The influence of partial occlusion on shape recognition

KANG, JUNGHEE

http://hdl.handle.net/10026.1/18303

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
The influence of partial occlusion on shape recognition

Gunnar Schmidtmann
“...information is concentrated along contours at those points on a contour at which its direction changes most rapidly...”

“Common objects may be represented with great economy, and fairly striking fidelity, by copying the points at which their contours change direction maximally, and then connecting these points appropriately with a straightedge.”

Shape recognition: convexities, concavities and things in between

Gunnar Schmidtmann, Ben J. Jennings & Frederick A. A. Kingdom
Stimuli

compound radial frequency patterns

$\omega_1 = 3$
$\omega_2 = 5$
$\omega_3 = 8$

$RF_{\text{compound}} = r_{\text{mean}}(1+A_1\sin(\omega_1\theta+\varphi_1)+A_2\sin(\omega_2\theta+\varphi_2)+A_3\sin(\omega_3\theta+\varphi_3))$

- r_{mean}: mean radius of underlying circle (=100 Pixel)
- A: modulation amplitude (=0.1)
- ω_1: radial frequency
- θ: polar angle
- φ_1: phase / orientation (random)

$1 2 5$
$2 3 6$
$3 5 8$
Stimuli

convexities concavities intermediate
Stimuli
Paradigm

Reference

300 ms

400 ms

300 ms

300 ms

Target
Distractor

400 ms
Results

convexities

concavities

intermediate

2-3-4

Proportion correct vs. Segment Length

Proportion correct vs. Segment Length

Proportion correct vs. Segment Length
New Experiment - Partial Occlusion
Stimuli

convexities

concavities

intermediate
Partial Occlusion

No occlusion 16.7% occlusion 33% occlusion 50% occlusion
Results – no occlusion

convexities

concavities

intermediate
Results – 16.7% occlusion
Results – 33% occlusion

- Convexities
- Concavities
- Intermediate
Results – 50% occlusion

convexities

concavities

intermediate
Results – combined

convexities

concavities

intermediate

no occlusion
16.7% occlusion
33% occlusion
50% occlusion

no occlusion
16.7% occlusion
33% occlusion
50% occlusion

no occlusion
16.7% occlusion
33% occlusion
50% occlusion
Model – Schmidtmann et al. (2015)
Model – Schmidtmann et al. (2015)
Model – Schmidtmann et al. (2015)
Proposed Model Idea

Occluded Reference Shape

Distractor Shape

Target Shape
Proposed Model Idea

Occluded Reference Shape

Distractor Shape

Target Shape
Proposed Model Idea

Occluded Reference Shape

Distractor Shape

Target Shape
Summary

• Performance for convex features is superior to the other shape features and independent of segment length, replicating Schmidtmann et al. (2015)

• Points at the location of convex curvature maxima are sufficient to extract shape information

• Performance is only significantly impaired when 50% of the shape is occluded

• Results demonstrate the importance of convexities maxima for shape encoding, and the flexibility of the visual system to deal with partially occluded shapes
Acknowledgments

Optometry students (University of Plymouth)
• Abdulfatai Shonuga
• Abigail Medland
• Lucy Cooper
• Sarah Beachus
• Sohaib Naseem
The influence of partial occlusion on shape recognition

Gunnar Schmidtmann