiional behaviour of aerosol associated trace metals has been studied (e.g. 

Duce et al., 1991; Jickells 1995) in order to predict both their impact and fate. Both are 

constrained by the degree to which they undergo dissolution in seawater (through biotic or 

physiochemical processes) and rainwater, pre-deposition. TTie dissolution reaction is 

crucial in the extent to which atmospheric inputs can influence surface marine trace metal 

biogeochemical processes (Martin et al., 1989; Bowie ei al., 2002; Sarthou et al., 2003). 

Figure 2.7 represents the alternative fates of aerosol trace metals in both the sea surface 

microlayer and the bulk seawaier, post-deposition. This is a model outlined by Lion and 

Leckie (1981) to emphasize the enrichment of the microlayer with trace elements. 

rruittn 
*ian-\urt»f9 •CI '**-

Figure 2.7. Schematic representation of alternatives for the fate of trace metals at the air-
sea interface (After Lion & Leckie. 1981). 
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Tabic 2.10. Concentrations (ng 1"*) of trace metals in rainwater from different marine sites. 

O N 

Jcmcnt North Atlantic Bermuda North Atlantic South Atlantic Mount I-lna volcano vicinity Irish Sea North Sea 

Lim & Jickells Church et al, Church et. al., Helincrs and Schrcms Cimino and Toscano (1998) I-ones (1996) Chester etal., (1990) 

(1990) (1984) (1991) (1995) 

Al 1.14-35.2 8.1-MO 1.30-131 43.5 105 

Cd 0.009-0.18 0.034-0.155 0.003-1.8 0.016-0.196 

Co 0.71-1.72 0.06 0.017 

Cu 0.03-0.36 0.23-0.53 0.1-1.2 0.070-0.91 11 2.4 15 

I-e 0.18-133 0.99-7.86 1.5-85 1.70-63.5 320 84 

Mn 0.06-5.25 0.06-0.51 0.4-4.1 0.11-3.43 45 <12 

Ni 0.023-0.32 7.9 0.63-1.42 1.2 

Pb 0.050-0.83 0.48-1.34 0.02-3.1 0.091-1.03 1.2 

Zn 0.09-2.21 0.82-3.49 0.3-5.0 0.359-3.93 640 35 



Metals may occur dissolved in seawater, adsorbed onto particles or complexed with 

organic ligands. The following sections discuss the factors impacting upon the seawaler 

and rainwater dissolution of aerosol associated metals. 

2.7 Solubility of aerosol associated trace metals in seawater and rainwater 

Much research has been carried out to define aerosol trace metal solubility in seawater but 

these studies have mainly focused on laboratory simulations whereby either "end-member" 

aerosol material (Saharan / anthropogenic) or filter collected mixed aerosol samples have 

been equilibrated with seawater, followed by analytical detection of the dissolved fraction 

of the aerosol trace metal. Table 2.11 summarises the observations made by different 

researchers (Walsh and Duce 1976; Hodge, et al., 1978; Crecelius 1980; Graham and Duce 

1982; Wollast and Chou 1985; Moore, et al., 1984; Maring and Duce 1987; Maring and 

Duce 1989; Maring and Duce 1990; Zhuang et al., 1990). 

From these studies it is apparent that elements predominantly associated with the crustal 

aerosol (e.g., A l , Fe and Si) are generally less soluble (Al (0.6-10%); Si (5-10%); Fe (< 1-

50%)) in seawater than those elements associated with anthropogenic aerosol components 

(e.g., Pb (13-90%), Cd (81-84%) and As (48-78%)), 

It is also apparent that the range of elemental solubilities in sea water is variable. Such 

variability might be explained by one or more of the following factors; (i) solid state 

speciation of the aerosol associated trace metals (Chester et al., 1993; Spokes et al., 1994) 

(ii) dissolved organic ligands (composition and concentration) in the seawater (Maring and 

Duce, 1990) (iii) seawaler temperature (iv) the presence of micro-organisms in seawaler 

(Biscombe, 2004) (v) the particle concentration in seawaler (vi) photochemical processes 

(Statham and Chester, 1988) (vii) aerosol modification during atmospheric transport 

(Spokes el al., 1994; Desboeufs el al., 2001). 
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Table 2.11. Range of literature seawater solubilities of aerosol associated trace metals. 

Element Solubility % Referei 

A l 0.6-10 1,2 
Si 5-10 3 
P 21-51 4 
Fe <l-50 2,5,6,9 
IVln 25-49 2,6,7 
V 31-85 2,6,8 
As 48-78 5,6 
Cd 81-84 2 
Cu 15-86 2,6,10 
Ni 29-47 2 
Pb 13-90 2,11 
Zn 24-76 2,5 

References are as follows: 1, Maring anci Duce (1987); 2. Hodge, et al., (1978); Wollast and Chou (1985); 4, 
Graham and Duce (1982); 5, Crecelius (1980); 6, Moore, et al., (1984); 7, Statham and Chester (1988); 8, 
walsh and Duce (1976); 9, Zhuang et al . , (1990); 10, Maring and Duce (1989); 11, Maring and Duce (1990). 

2.7.1 Solid state speciation of aerosol associated elements 

Sequential leach procedures have been used to determine the solid state speciation (or solid 

phase associations) of aerosol associated metals, (e.g. Chester et al., 1989). Sequential 

leach techniques may involve many stages (3, 5 and 6 stages) (e.g. Lum et ai., 1982) 

depending upon the solid state species which the researcher is interested in and constrained 

by the amount of sample available for processing. Chester et al., (1989) described a three 

stage sequential leach scheme evaluating the characterisation of the sources and 

environmental mobility of aerosol trace metals in the marine aerosol. It was designed to 

establish the partitioning of the metals bet̂ A'cen; (i) loosely-held (environmentally mobile), 

(ii) carbonate and oxide, and (iii) refractory (environmentally immobile) associations. This 

experimental procedure was adopted and used in the current study to determine the solid-

state speciation of trace metals in filter-collected aerosols samples. In high temperature 

processes metals can become associated with the surfaces of ambient aerosol particles by 

processes such as adsorption, impaction and condensation. These processes usually occur 

on small particles surfaces more than large particle surfaces as a result of the smaller 

particles having a relatively greater surface area. 
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In the first stage of the Chester el al., (1989) procedure, ammonium acetate (at pH 7) is 

used to determine the loosely held fraction (bioavailable). In the second stage, 25% v/v 

acetic acid and 0.25 M hydroxylamine hydrochloride is used to leach all carbonate and 

oxide associated metals into solution. The third and final stage uses a combination of nitric 

and hydrofluoric acids, used to leach trace metal associated with the organic and refractory 

fractions. Nitric acid is a strong oxidising agent which oxidises the organic matter 

resulting, in a release of associated trace metals whereas the hydrofluoric acid attacks the 

lattice material (e.g. aluminosilicate). This sequential leaching procedure was used to 

determine the solid-stale speciation of trace metals in Liverpool Urban Aerosol Population 

(LUAP) and Saharan particulates (Figure 2.8), it is clear that when the dominant source is 

urban (anthropogenic), the exchangeable fraction (stage 1) dominates the solid state 

speciation (except for A l and Fe which are mainly associated with the residual fraction). 

However, in the Saharan aerosol the refractory phase becomes increasingly important. 

Chester et al., (1993) have identified three different groups of elements according to their 

seawater solubility. Group 1 elements are crustally-controlled (Si, Al and Fe) and generally 

have very low seawater solubilities (< 10%) from both crustal and urban aerosol 

populations. The solid state speciation showed that < 10% of A l and Fe occurred in the 

exchangeable fraction in the LUAP aerosol population and < 1% of A l and Fe occurred in 

the Saharan (crustal) population (Figure 2.8). The second group of elements (Cr, Mn and 

Co) are similarly crustally-controlled but have intermediate seawater solubility values ( -

10-50%) from both crustal and urban populations. This could be due to the solid state 

speciation (Figure 2.8) of which 22-44% of Mn is associated with stage 1 (exchangeable 

fraction). Group 3 elements (Zn, Cu, Ni and Pb) have higher seawater solubilities in the 

urban populations than that in the crustal populations. This could also be explained by their 

solid state speciation characteristics. 
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tcrustah aen»s(»L (after ( tester et al., 1989). 

2.7.2 Dissolved organic ligands 

Many metals are likely to be organically complexed in seawater (van den Berg 1985: 

Nimmo et al.. 1989; Zhang el al.. 1990: Bruland. 1992: van den Berg 1995). Spokes et al.. 

(1994) speculated that organic complexation plays a role in increasing the solubilisation of 

trace metals. The organic complexation of metals is a key factor in oceanic metal cycling, 

and because the reaction ligands acts to maintain metals in the dissolved form they will 

also increase metal solubility (Kuma el al.. 1996: Wu et al.. 2001). Metal-organic 

complexation may also retard the removal of the metal by scavenging on paniculates. 
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According to van den Berg (1995), the stability of natural organic complexes increases in 

the following order: Zn< Pb < Cu << Co < Ni << Fe. TTie stability of the metal organic 

complexes formed will affect the extent of metal organic complexation and hence its 

seawater solubility but will also be controlled by the organic ligand concentration in 

seawater. 

2.7.3 Seawater temperature 

The temperature of the seawaler surface wi l l vary from one location to another; for 

instance the Red Sea has an average temperature of about 30 °C whereas in the polar 

regions the temperature is around -2 °C. Previous studies to investigate the effect of 

temperature on the aerosol associated trace metal solubility in seawaler are scarce. 

Biscombe (2004) has reported the effect of temperature on the seawaler solubility of trace 

metals associated with a Standard Reference Material purchased from the National 

Institute of Standards and Technology (NIST) {SRM 1648). Seawater solubility increased 

with temperature from 10.8-25.2 °C as follows: Cd (61.1-72.5%), Cu (I9.6-24.2%»), Pb 

(17.8-22.8%) and Zn (17.4-22.6%). 

2.7.4 Micro-organisms 

Bacteria play a key role in the cycling of trace elements in seawater (Azam 1998). About 

50% of oceanic primary production is charmelled via bacteria into the microbial loop. 

Gordan et. al., (2000) reported that marine bacteria could produce organic ligands thai had 

a strong complexing capacity with copper in chemostat cultures using estuarine water. 

Biscombe (2004) also carried out solubility experiments for trace metals in seawater in the 

presence of bacteria. This study reported a significant increase in aerosol seawater 

solubility of Cu, Pb and Zn in the presence of bacteria. 
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2.7.5 Photochemical processes 

Slatham and Chester (1988) reported the effect of photochemical processes on Mn 

dissolution. Using Saharan dust, Mn solubility was enhanced under light (ca 3000 lux) as 

compared to dark conditions. A similar conclusion for Fe has been reported by Spokes and 

Jickells (1996). Saydam and Senyuva (2002) recently reported an increase in dissolved Fe 

(II) concentration after the irradiation of 10 g sieved soil sampled mixed with 500 mL 

distilled deionized water with a UV lamp (1500 W) with the highest concentration being 

reached after 210 minutes. Borer et al., (2005) illustrated in their laboratory experiments 

that adding siderophores and a second organic ligand (acting as electron donor) accelerated 

the light-induced dissolution of crystalline iron oxides to produce a dissolved form of iron 

(Fe(ll)).The ligand-to-metal charge transfer initiated by light absorption by the surface 

complex (Fe-complex) in the presence of a reductant (e.g. oxalate) will lead to the 

reduction of Fe(lII) to Fe(ll), eventually the Fe(ll) would dissociate from the complex to 

an aqueous form (Sulzberger and Laubscher, 1995). Rijkemberg et al., (2005) have also 

shown that Fe (II) is produced from Fe (III) in seawater at different wavelengths (280-315, 

315-400 and 400-700nm) of light and found that wavelengths between 280-314 nm were 

responsible for the highest production of Fe (11). However, in contrast Ozturk et al., (2004) 

did not observed any particular wavelength of light which were more effective in the 

reduction of Fe (III). 

2.7.6 Aerosol modification during atmospheric transport 

The solubility of trace metals in rainwater has been studied by the direct determination of 

dissolved and particulate metal fractions in collected rainwater, as well as in laboratory 

simulation experiments. Factors impacting upon the degree of metal dissolution in 

rainwater include those highlighted above (see Figure 2.8) and rainwater pH. Many authors 

have related the solubility of trace metals in aerosols with pH in cloud droplets (Borg et al., 

1989; Spokes et al., 1994; Spokes and Jickells, 1996; Desboeufs et al., 2001). It is known 
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thai the pH of rainwater is governed by a balance between the acid and neutrahsing species 

present in the atmosphere. Strong acid species, e.g. H2SO4 and H"N03, have a 

predominantly anthropogenic origin, the precursors being SO2 and NOx (Jickells et al., 

1982; Losno et al., 1991). Conversely, the major neutralising agents have a mbced source 

with mineral dust from crustal weathering (Losno et al., 1991) and N H 3 from natural 

and/or anthropogenic sources (Apsimon et al., 1987). Moreover, weak organic acids and 

inorganic acids (neutralising) in aerosols could affect the pH of rain-water. 

The proportion of the dissolved form of a metal depends on the pH o f the rain (Spokes et 

al., 1994; Desboeufs el al., 2001) as the solubility increases with lower pH and decreases 

with higher pH (Losno el al., 1988). During atmospheric transport an aerosol may be 

subjected to repeated wetting and drying cycles during cloud formation and dissipation 

prior to its integrating into hydrometers. During these cycles particles could experience 

very low pHs (Jickells, 1995). A laboratory study conducted by Spokes et al., (1994) 

examined aerosol associated trace metal solubility during repealed cycling of pH (high-

low), simulating cloud processes. For some species (e.g. dissolved nitrogen) the 

relationship between solubility and pH is simple (Jickells, 1995) but the behaviour of trace 

metals is likely to be more complex. For example, the solubility of manganese and barium 

from Saharan aerosol remains high after the initial acidification regardless of the 

subsequent pH alteration, which is very different behaviour to that of A l and Fe. Whereas 

in urban aerosols Al and Fe results are slightly different, with not only higher percentage 

dissolution during the low pH stages, but also incomplete solution phase removal at high 

pH. These results were suggested to be due to organic complexalion (Spokes et a!., 1994). 

2.8 Context of the current study 

This chapter has reviewed the biogeochemical processes which influence the aerosol trace 

metal fluxes to the marine atmosphere and their subsequent fate in seawater. This has been 
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done by discussing the possible contrasting sources, source emission strengths and removal 

processes during transport from source to sink of aerosol associated trace metal, all of 

which may strongly influence the aerosol metal concentrations and their variability at any 

one location over time. Factors impacting upon the fate of deposited trace metals in the 

marine environment have also been discussed. 

The current study will embrace these processes and, using two contrasting locations, will 

investigate their importance in the transport of trace metals to and within the marine 

aerosol. 

The two areas of focus will be: 

1 - Jeddah (South West Asia). 

2- Plymouth (Western Europe). 

These two sites potentially contrast strongly in terms of source types, emission strengths 

and subsequent removal processes. 

Jeddah is a marine site situated on the western side of Saudi Arabia surrounded by arid 

desert regions. With a population of c.a 2.5 millions and various industries located within 

its environs, aerosol metals concentrations wi l l be influenced by both crustal and industrial 

inputs, although the natural crustal source is likely to be a dominant feature. 

Plymouth is also a marine influenced sampling site, situated on the south west of the UK 

surrounded by rural agricultural areas. However, contrasting influences include westerly 

air masses bringing pristine marine dominated aerosol and easterlies which may transport 

long range anthropogenically derived trace metal from western European industrialised 

regions. Plymouth is a city with a population of around 250,000. 
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These VA'O sites contrast in the type of aerosol sources and removal processes and little 

work has been carried out to identify the aerosol associated trace metals concentrations and 

factors influencing their fate in seawater, especially in Jeddah (e.g. Berry, 1990; Behairy et 

al., 1985 and El-sayed et al., 2004). 
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Chapter 3 

Sampling procedures and analytical techniques 
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3.1 Introduction 

This chapter reports on the various sampling methods, sample treatment and applied 

analytical techniques used in the current study. These approaches were applied to a series 

of aerosol samples collected from the following two contrasting sampling locations:-

1) Jeddah, Saudi Arabia (representative of a "coastal and arid" influenced site,) 

2) Plymouth, Devon, UK (representative of a "coastal and semi-rural" influenced 

site) 

Further detailed information on each of these sites is provided in sections 4.1 and 5.1. The 

collected aerosol samples were typically analysed for the following metals; A l , Fe, Mn, 

Na, V, Co, Ni , Zn, Cu, Mo, Cd, Pb after total acid digestion with nitric and hydrofluoric 

acid (Jeddah n = 203, Plymouth n = 131) and a selected number of aerosol samples (Jeddah 

n = 40, Plymouth n = 25) were processed through a three stage sequential leach procedure 

to determine the aerosol trace metal solid state speciation characteristics. 

3.2 Aerosol sampling procedures 

3.2.1 Mesh collection 

Early methods of sampling the marine aerosol used nylon meshes (Murphy 1985; Saydam 

1981; Sanders 1983). These were typically made from cross-weaved terylene fibres (with 

typical diameters of 0.33mm), covering a surface area of 1 m" (Murphy 1985). During their 

deployment aerosol particles can adhere to the fibres, a tendency that is enhanced by 

inertial and electrostatic effects and also by a thin layer of saline moisture on the fibres 

during collection at sea. Although this means that the meshes are capable of retaining 

particles which are considerably smaller than the openings between the fibres, their 

collection efficiency falls o f f for sub-micron sized particles. Therefore mesh collection 

results in a size biased aerosol sample, with preferential collection of naturally derived 
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coarse material (i.e. sea salt and crustal material). Another limitation of the use of meshes 

is the inaccuracy of the calculation of the volume of air sampled and hence inaccuracies in 

the calculation of the aerosol chemical constituent concentrations. Therefore, for the 

collection of total aerosol populations and the subsequent evaluation of aerosol trace metal 

concentrations, the use of meshes is not appropriate. However, they have been recently 

used to collect bulk Saharan dust which was subsequently used in metal seawater solubility 

studies and solid state speciation studies (e.g. Biscombe, 2004; Ko^ak et al., 2007). 

3.2.2 Acrive aerosol collection systems 

The most common and accurate approach (used extensively in atmospheric aerosol 

collection (e.g. Yaaqub el al., 1991; Spokes et al., 2001; Chester et al., 1999; Guerzoni et 

al., 1999; Baker et al., 2003; Ko?ak et al., 2004; Ko9ak et al., 2005; Baker el al., 2006a) 

for the collection of aerosol material involves the use of filter media. This method of 

collection requires forcing the sampled air through the filler substrate over a specific 

recorded time period using an air pump. Such an approach requires a sampler from one of 

the following three categories: (i) high volume systems (Wieprechat et al., 2004; Spokes et 

al., 2001; Chester et al., 1999; ICo^ak et al., 2004; Kogak et al., 2007; Baker et al., 2006a) 

which generally operate at an approximate flow rate of 1000 L min '; (ii) medium volume 

systems which operate at 100 L min' ' ; (iii) low volume systems (Wieprechat et al., 2004; 

Spindler et al., 2004; Fones 1996) which operate at 20 L min' ' . Such samplers have been 

used to collect total suspended particulate (TSP) or adapted to collect a selective size 

spectrum of particles (specified aerodynamic diameter) using cascade impactor 

attachments (SEAREX (program) 1977-1986; Duce 1989; Chester et al., 1993; Chester et 

al., 1999; Chan et al., 2000; Kwon et al., 2003; MuUer et al., 2004). Cascade impactor 

attachments may have up to six different stages, and are used to separate different particle 

diameter ranges (typically 7.2, 3.0, 1.48, 0.96, 0.48 and <0.48 ^m) or PMio and PM2.5 (Yin 

et al., 2005) where the particulate material has a diameter less than 10 |j.m and 2.5\im 
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respectively. DifTerenlialion of particulate matter into size fractions (using cascade 

impactor, PMio or PM2.5 collectors) is crucial i f (i) the impact of aerosol particulate 

material on human health in urban areas is to be assessed and (ii) the evaluation of the 

dominant aerosol trace metal sources is needed for accurate metal dry deposition and fate 

predictions and calculations. Recent studies (Yip et al., 2004; Samet et al., 2000; Pope et 

al., 1995; Dockery et al., 1993) would suggest that there is an association between ambient 

PM and mortality rates. Harrison and Yin (2000) suggested that for each 10 |ag m""* 

increase in concentration of PMio, there is an associated increase of approximately 1% in 

the daily all-cause mortality. Therefore, regulatory and enviromnental bodies have 

embraced this issue in their priorities and imposed regulations for urban air quality. This is 

mainly in regard to acceptable levels of PMjo but in some countries a maximum level of 

PM 2.5 has recently been introduced (for example the EPA has set national ambient air 

quality standards in the USA for PM2.5 as 15 ^ig m"'' as an annual mean and 65 |ig m""' as a 

24 hour mean), (Tucker 2000 and Hoffmann 2000). 

Being able to define the size distribution of an aerosol population also aids assessment of 

the source contributions to an aerosol population (see section 2.4.1 for ftirther details). 

Aerosol populations can be separated into two broad categories; the coarse mode aerosol 

fraction (>1 |im) which is primarily generated during low temperature processes (e.g. soil 

erosion, sea salt aerosols) and the fine mode fraction (<1 pm) which is primarily generated 

during high temperature processes (gas-phase precursor). Spokes et al., (2001); Baker et 

al., (2003); Alfaro et al., (2003) and Kogak et al, (2005) have all used two stages or 

multiple stage cascade impactors to differentiate between the coarse and fine modes to 

assign appropriate elemental settling velocities when calculating dry depositional fiuxes 

(see section 2.5.1). 
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However, using multi-stage impactor systems is costly and requires longer sample 

collection limes. Such collection times for each sample may be up to five or six times 

longer than that for total aerosol collection (Chester et al., 1999). This is to ensure that a 

sufficient quantity of aerosol associated trace metals have been collected on each of the 

cascade impactor stages such that, after total dissolution into the acid digest solution, they 

are present at concentrations well in excess of the analytical detection limits. Having 

longer collection times, however, reduces the temporal resolution compared with that 

which can be adopted for total aerosol collection (i.e only one stage). For example, aerosol 

sampling at sea or at coastal stations may require a typical sample resolution of one week 

instead of 24 hours (Chester et al., 1999). Owing to the d>'namic nature of the atmosphere 

(see section 2.4.2) and the changing aerosol trace metal concentrations over very short time 

periods, having lo adopt a lower temporal resolution sampling strategy wil l result in the 

loss of essential information. For example, Ko^ak el al., (2004) found that just three 

Saharan dust events (spanning over only several days) occurring over the Eastern 

Mediterranean in 2001 contributed lo about 25 % of the total annual dry deposition fluxes 

for crustally derived elements (Al , Fe and Mn) and, hence, such events could easily be 

missed i f a low temporal resolution sampling approach was adopted, leading to significant 

errors in elemental dry deposition flux calculations. This limitation has also been staled by 

ICo(?ak et al., (2005). 

Ideally, total aerosol collection and cascade sample collection should be carried out 

simultaneously using two samplers, with the total aerosol sampler having a high temporal 

resolution of sampling (typically daily). However cost often prohibits this option. For the 

current study only total aerosol samplers were available. These were used to collect aerosol 

samples at a high temporal resolution over an extend period of time e.g. in Plymouth for a 

selected period twice daily and in Jeddah one sample per day over the whole sampling 

period, except al weekends, when one integrated sample was collected. This sampling 
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strategy provided a large library of aerosol samples which enabled subsequent 

classification of each sample into different air mass sectors based on three day back 

trajectories (see section 3.5 for further details on back trajectory calculation). 

The total volume of filtered air has been calculated after calibration of the high 

volume samplers. The calibration kit was purchased from the sampler manufacturer 

(Andersen Instrument Inc.) and the calibration procedure was taken from the sampler 

manual. The manometer (Plymouth sampler) or the continuous flow recorder readings 

taken during the calibration needed to be corrected for prevalent meteorological conditions 

as prescribed in the sampler manual. The readings from the calibrating kit during 

calibration were converted to standard air flow (mVmin). 

Following calibration five readings of the corrected manometer or the continuous 

flow recorder readings taken during the calibration would be drawn against the converted 

readings (standard air flow) from the calibrating kit. Where the calibration kit readings 

would be the 'x* values and the manometer or the continuous flow recorder readings will 

represent the 'y ' values. From the equation of the correlation line the manometer or the 

continuous flow recorder readings during sampling will be converted to standard air flow 

(m^/rnin). 

3.2.3 Collection media 

Contrasting filter materials have been used for the collection of the marine aerosol. These 

include cellulose membrane (0.45^m) filters (e.g. Yaaqub et al., 1991), fibrous glass fibre 

filters (e.g. Herut et al., 2001) and Whatman 41 fibrous cellulose acetate filters (e.g. 

Chester et al., 1993; Fones, 1996; Herut et ai., 2001; Kopak et al., 2004; Sarthou et al., 

2007). 
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For the current study, aerosol samples were collected using Whatman 41 cellulose acetate 

filters, which is the most commonly used filter medium for the sampling of trace metals 

associated with marine aerosol populations. This type of filter material is most suitable for 

the following reasons; (i) low metal contamination of filter blanks (in contrast to the high 

level of impurities present in quartz filters); (ii) easily digested in mineral acids (in contrast 

to quartz filters); (iii) cause minimal restriction to air flow, allowing high volume 

collection to be carried out (in contrast to cellulose nitrate membrane filters which greatly 

restrict flow rates and are brittle); (iv) reasonably inexpensive and readily available; (v) 

high retention efficiency (>95%) of all particulates, particularly at <l|Jjn in size 

(Lowenthal and Rhan 1987; Wells, 1999); (vi) mechanical stability as it is flat in the 

sampler, remains in one piece and gives a good seal with the filter holder to minimize air 

leaks; and (vii) high temperature stability, which is important because filters must maintain 

their physical properties (porosity and structure) over ambient temperature ranges. 

Clearly all of the above factors are of importance, however in terms of collection of a 

representative sample, factor (v) is the most important. Whatman 41 filter collection 

efficiencies have been tested by Stafford and Ettinger (1972), who found that at low filter 

face velocities, their efficiency never dropped below 95% for particles down to 0.18 | im 

diameter. In the natural environment during the course of a sample collection the filters are 

likely to become loaded with material which wil l ftirther enhance the collection efficiency 

of the filters. The main limitation of the Whatman 41 filters is their hygroscopic nature, 

leading to errors in gravimetric analysis, i f required. Accurate measurements of TSP 

concentrations are therefore unreliable with Whatman 41 filters (e.g. Herut et al., 2001). 

3.2.4 High volume TSP sampler used in the current study 

Total suspended particulate (TSP) aerosol samples for the current study were collected 

using commercially bought high-volume samplers (Sierra Anderson -TSP Hi-Vol. 
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GS2312) having a typical flow rate of 0.8 m^ min ' (Figure 3.1). Two variations of this 

sampler were used in the current study. The type used in Jeddah, Saudi Arabia had a 

brushless motor and a mass flow controller. There are two advantages of this type of 

system; (i) maintains a constant flow rate throughout the sampling period; (ii) allows the 

determination of copper in aerosol samples. Earlier models of the Sierra Anderson high 

volume TSP samplers (similar to the one used at Plymouth) were found to be unsuitable 

for the determination of aerosol Cu owing to contamination of the samples arising from 

particle generation from the wearing of the electric motor brushes. Cu determinations were 

not carried out on the samples collected from Plymouth, This sampler was kindly 

provided, on temporary loan, by the Oceanography Laboratories, University of Liverpool. 

Filter paper holder 

Flow chart 

Motor 

Controller 

Cascade impactor 

Figure 3.1. The Sierra Anderson - T S P Hi-Vol.GS2312 sampler, as used in the 
current study at Jeddah (excluding cascade impactor attachment). 
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3.2.5 Sampling locations adopted in the current study 

Collections have been accomplished at two contrasting sites, the first was an urban site in 

the south-west of Britain (Plymouth) whereas the second site was located in the south-west 

of Asia (Saudi Arabia: Jeddah). Jeddah is located on the coast of the Red Sea (west coast 

of Saudi Arabia), being the country's major port and the second largest city with a 

population of around three million. Figure 3.2 illustrates the sampling location in Jeddah, 

being to the north of the city in the vicinity of the Obhor lagoon close the Faculty of 

Marine Science, University of King Abdulaziz campus. 

The main areas of business, commerce, industry and urban development lie to the south of 

Jeddah city and these potential influences are fiirther discussed in section 5.3. The 

prevailing climatologically influences at the site are also discussed in section 5.2. 

The second sampling location was in the south-weslem region of England. Plymouth is the 

largest city in Devon with a population of around 275,000. Located in the western region 

of the English Channel, Plymouth is characterised by a maritime climate, predominantly 

influenced by North Atlantic westerlies (with a frequency of 30-33% of wind blown on 

Plymouth; Wells, 1999; for fiirther details see section 4.1.1). The high volume sampler was 

located on the roof of the Fitzroy building al the University of Plymouth campus (ca. 15m 

above sea level) as shown in Figure 3.3. 

The sampling resolution at Plymouth was initially two samples per day commencing at 

lO'*' December 2001 and terminating at 29̂ ^ July 2002 after which one per day was 

collected up to 19^ April 2003, with a total number of 208 samples being collected over 

the whole sampling period. There were periodic gaps in the sample coverage owing to 

motor malftinctions and the requirement to regularly replace the motor brushes. When day 

and night differentiated samples were collected, the exchange times between samples were 
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typically 19:00 and 07:00. Whereas, al Jeddah, a sampling resolution of one sample per 

day was adopted commencing al 10̂ ^ August 2002 and terminating al January 2004. A 

total of 313 aerosol sample fillers of daily samples were collected. Full details of sampling 

dales; collection period flow rate and air volumes sampled are presented in Appendix A. 

3.2,6 Sampling Protocol 

As stated previously Whatman 41 filters were used for aerosol collection in the current 

study. During manipulations, new and used filters were stored in re-sealable plastic bags to 

minimise sample contamination. During filter handling on site and in the laboratory the 

operator always wore disposable plastic gloves. In the laboratory environment all filter 

handling was carried out in a "Bassaire" Class 100 laminar flow cabinet. Sampler flow 

rates were measured at the start and at the end of all sampling periods at Plymouth, 

whereas al Jeddah continuous flow rate measurements were recorded. The flow rales of the 

samplers were calibrated using a commercial calibration kit. The mean flow rate was 0.8 

(±0.1) m"* min"' for Jeddah and 0.8 (±0.2) m^ min"' for Plymouth. This is in the same range 

of flow rates previously reported in the literature (e.g. Ko^ak el al., 2005; Herul et al., 

2001). Filler samples, once collected, were divided into two equal sections and stored in air 

tight plastic containers after labelling with all the relevant information, i.e. dales, start and 

finish of the sampling period, flowrates, meteorological conditions and any other important 

observations which might have impacted upon the aerosol trace metal concentrations (e.g. 

any possible sources of contamination during sample handing or sampling). 
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Figure 3.2. Location of aerosol sampling site to the north of Jeddah t it>, Saudi 
Arabia. 
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Operational filler blanks were carried out during every week of sampling by adopting the 

same procedures as that for the sample filler, except that no air was processed through the 

filter. These operational blank filters were passed through the acid digestion and analytical 

stages to assess the levels of contamination in the whole sampling, sample treatment and 

analytical process. 

The outer frame of the sampler and around the filter holder was cleaned regularly, rinsing 

with Mill i -Q water, to remove any potentially contaminating particulate material, 

3.3 Adopted analytical approach 

Total aerosol associated trace metals were brought into solution by acid digestion using a 

mixture of concentrated acids (HNO3/HP). Analysis for trace elements was then carried out 

using either inductively coupled plasma-atomic emission spectrometry (ICP-AES) or 

inductively coupled plasma-mass spectrometry (ICP-MS) depending upon the elemental 

digest concentrations (for Al , Fe and Mn determinations typically ICP-AES was used and 

for the rest of the considered elements, except Na, ICP-MS was typically the preferred 

technique, Na was determined by flame atomic emission spectrometry). 

3.3.1 Total acid digestion of the aerosol samples 

Total acid digestions were carried out in batches on both the aerosol samples and an urban 

aerosol CRM (NIST 1648) (Certified Reference Material). This CRM probably best 

represents the collected aerosol samples analysed in the current study i f they are 

anthropogenically dominated in terms of source contributions. Indeed, for some published 

works reporting aerosol trace metals in the marine aerosol, sediment digests have been 

used as CRMs which clearly are less representative of aerosol material. The main 

limitation of the currently available aerosol CRM is that it is less likely to represent aerosol 

populations dominated by crustal material. 
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Therefore a combined acid digest was carried out (i.e. both concentrated HNO3 and H F ) to 

ensure metals which are associated with crustal material, and hence likely to be 

incorporated within the resistant crystalline lattices of alminosilicate and quartz phases, 

undergo complete acid dissolution. Total metal digestions are important when considering 

aerosol trace metals, as information on the constituent's concentration associated with the 

whole aerosol population is provided and hence allows for the calculation of the EFcmst 

(see section 2.4.3 for further details on the importance of the EFcmsO-

The digestion method applied during the current study, was that adapted from Fones 

(1996), with minor modifications. The digestion method required the use of clean PTFE 

(polytetraflouroethylene) vessels (30 mL; Cowie Ltd). The digestion vessels prior to use 

were washed in detergent followed by rigorous rinsing with Mill i -Q water (resistivity of 18 

M n cm'') and left in a 20% HCl ('AnalaR' grade) acid bath for 7 days. They were then 

removed and ftirther washed with copious amounts of Mill i -Q water and dried in a laminar 

flow (Class 100) cabinet and stored in clean re-sealable plastic bags ready for use in the 

digestion procedure. Full COSSH and risk assessments were completed prior to the first 

acid digestion batch along with appropriate training in the use of HF. 

3.3.2 The total acid digestion procedure 

The acid digestion procedure consisted of firstly placing one half section of the Whatman 

41 filler sample into a clean PTFE digestion vessel (30 mL; Cowie Ltd.). To this was 

added 15 mL of concentrated 'Aristar' (VWR) HNO3 then the digestion tube cap was 

closed fumly and the mixture was refluxed on a hotplate (Hotplate SH3D, Stuart 

Scientific) at 80-90°C for 24 hours in a fiime cupboard. After the concentrated HNO3 

digestion, the samples were placed on a hot plate, which was located in a specially 

designed and constructed HF fume cupboard within a dedicated laboratory annex (see 

Figure 3.4). This fiime extraction system consisted of a continuous water spray at the back 
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of the cupboard lo capture HF fiimes. The re-circulated water spray was continually 

monitored for pH to ensure complete neutralisation of the absorbed acidic fumes. Two mL 

of "Aristar" HF (BDH) was then added to all samples, CRM (3 replicates) and blanks (3 

replicates). The lids were then replaced and the mixture was allowed to reflux for a further 

two days at 120 °C to dissolve any remaining material. The lids were then removed and the 

mixture evaporated down to near dryness (to a small bead of solution). Two mL of the 

concentrated "Aristar" nitric acid was added, followed by a second evaporation to near 

dryness stage. This last step was repeated twice to remove any residual volatile fluorides. 

To the final evaporation residue 10 mL of 'Aristar ' (VWR) nitric acid (2%) was added. 

The lids were replaced and vessels were transferred to a laminar flow cabinet where the 

samples were made up to volume (25 mL) in 2% nitric acid ('Aristar' in Mill i -Q water) 

using acid washed 25 mL volumetric flasks (grade A). Digest solutions were then placed in 

30 mL Slerilin vials (polycarbonate) (Patterson Scientific) and labelled to await analysis by 

ICP-AES, ICP-MS or flame photometry (see section 3.3.3.1 and 3.3.3.2). Recoveries of 

elements after digestion of the CRM were > 85% (see Table 3.1). The recoveries presented 

on Table 3.1 were calculated using the arithmetic mean of the determined metal 

concentrations in the CRM digestions arising from nine separate acid digestion batches and 

the certified value provided by the supplier. In every batch the urban aerosol CRM was 

digested in triplicate, ensuring analytical accuracy and efficient digestion for all batches of 

samples. Generally the recoveries for the considered elements were acceptable (>85%). 

However the recoveries calculated for cobalt tended to be higher than 100%, probably 

owing to the relatively low detected concentrations. However it must also be 

acknowledged that the value quoted for the cobalt concentration for the CRM is a non-

certified value, as it has been analysed by only one technique (NAA; Neutron Activation 

Analysis), and hence the comparative value may be in error. Sodium also had high 

recoveries (115 + 5%). This might have been due to the fact that Na has been determined 

using flame photometry which has a relatively poor reproducibility. The final consideration 
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for the obtained aerosol associated trace metal concentrations is that of quality control and 

quality assurance. By including the CRM during every digestion it was possible to assess 

the accuracy and precision of all sample analyses. In cases where there were generally low 

or excessively high recoveries, the analyses /digests were re-done. Routine verification of 

the accuracy of sample treatment and analyses represents good analytical practice, ensuring 

reliable environmental datasets are produced. 

pH meter 

NaOH contamer 

Fij»ure 3.4. The dcsijiiuited HF fume cupboard. 
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This problem usually affects some of the isotopes determined (the ones that can have 

interferences). That may therefore affect analytes such as Cu, Zn and other transition 

elements. Other elements e.g. Pb may not have been affected so badly, because they have 

fewer interferences. 

Table 3.1. Typical elemental concentrations (mg kg'') (except for Al, Fe and Pb 
expressed as percentage) and recoveries using the total acid digestion procedure 
(n=9). Recoveries assessed using the C R M (MST 1648). 

ement Mean Certified Recovery 
Concentrations Concentrations 

(2sd) NIST 1648 
(2sd) 

Ni 90.0 (20.) 82(3) 109 

Pb 0.576 (0.09) 0.655(0.008) 87.9 

Al 3.37(0.14) 3.42(0.11) 98.5 

Mn 754 (66) 786(17) 95.9 

Fe 3.45 (0.19) 3.91(0.10) 88.2 

Na 4920 (430) 4250 (20) 115.7 

V 123(15) 127(7) 96.8 

Zn 4140 (60) 4760 (0.14) 86.9 

*Cu 554 (21.2) 609(27) 91.0 

Co 21.9 (4) 18 121 

Cd 64.4 (8.8) 75(7) 85.8 

# CRM (n=4) value for copper has been analysed only in conjunction with Jeddah samples. 
* CRM value for cobalt is a non-certified value. 

