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Abstract 

The work described here has led to a simple criterion that defines the boundary of the small-scale 

yielding, SSY, regime to avoid invalid use of the LEFM parameter, K, as the characterising 

parameter for fatigue crack growth rate. The approach proposed is based on the analysis of crack 

tip opening displacement, CTOD, and its separation into elastic and plastic components. SSY 

conditions are shown to dominate when the elastic component of CTOD is larger than 75% of the 

total CTOD measured at a distance of 8 m (the finite element mesh size) behind the crack tip, 

i.e., e/t >75%. Large-scale yielding, LSY, conditions become dominant for relatively large 

values of plastic CTOD, e/t <60%. An increase in crack length (and therefore of K), a 

decrease in yield stress of the material and the existence of plane stress conditions all promote 

LSY. The results obtained from various loading and geometric conditions simulated in this work 

demonstrate that caution should be used in assuming that the use of ΔK is valid even for high 

strength alloys like Ti6Al4V. In this material, the boundary of the elastic regime was crossed and 

SSY conditions lost,  for the longest crack lengths studied and in the case of overloads. 

 

Keywords: Small-scale yielding; Large-scale yielding; Linear elastic fracture mechanics; 

Stress intensity factor; Crack tip opening displacement 
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NOMENCLATURE 

 a = crack length 

 a0 = initial crack length 

 CT = Compact Tension (specimen) 

 CTOD = Crack Tip Opening Displacement 

 d = distance to crack tip measured along crack flank 

 E = Young’s modulus 

 FCGR = Fatigue Crack Growth Rate 

 K = stress intensity factor 

 KC = fracture toughness 

 Kmax = maximum stress intensity factor 

 Kmin = minimum stress intensity factor 

 LEFM = Linear Elastic Fracture Mechanics 

 R = Stress ratio 

 LSY = Large-Scale yielding 

 SSY = Small-Scale yielding 

 t = specimen’s thickness 

 W = specimen’s width 

 Y0 = Initial yield stress 

 e = elastic range of CTOD 

 p = plastic range of CTOD 

 t = total range of CTOD 

  = Poisson’s ratio 

 K = stress intensity factor range (Kmax-Kmin) 

 Kth = fatigue threshold 
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1. Introduction 

The application of linear elastic fracture mechanics (LEFM) rests on an assumption 

that the overall specimen response is linear elastic, even if this does not hold true for a 

limited region at the crack tip. In LEFM, the stress intensity factor, K, quantifies the 

magnitude of the r-½ singularity present in the elastic stress and strain fields [1]. This 

parameter K has found extensive utility in assessing the potential for fracture, because it 

includes the effect of crack length and load level, is relatively easy to determine 

numerically or experimentally, and published solutions are readily available for many 

different geometries 2-4. In the study of fatigue crack growth rate (FCGR), the range of 

stress intensity factor, K, is widely assumed to represent the crack driving force. 

The simplicity of its use, based on International Standards e.g. 5, 6, also explains 

the long-held dominance of K in FCGR studies. Since Paris and Erdogan proposed their 

original model 7, a very large number of analytical and empirically-derived models have 

been proposed that link FCGR with various loading parameters. Fracture toughness, KC, 

and fatigue threshold, Kth, have been included in the models to provide an improved fit 

to the sigmoidal shape of the growth rate curve e.g. 8-11. The effect of stress ratio was 

incorporated into the models via the concept of crack closure 12. 

Other authors have proposed a two parameter driving force, particularly for fatigue 

crack growth in less ductile alloys where the maximum stress intensity factor, Kmax, is 

likely to have a role in the influence of stress ratio in addition to the range of stress 

intensity, K 13,14. Christopher et al. 15 proposed a novel mathematical model of the 

stresses around the tip of a fatigue crack (CJP model), which was intended to address, 

more completely, the physical mechanisms involved in fatigue crack growth in ductile 

materials, and hence considers the effects of wake contact and compatibility-induced 

stresses at the elastic–plastic boundary on the surrounding elastic field. Several 
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parameters were defined from the applied forces to characterize the effective stress field: 

an opening mode stress intensity factor KF that drives crack growth, a retarding stress 

intensity factor, KR and the T-stress. In essence, whilst the complexity of the various 

models has been steadily increasing to incorporate identified effects of the plastic region 

induced at the crack tip during fatigue crack growth, they generally retain the concept of 

dominance by a stress intensity parameter in the near tip region and assume that LEFM 

applies, i.e. that the concept of similitude will hold true. 

