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NEURAL CORRELATES OF THE IBRE

Abstract1

The Inverse Base Rate effect (IBRE; Medin & Edelson, 1988) is a non-rational behavioral phenomenon in2

predictive learning. Canonically, participants learn that the AB stimulus compound leads to one outcome and that3

AC leads to another outcome, with AB being presented three times as often as AC. When subsequently presented4

with BC, the outcome associated with AC is preferentially selected, in opposition to the underlying base rates5

of the outcomes. An error-driven learning account (Kruschke, 2001b) is the leading current explanation of the6

IBRE. A key component of this account is prediction error, a concept previously linked to a number of brain7

areas including the anterior cingulate, the striatum and the dorsolateral prefrontal cortex. The present work is the8

first fMRI study to directly examine the IBRE. Activations were noted in brain areas linked to prediction error,9

including the caudate body, the anterior cingulate, the ventromedial prefrontal cortex and the right dorsolateral10

prefrontal cortex. Analysing the difference in activations for singular key stimuli (B and C), as well as frequency11

matched controls, supports the predictions made by the error-driven learning account.12

Keywords: cognitive neuroscience, human learning, fMRI, prediction error, inverse base rate effect13

1 Introduction14

Learning is a process that enables the use of past and present information to adapt to and overcome present15

and future challenges. The amount of environmental information present on a moment-to-moment basis is16

large, and so humans have evolved to prioritize the most relevant information. However, the same processes of17

prioritization can sometimes lead to irrational decisions. The Inverse Base Rate Effect (IBRE; Kruschke, 1996,18

2001a; Medin & Edelson, 1988; Shanks, 1992) is one example of an irrational decision-making behavior that19

seems to occur in this way.20

In its canonical form, shown in Table 1, the IBRE involves participants being trained under a simulated21

medical diagnosis procedure. They are presented with a patient with one of two different pairs of symptoms,22

and asked to make a judgment, diagnosing the patient with one of two fictitious diseases. For the purposes23

of this example, we refer to them as “Jominy Fever” and “Phipps Syndrome”. Participants see patients for24

whom the correct diagnosis is “Jominy Fever” three times as often as those for whom the correct diagnosis is25

“Phipps Syndrome”. “Jominy Fever” is therefore referred to as the common disease, because its base rate is26

higher. “Phipps Syndrome” is referred to as the rare disease, due to its lower base rate. The symptom pairs can27

be considered abstractly as AB and AC. So, a participant might be presented with a patient suffering from “ear28

aches” and “skin rash” (AB) where the correct diagnosis is “Jominy Fever” (common). They then might see a29

patient suffering from “ear aches” and “back pain” (AC), with the correct diagnosis being “Phipps Syndrome”30

(rare). In this example “skin rash” (B) is perfectly predictive of “Jominy Fever” (common), while “back pain”31
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Table 1. Canonical IBRE experimental design.

Training trials

(relative frequency) Test trials

AB→ common (x3) BC→ rare

AC→ rare (x1)

32

(C) is perfectly predictive of “Phipps Syndrome” (rare). The symptom “ear aches” (A) is uninformative. After33

being trained in this manner, participants are then presented with both perfectly predictive symptoms, “skin34

rash” (B) and “back pain” (C). If participants make use of the base rate of the two diseases, they should make35

the rational diagnosis of the more common disease, “Jominy Fever”. However, the majority of participants36

preferentially diagnose the patient with the rarer disease, “Phipps Syndrome”. This pattern of responding is37

called the IBRE.38

Currently, the best explanation of the IBRE is the error-driven learning account implemented within the39

EXemplar-based attention to distinctive InpuT (EXIT) formal model (Kruschke, 2001b). Kruschke’s error-driven40

learning account suggests that, during learning, participants endeavor to reduce the number of errors they make41

through the shifting of attention. This account predicts that, due to the more frequent occurrence of AB compared42

to AC, participants learn more about A and B than about C. When they encounter AC, participants initially43

respond with the common disease due to the presence of A, leading to a prediction error. Attention then shifts44

away from A and towards C when presented with A and C together, in order to promote new learning and reduce45

the further occurrence of prediction errors.46

EXIT assumes that this attentional reallocation, driven by prediction error, is persistent. As a result, when47

presented with B and C together during test, the attention to C is greater than the attention to B, resulting in48

the IBRE. The EXIT model’s assumption of the persistence of attentional reallocation is supported by greater49

eye-tracking dwell time for C compared to B when presented with BC at test (Kruschke, Kappenman, & Hetrick,50

2005). Attention also persists to singly-presented cues at test, as demonstrated electrophysiologically by a51

selection negativity/positivity for C over B when each cue is presented alone on separate test trials (Wills, Lavric,52

Hemmings, & Surrey, 2014). This attentional persistence to singly-presented cues at test is also predicted by53

