Faculty of Science and Engineering

School of Engineering, Computing and Mathematics

2022-01

Microbial selenate detoxification linked to elemental sulfur oxidation: Independent and synergic pathways

Li, L

http://hdl.handle.net/10026.1/18292

10.1016/j.jhazmat.2021.126932 Journal of Hazardous Materials Elsevier BV

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.

1	Microbial Selenate Detoxification Linked to Elemental Sulfur Oxidation:
2	Independent and Synergic Pathways
3	Liuliu Li ^{a,b} , Baogang Zhang ^{a,b*} , Lei Li ^{a,b} , Alistair G.L. Borthwick ^{c,d,e}
4	^a School of Water Resources and Environment, China University of Geosciences
5	Beijing, Beijing 100083, China
6	^b Key Laboratory of Groundwater Circulation and Evolution (China University of
7	Geosciences Beijing), Ministry of Education, Beijing 100083, China
8	^c St Edmund Hall, Queen's Lane, Oxford OX1 4AR, UK
9	^d School of Engineering, The University of Edinburgh, The King's Buildings,
10	Edinburgh EH9 3JL, UK
11	^e School of Engineering, Computing and Mathematics, University of Plymouth,
12	Drakes Circus, Plymouth PL4 8AA, UK
13	
14	
15	
16	
17	* Corresponding author. Tel.: +86 10 8232 2281; Fax: +86 10 8232 1081; E-mail:
18	baogangzhang@cugb.edu.cn (B. Zhang)
19	
20	Declarations of interest: none

21 ABSTRACT

22	Elevated selenium levels in the environment, with soluble selenate [Se(VI)] as
23	the common chemical species, pose a severe threat to human health. Anaerobic Se(VI)
24	bioreduction is a promising approach for selenium detoxification, and various
25	organic/inorganic electron donors have proved effective in supporting this bioprocess.
26	Nevertheless, autotrophic Se(VI) bioreduction driven by solid inorganic electron
27	donors is still not fully understood. This work is the first to employ elemental sulfur
28	[S(0)] as electron donor to support Se(VI) bioreduction. A batch trial with mixed
29	culture demonstrated the feasibility of this bioprocess, with Se(VI) removal efficiency
30	of 92.4 \pm 0.7% at an initial Se(VI) concentration of 10 mg/L within 36 h. Continuous
31	column tests showed that increased initial concentration, flow rate, and introduction
32	of NO ₃ ⁻ -N depressed Se(VI) removal. Se(VI) was mainly bioreduced to solid
33	elemental Se with trace selenite in the effluent, while $S(0)$ was oxidized to SO_4^{2-} .
34	Enrichment of Thiobacillus, Desulfurivibrio, and Sulfuricurvum combined with
35	upregulation of genes <i>serA</i> , <i>tatC</i> , and <i>soxB</i> indicated Se(VI) bioreduction was coupled
36	to S(0) oxidation. Thiobacillus performed S(0) oxidation and Se(VI) reduction
37	independently. Intermediate metabolites as volatile fatty acids, hydrogen, and methane
38	from S(0) oxidation were utilized by heterotrophic Se(VI) reducers for Se(VI)
39	detoxification, indicative of microbial synergy.

40 Keywords: Elemental sulfur; Selenate; Microbial reduction; Biodetoxification

41 1. Introduction

Selenium has an unusually narrow gap between its benefits and toxicity to 42 43 humans (Lai et al., 2016). For a typical adult person, 40 to 55 μ g/day of selenium is needed to support their basic nutritional needs. However, adverse impact occurs 44 through selenosis if total selenium intake exceeds 400 µg/day (Navarro-Alarcon and 45 46 Cabrera-Vique, 2008). The World Health Organization defines the selenium intake value of 40 µg/L as reference, whereas the United States Environmental Protection 47 Agency rules that the maximum concentration of selenium must not exceed 50 μ g/L 48 49 in drinking water (Zhu et al., 2017; Nancharaiah et al., 2018). However, excessive 50 concentrations of selenium are found in the environment. For example, selenium at 51 6000 μ g/L was reported for groundwater in Utah, USA, whereas up to 9000 μ g/L 52 selenium was detected in certain areas of Colorado, USA (Ji and Wang, 2017). It is 53 obviously important to reduce such high selenium levels below the safety threshold, especially in regions where drinking water is abstracted. 54 Selenate [Se(VI)] and selenite [Se(IV)] are the main forms of selenium species 55 found in the natural aqueous environment (Latorre et al., 2013). Both Se(VI) and 56 57 Se(IV) can be transformed to elemental selenium [Se(0)] enabling selenium removal 58 due to its lower solubility, toxicity, and bioavailability (Lai et al., 2016; Song et al., 59 2021; Wang et al., 2021). With eco-friendly, cost-effective and in situ application advantages, microbial reduction of Se(VI) to Se(0) is preferred among remediation 60 methods (Lenz et al., 2009; Fu et al., 2014; Qiao et al., 2018), especially with 61 indigenous microorganisms (Li et al., 2021). Bioreduction of Se(VI) can be achieved 62