'Analysis carried out by Flame Photometry. 
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3.3.3 Analytical techniques 

3.3.3.1 Inductively Coupled Plasma-Atomic Emission Spectrometr>' (ICP-AES) and 

Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) 

ICP-AES and ICP-MS were the analytical techniques selected for the determination of 

trace metals (except for Na) in the total aerosol acid digests. ICP-AES was used to 

determine A l , Fe and Mn in aerosol samples collected from both Plymouth and Jeddah, 

whereas ICP-MS was used for the determination of Cd, Ni , Co, Zn and Pb in samples 

collected from Plymouth and Jeddah. 

ICP-AES is a well-established technique for routine analysis for a wide range of elements. 

It is used extensively in environmental science owing to its wide dynamic range (10 ng 

mL"' up to 100 ^g mL' ') , comparatively low detection limits (sub-^ig mL"'), high 

selectivity and its ability to carry out multi-elemental analysis. 

The ICP-AES instrument employed for the analysis in the current study was the Liberty 

516 (Varian). Detailed operating conditions are presented in Appendix B. The ICP-MS 

used was the V.G. Plasmaquad PQ2 (Fisons Instruments). Similarly, detailed operating 

conditions are also presented in Appendix B. 

The sample compartments and plasma source for ICP-MS and ICP-AES are similar. The 

basic components of ICP-AES and ICP-MS instruments are shown in Figures 3.5 and 3.6 

respectively. During ICP-AES operation the optical spectrum (ca. 165-800 nm) is viewed 

either sequentially (which was the one used during the current work) or simultaneously 

(faster in measurement). The analyte emission lines are detected using a photomultipiier 

(PMT) (or by charge-coupled and charge-injection devices). 
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For ICP-MS ions are produced in the plasma and passed through the interface (sampler 

cone and skimmer cone) to reduce the pressure, allowing passage into the mass 

spectrometer (MS), having a relatively lower pressure. Then the ions pass through the ion 

optics through the mass filter (quadrupole, double focusing magnetic sector) and then 

eventually into the detector. In general, the ion beam passes through the entrance slit to the 

analyzer and then through the exit slit to the detector. 

ICP-MS is a powerful and rapidly developing technique for multi-elemental determination 

at sub-^g L ' ' concentrations. Therefore, determination of some elements is difficult 

because of interferences (spectral and isobaric spectral overlaps) but these can often 

overcome by high resolution ICP-MS. 

3.3.3.2 Reagents and Standards 

Al l reagents were Aristar® grade or equivalent unless otherwise stated and were used as 

received, with the exception of acetic acid (which was used for the sequential leach) for 

which Romil Ultra Pure Acid was used to reduce contamination. 

Stock solutions of the reagents were prepared as described below and working solutions 

were prepared by serial dilution as required. Mill i-Q water (18,2 Mohm cm'', Elagastat 

Maxima), which was low in trace metals and fitted with UV treatment (and thus also low 

in dissolved organic carbon (DOC)) was used for solution preparation and labware rinsing 

throughout this work. 

Standards were prepared freshly on the day of analysis using an ICP standard (10,000 / 

1,000 mg L"' in 2.0 % (v/v) HNO3, Spectrosol, BDH) by making up a multi-element stock 

solution in 25 mL (in a glass volumetric flask, grade A) with 2 % nitric acid. Serial 

dilutions were then made, allowing a series of six mixed standards to be prepared, which 
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were then used to construct a calibration line for the ICP-MS and ICP-AES. In addition, 

the standards used to calibrate the ICP-MS contained two internal standards (In and Th ai 

concentrations of 100 L ' and 1 mg L"' respectively). 
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Figure 3.5. The major components of the ICP-AES (Source: http:// ww u 
ballicuni\ .uu.se/environmentalscience/ch 12/chaplerl 2_g.htm). 
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Figure 3.6. The major components of the ICP-MS (Source: http: // AK . esslab. com 
/uLnlent icpms. htm). 
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Depending upon the sample type (Jeddah or Pl)Tnouth) different mixed elemental standard 

concentrations were prepared. The adopted standard solution concentration ranges are 

summarised in Table 3.2. Any sample digest solution which gave a signal above the 

highest standard was diluted and re-analysed. 

3.3.3.3 Analytical performance 

Table 3.3 highlights the instrumental limits of detection for ICP-AES, along with the 

corresponding applied elemental emission line. 

The linear ranges are also quoted. Analytical limits of detection were calculated from the 

following equation: 

Instrumental limits of detection = blank + 3a, (Miller and Miller, 2001) (3.1) 

Where a is the standard deviation of the blank replicates. In this case the blank is 

represented by the trace elemental concentrations in 2 % nitric acid. Although the 

calculated limits of detection were greater than the reported limits of detection, they were 

adequate for the current study for the determination of A l , Fe, Mn, and Zn in all aerosol 

sample types. 

For the current study the linearity of the techniques was not specifically defined, instead 

calibrations were tailored to approximate the concentrations expected in the sample. 

However the calibration graph was rejected i f the correlation coefficient (r~) was < 0.995, 

ensuring that the hnearity of the instruments response was maintained for the range of 

elemental concentrations encountered in the samples analysed. 
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Table 3.2. Summary of the elemental standard solution concentration ranges for the 
contrasting sampling sites in the current study. Al, Fe and Na concentrations are 
expressed as mg L ' \ whereas the remaining elements are expressed as ng L"'. 

Element Jeddah acid digest solutions Plymouth acid digest 

Al 5-150 5-20 

Cd 5-150 1-30 

Co 5-150 1-30 

Cu 100-2000 -

Fe 5-150 5-20 

Mn 0.5-6 0.5-6 

Mo 5-150 3-100 

Na 1-10 1-10 

Ni 5-150 3-100 

Pb 100-2000 30-500 

V 100-2000 3-100 

Zn 100-2000 30-500 

Table 3.3 also highlights the wide linear range (typically between 10 |ig L"'- 100 mg L"') 

exhibited by ICP-AES. 

Table 3.3. The calculated and reported ICP-AES elemental instrumental limits of 
detection (p.p.m.) for correspondent emission line (using ICP-AES) . 

Element 
(wavelength nm) 

A l (308.215) 

LOD 
(Calculated) 

0.1 

Linear range 

0.1-450 

Cu (324.754) 2.9 2,9-1000 

Mn (257.610) 0.044 0.044-150 

Fe (259.940) 0.05 0.05-750 

**Na 1 1-10 

**Na has been measured using flame photometer. 
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A number of elements were present in the aerosol acid digestion solutions at 

concentrations below the limits of detection for ICP-AES (i.e. Co, Cd, Mo, Pb, V and Ni) 

and hence these were subsequently determined using ICP-MS. 

The limits of detection for ICP-MS were calculated in the same manner as those for the 

ICP-AES and are presented in Table 3.4. The linearity for ICP-MS lies in the range 0.1 ^g 

L"' to 20 mg L *. Similar criteria for rejection / acceptance of the calibration line were 

adopted as were applied for ICP-AES analyses. 

Table 3.4. Calculated and reported ICP-MS elemental instrumental limits of 
detection expressed in ^g L " \ 

Element 

V 

LOD 
(experimental) 

3 

Linear range 

3-20 

Co 0.4 0.4-30 

Mo 1.0 3.8-10 

Pb 3.8 0.8-8 

Cd 0.16 1,6-10 

Ni 1.1 1.1-20 

Zn 15 15-50 

Cu 10 10-20 

3.3.3.4 Flame photometry 

Flame photometry (flame atomic emission spectrometry) was chosen for the determination 

of Na in aerosol digests. It is a rapid, simple, and sensitive analytical method for the 

determination of alkali and alkaline earth metal ions in solution (e.g. Na, IC, Li). Owing to 

the very narrow and characteristic emission lines from the gas-phase atoms in the flame, 

the method is relatively free of interferences fi^om other elements. Typical precision and 

accuracy for analysis of dilute aqueous solutions are ±1-5%. This method is used to 
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determine metals which are easily excited to higher energy levels at the temperature of a 

flame. A diagram of the main components is highlighted in Figure 3.7. 
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Figure 3.7. The main instrumental components of a flame photometer. 

3.3.4 Measurement of trace metal in aerosol digest solutions; operational blanks 

Analytical blank values which were obtained directly from the analysis of Mill i-Q water 

were used to calculate the limits of detection. However, the operational blank is also 

essential to define and assess the contribution of contamination during sample handling 

and processing. The operational blank was defined by processing a filter paper which has 

been passed through the same process as the samples. The values of the operational blanks 

were expected to be higher than those observed in the reagents blanks, but should be 

significantly lower than the mean values of the sample digests. Table 3.5 highlights the 

mean operational blank elemental concentrations for each sample type (Jeddah and 

Plymouth) along with the average elemental concentration in the sample digest solutions. 

69 



Table 3.5 Determined operationni aerosol blank values compared with the averaĵ e trace metal concentrations observed in the sample acid digest 
extracts (expressed in \ig ml ' for IGP-AES and flame photometry / ng ml"* for ICP-MS). 

Plymouth Jeddah 

-J o 

Element 

Al 

Inslrumcnt Avcrugc Whatman 41 Filter Average concentration in ucid Average Whatman 41 Average concentration in 
blank {±s.d.) digestion (blank contribution Filter blank (±s.d.) acid digestion (blank 

Mn 

Fe 

No 

Cu 

Co 

Ni 

Zn 

Mo 

Cd 

Pb 

ICP-AES 

ICP-AES 

ICP-AES 

Flame 

ICP-MS 

ICP-MS 

ICP-MS 

ICP-MS 

ICP-MS 

ICP-MS 

ICP-MS 

ICP-MS 

0.71 (0.56) 

0.09 (0.15) 

0.14(0.16) 

1.42(1.5) 

4.1 (4.8) 

0.71 (0.98) 

9.9 (5.7) 

46 (40) 

1.2 (0.73) 

0.22 (0.09) 

3.8(4.6) 

%) 

39 (1.8) 

2.5(3.7) 

41 (0.35) 

54 (2.6) 

102 (4) 

25 (2.8) 

69(14) 

620 (7.2) 

12(9.0) 

85 (0.26) 

800(1.0) 

0.59 (0.39) 

n.d. 

0.33 (25) 

2.3 

23 (25) 

6.9(11) 

3.4 (3.7) 

33(66) 

44 (42) 

2.4 (3.3) 

0.70 (0.52) 

5.5(5.5) 

contribution %) 

119(0.5) 

2.4 (0.6) 

130(0.3) 

240(1.0) 

400 (5.8) 

910(0.8) 

111(3) 

460(7) 

1390 (3) 

16.0(15) 

8.7 (8.0) 

457 (1.2) 



In addition. Table 3.5 also highlights the typical % contribution of the operational blank to 

the digest solution concentration. Generally for all the aerosol samples collected from 

Plymouth and Jeddah the contribution of the operational blanks were <10% of the aerosol 

digest concentrations, with the exception of Ni (Plymouth) and Mo (Jeddah) which for 

both was 15%. 

3.4. Application of the sequential leach procedure to determine the trace metal solid 

state speciation in aerosol samples 

The application of a three stages sequential leach procedure is described, which has been 

adapted from that of Chester et al., (1989). These authors described a three stage sequential 

leaching scheme allowing the characterisation of sources and environmental mobility of 

aerosol associated trace metals in the marine aerosol. It was designed to establish the 

partitioning of metals between loosely-held (environmentally mobile), carbonate and oxide 

and refractory (environmentally immobile) solid phase associations. This experimental 

procedure was adopted and used in this study to determine the solid-state speciation of 

aerosol trace metals in samples collected from both the Plymouth and Jeddah sites. 

Samples were chosen based on their air mass origin. In high temperature processes metals 

can become associated with the surfaces of ambient aerosol particles by processes such as 

adsorption and condensation. These processes usually occur on small particle surfaces 

more than large particles surfaces and are represented by the exchangeable fraction. I f a 

metal is predominantly associated with this phase, then it is easy to release into solution. 

The first stage in the sequential scheme was defined by equilibration of the filter sample 

with ammonium acetate (at pH 7). The second stage of 25% of acetic acid and 0.25 M 

hydroxylamine hydrochloride was used to leach all carbonate and oxide associated metals 

into solution. The third and final stage use a combination of concentrated nitric and 

hydrofluoric acids to leach trace metal associated with organic and refractory solid 

fractions. Nitric acid is a strong oxidising agent which will oxidise the organic matter 
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whereas the concentrated hydrofluoric acid will attack the residual lattice material 

(alminuosilicate) and release the associated trace metals. The sequential leach solution 

blank contributions (expressed as a percentage of the average trace metal concentration in 

the leach solution after equilibration with aerosol loaded filter portions) amounted to (i) for 

stage 1 < 10 % for all elements with the highest value being observed for Fe (9.8%) and 

lowest for Co (0.1%) (ii) for stage 2 < 10% for all elements except for Ni (23%), Mo(17%) 

and Cd (17%) and Cu (16%) (iii) for stage 3 < 10% for all elements with the highest 

being for Ni (3.3%) and the lowest for A l and Fe (0.1%). With the lack of certified 

reference material (CRM) for this particular sequential leach procedure the alternative was 

to compare the sequential leach analysis with the literature which illustrate geochemically 

consistent trends (when compared with the literature e.g. see table 4.20). 

3.4.1 Reagents preparation 

Ammonium acetate (1.0 M): This reagent was prepared by dissolving high purity 

(99.999%) ammonium acetate in Mill i -Q water to yield a 1.0 M solution (77.08 g 

ammonium acetate in I L de-ionised water). The pH was then measured in a small aliquot 

® 

of the solution and i f the pH was not 7, it was adjusted with Aristar grade nitric acid or 

ammonium hydroxide to pH 7. 

Uydroxylamine hydrochloride + 25% acetic acid: A 69.49 g of hydroxylamine 

hydrochloride (Aristar® grade or equivalent) was dissolved in 750 mL of Mill i-Q water, 

then 250 mL of ultra high purity acetic acid was added to the solution to make the final 

volume 1 L. A l l reagents were prepared fi-esh on the day of analysis and stored in acid 

washed high density polyethylene containers. 

3.4.2 Sequential leach procedures 

Stage 1: Half a filter paper was folded and placed in a 50 mL centrifiige tube, then 15mL 

of 1.0 M ammonium acetate (pH 7) was added. Extraction was then carried out at room 
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temperature with constant agitation on a shaker for 15 min. Lastly the tubes were 

centrifiiged at 3000 rpm for 15 min. The supernatant was then pipetted out and stored in 

sterilin containers for analysis. 

Stage 2: Filter residue from stage 1 was extracted at room temperature for 6 h with 15 mL 

of 1.0 M hydroxylamine hydrochloride in 25 % acetic acid. After leaching the suspensions 

were centrifiiged for 15 min at 3000 rpm. The supernatant was then pipetted out and stored 

in a sterilin for analysis. 

Stage 3: Residue was transferred to a PTFE vessel and total digestion using HMO3 (15 mL) 

and HF (2 mL) was carried out (see section 3.3.1 for the description of total digestion). 

Standards were prepared using a matching matrix for all stages. Al , Fe and Mn were 

analysed using ICP-AES and the rest of the elements were measured in all stages using 

ICP-MS. To control and minimise contamination plastic gloves were worn at all limes and 

preparation of standards and reagent preparation took place in a class 100 laminar flow 

hood. The range of standard used for each element for each of the three stages is presented 

in Table 3.6, 

3.5 Air Mass Back Trajector>' Calculations 

To aid in aerosol source evaluation and aerosol trace metal variability air mass back 

trajectories for each sample were calculated at different atmospheric altitudes. A trajectory 

is the time integration of the path transported by an air parcel. The air parcel trajectory is 

calculated using a meteological model called HYSPLIT (NOAA Air resources Laboratory, 

FNL data set). However, trajectories can be integrated both forward and backward in time. 

Trajectories should primarily be used as a tool to help evaluate the source of the sampled 

aerosols (Stohl et al., 2002). 
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The longer the time backward or forward used to calculate the air mass trajectories, the 

larger the error becomes. Moreover, it is usefxil to calculate different pressure levels of 

trajectories (e.g 899, 845, 700 hP) as this information may help in the interpretation of 

Table 3.6. The range of standards used for the calibration in \ig mL"' (Al and Fe in 
mg mL''), for each of the sequential leach stages. 

Element Plymouth Jeddah 

Al 1-0.5-5 1-0.2-2 
2-0-5-5 2-1-15 
3-1-20 3-30-300 

Fe 1-0.5-5 1-0.2-2 
2-0.5-5 2-1-15 
3-1-20 3-30-300 

Mn 1-80-800 1-200-2000 
2-4-50 2-5-60 

3-10-200 3-40-600 
V 1-30-500 

2-6-70 
3-10-200 

Co 1-1-20 1-3-30 
2-0.5-5 2-2-20 
3-1-10 3-5-50 

Ni 1-10-200 1-30-500 
2-4-50 2-

3-10-200 3-10-200 
Zn 1-100-2000 1-200-2000 

2-10-200 2-10-150 
3-50-600 3-20-300 

Mo 1-1-20 1-3-30 
2-0.5-5 2-1-10 
3-2-30 3-1-10 

Cd 1-1-20 1-3-30 
2-0.5-5 2-1-10 
3-1-10 3-1-10 

Pb 1-30-500 1-30-500 
2-4-50 2-5-50 

3-10-200 3-10-200 

aerosol trace metal results because mixing between different air masses may occur during 

transport. In this study the model HYSPLIT (HYbrid Single-Particle Lagrangian Integrated 

Trajectory) developed by NOAA (National Oceanic and Atmospheric Administration) was 

used. Three day back trajectories were calculated at three different pressure levels (100, 

74 



500. 1000 m) or (1000. 955. 850 hPa) for each of the samples at each sites. This 

information was then used to evaluate the effect of air mass movement on aerosol trace 

metal characteristics (at all collection sites). Samples were then categorised into groupings 

(e.g. Plymouth: 1-Atlantic. 2- UK and Europe). Samples which did not stay for 50^ of the 

time in one category were defined as being "mixed". An example of a back trajectory 

diagram is presented in Figure 3.8. 

NOAAHYSPLIT MODa 
Backward trajectories ending at 03 UTC 25 Aug 03 

FNL Meteorotoacal Data 

— • ' " ^ 2500 
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J * ID 360"If J* Star Sur -er "f 3Nr 200* 
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VctealMoiior :̂ aicUafton Uctnoa Moo* Vertca VMoot, 

Fijiure 3.8. An example of a 3 da> back-trajector> arriving at Jeddah. starting 
on the 23*̂** August 2(K)3 ending on 25*** August 2003 (lines u i th triangles 
represent an altitude of 100 m at the sampling site whereas lines ui th squares 
represent an altitude of 500 m: lastl> the line with circles represent an altitude 
of 1000 mi . 
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Chapter 4 

Aerosol trace metal concentrations at a western English 

Channel urban coastal site (Plymouth) 
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4.1 Introduction 

This chapter discusses the variability in the aerosol trace metal concentrations (Al , Fe, Mn, 

Ni , Co, Cd, Pb, Zn & Na) observed at an urban western English Channel coastal site 

(Plymouth), over a fifteen month sampling period (December 2001 to April 2003). Long 

(seasonal) and short (inter- and intra- daily) term variability in the aerosol chemical 

composition will be defined. The observed variability wi l l be discussed in the context of 

the following factors; (i) aerosol source types, (ii) aerosol emission strengths, (iii) 

proximity of aerosol source, (iv) air mass transport processes and (v) removal processes. In 

addition, this Chapter will present atmospheric total and bioavailable trace elemental dry 

deposition fluxes to the western English Channel. Full details of the sampling and 

analytical methods employed have previously been discussed (sections 3.2 and 3.3). 

4.2. Background 

4.2.1. The English Channel coastal environment 

Plymouth is a city with a population of around 250,000 situated in the south west of 

England (see Figure 4.1) on the western English Channel coastline. The English Channel 

connects the North Sea to the Atlantic Ocean and is bordered by 650 km of English and 

1100 km of French coast line, covering a surface area of some 77,000 km~ (Raid et al., 

1993). The whole coastline of the English Channel is inhabited by about nine million 

people of whom about forty four percent live along the British coast (Reid et al., 1993). 

The British side of the Channel possesses a wide variety of industries which are chiefly 

concentrated around urban centres and ports such as Plymouth, Southampton, Portsmouth, 

Folkestone and Dover. Plymouth and Portsmouth each have a naval base and passenger 

ferry connections to Europe. 
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Plymouth 

Figure 4.1. Location of sampling site (Plymouth). 

The hinterland of Southampton is arguably the most industriahsed region along the 

southern England coastline with oil refineries and an oil fired power station which 

contributes significantly to atmospheric emissions (Raid et al., 1993). The majority of the 

French industry in the region is located on the Seine estuary and its hinterland, including 

Ti02 processing plants (discharging acid iron waste) and three phosphate manufacturing 

plants (discharging phosphogypsum) (Reid el al., 1993). Three nuclear power stations are 

in operation along the French coastline, moreover, a major petrochemical complex is sited 

within the industrial region of Le Harve. Table 4.1 highlights the annual direct industrial 

discharges of trace metals to the English Channel (Reid et al., 1993). 

Table 4.1. The annual direct industrial discharges (tonnes yr~) to the English 
Channel from both the British and French (Seine) coastlines. 

Region 

Britain 

France (Seine) 

Cd 

1.2-2.7 

7.4 

Cu 

47-51 

166 

Pb 

15-27 

236 

Zn 

384 

676 

78 



4.2.2 Aerosol trace metal concentrations in the English Channel 

A limited amount of research has been carried out on defining the aerosol trace metal 

concentrations in the English Channel marine atmosphere. Some of the earliest work was 

that carried out by Austin and Millward (1986) who defined As and Sb inputs to the 

English Channel and the Atlantic Ocean. In this study three sampling stations were 

established. These were; (i) at Plymouth (50°N 22.54'; 004°N 08.33' W,), (ii) on board the 

Channel Light vessel (49''N 54'; 2° 54' W), and (iii) on board an Ocean Weather ship at 

Ocean Station Lima (51° N ; 20° N). The observed concentrations at Plymouth and the 

Channel Light vessel were respectively As: 0.83 ng m""' and 1.70 ng m'-'; Sb: 0.45 ng m*-* 

and 0.80 ng m'"̂ . These concentrations were an order of magnitude higher than those 

measured at Ocean Station Lima, being As: 0.075 ng m"^ Sb: 0.086 ng m*\ which was 

suggested to be due to multiple local sources (mineralised land masses of the South West 

Peninsula). Austin and Millward (1986) also contradicted the then conventional 

perspective that riverine inputs are the dominant external source for trace metals to coastal 

waters; suggesting that atmospheric transport could dominate, particularly in the vicinity of 

large industrial and urban areas. More recently Otten et al., (1994) showed that the 

observed concentrations of atmospheric aerosol trace metals decrease moving from east to 

west (towards the South West Peninsula) through the English Channel. For instance, 

chloride concentrations (which is indicative of the maritime influence) ranged from < 600 

ng m'"' ofi" the Normandy coast up to 3560 ng m''̂  o f f Land's End. Moreover, S (non sea 

salt; indicator of anthropogenic emission) and Fe (indicator of crustal material input) 

concentrations fell from 1360 ng m"-* to 410 ng m'^ and from 48 ng m'^ to 7.3 ng m"-* 

respectively in aerosol samples collected from of f the Kent coast (high) to the Land's End 

(low), representing a decrease of more than a factor of 3. A more detailed study was 

carried out by Wells (1999) over a period in excess of one year. This study employed a 

coastal / rural site (Slaplon in South Devon) aiming to understand the factors influencing 

the geochemistry of aerosol/rain water associated trace metals, the magnitude of trace 
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metal fluxes and an assessment of the marine fate of atmospherically derived trace metals. 

Wells (1999) collected aerosol samples using a high volume air filtration system and then 

carried out a total digestion on the samples (HNO3+HF) with the analyses being carried out 

using FAAS, GFAAS and flame photometry. Ten trace metals (Al, Cd, Co, Cu, Fe, Mn, 

Na, Ni, Pb and Zn) were investigated. The following geometric mean concentrations were 

observed: Al:229, Cd:0.11, Co:0.12, Cu:2.34, Fe: 115, Mn:7.94, Na:2570, Ni: 15.1, Pb: 1.20 

and Zn:20.9 ng m'"' respectively. Wells (1999) concluded that the long range transport of 

European aerosol appeared to influence the chemical character of the western English 

Channel aerosol. Also, suspended regional terrestrially derived material had a significant 

influence on the western English Channel aerosol, pcirticularly for Ni. Aerosol trace metal 

concentrations were dependent upon the meteorological conditions; particularly the wind 

direction, aerosol source (see Table 4.2) and wet deposition (see Table 4.3). A clear 

enhancement of trace elemental concentrations (Fe, Mn, Na, Pb and Zn) were detected in 

air masses travelling from the east and presumably passing over UK and Western 

European aerosol sources (both natural and anthropogenic), compared with those 

concentrations detected in air masses derived from the west, having passed over the more 

pristine Atlantic environment. For example, the geometric mean concentrations of Fe and 

Mn were 325 and 16.1 ng m'-* respectively, being associated with the UK (and long range 

European) air sector whereas they were 219 and 13.3 ng m'"' within the Atlantic maritime 

(non-anthropogenic) air sector. Therefore, the overall mean trace metal concentrations 

observed in this region will be dependent on the influence of contrasting air masses at the 

collection site over the applied sampling period. Wet deposition flux calculations indicated 

a higher flux for all the considered trace metals, compared with the equivalent dry 

deposition flux, except for Al (Table 4.3). This clearly highlights the relatively more 

efficient removal effect of rain events compared with the continuous dry depositional 

mechanism. The A l dry depositional flux is often calculated to be higher than its wet 

depositional flux, owing to a predominant association with the larger particle size fraction 
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of the aerosol population (see section 2.4.1). The percentage contribution of dissolved trace 

metal flux to the total flux was 1.18 and 84.7 for the two contrasting sourced elements, Al 

and Pb respectively. 

Table 4.2. Geometric mean trace metals concentration (ng m'"*) detected in 
contrasting air sectors of the English Channel aerosol (Wells 1999) (significant 
inter\'als represent ± 1 s.d.). 

Wind direction Fe Mn Na Pb Zn 

(N,NE,E) 286i411 7.7±14.9 85700±28967 7.3±7.88 8±17I 

(S,SW,\V) 190±200 4.3±14.4 6670±73993 3.8±5.41 10±29.6 

Table 4.3. Wet and dry trace elemental fluxes (ng cm"̂  yr ') to the western English 
Channel sea surface. 

Element Dry deposition Wet deposition Total deposition Total dissolved 

flux flux flux flux 

Al 7830 6450 14280 167 

Co 1.45 83.8 85.3 80.2 

Cu 32.1 986 1018 946 

Ni 33.0 320 353 200 

Pb 0.86 301 302 138 

4.2.3 Meteorological characteristics of the English Channel 

The daily weather charts for the British Isles have been classified by authors such as Lamb 

(1950) and Barry and Chorley (1992). Two dominant types of weather systems have been 

defined; (1) low pressure cyclonic (C) depression and (2) high pressure anticyclonic (A). 

The airflow direction or isotropic patterns may be placed into one of five major categories: 

southerly (S), westerly (W), north westerly (NW), northerly (N) and easterly (E). On an 

annual basis, the most frequent airflow type is typically westerly (including cyclonic and 

anticylonic subtypes) with a 35% frequency between December and January and 33% 

between July and September, The frequency reaches a minimum of 15% in May when 

northerly and easterly airflow t̂ p̂es reach their maximum ( - 10% for each l>T)e). Pure 
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cyclonic patterns are most frequent (13-17%) in July and August and anticyclonic patterns 

in June and September (20%), cyclonic patterns have > 10 % frequency in all months and 

anticylonic patterns > 13 % (Barry and Chorley, 1992). 

Consequently, air masses which affect the UK can be divided into the following categories. 

The tropical continental (TrC) air mass, tropical maritime (TrM), arctic maritime (ArM), 

arctic continental (ArC), polar continental (PC), retuming polar maritime (rPM) and polar 

maritime (PM) as shown in Figure 4.2 (Barry and Chorley, 1992). The polar maritime 

(rPM and PM) air masses dominate all the months with a frequency o f 30% except during 

March (with PM having a maximum frequency of 33% and a further 10% contribution 

from rPM in July). 

4.3 The chemical composition of the Plymouth coastal and semi-urban aerosol 

4.3.1 The overall chemical characteristics of the aerosol trace metals in the Plymouth 

coastal and semi-urban aerosol. 

Table 4.4 shows the geometric and arithmetic mean, standard deviations and ranges of the 

overall aerosol trace metal concentrations A l , Fe, Mn, N i , Co, Na, Zn, Cd and Pb for the 

Plymouth atmosphere. The dataset represents samples collected from 24^ May- 20^ 

December 2002, even though the sampling campaign commenced December 2001. Initial 

aerosol samples were excluded from the overall dataset, as it was felt that temporary 

construction work in close proximity to the sampling site had impacted upon the detected 

aerosol concentrations. Further details are presented in section 4.3.5, where the temporal 

variations in the aerosol trace metal concentrations are discussed. 
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rPM PM 

Figure 4.2. Air masses influencing the British Isles (after Barr>' and Chorley, 1992). 

As is apparent from Table 4.4, the minimum and maximum aerosol trace metal 

concentrations, as well as the standard deviations, indicate a high variability in all the 

datasets. Such a high variability has been observed previously in other aerosol datasets 

describing European aerosol populations (e.g. Eastern Mediterranean; Kubilay and 

Saydam, 1995; Herut et al., 2001 Ko^ak et al., 2004; and Western Mediterranean; Chester 

etal., 1990; Chester el al., 1992). 
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Table 4,4. Geometric and arithmetic mean (+lsd) of aerosol trace metal 
concentrations (ng m'̂ ) obser\'ed at Plymouth between 24*** May and IS*"" December 
2002. 

Element 
Geometric 

mean Arithmetic mean 
Standard 
deviation Range 

Al 187 246 166 2.0-783 

Cd 0.11 0.18 0.18 0.01-1.14 

Co 0.18 0.25 0.24 0.03-1.86 

Fe 250 298 154 33-685 

Mn 6.2 8.1 6.4 1.1-36.8 

Mo 0.47 0.56 0.34 0.08-1.82 

Na 5700 15800 19000 50-64600 

Ni 2.4 4.1 6.5 0.1-53.6 

Pb 5.4 7.7 6.6 0.5-31.1 

V 2.1 3.6 3-7 n.d.-19.9 

Zn 10.0 23.3 35.4 0.42-169 

Previous studies have shown that the log normal distribution best describes aerosol datasets 

(e.g. Fones, 1996; ICo(?ak, 2001). The current aerosol datasets were tested for their log 

normality using the Kolmogorov-Smimov test. This is a non-parametric t-test for 

independent samples. However, unlike the parametric t-test for independent samples, the 

Kolmogorov-Smimov test is sensitive to differences in the general shapes of the 

distributions in the two sample populations, and hence was applied to assess the goodness 

of fit of the data to lognormal distributions. The Kolmogorov-Smimov test involves the 

whole distribution of the studied variable and compares the empirical cumulative 

distribution function to that of the hypothesized distribution. After application of the 

Kolmogorov-Smimov test, using the statistical software Minitab, the distribution of the 

aerosol trace metal concentrations were found to be lognormal within the 95% confidence 
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inten^al. Owing to the log normality of the population distribution the geometric mean 

would be the more representative mean to describe the aerosol trace metal concentration 

datasets. Therefore when comparing the aerosol data from the current study with those 

from the literature, comparisons with the geometric mean wi l l be made. The 

mmathemalical definition of the geometric mean is as follow: The n-th root of the product 

of n numbers of samples. 

4.3.2 Comparison of the aerosol trace metal concentrations with literature data 

Table 4.5 compares the concentrations of the trace metals in the urban aerosol for 

Plymouth (SW England), with those obser\'ed al Liverpool, Preston (NW England) and 

Edinburgh (Scotland), which are all UK. urban atmospheres with varying degrees of 

maritime air mass influence. Aerosol samples collected from Liverpool (n=60) were 

analysed using flame atomic absorption spectrometry and graphite ftimace atomic 

absorption spectrometry whereas those collected at Preston (n=90) were analysed using 

either flame atomic absorption spectrometry or ICP-MS (Chester el al., 2000). 

Table 4,5. concentrations (ng m""*) of aerosol associated trace metals at different UK 
urban sites. 

Element Preston* Liverpool* Edinburgh" London" Plymouth' 
(n=90) (n=60) (n=12) (n=90) 

PM,o PM2.5 
(n=354) (n=362) 

Al 365 317 187 
Co 0.68 0.42 0.18 
Fe 589 340 183 27.6 870 250 
Mn 21 8.4 2.9 0.7 12 6.2 
Ni 16 3.0 3.4 1.0 5 2.4 
Pb 45 43 14.1 13.6 5.4 
V 7.7 7.3 1.1 0.7 4 2.1 
Zn 153 36 13.3 7.5 41 10.0 

*Chester et al., 2000; "Heal el al., 2005; * cunent sujdy. 

85 



Aerosol samples collected at Edinburgh were analysed using ICP-MS, whereas aerosol 

samples collected at London were analysed by XRF and INAA (Heal et al., 2005). 

Generally, the Plymouth coastal and semi-urban aerosol concentrations for all elements 

were lower than the aerosol concentrations obser\'ed at other urban sampling locations in 

the North West (Liverpool and Preston) and London. The degree of enhancement varied 

between UK locations. For example comparison between Liverpool, Preston and the 

Plymouth coastal and semi-urban aerosols clearly highlighted concentration enhancements 

for A l and Fe (typically 2x) at Liverpool and Preston. However for V, Zn and Pb greater 

concentration enhancements were detected ranging from around 3.3x for V at Liverpool to 

13x for Zn at Preston higher than Plymouth concentration. Zinc is mainly influenced by 

anthropogenic processes such as transportation (i.e. car tyre wear; Ko^ak et al., 2004), coal 

combustion, smelting operations, incineration (Pacyna et al., 1984; Lee et al., 1994) and as 

a result of the North West of England being an industrial area, Liverpool and Preston are 

likely to have local sources of Zn emissions, leading to their elevated Zn concentrations. V 

and Ni are tracers for oil combustion (Niragu, 1979; Lee et al., 1994; Siefert et al., 1999) 

and again the elevated concentrations observed in the north-west would be a result of 

regional sources. Therefore it is likely that for the enhanced elements local and regional 

source influence the North Western aerosol population (Chester et al., 2000), leading to 

both higher variability and background aerosol trace metal concentrations. Regional and 

local sources are likely to include; (1) emission from the industrial activities from the 

South Wirral peninsula, (2) enhanced aerosol trace metals derived from the burning of 

fossil fuel for transport and heating, and (3) relatively closer proximity to regional 

anthropogenic sources in the NE, E (Teeside), SE (Midlands). 

However, in contrast, with the exception to the mineralised catchment in the vicinity of the 

city (Austin and Millward 1986), the Plymouth coastal and semi-urban aerosol population 
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has no major industrial regions in its proximity, and is more likely to be influenced by long 

range transported anthropogenically derived material from the UK and Western Europe. In 

addition "dilution" by more pristine maritime air masses from the west and south-west 

would also lead to lower obser\'ed trace elemental concentrations. 

It is interesting to note that Pb concentrations are generally much lower in Plymouth than 

any of the other sites (up to 7.5 and 7.8x higher at Liverpool / Preston respectively). This 

difference is likely to be due to the fact that the sampling at the two main comparative 

urban sites (Liverpool and Preston) were carried out in the early nineties of the 20̂ ^ 

century, whereas al Plymouth sampling commenced at the end of 2001. 

Leaded gasoline was banned from use in the UK in 2000 (Spokes et al., 2001) and 

concentrations of aerosol Pb are clearly diminishing as a consequence. Diminished aerosol 

Pb concentrations have been noted in the literature over the last decade. For example, 

Hassanien et al., (2001) indicated that urban Pb concentrations in Cairo have decreased by 

40% between 1994 and 1997. Furthermore, it is apparent that diminished aerosol Pb 

concentrations have been observed in European coastal atmospheres: Ligurian Sea, 25-

30% and North Sea, 50%, decrease respectively (Migon and Nicolas 1998; Ridame et al., 

1999; Flament et al., 2002; Lammel et al., 2002). 

Table 4.6 ftirther compares the Plymouth coastal and semi-urban aerosol trace elemental 

concentrations with those observed at Western European coastal sampling sites. It is clear 

that the Plymouth aerosol concentrations are generally comparable with those obser\'ed in 

coastal non-urban locations (Chester et al., 1990; Chester and Bradshw, 1991; Yaaqub et 

al., 1991; Fones, 1996; Chester et al., 2000) which could further indicate that the Plymouth 

background urban atmosphere, as regards trace elements, is perturbed by local anthropic 

activities significantly less than other urban UK and European atmospheres. Nickel, 

however, exhibits a contradictory behaviour, being significantly lower at the urban 
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Plymouth site compared with that reported by Wells (1999) for a rural site to the east of 

Plymouth. The higher Ni concentrations obser\'ed by Wells (1999) was attributed to Ni 

rich natural material derived west of the sampling station at the Lizard peninsular, 

Cornwall, an area rich in the mineral serpentine. However i f this was the case one would 

also have expected to observe a similar enrichment in the Plymouth atmosphere. One 

possible explanation for the discrepancy is that the air masses which influenced the 

Plymouth site during the sampling period compared with those influencing the sampling 

site of Wells (1999), might have taken different westerly trajectories. The significant 

impact on trace elemental aerosol concentrations of air mass origin wil l be discussed 

further in section 4.3.6. 

Table 4.6. Comparison of trace elemental aerosol geometric concentrations (ng m'*̂ ) in 
coastal European atmospheres. 