EXIT, and is the central prediction investigated in the current study.54

One strength of EXIT’s error-driven learning account is that it explains not only the IBRE but also other55

concurrent response patterns that often occur. When presented with the A cue alone, responding is preferentially56

common, following the base rate of the two diseases. This is explained by assuming that participants learn to57

associate A with the common disease more than the rare disease. Another phenomenon occurs when participants58
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are also trained with control cues for B and C, labeled as D and E. These cues are matched for frequency but59

lack a shared cue (A) during training. This shared-cue effect is characterized by the IBRE disappearing for60

the control stimuli, i.e. participants do not respond preferentially rare when presented with DE. This has been61

found in a number of studies (e.g. Kruschke, 2001a; Medin & Edelson, 1988). The error-driven learning account62

predicts this effect because, in the absence of a shared cue, there is nothing to cause attentional reallocation on63

the rare-outcome trials. While alternative accounts of the IBRE, such as the relative novelty account (Binder &64

Estes, 1966), and the eliminative inference account (Juslin, Wennerholm, & Winman, 2001) can accommodate65

the basic IBRE, they fail to account for the shared-cue effect (Kruschke, 2001a; Wills et al., 2014).66

The only previous published fMRI study of the IBRE was conducted by O’Bryan, Worthy, Livesey, and67

Davis (2018). They made use of an atypical IBRE procedure involving real-world visual categories (scenes,68

faces and objects) as stimulus features to allow their use of multi-voxel pattern analysis. While this approach69

was well motivated, one consequence of this atypical procedure was the lack of a compelling behavioral IBRE in70

their study. Specifically, the defining feature of the IBRE is the presence of greater rare than common responses71

to BC. O’Bryan et al. report the presence of a numerical effect in that direction, without reporting inferential72

statistics for this contrast; our analysis of their raw data indicates Bayesian evidence for the absence of the IBRE73

in their study, BF10 = .27. The inferential tests reported by O’Bryan et al. provide evidence for base-rate neglect74

rather than the IBRE.175

In the current study, we employed a more standard procedure from our previous work, known to robustly76

demonstrate the IBRE (Inkster, 2019; Wills et al., 2014). We had two predictions, based on EXIT, the leading77

account of the IBRE, and on our previous electrophysiological work (Wills et al., 2014). Our first prediction,78

well supported in general terms by previous neuroimaging work on the correlates of prediction error, was that79

the striatum, the medial anterior prefrontal cortex, and the anterior cingulate would show more activation for AC80

than for AB during training. This is because AC results in more prediction errors than AB behaviorally, and81

because previous work, including two major meta-analyses (Fouragnan, Retzler, & Philiastides, 2018; Garrison,82

Erdeniz, & Done, 2013), implicate these areas in the processing of prediction errors. There is also good evidence83

that the right dorsolateral prefrontal cortex is involved in the processing of prediction errors (Fletcher et al., 2001;84

Fouragnan et al., 2018; Turner et al., 2004). We thus defined a region of interest (ROI) for all of our analyses85

that comprised these four areas.86

As discussed by Fouragnan et al. (2018), the activity in brain areas associated with prediction error is87

likely due to a number of different processes, including outcome valence processing, attentional processing –88

1O’Bryan et al. (2018) report that the proportion of rare responding to BC (.5) is significantly greater than the base-rate of .25. This
supports the presence of base-rate neglect, but lacks the greater rare compared to common responding indicative of an IBRE. Similarly,
their demonstration of significantly greater rare responding to BC compared to rare responding to A suggests base-rate neglect is smaller
for A than BC, but does not show the presence of an IBRE.
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sometimes described as “surprise” processing or the modulation of associability (Mackintosh, 1975; Pearce &89

Hall, 1980) – as well as the calculation of signed prediction error that is most commonly associated with the90

term prediction error (and as instantiated by, for example, the Rescorla-Wagner (Rescorla & Wagner, 1972) and91

temporal difference models (Sutton & Barto, 1987) .92

Our second prediction for the current study concerns the possible attentional-processing role of prediction-93

error-associated brain areas, and comes from the EXIT model’s explanation of the IBRE. A key part of EXIT’s94

architecture is a back-propagation process, driven by prediction error, which adjusts future attention to stimuli95

in order to minimize errors. In the case of the IBRE procedure, when participants encounter AB, attentional96

changes are less frequent due to both A and B being associated with the common outcome and so there is less97

chance of an error being made (B because of it being a perfect predictor of the common outcome, A because it98

occurs more frequently with the common outcome than the rare). When they encounter AC, errors are dependent99

on the cue preferentially attended to and are more frequent, due to the disjoint of C being a perfect predictor of100

the rare outcome and A being associated more heavily with the common outcome. On these trials, EXIT predicts101

that when a prediction error occurs, cue attention for future AC trials is shifted such that more attention is paid102

to the C cue. The model assumes that these attentional changes are persistent, and that in order for the IBRE to103

occur this attentional reallocation persists into the test phase, producing the preferential rare outcome responding104