63	through either heterotrophic or autotrophic processes (Ontiveros-Valencia et al., 2016;
64	Zhang et al., 2019). Compared with heterotrophic metabolism, autotrophic reduction
65	is advantageous in that it prevents secondary pollution and produces less biomass,
66	making it a promising option that is also practicable and efficient (Liu et al., 2016;
67	Zhang et al., 2018).
68	Electron donors are absolutely essential in the process of autotrophic Se(VI)
69	bioreduction. For example, hydrogen (H ₂) is used in gas-supported bioreduction of
70	Se(VI) (Zhou et al., 2018), but requires considerable care in its usage and storage
71	from a safety perspective. Solid inorganic electron donors that support autotrophic
72	bioreduction for metal oxyanion detoxification have also been reported (Shi et al.,
73	2019; Lu et al., 2020; He et al., 2021), of which elemental sulfur [S(0)], an insoluble,
74	stable and low-cost industrial product, has gained increasing scrutiny (Wang et al.,
75	2021). $S(0)$ is able to serve as an electron donor for autotrophic bioprocesses
76	(Sahinkaya et al., 2014; Li et al., 2019). Many studies have explored the performance
77	of $S(0)$ in assisting in the bioreduction of contaminants such as nitrate (NO ₃ ⁻ -N),
78	perchlorate (ClO ₄ ⁻), vanadate [V(V)], and chromate [Cr(VI)] (Zhang et al., 2018;
79	Ucar et al., 2019). In spite of this, autotrophic microbial Se(VI) reduction supported
80	by S(0) has been little researched, and the mechanism of Se(VI) bioreduction driven
81	by S(0) remains largely unknown.
82	Herein, bioreduction of Se(VI) supplemented by S(0) is investigated through
83	both batch and column trials, with analysis of product characterization, microbial
84	community dynamics, functional genes, and intermediate metabolites. The objectives

of this paper are: (1) to examine the feasibility and performance of S(0)-supported
Se(VI) bioreduction; (2) to reveal microbial dynamics at community, gene, and
metabolic levels; and (3) to analyze the mechanisms related to S(0)-driven Se(VI)
bioreduction. The present study focuses on bioremediation as a potentially practicable
technology for Se(VI)-polluted environments.

90 2. Materials and methods

91 *2.1. Batch trial*

92	Three groups of 250 mL volume plexiglass bottles were employed as biotic,
93	sterilized, and abiotic batch reactors. Strict anaerobic conditions were preserved by
94	sealing each bottle with butyl rubber stoppers and aluminum crimp caps. Before being
95	transferred to the bottles, simulated groundwater was flushed with nitrogen gas for 30
96	min to remove oxygen. The biotic group with 50 mL aquifer sediment from a smelting
97	site in China was combined with 5 g S(0) and 200 mL simulated groundwater
98	containing the following basic constituents (g/L): CaCl ₂ 0.2464; NH ₄ Cl, 0.1557;
99	MgCl ₂ ·6H ₂ O, 1.0572; NaCl, 0.4459; KCl, 0.0283; KH ₂ PO ₄ , 0.0299; and NaHCO ₃ ,
100	0.5040. The pH, ORP, and electrical conductivity of aquifer sediment were 7.99, -
101	48.2 mV, and 424.9 μ S/cm, respectively. Concentrations of organic matter and
102	available sulphur in aquifer sediment were 34.4 g/kg and 21.9 mg/kg, respectively,
103	whereas the cell dry weight was 6.7 mg/g soil. Concentrations of trace elements were
104	as follows: Fe (84.2 mg/kg), Mn (2.22 mg/kg), Zn (0.19 mg/kg), Pb (0.13 mg/kg), V
105	(0.34 mg/kg), Cr (0.33 mg/kg). The medium was supplemented with bicarbonate as

106	the inorganic carbon source with inorganic carbon concentration at 72 mg/L. Na ₂ SeO ₄
107	was used as the source of Se(VI), at 10 mg/L concentration. All regents were
108	purchased from Sinopharm Chemical Reagent Co., Ltd. (Beijing, China) with
109	analytical grade, and utilized directly without further processing. The sterilized group
110	was supplemented with S(0), simulated groundwater, and 50 mL high temperature
111	sterilized aquifer sediment (20 min at 121 °C). The abiotic group was supplemented
112	with S(0) and simulated groundwater, but without aquifer sediment. All batch reactors
113	were run for two months before data collection. The cycle of 72 h was set to evaluate
114	Se(VI) reduction in different groups. All experiments were conducted at room
115	temperature (22 ± 2 °C) and in triplicate.

116 *2.2. Column trial*

117 A biological column of 25 cm in length and interior diameter of 5 cm was made of plexiglass. The column was covered by aluminum foil to prevent ingress of 118 sunlight. The column was inoculated with 50 mL aquifer sediment supplemented by 119 120 200 g S(0). The remaining space was filled with quartz sand. All additives were mixed thoroughly beforehand. The synthetic water component was the same as in the batch 121 experiment. A peristaltic pump (BT100-1L, Longer, UK) drove influent through the 122 column at a prescribed flow rate (Zhong et al., 2011). Se(VI) and other ingredients at 123 specified concentrations were added to the influent. The column experiment took 124 place over 258 consecutive days divided into five phases in order to investigate the 125 effects of different hydrodynamic and hydrochemical factors on S(0)-based Se(VI) 126 removal (Table 1). Data were then obtained on Se(VI) removal performance, reaction 127

129 2.3. Chemical analysis and characterization

130	Aqueous samples were filtered through 0.22 μ m filter membrane, then Se(0) and
131	the suspended microbial cells were removed by centrifuging at 12580 g for 20 min.
132	pH, ORP, and conductivity were monitored by a multifunctional meter
133	(SevenExcellenceS400, Mettler-Toledo, Switzerland) (Zhu et al., 2021). Inductively
134	coupled plasma-mass spectrometry (ICP-MS, X series, Thermo Fisher, Germany) was
135	used to determine total Se concentration. Se(IV) concentration was analyzed using a
136	spectrophotometer (UV2300, Shanghai, China) as previously described (Li et al.,
137	2014; Jain et al., 2015). Se(VI) was determined after being reduced to Se(IV) by
138	hydrochloric acid (Brimmer et al., 1987; Xie et al., 2017). NO ₃ ⁻ -N, nitrite (NO ₂ ⁻ -N)
139	and ammonium (NH_4^+ - N) concentrations were also determined using
140	spectrophotometry (Shi et al., 2020a). Ion chromatography monitored sulfate (SO4 ²⁻),
141	sulfite (SO ₃ ²⁻) and thiosulfate (S ₂ O ₃ ²⁻) concentrations (Basic IC 792, Metrohm,
142	Switzerland) (Shi et al., 2020b).
143	Analyses of the surface morphology and composition of the biomass samples
144	were conducted using a scanning electron microscope (SEM) (JEOL JAX-840,
145	Hitachi, Japan) equipped with energy dispersive X-ray spectroscopy (EDS). X-ray
146	photoelectron spectroscopy (XPS) measurement was carried out to identify
147	components of the produced deposits, using a Kratos XSAM-800 spectrometer (UK)
148	(Zhang et al., 2012). Surface crystallographic structures of these deposits were