The fundamental difficulty in FCGR studies arises from the hysteretic energy loss 

associated with crack growth under cyclic loading. In ductile alloys, this is evidenced in 

irrecoverable plastic deformation at the crack tip. As illustrated schematically in Figure 

1, different regions can be identified ahead of a fatigue crack tip 16. In regions I and II 

the response of the body is elastic and this region can be divided into two zones, with 

region I representing the far-field elastic case and region II representing the near-tip K-

dominated elastic field. Region III contains the monotonic plastic zone that occurs during 

the tensile half-cycle of loading. The cyclic plastic zone that occurs under reversed 

loading is represented by region IV, and this is where there is hysteretic energy loss and 

crack growth initiates. 

Small-scale yielding (SSY) conditions are considered to dominate when the plastic 

region is small compared to significant dimensions of the body. The plastic zone can be 

considered as causing a small perturbation in the linear elastic field 17, and Rice 18 

showed that under SSY conditions cyclic plasticity at the crack tip is, indeed, controlled 

by the value of K. This means that LEFM is valid, i.e. that linear elastic behaviour can 

be assumed to hold true up to a distance of perhaps twice the plastic zone size from the 

crack tip. On the other hand, if the plastic deformation is large and extends over region 

II, LEFM is no longer valid and alternative parameters are needed to quantify the crack 
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driving force. In other words, with the increase of crack tip plastic zone, SSY no longer 

holds and the situation moves to Large-Scale Yielding (LSY) conditions. 

Under LSY, alternative crack driving parameters are needed, like J 19, CTOD 

20, the energy dissipated 21, net-section cyclic strain energy 22 or even the size of 

crack tip plastic zone 23. LSY is more likely to occur in ductile alloys, while in higher 

strength materials, SSY may be expected. Additionally, an efficient utilization of the 

materials implies high overall stresses, which favours LSY. 

 

 

 

 

 

 

 

 

 

Figure 1. Schematic diagram of crack tip zones, parameters and stress-strain response. 

 

However, the definition of the limits of applicability of LEFM/SSY regime is not 

straightforward. In fact, the ASTM E647-15 standard 5 indicates that the “conditions 

giving rise to the each of these two regions (SSY and LSY) of behaviour are not clearly 

defined”. In most published works, the validity of SSY assumption is not checked. It is 

equally true that when LSY approaches are used the LSY condition limit is not checked 

24-26 and, eventually, SSY approaches may have to be used in such studies. Objective 

criteria are therefore needed to define the boundaries of the LSY and SSY regimes. 

IV  

III  

II  
I 
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According to Dowling 27, in SSY the plastic zone must be “small” compared to 

the distance to the specimen boundaries. A distance of 4rp is proposed to be a sufficient 

minimum, where rp is the size of crack tip plastic zone. Therefore, following Irwin and 

assuming that for plane stress conditions: 
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=  (1) 

the minimum required dimensions of the specimen and crack are: 
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Ritchie 17 proposed that the plastic zone should be ≈ 15 times smaller than the in-plane 

dimensions of crack length, a, and uncracked ligament (W – a). Note that many solutions 

have been proposed in published literature for the size of crack tip plastic zone that gives 

a SSY state. Empirically, it has been proposed that LEFM is valid if: 
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The ASTM E647–15 standard [5] states that for results of a K calculation to be valid, the 

dimensions of C(T) and M(T) specimens should meet the following criteria, respectively: 
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where Kmax is the maximum stress intensity factor, Fmax is the maximum force, W is the 

width of specimen, t is the thickness of specimen, a is the crack length and Y0 the yield 

stress of the material. Note that an older version of ASTM stated different criteria, which 

were: 
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0

max

tY

F
25.1)a2W( h, ,a −  (7) 

Therefore, not only the remaining ligament, but all the distances to free surfaces were 

limited, as Figure 2 illustrates. If these criteria are not met, then LEFM cannot be applied.  

 
Figure 2. Situations where the LEFM is not valid, according ASTM E647 (CT and MT 

specimens). 