to BC at test (i.e. because C is attended more than B). Previous eye-tracking and neuroscience work (Kruschke105

et al., 2005; Wills, Lavric, Croft, & Hodgson, 2007; Wills et al., 2014) observed these persistent attentional106

changes, and other work (Fouragnan et al., 2018) acknowledge the possibility that other neuroscience studies of107

prediction error could be observing persistent attentional changes caused by prediction error; rather than (or as108

well as) the initial computation of prediction error.109

In the context of the current study, our prediction is that this persistence of attentional reallocation would110

manifest as greater activation for cue C, presented alone at test, than for cue B, presented alone at test. Our111

assumption that attentional reallocation persists not only into the test phase, but also to singly-presented cues112

is supported by our previous neurophysiological work (Wills et al., 2014). Thus, our a priori prediction was113

that we would see greater activation for C than for B during test in our prediction-error ROI. If confirmed, this114

prediction would further support the EXIT account of the IBRE, and would suggest that the brain areas in which115

this difference was observed may be involved in the persistent attentional reallocation that can occur in response116

to prediction errors.117
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2 Methods118

2.1 Participants119

34 people were recruited from the University of Exeter participant pool. Participants received either course120

credit or £10. Participants gave informed consent according to procedures approved by the Psychology Ethics121

Committee, University of Exeter. Five participants’ data were removed due to excessive head movements during122

the experiment, rendering their fMRI data unusable. Participants’ accuracy in the final block of training was123

then assessed using a learning criterion. This criterion was identical to the one used in Wills et al. (2014),124

where participants scoring less than 72% in the final block of training were excluded from further analysis. This125

criterion represents the level of accuracy that cannot be attributed to random responding based on the block126

length of 18 trials. Applying this criterion necessitated the removal of 4 participants, resulting in a final data set127

of 25 participants.128

2.2 Procedure129

The abstract design and stimuli are identical to that of Wills et al.’s (2014) electrophysiological study, and130

can be seen in Table 2 and Figure 1 respectively. The stimuli are abstract shapes, referred to as “cells” due to the131

context of the experiment; a medical diagnosis task. The ratio of common to rare in this design (2:1) differs from132

the ratio in the canonical IBRE design (3:1). The reason for this is the same as in Wills et al.; it shortens study133

duration in order to avoid participant fatigue, given the necessarily long test phase required for a neuroscience134

study. Previous work (Inkster, 2019; Wills et al., 2014) has shown that a robust IBRE can be achieved with a 2:1135

ratio of common to rare.136

In each phase of the experiment, trial order was randomized. Participants were asked to take on the role of137

a doctor, diagnosing patients with either “Jominy Fever” or “Phipps Syndrome” on the basis of the “cells” they138

were presented with. These instructions were given prior to them entering the scanner. The response key that139

Figure 1. An example trial.

140
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Table 2. Experimental design.

Training trials

(relative frequency) Test trials

A1B1→ common (x2) A1B1, A2B2, A3B3,
x4

A2B2→ common (x2) F1D1, F2D2, F3D3,

A3B3→ common (x2) A1C1, A2C2, A3C3,
x2

A1C1→ rare (x1) G1E1, G2E2, G3E3,

A2C2→ rare (x1) B1, B2, B3,

A3C3→ rare (x1) C1, C2, C3,

F1D1→ common (x2) D1, D2, D3,

F2D2→ common (x2) E1, E2, E3,
x 5

F3D3→ common (x2) A1, A2, A3,

G1E1→ rare (x1) B1C1, B2C2,

G2E2→ rare (x1) B3C3, D1E1,

G3E3→ rare (x1) D2E2, D3E3

Note. Each abstract stimulus is represented by

three “cells” randomized between participants.

The subscripted numbers represent the specific

“cell” tied to the abstract stimulus present on a

trial. Example “cells” can be seen in Figure 1.

141

represented each disease was also explained to the participant before the task began, and was counterbalanced142

between participants. The disease that was abstractly common or rare was also counterbalanced. The mapping143

between cues and outcomes was deterministic e.g. A1B1 was always followed by the common disease, and A1C1144

was always followed by the rare disease.145

The experiment was displayed on a back-projection screen positioned at the foot end of the MRI scanner146

and viewed via a mirror mounted on a head coil. Button-press responses and reaction times (RTs) were measured147

using a fiber-optic button box. The training phase consisted of 10 blocks of 36 trials, making 360 trials in total.148

Each trial began with a variable duration fixation cross presented in the center of the screen. The durations were149

generated using an exponential distribution, following the method described in Haberg, Zito, Patria, and Sanes150

(2001). The range of the durations was 250 ms - 3500 ms, with a mean duration of 1284 ms.151
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After the fixation cross, a grey view box was displayed on its own for 500 ms to indicate where the stimuli152

would appear. The “cell” stimuli appeared toward the top and bottom of the view box, with location randomized153

on each trial. The cells remained on screen for 2000 ms, during which time participants made their diagnosis154

using either the left or right button on the button box. After this, participants received corrective feedback for155