150 2.4. Microbial and metabolic analyses

151	Microbial community analysis was conducted for both inoculum and biomass
152	obtained from each stage of the biological column. Samples were collected for DNA
153	extraction, amplification, and purification, then sent to Shanghai Majorbio
154	Technology (Shanghai, China) for high-throughput 16S rRNA gene sequencing using
155	MiSeq (Illumina, USA) (Zhang et al., 2019; Wang et al., 2020). Prior to analysis,
156	centrifugation was used to remove moisture from the samples. Operational taxonomic
157	units (OTUs) were clustered from sequences with a 0.03 distance limit (equivalent to
158	97% similarity). Rarefaction curves and alpha diversity indexes were acquired by
159	Mothur (version v.1.30.1) software. Non-metric multi-dimensional scaling (NMDS)
160	analysis was performed using Bray-Curtis similarities to cluster the microbial
161	community composition.
162	Real-time quantitative PCR (qPCR) was chosen to quantify the functional genes
163	with previously reported primers (Table S1, Supporting Information) during the S(0)-
164	driven Se(VI) bioreduction process (Throbäck et al., 2004; Bru et al., 2007; Ma et al.,
165	2007; Meyer et al., 2007; Wen et al., 2016). Electron transfer compounds, such as
166	cytochrome c (Cyt c) on cell surfaces and intracellular nicotinamide adenine
167	dinucleotide (NADH), were also examined, and their measurements normalized to
168	volatile suspended solids (VSS) according to previously documented procedure
169	(Zhang et al., 2019; Shi et al., 2020a; Zhang et al., 2021). Intermediate metabolites

170 were also monitored. Volatile fatty acids (VFAs) were measured by a gas

171 chromatograph (Agilent 4890, J&W Scientific, USA) equipped with a flame

172 ionization detector (Zhang et al., 2018). A gas chromatograph (GC) (Agilent, 4890,

- 173 J&W Scientific, USA) was utilized to analyze gas concentrations (including H₂ and
- 174 CH₄) through a thermal conductivity detector.

175 **3. Results and discussion**

176 *3.1. Feasibility of Se(VI) bioreduction driven by S(0)*

Fig. 1a shows that a gradual, progressive decrease in Se(VI) of the biotic group 177 occurred during the batch trial. Removal efficiency of Se(VI) reached 92.4 \pm 0.7% by 178 36 h. Hardly any Se(VI) concentration was detected at the end of a 72 h cycle 179 indicating almost complete removal of Se(VI). The mean reduction rate of Se(VI) was 180 181 1.1 ± 0.08 mg/L·h, corresponding to a pseudo first-order reaction kinetics process with a kinetics rate constant of 0.061 d⁻¹ and R^2 of 0.99 (Fig. 1b). Temporal dynamics 182 of Se(VI) in the control groups was also examined comparatively (Fig. S1, Supporting 183 Information). The highest removal efficiency of Se(VI) in the sterilized group was 184 only $18.1 \pm 0.2\%$, much lower than that in the biotic group, suggesting Se(VI) 185 reduction was microbially mediated. A limited Se(VI) removal efficiency of $19.1 \pm$ 186 187 0.2% was obtained after one cycle in the abiotic group, implying that S(0) made negligible contribution to abiotic reduction of Se(VI). Taken the aforementioned into 188 consideration, it appears quite feasible to use S(0) as an electron donor to bioreduce 189 and biodetoxify Se(VI). 190

Efficient Se(VI) elimination was observed in the column trial during 258-d 192 193 operation (Fig. 1c). During Stage 1 (Days 0-94), with 10 mg/L of Se(VI) initial concentration and 0.56 mL/min constant flow rate, Se(VI) was completely removed and 194 the corresponding Se(VI) removal capacity was 41.5 ± 4.1 (g/m³·d) (Table 1). No 195 196 accumulation of Se(IV) was observed during this phase. The Se(VI) removal efficiency decreased slightly to 94.1 \pm 6.2% when the initial concentration of Se(VI) was raised 197 to 50 mg/L during Stage 2 (Days 95-135), accompanied by an increase in Se(VI) 198 removal capacity to 193.0 ± 11.9 (g/m³·d). Se(VI) removal efficiency decreased to 84.2 199 \pm 5.1% and removal capacity rose to 346.8 \pm 30.2 (g/m³·d) when the initial 200 concentration of Se(VI) was further increased to 100 mg/L during Stage 3 (Days 136-201 202 176). This implied that functional microorganisms had gradually adapted to an environment characterized by high Se(VI) loading. Notably, accumulation of Se(IV) 203 occurred for a mean concentration of 9.8 ± 15.2 mg/L, followed by almost sudden 204 disappearance of accumulated Se(IV) at the end of Stage 3 (Fig. 1c). This phenomenon 205 was similar to a previous study where Se(IV) accumulation was observed in Se(VI) 206 reduction using bacterium Bacillus sp. SF-1 with Se(IV) removal subsequently 207 208 occurring (Kashiwa et al., 2000). In Stage 4 (Days 177-217), the flow rate was adjusted to 1.68 ml/min with Se(VI) concentration returned to 10 mg/L. During this stage, Se(VI) 209 210 removal efficiency increased to $89.7 \pm 10.3\%$ but the removal capacity fell to $117.0 \pm$ 12.7 (g/m³·d). In Stage 5 (Days 218-258), during which 10 mg/L NO₃⁻-N was 211 212 introduced as co-acceptor to the bioreactor, the Se(VI) removal efficiency dropped to

82.8 \pm 3.7%, suggesting that NO₃⁻-N was the preferred electron acceptor used by the microorganisms for metabolism, as also reported by He et al. (He et al., 2021). In a previous study, Lucas and Hollibaugh showed that Se reduction was depressed by NO₃⁻ -N when both co-existed at equal levels owing to physiological, kinetic, or enzymatic factors involved in the NO₃⁻-N and Se(VI) reductases (Oremland et al., 1999; Lucas and Hollibaugh, 2001).