   
 The main objective in the current work is the definition of the boundaries of the 

SSY and LSY regimes to avoid an invalid use of the stress intensity factor range as a 

parameter to characterise fatigue crack propagation. A closed form solution is not easy to 

obtain, because the material properties, the loading parameters and the geometry all 

influence crack tip plastic deformation. Therefore, instead of a closed form solution a 

procedure is proposed to check the boundaries of the SSY and LSY regimes using the 

crack tip opening displacement (CTOD). The CTOD, obtained numerically using the 

finite element method or experimentally using DIC, is separated into its elastic and plastic 

components. Note that the classical approach based on the size of crack tip plastic zone 

is replaced here by the crack tip plastic deformation, quantified by the plastic component 

of CTOD. However, a strong link is expected between the plastic CTOD and the size of 

crack tip plastic zone 28, so both approaches are viable. In order for the LEFM to be 

applicable, it is necessary that the plastic CTOD range is relatively small. 

2. Criteria to define the boundary between the SSY and LSY regimes 

2.1. Numerical modelling 

a 

(W – a) 

h 
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A standard compact C(T) specimen geometry was used in the work to define a 

criterion to predict the SSY/LSY boundary, as illustrated in Figure 3a. The specimen is 

symmetrical in both the vertical and horizontal planes and therefore only 1/4 of the 

specimen has to be simulated using appropriate boundary conditions. A small specimen 

thickness was used (t = 0.1 mm) to give a plane stress state. A plane strain situation was 

also modelled by constraining out-of-plane deformation on both faces of the specimen 

and crack closure was allowed to occur in the modelling. Three specimen configurations 

(A, B and C) were considered, as indicated in Table 1. Configurations B and C have the 

same specimen width, W, but different initial crack lengths, a0. The loading conditions 

and materials are indicated in Table 2. The total number of the cases considered was 171. 

 

 

 

 

 

 

 

 

Figure 3. CT specimen (a) Main dimensions. (b) Boundary conditions. 
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Table 1. Specimens configuration. 

Specimen 

config. 
Type 

W 

[mm] 

t 

[mm] 
a0 [mm] 

A 
C(T) 36 0.1 7, 10, 13, 16, 19, 22, 24 

B 
C(T) 50 0.1 5, 9, 12.5, 14, 16.5, 19, 21.5, 24, 26.5, 29 

C 
C(T) 50 0.1 13.25, 15, 16.25, 17.5, 20, 22.5, 25, 30 

  

Table 2. Loading conditions. 

Material 
Specimen 

config. R 

ΔK 

[MPa.m0.5] 
Fmin [N] Fmax [N] 

Stress 

State 

2050-T8 
A 

0.05 
11.3 up 

to 53.4 
2.48 49.61 Plane stress 

2024-T351 
B 

0.1 up 

to 0.7 

4.2 up to 

21.7 

4.17 up to 

72.92 

41.67 up 

to 

104.17 

Plane 

strain, 

Plane stress 

304L SS C, A 
0.1 up 

to 0.7 

5.8 up to 

53.0 

-11.15 up 

to 166.10 

11.81 up 

to 

237.29 

Plane 

strain, 

Plane stress 

7050-T6 
A 

0.05 
11.2 up 

to 53.4 
2.48 49.61 Plane stress 

6082-T6 
A 

0.05 
11.2 up 

to 22.2 
2.48 49.61 Plane stress 

18Ni300 
A 

0.05 
11.1 up 

to 51.2 
2.48 49.61 

Plane 

strain, 

Plane stress 

 

Elastic-plastic models were used for the materials shown in Table 2, which have 

been chosen to represent a broad range of alloys and include work hardening and heat-

treatable aluminium alloys, an austenitic stainless steel and a maraging steel. In addition, 

the criterion obtained was validated against a simulation using Ti6Al4V titanium alloy. 

In these simulations elastic behaviour followed a generalized Hooke’s law and plastic 

behaviour was governed by the Huber-Mises yield criterion coupled with isotropic and 
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kinematic hardening, under an associated flow rule. The kinematic behaviour is given by 

the Armstrong-Frederick hardening law 29: 

 𝑿̇ = 𝐶𝑋 [𝑋𝑆𝑎𝑡
𝜎′−𝑿

𝜎̄
−𝑿] 𝜀̄̇𝑝, (8) 

where CX and XSat are the material parameters of Armstrong-Frederick law, σ’ is the 

Cauchy stress tensor, X is the back stress tensor,   is the equivalent stress and 𝜀̅̇𝑝 is the 

equivalent plastic strain rate. 