500 ms which included naming the correct diagnosis. If a response was not made within 2000 ms, participants156

instead received a time-out message.157

Further instructions were given at the start of the test phase. Participants were informed that they would158

still diagnose patients and would see some cells that they had seen before, continuing to receive feedback for159

these cells. These were the same cue compounds presented during training, and were presented in the same160

ratio as in training. The first four rows of the test trials column in Table 2 represent these trials. Training161

trials for which participants received corrective feedback in the test phase are not always included in IBRE162

procedures, but this approach addresses the potential concern that performance will deteriorate over the course163

of the necessarily lengthy test phase, by providing additional learning in order to stabilize performance. This164

technique was employed successfully in both Wills et al. (2007) and Wills et al. (2014).165

Participants were further told that they would see some cell combinations that they would not receive166

feedback for. These trials were novel to the test phase, and can be seen in the test trials column in Table 2 (row167

five onwards). The test phase consisted of 282 trials in total. The number of test trials was constrained such that168

the key test stimuli (B, C, D, E) were presented enough to adequately power the fMRI analyses, but that the test169

phase was not excessively long, so as to avoid participant fatigue.170

The trial structure in the test phase was the same as in the training phase, but with the addition of single171

cells being presented in the center of the view box. The variable duration of the fixation cross had the same172

range of times as in the training phase, and a similar mean duration of 1226 ms.1 On trials for which participants173

did not receive feedback, they instead received the message “DATA MISSING” and a series of question marks.174

2.3 Analysis of Behavioral Data175

Trials where participants timed out were removed from further analysis and constituted less than 1% of the176

total number of trials across all participants. In addition to conventional null-hypothesis tests, we also calculated177

Bayes Factors (BF) for theoretically-central analyses. These were calculated using the procedure recommended178

by Dienes (2011), implemented within an R script by Baguley and Kaye (2010). Predicted differences were179

estimated from a behavioral-only version of the same experiment previously run in our lab (Experiment 3;180

Inkster, 2019). As recommended by Dienes, we assumed a half-normal distribution for the prior with a mean of181

1The slight difference in mean duration relative to the training phase results from discretizing the exponential distribution of times over a
different, finite, number of trials.



NEURAL CORRELATES OF THE IBRE

zero and a standard deviation equal to the predicted difference. By convention, where BF > 3, the experiment182

has found evidence for the alternative hypothesis, whereas if BF < 1/3, the experiment finds evidence for183

the null hypothesis (Jeffreys, 1961). Values between a third and three are generally considered inconclusive,184

although they still carry information. For example, where BF = 2, this tells us that the experimental hypothesis185

is now about twice as likely as it was before we conducted the experiment.186

2.4 fMRI Data Acquisition187

Images were collected using a 1.5-T Gyroscan magnet equipped with a Sense coil (Philips, Amsterdam,188

The Netherlands). A T2*-weighted echo-planar sequence was used (repetition time = 3000 ms, echo time =189

45 ms, flip angle = 90◦, 32 transverse slices, field of view = 240 mm, 3.5×2.5× 2.5 mm). The training phase190

comprised two runs of 242 scans, and the test phase two runs of 187 scans. Standard volumetric anatomical MRI191

was performed after functional scanning by using a 3-D T1-weighted pulse sequence (repetition time = 25 ms,192

echo time = 4.1 ms, flip angle = 30◦, 160 axial slices, 1.6×0.9×0.9 mm).193

2.5 Analysis of fMRI Data194

Analyses were carried out using SPM12 software (FIL Methods Group, 2014). Functional images were195

corrected for acquisition order, realigned to the mean image, and resliced to correct for motion artefacts. The196

realigned images were coregistered with the structural T1 volume, and the structural volumes were spatially197

normalized. The spatial transformation was applied to the realigned T2* volumes, which were spatially smoothed198

using a Gaussian kernel of 8 mm FWHM. Data were high-pass filtered (1/128 Hz) to account for low-frequency199

drifts. The BOLD response was modeled by a canonical haemodynamic response function with temporal and200

dispersion derivatives.201

In the individual participant models, the critical trials for comparisons (AB and AC for the training phase;202

B, C, D, E for the test phase) were included as individual regressors, with the other, non-critical, trial types and203

time-outs included as two further separate regressors of no interest. The duration of each event was modeled as204

the participant’s RT for that trial, an approach advocated in Grinbrand, Erdeniz, Lindquist, Ferrera, and Hirsch205

(2008).206

Our three principal analyses were conducted on comparisons of singly-presented cues in the test phase;207

these principal analyses were: comparing C-B, comparing E-D and the critical analysis, comparing the levels of208

activation in the previous two comparisons; (C-B)-(E-D). The C-B comparison is a direct examination of our209

central prediction that activations in brain regions linked to prediction error would be greater for C presented210

alone, relative to B presented alone. The E-D comparison is similar to the C-B comparison but has a different211
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purpose. E and D serve as frequency matched controls to C and B, so any difference in the comparisons must be212

due to the presence or absence of the shared cue during training. The (C-B)-(E-D) comparison provides a direct213

test of these differences.214

In addition to our principal analyses, we also conducted two further analyses. The first of these compared215

activation linked to AC and AB in brain areas previously linked to prediction error (and thus included in our216