The evolution of pH and conductivity during long-term study were monitored.
Changes in pH were in the range of 7.6 to 8.4 during the Se(VI) bioreduction process
(Fig. S2, Supporting Information), with conductivity varying from 3000 to 3700 µS/cm.
This ambient condition was suitable for microbial activity to achieve diverse
bioprocesses (Zhang et al., 2015).

224 3.3. Bioprocess description

By the end of the experiment, the biological column had become dark red (Fig.

226 S3, Supporting Information), indicating precipitation of solid Se(0) from the Se(VI)

227 bioreduction process. The speciation percentages of selenium in the effluent were not

entirely dominated by Se(VI) and Se(IV) (Fig. 2a), suggesting generation of

unaccounted dissolved Se and/or organic selenium (Tan et al., 2018; Xia et al., 2019).

230 Residual Se(VI) and Se(IV) could be further removed by adsorption or co-

231 precipitation (Gezer et al., 2011; Li et al., 2018). To provide further confirmation of

the product morphology, characterization analyses were conducted for the precipitate.

In Fig. 2b, the SEM image shows spheroids observed on the surface of the biomass.

EDS analysis revealed Se(0) was present in the spheroids, with a corresponding

spectral peak (Fig. S4, Supporting Information). The 56.1 eV peak signal obtained 235 from XPS spectra relates to the 3d orbit of Se (Fig. 2c), attributed to Se(0) (Li et al., 236 237 2014). XRD demonstrated the presence of elemental Se with various crystal planes (Fig. 2d). These results collectively confirm that Se(0) was the final product in the 238 Se(VI) bioreduction process. 239 SO_4^{2-} accumulated in the biosystem as a result of S(0) oxidation (Fig. 1c), 240 indicating Se(VI) bioreduction coupled with oxidation of S(0) following Eq. (1). It 241 should be noted that S(0) has previously been reported to act as an electron donor in 242 the reduction of other heavy metals, accompanied by SO_4^{2-} production (Peng et al., 243 2016; Shi et al., 2019). SO_3^{2-} and $S_2O_3^{2-}$, the intermediates related to S(0) oxidation, 244 were hardly detected in the present system. Moreover, hardly any NO₃⁻N, NO₂⁻N, 245 246 and NH4⁺-N were detected at the end of Stage 5 (Fig. S5, Supporting Information), implying complete denitrification according to Eq. (2) (Zhang et al., 2015). 247 $2SeO_4^{2-} + 12S^0 + 15HCO_3^{-} + 3NH_4^{+} + H_2O \rightarrow 3C_5H_7NO_2 + 2Se^0 + 12SO_4^{2-} + 12SO_4^$ 248 $8\mathrm{H}^+$ 249 (1) $55S^{0} + 20CO_{2} + 50NO_{3}^{-} + 4NH_{4}^{+} + 38H_{2}O \rightarrow 4C_{5}H_{7}NO_{2} + 55SO_{4}^{2-} + 25N_{2} + 6N_{2}^{-}$ 250 $64H^+$ 251 (2)The mass balance is calculated for Stage 4, as an example. During operation, 252 0.49 ± 0.05 mmol Se(VI) was removed, leading to theoretical production of 2.94 \pm 253 0.29 mmol SO₄²⁻ according to Eq. (1). In fact, 5.15 ± 0.41 mmol SO₄²⁻ was detected, 254 implying over-consumption of S(0), which might be ascribed to other bioactivities, 255 such as biomass growth and the accumulation of metabolites (Shi et al., 2019). 256

257 3.4. Microbial community evolution

258	The evolution process of microbial community structure was examined through
259	16S rRNA gene sequencing for both inoculum and treated samples. OUTs in the
260	bioreactor were lower than inoculum, indicating that the microbial community has a
261	procedure for selection and adaptation (Table S2, Supporting Information). The
262	decreasing total number of species (Sobs indexes) in treated samples reflected
263	reduced community richness, which was also indicated by the Chao1 and Ace
264	indexes. Perfect community diversity was confirmed by the lower Shannon and higher
265	Simpson indexes in Stages 1-5, suggesting highly selected microbial communities
266	were received (Table S2, Supporting Information). The coverage index was invariably
267	close to unity, suggesting that almost all sequences were covered. Smooth rarefaction
268	curves were obtained (Fig. S6, Supporting Information), confirming that the
269	sequencing sample numbers were sufficient.
270	NMDS analysis showed that compared to other stages, biomass in Stage 1 was
271	similar to the inoculum, whereas biomass from Stage 4 and Stage 5 were quite distinct
272	from the inoculum (Fig. 3a). The microbial community composition cultivated in
273	Stage 2 and Stage 3 were similar, which may be attributed to increased Se(VI) loading
274	in Stage 2 that subsequently affected microorganisms in Stage 3. The Venn diagram
275	(Fig. 3b) shows that 906, 188, 31, 188, and 449 of OTUs were found separately in
276	five treated stages, whereas a total of 722 OTUs were common to all cultivated stages.
277	The presence of OTUs shared by all groups implies that such OTUs had adapted
278	simultaneously to the situations of Se(VI) bioreduction, S(0) oxidation, and NO3 ⁻ -N

279 removal.