Table 3 gives the isotropic behaviour for the various materials in terms of the Voce 

hardening law 30, as follows: 

  𝑌 = 𝑌0 + (𝑌𝑆𝑎𝑡 − 𝑌0)[1 − 𝑒𝑥𝑝(−𝐶𝑌𝜀̅
𝑝)], (9) 

where Y0 is the yield stress, YSat, and CY are material parameters in the Voce law and 𝜀̅𝑝 

is the equivalent plastic strain. Table 4 gives the equivalent isotropic behaviour of the 

materials in terms of the Swift hardening law 31, as follows: 

  𝑌 = 𝐶 [(
𝑌0

𝐶
)

1

𝑛
+ 𝜀̅𝑝]

𝑛

, (10) 

where C and n are material parameters in the Swift law. The values of the elastic-plastic 

properties found in Tables 3 and 4 were obtained by fitting experimentally obtained 

stress-strain loops from smooth cylindrical specimens. 
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Table 3. Material properties with isotropic hardening fitted with Voce law. 

Material 

Hooke’s law 
Isotropic hardening 

(Voce) 

Kinematic 

Hardening 

(Armstrong-

Frederick) 

E 

[GPa] 

ν 

[-] 

Y0 

[MPa 

YSat 

[MPa 

CY 

[-] 

CX 

[-] 

XSat 

[MPa] 

2050-T8 [32] 70.40 0.30 383.9 383.85 0 95.38 265.41 

304L SS [33] 196 0.30 117 204 9 300 176 

7050-T6 kinematic 

[34] 
69.724 0.30 420.5 420.5 3.806 228.91 198.35 

7050-T6  

isotropic 
69.724 0.30 420.5 420.5 3.806 0 0 

6082-T6 [35] 70 0.29 238.15 487.52 0 244.44 83.18 

18Ni300 SLM [36] 165 0.30 1000 1000 0 728.34 402.06 

 

 

Table 4. Material properties with isotropic hardening fitted with Swift law. 

Material 

Hooke’s law 
Isotropic hardening 

(Swift) 

Kinematic 

Hardening 

(Armstrong-

Frederick) 

E 

[GPa] 

ν 

[-] 

Y0 

[MPa 

C 

[MPa 

n 

[-] 

CX 

[-] 

XSat 

[MPa] 

2024-T351 72.261 0.29 288.96 389 0.056 138.8 111.84 

Ti6Al4V HIP 115 0.33 823.50 707.07 -0.0288 104.26 402.01 

Ti6Al4V  

heat treatment 
115 0.33 700 738.57 -0.013 88.07 585.18 

 

The finite-element mesh was refined near the crack tip and enlarged for more 

remote positions. Square elements with dimensions of 8 × 8 μm were used in the refined 

regions. This element size was chosen as a compromise between increased computation 

time with a smaller mesh size and a the first node being relatively too far from the crack 

tip with a larger mesh size. Only one layer of elements was considered through the 

thickness. Crack propagation was simulated by successive debonding of nodes at the 
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minimum load. The FCG rates obtained assuming propagation at minimum load were 

compared with similar results obtained with propagation at maximum load, and showed 

no effect of this numerical parameter 37. Each crack increment corresponded to one 

finite element, and either two or five load cycles were applied between increments. The 

FCG rate is artificially constant and lower than real values, because the main objectives 

were the stabilization of crack tip fields and the formation of a residual plastic wake. At 

the end of each cycle, the crack propagates uniformly through the thickness by releasing 

both current crack front nodes. The numerical simulations were performed with the three-

dimensional elastic–plastic finite-element programme DD3IMP, originally developed to 

simulate deep drawing. Further details of this numerical procedure may be found in the 

literature [32-36]. 