ROI) in our training phase fMRI data. From both the behavioral data, and from the EXIT model, it is possible217

to predict that there will be more prediction errors on AC trials than AB trials, and hence areas associated218

with prediction error should be more active on AC trials than AB trials. The second of our additional analyses219

compared activation linked to BC and DE in our ROI during the test phase. EXIT does not predict a difference220

between these two compound cues; it instead predicts that the way attention is distributed between the cues221

within the compounds is the key difference. Nonetheless, as BC is the key behavioral cue, an obvious comparison222

to make is between BC and its frequency-matched control compound, DE. A further justification for this contrast223

is that theories other than EXIT might predict a neural difference between these two compounds.224

The mask used for the ROI analysis was constructed using the WFU Pickatlas (Maldjian, Laurienti, Burdette,225

& Kraft, 2003), and was comprised of the brain regions we predicted to be linked to prediction error in our226

Introduction. Specifically, these regions were the bilateral caudate, putamen and nucleus accumbens, the right227

dorsolateral prefrontal cortex (BA 9 and BA 46), the medial anterior prefrontal cortex (BA 9 and BA 10) and the228

anterior cingulate (BA 24, BA 32 and BA 33). The number of voxels within this mask was 11952. Alongside229

ROI analysis, we also conducted exploratory whole brain analysis for each of the above comparisons.230

The fMRI analyses were completed using a hierarchical general linear model, with first-level analyses231

conducted at the individual subject level and second-level analyses at the group level using a random effects232

model. The ROI analyses were conducted with a combined statistical threshold of p < .005 and the following233

thresholds of contiguous voxels: 30 for the training phase analyses and 26 for the test phase analyses. These234

thresholds together produce an overall corrected threshold of p < .05; based on cluster-level inference corrected235

for familywise error rate according to cluster size. These values were estimated using AlphaSim as implemented236

in the REST toolbox (Version 1.8, Song et al., 2011). For these calculations, smoothness was estimated within237

SPM12 using the group residuals from the general linear model and were 9.0 x 9.0 x 8.8 mm for the training238

phase and 9.7 x 9.7 x 9.4 mm for the test phase.239

The test phase whole brain analyses were conducted with a combined statistical threshold of p < .001240

and 110 contiguous voxels. These thresholds together produce an overall corrected threshold of p < .05; again241

based on cluster-level inference corrected for familywise error rate according to cluster size. These values were242

again estimated using Alphasim (REST, Version 1.8, Song et al., 2011). For all analyses, normalized MNI243
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space coordinates were transformed to Talairach space using GingerALE (Eickhoff et al., 2011) and assigned244

anatomical labels using the Talairach Client (http://talairach.org/client.html) as per the atlas of Talairach and245

Tournoux (1988).246

3 Results247

3.1 Behavioral Analyses248

The accuracy of participants across the training phase is shown in Figure 2. A three-way ANOVA was249

conducted on the training phase data, looking at the effects of training block (first/last), stimulus frequency250

(common/rare) and shared cue (present/not present) on accuracy. Accuracy in the final block was significantly251

higher than the first block, F(1,24) = 324.63, p < .001. No other significant main effects or interactions were252

found.253

A further two-way ANOVA was conducted on the data in the final block of training, looking at the effects254

of stimulus frequency and shared cue on accuracy. Accuracy was significantly higher for the common stimulus255

compounds (AB and FD) than for the rare stimulus compounds (AC and GE), F(1,24) = 5.23, p = .03. No256

other significant main effects or interactions were found.257

Table 3 shows the response proportions for each of the stimuli presented in the test phase. The IBRE test258

stimulus BC was found to have a significantly greater proportion of rare responses than .5, BF10 = 31, t(24) =259

2.93, p = .003. Given there are only two response options in the current experiment, this demonstrates the260

presence of an IBRE. The proportion of common responses to the A stimulus was significantly greater than .5, as261

expected, t(24) = 6.14, p < .001. Also as expected, there were fewer rare responses to DE than to BC, although262

the evidence for this difference was inconclusive, BF10 = 1.8, t(24) = 1.57, p = .07.263

Table 3 further shows the response proportions produced by the EXIT formal model (Kruschke, 2001b),264

within brackets next to the behavioral data. As can be seen from the Table, EXIT provides an extremely close fit265

to the behavioral data, capturing the response patterns for each stimulus, RMSD = .01,r2 > .99. For technical266
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Figure 2. Training accuracy. The error bars are

within-subject Cousineau-Morey 95% confidence

intervals.

267

Table 3. Proportion of responses to each of the

stimulus types presented in the test phase.