Element Plymouth^ Western Irish North Irish Western 
English Sea ^ Sea ^ Sea ^ Mediterranean^ 

Channel ^ 
Al 187 229 210 219 264 370 
Co 0.18 0.12 0.14 0.19 
Fe 250 115 159 230 226 320 
Mn 6.2 7.94 4.42 9.1 11 
Mo 0.48 . . . . 
Na 5609 2570 1140 -
Ni 2.4 15.1 3.7 2.5 6.5 2.8 
Pb 5.4 1.2 15.1 20 31 58 
V 2.1 . . . . 
Zn 10.0 20.9 25.3 26 15 41 

'Current study; Veils (1999); 'Fones (1996); ̂ Chester and Bradshaw (1991); 

'Murphy, (1985); Chester et al., (1990) 
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4.3.3. Evaluation of the Plymouth aerosol trace metal sources; Application of the 

crustal enrichment factor (EFcnist) 

Calculation of the EFcmst has been used previously to help define aerosol elemental sources 

(Chester et al., 2000). For a crustal source, A l is normally used as the source indicator 

element and the earth's crust as the source material. The EFcmst value is then calculated 

according to the equation: 

EFcmst = (CXP/CA,P)/(CXC/CAIC) (4.1) 

Where (Cxp and CAIP) are the concentrations of a trace metal x and A l , respectively, in the 

aerosol, and (Cxc and CAIC) are their comparable concentrations in ^'average" crustal 

material. By convention, an arbitrary average EFcmsi value of <10 is an indication that an 

element in an aerosol population has a predominantly crustal source and would be referred 

to as a "non-enriched" element. In contrast, EFcmsi > 10 indicates that a significant 

proportion of an element has a non-crustal source and is referred to as an "enriched" 

element (Chester 2000). Although enrichment factors are a useful method of rationalising 

the data, they should be interpreted cautiously as they do not take into account regional 

variations in the mineralogy of the crustal precursor material. Guieu and Thomas (1996) 

recently used different selected soil samples from the origin of the air masses to ensure that 

the calculated EFcmst values were more representative by taking into account the regional 

geological characteristics. However, the current study has applied the average 

concentration of metals in the crust (their ratios lo Al) from Taylor (1964) as these data are 

widely used by other researchers. This pattern is derived principally from the hypothetical 

mixing of basic and acidic igneous rock patterns, from which elemental abundances in the 

continental crust can be calculated on the basis of a 1:1 mixture of granite and basalt 

abundances. Wedepohl (1995) has also proposed a modified Al/elemental ratio. More 
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details and discussion o f the application and the limitations o f the elemental source crustal 

enrichment factor have already been presented in section 2.4.3. 

Table 4.7 presents the crustal enrichment factor for elements determined in this study. 

From the values (average) o f EFcmsi one can categorise the elements into two groups (i.e. 

"enriched" and "non-enriched" elements; see discussion above) according to their potential 

sources. Cd, Pb Zn and N i , are likely to have predominately anthropogenic sources as their 

average EFca.si are >10. They decrease in the order o f Cd (227) > Pb (187) > Zn (65) > N i 

(14). In contrast Fe, M n , V and Co all have EFcmsi < I 0 and hence are categorised as "non-

enriched" elements and have a progressively greater crustal source influence (in the order 

V < Co < M n < Fe). M o and Na have relatively high EFcrusi values (115 and 135 

respectively) and hence have a predominantly non-enriched source, but have been shown 

to be present in the aerosol as a result o f sea sail generation (Chester et al., 1984; Chester, 

2000). 

Table 4.7. EFcrust for the Plymouth coastal and semi-urban aerosol (in samples 
collected between 24**̂  May and 18*̂  December 2002). 

Geometric Arithmetic Standard Range 
Element Mean Mean Deviation 

Cd 227 311 241 21-1022 

Co 3.08 4.23 4.45 0.8-23.4 

Fe 1.87 2.09 1.02 0.20-5.24 

Mn 2.77 3.19 1.92 0.60-12.6 

Mo 134 162 104 17-556 

Na 98.2 293 2780 0.4-2780 

Ni 14.2 28.0 37.9 0.1-208 

Pb 187 229 161 23-1003 

V 6.74 14 18.6 0.02-121 

Zn 64.9 199 415 5.0-2665 

Table 4.8 highlights a comparison o f the EFcmsi for current study site (Plymouth) and those 

observed at other sites f rom Western European atmospheres. Generally, the EFcmst's for 
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Pl>Tnoulh are comparable with the western European data and hence the same general 

elemental categorisations applied to the Plymouth aerosol are consistent. Nickel , however 

has a lower value compared wi th that o f Wells (1999) whose sampling site was located in a 

rural site to the east o f the Plymouth site (for fiirther details see section 4.3.1). 

Table 4.8. Comparison of EFcrust values from the current study with values from 
Western Europe coastal atmospheres. 

Element North English Cap Blanes^ Tour du NE Irish English Plymouth 
Sea' Channel" Ferrai^ Valei^ Sea*" Channel' (40-195) 

Al I.O 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
Cd - - - - - - 214 230 
Co - - - - - - 2.09 3.1 
Fe 1.75 1.3 1.3 1.2 1.1 2.0 0.79 1.9 
Mn 4.2 - 2.6 2.2 2.9 3.2 3.02 2.5 
Mo - - - - - - 135 
Na - - - - - - 43.7 115 
Ni - - 8.4 15.5 6.7 28.5 77.6 14.7 
Pb 781 683 1054 838 982 775 39.8 187 
V - - - - - - 6.8 

Zn 164 215 130 150 186 281 107 61.6 

' Chester and Bradshaw (1991); "Flament et al. (1987); ^Chester el al. (1990); 'Chester et al. (1992); 
^Guieu et al. (1997); '̂ Chester et al. (2000); 'Wells (1999); "Current study. 

4.3.4 The percentage of crustal source contribution of trace metals to the Plymouth 

aerosol 

The percentage o f crustal source contribution is another approach which has been applied 

to estimate the importance o f crustal/non-crustal contributions to the aerosol (Arimoto et 

al., 2003; ICo^ak et al., 2005; Ko^ak et al., 2006). The crustal contribution percentage o f an 

element in an aerosol population is calculated according to the equation: 

% o f the crustal contribution = [{(CAIP)*(CXC/CAIC)} /(Cxp) ] * 100 (4.2) 

where (Cxp and CAIP) are the concentrations o f a trace metal x and A l , respectively, in the 

individual aerosol samples, and (Cxc and CAIC) are their comparable concentrations in 

average crustal material (Taylor, 1964). 

The % crustal contribution calculations presented above used the same ratio o f element to 

A l in the crust as that used for the EFcrusi calculations, taken f rom the Taylor (1964) , 
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therefore, as has been slated previously that the Enrichment Factor (EF) has its flaws. The 

% crustal contribution suffers f rom the same drawback as that associated with the 

calculation o f the EF. This calculation was carried out for all measured elements within 

each sample and the statistical summaries are highlighted on Table 4.9. It was apparent that 

for a number o f samples for the elements Fe (n=5) and M n (n=3), the calculated crustal 

contributions were higher than 100%. This would arise from the applied elemental ratio to 

A l not being completely representative o f the elemental ratio in the local crust, i.e. the 

elemental/Al ratio being lower than the global average. In such cases the crustal 

contribution was assumed to be 100 %. From Table 4.9 it is apparent that percentage 

crustal contribution for elements follows broadly the order o f their EFcrusi values. Fe, M n , 

Co, V and N i have the highest calculated crustal contributions with an average o f 57, 41 , 

38, 22 and 12 % respectively. The rest o f the elements have percentages <5%, i.e. for these 

elements the non-crustal sources represents > 95% o f the total contributions. 

Table 4.9. Statistical summary of the calculated percentage crustal contribution to 
elements in the Plymouth coastal and semi-urban aerosol (for samples collected 
between 24*̂  May and IS*** December 2002, i.e. samples 41-195), 

Element Geometric Arithmetic Standard Range 

Mean Mean Deviation 

Cd <1 1 <1 <l-4.9 

Co 28 38 22 <1-100 

Fe 52 57 23 19-100 

Mn 36 41 21 8-100 

Mo <l I <1 <l-6 

Na <l 4 14 <!-100 

Ni 6 12 IS <1-100 

Pb <] 1 <1 <M.3 

V 13 22 24 <1-100 

Zn 2 4 4.2 <l-20 

Elements having EFcmsi values <10 have a greater crustal contribution than those elements 

with EFcnjsi value > 10. However, the cut o f f point between predominately crustal and non-

crustal sources contributions which has traditionally been adopted in the past (i.e. EFcmsF 

10, e.g. Chester, 2000) is misleading as it is clear from the calculated crustal contributions 

92 



(Table 4.9) some elements which have EFcrusi < 10, ( M n , Co, V and N i ) also have 

predominately non-cnistal sources and not, as implied by the historic use o f the EFcmsi, 

non-crustal sources. To serve as an exaimple. Figure 4.3 highlights the relationship between 

the % crustal contribution and the enrichment factor for two elements ( M n and Co). It is 

clear that for the 10 cut o f f (EFcmst) represents a 10% crustal contribution to M n and Co. 

Therefore the manner in which the EFcmst has been used universally in the atmospheric 

science literature is misleading. EFcrust values < 2 would represent the transition between 

predominantly non-crustal contributions (> 50 % ) to predominantly crustal contributions, 

and hence is a more logical value to use. 
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Figure 4.3. % Crustal contribution against EFcrust (a) Mn and (b) Co. 
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4.3.5 Temporal variabilit>' in the trace metal composition of the Plymouth coastal and 

semi-urban aerosol population 

Temporal variations (including both seasonal and daily) in aerosol trace metal 

concentrations have been well studied by many authors (e.g. Kubi lay and Saydam 1995; 

Kubilay et al., 1997; Kubilay et al., 2000; Wang and Shooter 2002; Kopak et al., 2004). 

For example seasonal differences have been discussed by Kopak et al. (2004) who reported 

that the crustally derived elements ( A l , Fe, and M n ) , at an Eastern Mediterranean site, 

exhibit trends in their concentrations in the fo l lowing order: transitional (March-May, 

October) period > summer (June-September) > winter (November-February), owing to the 

greater frequency and intensity o f Saharan dust events. In contrast, in the winter, due to the 

higher rainfall compared wi th the summer, scavenging o f the aerosol associated trace 

metals is more prevalent and hence lowers the aerosol concentrations compared wi th those 

observed in the summer. 

Diurnal variation o f chemical components (nss (non sea salt)-K, nss-CI', nss-Câ "*̂ , nss-

S04'", NOs" and NFLj"^) o f atmospheric aerosols have also been reported, for example, by 

Wang and Shooter (2002) which was explained by the intensive coal and wood burning for 

home-heating, the sheltered geographic location and the relatively calm atmospheric 

conditions. Observed temporal variations generally relate to the emission strength o f inputs 

from local, regional and distant natural and anthropogenic sources along with 

meteorological conditions (such as wind speed, wind direction, rainfall and relative 

humidity) and the effects o f removal processes during transport. 

The current section w i l l investigate, define and explain the temporal variability in the 

Plymouth coastal and semi-urban aerosol trace metal concentrations (i) over the whole 

sampling period (which includes samples 1-195, covering the sampling period between 

10"̂  December 2001 - 18̂ ^ December 2002) ( i i ) between night and day collected samples 
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(which includes samples numbers 41-101, covering the sampling period 24^^ May - 29̂ *̂  

July 2002). 

Initial consideration o f the aerosol trace metal concentrations over the whole sampling 

period clearly indicated comparatively elevated concentrations o f all the trace metals in the 

early period o f sampling (i.e. sample numbers 1-40, covering the sampling period between 

10'^ December 2001-9'^ May 2002). This is illustrated by Table 4.10, which presents all 

the statistical information on the aerosol characteristics during and after this initial 

sampling period. It is apparent that the enhancement o f the aerosol trace metal 

concentrations was typically 2-3x (e.g. for A l the geometric means were 603 ng m"'' and 

187 ng m""' respectively for the two sampling periods). To evaluate the statistical 

significance between the two populations the Mann-W^itney test (the equivalent non-

parametric t-test) at the 95% confidence limits was applied, owing to the log-normal 

distribution characteristics o f the two populations (see section 4.3). From this, statistical 

differences were detected for all elements between the two defined sampling periods. 

Comparison o f the elevated concentrations with those encountered at the other U K urban 

environments (Table 4.11) also clearly indicates that the detected values during the initial 

sampling period were unusually high for an urban U K environment. It is likely that local 

construction work around the University campus close to the sampling site was the 

predominant cause. The main construction work was carried out during the collection o f 

the samples 1-40 and would have included, for example, the use o f natural materials, 

welding activities etc. as well as extensive vehicle traffic. Further comparison o f trace 

metal geometric night and day time collected samples during this period (Table 4.12) 

generally highlighted elevated daytime trace metal concentrations, providing further 

evidence o f the local source influence rather than meteorological conditions (i.e. rainfall 

and air mass transport). Meteorological conditions are likely to vary during both the night 

and day sampling periods. The concentration enhancement factor was highest for A l and 

M n , being between 3 and 4 (Table 4.12), whereas, for Cd and Pb, there were lower and 
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close to unity (0.8 and 1.01 respectively). This behaviour is l ikely to be due to the different 

size fractions association o f the elements produced from the local activities, with those 

associated with the largest particle size fractions (i.e. natural materia!) being deposited the 

quickest after daily work had ceased and hence exhibiting a clearer diurnal variation. 

Whereas, elements associated wi th smaller particle size fraction (Pb and Cd) would stay 

longer in the air therefore would not exhibit a distinct diurnal variations compared to those 

exhibited by elements associated with the larger particle size fraction. 

Table 4.10. Aerosol trace metal concentrations (expressed as ng m'^) in the Plymouth 
coastal and semi-urban aerosol collection bet>veen (i) 10*'' December 2001 - 9*** May 
2002 and (ii) 24**' May -18**" December 2002. 

Sampling period (i) Sampling period (ii) 

Element 

Al 

Cd 

Co 

Fe 

Mn 

Mo 

Na 

Ni 

Pb 

V 

Zn 

Arithmetic 

mean 

992±1127 

0.52±0.74 

29.1±101 

957±858 

27.6±37.8 

19.6±86.9 

4.2±6.7 

23.8±28.9 

4.9i4.7 

76±122 

Geometric 

Mean 

603 

0.3 

2.9 

651 

16 

1.4 

105200±203900 27500 

1.8 

15.6 

3.2 

36 

Arithmetic 

mean 

313±508 

0.19±0.21 

0.3±0.4 

355±396 

9.8±15.1 

4.1±33.7 

Geometric Enhancement 

mean factor 

4.56±7.3 

8.4±7.8 

4.1 ±4.5 

56± 146.4 

187 

0.11 

0.19 

250 

6.2 

0.48 

2.4 

5.4 

2.1 

10 

3.2 

2.7 

15.3 

2.6 

2.6 

2.9 

29400±93000 (5609) 4.9 

0.8 

2.9 

1.6 

3.6 
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Table 4.11. Comparison of aerosol associated trace element concentrations 
(geometric mean, ng m'̂ ) at Plymouth (samples 1-40), with those obser\'ed at 
Liverpool and Preston. 

Element Plymouth' Liverpool" Preston' 

Al 603 317 365 

Co 2.9 0.42 0.68 
Fe 651 340 589 
Mn 16 8.4 21 
Ni 1.8 3.0 16 

Pb 15.6 43 45 
V 3.2 7.3 7.7 
Zn 36 36 153 

Current study;' Chester et al., 2000. 

Table 4.12. The geometric mean concentration (ng m' ) of trace metals in the 
Plymouth coastal and semi-urban environment during day and night-time 

May 200 

Samples 1-40 

sampling (sample 1-40); 10**' December 01 - 9'*" May 2002 

Element 

Day Night Ratio of Day/Night 

concentrations 

Al 1091 280 3.9 

Cd 0.28 0.35 0.8 

Co 3.24 2.47 1.3 

Fe 872 463 1.9 

Mn 23 7.26 3.2 

Mo 1.36 1.45 0.94 

Na 14,300 58,800 0.24 

Ni 2.37 1.19 1.99 

Pb 15.7 15.5 1.01 

V 3.47 2.80 1.2 

Zn 41.2 30.3 1.4 

Owing to the likely local contamination o f the init ial ly collected samples, to ensure 

subsequent accurate environmental interpretations, it was decided to omit the initial 40 

samples f rom the datasei used for environmental interpretation. 
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Figures 4.4-4.6 illustrate the temporal variation o f all detected aerosol trace metal 

concentrations in the collected samples numbers 41-195 (24̂ *̂  May-18^ December 2002). 

These Figures represent the variation in concentration against day o f sampling (with day 1 

on the X-axis representing the first day o f the sampling campaign). For the period day 140 

- 220, day and night time samples were collected. From Figures 4.4-4.6 (and Table 4.13) it 

is apparent that for all elements there are substantial variations, with typical RSDs, being > 

100%. As discussed in section 4.3.1, this is characteristic o f atmospheric chemical datasets, 

exhibiting very dynamic changes in concentrations ranging up to several orders o f 

magnitude for some elements at certain sites (Guerzoni et al., 1997; Jickells 1995; ICo^ak 

et al., 2004 and Lee et al., 1994). 

As was apparent wi th local construction work (Table 4.12), the influence o f local sources 

might be characterised by diurnal differences in aerosol trace metal concentrations. This 

was investigated by comparison o f the trace metal aerosol datasets during night-time and 

day-time sampling for the three month sampling period post sample number 40 (i.e. 

between 24"^ May- 18'^ December 2002). Figures 4.4-4.6 also highlight the diumal 

variations in trace metal concentrations and a statistical summary is presented in Table 

4.13. There is no statistical difference between the datasets derived fi*om day / night 

sampling for any o f the trace metals (Mann-Whitney; 95% confidence level). This 

indicates that local immediate sources are not predominantly impacting upon the general 

variability o f the aerosol trace metal dalaset. In addition, seasonal variability was 

investigated by separating the trace metal aerosol concentrations observed into two broad 

seasonal categories; (i) Summer (May to September, 2002), and (i i) Winter (December -

March 2001; October to December 2002). 
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Table 4.13. The geometric mean aerosol trace metal concentrations (ng m'̂ ) in the 
Plymouth coastal and semi-urban aerosol population (n=91) between 24*'' May- IS'*" 
December 2002. 

Element Samples 40-101 

Day Night Day/Night 

Al 187 214 0.87 

Cd 0.07 0.09 0.78 

Co 0.18 0.16 1.1 

Fe 242 268 0-90 

Mn 5.64 4.58 1.2 

Mo 0.42 0.55 0.76 

Na 2190 2760 0.79 

Ni 2.66 2.38 1.1 

Pb 4.3 5.1 0.84 

V 1.87 1.35 1.4 

Zn 37.1 29.9 1.2 

The statistical description o f these two populations is exhibited in Table 4.14. Applying the 

Mann-Whitney test shows that some elements had a statistically significant difference 

(95% confidence) between the two seasons. These were Na, Cd, Co, Mo and Zn, with 

winter : summer ratios o f geometric means being 10, 2.2, 1.7, 1.5 and 0.22 respectively. To 

investigate the correlation between Na and M o a Pearson statistical test was applied with a 

95% confidence l imi t and there was a statistically significant correlation. Na w i l l 

predominantly associate wi th sea salts, the entrainment o f which in the atmosphere is 

controlled by wind speed across the sea surface wi th onshore winds. 
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Table 4.14. Seasonal variability of aerosol trace metal concentrations (ng m") at Plymouth. 

o 

Element Winlcr Summer 

Geometric Arithmetic Standard Range Geometric Arithmetic Standard Range 

Mean Mean Deviation Mean Mean Deviation 

Al 124 218 207 2.03-764 202 251 158 29.5-738 

Cd 0.21 0.27 0.169 0.05-0.56 0.1 0.16 0.18 0.01-1.14 

Co 0.30 0.38 0.257 0.08-0.94 0.17 0.22 0.23 0.03-1.86 

re 217 266 163 46.6-641 257 304 153 32.5-685 

Mn 6.70 9.48 9.43 1.14-36.8 5.5 7.8 5.7 0.003-30.3 

Mo 0.68 0.81 0.506 0.197-1.82 0.44 0.51 0.28 0.08-1.46 

Na 45000 75140 100243 1531-412000 4270 10900 14400 57.3-64500 

Ni 1.88 2.27 1.38 0.49-4.63 2.57 4.46 7.09 0.07-53.6 

Pb 7.55 10.3 7.34 0.99-26 5.10 7.15 6.32 0.49-31.1 

V 2.50 3.22 2.20 0.40-8.57 2.0 3.7 3.93 0.01-19.9 

Zn 2.75 3.79 2.54 0.46-8.32 12.6 26.1 38.2 0.81-223 



In winter the onshore wind speeds are higher than those o f other seasons which explains 

the higher concentration o f Na in winter. Figures 4.7 highlights the relationship o f Na 

concentrations in samples collected during onshore winds in the winter wi th their speed. 

Clearly there is an increase in concentration wi th increasing wind speed, highlighting the 

impact o f wind speed on seasalt generation. This effect has also been observed by e.g. Wai 

and Tanner 2004 and Nair et al., 2005). 
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Figure 4.7. Na concentration (ng m"'̂ ) vs wind speed (m s'*) for onshore wind during 

the winter (r^=0.5; P=0.038; n=17). 

4.3.6 Trace metal aerosol chemical composit ion in contrast ing a i r masses inf luencing 

the Plymouth atmosphere 

The influence o f contrasting air masses arriving at a sampling site on aerosol associated 

trace concentrations has been studied previously (see for example Ko^ak el al., 2005, 

Spokes et al., 2001 and Chester et al., 2000; Wells, 1999 and Fones 1996 also see sections 

2.3 and 2.4.2). For the current study it was decided to apply to each collected sample a 

simple air mass categorisation, i.e. air masses which have travelled over ( i) the North 

Atlantic and ( i i ) the U K mainland and'Europe (including both Western and Eastern 

Europe); see Figure 4.8. Similar classifications have previously been adopted by Yaaqub 
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1991, Chester et al., 1999, Chester el al., 2000, Spokes el al., 2001 and Arimoto el al., 

2003. From the Meteorological off ice off ic ia l site the prevailing wind direction influencing 

the Plymouth atmosphere over the ten year period 1991-2001 is derived f rom the south 

west (see Figure 4.9). Using these data the ratio o f influencing wind direction from the 

North Atlantic compared with the U K mainland and Europe was 1.4. To aid sample 

categorisation back trajectories were calculated for each o f the collected aerosol samples 

(see section 3.5 for more details). 

* ^ 

2-UK+Europe / 

1-Atlantic \f 

Figure 4.8. Wind sectors of Atlantic (1) and Europe and U K (2). 

The classification criteria o f any particular back trajectory was thai it had to reside in that 

air mass sector al all three considered pressure levels (100, 500 and 1456 m; 1001, 955 and 

850 hPa) for >50% o f its travel time (over a 72 hour trajectory period) this in conjunction 

with the literature (e.g. Kogak et. al., 2004). 

Examples o f back trajectories representing both o f the two air mass sectors are presented 

on Figures 4.10 (a) (European and U K ) and 4.10 (b) (Atlantic) . Table 4.15 summaries the 

statistical characteristics o f the aerosol concentrations o f trace elements for the two 

different air mass sectors. Considering Table 4.15 it is apparent that the majority o f the 
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considered elemenlal concentrations are enhanced in air masses associated with the UK 

and European air mass sector v\ ith the exception of Zn. Ni and V. 

1—20% 
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K N O T S 
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0 0% VARIABU 

SEASON: ANNUAL 
Period of data: Jan 1991 - Dec 2000 

Figure 4.9. Wind rose for the period 1991-2(KM> at Plymouth (50 m above mean sea 
le>el). http://M wv\.met(»n"ici'.c<)rn/climate/l Kyi(»cati<)n/s(mthwestengland/wind.html 

The non-parametric Mann-Whitney test was applied to the datasets (Atlantic and 

UK+European samples) at the 959f confidence limit to verify w hether the differences were 

sialisticaJly significant between the two populations for each element. Statistical 

differences were found for A l , Fe. Mn, Cd. Mo and Pb whereas Na, V, Co. Ni and Zn 

showed no significant differences. 
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Figure 4.10. (a) European and I K air mass (sample 117) and (bi Atlantic air mass 
' sample 1141. 
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Tabic 4.15. Aerosol associated trace elements concentrations (ng m "*), range and standard deviation in the contrasting air masses reaching the 
sampling site at (Plymouth). 

o 

Element 
Allanlic Wind Source (n=41,44.5%) 

Standard 
Europe+UK Wind Source (n=39,42.3%) 

Geometric Range deviation li I'cnisl Geometric Range Standard E F Ratio of 

Mean 
Range li I'cnisl 

Mean 
Range 

deviation Gconiciric 
mean 

UK+Europc/ 
Geometric 

mean Atlantic 
AI 123 2.0-361 88 - 216 29.5-783 176 - 1.8 
Cd 0.08. 0.02-0.39 0.1 245 0.15 0.01-1.14 0.23 272 1.9 
Co 0.16 0.1-0.60 0.1 4.2 0.18 0.03-0.75 0.16 2.6 1.1 
Fe 190 39.0-641 128 2.1 286 32.5-685 156 1.9 1.5 
Mn 4.30 1.1-15.5 3.3 2.7 7.7 1.58-36.8 8.24 3.0 1.8 
Mo 0.46 0.1-322 51.4 166 0.62 0.12-1.82 0.43 153 1.3 
Na 6670 351-778400 137700 157 8700 101-64600 21620 114 1.3 
Ni 2.51 0.17-18 4.4 1.6 2.7 0.82-7.2 1.5 13.6 1.1 
Pb 3.8 1.0-11.7 3.1 191 7.3 0.49-31.1 8.0 220 1.9 
V 2.5 0.23-25.0 5.3 9.1 2.1 0.01-12.6 3.52 5.2 0.8 
Zn 10.9 0.42-223 56 126 8.0 0.66-151 25.0 50.1 0.7 



Table 4.16 highlights the comparison of aerosol trace metal concentrations associated with 

similar air mass types with values from the literature relating to sampling stations within 

the UK. Three sites were considered in the comparison; (i) Mace Head, Ireland (Spokes et 

al., 2001), (ii) North West England (Chester et al 2000), (iii) East Anglia (Yaaqub et al. 

1991), although for the latter only European air mass types were defined. 

Enhanced concentrations of the cruslally derived elements A l , Fe and Mn were detected in 

UK+European air mass types at both Mace Head and the North West as was the case at 

Plymouth. This is to be expected as UK+European air masses wil l be loaded with crustal 

material both locally generated and transported from distant sources both within the UK 

and from continental Europe, whereas aerosol populations associated with the Atlantic air 

mass types will have lost a significant proportion of their aerosol material via removal 

processes during transport. 

Interestingly, the relative enhancement in the UK+European air mass type (relative 

enhancement = concentration in UK+European air mass / concentration in Atlantic air 

mass) was greater at Mace Head (Al=5.2 and Mn=6.4) compared with those observed at 

Plymouth (Al=i .8; Fe=1.5; Mn=1.9) and the North West site (Al=1.3; Fe=1.9; Mn=2.6). 

This is probably due to their more easterly locations, with the defined "Atlantic" air masses 

arriving at both Plymouth and the North West containing a contribution of cruslal material 

transported for westerly located terrestrial areas (Plymouth - Lands End and Ireland; North 

West - Ireland). Thus the sampled Atlantic air masses at Mace Head wil l be the most 

representative of the Atlantic marine aerosol. 
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Table 4.16. Comparison of air mass trace metal concentrations (ng m"') for the current study with denned air mass trace metal 

concentrations from other studies. 

Element Atlantic" Europe + UK" W-Europe+UK** W.Europe** Atlantic' E u r o p e + U K ' Atlantic*^ Europe + UK*" 

Al 123 216 186 249 6.69 35.1 

Cd 0.08 0.15 1.2 1.3 

Co 0.16 0.18 0.12 0.26 

Fc 190 286 269 351 132 250 

Mn 4.30 7.7 14.3 20 2.9 7.6 0.66 4.45 

Mo 0.46 0.62 

Na 6670 8700 

Ni 2.51 2.7 3.7 5.45 

Pb 3.8 7.3 47 62 12 23.5 1.45 19.1 

V 2.5 2.1 2.1 4.35 

Zn 10.9 8.0 58.5 84 18 45.5 3.99 36.6 

"current study ; ''Yaaqub ct al., (1991); 'Chester et al., (2000); *^Spokcs et al., (2001). 



Pb also exhibited enhancement in the UK+European air mass types compared with the 

Atlantic air masses at Plymouth, Mace Head and the North West. Again this enhancement, 

as for the crustally derived trace elements, is attributed to sources being located in the UK, 

east of the sampling sites, and longer range transported anthropogenically emitted material 

from continental Europe. The relative enhancement was lowest at Plymouth (1.9) and the 

highest was observed at the North West site (13). A lower average Pb concentration was 

found at Plymouth for the UK+European air mass type compared with the other locations. 

This is likely to be due to the Plymouth sample dataset being more recent compared with 

those at Mace Head (Spokes et al. 2001) and North West (Chester et al. 2000). As has 

already been stated, more recent aerosol data wil l reflect the diminishing Pb anthropic 

emissions within continental Europe (see section 2.3). 

Of the other elements for which there is comparative literature data, V exhibits contrasting 

air mass sector behaviour. At Plymouth there is no statistical difference between the V 

concentrations whereas at the North West an enhancement of about 2x is apparent, which 

might indicate local sources. 

A l Plymouth, zinc was enhanced in the Atlantic air mass category compared with that in 

the UK category, but was not statistically different at the 95% confidence level. A high 

variation in the Atlantic air mass population was observed for zinc, as a result of a number 

of high concentration events, accounting for the lack of statistical difference (95% 

confidence) between the two populations. It is unlikely that these high zinc episodes are 

marine derived, and therefore are probably due to the re-suspension of material from 

disused and abandoned mine wastes from historical mining activities in the South West. 

Zinc is widely found in such wastes, being present in the mineral spheralite. In addition in 

the Plymouth atmosphere, compared with the other UK locations, the UK+European air 

mass is comparatively lower. This might be due to the fact that the UK+European air 

masses arriving from Europe at Mace Head and the North West take a different path from 
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those arriving al Plymouth, with those arriving at Mace Head / North West having passed 

through more industrialised locations. Ni concentrations are not statistically different (95% 

confidence) in the two sectors which indicates a local influence. 

4.3.7 Aerosol trace metal EFcmst for different wind sectors 

In an attempt to establish the dominant source in the different wind sectors the 

investigation of the proportion of crustal (NEE) and non-crustal (AEE) material as a source 

for a certain trace metals, crustal enrichment factors (EFcmst) have been calculated for the 

different elements in the different wind sectors (Table 4.17). For the two different wind 

sectors a prominent variation in EFcmsi occurs for Cd, Na, Zn and Ni . This obserx^ation is 

consistent with the concentrations of those elements. Cd has dominant intense 

anthropogenic sources in the UK+European wind sector. Zn and Ni may be affected by 

local sources with enhanced EFcmst for the Atlantic air mass sectors. As mentioned 

previously this might be due to historic mine waste located in the region being a source for 

Zn whereas the main source for Ni is from the Lizard peninsula (Wells 1999) to the west of 

Plymouth. 

Table 4.17. EFcrust for the Atlantic and European and UK aerosol populations 
influencing the Plymouth atmosphere. 

Element Atlantic wind source UK+Europe wind source 
(n =67) (n =40) 

Cd 205 727 
Co 4.45 10.3 
Fe 2.00 1.68 
Mn 2.54 3.01 
Mo 155 133 
Na 135 4.40 
Ni 12.7 6.13 
Pb 165 133 
V 6.81 6.04 
Zn 130 52.9 
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4.4 Inter-elemental relationships in the Plymouth aerosol 

Atmospheric sciences uses correlation coefficients matrices (e.g. Huang et al., 1999; 

Huang et al., 2001; Lim et al., 2006; Xie and Berkowitz 2006) to define patterns of 

relationship between several variables (e.g. sources) in large and complex datasets. Here 

Pearson's correlation test has been used (using the statistical package Minitab) to 

investigate relationships between elements. In aerosol data sets, high correlation 

coefficients between two aerosol species may be due to one or more of the following 

common processes; (a) similar sources (b) similar generation and/or removal mechanisms 

and/or (c) similar transport patterns. The statistical significance of the correlation 

coefficient depends on the number of samples in the population and the confidence level 

imposed. For the current sUidy the number of samples (n=91) was such that a correlation 

of > 0.185 would suggest a statistical significance at the 95% confidence level (i.e. 

p<0.05), whereas a correlation coefficient of > 0.361 would suggest a statistical 

significance at the 99% level. Since the aerosol trace metals indicated log-normal 

distributions (see section 4.2), correlation coefficients between the trace elements were 

produced after taking their logarithms. 

Statistical analysis (Pearson's correlation) was applied to the Plymouth data set. It is 

important to bear in mind that the results of such a test are not an absolute indication of 

causes/effects between the two variables (Owen and Jones 1990) but a tool to aid in data 

interpretation. This type of statistical approach has been used extensively in trace metal 

aerosol smdies (Fones 1996; Yuan el al., 2004; Hodzic et al., 2005; Gong et al., 2005; 

Ko(?ak 2007). Al l of the sample population correlation coefficients are presented in Table 

4.18a. The correlation coefficients with * represent statistically significant relationships 

with a p value <0.05. 
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Table 4.18 Pearson correlation coefficients between log transformed aerosols trace 
metal concentrations in the Plymouth atmosphere. *indicates a significant correlation 
(p< 0.05). 

(a) -Al l aerosol samples 

C d AI Mn Fe Na V Ni Co Zn Mo 

Mn 0.736* 

Fe 0.740* 0.806* 

Na 0.014 0.123 -0.067 

V 0.151 0.158 -0.023 0.349* 

Ni 0.076 0.278 -0.019 -0.092 0.222 

C o 0.421* 0.686* 0.391* 0.201 0.343* 0.409* 

Zn 0.142 -0.088 -0.052 -0.624 -0.173 0.198 -0.087 

Mo 0.528* 0.695* 0.690* 0.250* 0.255* 0.214 0.542* -0.133 

C d 0.481* 0.676* 0.508* 0.379* 0.314* 0.186 0.567* -0.275* 0.644* 

Pb 0.659* 0.778* 0.741* 0.122 0.140 0.143 0.520* -0.155 0.702* 

(b)-Atlantic air mass samples 

A] Mn Fe Na V Ni C o Zn Mo 

Mn 0.604* 

Fe 0.604* 0.745* 

Na -0.211 -0.092 -0.179 

V 0.342 0.078 -0.015 -0.067 

Ni 0.316 0.456* -0.033 -0.324 0.443* 

Co 0.246 0.569 0.180 -0.110 0.314 0.625 

Zn 0.418* 0.054 -0.016 -0.617* 0.193 0.346 0.242 

Mo 0.292 0.669* 0.258 0.377* -0.077 0.123 0.207 -0.124 

C d 0.157 0.467* 0.299 0.250 -0.015 0.004 0.367* -0.042 0.213 

Pb 0.467* 0.662* 0.635* -0.079 -0.007 0.195 0.359* -0.003 0.229 

0.733-

C d 

0.620" 
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(c) UK-European air mass samples 

A l Mn Fe Na V Ni Co Zn 

Mn 0.804* 

Fe 0.837* 0.824* 

Na 0.293 0.335* 0.119 

V 0.318 0.461* 0.167 0.578* 

Ni 0.148 0.437* 0.247 -0.110 0.209 

C o 0.543* 0.738* 0.539* 0.508* 0.467* 0.386* 

Zn -0.239 -0.221 -0.125 -0.733* -0.507* 0.441* -0.373* 

Mo 0.678* 0.810* 0.714* 0.429* 0.401* 0.383* 0.675* -0.206 

C d 0.768* 0.859* 0.738* 0.448* 0.557* 0.557* 0.212 0.724* 

Pb 0.835* 0.833* 0.821* 0.326* 0.416* 0.159 0.639* -0.291 

Mo Cd 

-0.405 0.764* 

0.787* 0.919* 

II is clear that the crustally influenced trace elements A l , Fe (EFcmsFl.87) and Mn 

(EFcmsF2 .77) have highly statistical significant inter-correlations (e.g. A l / Fe = 0.740; A l / 

Mn = 0.736; Fe / Mn = 0.806 all with p<0.01). This is not surprising owing to their 

common crustal source (see section 4.3.2). Similar obser\'ations have been noted by e.g. 

Kopak (2007); Fones (1996); and Wells (1999). These relationships become more 

significant the greater the influence of natural sources on aerosol populations. 

Pb and Cd, being predominantly sourced from anthropogenic activities, also exhibit a 

strong correlation (0.733). However what is surprising is that they statistically co-vary with 

the crustally derived elements A l , Mn, Fe, Co (with Cd and Pb) as well as Mo (with Pb). 

This clearly suggests that not only is the source (either crustal or anthropogenic) impacting 

upon the variability of the aerosol trace metal concentrations but air mass transport and 

associated removal mechanisms are also important. There are two distinctly different 

chemical characteristics of the Atlantic and UK+European air masses (section 4.3.6), it is 

not surprising that there may be correlations between elements having different sources. 

Another interesting feature in Table 4.18a is the lack of any relationship between Zn 

concentrations and other metals except for Na (showing an inverse correlation, -0.624). 
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This indicates that there is a unique, terrestrially dominating source for this metal. This 

source is also likely to be regionally located as no inter-element relationship suggests 

limited air mass influence on its variability. As mentioned in section 4.3.1 local sources 

may originate from the re-suspension of Zn enriched waste from local, historically 

contaminated mining sites. 

Sodium is correlated (95% confidence level) with Cd, V and Mo. Previous studies have 

shown that most Cd in surface seawater is complexed with natural organic ligands 

(Bruland, 1992; Wen et al., 2006). Therefore correlations between Na and Cd may be due 

to enhanced concentrations of Cd in the sea surface microlayer, followed by injection into 

the atmosphere from the generation of marine aerosol. A more likely explanation is be that 

Cd enhanced air masses from Western Europe may have taken a longer marine route to 

reach the sampling site. Regarding V and Mo, both elements have been shown to have a 

contribution from the marine aerosol (Chester et al., 1984), although owing to their 

relatively lower correlation coefficient, factors other than the marine source are also likely 

to influence their variability. 