The CTOD was measured at the first node behind crack tip, i.e. at a distance of 8 

m. Figure 4 presents a typical curve of CTOD versus applied load. At minimum load 

(A) the crack is closed, i.e. there is no CTOD at the first node behind crack tip. An increase 

of load opens the crack at point B. After opening, there is a linear displacement region 

(B-C) linked to the elastic behaviour of the material. Microplastic deformation starts after 

point C, increasing monotonically up to the maximum load (D). The elastic CTOD is then 

obtained from extrapolating the elastic behaviour defined between points C and D 

(illustrated by the solid line) up to the maximum load; the plastic CTOD is obtained by 

subtracting the elastic CTOD from the total CTOD. The elastic and plastic CTOD ranges, 

e and p respectively, are indicated in Figure 4. Marques et al 38 made a detailed 

analysis of the procedure recommended to obtain accurate values of e and p. The 

total CTOD range, t, is the sum of elastic and plastic components: 

 eet +=  (11) 



13 

 

 

Figure 4. Typical plot of CTOD versus applied load. 

 

The elastic and total CTOD ranges, e and t, respectively, were used to define 

a new parameter: 

 100%
t

e
e 




=  (12) 

This parameter has a value of 100% when the CTOD is totally elastic and a value of zero 

when it is totally plastic. It is, therefore, a useful parameter to study the transition from 

SSY to LSY. A similar approach to that shown in Figure 4 was followed by Escalero et 

al 39 in determining the boundary between SSY and LSY. They used finite element 

modelling of a hole-edge crack configuration with firstly linear elastic and secondly 

elastic-perfectly plastic material behaviour and used the elastic and plastic components 

of the J-integral to verify the limit of validity of the SSY assumption by plotting J-integral 

versus crack length. The boundary of SSY was defined by the separation of the curves 

C
T

O
D

 

Load

A

B

C

D

E

F

δp

δe
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for the elastic and plastic components. An arbitrary criterion of a difference between the 

two curves of 2% was considered as the boundary. 

2.2. Validation of the defined criteria 

An objective criterion is needed that defines the boundary of SSY. Recalling from 

Equation 12 that %e indicates the relative level of plasticity at the crack tip (0% being 

totally plastic), Figure 5 presents a histogram showing the frequency distribution of the 

number of simulated loading cases for different ranges of %e. As can be seen, the 

values of %e range from 30% to 100%, with the greatest frequency occurring at a range 

of 70-75%. A second histogram series is included in Figure 5, representing the frequency 

of cases where LEFM is invalid, in terms of the requirements of ASTM E647–15. This 

series is termed “LEFM n/a” where “n/a” means not applicable. For values of %e below 

60%, virtually all the cases are invalid. For values of %e between 60% and 75-80%, 

the SSY assumption is invalid for some of the simulated loading cases. Above 80% all 

the simulated loading cases are valid in LEFM terms. 

Considering these data, the following rule can be proposed: for %e values above 

75% LEFM is applicable, while for %e values below 60% LEFM is no longer 

applicable, and the range between 60% and 75% defines a transition regime from LSY to 

SSY. Manipulating equations 11 and 12 gives: 

 1
%

1

ee

p
−


=




 (13) 

Equation 13 shows that the lower boundary proposed for the SSY regime (%e = 75%) 

is equivalent to p/e = 33%. 
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Figure 5. Histogram of the values of %e and of invalid cases according ASTM E647–15. 

Figure 6 presents a graph of Δt versus Δe. The solid line has a slope of 45º, 

representing the situation where Δt = Δe, i.e. the CTOD is totally elastic. The dashed 

lines indicate the boundaries of the SSY and LSY regimes, defined using the rule 

proposed in this paper. The region between the 45º line and the line with longer dashes is 

the SSY regime (i.e. %e > 75%). The increase in the stress intensity range K produces 

a progressive increase of plastic deformation, as would be expected. There are a 

significant number of data points which fall into the invalid region of %e and they 

cannot be defined simply in terms of the value of applied stress intensity range. 
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Figure 6. Representation of Δδt as a function of Δδe. 

 

The effect of crack length on %e is illustrated in Figure 7, which presents results 

for the 2050-T8 aluminium alloy. As in Figure 6, the line with longer dashes represents 

the boundary proposed for the SSY regime. An increase in crack length at a given value 

of applied stress range progressively increases K, and the data indicate a transition from 

SSY conditions at a crack length of approximately 21 mm. For the two longest crack 

lengths, the use of LEFM and K is questionable. Note that the increase in crack length 

produces a progressive change from a state of plane strain state to one of plane stress, 

where the biaxial stress state makes plastic deformation easier compared with the triaxial 

stress state in plane strain. 