Stimulus type Common Rare

A .76 (.76) .24 (.24)

AB .92 (.93) .08 (.07)

AC .19 (.17) .81 (.83)

B .92 (.90) .08 (.10)

BC .35 (.36) .65 (.64)

C .15 (.15) .85 (.85)

D .85 (.86) .15 (.14)

DE .44 (.43) .56 (.57)

E .24 (.24) .76 (.76)

FD .96 (.94) .04 (.06)

GE .11 (.13) .89 (.87)

Note. Bold font indicates the behavioral

results analysed. Values within brackets

are simulated response proportions from the

EXIT model.

268

details of our simulation methodology, see Appendix A.269
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3.2 Imaging Analyses270

3.2.1 Training phase271

We compared AC with AB in our ROI, during the training phase. This analysis (with thresholds of p < .005272

and 30 contiguous voxels) revealed a number of brain regions that exhibited greater activations for AC compared273

to AB (see Figure 3). These regions were the bilateral caudate body (peak cluster size: 214, peak voxel x = -14,274

y = 7, z = 15) and the right dorsolateral prefrontal cortex (BA 9; peak cluster size: 41, peak voxel x = 43, y = 5, z275

= 32).276

3.2.2 Test phase277

278

BC - DE comparison The EXIT model does not predict a difference between these two compound cues,279

because it is the distribution of attention within the compound that is predicted to vary between the two280

compounds, not the total amount of attention to BC versus DE. Specifically, C is predicted to be more attended281

than B, while attention should be more evenly distributed between D and E. As expected, no significant282

differences were found, either in ROI or whole-brain analyses.283

C - B comparison The ROI analysis (thresholds of p < .005 and 26 contiguous voxels) revealed a number of284

brain regions that exhibited greater activations for C (stimulus associated with the rare outcome) than for285

x =−9,y = 10,z = 14

Figure 3. Areas that show greater activation for the AC cue compound compared to the AB cue compound

under a ROI analysis, during the training phase. The thresholds used were p < .005 and 30 contiguous voxels.

286

B (stimulus associated with the common outcome), see Figure 4 and Table 4. These regions included the287
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ventromedial prefrontal cortex (BA 10), medial prefrontal cortex (BA 9), right dorsolateral prefrontal cortex (BA288

9), bilateral caudate body, and left anterior cingulate (BA 32).289

A number of brain areas included in the ROI analysis were also activated under whole brain analysis290

including a cluster comprising the right medial frontal cortex and the anterior cingulate (cluster size: 228, peak291

voxel x = 3, y = 55, z = 17). Outside of brain areas already identified in the ROI analysis the right thalamus292

was activated (cluster size = 257, peak voxel x = 12,y =−11,z = 18), as well as a separate cluster in the left293

cerebellum (cluster size = 111, peak voxel x =−25,y =−70,z =−28).294

E - D comparison The E-D comparison differs from the previous comparison in one key respect; the absence295

of a shared cue presented alongside E and D in training. Given the predictions of the error-driven learning296

account, and previous work (Kruschke, 2001a; Wills et al., 2014), we would expect to see no difference in297

activations here.298

A ROI analysis examined activations for the E stimulus compared to the D stimulus and failed to find any299

areas that showed a significant difference in activation. Although this is unsurprising theoretically, these analyses300

were conducted to both stay consistent with the previous comparison and to characterize this comparison given301

its use in the final, critical, comparison. Whole brain analysis also failed to show any areas with a significant302

difference in activation.303

(C-B) - (E-D) comparison This comparison is the critical analysis for the current experiment. The previous304

test phase comparisons differ in one key way; the presence or absence of a shared cue when training with those305
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Table 4. Brain regions activated during the test phase for a ROI analysis of C-B. The thresholds used were

p < .005 and 26 contiguous voxels.

Talairach coordinates

Region Cluster size BA x y z z− score

Right Ventromedial Prefrontal Cortex 219 10 3 55 17 4.46

Right Anterior Cingulate 32 3 39 15 3.88

Right Medial Prefrontal Cortex 9 3 48 18 3.58

Right Caudate Body 226 8 1 14 3.97

Right Caudate Body 12 -17 21 3.51

Right Caudate Body 14 2 23 3.12

Right Dorsolateral Prefrontal Cortex 32 6 34 6 41 3.43

Right Dorsolateral Prefrontal Cortex 9 39 10 38 2.82

Left Caudate Body 135 -8 1 10 3.26

Left Caudate Body -16 8 17 3.24

Left Caudate Body -12 14 13 3.08

Left Anterior Cingulate 58 32 -8 41 10 3.09

Left Ventromedial Prefrontal Cortex 10 -3 52 13 2.69

306

x = 4,y = 13,z = 15 x =−13,y = 14,z = 5

Figure 4. Areas that show greater activation for the C stimulus compared to the B stimulus during the test

phase, under a ROI analysis. The thresholds used were p < .005 and 26 contiguous voxels.
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Table 5. Brain regions activated during the test phase for the ROI analysis of the comparison of the C-B

comparison and the E-D comparison. The thresholds used were p < .005 and 26 contiguous voxels.