Similar correlation matrices to that presented in Table 4.18a were prepared for both the 

Atlantic (Table 4.71b) and UK+European (Table 4.71c) trace metal datasets. It is apparent 

that the inter-elemental correlation coefficients are generally greater in the UK+European 

air masses compared with those from Atlantic air masses. For example A! and Fe have 

correlation coefficients of 0.837 and 0.604 for the UK+European and Atlantic air masses 

respectively. Correlation coefficients between Pb and Cd also show differences between 

the two categories; the UK+European air mass dataset being greater (0.919) then the 

Atlantic air mass (0.620). A similar trend was apparent for correlation coefficients between 

cruslal and anthropic sourced elements. This could be due to the fact that the elements in 

the Atlantic air mass have been transported for a significantly longer distance than in the 
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UK+European air masses. During transport over the Atlantic Ocean crustally derived 

elements (e.g. Al and Fe) will be affected more by sequential dry and wet deposition than 

anthropogenic source elements (e.g. Cd and Pb) due to the elements being associated with 

particles of different sizes, which wil l result in a deviation between the concentration 

variation between the different sourced elements. In contrast the comparatively shorter 

distances over which the elements associated with the UK+European air masses wil l have 

been transported will mean that the effects of deposition processes on the variation of 

aerosol elemental concentrations will be less effective than on those for the Atlantic air 

mass. Moreover, some elements may appear correlated for the whole data set (Table 4.18 

a) due to strong correlations in one population. For example, Na and V did not correlate 

with each other in the Atlantic air mass population whereas a statistical correlation was 

detected in the UK+Europe population and in the whole data set 

4.5 The solid state speciation signal of aerosol associated trace metals (Al, Fe, Mn, Co, 

Mo, Ni, Cd, Pb) in the Plymouth aerosol populations 

The impact of atmospheric inputs on marine biogeochemicai cycles wil l not only be 

determined by the quantity of total atmospheric inputs (See section 2.6) but also on the 

degree to which the aerosol associated trace metals undergo dissolution in both rainwater 

(during wet deposition events) and seawater, post dry deposition. 

Studies have been carried out by previous workers to define the aerosol trace metal 

solubility / bioavailability in a variety of aqueous media (e.g. Chester et al., 1994, 2000; 

Lim et al., 1994; Fernandez et al., 2000, 2002; Dabek-Zlotorzynska et al., 2002, 2003, 

2005; Voutsa and Samara, 2002; Chen and Siefert, 2003; Bonnet and Guieu, 2004; Hand et 

al., 2004; Desboeufs et al., 2005; Heal et al., 2005; Al-Masri et al., 2006; Baker et al., 

2006a, b). As staled in section 2.7 the processes which influence seawater and rainwater 

dissolution of trace metals from aerosol material are varied and act simultaneously in a 
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complex manner. Chemical, biotic and physical processes such as pH, presence of 

dissolved organic complexing ligands, particle concentrations, bacteria, phytoplankton, and 

temperature may influence the extent of metal dissolution. The trace metal solid slate 

speciation of aerosol material from contrasting sources wil l also markedly affect the 

potential availability of trace metals for seawater/rainwater dissolution (Chester et al., 

1989, 1994). The solid state speciation has, in the past, been defined by applying 

operational sequential leach schemes on aerosol material. Different schemes have been 

applied depending upon the environmental application of the generated data (Chester et al., 

1989; Zatka et al., 1992; Spokes et al., 1994; Fernandez et al., 2000, 2002; Fuchtjohann et 

al., 2000; Slejkovec et al., 2000; Dabek-Zlotorzynska, 2003; Profumo et al., 2003; A l -

Masri et al., 2006). One of the first schemes applied to aerosol collected on filter material 

was that proposed by Chester et al. (1989) and has been used in the current study. The 

measured "exchangeable" fraction generally represents the upper limit of the soluble or 

bioavialable fraction of the aerosol associated trace metals (Chester et al., 1994). Hence 

carrying out solid state speciation studies of aerosol populations yields essential 

information on the potential reactivity of the associated metals with seawaler, post-

deposition or during wet deposition events, and hence their impact on marine 

biogeochemical cycles. Therefore, this section describes the application of an established 

operational three stage sequential leach scheme of Chester et al., (1989) to aerosol 

populations sampled from the Plymouth coastal and semi-urban aerosol. The three stage 

sequential leach (see section 3.5 for the f i i l l experimental details) was applied to twenty 

selected samples representing different wind sectors to assess the effect of different 

possible sources. The air mass diagrams for each of the twenty samples are on the supplied 

data CD. Table 4.19 summarises the statistical characteristics of aerosol trace metal solid 

state speciation signatures for the Plymouth populations. 
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Considering the general trends in the Plymouth dataset (Table 4.19) and by comparison 

with literature data (Table 4.20), it is apparent that different metals exhibit contrasting 

solid state speciation signatures. 

(i) Al and Fe are present predominantly (> 98% of their total concentrations) in the 

combined "refi-actory" and oxide / carbonate fractions (Stages 2 and 3) with 1-2.2% being 

found in the "exchangeable" fraction (Stage 1). This is consistent with literature values (see 

Table 4.20) with the "refractory" fraction, which is the most important phase for both Al 

and Fe, found in European aerosol material in the typical ranges of 82-96% and 58-93% 

respectively (Chester et al., 1989, 1994; Fernandez et al., 2002). 

Table 4.19. Statistical summary of the aerosol trace metal solid state speciation 
signature for the overall Plymouth aerosol population. (Each stage expressed as a % 
of the total metal aerosol concentration; n=20). 

Elament Stage 1 Stage 2 Stage 3 

(EFcn^st) % (S.D) Range % ( S . D ) Range % (S .D) Range 

A 1 ( I ) 1.5(1.18) 0.17-4.5 15.4(7.2) 4.4-34.1 84.2 (8.3) 61.4-98.5 

C d (227) 71.7(10.2) 53.9-93 0.9 (0.46) 0.3-1.6 27.8(10.5) 6.2^6.1 

C o (3.08) 39.6(18) 8-90.1 2.5 (2.1) 0.1-6.99 58.1 (18.6) 9.9-92 

Fe(1.87) 2.2(1.9) 0.6-7.1 41.8(14.9) 4.8-68.7 55.9(15.3) 24.2-94.0 

Mn(2.77) 66.2(15.4) 32.9-95.7 3.3 (2.7) 0.3-8.7 30.5(15.8) 3-67.1 

Mo (134) 36.8 (20.6) 11.5-93.8 2.13(1.4) 0.3-4.2 61.2(20.6) 5.8-88.3 

Ni(14.2) 57.3(16) 27.6-87 13.1 (5.9) 5.2-25.5 29.6(12.3) 3.5-58.1 

Pb(187) 80.8 (7.84) 60.7-93.8 2.0 (0.5) 0.1-2.6 17.3 (8.1) 3.8-39.1 

A relatively high association of an element with the oxide/carbonate and residue phase 

would indicate low temperature generation of the aerosol material, i.e. predominantly 

natural sources, which is consistent with their lower EFcmst ( I by definition and 1.9, for Al 

and Fe respectively; Chester el al., 1989). 
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Owing to the role played by the atmospheric deposition of Fe in stimulating primary 

productivity in HNLC regions of the world's oceans, there have been a number of recent 

studies (e.g. Zhu et al., 1992; Chen and Siefert, 2003; Bonnet and Guieu, 2004; Hand et al., 

2004; Desboeufs el al., 2005; Baker et al., 2006a, b) focussed on defining the "solubility" 

of aerosol associated Fe. These studies have considered "end-member" aerosol populations 

in controlled laboratory simulations (e.g. Bonnet and Guieu, 2004; Desboeufs el al., 2005) 

whilst other workers have used mixed, typically filter collected, aerosol populations (e.g. 

Chen and Siefert, 2003; Hand et al., 2004; Baker et al., 2006 a,b). For a more detailed 

critical summary see Mahowald et al. (2005). Comparison of these values with those from 

the current study is difficult owing to the contrasting experimental approaches applied. 

However, from the summary, the extent of "soluble" Fe is generally lower for cruslally 

derived aerosols, and lowest in systems which apply extraction solutions buffered al higher 

pH (8.2, seawater; Bonnet and Guieu, 2004; Chen et al., 2006; compared to ca 4.7 ; Baker 

et al., 2006a, b), although the literature does exhibit a wide range of values. Highest Fe 

solubilities tend to be quoted for marine rainwaters, e.g. Jickells and Spokes (2001) quoted 

iron rainwater solubilities of 14% in regions close to industrial activity and Kieber et al. 

(2003) observed dissolved iron concentrations of about 50% for marine rains collected off 

Bermuda. The observed range of % "exchangeable" Fe fractions for the current study (0.6-

7,1 %) for the Plymouth aerosol falls within the range of values observed in recent studies 

(Table 4.20). What is interesting is that the observed "carbonate / oxide" fraction was 

generally higher than literature quoted values except for that quoted by Chester et al (1989) 

for Liverpool urban aerosol material in which the "oxide / carbonate" fraction amounted to 

32% of the total aerosol. Fe is expected to be primarily associated with the residual 

fraction, similar to A l , and this is the case for samples from other European coastal sites 

highlighted in Table 4.20. However, this is not the case for the current work and this might 

be explained by the life history of the aerosol. As the aerosol population is transported to 

the site from its source ageing in the atmosphere will occur and the aerosol will be 

120 



subjected to a series of wetting and drying cycles (Spokes et al. 1994; Baker et al., 2006b) 

during cloud formation and dissipation. These cycles will lead to a lowering in pH 

(enhanced acidity) which will attack more refractory solid phases such as the 

aluminosilicate lattice. This reaction may then release the element from the more residual 

solid speciation phase into the 'exchangable' or the *oxide/carbonate' fraction. 

(ii) Elements whose solid state speciation signal is dominated by the "exchangeable" phase 

included Cd, Pb and Mn. For example, the average % of this phase contributing to the 

aerosol populations were 81%, 72% and 66% respectively. Previous studies (Chester et 

al., 1989; Chester et al., 1994; Weils, 1999; see Table 4,20) have also indicated high 

average % "exchangeable" or "soluble" phase associations for elements such as Pb and Cd 

although there is a significant degree of variability for these elements (e.g. Pb has quoted 

ranges of ca 5 - 97 % ; Chester et al. 1994), this variability also being detected in samples 

collected from the current sampling site. In this study Pb and Cd predominately originated 

from anthropogenic sources (EFcmst 187 and 227 respectively for the selected samples). 

High exchangeable fractions are consistent with such material being generated from high 

temperature processes (Chester el al., 1989). 

(iii) For the remaining elements, Mo, Co and Ni , the majority of the total concentrations 

are associated with the exchangeable and residual fractions, with relatively minor 

contribution from the oxide/carbonate solid phase. There is very limited data regarding the 

solid state speciation for these elements, the only published work being that for LUAP 

(Chester et al., 1989). LUAP associated Co shows similar trends to that observed for the 

Plymouth aerosol, however Ni clearly indicated a proportionally higher exchangeable 

fraction (57 %) with that obserx^ed in LUAP. There are no literature data available for Mo 

aerosol solid state speciation and therefore no comparison may be made. 
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Therefore the differences, in the portioning of the elements between the three stages can 

potentially be related to the contributing elemental source either anthropic or crustal, 

and/or mechanisms which modify the solid state speciation during transport. 

4.5.1 Elemental solid state speciation signal associated with aerosol populations 

derived from different wind sectors 

Recent studies (Kopak et a!., 2007) have clearly shown that the chemical speciation signal 

exhibited by an element is dependent upon the amount of and type of sources contributing 

to the aerosol samples (i.e. anthropogenic or natural) along with aerosol modification 

during atmospheric transport. Using samples from different air mass types collected from 

the South Eastern Turkish coastline, they were able to illustrate statistical differences 

between the elemental solid state speciation signals for A l , Fe, Pb and Cd, with lower 

exchangeable fractions and higher residual fractions in aerosol populations associated with 

air masses from the south of the region compared with those from the north. This was 

explained by Southerly air masses passing over the Saharan desert, hence being loaded 

with a proportionally higher amounts of crustal material compared with anthropogenically 

derived material. 

Owing to the already stated differences in the chemical characteristics (section 4.3.6) of the 

two different air mass types, it is of interest to investigate i f there are any differences in the 

elemental solid state speciation for aerosol populations associated with (i) the Atlantic air 

masses and (ii) the UK+European air masses. The major difference between the two air 

masses is that the aerosol material associated with Atlantic air masses would have had 

more time to experience population modification during transport as a result of (i) 

sequential deposition of large, crustal particles and (ii) chemical modifications as a result 

of cycles of evaporation and condensation. Table 4.21 highlights the % contribution of 

each sequential leach stage as a % of the total aerosol metal concentration for Plymouth 
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samples associated with the two different wind sectors (Atlantic, UK.+Europe). A Mann-

Whitney test with a confidence level of 95 % has been applied to test the differences 

between the two wind sectors. There were no significant statistical differences in the 

percentage of elemental solid phase associations with air mass origins. 

Table 4.21 and the associated statistical analysis clearly highlight the relatively consistent 

solid state speciation character of the two aerosol populations, even though there are 

differences associated with their respective concentrations (Section 4.3.6). 

This indicates that the aerosol material transported through both air mass sectors has 

reached equilibrium in terms of the impact of any chemical modifications which might 

have occurred during transport (such as evaporation/condensation cycles). A similar 

consistent trace elemental chemical speciation signal was observed by Nimmo (pers. 

comm) for Irish Sea aerosol populations derived from contrasting wind sectors. 

4.6 Total atmospheric dr>' depositional fluxes to the English Channel 

The impact of particulate trace metals on the biogeochemical cycle of the English Channel 

can be assessed by calculating the trace metal dry depositional fluxes can using aerosol 

data and assigned elemental settling velocities (see Table 4.22). 

The flux and input of aerosol associated trace metals to the English Channel sea surface 

were calculated using the following equations; 

F = (C* V * T ) - 10"* (4.3) 

Where: 

F: dry deposition flux (ng cm""̂  yr"') 

C: concentration of element in ambient the air (ng m'*') 

V: settling velocity (m s ') 

T: number of seconds in a year (31,536,000) 
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Tabic 4.20. Comparison of sequential leach result of the Plymouth aerosol with other European marine aerosols in wt %, 

Element English English Irish Sca^ North Sea** LUAP* LUAP' Western IZastcm Med.' Saharan Crust' 
uiid Channel' Channel^ Med*̂  

Stage Plymouth 
AI-SI 1.2+1.2 0.4+0.4 5+4 5 5.6+4.8 1.3+0.26 4.3+2.5 2.4+1.8 0.05+0.015 
A1-S2 14.6+7.8 4.1+7.8 11+5 13.5 12.1+5.8 11.9+3.1 4.2+1 3.6+2.2 14.4+2 
A1-S3 84.2+8.3 95.5+7.6 85+7 81.5 82.3+7.2 83.7+22 91.5+2.4 94.0+2.5 85.6+2 
Cd-Sl 71.7+10.2 82+26.7 72+11 25.4+5.0 79.7+134 84.6+14.2 
Cd-S2 0.6+0.5 11 + 14.7 15+6 - - 67.8+18.1 8.8+8.0 7.9+7.7 -
Cd-S3 27.8+10.5 0.3+0.7 13+7 6.78+1.8 11.7+8.4 7.5+7.5 
C o - S l 39.6+18.0 - 26.8+7.0 
Co-S2 2.5+2.1 - - - N.D - - -
Co-S3 58.1 + 18.6 73.2+11 
I-e-SI 2.2+1.9 N.D 1.0+1.2 6.5 9.9+6.2 8.3+8.1 1.7+1.2 0.03+0.003 
Fe-S2 41.8+14.9 3.3+5.8 21 + 12 11 31.9+11.8 - 0.3+8.1 4.9+3.3 9.5+2 
re-S3 56.0+15.3 96.7+7.6 78+12 82.5 58.2+12.2 91.4+8.1 93.4+3.9 90.5+2 
Mn-Sl 66.2+15.4 69.4+15.4 45+10 56 44.2+13.2 45.7+0.17 63.3+7 43.5+10.0 22.8+1.1 
Mn-S2 3.31+2.7 15.5+9.6 13+6 7 22.7+12.3 17.7+0.1 nd 13.4+8.4 34.2+2.6 
Mn-S3 30.5+15.8 15+8.4 42+12 37 33.1 + 13.7 36.6+0.23 36.7+7 43.5+5.8 43+2.7 
Mo-Sl 36.8+20.6 
Mo-S2 2.0+1.4 - - - - - - - -
M0-S3 61.2+20.6 
Ni-SI 57.3+16.0 16.1+3.0 
Ni-S2 13.1+5.9 - - - - 41.7+8.2 - - -
Ni-S3 29.6+12.3 42.3+13 
Pb-Sl 80.8+7.8 54.5+31.2 79+9 77 81.5+6.9 57.1+6.0 97.3+3.5 72.0+20.0 5.7+5.1 
Pb-S2 2.0+0.5 19.4+15.8 16+6 15.5 11.1+6.7 29.2+9.0 N.D 22.0+14.8 28.8+5.7 
Pb-S3 17.3+8.1 26+21.2. 5+4 7.5 7.4+4 13.7+2.7 2.7+3.4 6.0+7.0 65.5+6.2 

1: current study; 2: Wells, (1999); 3: Laes, (1999); 4: Chester e /« / . , (1994); 5: Chester e/a/., (1989); 6: Nimmo (personal communication); 7: kofak et al., (2005). 



Table 4.21. Statistical suinmar>' of the three stage sequential leach (standard 
deviation in parentheses) for the different wind sources, (geometric mean in % for all 
elements). 

Atlantic Wind Source UK+European Wind Source 

Elament Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3 

Al 1.4(0.69) 13.4(5.6) 85.4(6.1) 1.5(1.4) 16.3(7.9) 83.6(9.2) 

C d 67.5(10.6) 0.87(0.56) 31.9(11.1) 73.3(9.84) 0.97(0.44) 26.1(10.1) 

Co 41.2(16.9) 4.41(2.15) 55.1(18-9) 38.9(18.9) 2.3(1.65) 59.2(19) 

Fe 1.7(0.8) 38.5(19.7) 59.7(19.6) 2.41(2.18) 43.3(13) 54.3(13.6) 

Mn 62(13.3) 4.08(3.2) 34.5(12.7) 67.8(16.2) 4.09(2.12) 28.9(16.9) 

Mo 30.6(18.2) 2.64(1.6) 66.8(18.3) 39.3(21) 1.9(1.2) 58.9(21.6) 

Ni 60(21.8) 11.9(6.72) 28.1(17.1) 56.2(13.9) 13.6(5.7) 30.2(10.4) 

Pb 81.9(368) 2.02(0.35) 16.1(3.71) 80.3(9.1) 1.97(0.6) 17.7(9.4) 

The flux and input of aerosol associated trace metals to the English Channel sea surface 

were calculated using the following equations: 

F = (C * V * T) • 10^ (4.3) 

Where: 

F: dry deposition flux (ng cm"' yr"') 

C: concentration of element in ambient the air (ng m" )̂ 

V: settling velocity (m s"') 

T: number of seconds in a year (31,536,000) 

The factor 10"* was applied to normalise units. 

1 = ( F * S A ) - 10-̂  (4.4) 

Where: 

I : trace metal input (tonnes yr' ') 

F: dry deposition flux (ng cm"' yr' ') 

SA: surface area of the body of the water (lan~) (For the English Channel this is 77,000 

km-) 

125 



The main uncertainty in Equation 4.3 when calculating the dry depositional flux is the 

choice of the settling velocity and the method used to determine it. bi the literature there 

are a wide range of quoted settling velocities. These have been determined using both 

experimental and modelling techniques, including; (i) mathematical modelling, (ii) mass-

size distributions (using a cascade impactor), ( i i i) subtraction of the wet deposition flux 

from the total deposition flux and (iv) using surrogate surfaces. The settling velocities used 

in the current study have been adapted from the literature as there was no size segregation 

of the aerosol population or the deployment of surrogate collection surfaces. Table 4.22 

represents the adopted settling velocities taken from Spokes et al., (2001) and Duce et al., 

(1991), Spokes et al., (2001) calculated mass weighted settling velocities for A l , Mn, Zn 

and Pb using the settling velocities from Duce et al., (1991), and aerosol size fractionated 

data (coarse/fine) for the Atlantic and southerly + easterly wind sector (UK+Europe) to 

calculate weighted settling velocities, which have been used in this study. When settling 

velocities were not available from Spokes et al., (2001), settling velocities from Duce et 

al., (1991) were used. Although no Vd values were calculated for Fe by Spokes et al., 

(2001), it was assumed that the Vd would be similar to that calculated for A l . These values 

are limited in that they are not exactly from the collection area, however they represent the 

best approximate value (Duce et al., 1991) in the literature and consequently are used 

widely. The elements have been categorized into two groups according to Duce et al., 

(1991): 1) elements found primarily on particles in the accumulation (<1 |xm) mode (Pb, 

Cd, Zn, and Ni) mostly produced by anthropogenic processes, 2) elements found primarily 

on particles in the coarse (>1 ^mi) mode (Al and Fe) mostly produced naturally. The 

settling velocity used for group 1 elements was 0.1 cm s*' whereas 2 cm s"' was used for 

group 2 elements. 

A more refined version of Equation 4,3 was used (Equation 4.5) to take into account the 

influence of contrasting wind sectors (Atlantic and UK+Europe) and settling velocities. 

Including the effect of different air sectors is important as the air mass derived from the 
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UK+ Europe is considered to be more predominantly influenced by anthropogenic and 

natural sources (i.e. higher aerosol trace metal loadings). The relative temporal influence of 

the Atlantic and UK+Europe air masses was 0.58 and 0.42 respectively (see Section 4.3.6). 

Table 4.23 summarises settling velocities adopted for European coastal regions. Different 

authors have reported a diverse range of settling velocities which highlights the uncertainty 

in these velocities and as a result the input of trace metals. Air mass weighted and un­

weighted dry fluxes calculated according to the Equations 4.3 and 4.5 are presented in 

Table 4.24. 

Table 4.22. Elemental settling velocities used in the calculation of (Vd) dr>' deposition 
adopted from the literature for the current study (Spokes et al., 2001 and Duce et al., 
1991). 

Element Vd (cm s"') Reference 
Atlantic wind UK+European 

source wind source 
A l 1.3 2 Spokes et al., 2001-Duce et al., 

1991 
C d 0.1 0.1 Duceet al., 1991 

C o 2 2 Duceet al., 1991 

Fe 1.3 2 Spokes et al., 2001-Duce et al., 
1991 

Mn 1.1 1.4 Spokes et al., 2001 

Mo 0.1 0.1 Duce etal. , 1991 

Na 3 3 Duce etal. , 1991 

Ni 0.1 0.1 Duce et al., 1991 

Pb 0.36 0.63 Spokes et al., 2001 

V 0.1 0.1 Duce et al., 1991 

Zn 0.71 0.92 Spokes et al., 2001 
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The refined equation used to calculate the air mass weighted dry flux values is as follow: 

F = [(CA. * Vd At *0 .58) + (CuK+EU * Vd UK^EU * 0 . 4 2 ) ] *T ( 4 . 5 ) 

Where: 

F: dry deposition flux (ng m'~ yr"') 

C: concentration (ng m" )̂ of element in Atlantic and UK+Europe air masses respectively 

Vd At; Vd UK+Eu: deposition velocity (m s ') of elements in Atlantic and UK+Europe air 

masses respectively; see Table 4 .22 

T: number of seconds in a year (31,536,000) 

A comparison of the dry deposition fluxes calculated for the Western English Channel 

(Plymouth) with values from the literature is presented in Table 4 .25. Direct comparison of 

current fluxes with those from the literature are a little misleading as different settling 

velocities have been adopted by the different authors. For example, values calculated by 

Wells ( 1 9 9 9 ) show variation between Fe, Cd, Co, Ni and Zn and those for the current study 

due to the fact that Wells ( 1 9 9 9 ) applied contrasting settling velocities. The settling 

velocities used were calculated with dry deposition collected samples using a surrogate 

surface and the corresponding aerosol metal concentrations. The comparatively higher 

values obser\'ed for Al and Fe in the Eastern Mediterranean atmosphere may be attributed 

to the higher aerosol concentrations observed in this area being impacted by crustal 

material during Saharan dust events from North Africa. 

Literature values (Chester et al., 1990; Ottley and Harrison, 1993) also have higher Pb 

fluxes due to its relatively higher aerosol concentration (see chapter 2 ) . Therefore it is clear 

from the comparison that calculations of the atmospheric trace metal dry depositional 

fluxes is fraught with problems and inaccuracies, mainly derived from the uncertainty 

associated with the choice of the settling velocity. Therefore there is an urgent need to 

better define, in a regional study, the element settling velocities. 
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However, using dry depositional flux it is possible to calculate the dissolved atmospheric 

trace metal flux as this is an estimate for the component of the particulate fraction that may 

be incorporated into the marine biological cycle. This is calculated using the flux 

calculations presented in Table 4.26 and the percentage of the element in the exchangeable 

fraction (see Table 4,19.) of the sequential leach. The total dry and "dissolved" inputs for 

trace metals to the English Channel were calculated using Equation 4.4 and compared with 

those for trace metals calculated by Wells (1999). Table 4.27 shows the calculated input in 

the current study and the input calculated by Wells (1999). The differences in the inputs 

between the two studies are due to variance in the applied fluxes (due to the variation in 

concentration and settling velocities between the two sites) which have been discussed 

above. 

Table 4.27 compares the calculated inputs using current study aerosol concentration and 

the settling velocities reported by Wells (1999). Using the same settling velocities 

improves the correlation between elemental inputs (e.g. Pb and Ni). However, settling 

velocities calculated by Wells are not very convincing as some values contradict each other 

and are not consistent with model values. For example A l has a settling velocity of 1.08 

whereas Fe is 0.08 which is not geochemically consistent. Zn has a settling velocity of 0.09 

which not consistent with the Zn mainly has a local source. However, Pb and Cd have 

more reliable values for settling velocities (0.04 and 0.02) which are consistent with the 

conclusion that Cd and Pb have long range transport anthropogenic sources. 
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Table 4.23. Literature elemental settling velocities (cm s ) for European coastal regions. 

o 

Tones 
1996 

Element Irish Sea 

Al 

Cd 

Cu 

l~e 

Mn 

Pb 

Zn 

0.46 

0.38 

0.70 

0.45 

0.60 

0.17 

0.52 

Dulac ct 
al., 1989 
Western 

Med. 

0.69-3.8 

0.053 

0.041 

Rcmoudaki ct 
al., 1992 

Mediterranean 
Sea 

1.9 

Ottlcy and 
Harrison 

1993 
North Sea 

0.46 

0.38 

0.70 

0.45 

0.17 

0.52 

Rojas ct 
al., 1993 

North 
Sea 

0.39 

0.48 

0.25 

0.35 

Migon et 
al., 1997 
Ligurian 

Sea 

0.42 

1.19 

0.19 

4.38 

InjUK et 
al., 1998 

North Sea 

0.21-0.5 

0.32-0.55 

0.21-0.53 

0.07-0.11 

0.20-0.4 

Guerzoni et al., 
1999a and 

Guerzoni et al., 
1999b 

Mediterranean 

2 

0.2 

0.2 

Wells 
(1999), 
English 
Channel 

1.08 

0.04 

0.44 

0.08 

0.69 

0.02 

0.09 

Spokes ct al. 
(2001), 

N. Atlantic 

1.1-1.4 

0.36-0.63 

0.71-0.92 

Sakata and 
Marunioto 

(2004), 
Lake Michigan 

0.21-0.82 

1.2-3 

1-4.6 

0.35-1.7 

0.73-2.7 

Ko(;ak et al. 
(2005). 

Eastern Med. 

1.73-1.8 

0.1 

1.1-1.4 

1.73-1.8 

1.48-1.7 

0.8 

0.99-1.11 



Table 4.24. The flux (expressed as \ig m"̂  yr ' except for Al , Fe, M n and Na which are 
xpressed as mg m"̂  yr"') of aerosol associated trace metals to the English Channel, 
mass influence (see text for further discussion). 

Element Air mass weighted flux 

A l 88.7 

Cd 3.46 

Co 108 

Fe 121 

Mn 2.22 

Mo 16.6 

Na 7165 

Ni 81.6 

Pb 863 

V 73.8 

Zn 2392 

Table 4.25. A comparison of dry deposition fluxes from Plymouth (current study) 
with other European regions (fluxes are expressed as ^g m"̂  yr"' except for A l , Fe, Mn 
and Na which are expressed as mg m'^ yr"'). 

ement Irish English English North W.Mediterranean E . Mediterranean 
Sea Channel Channel, Sea Chester et al. . Ko^ak et al.. 

Fones Current C . Wells Ottley 1990 2005 
1996 study 1999 and 

Harrison 
1993 

A l 30.43 88.7 78.3 28.54 93.8 320 
C d 22.7 3.46 1.5 149 49 3.8 
Co 37.5 108 14.5 IS 
Cu 1000 321 1520 895 2600 
Fe 22.5 121 2.96 26.03 230 
Mn 0.779 2.22 1.72 1.56 3.8 
Na 546 7165 762 1822 
Ni 701 81.6 330 240 
Pb 809 863 8.6 1560 1410 5650 
V 73.8 

Zn 4140 2392 575 12210 5330 
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Table 4.26. Bio-available and air mass weighted fluxes (expressed as m'̂  yr * 
except for Al , Fe, Mn and Na which are expressed as mg m"̂  yr"^). 

Element 

A l 

C d 

C o 

Fe 

Mn 

Mo 

Ni 

Pb 

'Dissolved" flux 

1.28 

2.45 

43.4 

2.60 

1.42 

5.81 

47.6 

697 

Air mass weighted flux 

88.7 

3.46 

108 

121 

2.22 

73.8 

81.6 

863 

Table 4.27. Dry and dissolved trace metal inputs to the English Channel (t yr''). 

Element Current study 

Dissolved Dry Dissolved 

Al 98.6 6830 65.7 

Co 3.34 8.32 0.627 

Ni 3.67 6.28 2.52 

Pb 53.67 66.45 2.07 

Current study 

(using Wells 1999 

settling velocities) 

Dry 

4381 

1.58 

4.40 

2.56 

Wells (1999) 

Dissolved 

116 

0.755 

13.3 

0.323 

dry 

6029 

1.12 

25.4 

0.662 

4.7 Conclusions 

This study has revealed the factors which affect the variability in the trace metal aerosol 

chemical composition of the Plymouth coastal and semi-urban aerosol. Local, regional and 

long distance sources have an effect on the aerosol trace metal concentrations, fijrthermore 

air mass transport and associated removal mechanisms are also significant. To define this 

variability the following factors have been discussed; (i) aerosol source types, (ii) aerosol 

emission strengths, (iii) proximity of aerosol source, (iv) air mass transport processes and 

(v) removal processes. 
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The Plymouth coastal and semi-urban aerosol concentrations for all elements were lower 

(2-13x) than aerosol elemental concentrations obserx'cd at other comparative UK urban 

sampling locations. The Plymouth coastal and semi-urban aerosol population has no major 

regional industrial sources, and is influenced more by long range transported 

anthropogenically derived material from the UK and Western Europe. In addition, the 

Plymouth aerosol undergoes dilution by more pristine maritime air masses from the west 

and south-west, leading to lower observed trace elemental concentrations. Periodically, 

however, the sampling area has been subject to the impact of immediate local construction 

activity, leading to elevated concentrations for all elements, with some elements exhibiting 

intense diurnal patterns (i.e. A l , Fe, Mn). 

EFcrusi analysis indicated that Fe, Mn, Co and V have low EFcmst values (<10) which 

indicates increasing crustal source contributions, whereas the remaining elements have 

high (> 10) EFcmsi values. However, calculation the % of crustal contribution indicates that 

EFcrusi "̂ 2 represents the transition from predominantly anthropogenic to crustal source 

contributions. Hence, Fe, Mn, Co, V and Ni have calculated crustal contributions with an 

average of 57, 41, 38, 22 and 12 % respectively. The rest of the elements have percentage 

crustal contributions <5. 

Apart from the initial influence from local construction activities, the variation in the 

Plymouth aerosol trace metal concentrations did not exhibit diurnal changes, but did 

exhibit a high degree of temporal variation, consistent with the literature. Seasonal (winter/ 

summer) differences were found for Na, Mo, Co, Cd and Zn such that the winter 

concentrations were higher except for Zn. 

Air mass transport was a significant influence on the variation in the elemental 

concentrations, with enhanced concentrations (about 2x) in air masses associated with the 
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UK and European air mass (statistically significant for A l , Fe, Mn, Cd, Mo and Pb at 

p<0.05). This impact was also apparent when inter-elemental relationships were 

considered. Significant correlations between anthropically and crustally derived trace 

metals were found, indicating that air mass movement is a major factor influencing the 

variation in the aerosol elemental concentrations. Lower statistical significance between 

the anthropic and crustal inter-elemental relationships for the Atlantic air sector compared 

with those associated with the UK+European sector would, in addition, suggest that during 

air mass movement there is a sequential change in the chemical character of the aerosol 

population owing to removal processes. Zn concentrations were not statistically different 

(p<0.05) in the two air mass sectors, suggesting regional sources. The re-suspension of 

material from dis-used and abandoned mine wastes from historical mining activities in the 

South West being a possibly source for Zn. 

Sequential leach analysis showed that Al and Fe are present predominantly in the 

combined refractory and oxide / carbonate fractions (>95%). Elements for which the solid 

state speciation signal is dominated by the exchangeable phase were Cd, Pb and Mn. For 

the remaining the elements (Mo, Co and Ni) the majority of the total concentrations are 

associated with the exchangeable and residual fractions, with relatively minor 

contributions from the oxide/carbonate solid phase. 

Using dry deposition fluxes (air mass weighted and dissolved fluxes), elemental inputs 

have been calculated for the western English Channel (Table 4.27). However, it is clear 

from comparison with the literature that calculation of dry depositional fluxes and inputs is 

fraught with problems and uncertainties, mainly derived from the uncertainty of settling 

velocities. 

Modelling trace metal budgets in the English Channel has been carried out by Wells (1999) 

a simplified conceptual model is presented on Figure 4.9. 
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Fijiure 4.9. Simplified model of the trace metal fluxts in the FLn<:lish C hannel 

Using total di^ atmospheric input values of trace metals calculated in this study: revised 

budgets for Ni and Pb in the English Channel have been calculated (Table 4.28). 

Table 4.28. (ieochemical budget of Ni and Pb it > ' • in the English C hannel. 

Lead budget Nickel biidj:et 

Current 
study with 

adopted 
settling 

velocities 

Current 
study using 
Wclis 1999 

settling 
velocities 

Wells 
(1999) 

Current 
study with 

adopted 
settling 

velocities 

Current 
studs using 
Wells 1999 

settling 
velocities 

Wells 
(1999) 

\k ta l inputs 

Rivers 81 81 263 23 23 

LHBP transect 104 104 104 1040 1040 1040 

Atmosphere 
(wet & dry) 

298 242 240 251 249 270 

lotiil 483 427 607 1314 1312 1314 

Mt'ial ()utputs 
(Dover straits) 

-1170 -1 170 -1170 -1143 -1143 -1 143 

()\erall -687 -743 -563 171 169 19() 
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The budget calculations are explained in more detail by Wells, (1999). The budget uses a 

simple box model of the English Channel, assuming a flux of water of 4 x I0'~ m*̂  >T"' 

(Wells, 1999) across the Lands End and Brest Peninsular (LEBP) which is balance by 

water flow through the Straits of Dover. Trace metal fluxes across the Straits of Dover 

were estimated by Statham et al. (1993), whereas the trace metal transport across LEBP 

were estimated from the Quality Status Report (Reid et al., 1993) as were the riverine 

inputs for Ni whereas more recent Pb riverine inputs were calculated from data obtained 

from the Quality Status Report (2000). Unfortunately no information for Ni riverine inputs 

are included in this report. Table 4.28 summarises the inputs and outputs along with the net 

balance of the metal budgets (Ni and Pb) for the English Channel using the dry deposition 

inputs from the current study. These are compared with the metal balances calculated by 

Wells (1999) as well as atmospheric inputs using the contrasting settling velocities quoted 

in Wells (1999) to serve as a sensitivity check on the model. A negative balance would 

indicate that sediments are a source of trace metals whereas a positive balance would 

indicate that the English Channel sediments would be a geochemical sink. The revised 

inputs yielded from this study made little difference to the overall budget calculations 

(around 10% and 20% for Pb). Overall the revised budget calculations do not change the 

conclusions presented by Wells (1999), who showed that the output of Pb was higher then 

the inputs to the English Channel, suggesting that there is an unaccounted source which is 

likely to be the sediments. In contrast the output of Ni is lower than its input to the English 

Channel, suggesting that the sediment is a geochemical sink for Ni . 

Further work is necessary, however, to better constrain fluxes of trace elements to the 

western English Chamiel and consequently allow more accurate trace metal budgets for is 

marine system. The uncertainty in trace metals fluxes arise from the lack of accuracy in the 

adopted settling velocities, therefore there is an urgent need to better define, on a regional 

scale, more accurate elemental settling velocities. 
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Chapter 5 

Aerosol trace metal trace metal concentrations at a Red Sea 

coastal site (Jeddah) 
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5.1 Introduction 

This chapter will discuss the variability in the aerosol trace metal concentrations (Al . Fe, 

Mn, Ni , Co, Cd, Pb, Zn,) observed at an eastern Red Sea coastal site (Jeddah), over a 

seventeen month sampling period (August 2002 to January 2004). Long (seasonal) 

variability in the aerosol chemical composition wil l be defined. The observed variability 

wil l be discussed in the context of the following factors (i) aerosol source types (ii) aerosol 

emission strengths (iii) proximity of aerosol source (iv) air mass transport processes (v) 

and removal processes, In addition, this section will also present the atmospheric total and 

"bioavailable" trace elemental dry deposition into the eastern Red Sea. Full details of 

sampling and analytical methods employed have previously been discussed (sections 3.2.1 

and 3.3). 

5.2, Background 

5.2.1. Red sea coastal environment 

More than 50 percent of the population of Saudi Arabia (26.7 million; 19.7 million Saudis 

and 7 million foreign nationals) reside within 100 km of the Saudi Arabian coastline. Of f 

shore, the waters of the Red Sea and Arabian Gulf support a vital fishing industry and 

provide recreation facilities. 