280	Significant changes occurred in the microbial community structure of biomass
281	from the bioreactor, in comparison with the inoculum (Fig. 3c). The class related to
282	Gammaproteobacteria increased substantially through Stages 1 to 5, and it became
283	the predominant species (75.2%) in Stage 3. Known as NO ₃ ⁻ -N reducing bacteria,
284	Gamma proteobacteria was previously found to be the majority class in an $S(0)$ -based
285	Cr(VI) bioreduction bioreactor (Shi et al., 2019). The Deltaproteobacterian species
286	increased in Stages 1 (11.1%), 2 (23.2%), 4 (34.9%), and 5 (11.3%) compared to the
287	inoculum (8.9%), but decreased in Stage 3 (7.62%). In Stage 4 especially,
288	Deltaproteobacterian accounted for the majority of species present. Recently, Tan et
289	al. reported that Deltaproteobacterian was the main community observed in their
290	study of selenium pollution wastewater microbial treatment (Tan et al., 2018).
291	Declines in both Alphaproteobacteria and Actinobacteria were observed through
292	Stages 1 to 5. Anaerolineae were found to be present at all treated stages. This is
293	consistent with a previous finding that bacteria related to the Anaerolineae family
294	have the capacity to reduce Se(VI) owing to the presence of Se(VI) reductases in
295	Anaerolineae (Fakra et al., 2018).
296	To develop a more profound understanding of the alteration in microbial
297	community structure, we also analyzed the relative abundance of key genera (Fig. 3d),
298	and found that the relative abundance of Thiobacillus increased considerably during
299	the experiment. Compared to its 0.83% abundance in the inoculum, Thiobacillus
300	accounted for 4.86% in Stage 1. The relative abundance of <i>Thiobacillus</i> rose to 36.8%

301	in Stage 2 and even higher to 72.5% in Stage 3 with elevated Se(VI) loading, and so
302	Thiobacillus became the most dominant species. Although its abundance later
303	declined, the proportion of <i>Thiobacillus</i> was 13.8% in Stage 4 and 7.31% in Stage 5.
304	As a chemoautotrophic genus, <i>Thiobacillus</i> could oxidize $S(0)$ to release electrons and
305	synthesize metabolites, realizing the removal of oxidized contaminants (Yang et al.,
306	2010; He et al., 2021). Therefore, <i>Thiobacillus</i> was believed to promote S(0)
307	oxidation and Se(VI) reduction independently. Known as a sulfur-oxidizing
308	bacterium, Thiobacillus is widely distributed in natural water, mud and soil
309	(Fjerdingstad, 1969; Zhai et al., 2016), and thus could be utilized for the
310	bioremediation of contaminants in practice, with high microbiological safety. Species
311	related to Desulfurivibrio increased from Stages 1 to 5, with 20.8% abundance
312	reached in Stage 4. Desulfurivibrio has demonstrable capability of reducing Se(VI)
313	and Se(IV) to Se(0) without growth or respiration, using organic electron donors
314	(Tomei et al., 1995; Lucas and Hollibaugh, 2001). And NO ₃ ⁻ -N can act as the terminal
315	electron accepter of <i>Desulfurivibrio</i> in NO3 ⁻ -N dissimilatory reduction (Keith and
316	Herbert, 1983). Other SO_4^{2-} reducing bacteria such as <i>Desulfococcus</i> and
317	Desulfocapsa were detected during operation, which might be related to Se(VI)
318	reduction and sulfur circulation (Qian et al., 2015; He et al., 2021). The relative
319	abundance of <i>Pseudomonas</i> first declined from Stages 1 to 3, then increased in Stages
320	4 and 5 with proportions of 4.04% and 19.6%, respectively. Previously, reduction of
321	Se(VI) to Se(0) was achieved using a bacterial strain belonging to Pseudomonas,
322	through anaerobic respiration (Kuroda et al., 2011; Subedi et al., 2017). Although

323	annost none was detectable in mocurum, <i>sujuricurvum</i> was present in stages 1 to 5
324	with respective percentages of 2.71%, 2.63%, 0.40%, 3.98% and 0.66%. As a sulfur
325	oxidizer, Sulfuricurvum is known to extract energy from $S(0)$ oxidation when
326	synthesizing organic metabolites from an inorganic carbon source (Ontiveros-
327	Valencia et al., 2016). <i>Sulfuricurvum</i> has also been reported capable of ClO ₄ ⁻
328	reduction using S(0) as the electron donor (Sahu et al., 2009). Clostridium and
329	Methanobacterium genera were also detected, with relatively lower abundances; these
330	genera could produce H ₂ and CH ₄ through their metabolisms (Kamalaskar et al.,
331	2016; He et al., 2021).
222	2.5 Matabalia nathum internatation

almost none was detectable in incoulum Sulfunianmum was present in Stages 1 to 5

332 3.5. Metabolic pathway interpretation

222

Se(VI) was firstly reduced to Se(IV) through specialized selenate reductase 333 334 (Staicu and Barton, 2021), followed by subsequent reduction of Se(IV) to Se(0) by nitrite reductase, sulfite reductase, or hydrogenase I (Harrison et al., 1984; Yanke et 335 al., 1995; Basaglia et al., 2007). Fig. 4a shows that both serA and tatC genes were 336 337 greatly enriched during Stage 1-5 despite of their concentrations were below limit of detection in the inoculum. Located in the periplasmic space, serA encoded specific 338 reductase for Se(VI) bioreduction (Schröder et al., 1997; Wen et al., 2016). tatC was 339 340 reported to encode specific enzyme capable of reducing Se(VI) (Ma et al., 2007). About twenty years ago, enzyme encoded by gene *napA* was observed to reduce 341 Se(VI) (Sabaty et al., 2001), whereas it increased in the bioreactor rather than the 342 inoculum in the present study. Herein, the abundance of *nirS* gene increased during 343 Stages 1-5. Se(IV) reduction to Se(0) was attributed to the nirS gene because of its 344