Talairach coordinates

Region Cluster size BA x y z z− score

Right Caudate Body 395 8 1 14 3.86

Right Caudate Body 10 9 11 3.75

Right Caudate Body 6 6 5 3.55

Left Caudate Body 36 -8 1 10 3.45

Right Anterior Cingulate 32 24 4 21 24 3.39

Right Anterior Cingulate 24 4 29 18 3.06

Right Superior Prefrontal Cortex 45 9 8 56 24 3.35

Right Ventromedial Prefrontal Cortex 10 5 56 13 2.94

Left Anterior Cingulate 47 32 -8 39 11 3.17

Left Anterior Cingulate 32 -6 45 7 2.98

Left Caudate Body 32 -14 -11 19 3.13

Left Caudate Body 48 -16 8 17 3.05

Left Caudate Body -16 16 15 2.75

308

x = 15,y = 7,z = 22

Figure 5. Areas that show greater activation for the C-B comparison compared to the E-D comparison

under a ROI analysis, during the test phase. The thresholds used were p < .005 and 26 contiguous voxels.

309
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stimuli. While any difference in the areas of the brain activated between these comparisons can be attributed to310

this factor, the (C-B)-(E-D) comparison provides a direct test of this difference.311

A ROI analysis revealed a number of brain regions exhibiting greater activation for the C-B comparison312

compared to the E-D comparison (Figure 5 and Table 5). Greater activation was noted in the bilateral caudate,313

the bilateral anterior cingulate, the right superior prefrontal cortex and right ventromedial prefrontal cortex.314

The whole brain analysis also identified two clusters outside the areas identified in the ROI analysis, in the315

right thalamus (cluster size = 125, peak voxel x = 4,y =−19,z = 12) and the left cerebellum (cluster size = 155,316

peak voxel x =−29,y =−68,z =−30).317

4 Discussion318

The IBRE is a non-rational phenomenon in which people, having learned that cue compound AB predicts a319

common disease and cue compound AC predicts a rare disease, go on to predict that BC predicts the rare disease,320

in opposition to the underlying base rates (Kruschke, 1996; Medin & Edelson, 1988; Shanks, 1992). The current321

study was the first investigation of a successfully-observed IBRE with fMRI.322

We made a number of predictions about brain activity and investigated them using ROI analysis. The323

predictions were made on the basis of: (1) an error-driven learning account of the IBRE, expressed as a formal324

model (Kruschke, 2001b), (2) a previous electrophysiological study of the IBRE (Wills et al., 2014), and (3) a325

substantial body of previous work on the neural correlates of prediction error (e.g. Fouragnan et al., 2018).326

As predicted, a number of brain regions previously associated with prediction error during training showed327

greater activation during the test phase for the C cue relative to the B cue. These regions included the ventromedial328

prefrontal cortex, the medial prefrontal cortex, right dorsolateral prefrontal cortex, bilateral caudate body and329

left anterior cingulate. A number of previous studies have linked these areas to the occurrence of prediction error330

(e.g. Fletcher et al., 2001; Fouragnan et al., 2018; Garrison et al., 2013; Turner et al., 2004). These differences331

were not detectable for the frequency-matched control cues D and E, which were presented in training without332

the shared cue A. Greater activations were also noted in the right dorsolateral prefrontal cortex and bilateral333

caudate body during the training phase for the AC cue relative to the AB cue; a result consistent with both334

previous work and our test phase analysis.335

Taken together, these results provide strong evidence in support of the prediction-error-based account of the336

IBRE (Kruschke, 2001b). Specifically, the current results, alongside those of Kruschke et al. (2005) and Wills et337

al. (2014), support the idea that the effects of prediction error during training persist into the test phase, and338

can be observed in singly-presented cues. These differences are characterized in EXIT as persistent changes in339
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attentional allocation, and this characterization in turn supports the idea that activity in brain areas associated340

with prediction error is sometimes associated with differences in attentional processing. Further support for341

Kruschke’s account of the IBRE comes from the excellent level of quantitative fit of his EXIT model to the342

behavioral data of the present study (see Table 3).343

Exploratory whole-brain analysis of the test phase identified several additional brain areas that might344

be involved in the IBRE. These areas were not predicted in advance so any inferences must be treated with345

some caution. One area in the thalamus showed a difference in activation for the C cue relative to the B cue.346

Given its role in relaying and processing sensory information (Schiff, 2008), its activation in this task is not347

unexpected. Another area in the left cerebellum also showed a difference in activation for the C cue relative to348

the B cue. This is perhaps unsurprising given that this area has been implicated in a wide range of cognitive349

tasks including learning (Desmond & Fiez, 1998); such as a previous category learning experiment (Carpenter,350