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3

Δ
δ

t 
[

m
]

Δδe [m]

Plane strain

Plane stress

%Δδe=75%

%Δδe=60%

Δδt=Δδe



17 

 

 
Figure 7. Effect of crack length on the relation between the elastic and total K (2050-T8; 

CT36; plane stress; R=0.05). 

 

Figure 8 shows the effect of stress state and it is clear that a triaxial plane strain 

stress state leads to less plastic deformation at a given value of Δt than a state of biaxial 

plane stress. Therefore, for the same geometry, material and loading conditions, K has 

less problems of validity than for plane stress state. 
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Figure 8. Effect of stress state on the relation between the elastic and total CTOD 

 (AA2050-T8; MT160; R=0.1; a0= 5, 10, 15, 20, 25 mm). 

 

Figure 9 illustrates the effect of yield stress and presents data from the three alloys 

simulated in this work with the same CT geometry, crack lengths and loading. The three 

materials have different mechanical properties, with the yield stress being the most 

relevant in work that considers the SSY boundary. The values of initial yield stress, Y0, 

for the 304L stainless steel (SS), 7050-T6 aluminium alloy (AA) and 18Ni300 steel are 

117 MPa, 420.5 MPa and 1000 MPa, respectively (see Table 3). As expected, an increase 

in Y0 reduces plastic deformation at the crack tip and, for the geometrical and loading 

conditions simulated in this work, SSY with K as the characterising parameter for 

fatigue crack growth rate is clearly applicable in the case of the 18Ni300 steel and the 

7050-T6. However, the 304L stainless steel has a relatively low yield stress and the 
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conditions simulated in the present work lead to values of δe that lie well outside the 

SSY regime. 

  

Figure 9. Effect of material’s yield stress on the validity of K  

(CT36; plane stress; R=0.05; a0= 7, 10, 13, 16, 19, 22 e 24 mm). 

3. Application to the Ti6Al4V titanium alloy 

3.1. Numerical model 

The methodology outlined above to check the validity of the SSY assumption was 

also applied to simulation of Ti6Al4V titanium alloy. C(T) specimens with W=36 mm 

were used with different values of a0 (Table 1) and with the same boundary conditions 

illustrated in Figure 3. The simulation considered two alternative post-processing 

treatments: Hot Isostatic Pressing (HIP) and a heat treatment intended to reduce the 

residual stresses. These are post-processing treatments that are considered to improve the 

performance of specimens produced by additive manufacturing techniques 40. The 
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elastoplastic properties are given in Table 4. Fatigue crack growth was simulated under 

constant amplitude loading and with single overloads in both plane strain and plane stress 

states. The constant amplitude loading conditions are given in Table 5. Crack propagation 

was taken as occurring when the accumulated plastic strain, Δεp, measured in the vicinity 

of the crack tip, reached its critical value, Δεp
c 37. The values of Δεp

c, given in Table 5 

were obtained by fitting the experimental values of FCGR, for a0 = 22 mm. This criterion 

gives realist FCG rates, thereby improving the global quality of the numerical predictions. 

 

Table 5. Constant amplitude loading conditions for the Ti6Al4V alloy. 

Material R 
Fmin 

(N) 

Fmax 

(N) 

ΔK  

(MPa√m) 

Δεp
c 

(%) 
Stress State 

Ti6Al4V HIP 0.05 2.20 44.05 9.3 – 43.0 85.9 Plane strain 

Ti6Al4V HIP 0.05 2.20 44.05 9.3 – 40.9 95.8 Plane stress 

Ti6Al4V heat 

treatment 
0.05 2.20 44.05 9.8 – 43.4 40.6 Plane strain 

Ti6Al4V heat 

treatment 
0.05 2.20 44.05 9.9 – 41.7 26.6 Plane stress 

 

Overload simulations used the specimen parameters representing a HIP treatment, 

in plane stress conditions. Overload ratios of 1.5 and 2.0 were considered, where overload 

ratio is given by: 

 𝑂𝐿𝑅 =
∆𝐾𝑂𝐿

∆𝐾𝐵𝐿
 (13) 

where ΔKOL and ΔKBL are the overload and constant amplitude stress intensity factor 

ranges, respectively. The loading conditions relevant to these simulations are given in 

Table 6 and in these tests, Δεp
c was determined by fitting of the experimental FCGR data, 

for a0 = 7 mm. 
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Table 6. Loading conditions for the Ti6Al4V alloy, under overloading. 