345	ability to reduce Se(IV) (DeMoll-Decker and Macy, 1993); this was consistent with
346	the previously mentioned finding that there was no accumulation of Se(IV) in the
347	bioreactor. Studies also showed that nitrate/nitrite reductase genes were able to
348	accomplish the microbial reduction of vanadate (Zhang et al., 2019; He et al., 2021).
349	Encoding enzymes, gene <i>soxB</i> , related to the oxidation of $S(0)$ to SO_4^{2-} exist at all
350	stages during operation, suggesting efficient S(0) oxidation during Se(VI)
351	bioreduction.
352	Electron transfer compounds, such as Cyt c and NADH, were found in the S(0)-
353	driven Se(VI) bioreduction system (Fig. 4b), suggesting that electron transfer
354	occurred during the S(0) oxidation and Se(VI) bioreduction bioactivities. This
355	phenomenon of electron transfer during Se(VI) biodetoxification has also been
356	reported previously (Li et al., 2021). Metabolites, including VFAs, H ₂ and CH ₄ , were
357	also detected in the constructed biosystem (Fig. 4b). It is likely that the autotrophs
358	utilized either carbon dioxide or bicarbonate as the sole carbon source to synthesize
359	VFAs during bioreduction, with energy gained from $S(0)$ oxidation (Estelmann et al.,
360	2011; Zhang et al., 2020). Meanwhile, VFAs have been commonly detected when
361	using H_2 and CH_4 to reduce Se(VI) (Lai et al., 2016; Ontiveros-Valencia et al., 2016).
362	VFAs, generated as the mediate product, can be utilized by heterotrophic
363	microorganisms for reduction of high-valence pollutants (Lu et al., 2020). Notably, H_2
364	and CH ₄ were also detected during operation, indicating these two gases were
365	involved in the formation and/or transformation of VFAs during Se(VI) bioreduction.
366	Furthermore, these gaseous intermediate metabolites could also be utilized by Se(VI)

367 reducers either directly or indirectly (Lai et al., 2016; Ontiveros-Valencia et al.,368 2016).

369 3.6. Mechanism summary and practical implication

370	Mechanisms of Se(VI) reduction linked to S(0) oxidation can now be
371	summarized based on the evidence obtained from the present tests (Fig. 5).
372	Independent and synergic pathways existed for Se(VI) reduction. For the former
373	pathway, S(0) oxidation and Se(VI) reduction could be achieved by a single
374	chemoautotrophic genus (e.g., <i>Thiobacillus</i>). For the latter pathway, S(0) oxidizers
375	such as <i>Sulfuricurvum</i> converted HCO ₃ ⁻ to intermediate metabolites (e.g., VFAs, H ₂ ,
376	CH ₄) as a result of S(0) oxidation, which were utilized by heterotrophic Se(VI)
377	reducers (e.g., Desulfurivibrio and Pseudomonas). In general, dissimilatory reduction
378	and detoxification of selenium are the main mechanisms behind Se(VI) reduction
379	(Eswayah et al., 2016). Se(VI) bioreduction involved initial reduction of Se(VI) to
380	Se(IV), followed by further reduction of Se(IV) to Se(0). Genes were detected that
381	encoded specialized reductase for Se(VI) reduction to Se(IV) (i.e., serA and tatC),
382	Se(IV) reduction to Se(0) (i.e., <i>nirS</i>), and S(0) oxidation to SO ₄ ²⁻ (i.e., <i>soxB</i>). Electron
383	transfer by Cyt c and NADH was verified for the Se(VI) bioreduction process.
384	Selenium pollution is of increasing concern due to adverse environmental impact
385	of Se(VI). Bioremediation has been proposed as a favourable method to biotically
386	reduce Se(VI). S(0) is readily available as a byproduct from oil refining. To our
387	knowledge, this study is the first to report on bioreduction of Se(VI) utilizing S(0) as
388	an electron donor, which might be a promising option for in situ bioremediation of

389	Se(VI) contaminated aquifers. Our finding elucidated the removal pathway where
390	Se(VI) bioreduction can be coupled to the oxidation of S(0). In practical application,
391	the proposed bioprocesses can be implemented with an S(0)-packed biological
392	permeable reactive barrier installed perpendicular to the migration direction of a
393	groundwater plume (Gibert et al., 2011). Further research can be performed to explore
394	geological influences on the bioreduction process. Optimization of S(0) dosage is
395	required and the effect of coexisting pollutants in aquifers, such as $V(V)$ and SO_4^{2-} ,
396	should be considered (Du et al., 2020).

397 4. Conclusions

- 398 This study investigated the chemoautotrophic transformation of Se(VI) driven by
- S(0) in the simulated aquifer groundwater. Batch trial indicated the feasibility of
- 400 Se(VI) bioreduction utilizing S(0) as an electron donor under anaerobic conditions,
- 401 with Se(VI) removal efficiency of 92.4 \pm 0.69% in 36 h operation. A 258-d continuous
- 402 experiment showed that Se(VI) removal performance varied under different
- 403 hydrodynamic and hydrochemical conditions in a column reactor. Se(VI) was reduced
- 404 to insoluble Se(0) and S(0) was transformed to SO_4^{2-} . Detailed mechanisms of Se(VI)
- 405 bioreduction driven by S(0) were proposed through analysis of microbial
- 406 communities, functional genes, and intermediate metabolites.