The Red Sea developed 20-30 million years ago when the tectonic plates of Arabia and 

East Africa separated, and hence is one of the youngest oceans in the world. It has an 

elongated shape which is due to slow seafioor spreading occurring over the last 4-5 Million 

years. Countries sharing the Red Sea coastline are Egypt, Sudan, Eritrea Djibouti, Israel, 

Jordan and Yemen. It is connected to two Seas; in the South, the Indian Ocean via the 

Gulf of Aden and in the north the Eastern Mediterranean via the Gulf of Suez and the Suez 

Canal. 
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The length of the Red Sea is -1900 km with a maximum width of - 306 - 354 km (at 

Massawa, Eriteria) and a minimum width of - 27 km at the Strait Bab ai Mandeb (Yemen); 

with an average depth of 490 m. The maximum depth is 2850 m. Approximately 40 % of 

the Red Sea is shallow (under 100 m) whereas about 25 % of the Red Sea is under a depth 

of 50 m deep. The rest is over 1000 m depth, forming deep axial troughs. Famous troughs 

include the Atlantis, Discovery and the Oceanographer Deeps. These are areas of 

metalliferous sediments and salt deposits. 

The total surface area is 438 - 450 x 10^ km", with a total volume of 215 - 251 x 10̂  km^ 

The average surface water temperature during the summer ranges between 26-30 ''C, and 

has about a 2 °C variation during the winter months. The Red Sea salinities range between 

36 and 38. The tidal height ranges between 0.6 m (in the north) and 0,9 m (in the south), 

with the central Red Sea (Jeddah area) being essentially tideless. Current velocities data are 

severely lacking as they are generally weak and variable, being governed predominantly by 

air flow. Generally during the summer months NW winds move surface water towards the 

southern Red Sea, whereas during winter the flow is reversed resulting in the inflow of 

water from the Gulf of Aden into the Red Sea. 

Water mass exchange with the Arabian Sea (see section 5.9), Indian Ocean is via the Gulf 

of Aden. These physical factors reduce the effect of high salinity caused by evaporation. 

Unique to the Red Sea and relevant to the current study of metal inputs, is that there are no 

fluvial inputs. Restricted inputs may occur via wadis (valley) (which are seasonal in 

nature) mainly in the southern region, however input of continental material to the Red Sea 

will be mainly via atmospheric deposition. 
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5.2.2. Regional Climatology 

The Southern Red Sea experiences two monsoon seasons. Monsoon winds occur because 

of the differential heating between the land surface and sea. The rainfall over the Red Sea 

is on average 6 cm yr''. The scarcity of rainfall and no major source of fresh water to the 

Red Sea results in an excess evaporation as high as 205 cm yr'' and high salinity with 

minimal seasonal variation. 

With the exception of the northern part of the Red Sea, which is dominated by persistent 

north-west winds with speeds ranging between 7 and 12 km hr'', the rest of the Red Sea 

and the Gulf of Aden are subjected to the influence of regular and seasonally reversible 

winds. The wind regime is characterized by both seasonal and regional variations in speed 

and direction with average wind speeds generally increasing northward. 

During the winter period (November - April), Asiatic highs over Siberia and the Azores, 

shifts westward out of the Mediterranean Basin. Overall wind flow changes to Northerlies. 

Cold fronts may reach as for south as the Gulf of Aden, producing rain showers and 

thunderstorms. 

Transition towards the summer begins in mid-March with a strengthening of the Azores 

high, with dissipation of the Saharan high. This is normally replaced by the Saharan low. 

These features close the winter storm track. This ends the wet season by the end of April . 

There are number of characteristic wind systems for the coastal region, both land / sea 

winds existing, with peak gusts of generally 45-65 knots. The Shamal is the strong north 

westerly wind and persists from 1-5 days at any time of the year. However, during the 

summer a Shamal may even persist for upto 40 days, with maximum strength occurring in 

June and July. The wind being stronger during the daytime. Often the Shamal is dust 
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loaded (El Sayed el al., 2004). In contrast the Kaus winds are moderate to gale force south 

easterly winds on the Arabian Gulf, being most frequent during December - April . 

5.2.3. Aerosol trace element concentrations in the Red Sea Marine Aerosol (RSMA) 

The biogeochemistry of aerosol trace metals in the RSMA is still poorly defined. Studies 

are very limited in numbers, being those of Behairy et al., (1985), El sayed et al., (2004) 

and Chester et al., (1991). The earliest study was that carried out by Behairy et al., (1985). 

Trace metal (Fe, Mn, Cu and Cd) concentrations in dust falling over six months were 

investigated by collecting dry deposited samples at Jeddah (Faculty of Marine Science) at 

six different sampling locations using the American Standard Deposit Gauge. The 

concentrations of the elements followed the order: Fe>Mn>Cu>Cd, although the data did 

not present actual atmospheric concentrations (ng m'"*), only trace metal concentrations in 

the collected dust (|ig g'') were determined. Fe concentrations did not show variations 

during the six months of sampling. For Mn, Cu and Cd the concentrations were variable 

with the highest values being detected in December for Mn and January for Cu and Cd. 

The abnormally high concentration of Cd (23 ± 8 |ig g'') in comparison to that in the 

literature was attributed to a local source i.e. a cement factory to the north of Jeddah 

(which now has subsequently been closed down). 

El sayed et al., (2004) have also reported (for the Jeddah area) the following order in metal 

concentrations in deposited dust: Fe>Al>Mn>Zn>Cu>Ni>Pb>Cd. Over a period of 13 

months they collected monthly dry deposition samples using simple plastic fiinnels (which 

may be lacking in accuracy owing to the possible re-suspension of dust). Comparing the 

concentration of elements reported by Behairy et al., (1985) and El sayed et al., (2004) the 

concentration values despite samples being collected from the similar location, were higher 

by factors of 41 and 1.3 for Cd and Mn respectively for those determined by Behair)' et al., 

(1985). However, Fe concentrations were lower by a factor of 2.6 whereas Cu 
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concentrations were comparable. For Cd a 10 year inter\^al since the closure of a cement 

factory close to the site may have explained the higher values (41 times higher), as stated 

by El sayed et al., (2004), whereas, for the other elements no explanation for the observed 

variability was presented. 

However, Chester et al., (1991) have reported trace metal concentrations in the Arabian 

marine aerosol (17 high volume samples were collected) in which the aerosol 

concentrations followed the order: Al>Fe>Mn>Zn>V>Pb>Cu>Ni>Co>Cd. hi comparison 

(with other coastal sea locations in the Atlantic and Pacific Ocean) the aerosol 

concentrations of A l , Fe and Mn measured in the Arabian Sea where intermediate in value 

(lower than North East Atlantic and but higher than the Pacific aerosol concentration). 

Moreover, Sanders (1983) report concentration of aerosol associated trace metals for 

samples (n=3) collected in research cruise in the Red Sea. 

Chester et al., (1991) clearly stated that the Arabian Sea aerosol trace metal concentrations 

are affected by the surrounding arid regions. However, it is the monsoon wind system 

(impact on the wind direction and hence dust transport) which yields seasonality in aerosol 

trace metal concentrations. During the northeast monsoon, the wind direction is from North 

Easterly direction crossing over arid landmasses to the north. Whereas, during the South 

west monsoon, no such dust transport will occur. The study by Chester el al., (1991) 

involved the collection of aerosol samples during the Northeast monsoon (October-

November) which would explain the relatively high observed concentrations of crustal 

dominated elements (Al 1227 and Fe 790 ng m"^). Table 5.1 summarises and compares the 

results observed from the three studies discussed above, hi the literattire there are many 

studies defining aerosol trace metal concentration for marine systems influnced by arid 

regions, such as the Eastern Mediterranean atmospheric aerosol (e.g. Kubilay and Saydam 

1995; Kubilay et al., 1997; Kubilay et al., 2000; Kocak et al., 2004 and Ko9ak et al., 2005). 
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Table 5.1 Concentration of trace metal in the marine aerosol from samples collected 
from the Arabian Sea (Chester et al., 1991; expressed as ng m'"*) and trace metal 
concentration in dust fall from the Red Sea coast (Behair>' et al., 1985; expressed as 
\ig g^) and El sayed et al., (2004; expressed as g~*). 

Element Chester et al., (1991) Behairy et al., (1985) E l sayed et al., (2004) 

Al 1127 - 25449 

Fe 790 13600 35796 

Mn 17 755 589 

Cd 0.045 23 0.555 

Co 0.38 - -

Cu 2.6 203 214 

Ni • 2.0 - 67 

Pb 4.3 - 28 

Zn 10 - 371 

V 6.3 

However, for the Arabian Peninsula as described above few studies have been carried out 

(Behairy et al., 1985 (Jeddah); El sayed et al., (2004) (Jeddah); Al-Rajhi et al., 1996 and 

Modaihsh 1997 (Riyadh)). Therefore, a long term programme designed to investigate the 

importance and the biogeochemical cycle of the Red Sea aerosol trace metals was 

instigated. 

5.2.4. Aerosol sampling location. 

The aerosol sampling location was positioned towards the North of Jeddah which is 

located on a narrow coastal plain, with the Red Sea to the west and the mountain chain 

(Alsaraowat Mountains) of the Arabian Shield to the east. Jeddah is the major urban centre 

of Suadi Arabia. The general characteristics of the sampling area is an arid region with low 

rainfall (ca 60 mm >T"'), experiencing predominantly NW (Morcos 1970) wind directions. 

This area of Saudi Arabia has been subject to rapid urbanization and industrilisation over 
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the last twenty years. Industry in and around Jeddah is mainly petroleum industries or light 

industries. Yanbu is an industrial city located to the north of Jeddah (about 300 km) and it 

is one of the tv>'o main industrial cities build by the government of Saudi Arabia for the oil 

industry. Two oil refmeries are located in Yanbu; Petromin-Mobil and Kefi-Aramco. In 

Rabigh an Aramco refinery is situated to the north of Jeddah (120 km). 

In Jeddah, an industrial area comprising of approximately 300 small and medium-sized 

industries is situated in the southern part of the city. These include oil refineries, a power 

plant, food industry and other small industries such as painting, plastic ware, pressurised 

gas and carpets (UNEP report 166). 

Local mineral reser\̂ es which contain Zinc ores are associated with gold, extraction lie 

toward the east of Jeddah in the Samran mineral bell and copper deposits to the NE of 

Jeddah al Jabal Sambran. 

5.3 The trace metal chemical composition of the RSMA 

5.3.1 The overall chemical characteristics of the aerosol trace metals in the Jeddah 

urban aerosol. 

A summary of the aerosol trace metal loadings (ng m"*') observed at the coastal site at 

Jeddah, during the sampling period is presented on Table 5.2, as arithmetic and geometric 

means along with the range of values observed during the sampling period. This is, for the 

current study, referred to as the Red Sea marine aerosol (RSMA). From a consideration of 

Table 5.2, it is apparent that the elemental concentrations exhibit a wide range of values, 

consistent with literature aerosol databases of the marine atmosphere (Dulac, 1987; Chester 

et al., 1991; Kubilay, 1995; Kocak el al., 2004). Geometric means wil l be used in 

subsequent comparisons and discussions owing to the log-normality for all elements in the 

aerosol populations. The log-normality of the datasets was verified by applying the 

Kolmogorov-Smimov lest at the 95% confidence level (see section 4.3.1 for further 
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details). These values also are compared on Table 5.2 with trace metal aerosol loadings 

found in other marine systems whose atmospheres are significantly influenced by crustal 

material (i.e. Eastern Mediterranean, Kubilay and Saydam 1995; Herut et al., 2001; Kocak 

et al., 2004; Kocak et al., 2005; Western Mediterranean, Giueu et al., 1997; Arabian Sea, 

Chester et al., 1991). Table 5.2 comparing data set from Jeddah to other coastal regions 

which are influenced by arid land masses (i.e. the western and eastern Mediterranean; 

Atlantic North East Trades and the Arabian Sea). From Table 5.2 a number of general 

observations may be made. For the current study area high aerosol loadings of the 

predominantly crustally derived elements are observed (Al , Mn and Fe; crustal source 

contributions >70%, section 5.3.2.). 

For example they are in excess of those observed in the Southern Levantine basin of the 

Eastern Mediterranean (Tel Shikmona, Herut et al., 2000; Kocak et al., 2005) by a factor of 

between 2.7-3.1 (Al-2.7x; Fe-3.lx; Mn-3.0x) and the Northern Levantine Basin by a factor 

of between 4.5-6.2 (Al-4.5x; Fe-5.5x; Mn-6.2x). Similarly, the ratio of the A l , Mn and Fe 

concentrations in the RSMA and their equivalents observed in the Arabian Sea marine 

aerosol (Chester et. al., 1991) amounted to 2.1, 2.9 and 2.9 respectively. The comparatively 

elevated concentrations of the crustally derived elements in the RSMA are not unexpected 

owing to the sampling location being surrounded by arid continental regions. However, 

they are lower than those quoted in Murphy (1985) for the North East Trades in the 

Atlantic Ocean (ANET). These elemental concentrations represent a restricted sample 

population number (n=7), documenting an individual intense Saharan dust event, and as 

such are likely not representative of the overall annual aerosol concentrations in this 

location, although the intensity of Saharan dust plumes occurring in the open Atlantic 

Ocean are exhibited by these data. 
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Table 5.2. The trace metal concentrations (ng m'-*) in the Red Seas Marine Aerosol (RSMA); Comparison with values from the literature of 
coastal systems bordered by arid regions. 

I'Icmcnl Red Sea Marine Aerosol (RSMA) Southern Levantine Uasin Northern Levantine Hasin Southern Levantine Basin Arabian Sea Western Atlantic North Rctl Sea 
(current study) l:astcm Mediterranean 

Tel Shikniona (n=185) 
(Kocak etal.. 2004; 2005) 

liasterti Mediterranean 
Erdcnili (n=436) 

(Kocak et al., 2004) 

Hastcni Mediterranean 
Tel Shikniona 

(Hcrtitet al., 2001) 

(n=I7) 
(Chester etal. 1991) 

Medi term n can 
(GuieuetoL. 1997) 

liast Trades (n=7) 
(Murphy. 1985) 

(M=3) 
(Sanders, 1983) 

Ariihinclic mean Geometric Mean Milt. - Max. Geometric Mean Gct>iiiclric Mean Geometric Mean Geometric Mean Geometric Mean cieomctric Mean Geometric Mean 

Al 3736±3889 2589 8-34715 952 (1143)' 567 865 1227 370 5925 1864 

Fc 3397±505O 2262 279-55274 724(891)• 407 787 790 320 3865 1365 

Mn 75±83 49.3 4-527 16.7(19.9)' 7.9 15.7 17 11 65 25.6 

Ni 9.6±7.5 7.4 0.6-58.6 - - - 2 2.8 6.6 7.64 

Co 1.89±2.4 1.1 n.d. - 1.89 - - - 0.38 - 2.1 0.94 

Cu I0.4±7.9 7.95 n.d.-44 5.9 (7.4) ' 8.9 5.7 2.6 6.2 4.5 5.53 

Pb 12.9±12 9.8 0.7-111 24.9 (27.4) 21.5 34.2 4.3 58 6.9 8.46 

7M 38.6±30.5 31.9 5-344 22.4 {21 Ay 15.9 - 10 41 16 5.37 

Cd 0.17±0.12 0.12 n.d.-0.7 0.22 (0.24) • 0.17 0.24 0.045 0.36 0.12 0.06 

Mo 0.36±0.26 0.28 n.d. -1.8 - - - - - -

V 23.7±I9.5 14.7 n.d - 145 _ 6.3 - 15 

0* Gcomciric means for air masses derived from the SW (i.e. Saharan cvctits). Sec Kocak ct al., (2004) for further details. 



For those elements whose average anthropogenic contributions are in excess of 80% (see 

section 5.3.2., for further information) of their total concentrations (i.e. Cd, Pb and Zn) the 

following trends were apparent; 

(i) Cd detected over the Arabian Sea (Chester et al., 1991) was around 30% of that 

determined in the current study, which in turn was consistently lower than the observed 

concentrations in both the Eastern and Western Mediterranean marine atmospheres (0.12 

ng m""* compared to 0.17-0.24 ng m'-* and 0.36 ng m'^ respectively). The comparatively 

lower values observed in the Arabian Sea being explained by the more remote marine 

character of the sampling location to that of the RSMA which itself is likely to be less 

influenced by long range transported Cd from industrial activities occurring in eastem 

European nations, accounting for the elevated values in the Eastem and Western 

Mediterranean atmospheres. 

(ii) Pb also exhibits similar regional trends, again being due to the comparative lower 

influence of long range transport anthropic material and the lack of regional intense 

industrial activities, 

(iii) Zn, however was elevated in the RSMA being the highest at any of the considered 

sites, indication of regional Zn inputs. Zinc deposits in Saudi Arabia are widespread, 

although zinc is mainly produced as a by product of gold mining. The local market has a 

significant demand for zinc (estimated to be 27,706 tonnes in 2003). The majority of zinc 

occurrences in Saudi Arabia are hosted by low-grade volcanosedimentary rocks in the 

neoproterozoic volcanic-arc terrain of the Arabian Shield (Saudi Geology Survey; web 

page within references). A substantial belt lies to the N / NE of Jeddah in the Samran field, 

where Zn bearing minerals are processed. Enhanced aerosol Zn levels might, therefore be 

due to one or more of the following (i) the extraction and (ii) processing activities as well 
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as (iii) enriched crustal material being present in the region. This will be investigated 

further when we consider the trace metal characteristics for contrasting air masses. Co and 

Ni concentrations have not been quoted for the Levantine Basin of the Eastern 

Mediterranean, so only a limited comparison with the literature may be made to sites 

within the influence of the arid regions, however Ni seems to be in excess to that which is 

detected along the Western Mediterranean coast (Chester et al., 1993; Guieu et al., 1997) 

and is around 3 x higher than those determined in the Arabian Sea, a consistent 

enhancement factor as observed for the other elements. Cu was found in concentrations 

consistent with those determined at other coastal sites, even though recent mining for Cu 

has taken place, indicating little or no impact on region aerosol concentration as a result of 

this activity. For V there is very little comparative data (Arabian Sea and ANET). The 

current range of values are in excess of that observed in Arabian sea. The V concentrations 

are also well in excess of those observed in Western European marine aerosols (i.e. the 

Plymouth coastal and semi-urban aerosol being 2.1 ng m'"*; Liverpool and Preston aerosol 

concentrations being 7.7 and 7.3 ng m'"' respectively, see Table 4.5). Owing to the 

occurrence of regional crude oil refining, then it is possible that enhanced RSMA 

concentrations are as a result of these activities. The enhanced V concentrations obsen^ed 

in the NW of England (compared to that of the Plymouth aerosol) were also attributed to 

local crude oil refining (see section 4.3.2). 

5.3.2 Evaluation of the Jeddah aerosol trace metal sources; Application of the crustal 

enrichment factor (EFcrusi) 

To gain an indication of the sources contributing to the elemental aerosol concentrations of 

the RSMA, the EFcnjsi were calculated ( Chester et al., 1993; Chester et al., 1994b; Herut et 

al., 2001) as discussed in section 4.3.3 to indicate the degree of crustal source influence. 

Table 5.3 presents the EFcmst for the RSMA and for comparative marine aerosols. 
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Table 5.3. A comparison of the EFcrust (calculated using (E/Al)cmst ratios from Taylor 1964) for the RSMA with those determined at other 
marine systems 

Elcmcnl R S M A • % non-crustal Southern Levantine Arabian Sea Western Mediterranean Atlantic North East 

current study elemental aerosol Basin (Chester ct al., (Chester ct al., 1999) Trades 

(Hcait et al. .2001) 1991) (Chester ct al., 1991) 

Arilhmclic mcun Geometric Mean Min. - Max. Geometric Mean Geometric Mean Arithmetic Mean Geometric Mean Arithmetic Mean 

I-c I . 4 ± 0 . 9 ( l . 7 ± ! . l ) 1.3(1.6) 0.6-10.6(0.8-13.4) 19±20(33±20) 2.3 1.0 1.2 1.1 

Mn 1 . 9 ± l . 5 ( 2 . 5 ± l . 9 ) 1.6(2.1) 0.2-12.7(0.2-17) 3 1 ± 2 7 ( 4 3 ± 3 8 ) 2.4 1.4 2.9 1.0 

Ni 3 . 8 ± 2 . 4 ( 4 . 9 ± 3 . l ) 3.2(4.1) 0.4-14.7(0.5-19) 6 3 ± 2 3 ( 7 1 ± 1 8 ) - 2.3 10 0.73 

Co 2 . 1 ± l . 9 ( 2 . 1 ± 1 . 9 ) 1.8(2.1) 0.-12.0(0-12) 3 3 ± 3 0 ( 3 4 ± 3 0 ) - 2.1 2.3 0.9 

Cii > . 0 ± 5 . I ( I 2 . 7 ± I 0 . I ) 4.5(9.4) 0.1-32.4(0.2-68) 70 i :21(85±32) 21 7.2 27 1.3 

Pb 3 8 . 1 ± 5 6 . 2 ( 3 1 ± 4 5 ) 25(20.5) 3.8-524(3-428) 9 4 ± 5 ( 9 3 ± 5 ) 159 27 1129 7.4 

Zn 1 9 . 3 ± I 6 . 4 ( 2 0 ± 1 7 ) 14.6(15.2) 1.8-10.1(1.9-105) 9 9 i 7 ( 9 1 ± 7 ) 117 18 167 3.1 

C d 2 9 . 1 ± 2 7 . 4 ( 5 5 ± 5 2 ) 20.1(38) 0.3-176(0.5-336) 9 1 ± 1 3 ( 9 5 ± 1 5 ) 228 18 - 3.2 

Mo 8 . 1 ± 8 . 2 ( I 0 . 5 ± 5 . 8 ) 6.0(7.7) 0.5-74(0.6-96) 7 7 ± 2 0 ( 8 3 ± 1 4 ) - - - -

V 5 .4±4 .3 (7 .2±5 .8 ) 3.5(4.7) 0.1-32.6(0^6) 6 8 ± 1 9 ( 7 6 ± 1 9 ) - - - 1.3 

Values in brackets represent the and % non-crustal elemental aerosol contribution values calculated using clement / A l ratios from Wedpohl (1995) 



Table 5.3 also highlights the non-crustal contribution as a % of the total elemental 

concentrations. These were calculated in the same manner as Herut et al., (2001) which 

have been described previously in section 4.3.4. 

With the consideration of the EFcrust values for the current study, the Ef is increasing in the 

following order Fe< Mn <Co< Ni< V< Cu< Mo and all are classed as being "non-

enriched" elements, i.e. they all have EFcrust <10, using the tradition definition. As shown 

in the literature (e.g. Murphy, 1985; Chester et al., 1999; Herut et ah, 2001; Kocak et al., 

2005) Fe, Mn, Co are generally shown to be "non-enriched" in most marine atmospheres, 

whereas Cu may exhibit both anomalously enriched behavior (Western Mediterranean, 

Chester et al., 1999; Atlantic Westerlies, Murphy, 1985) as well non-enriched behavior, as 

observed for the current study and in other crustal rich populations (i.e. ATNET, Murphy, 

1985). 

The rest of the elements, Zn, Cd and Pb are all classed as anomalously enriched elements, 

which indicate their non-crustal origins. Comparison with the literature the EFcmsi values 

for the RSMA are all higher than those foiuid in the North Atlantic aerosol (see Table 5.3) 

but equivalent to those observed for the Arabian Sea (Chester et al., 1991), indicating the 

same general chemical character of the aerosol population except that the RSMA has a 

higher loading of aerosol material which is not surprising owing to the relative locations of 

the two sampling sites. The RSMA EFcmst are generally lower than those observed for both 

the Western and Eastem Mediterranean aerosol (Chester et al., 1999; Herut et al., 2001). 

Lower EFcmsi than those in the Mediterranean aerosol would be expected, owing to lower 

proximity of the RSMA to anthropic activities as well as lower intensity regional anthropic 

sources (except for Zn; see earlier) and more importantly a higher contribution to the 

aerosol population of crustal material (-3-6x), leading to 'dilution' effect on the 

anthropogenically derived material. 
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When we consider the elemental % non-crustal contributions it is interesting to note that 

elements with EFcmst lower than 10 still have, in some cases, a predicated predominating 

non-cruslal source (i.e. >50% contributions). This was also the case for the Plymouth 

aerosol as well (see section 4.3.4). Table 5.3 also compares the EFcmst and % non-crustal 

contributions calculated using more recent elemental:Al ratios suggested by Wedhpol 

(1995). Generally, values for each element were slightly greater, again illustrating that 

caution should prevail during the use of the EFcmst value. However the same general 

conclusions would have been derived in terms of elemental classification with the use of 

the Weddpohl (1995) elemental:Al ratios. To gain a better appreciation of the 

representative nature of the global elemental ratios there is an urgent need to compile 

elemental ratios of the local and region crustal material to enable a more accurate 

definition of the EFcmst to be made and hence a more representative calculation of the 

contributions of sources to the aerosol trace metal pool. This approach has recently been 

adopted by Kocak et al., (2007), who used the composition of a Saharan dust end-member 

to define the appropriate crustal elemental / A l ratios to be used in the calculation for the 

EFcrust- Unfortunately such information is currently not available for the crustal precursor 

material for the RSMA. 

5.4 Temporal variations in the trace metal concentration in the RSMA 

The temporal variability in the RSMA of all trace metal concentrations are highlighted in 

Figures 5.1-5.3. Sample number 1 represents the commencement of the sampling regime 

(i.e. 8**" August 2002) whereas the final presented sample number (370) represents the 

termination of sampling activities (i.e. 11^ January 2004), The current section wil l define 

and explain the temporal variability in the RSMA (Jeddah) trace metal concentrations over 

the whole period (fi-om 8^ August 2002 to 11^ January 2004). As was discussed in section 

4.3.5 it is normally the case that aerosol trace metal concentrations exhibits very large 

temporal variability, this was the case for the Plymouth marine aerosol as well as those 
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observed in other marine aerosol populations. The RSMA is no exception. Figures 5.1-5.3 

clearly highlight the high temporal variability exhibited by ihe RSMA. Seasonality in the 

aerosol trace metal concentration was investigated by categorising the data set into two 

populations; summer and winter. The summer period being classed as that covering the 

months from early April to August whereas the winter covers the months from September 

to early February (Tanaka and Chiba 2006). Referring to Figures 5.1-5.3, sample number 

from 100 to 309 represent the samples collected during the summer period, whereas 

sample numbers 56-99 and 310-370 represent the winter period. The statistical summary of 

the two populations is presented on Table 5.4. To evaluate any statistically significant 

differences between the two seasons, the Mann-Whitney test (the equivalent non-

parametric t-test) al the 95% confidence limits was applied, owing to the log-normal 

distribution characteristics of the two populations. From this test, statistical differences 

were detected for all elements between the two defined sampling periods, except for Co. 

Comparison of the elevated concentrations during the summer with those encountered 

during the winter clearly illustrates the effect of seasonal processes such that the elemental 

enhancement ranged from 1.3 (Mo) to 3.1 (V). 

The predominanfly crustally derived trace metals (Al , Mn and Fe: % non-crustal source 

contribution amounted <50%, see section 5.3,2) exhibited concentrations during the 

summer period (June-July) which were consistently around 2x (Table 5.4) those observed 

during the winter season. Such elevated concentrations may be explained by enhanced 

dust movement in the Nubian desert (covering several potential source areas from central 

Eg>pt to central Sudan (Engelstaedter et al., 2006) and local sources (i.e. Arabian 

Peninsula) which have been shov\Ti to exhibit a summer peak in dust events (AWS/FM-

100/009, 1980). 
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Table 5.4. Geometric mean aerosol trace metal concentrations (expressed as ng m~̂  
except for Al, Fe and Mn expressed as ng m'"*) in the RSMA for winter and summer 
period. 

Element Winter Summer Summer/VV 

AI 1.7 3.57 2.1 

Fe 1.47 3.15 1.9 

Mn 0.04 0.07 1.8 

Ni 5.23 8.96 1.7 

Co 1.04 1.17 1.1 

Cu 6.66 9.11 1.4 

Pb 8.5 11.8 1.4 

Zn 24.2 37.8 1.6 

Cd 0.08 0.18 2.3 

Mo 0.24 0.31 1.3 

V 7.9 24.4 3.1 

The Nubian desert sources are mostly active in the summer between April and August with 

the highest values of the Total Ozone Mapping Spectrometer Aerosol Index (TOMS AI) at 

the eastern Sudanese coast in June-July (See figure 5.4; Engelstaedter et al., 2006). This is 

clearly highlighted when the monthly mean TOMS A I (XIO) between 1980-1992 are 

considered (Engelstaedter et al., 2006). The TOMS was a detection system onboard the 

Nimbus 7 polar-orbiting satellite which was active from November 1978 to May 1993. The 

TOMS was designed to provide global estimates of total column ozone using backscattered 

UV radiance measured in six bands. Aerosol measurements were made in the three longest 

wavelengths where gaseous absorption is weak and where the backscattered radiation is 

primarily controlled by scattering from aerosol and clouds (Prospero et al., 2002). 

Peak activity and dust re-suspension in the Arabian Peninsula occurs during June-July 

(refer to Figure 5.5). Haboobs (dust activity) are often a product of strong convective 

outflow, which occur as the ITZC (Intertropical Convergence Zone; a zone of trade wind 
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convergence) and migrates north over the summer months (Fett. 1983). A hot and dry 

southerly wind (identified as an Aziab) transports dust f rom southern Saudi Arabia 

northward this is most common in the spring when soil conditions are very dry (Walters. 

1988). 

^̂ ^̂  

!3 16 19 22 25 

Tons Ai («10) 

Figure 5.4. Monthly mean TOMS Al (x 10) (1980-1992). After Engelstaedter et al. 
(2006). 
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Therefore ihe well documented seasonal dust transport in the region would explain the 

enhanced concentrations for A l , Fe and Mn in the Summer period. Hence it is also possible 

that elements which have a significant crustal contribution wil l also exhibit a seasonal 

difference in their concentrations as a result of this process. Of those elements presented in 

Table 5.3, Ni , Mo, Cu and V have significant crustal contributions (i.e. > 20%). Whether 

the crustal contribution is significant enough to lead to a seasonal variation in these 

elemental summer and winter concentrations could be tested by calculating (i) the 

theoretical elemental crustal component and (ii) the equivalent anthropogenic component 

contribution for each sample in the two seasonal populations, and then determining 

whether each of the two elemental sources for each element exhibit a statistically 

significant seasonal difference. This was carried out for Ni , Mo, V and Cu. 

The two source contributions made to each aerosol sample elemental concentration was 

calculated using the following equations: 

Elemental crustal contribution (EFcmst) = (CAIP)*(CXC/CAIC) (5.1) 

Elemental anthropic contribution (Eanihrop ) = CXP-[(CAIP)*(Cxc/CAIC)] (5.2) 

where (Cxp and CAIP) are the concentrations of a trace metal x and A l , respectively, in the 

individual aerosol samples, and (Cxc and CAIC) are their comparable concentrations in 

average crustal material (Taylor, 1964). 

The above calculation was made for all individual samples and each fraction was tested for 

any statistically significant seasonal differences. Of those considered V and Ni exhibited 

seasonal differences between the summer and winter for both their anthropogenic and 

crustal fractions (Mann-Whitney test; 95 % confidence level). Therefore, for these two 
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elements the seasonal difference is not only attributed to enhanced summer dust transport 

within the region, but also as a result of enhanced summer anthropogenic emissions. This 

might be as a result of greater fossil ftjel burning in the summer to meet the demands of 

enhanced power requirements. There is a large seasonal variation in the regional electricity 

production due to the huge consumption during the hot summer season (the N^EP 

National Energy Efficiency Program web page within references). Power generation plants 

in Saudi Arabia use different types of fijel for the electricity generation; (i) diesel (ii) diesel 

+ gas (iii) gas, the more common plants being types (i) and (ii) (electricity company web 

page within references). Vanadium emissions are also associated with crude oil refining. 

Therefore the enhanced seasonal power generation may not be the only explanation for the 

observed seasonal variability. Crude oil refining wil l also lead to V atmospheric emissions 

associated with the breakdown of porphyrin complexes in the crude oil. These emissions 

may, i f emitted in sufficient quantities, enrich the local terrestrial environment. Clearly 

where you have then natural seasonal re-suspension of crustal material then any associated 

contaminants would also be re-suspended. Therefore it is possible that the seasonality 

might be, in part, as a result of natural crustal re-suspension which has historically been 

enriched from regional anthropic V emissions. One way this might be investigated would 

be to determine the V/Al ratio in local and regional dessert dusts and then compare these 

with natural background ratios. As Ni is also known to be associated with crude oil 

refining and fossil fuel burning the seasonal variations in the Ni 

anthrop Concentrations may 

also be as a result of the processes described above (e.g. Singh et al., 2002). 

In contrast, the Mo and Cu anthropogenic contributions exhibited no difference between 

summer and winter whereas crustal contributions, as expected, did. Therefore, it is more 

likely that crustal movement and transport accounts for the seasonal variation for these 

elements, rather than non-crustal anthropogenic sources. 
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The exhibited seasonality in their concentration may be attributed to the seasonal variation 

in dust activity as a result of mobilisation of mine waste containing remnants of Zn ore. As 

discussed in section 5.3.1 the regional mining of Zn is well documented (Poldervaart 1955, 

1956) and may explain the generally higher Zn aerosol concentration in the region. 

As Pb and Cd are primarily derived from anthropogenic source, it might be conclude that 

contrasting seasonal anthropogenic emission influence the RSMA. However, as their 

concentrations are comparatively low, the observed variability in their concentrations is 

likely to be influenced by more distant anthropic sources. No difference in winter and 

summer for both Pb and Cd aerosol concentrations were detected in the South and 

Northem Levantine region of the Eastern Mediterranean, a potential source region of the 

Pb/Cd to the Red Sea atmosphere (Ko^ak et. al., 2004). However, for both these basins 

enhancement in Pb and Cd were detected during Saharan dust events (concentrations were 

corrected to take into account crustal material contribution). It was speculated that this 

enhancement during such events was due to the following: 

(i) association and transport by high dust concentration and/or 

(ii) contamination from land based anthropogenic sources in the South and South-eastern 

region of the Mediterranean Basin (i.e. Egypt) where a seasonal variation has been 

detected (Ali et. al., 1986; Hassanien et. al., 2001). 

It is possible that mineral dust might act as a transport mechanism for anthropogenically 

derived material. Uptake of pollutants by mineral dust has been shown to occur at several 

locations around the world, including pollutants originated in European sources detected 

on Saharan dust (Formenti et. al., 2001; Falkovich et. al., 2004). 
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5 . 5 Impact of air mass source on the aerosol trace metal concentrations in the RSMA 

Previous studies have classified aerosol samples into contrasting air mass types, 

influencing a sampling site, in order to investigate the impact of different regional sources 

on aerosol trace metal concentrations (Yaaqub et. al., 1991; Spokes et al., 2001; Kocak et 

al., 2004). This was also carried out for the Plymouth coastal and semi-urban aerosol as 

highlighted in section 4.3.6. For the ciurent study four air mass types were defined. For 

the RSMA these were (i) Egyptian (E), (ii) Northern Saudi Arabia (NSA), (iii) Southern + 

middle Saudi Arabia (SSA) and (iv) Red Sea (RS), (Figure 5.6). 

Saudi 
Arabia 

100 miles 

Figure 5 . 6 . Air mass sectors of (i) Egyptian (E) (ii), Northern Saudi Arabia (N) (iii), 
Southern + middle Saudi Arabia (SSA) (iv) and Red Sea (RS). 
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However the categorisation of individual air mass types during the period for each 

individual collected sample was challenging. Owing to the narrow width of the Red Sea, 

the majority of air masses which had travelled over the Red Sea would have been 

influenced, to differing degrees, by terrestrial inputs. Therefore, the Red Sea population 

was defined as those samples whose air mass trajectories had not passed over any 

continental regions during the defined trajectories history (3 days). Where air mass 

trajectories for the same sample could be categorized into >1 sector owing to contrasting 

back trajectories at different pressure levels, allocation into an air mass sector was 

determined on the ground level air mass trajectory. Table 5.5 highlights the proportions of 

the total sample population allocated into each of the defined air mass categories. 

Table 5 . 5 . The % influence of each air mass back trajectorj' category during the 
sampling period. 

Egypt Northern Saudi Middle and Red Sea Unclassified 

Arabia Southern Saudi 

Arabia 

38 (43) 21(24) 19(21) 11(12) 11 

*Values in % in brackets did not include the "unclassified" air masses . 

Table 5.5 clearly highlights the strong influence of both air masses derived from Egypt and 

those from the Northern areas of the Jeddah sampling site, amounting to around 50% of the 

air mass influence compared with only 19% from the southern and middle regions of Saudi 

Arabia. 

Following from the air mass trajectory classification, the respective aerosol elemental 

concentrations for each sector were calculated and a statistical summary is presented on 

Table 5.6. 
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To investigate any statistical significant differences between air mass sectors the aerosol 

trace metal concentrations obserx^ed in each sector was compared with each of the other 

defmed sectors and a Mann Whitney test was applied, at the 95% confidence level. I f we 

refer to Table 5.6 it is apparent that inler-air mass sector aerosol elemental concentrations 

can be very significant. This is particularly the case for those elements for which the % 

crustal contributions are in excess of 50%, i.e. A l , Fe, Mn and Co. For all these elements 

the concentrations are greatest in the air masses derived from the Middle and Southern 

Saudi Arabian (SSA) regions, whereas the lowest concentrations are detected in air masses 

from the Red Sea (RS) region, the ratio of SSA: RS concentrations for A l , Fe, and Mn 

being 3.4, 2.0, and 2.8 respectively. Considering the statistical differences between the four 

air mass sectors, it was clear that in the Red sea aerosol A l , Fe, Mn and Co concentrations 

were all statistically the lowest (p<0.05), compared to all the other sectors. For A l , Fe and 

Mn, SSA concentrations were statistically higher than those observed in the N air mass 

sector, but not between the N and E air mass sectors. 

The above observations are logical in that the aerosol population loadings associated with 

the Red Sea air sector are likely to be lower, in contrast to those associated with the other 

sectors, as the aerosol material would have been subject to progressive dry deposition over 

the marine surface, with minimal terrestrial inputs of these elements, for at least 72 hours 

prior to their transport to the sampling location. Whereas aerosol populations associated 

with the other sectors are all influenced to a lesser or greater degree by crustal inputs, with 

those associated with the SSA sector receiving the greatest quantity of crustal material, the 

concentrations being significantly larger (p<0.05) than those for the N as well as those of 

the RS. 