Material R 
Fmin 

(N) 

Fmax 

(N) 

FOL 

(N) 

ΔKBL 

(MPa√m) 
OLR 

Δεp
c 

(%) 
Stress State 

Ti6Al4V HIP 0.05 2.20 44.05 66.075 18.246 1.5 153.3 Plane stress 

Ti6Al4V HIP 0.05 2.20 44.05 88.1 18.274 2 153.3 Plane stress 

 

3.2. Numerical results 

3.2.1 Fatigue crack growth under constant amplitude 

Figures 10a (HIP simulation) and 10b (residual stress reducing heat treatment) show 

the results of the Ti6Al4V simulations in terms of the effect of crack length in the 

transition from SSY to LSY. The increase of crack length is reflected in the increase in 

the value of ΔK. In both figures, an increase in crack length gives a higher Δδp due to the 

increase in plastic zone size, thereby reducing Δδe/Δδt. For a0 approximately > 22 mm, 

SSY is no longer valid. 

 

 

 

Figure 10. The effect of crack length and stress state on the transition from SSY to LSY for 

Ti6Al4V: CT36; R=0.05; a0=7, 10, 13, 16, 19, 22 and 24 mm). (a) HIP manufacturing process; 

(b) Heat treatment to reduce the residual stresses. 

 

3.2.2 Fatigue crack growth with overload 

(b) (a) 



22 

 

Figure 11a shows the result of an overload in terms of its effect on Δδe/Δδt, and on 

the numerically predicted values of da/dN and crack closure, as a function of crack length, 

a. As seen in the graph, initially da/dN decreases with a, corresponding with an increase 

in U* and with Δδe/Δδt remaining in 85%-93% range, i.e. in the SSY regime. U* represents 

a closure ratio as a function of the closed portion of the load cycle over the total load 

range, and is given by: 

 𝑈∗ =
𝐹𝑜𝑝𝑒𝑛−𝐹𝑚𝑖𝑛

𝐹𝑚𝑎𝑥−𝐹𝑚𝑖𝑛
× 100 (13) 

where Fopen is the crack opening load. 

At ΔKBL=18.246 MPa√m, an overload of 150% was applied, leading to an 

instantaneous increase in da/dN and a decrease in U*, as expected. At the same time, 

Δδe/Δδt decreases abruptly to 48%, implying that local crack tip conditions now fall well 

inside the LSY regime, where K is no longer valid. When the overload is applied, the 

plastic deformation increases substantially because the material has not previously 

experienced this loading level. This produces crack tip blunting and a sudden decrease of 

U*. Subsequent crack growth through the enlarged plastic zone leads to a transient 

increase in U* and therefore a decrease in da/dN, while Δδe/Δδt rapidly returns to the its 

pre-overload values. Thereafter, da/dN starts to increase to its original values and the 

closure ratio U* decreases. Similar trends were observed with an OLR=2, as shown in 

Figure 11b, but with increased transients in the graphs. Prior to the overload, both da/dN 

and Δδe/Δδt showed similar trends and values to those seen in Figure 11a. The overload 

was applied at ΔKBL=18.274 MPa√m, resulting in a greater increase in da/dN and 

corresponding drop in Δδe/Δδt, compared with the data in Figure 11a, as expected.  
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Figure 11. Effect of the application of an overload on Δδe/Δδt, da/dN and U* with Δa (Ti6Al4V; 

CT36; R=0.05; a0=16 mm; HIP; plane stress). (a) OLR=1.5; (b) OLR=2.0. 

4. Discussion 

Traditionally ∆K has been used as a parameter to characterise fatigue crack 

propagation in applications under SSY conditions with the Paris relationship [7]. SSY 

conditions require that the extent of nonlinear plastic deformation at the tip of a growing 

fatigue crack is small enough to establish an overall elastic response of the material. 