Wills, Benattayallah, & Milton, 2016).351

There was some overlap between the areas of activation observed in the present work, and those observed352

in the only previous attempt to study the IBRE with fMRI (O’Bryan et al., 2018). O’Bryan et al. (2018) reported353

activations in the PFC, thalamus and cerebellum; areas also identified in our key contrast. Direct comparison of354

the two studies is difficult, however, due to differences in analysis methodology. The analyses conducted in the355

current study are direct stimulus contrasts, while O’Bryan et al. (2018) correlated brain activity with internal356

values of the dissimilarity-based extension of the Generalized Context Model (dissGCM; Stewart & Morin,357

2007). Nevertheless, the overlap in some of the regions identified across the studies is intriguing, even with this358

caveat in mind.359

Inferring from this overlap should be approached with some caution though, as O’Bryan et al.’s conclusions360

appear somewhat different to those of the current study, and to those of a number of previous experiments on the361

IBRE. A key conclusion from O’Bryan et al. (2018)’s MVPA is that, on trials where participants respond rare362

to BC, they process B more intensively than C. O’Bryan et al. note that eye-tracking would be a good way to363

corroborate this finding; a methodology previously employed in the study of a variant of the IBRE by Kruschke364

et al. (2005). Kruschke et al. (2005) reported less attention to B than C on BC trials when an IBRE was observed,365

a finding further supported by the ERP results of Wills et al. (2014). Nonetheless, future work on the IBRE366

should further consider the theoretical implications of both sets of results..367

In the current work, we have focussed on the predictions of the EXIT model, as these were the a priori368

basis of our experiment. Other formal models of category learning are available. One particularly pertinent369

alternative in the current case, given its predictions about the relationship between cognitive and neural processes,370

is the COmpetition between Verbal and Implicit Systems model (COVIS; Ashby, Alfonso-Reese, Turken, &371
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Waldron, 1998). We note that one of the areas identified in our key contrast was the caudate body, to which372

COVIS attributes stimulus representation in the procedural learning system. Nomura et al. (2007) suggest that373

feedback-driven learning strengthens synapses in the caudate through a reward signal, and the idea that the374

caudate is involved in some kind of associative learning process is consistent with a number of other related375

results (e.g. Carpenter et al., 2016; Seger & Cincotta, 2005). The COVIS procedural system, in its current form,376

does not provide an explanation for the IBRE, but it could potentially be modified to do so by the inclusion of377

the sort of error-driven attentional-allocation process employed in EXIT and investigated in the current work.378

While we argue for the role of prediction error in the brain regions identified in our analysis, it is worth379

acknowledging that some of these areas, in particular the DLPFC, have been linked to other cognitive processes.380

Schlösser et al. (2009) evidenced a link between DLPFC and the processing of uncertainty; clearly this could play381

a role in the handling of the BC test cue, due to uncertainty generated as a result of the conflicting information382

provided by the B and C cues individually. Similarly, Badre and D’Esposito (2007, 2009) link the lateral PFC383

to hierarchical cognitive control processes, including attentional control. This is interesting, as EXIT arguably384

instantiates a controlled process of attentional reallocation; for example, it has previously been proposed that385

concurrent load disables attentional reallocation in this kind of model (Nosofsky & Kruschke, 2002).386

4.1 Conclusion387

The current study provides the first evidence linking the bilateral caudate body, the left anterior cingulate, the388

right dorsolateral prefrontal cortex, the ventromedial prefrontal cortex and medial prefrontal cortex to the IBRE.389

These neural correlates are strongly linked to the occurrence of prediction error; a concept implemented within390

the error-driven learning account of Kruschke (2001b). Therefore, this study both furthers the neuroscientific391

literature investigating prediction error and strongly supports the account implemented within Kruschke’s (2001b)392

EXIT formal model.393
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Appendix A: Modeling498

The simulation was conducted using slpEXIT, part of the catlearn R package (Wills et al., 2019). This499

implementation of EXIT is based on the model as described in Kruschke (2001b), with the inclusion of a bias cue500

that was later implemented in Kruschke (2003). The salience of the bias cue is represented by the σ parameter.501

The EXIT model was applied to simulated training and test trials that replicated the details of the experi-502

mental procedure, generating response patterns for each simulated trial. The values of the free parameters given503

to the model were optimized using the optim function in R (R Core Team, 2018); specifically the limited memory504

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm (Byrd, Lu, Nocedal, & Zhu, 1995). The sum of squared505

errors (SSE) between the model predictions and behavioral data was used as the objective function. As optim506

requires an initial set of starting parameters to vary, each free parameter within the EXIT model was initially set to507

one of two values. As there are 7 free parameters, this resulted in a total of 27 or 128 sets of parameter values. This508

produced 128 sets of optimized parameter values; the set with the lowest SSE was chosen. The parameter values509

within this final optimized set were: c = .746,P = 2.383,φ = 2.963,λg = .257,λw = .047,λx = 2.069,σ = .031.510