407 Acknowledgement

408 This research work was supported by the National Natural Science Foundation of
409 China (NSFC) (No. 42022055).

Reference

411	Basaglia, M., Toffanin, A., Baldan, E., Bottegal, M., Shapleigh, J.P., Casella, S.,							
412	2007. Selenite-reducing capacity of the copper-containing nitrite reductase of							
413	Rhizobium sullae. FEMS Microbiol. Lett. 269, 124-130.							
414	Brimmer, S.P., Fawcett, W.R., Kulhavy, K.A., 1987. Quantitative reduction of							
415	selenate ion to selenite in aqueous samples. Anal. Chem. 59, 1470-1471.							
416	Bru, D., Sarr, A., Philippot, L., 2007. Relative abundances of Proteobacterial							
417	membrane-bound and periplasmic nitrate reductases in selected environments [†] .							
418	Appl. Environ. Microb. 73, 5971-5974.							
419	DeMoll-Decker, H., Macy, J.M., 1993. The periplasmic nitrite reductase of <i>Thauera</i>							
420	selenatis may catalyze the reduction of selenite to elemental selenium. Arch.							
421	Microblol. 160, 241-247.							
422	Du, J., Zhang, B., Li, J., Lai, B., 2020. Decontamination of heavy metal complexes by							
423	advanced oxidation processes: A review. Chin. Chem. Lett. 31, 2575-2582.							
424	Estelmann, S., Hügler, M., Eisenreich, W., Werner, K., Berg, I.A., Ramos-Vera,							
425	W.H., Say, R.F., Kockelkorn, D., Gad'on, N., Fuchs, G., 2011. Labeling and							
426	enzyme studies of the central carbon metabolism in <i>Metallosphaera sedula</i> $^{\vee}$. J.							
427	Bacteriol. 193, 1191-200.							
428	Eswayah, A.S., Smith, T.J., Gardiner, P.H.E., 2016. Microbial transformations of							
429	selenium species of relevance to bioremediation. Appl. Enviro. Microb. 82,							
430	4848-4859.							

431 Fakra, S.C., Luef, B., Castelle, C.J., Mullin, S.W., Williams, K.H., Marcus, M.A.,

432	Schichnes, D., Banfield, J.F., 2018. Correlative cryogenic spectro-microscopy to
433	investigate Selenium bioreduction products. Environ. Sci. Technol. 52, 503-512.
434	Fjerdingstad, E., 1969. Bacterial corrosion of concrete in water. Water Res. 3, 21-30.
435	Fu, Y., Wang, J., Liu, Q., Zeng, H., 2014. Water-dispersible magnetic nanoparticle-
436	graphene oxide composites for selenium removal. Carbon 77, 710-721.
437	Gezer, N., Gulfen, M., Aydin, A.O., 2011. Adsorption of selenite and selenate ions
438	onto thiourea-formaldehyde resin. J. Appl. Polym. Sci. 122, 1134-1141.
439	Gibert, O., Rötting, T., Cortina, J.L., Pablo, J., Ayora, C., Carrera, J., Bolzicco, J.,
440	2011. In-situ remediation of acid mine drainage using a permeable reactive
441	barrier in Aznalcóllar (Sw Spain). J. Hazard. Mater. 191, 287-295.
442	Harrison, G., Curie, C., Laishley, E.J., 1984. Purification and characterization ofan
443	inducible dissimilatory type sulphite reductase from <i>Clostridium pasteurianum</i> .
444	Arch. Microbiol. 138, 72-78.
445	He, C., Zhang, B., Lu, J., Qiu, R., 2021. A newly discovered function of nitrate
446	reductase in chemoautotrophic vanadate transformation by natural mackinawite
447	in aquifer. Water Res. 189, 116664.
448	Jain, R., Jordan, N., Weiss, S., Foerstendorf, H., Heim, K., Kacker, R., Hübner, R.,
449	Kramer, H., Hullebusch, E.D.V., Farges, F., Lens, P.N.L., 2015. Extracellular
450	polymeric substances govern the surface charge of biogenic elemental selenium
451	nanoparticles. Environ. Sci. Technol. 49, 1713-1720.
452	Ji, Y., Wang, Y.T., 2017. Selenium Reduction by Batch Cultures of Escherichia coli
453	Strain EWB32213. J. Environ. Eng. 143, 1-7.

454	Kamalaskar, L., Kapse, N., Pore, S., Dhakephalkar, A.P., Ranade, D.R.,
455	Dhakephalkar, P.K., 2016. Genome sequence and gene expression studies reveal
456	novel hydrogenases mediated hydrogen production by Clostridium
457	biohydrogenum sp. nov., MCM B-509T. Int. J. Hydrogen Energ. 41, 11990-
458	11999.
459	Kashiwa, M., Nishimoto, S., Takahashi, K., Ike, M., Fujita, M., 2000. Factors
460	affecting soluble selenium removal by a selenate-reducing bacterium Bacillus sp.
461	SF-1. J. Biosci. Bioeng. 89, 528-533.
462	Keith, S.M., Herbert, R.A., 1983. Dissimilatory nitrate reduction by a strain of
463	Desulfovibrio desulfuricans. FEMS Microbiol. Lett. 18, 55-59.
464	Kuroda, M., Notaguchi, E., Sato, A., Yoshioka, M., Hasegawa, A., Kagami, T.,
465	Narita, T., Yamashita, M., Sei, K., Soda, S., Ike, M., 2011. Characterization of
466	Pseudomonas stutzeri NT-I capable of removing soluble selenium from the
467	aqueous phase under aerobic conditions. J. Biosci. Bioeng. 112, 259-264.
468	Lai, C.Y., Wen, L.L., Shi, L.D., Zhao, K.K., Wang, Y.Q., Yang, X., Rittmann, B.E.,
469	Zhou, C., Tang, Y., Zheng, P., Zhao, H.P., 2016. Selenate and nitrate
470	bioreductions using methane as the electron donor in a membrane biofilm
471	reactor. Environ. Sci. Technol. 50, 10179-10186.
472	Latorre, C.H., Garcia, J.B., Martin, S.G., Crecente, R.M.P., 2013. Solid phase
473	extraction for the speciation and preconcentration of inorganic selenium in water
474	samples: a review. Anal. Chim. Acta 804, 37-49.
475	Lenz, M., Enright, A.M., O'Flaherty, V., van Aelst, A.C., Lens, P.N.L., 2009.