Table 5.7 summarises these findings with statistically significant differences being 

highlighted with an "*". 
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Table 5 , 7 . Summary of statistical differences between air sector elemental aerosol 
concentrations. Differences are highlighted with an "*". (SSA = Middle and Southern 
Saudi Arabia; N= Northern Saudi Arabia; E= Eg>i)tian ; RS= Red Sea). 

Al Fe Mn V 

SSA vs E SSA vs E SSA vs E SSA vs E 
SSA vs N* SSA vs N* SSA vs N* SSAvsN* 
SSA vs RS* SSA vs RS* SSA vs RS* SSA vs RS* 

N vsE NvsE N vs E N vs E 
N vs RS* N vs RS N vs RS* N vs RS* 
E vs RS* E vs RS* E vs RS* E vs RS* 

Co Ni Cu Zn 

SSA vs E SSA vs E* SSA vs E* SSA vs E 
SSA vs N SSA vs N* SSA vs N SSA vs N 

SSA vs RS* SSA vs RS* SSA vs RS* SSA vs RS* 
NvsE NvsE NvsE NvsE 

N vs RS* N vs RS* N vs RS* N vs RS* 
E vs RS* E vs RS* E vs RS* E vs RS* 

Mo Cd Pb 

SSA vs E* SSA vs E SSA vs E 
SSA vs N SSA vs N SSA vs N* 

SSA vs RS* SSA vs RS SSA vs RS* 
N vs E NvsE NvsE 

N vs RS* N vs RS N vs RS 
E vs RS* E vs RS* E vs RS* 

Zn and Co exhibit a similar trend in their concentration in the following order: SSA, N and 

E having no significant differences, but all are significantly greater than those observed in 

the RS aerosol. The fact that there are no differences between the SSA, N and E air sectors 

can generally be explained by the influence of more local / regional sources rather than 

distant sources, such that air mass source becomes progressively less significant in 

influencing elemental aerosol concentrations. In the section 5.3.1 it was suggested that the 

regionally elevated aerosol Zn concentrations may be attributed to the Samran mineral belt 

(Moore 1975) and fi-om the mineral mining to the N E region of the sampling site, in 

particular the Mahd adh Dhahab region. Zinc is currently extracted from the Mahd adh 

Dhahab gold mine as a by-product concentrate (amounting to about 3,000 t Zn per year). 
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This is fiirther suggested as the Zn EFcrusi (N=16.7; E=13; SSA=11.2) for the N sector 

which is the highest of all sector other than the RS. 

V exhibited a similar trend in air sector concentrations to the crustal dominated elements. 

This is likely owing to the significant crustal contribution (-30%) made to the total V 

concentrations. However it is important to evaluate any differences in the air mass sector 

concentrations of the concentrations of Vamhrop (as calculated by equation 5.1). This was 

carried out, producing geometric mean concentrations of Vanthrop of 13.7 ng m'^; 14.5 ng 

m"-̂ ; 19.8 ng m""* and 10.5 ng m'^ respectively for the four air mass sectors E , N , SSA, and 

RS. What was of interest was that there were no statistical differences between the air 

sectors Vamhrop Concentrations in the E , N and SSA but all of these sectors were 

significantly greater than the VanOuop concentration in the RS sector. This confirms that the 

observed difference in total aerosol V concentrations between the air sectors SSA and N 

was a result of the greater crustal contribution made to the SSA aerosol population. In the 

previous section seasonality in both vanadium anthropic and crustal aerosol concentration 

contributions were delected, with the variation in the anthropic contributions being 

attributed to either enhanced burning of fossil fuels in the summer period and / or 

enrichment of surface soils as a result of crude oil refining. As both activities lie to the 

north, south and east of the sampling site determination of the specific sources would be 

difficult and hence would likely lead to little regional air sector differences in 

concentrations as illustrated by the trends in the Vamhropic concentrations. 

C u concentrations indicated that E , N and SSA sectors were significantly greater compared 

with the RS population, with the SSA population also being greater than the E sector but 

not the N sector. When the C u amhrop concentrations were calculated for all section E and 

RS sectors were no longer different, indicating that the background aerosol Cuanthopic 

concentrations were the same. However the SSA population Cuamhropic concentrations were 
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still significantly greater than those in both the N and E sectors, indicating a clear Cuamhropic 

source from the Middle to south of Saudi Arabia. 

Ni total concentrations exhibited significant differences in all air sectors, except between N 

and E, in the following order SSA>N=E>RS, such that SSA had the highest Ni 

concentrations which is a characteristic behaviour of the crustally derived elements. 

Calculation of the NianOiropic and assessment of the air mass sectors differences, showed that 

the only change to that as presented on Table 5.7 was that the Nianihropic concentrations 

between the E and RS sectors were not significantly different, indicating that regional 

anthropic sources located to the north, east and south of the sampling site were enhancing 

the background Niamhrpic concentrations influencing the E and RS air sectors. 

Cd exhibits similar concentrations in all wind sectors except between the RS, however, the 

only significant difference is between the E and RS wind sector. This is most likely 

explained by long range transport of material from the North, i.e. Eastern Mediterranean 

regions. This is also supported by the comparative data on Table 5.2, highlighting the 

lower Cd concentrations in the RSMA compared with those observed in the Eastern 

Mediterranean (Southern and Northern Mediterranean). Therefore it would appear that 

there is little influence of regional sources on the Cd aerosol concentrations. 

Pb, as with the majority of the elements, exhibited lowest concentrations in the RS sector 

(6.10 ng m'^) and highest in the SSA (13.2 ng m*"*), the difference being statistically 

significant. Although Pb concentrations in the N sector were lower than those of SSA and 

E (statistically significant for SSA) a higher EFcmsi (28; compared to 23.6 for both the E 

and SSA sectors) was calculated, which is indicative of additional noncrustal sources. The 

enhanced Pb concentrations in the SSA may have been accounted for by the higher crustal 
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influence of the aerosol population. This was investigated by calculating the Pb anihrop. 

concentrations for each of the sectors. These amounted to 9.4, 9.2, 12.8, and 6.9 ng m'-' for 

air sectors E, N , SSA and RS respectively. The trends in air mass sector differences for the 

total Pb were unaltered (except thai there was no significant difference between air sectors 

E and RS) for Pbanthrop concentrations, indicating that the enhanced SSA Pb concentrations 

were not as a result of enhanced crustal contributions and therefore anthropic /sources lie 

to the east and south of the sampling site. As highlighted in an earlier section there lies to 

the south of the sampling site the industrial area of Jeddah which might explain the 

enhanced Pb concentrations. As there were no differences between RS, E and N for 

Pbanihrop Concentrations it would further suggest that there exists a background Pb 

concentration which is perturbed by anthropic sources only to the east and south of the 

sampling site. 

5.5.1 Seasonalit>' of aerosol trace metal concentration associated with different air 

masses. 

The seasonality of the aerosol traces metal concentrations were considered for each of the 

four defined air sectors. Table 5.8 states whether there are any statistical differences 

between summer and winter aerosol elemental concentrations for the different wind sectors 

What is striking is the similarity in seasonality for all air mass sectors, other than the Red 

Sea sector, with summer concentrations being greater, for the majority of elements, than 

those observed in the winter. However, for Cu and Pb there was no seasonal difference for 

the SSA air sector which would imply regular rates of emissions from sources influencing 

this sector which are not influenced by seasonal dust remobilisation, fiirther supporting a 

local distinct anthropogenic emission source influence. It was also apparent from the last 

section that Cu and Pb aerosol concentrations in the SSA air sector were statistically 

greater than those in the Egyptian and northern sectors respectively. Aerosol samples 

derived from the Red Sea sector exhibited no difference in their summer/winter 
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concentrations except for Fe. The lack of seasonality in the trace metals concentration of 

the Red Sea population might be as a result of the manner in which the Red Sea air mass 

populations were defined (i.e. air masses that had resided for at least 3 days over the Red 

Sea exclusively). During this defined time (3 days) it is possible that aerosol particle size 

distribution would change as aerosol associated trace metals which associated with the 

large particle size fi^ction (crustal material) may have undergone deposition lowering their 

concentration in the air mass which led to no significant different in seasonal variations for 

this aerosol population. 

Table 5 . 8 . Summar>' of statistical differences (at 9 5 % confidence level) between 
summer and winter trace metals aerosol concentration dataset for the four defined 
air mass sectors (Y= statistical differences; N= no statistical differences). 

Element Eg>pt N SSA RS 

A l Y Y Y N 
Mn Y Y Y N 
Fe Y Y Y Y 
V Y Y Y N 

Co N N N N 
Ni Y Y Y N 
Cu Y Y N N 
Zn Y Y Y N 
Mo Y N Y N 
Cd Y Y Y N 
Pb Y Y N N 

5 . 6 Inter-elemental relationships within the RSMA 

A statistically significant correlation between different elements will give an indication of 

common processes (source origins, factors affecting concentration during transportation, 

i.e. wet and dry deposition as well as aerosol chemical processes) that affect elemental 

concentrations in an aerosol population. A Pearson's correlation lest has been used (using 

the statistical package Minilab) to investigate any relationships between elements. The p 

value indicates the statistical significance of the correlation i.e. for a p value < 0.05 a 

statistical significance at the 95% confidence level is indicated. Since the aerosol trace 
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metals exhibited log-normal distributions, correlation coefficients between the trace 

elements were determined after taking their logarithms. The total sample datasel and the 

catorgorised samples from different back trajectories (1-Egypt 2-North Saudi 3-South and 

middle of Saudi) were tested. The results are presented in Table 5.9. It is important, as has 

been mentioned in section 4.4, to bear in mind that this test should be taken as a first 

approximation and not as absolute indication of causes/effects between the two variables 

(but as a tool to aid in data interpretation). The complete sample population correlation 

coefficient matrix is presented in Table 5.9a. The correlation coefficients with * represent 

non-stalistically significant relationships. 

Table 5.9 Pearson correlation coefficients between log transformed aerosols trace 
metal concentrations in the RSMA. *indicates a non-significant Person's correlation 
(at p< 0.05; 95% confidence level). 

(a) All aerosol samples 

Cd Al Mn Fe V Co Ni Cu Zn Mo 
Mn 0.700 
Fe 0.819 0.840 
V 0.338 0.511 0.438 
Co 0.413 0.676 0.560 0.370 
NM 0.594 0.739 0.648 0.382 0.623 
Cu 0.501 0.691 0.572 0.354 0.653 0.758 
Zn 0.404 0.587 0.456 0.358 0.509 0.782 0.749 
Mo 0.472 0.640 0.538 0.349 0.641 0.795 0.853 0.716 
Cd 0.346 0.448 0.403 0.308 0.494 0.724 0.643 0.697 0.654 
Pb 0.347 0.382 0.402 0.265 0.241 0.481 0.591 0.583 0.547 

(b) Eg>'pt 

AI Mn Fe V Co Ni Cu Zn Mo 
Mn 0.742 
Fe 0.921 0.780 
V 0.597 0.886 0.614 
Co 0.548 0-755 0.608 0.688 
Ni 0.653 0.868 0.648 0.940 0.644 
Cu 0.502 0.755 0.537 0.839 0.629 0.873 
Zn 0.320 0.613 0.340 0.774 0.453 0.796 0.841 
Mo 0.433 0.676 0.457 0.812 0.572 0.810 0.864 0.789 
Cd 0.292 0.498 0.320 0.675 0.508 0.731 0-669 0.757 0-685 
Pb 0.169* 0.138* 0.240 0.281 0.036* 0.329 0.316 0.543 0.336 

Cd 
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(C) North Saudi Arabian 

Cd A l Mn Fe V Co Ni Cu Zn Mo 
Mn 0.708 
Fe 0.914 0.886 
V 0.346 0.489 0.392 
Co 0.264* 0.636 0.461 0.417 
Ni 0.712 0.872 0.793 0.385 0.515 
Cu 0.481 0.623 0.609 0.398 0.584 0.664 
Zn 0.510 0.628 0.558 0.440 0.537 0.785 0.803 
Mo 0.456 0.588 0.569 0.411 0.626 0.603 0.808 0.692 
Cd 0.566 0.608 0.552 0.402 0.308* 0.802 0.542 0.691 0.439 
Pb 0.560 0.559 0.580 0.427 0.417 0-596 0.812 0.751 0.656 

(d) South and Middle of Saudi Arabian 

A l Mn Fe V Co Ni Cu Zn Mo 
Mn 0.598 
Fe 0.859 0.804 
V 0.402 0.614 0.662 
Co 0.039* 0.605 0.196* 0.368 
Ni 0.709 0.837 0.762 0,506 0.469 
Cu 0-214* 0.543 0.279* 0.441 0.715 0.586 
Zn 0.412 0.644 0.419 0-354 0.648 0.747 0.890 
Mo 0.406 0.669 0.511 0.393 0.660 0.674 0.838 0.796 
Cd 0-416 0.159 0-427 0.275 0.056 0.353 0.368 0.427 0.484 
Pb 0.251 0.292 0.306 0.358 0.300 0.339 0.467 0-342 0.539 

(c) Red Sea 

Al Mn Fe V Co Ni Cu Zn Mo 
Mn 0.330* 
Fe 0.452 0.741 
V 0.447 0.868 0.612 
Co 0.158* 0.613 0.499 0.364* 
Ni 0.309* 0.800 0.565 0.877 0.391* 
Cu 0.164* 0.619 0-447 0.590 0.292* 0.838 
Zn 0.040* 0.463 0.303* 0.531 0.098* 0.726 0.716 
Mo 0.189* 0.661 0.516 0.697 0.492 0.879 0.751 0.609 
Cd 0.044* 0.506 0.375* 0.584 0.237* 0.810 0.847 0.691 0.760 
Pb -0.049* 0.264 0.030* 0.415* 0.029* 0.530 0.596 0.459 0.516 

0.511 

Cd 

0.368 

Cd 

0.693 

Trace elemental aerosol concentrations for the whole dataset are significantly correlated 

(Table 5.9a) highlighting the dominance of the crustal source influence on trace metal 

aerosol concentrations in this region. Similar findings for the Egyptian and Northem Saudi 

sample sets were obser\'ed. With the exception for Co and Cd in the North Saudi trajectory 
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samples as Co is not correlated significantly with A l and Cd is not correlated significantly 

with Co. However, Pb did not have a statistically significant correlation with both A l and 

Mn in the Egyptian sample set whereas in the North Saudi Arabian sample set Pb is 

significantly correlated with A l , Mn and Fe. It has been stated in section 5.3.1 that Pb is, to 

a certain extent, affected by long-range transport and exhibits a seasonal variability in its 

concentration (with higher concentrations in the summer than the winter, section 5.4) 

which is similar to that for Al and Fe. Seasonality in the Pb concentration is unlikely to be 

as a result of a higher input of the crustal material in the summer owing to its dominant 

anthropogenic source. However, this seasonality in the Egyptian sample set could be due to 

the fact that during winter in the potential source area (North Eastern Europe) aerosol Pb 

concentrations may be lower in the atmosphere owing to rain and snow scavenging, Al i 

and Bacso (1994). Moreover, a seasonal variation in Pb concentration in Eygpt (with 

higher Pb concentrations in summer compared to those in winter) has been reported by Al i 

and Bacso (1994). However, Hassanien et al., (2001) have reported a contradictory 

behaviour for Pb as the concentration of Pb in winter is higher than that obser\'ed in the 

summer owing to temperature inversions occiuring in the Egyptian atmosphere, mainly 

around Cairo, entrapping pollutants in the local atmosphere. This could result in a lower 

long range transport fltix in the winter from Egypt compared to that during the summer, 

possibly explaining the seasonally enhanced Pb concentration observed in the Egyptian air 

sector at Jeddah during the summer period. 

In the North Saudi Arabian air mass sector sample seasonality in Pb concentrations seemed 

to be affected by the mineral dust input as the Pb concentration co-varies with the 

concentration of crustally derived elements (i.e. A l and Fe). Therefore seasonality in this 

sample set could be due to: 

(i) anthropogenic input (e.g. suspended of contaminated Pb soil) 
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(ii) interaction of anthropogenic Pb aerosol with Saharan dust (impact on dust surface) 

rather than anthropogenic source inputs. 

However, for the samples associated with the Middle and Southern Saudi origin A l , Fe and 

Mn exhibit significant co-variance whereas Co, Cu, Cd and Pb do not co-vary with any 

crustally derived elements. This is would indicate that Pb, Cd, Co and Cu have unique 

sources to the south of Jeddah, most likely arising from the southern industrial area of 

Jeddah and associated anthropogenic activities. 

For the Red Sea aerosol population, as expected, the crustal source was not the dominate 

source. This is illustrated by the insignificant relation between crustally derived elements 

and A l , in contrast with the other air sectors (e.g. SSA) where crustally derived elements 

had a high correlation with Al as shown earlier in this section. However, Ni and Mn have 

the most prominent correlation which co-varies significantly with all elements except A l 

(along with Co which do not co-varies significantly with Ni). 

5.7 The elemental solid state speclation of the RSMA 

The statistical summary of the elemental solid state speciation signal is presented in Table 

5.10. In addition, the elemental solid stale speciation signals are compared in Table 5.11 

with those determined from other aerosol populations, including those from the Plymouth 

aerosol described in Chapter 4. 

Al and Fe are associated predominantly with the residual fraction (Stage 2), amounting to 

on average 94+3.1% and 97+1.6% for Al and Fe, respectively. Compared with the 

Plymouth aerosol population the contribution to the total speciation o f the exchangeable 

fraction was lower, being 0.3 % for both elements compared to 1.5 % and 2.2 % for Al and 

Fe respectively. 
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Table 5.10 Summar>' of the elemental aerosol solid state speciation in the RSMA 

Element Stage 1 Stage 2 Stage 3 

% (S.D.) Range % (S.D.) Range % (S.D.) Range 

Al 0.3 (0.28) <0.I-I.4 6.0(2.9) 1.9-16.8 93.7(3.1) 82.3-97.7 

Co 43.2 (28.7) <1-97 33.6(29.3) <l-87 23.2(16.3) 2.5-59.8 

Fe 0.3 (0.3) <0.1-1.6 3.2 (1.4) 0.9-6.4 96.5 (1.6) 91.9-99.0 

Mn 62.7 (11.6) 35.9-89.5 29.5 (12.8) <l-62.3 7.8 (6.8) 0.5-22.5 

Pb 36.0 (15.6) 13.6-82.5 59.2 (16.8) <1- 85.7 4.8 (5.9) <l-23.8 

Zn 53.5 (13.4) 22-73.7 31.3 (12.2) <l-64.9 15.7 (12.4) 9.2-52.9 

It was also clear that the contribution to the oxide/carbonate phase for Fe was much lower 

(3.2%) than that observed at Plymouth (42%). This is most likely due to the lower 

anthropogenic and correspondingly higher crustal contributions to the RSMA, leading to 

the lower potential for inter-aerosol interactions during atmospheric transport when 

evaporation/condensation cycles occur, such as those suggested by Spokes et. al, (1994). 

During these cycles the pH of the surface micro-layer of the aerosol particulates may 

experience a significant decrease which may re-distribute the Fe to a more soluble solid 

phase (i.e. stage 3 to stages 1 and /or 2; stage 2 to stage 1) in a similar manner to that 

previously discussed by Spokes et al., (1994). These observations are consistent when we 

compare the speciation signal for A l and Fe in the two "end-member" aerosols, Saharan 

dust and LUAP. Both speciation signals of A l and Fe for Ssiharan dust and LUAP are 

similar to those obser\'ed in the RSMA and Plymouth aerosol samples respectively. 

For Pb and Zn, as would be expected, there are lower associations with the exchangeable 

fraction in the RSMA compared with that in the Plymouth aerosol population and indeed 

compared with most anthropogenically influenced aerosol populations (Table 5.11). What 

is surprising is that for the RSMA, the oxide and carbonate phases appear to be much more 

important than the residual phase, in comparison with the Plymouth coastal and semi-urban 
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aerosol. This is further illustrated on Figure 5.7 where the eiemeniai solid state speciaiion 

signals are presented and compared graphically between a Saharan dust end-member 

(Chester et al. 1989) and the RSMA samples. However, for both Zn and Pb the sp>eciation 

signal is similar to that observed in the Eastern Mediterranean aerosol which is also 

strongly influenced by crustal inputs. 

Table 5.11. Comparison of the elemental solid state speciation determined in 
European and Saharan influenced iien^sol populations (expressed as a of the total i 

Klement R S \ I A ' Saharn" Eastern \N estern 11 Pl> mouth 
and Med. • Med^ .Aerosol ̂  

Stages 
Ai-sy 0.3 0.05±0.015 2.4+1.8 4.3±2.5 5.6±4.8 1.5 
A1-S2 6.0 14.4+2 3.6+2.2 4.2+1 12.1+5.8 15.4 
\\'S3 93.7 85.6+2 94.0+2.5 91.5+2.4 82.3+7.2 84.2 
Fe-57 0.3 0.03±0.0()3 1.7+1.2 8.3+8.1 9.9+6.2 2.2 
Fe-S2 3.2 9.5±2 4.9+3.3 0.3±8.1 31.9+11.8 41.8 
Fe- .̂̂  90.5+2 93.4+3.9 91.4+8.1 58.2+12.2 55.9 
Mn-S/ 62.7 22.8+1.1 43.5±10.0 63.3+7 44.2+13.2 66.2 
Mn-.S2 29.5 34.2+2.6 13.4+8.4 nd 22.7+12.3 3.3 
Mn-5.^ 7.8 43+2.7 43.5±5.8 36.7+7 33.1 + 13.7 30.5 
zn-s; 53.5 0.2±0.35 51.1 + 18.4 82±6.8 77.9+9.8 -
Zn-S2 31.3 8.4+3.7 26.7+6.6 0.5+1.6 8.8+6.1 
Zn-S? 15.7 91.4+3.8 22.2+16.1 17.5+6.5 13.2±8.6 
Pb-57 36 5.7+5.1 72.0±20.0 97±3.5 81.5±6.9 80.8 
Pb-52 59.2 28.8+5.7 22.0+14.8 nd 1 1.1+6.7 : 
Pb-S3 4.8 65.5±6.2 6.0+7.0 2.7+3.4 7.4+4 17.3 

Current study: "Chester et al.. (1^8^). 'Kocak el al.. (2007); ^Nimmo (unpublished): ^Chester ei al.. (1989): 
L U A P = Liverpool urban paniculate material: ^'Current studs 

2n Pt- W Fe Mn Zn Pt' 

Kiiiure 5.7 C omparison of the elemental solid state spu iatitm signal for the R.SM.A populati(»n 
and that of the Saharan aerosol end member population (Chester et al., 1989). 
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For the former, the exchangeable phase associated metal may be mobilised into the particle 

surface aqueous fibn and may subsequently re-adsorb on to adsorptive sites on the aerosol 

particle surfaces (such as oxide surfaces, mineral lattices) or form complexes of lower 

solubility in the aqueous f i lm. Mechanisms of re-adsorption on the surface of aerosol 

material (which happened during the transport of dust in the atmosphere) which include 

dissolution of elements followed by condensation and finally re-adsorption (see Spokes et. 

al., 1994) are more likely with interactions of anthropogenic material with increasing 

crustal material due to the to the increase of the reaction area. Such a similar solid phase 

shift for Pb has been recorded by Chester et al., (1995). It is also clear that there is a strong 

negative relationship (r~0.937) between % stages 1 and 2 which would further support the 

phase transfer of Pb during atmospheric transport. 

As has already been staled Zn is enriched in the RSMA, hence the chemical character of 

the local source material might have had an influence on the solid state speciation of the 

aerosol Zn. The majority of zinc occurrences in Saudi Arabia are hosted by low-grade 

volcanosedimentary rocks in the Arabian Shield. However, along the Red Sea coast, Zn 

also occurs in sandstone and carbonate minerals, as well as sphalerite occurrences in 

carbonate intersects in deep boreholes east of the Arabian shield (Saudi Geological Survey; 

web page within references) which might explain the importance of the carbonate phase 

for Zn. In addition Zn might be associated with the iron sulphide in sphalerite minerals 

being released in stage 2 during the sequential leach procediu-e. However no significant 

relationship (r—0.205) was detected between stage 2 of Zn and Fe, suggesting this is not 

an important mechanism / source. 

Manganese appears to be distributed between the three stages (see Table 4.20 and Table 

5.9) with stage one dominating in aerosol populations afFecled by the anthropogenic 
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contributions (LUAP) and to a lesser extent samples affected by crustal input (Eastern 

Mediterranean) where it is distributed between the three stages in the Saharan aerosol. 

Two possible explanations for the Pb speciation signal might be considered; (i) as Pb could 

have undergone significant long range transport aerosol from the North, chemical 

modifications may have taken place during transport, liberating a higher proportion of Pb 

from the exchangeable phase and / or (ii) a contribution of local crustal material containing 

higher carbonate minerals. 

However, in the RSMA the third stage has a low percentage (ca. 8 % ) . Co is distributed 

between the three stages with a comparatively low third stage percentage (23%) compared 

with a typically higher percentage in the literature. 

5.8 Atmospheric dry deposition of trace metal to the Red Sea 

The dry deposition of aerosol associated trace metal is usually calculated using the 

equation presented in section 4.6, i.e. 

F = ( C x V d x T ) x I O ^ 

Where F is the dry depositional flux (ng cm'' yr"'), Va is the elemental aerosol settling 

velocity (m s*') and C is the geometric trace metal aerosol concentrations (expressed as ng 

m'-*), preferably taken from a large data base of sample collection spanning at least an 

annual period and T is the number of seconds per year. The major limitation of such a 

calculation, as emphasised in section 4.6, is the chosen value for the elemental which is 

being influenced by the aerosol particle size, humidity and wind speed. Therefore this 

component of the calculation is more open to error. Duce et al. (1990) suggested the 

application of a Vd of 1 cm s"' for elements associated predominantly with crustally 

derived material, whereas for those associated with anlhropic derived material, a settling 

velocity of 0.1 cm s'' would be more suitable. Table 4.23, in Chapter 4, highlights the 

range of Vd's that have been used in the literature for contrasting European coastal 
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systems. Kocak et al., (2005), recently calculated a size weighted settling velocity using 

two stage size ft-actionated aerosol data for the metals A l , Fe, Mn, Cu, Zn and Pb yielding 

Vd of 1.73, 1,73, 1.43, 1.1, 1.11 and 0,8 cm s"' respectively for the Eastern Mediterranean 

atmosphere. It is clear that the allocated values for metals such as Zn and Pb are 

significantly larger (0.8 - 1.1 cm s'') than those suggested by Duce et al., (i.e. 0.1 cm s"') 

and other literature values (Flament 1985; Ottley and Harrison, 1993; Injuk et al., 1998; 

Rojas et al., 1998; see Table 4.23). Vd for the anthropically derived elements being lowest 

in the North Sea atmosphere, compared with the Western and Eastem Mediterranean 

atmosphere. The higher elemental Vd values calculated for the Eastem Mediterranean 

atmosphere (Kocak et al., 2005), for the traditionally anthropogenically derived elements 

are likely to be due to (i) a more significant crustal (i.e. comparative lower EFcrusi values) 

contribution made to the aerosol concentrations of the trace metals owing to a greater 

influence of the surrounding arid land masses (ii) crustal particles acting as a surface on 

which adsorption of finer anthropic derived particles may take place, via impaction during 

atmospheric transport, which would lead to a greater observed settling velocities than that 

predicted or modelled owing to co-deposition. This is supported by the recent work by 

Falkovich et al., (2004) who observed the interaction of mineral dust originating from the 

Sahara with semi-volatile organic compounds (along Israel's coastal plain), and identified 

as specific tracers for urban air pollution. This would suggest that dusts may provide 

surfaces for uptake of anthropogenic material, which would then lead to potential chemical 

interactions and modifications during transport of the combined aerosol material. 

Unfortunately, for the current study, no size fractionated aerosol sampling was carried out, 

so an approximation of the elemental settling velocities in a similar manner to that carried 

out by Kocak et al., (2005) and Spokes et al., (2001) could not be carried out. However, 

given the RSMA elemental concentrations and corresponding EFcmsi, it is clear that the 

RSMA is more strongly influenced by cruslal sources and hence the aerosol population is 

likely to have a larger size particle spectrum than other reported aerosol populations. 
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Therefore for the current study, owing to the lack of local Vj ' s , those recently calculated 

for the Eastern Mediterranean aerosol, (Kocak el al., 2005) were considered to be the most 

representative literature values for the RSMA, although i f in error they are likely to be an 

underestimation. For those elements for which Vd wasn't calculated by Kocak et al., (2005) 

for the Eastem Mediterranean atmosphere (i.e. N i , Co, Mo, V, Cd) using their EFcrxist 

(Table 5.3), a Vd was allocated to them based on a comparison with the EFcrusi of those 

elements which had an allocated Kocak et al., (2005) Vd. Therefore, the following Vd's 

were allocated ; Co-1.48 cm s''; N i , V and Mo were all allocated a Vd of 1.1 cm s"'; and 

Cd was allocated a V j of 0.1 cm s'', whilst Pb was given a Vdof 0.8 cm s"'. 

Chester et al., (1991) defined the elemental Vd for the Arabian Sea marine aerosol, based 

on their EFcmsi and M M D (mass medium diameter). Therefore, elements which (i) had 

EFcrust< 10 with a M M D >2.5^m were allocated a Vd of 1.5cm s " (Al , Fe, Mn, Ni, Co Cr, 

V and Cu) and (ii) had an EFcmsi > 10 and a M M D < 0.55|im were allocated a Vd (Zn, Pb, 

and Cd) of 0.5 cm s"'. Hence for the current study we used comparatively higher Vd's for 

A l , Fe, Zn and Pb, but a similar value for Mn and a lower value for Cu. 

These were then used, along with the elemental geometric aerosol concentrations for each 

of the air mass sectors (Table 5.6) and the appropriate temporal weightings (Table 5.5), to 

lake into account the temporal contribution made by each of the air mass sectors during the 

course of the collection period. This allowed the calculation of the air mass weighted total 

elemental dry deposition fluxes to the Red Sea, expressed as ^g m"~ yr"' (mg m~^ yr ' for 

A l , Fe and Mn). These are presented on Table 5.12 and compared with a selection of 

elemental total dry deposition fluxes presented in the literature for other coastal regions. 

Two sets of data are presented for the Red Sea; those calculated as described above and 

those using the overall aerosol trace metal concentrations (Table 5.2), instead of the air 

mass sector weighted concentrations. It is clear that very little difference is obser\'ed in the 
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dry depositional fluxes calculated by the two different approaches (< 3 % for A l , Fe, Ni , 

Co, Cu, Pb, Zn, Cd, Mo and around 5 % difference for Mn and V). 

Clearly, as we have seen for the aerosol concentrations, the total dry deposition fluxes for 

the crustally derived elements (Al , Fe, Mn, and Co) increased in the following order; North 

Sea < Western Mediterranean < Eastern Mediterranean (Northem Levantine basin) < 

Eastern Mediterranean (Southern Levantine basin) < RSMA. This is not unexpected as the 

trends represent the progressive greater geographical influence of arid land masses on 

marine aerosol populations and hence the progressively increased re-suspension of crustal 

material into the atmosphere. 

Comparing the total dry depositional fluxes of the predominantly anthropogenically 

derived elements between sites is a little more challenging owing to the differences in the 

applied Vd's in the flux calculations. Lower V j ' s were adopted for Western Mediterranean 

aerosol dry deposition fluxes (typically 0.1 cm s"'), which were probably underestimates of 

the real Vd's. What we can be reasonably sure of is that the dry depositional fluxes in the 

RSMA for these elements are (i) lower than those calculated for the two Levantine basins 

of the Eastern Mediterranean for Pb, (ii) comparable for Cd and (i i i) enhanced in the 

RSMA for Zn (as the same settling velocities were adopted for both these studies). 

Table 5.12 also highlights the total deposition of trace metals to the Arabian Sea, 

calculated by Chester et al., (1991). These figures include an estimate for wet deposition as 

well as dry depositional fluxes. In addition, different Vd's were adopted (see above). 

However, comparing the two sets of fluxes would indicate that for A l , Fe, Mn, Cu, Ni and 

Co the fluxes are around twice as great for the RSMA. This clearly is due to the less 

remote location of the RSMA sampling site compared with that adopted by Chester et al., 

(1991). Of the remaining metals Zn had the highest ratio of Arabian : RSMA fluxes, being 
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4.5, most likely as a result of the Zn enriched region around the Eastern Red Sea coastline, 

whereas for Cd, the ratio was 0.5, indicative of a progressively lower transport of Cd to the 

Arabian Sea from the Northem industrialised nations. 

However, it is clear that the greatest uncertainty in dry depositional fluxes is the choice of 

the elemental Vd. For the RSMA we have assumed a similar rate of deposition as that for 

the Eastern Mediterranean, a crustally influenced aerosol. However it is likely that owing 

to the RSMA being more dominated by crustal contributions it is likely that the real Vd's 

are greater. Therefore there is an urgent need to define the Vd's at this location by (i) the 

collection of size fractionated aerosol samples (using cascade impactor samplers) enabling 

the size fraction spectrum of the aerosol population to be defined and (ii) collection in 

parallel of dry deposition samples. 

Recently dry deposition estimates have been carried out at sites in and around Jeddah by 

El-Sayed et al., (2004), during 2002 and 2003. The dust was collected in intervals using 

surrogates samples, followed by the weighing of collected dust and its acid total digestion 

(HNO3 / HF) followed by spectroscopic analysis of the acid digests for a suite of trace 

elements. The average annual dry depositional fluxes observed for this study are presented 

in Table 5.12, The ranges presented on Table 5.12 represent the lowest and highest annual 

mean dry depositional fluxes. Typically the lowest depositional fluxes were associated 

with a site located to the North of Jeddah - not far from the current sampling site, whereas 

the highest fluxes were generally observed at the sampling site located in the southem area 

of Jeddah. Given the likely errors associated with such a calculation the current agreement 

would suggest that an acceptable choice of settling velocities was made. However, Cd dry 

deposition fluxes for the current study were lower than the range calculated by El-Sayed 

(2004) which would suggest that the adopted settling velocity for Cd for the current study 

maybe too smalL 
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5.8.1 Atmospheric trace metal total dr>' and "bioavailable" inputs into the Red Sea 

The total dry deposition input (tons yr"*) of trace metals to the Red Sea may be calculated 

using the dry depositional fluxes presented in Table 5.6, along with the known surface area 

of the Red Sea (438 - 450 x 10̂  km") using the following equation; 

Total dry atmospheric inputs (tons >T'') = dry deposition flux (mg m"^ yr"' * 1/1,000) (air 

mass weighted) x surface area (km~) 

The total dry elemental atmospheric inputs are presented on Table 5.13 and the order of 

increasing inputs are as follows; Cd < Mo < Co < Pb = Ni < Cu < V < Zn < Mn < Fe < A l . 

Section 5.4 highlighted the seasonal differences between the trace elemental 

concentrations. The concentrations for the different seasons were then used to calculate the 

inputs for each metal for each of the two seasons. A l , Fe, Cd and V had > 60 % of their 

total annual inputs (Al and Fe 61 %; Cd - 61 % and V - 68 %) occurring over the summer 

season, whereas the remaining elements, the inputs were equally split between the two 

seasons (Mn - 56 %; Ni - 55 %; Co - 45 %; Cu and Pb - 50 %; Zn - 52 %; Mo - 48 % for 

the summer). 

This might sound surprising owing to the higher summer aerosol elemental concentrations, 

however it has to be remembered that in our definition the summer months lasted for five 

month whereas the remaining part of the year was classed as the winter period. Hence the 

seasonal inputs had to be weighted accordingly, lowering the relative importance of the 

enhanced summer concentration effect on the seasonal inputs of most of the trace metals. 
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Table 5.13. The atmospheric total dr>' inputs (tons yr ') of trace metals to the Red Sea. 
The "bioavailable" fraction is quoted in brackets for selected elements. (* after Ko^ak 
et. al., 2006; ^ Saharan samples carried out in this study). 

Element Minimun Maximun 

Al 630,000 (1890) 647,000(1941) 

Fe 533,000(1559) 548,000(1644) 

Mn 10,200 (6426) 10,500 (6615) 

Cu 1610(579.6)* 1660 (597.6)* 

Zn 4780 (2533) 4910(1718) 

Pb 1540(554) 1580 (569) 

Cd 13 (10.1)* 14(10.9)* 

Ni 1100 (66)* 1140 (68.4)^ 

Co 220(95) 227 (98) 

Mo 44 45 

V 2360 2420 

As with the atmospheric depositional budgets made for the English Channel (section 4.7), 

using the sequential leach data for the RSMA it is also possible to calculate the 

"bioavailable" fraction of the total atmospheric dry deposition by assuming that the 

"bioavailable" fraction is that which is associated with the "exchangeable" fraction as 

determined using the sequential leach approach. The "bioavailable" fraction of the total dry 

deposition input of A l , Fe, Mn, Co, Pb and Zn would therefore be 0.3 %, 0.3 %, 63 %, 36 

% and 54 % respectively. The "bioavailable" dry depositional inputs are also presented on 

Table 5.13. The "bioavailable" or exchangeable fraction is an operational definition, and 

for the current study is based upon the first stage (ammonium acetate) of the sequential 

leach scheme (e.g. Chester el. al., 1989). However, different definitions have been reported 

in the literature, for example Turner et. al., (2001) used the Pepsin enzyme to quantify the 

"bioavailable" fraction in sediments. Other adopted approaches included those by 

Fernandez et al., (2002) and Voutsa and Samara, (2002), with the applied technique being 
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dependent upon the scientific context within which the data is to be applied. This has been 

the case more recently for various studies carried out to define the "solubility" of Fe 

associated with the marine aerosol (e.g. Chen and Siefert, 2003; Bonnet and Guieu, 2004; 

Hand et al., 2004; Desboeufs el al., 2005; Baker et al., 2006a, b), leading to non-

comparable datasets. Therefore there is an urgent need to assess the relative efficiencies of 

the different extraction stages of these techniques to facilitate more informed comparisons. 

In addition, it is crucial to show how a metal's aerosol solid state speciation relates to its 

actual seawater solubility. A limited number of previous studies have attempted to do this 

(Chester et al., 1993, 1994b) and these suggest that the exchangeable fraction represents an 

upper limit of their seawater solubilities. 