However, in applications where conditions are predominantly plastic (LSY), ∆K is no 

(a) 

(b) 
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longer a valid parameter to describe the conditions at the crack tip and an alternative 

parameter must be found to correctly characterise fatigue crack growth. Thus, CTOD has 

been used in this work as parameter to establish whether SSY and LSY conditions can be 

defined in a crack propagation problem since it has been previously demonstrated [33], 

both numerically and experimentally, that the plastic component of CTOD can be directly 

linked with plastic deformation at the crack tip and therefore, ∆δp is a suitable parameter 

to characterise fatigue crack growth. Thus, a criterion has been defined in the current 

work to establish when SSY or LSY conditions can be considered valid. The results 

obtained have shown that SSY conditions can be defined when the elastic range of CTOD 

is larger than 75% of the total range of CTOD (∆δe/∆δt>75%). Additionally, LSY 

conditions will dominate when ∆δe/∆δt<60%. Between these two defined ranges, it is 

clear that there is a transition range where both regimes coexist. This transition regime is 

not surprising since even the ASTM E647-15 standard [5] indicates that SSY or LSY 

conditions are not clearly defined. The proposed methodology has been validated by 

studying different materials (2050-T8, 2024-T351, 7050-T6 and 6082-T6 aluminium 

alloys, and 304L and 18Ni300 steels) subjected to various loading conditions and two 

stress states. In addition, this methodology has been accurately applied in Ti6Al4V 

titanium alloy with two different heat treatments and different stress states. For the 

implementation of the proposed methodology, the ranges of the elastic and plastic 

components of CTOD are obtained from the analysis of the CTOD plots obtained through 

a either complete cycle. The CTOD traces can be obtained either numerically by finite 

element method [35] 0or experimentally by DIC [41]. 

The approach proposed has been developed and applied to standard specimens, 

however it is also applicable to more complex geometries. Numerical tools are 

increasingly evolving and becoming more user-friendly, allowing the study of real 
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applications. Numerical approaches are also able to include the effects of geometric, 

loading and material parameters. 

 

5. Conclusions 

The objective in this work was to identify an objective criterion that can be used to 

define the boundary between small-scale yielding (SSY) where linear elastic fracture 

mechanics (LEFM) can be used and those situations where elastoplastic fracture 

mechanics (EPFM) is more appropriate. The motivation for the work was the fact that 

although the range of stress intensity factor (K) is widely used to characterise the driving 

force for fatigue crack propagation, its validity is rarely checked. An extensive 

programme of numerical simulation and analysis has been presented, based on CTOD 

and its separation into elastic and plastic components, that has allowed a clear proposal 

to be made for a criterion that defines the boundary of SSY and the transition to LSY. 

This criterion has been successfully applied to compact tension, notched and unnotched 

SENT specimen geometries in a wide-ranging study that simulated several different 

aluminium alloys, an austenitic stainless steel and a maraging steel. The criterion found 

was also checked against a Ti6Al4V titanium alloy. In addition, the work has considered 

the effects of both constant amplitude loading and spike overloads, and the influence of 

crack closure.  

Detailed conclusions that can be drawn from the work include: 

1. A %e parameter was proposed in equation (12) to define the boundary of SSY, 

and is given by the ratio between e and t. These parameters were obtained from 

elastic and total CTOD, using Westergaard equations. A value of 100% represents totally 

elastic behaviour, while a value of zero indicates that the CTOD is totally plastic; 
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2.  Using the elastic and plastic CTOD data from the 171 simulation cases considered 

in this work, and incorporating the requirements of ASTM E647-15 for valid use of 

LEFM, a value %e = 75% is proposed to indicate the lower bound for valid use of the 

LEFM parameter ΔK; 

3. An increase in crack length and/or a decrease in the material’s yield stress both 

promote the onset of LSY; 

4. The methodology has been applied to compact tension specimens of Ti6Al4V 

alloy, showing limitations to the assumption of SSY even for this high strength material. 

The SSY assumption was also found to be more likely to be invalid when an overload is 

applied. 

 Finally, although the conclusions given above are reasonable generalisations, the 

authors stress that it is important to check the applicability of the SSY assumption for a 

particular specimen geometry, alloy and loading conditions using the criterion proposed 

in this paper. The approach proposed to check the validity of SSY assumption can also 

be implemented using digital image correlation techniques to obtain the CTOD plots. 
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