5.9 Trace metal budget within the Red Sea 

The Red Sea is a long narrow basin connected to the Indian Ocean (Arabian Sea) via the 

Strait of Bab Al-mandeb, it streatches from 30*^ to 12.5 ° N (2000 km) with a typical 

width of 250 km (Morcos 1970) and average depth of 450 m (Degens and Ross, 1969) (see 

section 5.2.1 for more details) Figure 5.8 presents a simplified model of the trace metal 

fluxes in the Red Sea with exchange / transport depicted by arrows. From this study we 

have atmospheric input estimates which we will assume is the same for all the regions of 

the Red Sea surface. Red Sea water exchange with the Indian Ocean occurs through three 

layers (Bethoux, 1988), (i) incoming surface layer from the Gulf of Aden (ii) a seasonal 

sub-surface water which is incoming from July-September and out going from October-

December and finally (iii) outgoing Red Sea Deep water. However, due to the lack of data 

of trace metal concentrations (particulate and dissolved) for the Red Sea a two layer model 

only will be considered in calculating the trace metal budget for the Red Sea. Generally, 

the circulation pattern in the Red Sea is as follows: the surface water moves toward the 

north, whilst travelling north the surface water loses buoyancy, mostly due to evaporation, 

leading to an increase in its density (Sofianos and William, 2003). The down-welling of the 
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Ideally, to calculate the trace metal budget within the Red Sea accurate data of water mass 

movement as well as reliable dissolved and particulate trace metal concentrations for 

representative water masses are required. In addition, estimates of trace metal sediment 

exchange between deep waters and the surface sediments are required, in addition to 

atmospheric inputs. 

Dissolved trace metals concentrations used in the current study in surface seawalers have 

been adopted from Al-shiwafi el al., (2005) whereas deep water concentrations of 

dissolved trace metals has been adopted from Shridah et al., (2004). Al-shiwafi et al., 

(2005) carried out their study in the South of the Red (Yemen) whereas, Shridah et al., 

(2004) carried their study in the north of the Red Sea (Egypt). Shridah et al., (2004) 

collected seawaler samples from the northern Red Sea and Gulf of Aqaba at different 

depths on board RV/METEOR cruise 44. They filtered each of the 2L seawater sample 

using a 0.45 |im nitrocellulose membrane filter. Filtrates were acidified with nitric acid to 

pH 2 and subsequently metals were pre-concenlrated prior to analysis. Pre-concentralion of 

the metals was carried out by complexation with ammonium pyrrolidine dithiocarbamate 

(APDC) and then extracted using methylisobutylketone (MIBK) and back extracted into an 

acidic aqueous solution. Atomic absorption spectroscopy was used to measure metal 

concentrations. A certified reference seawater (NASS-5) was used to monitor the quality of 

the analytical data. However, Al-shiwafi et al., (2005) measured trace metals in the 

southern Red Sea (cost of Yemen) the samples were collected in a pre-cleaned 2.5 L about 

10 cm below seawater surface (to avoid floating materials) then the samples were filtered 

through 0.45 |im Millipore filters. Pre-concentration of the metals was carried out using a 

column of Chelex-lOO resin. The metals were eluted using silica distilled 2 M HNO3 

followed by evaporation of the solution near dryness. Finally one mL of 6 M ITNO3 was 

added and the volume was made up to 25 mL using deionized water, followed by analysis 

using flame atomic absorption spectroscopy. 
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The filtration procedure used in these two studies involved the use o f a 0.45 |am membrane 

filter, however particularly for soluble Fe, unless a pore size o f < 0.03 ^ m (Hurst and 

Bruland 2006) or < 0.02 [im (Cullen et al., 2006) is used, the operational fraction < 0.45|xm 

w i l l not only include dissolved Fe but also a colloidal fraction. This might explain the 

relatively high concentrations (23.9 n M ) reported by Shridah et ai., (2004). The 'dissolved' 

high Fe concentrations reported by Shridah et al., (2004) could also be due to sedimental 

release o f reduced Fe followed by its complexation by organic ligands, enhancing its 

solubility above its inorganic solubility product ( -0 .7nM; Hiemstra and van Riemsdijk, 

2006) and release via the bacterial regeneration o f fal l ing biotic material. 

Table 5.! 4 presents the detected dissolved concentrations (^ig L ' ' ) o f trace metal in deep 

and surface water and Table 5.15 highlights the water mass layer transport at Bab A l -

mandeb. The inf lux, efflux (m^ s'') and budget (t yr"') o f trace metals at Bab Al-mandab 

have been calculated using the dataset in Tables 5.14 and 5.15 using the budget equations 

(see Appendix C). 

To calculate the budget the fol lowing assumptions had to be made: 

(i) The concentration at the north Red Sea (deep layer) is equal to that in Southern 

Red Sea deep waters. 

( i i ) The Red Sea is consistently o f a two layer (surface and deep) system. 

In addition, the limitations were as follows: 
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(i) The lack o f meial concentrations (dissolved and particulate) at Bab Al-Mandab 

(at different depths; surface, subsurface and bottom layer). 

( i i ) Data for metal input from the sediment to benthic water layers were not 

available. 

Table 5.14. Dissolved trace metal concentrations in surface and deep waters of the 
Red Sea, expressed as L"* (nM). 

Elment Surface layer Deep layer 
Al-shiwaf i el al., (2005) Shridah et al., (2003) 

Fe 0.095 (1.7) 1.34 (23.9) 

Cu 0.060(0.95) 0.10(1.58) 

M n 0.035 (0.64) 0.09(1.64) 

Co 0.665 (11.3) 0.12 (2.03) 

Ni 0.075 (1.29) 0.09(1.55) 

Zn 0.047(0.73) 0.17(2.66) 

Cd 0.950(8.33) 0.33 (2.89) 

Pb 0.070(0.34) 0.27(1.3) 

Very few studies have been carried out to measure the water mass exchange at Bab A l -

mandab (Vercelli , 1927; Siedler, 1968 and Maillard and Soliman, 1986). However, indirect 

measurements have been carried out (Patzert, 1974 and Bethoux, 1988) using ship's dr i f t 

observations and atlas and hydrographic data at the straits. Patzert, (1974) used an 

evaporation rate o f about 2.1 m yr ' ' to estimate the annual mean surface transport to be 33 

* 10"̂  m** s'\ However, Bethoux (1988) used an evaporation rate o f 2.4 m yr"' and 

estimated the annual mean surface transport to be 38* 10"̂  m^ s'V The Bethoux (1988) 

layer transport at Bab Al-mandeb strait (Table 5.15) has been adapted for the calculation o f 

the trace metal f lux through the strait as it more recent than the estimates o f Patzert, 1974. 

A summary o f the water mass balance values presented in the literature are presented in 

Table 5.15. 
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Table 5.15. Literature estimates of the layer transport (surface, sub-surface and deep 
layer) at Bab Al-mandeb (inflow +, Outflow in 10^ s '). 

Month Flux Vcrcelli Sicdicr Patzcrt Maillard and Bcthoux 

(lO'mV) (1927) (1968) (1974) Soliman (1986) (1988) 

01 F ŝiirface 5 7 7 2 

Psub-surface 0 0 

Fdeqj - 5 4 - 6 7 

0 2 ^surface 4 0 7 0 

Fsub-surface 0 0 

Fdccp - 3 7 - 6 7 

0 3 ^surface 5 8 5 7 6 9 

Fsutv-surface 0 0 0 

f dcq> - 4 9 - 5 4 - 6 7 

0 4 ^surface 4 2 6 8 

Fsub-surface 0 0 

Pdccp - 3 9 - 6 7 

0 5 ^surface 3 8 6 7 

F sub-surface 0 0 

^decp - 3 5 - 6 7 

0 6 Fsurfacc - 0 6 6 7 

^sub-surface 0 9 0 

Fdecp 0 - 6 7 

0 7 f surface - 2 0 - 1 6 - 2 6 

P sub-surface 2 3 2 5 3 5 

Fdecp 0 - 0 6 - 0 9 

0 8 Fsiirfacc -21 - 2 5 - 2 3 

Fsub-sur(ace 2 4 3 3 3 5 

Fdeep 0 - 0 5 - 0 9 

0 9 f̂ surfacc - 0 9 - 1 4 - 2 0 

f'sub-surface 12 2 0 3 5 

Fdccp 0 - 0 3 - 0 9 

10 ^surface 5 2 5 4 

^sub-surface 0 - 3 5 

f'deep - 4 9 - 0 9 

11 ^surface 5 8 5 7 5 0 

f̂ sub-surfacc 0 0 - 3 5 

Fdeep - 4 2 - 5 4 - 0 9 

12 ^surface 51 4 9 

Psub-surCicc 0 - 3 5 

f̂ decp - 4 8 - 0 9 

Table 5 . 1 6 shows the budget for the different elements in the Red Sea calculated using 

atmospheric dry deposition ("bioavailable") dissolved concentrations o f trace metals in 

surface (input) and deep (eff lux) Red Sea waters wi th the annual layer transport. 
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Table 5.16. Elemental fluxes to and from the Red Sea (t yr'') . 

Element Atmospheric (dry Input Efflux to Total Net flux % 
input) "bioavailable" from the the Arabian input (+) Atmospheric 

flux (+) Arabian 
Sea (+) 

Sea (-) / Net fluxes 

Fe 1644 14889 192697 16533 -176164 0.93 

Cu 598 9404 14380 10002 -4378 14 

M n 6615 5486 12942 12101 -841 786 

Co 98 104228 17256 104326 87070 0.11 

N i 68 11755 12942 11823 -1119 6 

Zn 1718 7366 24447 9084 -15363 11 

Cd 11 148897 47455 148908 101453 0.01 

Pb 569 10971 38827 11540 -27287 2.1 

From the calculated estimated budget (net f lux) , Table 5.16, it would appear that the Red 

Sea is a net source o f elements to the Arabian Sea for most o f the considered elements 

except for Co and Cd. The excess quantities o f the elements are likely to have been derived 

f rom undefined sediment inputs. This input f rom sediments across the Red Sea axis seems 

to be a much more significant source than the atmospheric input for Fe which is 

contradictory to what would have been anticipated in a semi-enclosed basin surrounded by 

arid areas. 

The current study has defined the atmospheric component o f the trace metal budgets o f the 

Red Sea. However sediment exchange with the deep water as wel l , as the direct input o f 

trace metals through the hydrothermal discharge, have not been defined. Clearly there is a 

need for future studies to define the exchange o f trace metals through the Straits o f Bab A l -

mandab and in particular between the sediments and the deep waters o f the Red Sea, before 

realistic trace metals budgets for the Red Sea can be presented. 

5.10 Conclusions 

The fol lowing points may be concluded f rom this study at the Jeddah site: 
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o High aerosol loadings o f the predominantly crustally derived elements are observed 

( A l , M n and Fe). They are in excess o f those observed in the Southern and 

Northern Levantine basin o f the Eastern Mediterranean and the Arabian Sea. 

However, they are lower than those observed by Murphy (1991) for the North East 

Trades in the Atlantic Ocean. Cadmium detected over the Arabian Sea is lower than 

that determined in the current study, which in turn was consistently lower than the 

observed concentrations in both the Eastern and Western Mediterranean marine 

atmospheres. Lead also exhibits similar regional trends. However Zn shows 

comparatively high regional values, being attributed to locally enriched 

mineralogy. 

o The influence o f contrasting sources has been defmed f rom the calculated the % o f 

noncrustal contribution, using (E/Al)crusi ratios f rom Taylor (1964). Elements with 

about 70% crustal contribution (Fe, M n and Co) were considered to be crustally 

derived elements. The rest o f the elements (Cd, Cu, M o , N i , Pb, V, Zn) were 

classified as anthropogencally derived elements as their % o f non-crustal 

contribution is < 70%. 

o For all elements, concentrations are greatest in the air masses derived fi-om the SSA 

regions, whereas the lowest concentrations are detected in air masses f rom the RS, 

with the exception o f Cd, where it is comparable in the E and N regions. 

o A l , Fe, M n , Cu, M o and Zn show seasonal variations which are due to the enhanced 

seasonal dust transport occurring in the summer. For N i and V the seasonality in 

their concentrations is more likely to be due to the increase in fossil fijel usage 
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during the summer, whereas the seasonality for Pb and Cd w i l l be due to 

anthropogenic source inputs and/or its interaction wi th cruslal material movement. 

• A first approximation o f the trace metal budget in the Red Sea highlights the 

potential importance o f the sediment input. Unexpectedly, atmospheric input was 

not a key source for some elemental inputs to the Red Sea, notably "bioavailable" 

Fe. The net f lux for trace elements shows that there is a deficit in the budget for all 

elements except for Cd and Co where the annual influx concentration is higher than 

the annual eff lux. 
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Chapter Six 

Conclusions and future work 
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6.1 The aerosol trace metal chemical characteristics of the Plymouth urban 

aerosol and R S M A 

The current study has provided both novel and timely data on the trace metal chemical 

character o f two contrasting aerosol populations ( i ) Plymouth urban aerosol ( i i ) Red 

Sea Marine Aerosol (RSMA) . Using this data the variability o f these populations can 

be attributed to (i) aerosol source types, ( i i ) aerosol emission strengths, ( i i i ) proximity 

o f aerosol source, ( iv) air mass transport processes and (v) removal processes. 

6.1.1 The Plymouth urban aerosol population 

Aerosol trace metal concentrations in the Plymouth urban aerosol were much 

lower (2-13X) than other U K urban sampling locations. The Plymouth urban aerosol 

population was influenced more by long range transported anthropogenically derived 

material f rom the UIC and Western Europe which subsequently undergoes dilution by 

more pristine maritime air masses originating the west o f the U K . However, elevated 

concentrations o f aerosol trace metals (at the beginning o f sampling campaign) were 

due to local construction activities. This influence leads to diurnal variability in the 

monitored aerosol concentrations. 

EFcmsi analyses indicated that Fe, M n , Co and V were "non-enriched" (i.e. EFcrust <10) 

which would indicate an increasing crustal source contribution, whereas the 

remaining elements have high (> 10) EFcmst values. However, calculation o f the % 

crustal contribution indicates that EFcmst < 2 represents the transition from 

predominantly anthropogenic to crustal source contributions. Hence, Fe, M n , Co, V 

and N i have calculated crustal contributions wi th an average o f 57, 4 1 , 38, 22 and 12 
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% respectively. The rest o f the elements (Cd, M o , Na Pb and Zn) have percentage 

crustal contributions <5. 

Using air mass back trajectories, the influence o f the source area on aerosol trace 

metal concentrations was evident. Two source areas were considered, ( i) Atlantic air 

masses and ( i i ) U K + European air masses. Generally, enhanced concentrations (about 

2x) were observed in the U K and European air masses (statistically significant for A l , 

Fe, M n , Cd, Mo and Pb at p<0.05). This impact was also apparent when inter-

elemental relationships were considered. Significant correlations between 

anthropically and crustally derived trace metals were apparent, indicating that air 

mass movement was a major factor influencing the variation in the aerosol elemental 

concentrations. Lower statistical significances between the anthropic and cruslal inter-

elemental relationships for the Atlantic air sector compared with those associated with 

the UK+European sector would, in addition, suggest that during air mass movement 

there is a sequential change in the chemical character o f the aerosol population owing 

to wet and dry removal processes. Zinc concentrations were not statistically different 

(p<0.05) in the two air mass sectors, suggesting regional sources. The re-suspension 

o f material f rom disused and abandoned mines in the South West being a possible 

source for Zn. 

The solid state speciation o f aerosol trace metals (subsequently used to predict the fate 

o f the element in seawater post deposition) was investigated using a three stage 

sequential leach. The sequential leach procedure revealed that A l and Fe were 

predominantly present in the combined refractory and oxide / carbonate fractions 

(>95%). Whereas Cd, Pb and M n were dominant in the exchangeable phase which 

197 



indicates that high fractions o f these elements w i l l be labile post-deposition in sea 

water. For the rest o f the elements (Mo, Co and Ni ) the total concentrations were 

associated with the exchangeable and residual fractions and relatively minor 

contributions from the oxide/carbonate solid phase. 

Elemental dry deposition inputs have been calculated for the western English Channel 

and compared wi th literature values. However, it was apparent that the calculation o f 

dry depositiona! fluxes and inputs is fraught wi th limitations and inaccuracies, mainly 

as a result o f the uncertainty o f elemental settling velocities. However, accepting these 

limitations, total dry atmospheric input o f trace metals calculated in this study were 

used to calculate a revised budget (budget calculated by Wells, 1999) for N i and Pb in 

the English Channel. The revised inputs were very similar to those (around 11%) 

previously calculated by Wells (1999) and do not change the conclusions presented by 

Wells (1999), who suggested that the eff lux o f Pb was higher then the inputs to the 

English Channel. It was proposed that the unaccounted source within the English 

Channel was likely to be the sediments. In contrast the eff lux o f N i was lower than its 

input suggesting that the sediments are a geochemical sink for N i in the English 

Channel. 

6.1.2 The Red Sea Marine Aerosol ( R S M A ) 

In comparison to other coastal regions which are influenced by inputs from arid land 

masses (i.e. the western and eastern Mediterranean; Atlantic North East Trades and 

the Arabian Sea) the RSMA clearly exhibited high aerosol loadings o f the 

predominantly crustally derived elements ( A l , M n and Fe; crustal source contributions 

>70%). The observed concentrations were higher than those o f the Eastern 
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Mediterranean, Northern Levantine Basin and the Arabian Sea marine aerosol by 

factors o f between 2.1-6.2. However, they were lower than those quoted in Murphy, 

(1985) for the North East Trade in the Atlantic Ocean. For elements wi th a high 

anthropogenic contribution (> 80%) Cd, Pb and Zn exhibited the fo l lowing trends; 

Cadmium concentrations were lower than Eastern and Western Mediterranean marine 

atmospheres (0.17-0.22 and 0.36 ng m""* respectively), but higher than that observed at 

the Arabian Sea by a factor o f 2.6, explained by the more remote marine character o f 

the sampling site in the Arabian Sea. Lead exhibits similar regional trends (except for 

the Southem air mass sector), again due to the comparative lower influence o f long 

range transport anthropic material and the lack o f regional intense industrial activities. 

Zinc, however, was elevated in the RSMA being the highest at any o f the considered 

sites with the exception o f western Mediterranean (Table 5.2), indicative o f regional 

and local Zn inputs. The sampling site is surrounded by the Arabian shield were Zn is 

found in low-grade volcanosedimentary rocks or mainly produced as a by product o f 

gold mining. 

Seasonal variability in the R S M A trace metal concentrations was detected. 

Predominantly crustally derived trace metal ( A l , M n and Fe) concentrations during 

the summer period (June-July) were consistently around 2x higher than those 

observed during the winter season. Such elevated concentrations can be explained by 

enhanced dust re-suspension and transport in the Nubian desert and local sources (i.e. 

Arabian Peninsula) which have been shown in the literature to exhibit a summer peak 

in dust events. 
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A t Jeddah the EFcrust analysis indicated that the crustai source influence is prominent 

and follows the order Fe< Mn<Co< N i < V < Cu< Mo, these elements being classed as 

"non-enriched" elements, i.e. they all have EFcmsi <^I0- The remaining elements, Zn, 

Cd and Pb are all classed as anomalously enriched, highlighting their non crustal 

origins. In comparison with the literature, the EFcmsi values for the R S M A are all 

higher than those found in the North Atlantic aerosol but equivalent to those observed 

for the Arabian Sea indicating the same general chemical character o f the aerosol 

population except that the R S M A has a higher loading o f metal. The R S M A EFcmsi 

are generally lower than those observed for both the Western and Eastern 

Mediterranean aerosol. This is logical due to the fact that Jeddah is less impacted by 

regional anthropic sources. 

Using air mass back trajectories, elemental concentration variability associated wi th 

different air masses was noted. This was particularly the case for those elements 

whose % crustal contributions were in excess o f 50%, i.e. A l , Fe, M n and Co. For all 

these elements the concentrations were greatest in air masses derived f rom the Middle 

and Southern Saudi Arabian (SSA) regions, whereas the statistically lowest 

concentrations were detected in air masses derived f rom the Red Sea (RS) region. For 

A l , Fe and M n concentrations in the SSA air mass trajectory were the highest, which 

illustrates the fact that the effect o f the local desert is more important dian regional 

sources. However, V , Zn and Co show a similarity in all air mass trajectories (wi th the 

exception being the RS sector, which has the lowest values) which would indicate that 

a local source is the dominating factor. Lead concentration was highest at the SSA air 

mass trajectory due to the effect o f the local industrial area to the south o f Jeddah, 
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The solid state speciation signature for the R S M A highlights the prominent influence 

o f crustal material. The exchangeable fraction was 0.3 % for both A l and Fe compared 

with 1.5% and 2.2% for A l and Fe respectively found in the Plymouth aerosol 

population. A similar trend was obser\'ed for the oxide/carbonate phase o f Fe, being 

much lower (3.2%) than that observed at Plymouth (42%). This could be explained by 

the greater contribution f rom crustal material in the R S M A population than that in the 

Plymouth aerosol population. For Pb, as would be expected, there is a lower 

associations wi th the exchangeable fraction compared with the Plymouth aerosol 

population and indeed compared with most anthropogenically influenced aerosol 

populations. This would clearly impact upon its solubility post-deposition in seawater. 

Atmospheric dry deposition of trace metal to the Red Sea was calculated. Generally, 

the total dry deposition fluxes for the crustally derived elements ( A l , Fe, M n , and Co) 

increased in the fo l lowing order; North Sea < Western Mediterranean < Eastern 

Mediterranean (Northern Levantine basin) < Eastern Mediterranean (Southern 

Levantine basin) < RSMA. The total dry depositional fluxes o f the predominantly 

anthropogenically derived elements in the R S M A are lower than those calculated for 

the two Levantine basins sites for Pb, however comparable fluxes for Cd were 

calculated and enhanced fluxes o f Zn were detected in the RSMA. However, it is clear 

that the greatest uncertainty in dry depositional fluxes is the choice o f the elemental 

Vd. 

A first order trace metal budget within the Red Sea was calculated using the 

elemental dry deposition fluxes calculated in the current study. Although a number o f 

assumptions were made in calculating the budget, it was apparent that the net flux o f 
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the dissolved metals out o f the Red Sea, via the strait o f Bab Al-mandab, suggest that 

the sediments are an important source for all elements except for Co and Cd. 

Both set o f samples (Jeddah and Plymouth) have a high variabili ty shown by the large 

standard deviation regardless o f the difference in sampling location or time o f 

sampling. In general, the crustally derived elements (with lower than 10 EFcmsO A l , Fe 

Mn and Co have the greatest variability at Jeddah whereas the non-crustal derived 

elements (wi th higher than 10 EFcmsO such as N i , Cd, Pb and Co have the greatest 

variability at Plymouth. The aerosol trace metal concentrations o f the crustally 

derived elements at Jeddah ( A l : 2589 ng m ' ^ Fe: 2262 ng m"^ M n : 49.3 ng m"^) are 

much higher than at Plymouth ( A l : 187 ng m"-̂ ; Fe: 250 ng m"-*; 6.2 ng m'^) which 

indicates the significant effect o f the hyper arid area surrounding Jeddah. 

6.2 Future work 

(1) To better constrain trace elemental fluxes to the western English Channel and 

consequently allow a more accurate budget to be constructed, the uncertainty o f 

elemental settling velocities has to be lowered. Therefore there is an urgent need to 

better define, on a regional scale, more accurate elemental settling velocities. This 

might be achieved by collection o f (i) dry deposited material using surrogate 

collectors whilst collecting simultaneously aerosol samples or ( i i ) collection o f size 

fractionated aerosol samples (using cascade impactor samplers) and applying models 

such as that proposed by Slinn and Slinn (1980) to assign settling velocities. For the 

case o f the English Channel, the collection o f rainwater and its subsequent analysis 
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for trace metals would allow an estimate o f the trace metal wet deposition input. This 

would further enhance the accuracy o f a trace metal budget for the English Channel. 

(2) To gain a better appreciation o f the representative nature o f the global elemental 

ratios it is essential to map the elemental/Al ratios o f local and regional crustal 

material to allow a more accurate definition o f the EFcmsi and hence a more 

representative calculation o f contrasting sources contributions to the aerosol trace 

metal pool. 

(3) The Red Sea requires extensive fiJture research efforts to allow for a better 

understanding o f the intemal biogeochemical cycles o f trace elements. For example, 

constrained fluxes o f trace elements wi thin , to and out o f the Red Sea would 

consequently allow for a more accurate trace metal budget for this marine system. The 

uncertainty in trace metals fluxes arises f rom the lack o f accurate trace metals 

concentrations (particulate and dissolved) at various locations and depths wi th in the 

Red Sea. This dearth o f knowledge needs to be addressed as soon as possible. Regular 

seasonal depth profiles o f dissolved and particulate trace metal concentrations in the 

strait o f Bab Al-mandab are critical i f an accurate water mass balance o f trace metals 

to and out o f the Red Sea is to be constructed. 

(4) To better define the impact o f dry deposition inputs the aerosol trace metal 

seawater solubilities should be defmed. Moreover, factors controlling trace metal 

seawater solubility, including particle concentration, the presence o f organic ligands, 

aerosol source and seawater temperature need to be evaluated. 
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(5) Finally, the current study has highlighted temporal and air mass factors which 

influence the seasonal trace metal concentration in the R S M A . To better define dry 

deposition inputs o f trace metals, a network o f aerosol sampling stations around the 

Red Sea coastline is recommended. 
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Appendix A. Samples concentrations, date and Enrichment Factors at Plymouth 
and Jeddah 

(1) Plymouth: 

Number Date of Collection Sample Number Date of Collection 
1 10.12-11.12.01 56 13.6.02 
2 11.12-12.12.01 57 13.6-14.6.02 
3 12.12-13.12.01 58 14.6.02 
3 13.12-14.12.01 59 21.6.02 
4 13.12.01 60 24.6.02 
5 15.12-17.12.01 61 24.6-25.6.02 
6 17.12.01 62 25.6.02 
7 17.12-18.12.01 63 25.6-26.6.02 
8 18.12.01 64 26.6.02 
9 18.12-19.12.01 65 26.6-27.6.02 
10 19.12.01 66 27.6.02 
1) 19.12-20.12.01 67 27.6-28.6.02 
12 20.12.01 68 28.6.02 
13 20.12-21.12.01 69 28.6-31.6.02 
14 21.12.01 70 1.7.02 
15 3.1.02 71 1.7-2.7.02 
16 3.1-4.1.02 72 2.7.02 
17 4.1.02 73 3.7.02 
18 4.1-5.1.02 74 3.7-4.7.02 
19 7.1.02 75 4.7.02 
20 7.1-8.1.02 76 4.7-5.7.02 
21 8.1.02 77 5.7.02 
22 8.1-9.1.02 78 5.7-8.7.02 
23 10.1.02 79 8.7.02 
24 10.1-11.1.02 80 9.7.02 
25 11.1.02 81 9.7-10.7.02 
26 11.1-12.102 82 10.7.02 
27 14.1.02 83 10.7-11.7.02 
28 14.2.02 84 11.7.02 
29 15.2.02 85 11.7-12.7.02 
30 14.2-15.2.02 86 15.7.02 
31 15.2-16.2.02 87 16.7.02 
32 18.2.02 88 16.7-17.7.02 
33 18.2-19.2.02 89 17.7.02 
34 12.3.02 90 17.7-18.7.02 
35 1.5.02 91 18.7.02 
36 2.5.02 92 18.7-19.7.02 
37 3.5.02 93 19.7.02 
38 3.5-4.5.02 94 23.7.02 
39 8.5.02 95 23.7-24.7.02 
40 8.5-9.5.02 96 24.7.02 
41 24.5-25.5.02 97 24.7-25.7.02 
42 28.5-29.5.02 98 25.7.02 
43 29.5-30.5.02 99 25.7-26.7.02 
44 30.5.02 100 26.7.02 
45 30.5-31.5.02 101 26.7-29.7.02 
46 31.5.02 102 29.7.02 
47 31.5-5.6.02 103 29.7-30.7.02 
48 5.6.02 104 12.8.02 
49 5.6-6.6.02 105 12.8-13.8.02 
50 6.6.02 106 13.8.02 
51 6.6-7.6.02 107 13.8-14.8.02 
52 10.6-11.6.02 108 14.8.02 
53 11.6.02 109 14.8-15.8.02 
54 12.6.02 110 15.8.02 
55 12.6-13.6.02 111 15.8-16.8.02 
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Sample Number Date of Collection Sample Number Date of Collection 
112 19.8.02 177 4.11.02 
113 19.8-20.8.02 178 12.11.02 
114 29.8-30.8.02 179 12.11-13.11.02 
115 30.8.02 180 13.11-14.11.02 
116 2.9.02 181 14.11-15.11.02 
117 12.9-13.9.02 182 15.11.02 
118 13.9.02 183 15.11-18.11.02 
119 13.9-16.9.02 184 18.11.02 
120 16.9.02 185 21.11-22.1.02 
121 16.9-17.9.02 186 22.11-25.11.02 
122 17.9.02 187 2.12-3.12.02 
123 17.9-18.9.02 188 3.12-4.12.02 
124 18.9.02 189 4.12-5.12.02 
125 18.9-20.9.02 190 5.12-6.12.02 
126 20.9-23.9.02 191 6.12-9.12.02 
127 23.9-24.9.02 192 13.12.02 
128 24.9.02 193 13.12-16.12.02 
129 24.9-25.9.02 194 17.12.02 
130 25.9.02 195 17.12-18.12.02 
131 25.9-26.9.02 196 19.12-20.12.02 
132 26.9.02 197 28.1-30.1.03 
133 26.9-27.9.02 198 30.1-2.2.03 
134 27.9.02 199 2.2-10.2.03 
135 27.9-30.9.02 200 11.2-14.2.03 
136 30.9.02 201 14.2-26.2.03 
137 30.9-1.10.02 202 28.2-3.3.03 
138 1.10.02 203 13.3-17.03.03 
139 1.10-2.10.02 204 17.03-21.3.03 
140 2.10-3.10.02 205 21.3-24.3.03 
150 3.10.02 206 24.-27.3.03 
151 3.10-4.10.02 207 27.3-30.3.03 
152 4.10.02 208 16.4-19.4.03 
153 4.10-7.10.02 
154 7.10.02 
155 7.10-8.10.02 
156 8.10.02 
157 8.10-9.10.02 
158 9.10.02 
159 9.10-10.10.02 
160 10.10.02 
161 10.10-11.10.02 
162 11.10.02 
163 14.10.02 
164 14.10-15.10.02 
165 15.10-16.10.02 
166 16.10-17.10.02 
167 17.10-18.10.02 
168 18.10.02 
169 18.10-21.10.02 
170 23.10.02 
171 23.10-24.10.02 
172 24.10.02 
173 25.10.02 
174 25.10-28.10.02 
175 25.10-28.10.02 
176 28.10-29.10.02 
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Concentration (ng m'"̂ ) 

t o 

Al Mn Fe Na V Ni Co Z n Mo Cd Pb 

41 172 119 778471 0.80 3.40 0.13 1.87 * 0.082 2.67 

42 380 2.62 52.2 15248 1.60 * 0.10 90.22 0.12 0.18 1.34 

43 211 3.78 180 10574 2.60 1.05 0.13 30.71 0.39 0.05 2.38 
44 276 4.91 308 8284 4.11 * 0.20 36.94 0.67 0.11 4.25 

45 242 2.96 255 6423 2.23 0.17 0.08 38.31 0.35 0.12 4.82 

46 245 4.24 286 3553 6.24 1.23 0.40 24.87 0.65 0.09 4.34 

49 175 4.33 275 1418 1.84 0.12 19.82 0.23 0.07 2.70 

50 210 7.65 353 1298 3.33 4.38 0.33 0.69 0.38 11.66 

51 63.4 1.82 93.2 8404 3.15 2.14 0.09 84.0 0.21 0.04 1.80 

52 253 10.3 272 10465 2.38 11.97 0.39 0.50 0.11 5.17 

53 212 11.6 199 3857 2.48 18.01 0.60 0.47 0.16 5.62 

54 269 7.50 287 2852 1.26 8.15 0.33 169 0.67 0.08 5.17 

55 69.8 1.86 39 1330 2.97 1.87 0.11 158 0.08 0.03 1.04 

56 129 1.24 176 753 5.22 1.16 0.13 65.7 0.55 0.05 2.39 
57 100 2.61 68.0 998 19.9 11.70 0.31 0.24 0.09 2.90 

58 95.3 3.95 99.2 5609 6.94 8.74 0.24 153 0.27 0.05 1.62 

59 239 3.16 210 3938 10.7 4.47 0.20 64.0 0.59 0.03 2.86 

60 70.3 1.17 87.0 351 0.25 * 0.07 7.39 0.17 0.02 1.43 

61 154 2.54 181 3330 1.77 * 0.07 15.7 0.30 0.20 8.92 

62 229 7.70 295 654 1.19 * 0.20 20.0 0.73 0.05 4.86 

63 121 4.53 369 998 3.62 >*< 0.12 14.3 0.49 0.06 3.82 

64 328 9.03 425 1271 1.44 * 0.26 22.1 0.70 0.06 4.89 

65 147 4.94 284 2687 1.54 0.10 10.7 0.35 0.03 2.16 

66 465 14.4 391 1274 1.22 0.26 0.28 23.5 0.40 0.03 6.51 

67 324 8.31 425 2676 1.63 0.19 0.17 14.5 0.37 0.07 4.78 

68 512 11.7 514 3016 1.58 0.06 0.31 20.7 0.41 0.06 6.05 

69 198 6.30 387 2298 1.62 0.67 0.13 15.2 0.62 0.17 5.02 

70 133 4.22 218 2694 1.49 0.08 12.5 0.36 0.033 3.91 

72 135 1.59 91.2 12207 2.07 1.58 0.03 6.43 0.19 0.012 1.17 



73 186 6.53 274 6623 0.51 6.38 0.23 151 0.63 0.128 4.73 
74 248 7.07 364 2465 0.01 2.33 0.12 16.4 0.42 0.055 4.60 

75 114 3.85 230 3726 1.55 2.49 0.07 15.2 0.38 0.049 3.73 

76 164 3.46 182 2231 0.40 1.73 0.07 15.1 0.38 0.030 2.51 

77 29.5 1.58 32.5 3200 1.87 3.73 0.07 30.7 0.12 0.017 0.49 

78 222 7.56 435 646 0.20 4.18 0.17 29.0 0.93 0.071 4.64 

79 58.1 2.86 129 1989 1.90 4.07 0.12 36.4 0.28 0.039 3.24 

80 56.9 2.12 113 852 0.40 2.09 0.05 28.4 0.36 0.030 1.67 

81 198 6.33 363 1520 0.195 2.81 0.114 31.5 0.810 0.070 6.22 

83 211 5.97 335 2316 1.52 2.98 0.15 27.8 0.68 0.069 9.39 

84 83.7 2.79 169 4250 1.35 1.65 0.03 9.81 0.36 0.056 1.84 

85 225 6.71 350 2623 0.74 2.95 0.14 34.6 0.80 0.062 4.70 

87 359 10.5 418 * 0.15 3.19 0.17 21.1 0.34 0.086 8.50 

88 461 12.0 546 * 1.41 4.36 0.32 25.3 0.35 0.092 26.1 

89 107 15.5 290 575 6.21 12.0 0.51 36.5 0.89 0.168 11.4 

90 538 15.0 604 57 0.20 4.56 0.38 24.3 0.35 0.078 16.0 

91 163 6.67 392 101 0.66 3.14 0.11 14.0 0.22 0.180 8.37 

92 476 14.8 517 239 0.97 4.15 0.31 37.4 0.61 0.339 14.3 

93 318 18.0 433 774 9.73 7.15 0.22 24.2 0.81 0.297 10.6 

95 284 30.3 359 4339 * 53.6 1.86 0.66 0.424 8.84 

96 68.7 3.47 191 2183 0.23 1.76 0.07 9.44 0.16 0.041 10.5 

97 267 8.61 385 917 2.79 0.14 16.3 0.46 0.057 6.54 

101 66.9 2.62 139 13867 5.161 1.78 0.060 0.946 0.257 0.033 2.28 

103 * 10.0 423 1531 1.61 * 0.177 5.12 . 0.336 0.142 5.31 

105 68.9 3.46 203 27886 2.54 0.849 0.073 0.943 0.209 0.057 2.48 

i07 361 5.91 261 19475 13.3 6.12 0.204 3.86 0.352 0.018 2.30 

109 120 4.40 193 11063 13.5 5.39 0.219 1.56 0.472 0.090 3.69 

111 * 5.73 379 48073 0.89 0.428 0.100 0.92 0.400 0.161 1.92 

113 * 4.19 281 18914 1.78 2.15 0.109 0.808 0.321 0.071 5.00 

114 59.0 3.44 91.4 8260 5.25 6.43 0.168 22.9 0.345 0.147 3.46 

117 564 23.5 685 24521 12.6 5.26 0.379 6.86 1.46 0.655 22.6 

119 445 11.2 370 48633 5.97 2.42 0.192 3.15 0.747 0.281 6.36 



121 783 13.5 481 25643 4.93 2.25 0.259 6.22 0.835 0.514 24.8 

123 263 19.0 253 44708 8.55 3.07 0.216 3.63 0.573 0.279 8.28 

125 469 20.5 490 44147 10.4 4.25 0.446 3.85 1.43 0.281 11.5 

126 384 13.9 484 32933 5.77 4.84 0.258 3.95 0.933 0.447 20.0 

127 557 9.64 424 27325 1.42 0.819 0.205 2.38 0.453 0.399 17.8 

129 516 12.9 597 15549 2.57 1.40 0.250 4.80 0.747 1.14 31.1 

131 346 12.8 675 18353 5.22 2.77 0.299 2.48 0.976 0.219 14.8 

133 122 7.99 402 35736 2.31 1.88 0.182 9.17 0.540 0.185 6.53 

135 519 12.7 452 64521 9.1 3.75 0.280 5.18 0.983 0.364 13.1 

137 340 9.6 349 16671 10.1 4.13 0.432 4.07 0.787 0.300 11.4 

139 160 5.27 198 1531 2.10 0.88 0.083 4.05 0.558 0.162 10.02 

151 194 9.76 641 45830 1.56 1.43 0.147 5.77 1.29 0.394 10.43 

153 80.9 3.90 232 64521 2.04 1.03 0.076 1.40 0.509 0.141 5.44 

155 255 7.09 248 29568 6.32 2.42 0.178 1.65 0.516 0.243 8.33 

157 346 10.2 280 31250 3.20 1.49 0.193 5.21 0.560 0.542 13.5 

159 378 36.8 448 37979 8.6 4.63 0.411 6.93 1.82 0.564 23.4 

164 124 8.37 220 30363 4.36 2.47 0.751 4.18 0.722 0.239 7.37 

169 74.9 7.27 268 36643 1.82 3.81 0.323 6.96 0.758 0.186 6.41 
171 8.24 232 36643 0.823 1.38 0.555 3.92 0.729 0.358 10.8 

174 2.03 1.14 46.6 56621 0.397 0.485 0.175 0.415 0.197 0.067 0.99 

176 764 23.19 483 115264 5.55 4.62 0.937 8.32 0.631 0.536 8.91 

179 89.7 4.68 172 64613 2.70 1.79 0.637 0.663 0.318 0.051 1.36 

183 427 8.56 336 64042 3.48 1.93 0.359 4.35 0.861 0.365 26.0 

186 52.6 2.06 55.6 412091 5.07 1.99 0.210 0.809 0.306 0.080 4.92 

193 203 7.09 188 36072 4.46 3.73 0.320 3.19 1.81 0.393 16.4 

195 289 6.38 204 49771 2.16 1.55 0.399 2.16 0.812 0.207 11.6 



Al Mn Fc Na V Ni Co Zn Mo Cd Pb 

1 723 24.4 • 10.1 5.72 1.10 54.7 1.37 0.509 22.9 

2 530 11.1 * • 3.11 2.50 0.440 21.0 0.621 0.172 11.0 

3 357 6.91 • • 3.05 1.95 0.291 22.9 0.554 0.177 12.1 

4 1032 21.3 • • 3.27 3.49 0.902 24.7 0.359 0.115 6.08 

5 1265 20.2 • • 8.89 5.05 0.776 40.7 0.987 0.315 21.6 

6 758 16.9 * • 2.03 4.06 1.650 24.3 0.470 0.104 8.31 

7 137 5.26 * • 1.28 1.57 0.133 23.9 0.552 0.370 16.0 

8 880 15.7 • * 1.78 3.45 0.704 23.8 0.633 0.063 11.1 

9 144 4.06 • * 0.901 1.30 0.146 15.1 0.348 0.410 11.8 

10 633 15.8 • * 3.13 3.50 0.302 24.8 0.830 0.123 14.5 

11 128 3.09 • • 1.08 1.55 0.064 8.18 0.357 0.086 5.09 

12 773 15.9 • • 1.86 3.65 0.523 26.1 0.654 0.091 7.73 

13 181 5.86 • * 1.85 1.80 0.323 15.4 0.658 0.178 9.74 

14 * • • 0.025 1.83 0.327 11.2 0.527 0.039 4.03 

15 1097 22.5 743 33193 6.08 1.30 21.9 135 1.11 0.640 28.4 

16 277 5.26 228 51231 9.20 0.33 7.50 46.2 0.66 0.748 21.3 
17 448 11.2 364 33193 6.38 0.47 6.68 57.2 0.94 1.27 22.6 

18 68.3 6.58 85.3 145436 7.70 0.41 10.6 46.0 0.34 0.219 7.35 

19 3520 88.8 2591 9081 25.09 4.12 19.8 148 2.30 0.710 44.1 

20 246 12.3 257 20296 7.02 0.20 4.44 30.3 1.07 0.248 11.8 

21 2021 54.5 1250 14689 13.55 4.14 9.74 76.4 1.68 0.587 23.9 

22 318 10.2 314 29268 3.29 0.36 4.09 52.6 0.83 0.339 15.7 

23 1322 30.6 1679 44408 6.63 1.65 6.83 86.2 3.08 0.644 84.3 

24 682 21.5 1608 2352 2.77 0.57 15.9 91.4 3.20 0.627 83.2 

25 4600 56.7 2823 4595 8.79 7.04 10.8 191 5.58 2.08 63.8 

26 820 13.7 457 184781 7.17 0.62 14.7 66.2 0.61 0.205 11.8 

27 371 10.5 201 63006 4.90 0.70 18.7 131 0.55 0.298 5.83 

28 1040 23.9 842 24782 2.19 0.86 51.0 51.0 0.91 0.276 20.0 

29 1084 22.0 774 6278 2.52 0.81 35.8 35.8 0.83 0.235 16.0 

30 357 89.6 795 632677 1.80 7.56 * 256 0.86 0.880 40.1 

31 1 146 207 3168 756041 11.12 15.56 * 603 6.49 4.40 157 



ON 

378 6.58 382 4035 0.90 0.16 2.78 20.1 0.53 0.069 5.57 

33 121 1.86 147 531742 0.29 0.12 1.91 9.27 0.50 0.040 2.57 

34 3128 95.8 2025 33754 9.09 3.54 38.9 486 1.11 0.626 29.6 

35 4597 35.6 602 14689 2.61 0.33 4.24 35.6 0.86 0.313 10.8 

36 317 9.16 730 41604 2.61 0.25 5.36 43.1 0.61 0.315 10.9 

37 575 10.2 540 14689 2.41 12.36 0.31 3.63 28.0 0.159 8.35 

38 218 7.34 383 36090 2.64 7.50 0.17 1.89 63.6 0.507 11.3 

39 1510 37.4 1070 1792 4.97 35.94 2.77 6.43 105 0.789 24.9 

40 885 19.0 815 2352 4.40 19.43 0.46 6.09 542 0.955 28.0 



(2) Jeddah 

Number Date of Collection Sample Number Date of Collection 
1 10.8-11.8.02 57 3.2^.2.03 
2 11.8-12.8.02 58 4.2-5.2.03 
3 12.8-13.8.02 59 5.2-6.2.03 
4 13.8-14.8.02 60 6.2-7.2.03 
5 14.8-15.8.02 61 8.2-9.2.03 
6 15.8-16.8.02 62 9.2-10.2.03 
7 16.8-17.8.02 63 10.2-11.2.03 
8 17.8-18.8.02 64 11.2-12.2.03 
9 18.8-19.8.02 65 12.2.14.2.03 
10 19.8-20.8.02 66 14.2-15.2.03 
11 20.8-21.8.02 67 15.2-17.2.03 
12 21.8-22.8.02 68 17.2-18.2.03 
13 22.8-23.8.02 69 18.2-19.2.03 
14 24.8-25.8.02 70 19.2-20.2.03 
15 25.8-26.8.02 71 20.2-21.2.03 
16 26.8-27.8.02 72 21.2-22.2.03 
17 27.8-28.8.02 73 22.2-23.2.03 
18 28.8-29.8.02 74 23.2-24.2.03 
19 29.8-30.8.02 75 24.2-25.2.03 
20 30.8-31.8.02 76 25.2-27.2.03 
21 31.8-1.9.02 77 27.2-28.2.03 
22 1.9-2.9.02 78 1.3-2.3.03 
23 2.9-3.9.02 79 2.3-3.3.03 
24 3.9^.9.02- 80 3.3-4.3.03 
25 7.9-8.9.02 81 4.3-11.3.03 
26 8.9-9.9.02 82 11.3-12.3.03 
27 9.9-10.9.02 83 12.3-13.3.03 
28 10.9-11.9.02 84 13.3-14.3.03 
29 14.9-15.9.02 85 14.3-15.3.03 
30 23.9-24.9.02 86 15.3-16.3.03 
31 28.9-29.9.02 87 16.3-17.3.03 
32 29.9-30.9.02 88 17.3-18.3.03 
33 30.9-1.10.02 89 18.3-19.3.03 
34 6.1-7.1.03 90 19.3-22.3.03 
35 7.1-8.1.03 91 22.3-23.3.03 
36 8.1-9.1.03 92 23.3-24.3.03 
37 9.M0.1.03 93 24.3-25.3.03 
38 10.1-11.1.03 94 26.3-28.3.03 
39 13.1-14.1.03 95 28.3-29.3.03 
40 U.1-12.1.03 96 29.3-30.3.03 
41 12.1-13.1.03 97 30.3-1.4.03 
42 14.1-15.1.03 98 1.4-5.4.03 
43 15.1-16.1.03 99 5.4-6.4.03 
44 16.1-17.1.03 100 6.4-7.4.03 
45 17.1-18.1.03 101 7.4-8.4.03 
46 18.1-19.1.03 102 8.4-9.4.03 
47 19.1-20.1.03 103 9.4-12.4.03 
48 20.1-21.1.03 104 12.4-13.4.03 
49 21.1-22.1.03 105 13.4-14.4.03 
50 22.1-23.1.03 106 14.4-15.4.03 
51 23.1-24.1.03 107 15.4-16.4.03 
52 27.1-28.1.03 108 16.4-19.4.03 
53 28.1-29.1.03 109 19.4-20.4.03 
54 29.1-30.1.03 110 20.4-21.4.03 
55 30.1-1.2.03 111 21.4-22.4.03 
56 1.2-2.2.03 112 22.4-23.4.03 

237 



Number Date of Collection Sample Number Date of Collection 
113 23.4-24.4.03 169 24.6-25.6.03 
114 24.4-26.4.03 170 25.6-28.6.03 
115 26.4-27.4.03 171 28.6-29.6.03 
116 27.4-28.4.03 172 29.6-30.6.03 
117 28.4-29.4.03 173 30.6-1.7.03 
l i s 29.4-30.4.03 174 1.7-2.7.03 
119 30.4-1.5.03 175 2.7-3.7.03 
120 1.5-2.5.03 176 3.7-4.7.03 
121 2.5-3.5.03 177 4.7-5.7.03 
122 3.5-4.5.03 178 5.7-8.7.03 
123 4.5-5.5.03 179 6.7-7.7.03 
124 6.5-7.5.03 180 7.7-8.7.03 
125 7.5-8.5.03 181 8.7-9.7.03 
126 8.5-10.5.03 182 9.7-10.7.03 
127 10.5-11.5.03 183 10.712.7.03 
128 11.5-12.5.03 184 12.7-13.7.03 
129 12.5-13.5.03 185 13.7-14.7.03 
130 13.5-14.5.03 186 14.7-15.7.03 
131 14.5-15.5.03 187 15.6-16.7.03 
132 16.5-17.5.03 188 16.7-17.7.03 
133 17.5-20.5.03 189 17.7-18.7.03 
134 20.5-21.5.03 190 19.7-20.7.03 
135 21.5-22.5.03 191 20.7-21.7.03 
136 22.5-23.5.03 192 21.7-22.7.03 
137 23.5-24.5.03 193 22.7.23.7.03 
138 24.5-25.03 194 23.7-29.7.03 
139 25.5-26.5.03 195 29.7-30.7.03 
140 26.5-27.5.03 196 30.7-2.8.03 
141 27.5-28.5.03 197 2.8-3.8.03 
142 28.5-29.5.03 198 3.8-4.8.03 
143 29.5-30.5.03 199 4.8-5.8.03 
144 30.5-31.5.03 200 5.8-6.8.03 
145 31.5-1.6.03 201 6.8-7.8.03 
146 1.6-2.6-.03 202 7.8-9.8.03 
147 2.6-3.6.03 203 9.8-10.8.03 
148 3.6-4.6.03 204 10.8-11.8.03 
149 4.6-5.6.03 205 11.8-12.8.03 
150 5.6-6.6.03 206 12.8-13.8.03 
151 6.6-7.6.03 207 13.8-14.8.03 
152 7.6-8.6.03 208 14.8-16.8.03 
153 8.6-9.6.03 209 16.8-17.8.03 
154 9.6-10.6.03 210 17.8-19.8.03 
155 10.6-11.6.03 211 19.8-20.8.03 
156 11.6-12.6.03 212 20.8-21.8.03 
157 12.6-13.6.03 213 21.8-22.8.03 
158 13.6-14.6.03 214 22.8-23.8.03 
159 14.6-15.6.03 215 23.8-24.8.03 
160 15.6-16.6.03 216 24.8-25.8.03 
161 16.6-17.6.03 217 25.8-26.8.03 
162 17.6-18.6.03 218 26.8-27.8.03 
163 18.6-19.6.03 219 27.8-30.8.03 
164 19.6-20.6.03 220 30.8-31.8.03 
165 20.6-21.6.03 221 16.9-17.9.03 
166 21.6-22.6.03 222 17.9-18.9.03 
167 22.3-23.6.03 223 18.9-19.9.03 
168 23.6-24.6.03 224 19.9-20.9.03 

238 



e Number Date of Collection Sample Number Date of Collection 
225 20.9-21.9.03 281 24.11-25.11.03 
226 21.9-22.9.03 282 25.11-26.11.03 
111 22.9-23.9.03 283 26.11-27.11.03 
228 23.9-25.9.03 284 27.11-28.11.03 
229 25.9-27.9.03 285 28.11-29.11.03 
230 27.9-28.9.03 286 29.11-30.11.03 
231 28.9-29.9.03 287 30.11-1.12.03 
232 29.9-30.9.03 288 1.12-3.12.03 
233 30.9-1.10.03 289 3.12-6.12.03 
234 1.10-2.10.03 290 6.12-7.12.03 
235 2.10-3.10.03 291 7.12-8.12.03 
236 3.10^.10.03 292 8.12-9.12.03 
237 4.10-5.10.03 293 9.12-10.12.03 
238 5.10-6.10.03 294 10.12-12.12.03 
239 6.10-7.10.03 295 12.12-13.12.03 
240 7.10-8.10.03 296 13.12-14.12.03 
241 8.10-9.10.03 297 14.12-15.12.03 
242 9.10-10.10.03 298 15.12-16.12.03 
243 10.10-11.10.03 299 16.12-17.12.03 
244 11.10-12.10.03 300 17.12-24.12.03 
245 12.10-13.10.03 301 24.12-25.12.03 
246 13.10-14.10.03 302 25.12-27.12.03 
247 15.10-16.10.03 303 27.12-28.12.03 
248 16.10-17.10.03 304 28.12-29.12.03 
249 17.10-18.10.03 305 29.12-30.12.03 
250 18.9-19.10.03 306 30.12-31.12.03 
251 19.10-20.10.03 307 4.1-5.1.04 
252 20.10-21.10.03 308 5.1-6.1.04 
253 21.10-22.10.03 309 6.1-7.1.04 
254 22.10-23.10.03 310 7.1-8.1.04 
255 23.10-25.10.03 311 8.1-10.1.04 
256 25.10-26.10.03 312 10.1-11.1.04 
257 26.10-27.10.03 
258 27.10-28.10.03 
259 28.10-29.10.03 
260 29.10-30.10.03 
261 30.10-1.11.03 
262 1.11-2.11.03 
263 2.11-3.11.03 
264 3.11-4.11.03 
265 4.11-5.11.03 
266 5.11-7.11.03 
267 7.11-8.11.03 
268 8.11-9.11.03 
269 9.11-10.11.03 
270 10.11-12.11.03 
271 12.11-14.11.03 
272 14.11-16.11.03 
273 16.1M7.11.03 
274 17.11-18.11.03 
275 18.11-19.11.03 
276 19.11-20.11.03 
277 20.11-21.11.03 
278 21.11-22.11.03 
279 22.11-23.11.03 
280 23.11-24.11.03 

239 



Concentration (iig m *̂ ) 

O 

mpic Al Mn Fc V Co Ni Cu Zn Mo Cd 
1 1277.7 17.2 1036.0 4.82 0.50 8.69 2.94 50.30 0.08 0.16 

2 1440.0 18.2 1001.0 17.52 0.46 12.53 2.84 27.49 0.24 0.07 

4 1821.8 24.3 1456.5 8.14 0.77 13.30 5.48 107.28 0.27 0.09 
5 1113.9 22.9 797.7 6.86 0.60 9.10 2.06 30.74 0.12 0.06 
7 1954.0 22.4 1283.9 10.39 0.60 12.06 4.28 55.85 0.23 0.12 

9 6287.5 98.0 6505.4 21.38 2.96 58.66 9.70 344.61 0.66 0.56 

10 34714.6 527.5 26609.6 296.09 12.92 289.49 132.25 1462.65 6.36 3.25 

11 1190.0 16.0 901.6 8.45 0.41 8.71 3.70 45.33 0.19 0.09 

12 2376.5 31.8 1718.7 9.57 0.81 14.37 8.96 95.83 0.21 0.18 

13 322.3 4.6 279.6 1.34 0.12 2.28 0.14 10.87 0.04 0.02 
14 17210.8 194.3 10498.8 200.0 12.8 192.9 24.7 2150.4 13.13 14.10 

35 1431.9 48.3 1478.0 24.31 1.19 6.86 7.32 24.65 0.29 0.06 
36 1936.0 96.5 2826.5 33.65 2.38 9.24 11.67 37.99 0.45 0.08 

37 1305.7 56.2 1885.0 24.56 1.53 7.40 13.23 31.27 0.74 0.07 

38 649.6 22.4 640.2 10.27 0.66 3.08 8.24 13.89 0.18 0.04 

39 1602.9 90.9 2356.5 36.92 2.54 10.35 9.67 27.77 0.35 0.08 

40 1684.7 62.2 1763.6 24.62 1.77 7.50 16.00 27.26 0.54 0.10 
41 1582.3 67.1 1983.2 27.52 1.77 8.08 15.28 27.10 0.52 0.11 
42 1856.7 87.2 2612.5 35.92 2.20 10.63 8.87 26.28 0.32 0.11 

43 1466.8 44.8 1564.4 15.49 1.26 5.10 7.62 68.02 0.25 0.13 
44 1459.7 49.8 1474.5 13.54 1.44 5.63 7.32 24.05 0.27 0.08 

45 1547.1 45.2 1603.5 15.60 1.28 4.84 5.12 21.31 0.15 0.04 

46 542.9 17.9 500.4 7.20 0.62 1.93 2.43 11.13 0.08 0.05 
47 635.2 21.6 665.6 11.80 0.69 3.53 7.24 23.31 0.49 0.05 
49 555.2 16.5 576.9 12.10 0.55 3.01 2.52 24.88 0.12 0.07 

50 1053.2 38.0 1258.4 13.56 1.05 4.20 11.77 20.19 1.13 0.06 
51 1380.0 48.4 1583.2 19.84 1.30 5.22 26.54 33.00 1.83 0.13 
52 774.5 37.0 1013.2 20.67 1.21 4.81 3.80 12.65 0.15 0.13 
53 1324.5 43.9 1399.7 20.09 1.23 4.07 2.98 15.60 0.16 0.08 



54 1045.7 28.3 872.4 12.74 0.93 3.02 2.90 14.85 0.13 0.07 

55 1381.4 45.5 1454.1 19.12 1.20 4.06 3.13 10.38 0.18 0.05 

56 1516.3 48.1 1414.6 18.90 1.47 4.84 4.66 16.58 0.27 0.09 

57 1837.1 26.8 2021.7 14.41 0.83 2.72 1.46 6.30 0.09 0.07 

58 2491.4 57.2 2250.7 23.03 1.91 5.15 4.88 15.38 0.28 0.19 

59 2918.3 87.1 3019.0 32.61 2.92 8.05 13.51 26.47 0.42 0.29 

60 3399.0 137.1 4075.6 41.66 4.55 10.60 9.36 19.83 0.47 0.22 

61 1782.3 17.7 1159.6 5.25 1.00 1.77 2.15 8.04 0.08 0.04 

62 8628.2 0.0 4922.1 * * * * * • 

63 3048.7 30.0 2028.1 9.50 1.53 2.70 4.32 22.63 0.16 0.07 

64 1834.7 26.5 1494.6 12.34 0.81 3.41 9.15 37.97 0.36 0.05 

65 3045.1 35.5 2282.7 17.08 1.51 5.99 8.27 21.68 0.48 0.04 

66 2376.0 23.5 1687.2 7.03 1.18 2.74 5.02 21.66 0.15 0.02 

67 1063.2 11.4 883.7 4.54 0.30 1.40 2.83 17.04 0.13 0.02 

68 1603.6 24.4 1283.6 10.83 0.65 3.23 6.20 20.70 0.26 0.03 

69 2941.6 46.1 2426.0 26.98 1.00 6.59 12.71 45.73 0.66 0.12 

70 3112.8 46.9 2401.3 20.29 1.24 6.35 6.73 18.20 0.17 0.09 

71 4952.3 55.4 3378.0 16.81 2.98 4.20 4.50 19.62 0.19 0.04 

72 3420.7 39.3 2345.8 11.96 1.81 3.09 3.29 13.59 0.09 0.01 

73 2407.3 33.1 1766.9 9.10 1.35 2.97 3.05 13.11 0.08 0.11 
74 1730.3 20.4 1207.6 5.52 0.68 1.59 2.35 10.50 0.09 0.03 

75 2955.9 51.7 2740.1 14.00 2.73 3.82 5.50 17.82 0.19 0.03 

76 1520.4 22.7 1155.5 5.50 0.66 1.43 3.25 8.87 0.05 0.01 

77 760.9 12.2 605.5 3.85 0.34 2.22 2.39 11.91 0.07 0.01 

78 4264.9 67.9 3248.7 16.48 2.39 5.80 10.95 26.17 0.70 0.06 

79 3029.1 21.8 2363.0 10.78 0.29 2.11 1.75 4.72 0.11 * 

80 4464.6 134.9 6361.8 40.31 4.98 14.17 14.15 50.79 0.52 0.13 

81 461.5 13.5 610.2 3.73 0.48 1.34 1.17 5.97 0.04 0.03 

82 657.4 8.9 514.7 4.02 0.00 0.93 1.71 12.47 0.07 0.00 

83 2697.6 17.4 2084.9 5.61 0.21 1.02 0.44 8.53 0.02 0.02 

84 3638.4 31.0 2788.7 10.04 0.50 3.24 2.88 19.26 0.05 0.02 

85 2796.2 58.3 2088.9 17.69 1.31 5.22 6.27 31.89 0.18 0.10 



86 15470.2 306.9 12018.1 91.45 7.53 28.52 41.19 132.43 1.79 0.20 

87 1714.3 132.4 1379.8 52.89 2.72 19.38 12.97 122.54 0.58 0.43 

88 615.3 38.2 525.2 32.90 1.09 7.88 6.89 53.00 0.24 0.23 

89 1971.4 91.3 1450.0 47.33 2.69 14.52 19.69 80.01 0.57 0.26 

90 4001.7 314.0 5926.3 85.89 14.46 18.34 19.14 74.88 1.04 0.21 

91 4131.7 125.4 2282.9 38.45 3.28 9.42 10.90 67.22 0.42 0.44 

92 1288.3 53.7 956.4 19.55 2.45 7.75 18.47 58.05 0.18 0.35 

93 2775.5 235.6 3572.5 74.05 7.80 22.49 38.87 102.02 0.60 0.35 

94 4924.4 366.5 5692.0 75.76 13.21 19.56 18.63 78.45 0.83 0.17 

95 1918.1 65.4 1412.4 28.76 3.55 7.17 9.08 51.85 0.40 0.32 

96 1218.9 66.6 972.1 28.11 2.12 7.64 9.25 81.84 0.35 0.52 

97 673.1 28.3 499.1 22.64 0.83 6.03 7.50 44.04 0.17 0.21 

98 1483.5 70.1 1429.2 45.30 2.72 13.57 15.13 51.05 0.51 0.13 

99 5276.0 249.6 4042.3 43.15 5.74 17.23 31.76 92.69 1.02 0.20 
100 6425.7 12.7 4670.8 32.13 0.07 7.89 5.60 21.54 0.38 0.49 

101 6593.3 271.8 5535.7 82.38 7.71 22.27 31.45 82.57 0.97 0.23 

102 7573.9 325.4 7017.8 145.13 11.58 27.59 43.62 91.27 1.23 0.25 

103 2528.5 195.9 4019.8 52.47 4.54 20.15 14.03 42.38 0.66 0.16 

104 4009.7 144.6 2870.4 42.56 3.47 16.67 11.84 43.48 0.50 0.37 

105 8237.2 269.1 6629.2 81.17 11.05 26.86 18.41 78.29 1.03 0.30 

106 5265.3 157.9 3879.1 51.74 6.29 17.51 22.14 52.55 0.61 0.28 

107 3709.2 106.6 2463.6 44.91 3.16 11.52 11.53 41.61 0.38 0.16 

108 1319.6 54.5 1366.0 26.67 2.24 6.92 10.04 44.57 0.42 0.10 

109 4344.8 182.6 3398.0 97.95 3.72 33.10 31.83 64.83 0.87 0.19 

110 5214.9 173.9 4646.7 67.50 6.07 14.71 16.51 46.40 0.53 0.26 

111 1357.3 208.5 4104.9 39.71 4.69 18.17 29.40 87.09 0.54 0.32 

112 5034.5 102.9 4362.4 13.35 0.19 11.80 21.58 30.60 0.22 0.24 

113 3996.8 75.7 2955.3 13.73 0.15 8.38 5.58 29.16 0.21 0.16 

114 5182.8 102.5 4041.9 27.22 0.37 11.35 17.23 40.26 0.55 0.17 

115 7972.6 131.8 5965.2 23.97 0.68 14.70 10.11 44.92 0.33 0.26 

116 5032.7 96.8 4153.6 15.97 0.55 11.43 6.75 37.90 0.24 0.22 

117 5918.9 113.3 4508.7 17.32 0.59 11.40 5.60 31.28 0.21 0.23 



118 5528.1 97.8 4054.3 13.42 0.56 9.91 5.84 29.82 0.25 0.21 

119 4107.8 70.4 3011.3 17.96 0.41 15.76 4.37 29.99 0.30 0.26 

120 9861.1 161.8 7005.2 33.12 0.88 21.36 10.44 52.02 0.61 0.27 

121 8267.7 183.0 7540.3 30.19 0.93 24.81 10.13 43.42 0.44 0.17 

122 6435.0 117.0 4855.5 18.44 0.73 14.92 9.66 32.63 0.36 0.12 

123 7194.3 143.5 5616.0 30.82 0.90 21.19 9.87 40.00 0.40 0.14 

124 9494.8 182.4 7337.4 34.91 1.02 23.49 13.38 45.18 0.57 0.16 

125 11442.2 217.8 8613.9 32.22 1.26 23.98 19.60 57.12 0.93 0.18 

126 3974.8 76.3 2946.2 13.08 0.51 19.25 7.33 25.84 0.29 0.18 

127 5186.4 103.0 3874.1 21.00 0.64 15.74 15.07 42.90 0.37 0.09 

128 6047.1 114.7 4563.1 25.88 0.65 17.47 6.71 35.33 0.28 0.10 

129 5699.8 104.5 4207.4 23.93 0.52 13.64 5.16 28.13 0.22 0.07 

130 5314.0 113.3 4309.8 33.97 0.64 19.18 8.53 35.08 0.35 0.09 

131 2003.4 47.0 2440.6 16.17 0.91 5.81 10.63 32.84 0.43 0.42 

132 8729.9 114.7 5898.2 50.57 3.13 20.27 23.46 72.66 0.81 0.69 

133 3795.6 41.3 2176.9 20.39 1.26 7.54 8.00 25.55 0.26 0.11 

134 893.1 24.4 1407.6 10.22 0.42 3.56 5.26 17.44 0.14 0.04 

135 3972.5 52.1 2713.2 19.99 1.38 7.95 13.00 45.05 0.28 0.18 

136 5569.6 66.2 3543.9 27.02 1.85 9.98 14.21 42.71 0.51 0.20 
137 2866.2 33.6 1852.0 13.53 0.72 4.46 6.74 29.59 0.21 0.18 

138 4010.3 62.2 3060.9 27.11 1.30 8.92 18.04 40.55 0.27 0.24 

139 6201.7 88.8 4105.6 45.13 1.52 12.86 16.22 42.82 0.53 0.28 

140 5359.6 71.5 3464.1 29.48 0.98 10.57 9.09 34.92 0.28 0.17 

141 1789.4 39.6 2157.3 15.32 0.39 4.80 4.67 23.88 0.15 0.08 

142 1310.2 16.9 1033.7 8.41 * 2.24 3.43 15.62 0.10 0.02 

143 4661.7 50.2 2786.5 25.38 0.69 7.36 16.78 50.24 0.78 0.13 

144 7034.5 68.4 3841.2 48.19 1.48 13.43 13.94 35.22 0.39 0.15 

145 10295.5 114.5 6834.2 38.15 2.68 11.79 14.89 41.88 0.48 0.21 

146 8076.2 100.3 5390.2 31.32 2.63 12.23 17.81 47.09 0.42 0.17 

147 6562.4 86.4 4661.9 26.22 2.05 10.07 16.40 45.11 0.35 0.17 
148 1828.8 34.8 1759.9 13.50 0.43 4.23 4.89 24.24 0.10 0.08 

149 3915.4 54.7 2585.4 25.37 1.72 10.35 12.23 37.88 0.38 0.23 



150 1775.5 27.9 1331.6 14.88 0.41 5.31 9.28 28.11 0.20 0.19 

151 1236.8 21.6 1262.6 16.46 0.10 4.45 3.90 20.13 0.17 0.1! 

152 1898.5 26.0 1529.4 18.33 0.24 5.11 3.61 18.55 0.12 0.05 

153 8685.0 81.3 4559.3 36.62 2.39 12.57 12.80 32.04 0.43 0.11 

154 1142.7 53.6 2090.1 18.37 1.02 6.21 7.43 28.67 0.09 0.12 

155 3300.0 48.2 2500.5 22.12 1.00 7.53 10.91 37.38 0.21 0.19 

156 1456.6 20.8 1075.5 17.31 0.15 5.04 4.89 27.05 0.17 0.21 

157 1295.2 17.3 889.9 14.67 0.02 3.83 5.16 30.23 0.23 0.15 

158 1529.7 21.2 1029.8 14.79 0.02 4.64 3.63 29.72 0.13 0.13 

159 1870.4 28.8 1313.6 14.57 0.21 4.40 5.64 26.88 0.10 0.12 

160 590.8 12.1 707.6 6.47 * 1.26 1.08 20.30 0.01 0.03 

161 523.6 9.7 817.6 5.74 * 0.62 0.04 7.41 0.03 0.01 

162 1799.1 27.4 2461.6 15.31 0.81 5.51 6.07 27.72 0.23 0.19 

164 1899.4 31.1 2965.3 32.22 170.20 538.88 89.10 119.19 10.73 10.11 

166 853.8 19.0 1831.5 10.43 0.60 3.92 2.94 18.56 0.19 0.11 
168 1481.5 37.4 3392.8 12.68 1.41 5.52 5.97 28.20 0.24 0.14 

170 7622.7 514.4 55274.3 66.23 12.81 35.10 30.75 63.73 0.78 0.21 

172 2968.8 38.4 3771.0 22.28 1.32 7.51 7.85 34.21 0.27 0.18 

174 17489.4 260.0 27922.2 70.26 11.61 30.52 37.98 80.86 1.04 0.28 

176 3586.5 39.5 4145.8 16.09 1.37 5.10 7.14 28.66 0.41 0.14 

178 5218.1 46.7 4977.8 21.90 1.69 6.83 6.04 26.06 0.27 0.17 

180 4772.3 91.6 6035.6 23.05 2.29 7.26 7.44 29.93 0.32 0.20 

182 3681.9 43.1 4153.9 18.82 1.45 5.73 7.99 31.12 0.25 0.15 

184 1867.5 27.1 2553.9 13.62 0.97 4.53 5.85 29.09 0.26 0.14 

186 2087.4 29.9 2825.3 18.84 1.06 5.80 7.49 36.76 0.32 0.20 

188 2021.4 28.4 2719.9 15.38 0.99 4.73 8.03 37.34 0.31 0.26 

190 2454.6 35.8 3376.8 14.17 1.34 5.05 6.94 47.16 0.25 0.27 

192 2416.4 32.0 3326.0 13.37 1.34 4.93 8.71 31.45 0.29 0.16 

193 1683.9 25.2 2310.2 16.67 1.00 5.53 6.26 36.43 0.24 0.32 

196 7514.2 131.3 13449.1 30.82 3.99 11.35 12.34 26.15 0.25 0.12 

198 2112.5 28.3 2673.2 14.78 1.42 5.27 6.01 31.74 0.20 0.19 

200 2548.5 34.5 1742.3 17.12 1.41 5.60 3.76 18.14 0.21 0.13 



to 

202 1277.3 20.2 963.5 10.60 0.61 3.58 2.97 26.87 0.16 0.18 
204 15840.5 223.3 12324.2 46.74 6.83 17.68 16.76 39.94 0.29 0.17 

206 17709.9 321.1 17487.4 52.24 9.57 21.88 24.32 44.45 0.46 0.18 

208 6365.4 118.8 5755.0 35.16 2.83 18.96 9.43 35.24 0.43 0.28 

210 7601.3 101.4 4856.4 50.32 2.50 18.97 11.12 75.24 0.50 0.70 
212 14345.0 141.9 8160.7 39.75 3.38 13.74 12.08 36.47 0.35 0.21 
214 1384.3 22.0 1144.9 12.00 0.56 4.58 10.79 45.31 0.26 0.27 

216 2264.2 35.1 2027.1 12.49 0.88 4.58 8.85 43.61 0.25 0.26 

218 5930.9 79.7 4764.6 31.25 2.29 11.31 21.93 74.76 0.51 0.46 

219 1690.5 37.3 1877.1 25.10 0.90 8.36 15.80 75.65 0.58 0.46 
220 1331.1 18.0 929.1 15.85 0.41 5.27 4.41 29.09 0.24 0.23 

222 1930.5 20.0 936.9 19.56 0.63 6.59 5.89 30.12 0.25 0.31 
224 3121.6 23.1 1334.0 8.06 0.64 3.11 3.68 17.99 0.21 0.08 
226 1333.6 13.5 624.0 11.08 0.31 4.39 2.96 18.01 0.17 0.13 

228 3571.9 38.1 1788.6 35.11 1.04 11.85 14.66 45.77 0.71 0.45 

230 656.6 7.7 332.9 4.95 0.20 3.14 1.71 10.97 0.10 0.07 

232 1151.5 15.3 610.4 15.33 0.78 6.01 9.23 59.32 0.37 0.34 

234 1201.7 15.4 629.6 11.32 0.48 4.95 5.13 25.66 0.34 0.19 

236 2419.2 27.0 1291.9 24.96 0.94 8.84 10.71 40.82 0.50 0.17 

238 8.4 20.3 948.5 7.43 0.48 3.51 6.26 27.83 0.19 0.19 

240 3044.0 31.9 1585.5 23.41 1.40 10.06 16.73 45.46 0.44 0.36 
242 1972.1 23.1 1077.6 18.10 0.57 10.81 5.46 33.49 0.29 0.17 
244 2056.8 21.9 1032.4 12.76 0.51 9.48 3.66 20.43 0.18 0.11 
246 2059.4 19.9 993.3 0.02 0.46 3.86 4.47 21.74 0.21 0.07 

248 2912.4 34.9 1660.2 0.03 0.92 7.21 8.05 34.88 0.30 0.12 
250 2512.9 28.8 1337.8 0.02 0.70 7.76 6.07 22.64 0.33 0.11 

252 1990.9 21.5 1010.1 0.02 0.53 6.92 5.06 24.03 0.20 0.13 
254 881.7 10.1 475.1 0.01 0.24 2.66 1.87 7.75 0.07 0.03 

256 1850.5 54.1 2473.7 0.04 1.72 11.35 17.70 52.70 0.55 0.14 
258 2188.1 70.4 3206.7 0.04 2.27 14.33 35.55 53.69 0.58 0.40 

260 1964.0 21.8 1025.5 0.02 0.69 7.30 11.94 29.93 0.62 0.09 
262 1915.5 19.6 1020.9 8.83 0.67 4.06 13.95 35.34 0.26 0.09 



NJ 

264 3897.8 41.1 1976.7 25.77 1.68 12.96 15.63 48.57 0.36 0.17 

266 2886.5 90.3 3828.5 36.52 3.64 17.66 23.63 59.79 0.55 0.20 

268 2324.3 37.0 1835.4 21.48 1.30 9.45 14.98 32.58 0.31 0.14 

270 3588.6 49.0 2315.4 27.97 1.84 17.98 19.95 48.80 0.51 0.37 

272 1261.2 14.3 740.7 8.49 0.55 4.00 9.47 42.86 0.27 0.07 

274 1837.9 18.9 963.6 9.95 0.79 6.38 27.71 47.22 0.24 0.13 

276 5972.5 62.5 3004.5 24.06 2.61 13.95 12.08 45.81 0.45 0.15 

278 3884.9 44.2 2421.7 16.72 1.70 6.77 8.71 22.28 0.35 0.07 

280 5627.2 68.3 3061.2 44.32 4.03 21.12 20.20 44.92 0.58 0.18 

282 3367.2 58.5 2647.1 18.24 2.39 13.26 27.87 56.99 1.44 0.23 



Appendix B. The ICP-AES, ICP-MS operating conditions 

ICP-AES applied operating conditions for the current study. 

Int. Time 3 s 
PMT Voltage 650 V 

Power 1000 W 
Plasma 15 L/min 

Auxiliary 1.5 L/min 
Pump 20 

Sample Delay 10s 
Snout Purge LOW 

Stabilization time 15 s 

ICP-MS applied operating conditions for the current study. 

Power 1350 W 

Plasma 

Auxiliary 

Nebuliser 

Dwell time 

Sample uptake 

13 l/min 

1 l/min 

1 l/min 

10.2 ms (30 second acquire) 

1 ml/min 
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Appendix C . The equations used to calculate the trace metal budget in Red Sea. 

Trace metal budget (t yr"') = (Surface water influx + Atmospheric dissolved dry 

deposition flux) - (Deep water efflux) 

The flux (t yr"') were calculated as follows: 

Surface flux = 497 * 315.36 * [M^ur] 

Deep flux = 456 * 315.36 * [Mjecp] 

Atmospheric dissolved ("bioavailable") flux (table 5.13) 

Whereas; 

[Msur] : concentration of the metal in the surface layer in the Red sea ( j i g L ' ' ) 

[Mdecp] : concentration of the metal in the deep layer in the Red sea ( [ ig L ' ' ) 

497* 315.36 * lO'^: the calculated surface influx (L yr"') using the estimates of the 

layer transport (Belhoux, 1988) 

456* 315.36 * lO'^: the calculated deep efflux (L yr'') using the estimates of the layer 

transport (Bethoux, 1988) 

The product of the equation needs to be divided by lO'^ to convert budget units from 
|ig yr'' to t yr"'. 
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