476	Bioaugmentation of UASB reactors with immobilized Sulfurospirillum barnesii
477	for simultaneous selenate and nitrate removal. Appl. Microbial. Biot. 83, 377-
478	388.
479	Li, D.B., Cheng, Y.Y., Wu, C., Li, W.W., Li, N., Yang, Z.C., Tong, Z.H., Yu, H.Q.,
480	2014. Selenite reduction by Shewanella oneidensis MR-1 is mediated by
481	fumarate reductase in periplasm. Sci. Rep. 4, 3735.
482	Li, Y., Guo, X., Dong, H., Luo, X., Guan, X., Zhang, X., Xia, X., 2018. Selenite
483	removal from groundwater by zero-valent iron (ZVI) in combination with
484	oxidants. Chem. Eng. J. 345, 432-440.
485	Li, K., Guo, J., Li, H., Han, Y., Chen, Z., Song, Y., Xing, Y., Zhang, C., 2019. A
486	combined heterotrophic and sulfur-based autotrophic process to reduce high
487	concentration perchlorate via anaerobic baffled reactors: Performance
488	advantages of a step-feeding strategy. Bioresource Technol. 279, 297-306.
489	Li, L., Zhang, B., He, H., Zhang, H., 2021. Hydrodynamics- and hydrochemistry-
490	affected microbial selenate reduction in aquifer: Performance and mechanisms.
491	Sci. Total Environ. 768, 145331.
492	Liu, Y., Peng, L., Ngo, H.H., Guo, W., Wang, D., Pan, Y., Sun, J., Ni, B.J., 2016.
493	Evaluation of nitrous oxide emission from sulfide- and sulfur-based autotrophic
494	denitrification processes. Environ. Sci. Technol. 50, 9407-9415.
495	Lu, J., Zhang, B., He, C., Borthwick, A.G.L., 2020. The role of natural Fe(II)-bearing
496	minerals in chemoautotrophic chromium (VI) bio-reduction in groundwater. J.
497	Hazard. Mater. 389, 121911.

498	Lucas, F.S., Hollibaugh, J.T., 2001. Response of sediment bacterial assemblages to					
499	selenate and acetate amendments. Environ. Sci. Technol. 35, 528-534.					
500	Ma, J., Kobayashi, D.Y., Yee, N., 2007. Chemical kinetic and molecular genetic study					
501	of selenium oxyanion reduction by <i>Enterobacter cloacae</i> SLD1a-1. Environ. Sci.					
502	Technol. 41, 7795-7801.					
503	Meyer, B., Imhoff, J.F., Kuever, J., 2007. Molecular analysis of the distribution and					
504	phylogeny of the <i>soxB</i> gene among sulfur-oxidizing bacteria-evolution of the					
505	Sox sulfur oxidation enzyme system. Environ. Microbiol. 9, 2957-2977.					
506	Nancharaiah, Y.V., Sarvajith, M., Lens, P.N.L., 2018. Selenite reduction and					
507	ammoniacal nitrogen removal in an aerobic granular sludge sequencing batch					
508	reactor. Water Res. 131, 131-141.					
509	Navarro-Alarcon, M., Cabrera-Vique, C., 2008. Selenium in food and the human					
510	body: a review. Sci. Total Environ. 400, 115-141.					
511	Ontiveros-Valencia, A., Penton, C.R., Krajmalnik-Brown, R., Rittmann, B.E., 2016.					
512	Hydrogen-fed biofilm reactors reducing selenate and sulfate: community					
513	structure and capture of elemental selenium within the biofilm. Biotechnol.					
514	Bioeng. 113, 1736-1744.					
515	Oremland, R.S., Blum, J.S., Bindi, A.B., Dowdle, P.R., Herbel, M., Stolz, J.F., 1999.					
516	Simultaneous reduction of nitrate and selenate by cell suspensions of selenium-					
517	respiring bacteria. Appl. Environ. Microb. 65, 4385-4392.					
518	Peng, L., Liu, Y., Gao, S.H., Chen, X., Ni, B.J., 2016. Evaluating simultaneous					

519 chromate and nitrate reduction during microbial denitrifification processes.

520 Water Res. 89, 1-8.

521	Qian, J., Liu, R., Wei, L., Lu, H., Chen, G.H., 2015. System evaluation and microbial
522	analysis of a sulfur cycle-based wastewater treatment process for co-treatment of
523	simple wet flue gas desulfurization wastes with freshwater sewage. Water Res.
524	80, 189-199.
525	Qiao, J., Song, Y., Sun, Y., Guan, X., 2018. Effect of solution chemistry on the
526	reactivity and electron selectivity of zerovalent iron toward Se(VI) removal.
527	Chem. Eng. J. 353, 246-253.
528	Sabaty, M., Avazeri, C., Pignol, D., Vermeglio, A., 2001. Characterization of the
529	reduction of selenate and tellurite by nitrate reductases. Appl. Environ. Microb.
530	67, 5122-5126.
531	Sahinkaya, E., Kilic, A., 2014. Heterotrophic and elemental-sulfur-based autotrophic
532	denitrifification processes for simultaneous nitrate and Cr(VI) reduction. Water
533	Res. 50, 278-286.
534	Sahu, A.K., Conneely, T., Nüsslein, K.R., Ergas, S.J., 2009. Biological perchlorate
535	reduction in packed bed reactors using elemental sulfur. Environ. Sci. Technol.
536	43, 4466-4471.
537	Schröder, I., Rech, S., Krafft, T., Macy, J.M., 1997. Purification and characterization
538	of the selenate reductase from Thauera selenatis. J. Biol. Chem. 272, 23765-
539	23768.
540	Shi, C., Cui, Y., Lu, J., Zhang, B., 2020. Sulfur-based autotrophic biosystem for
541	efficient vanadium (V) and chromium (VI) reductions in groundwater. Chem.

- 542 Eng. J. 395, 124972.
- 543 Shi, J., Zhang, B., Cheng, Y., Peng, K., 2020a. Microbial vanadate reduction coupled
- 544 to co-metabolic phenanthrene biodegradation in groundwater. Water Res. 168,
- 545 116354.
- 546 Shi, J., Zhang, B., Qiu, R., Lai, C., Jiang, Y., He, C., Guo, J., 2019. Microbial
- 547 chromate reduction coupled to anaerobic oxidation of elemental sulfur or
- zerovalent iron. Environ. Sci. Technol. 53, 3198-3207.
- 549 Shi, et al., Zhang, B., Wang, Y., Fu, J., 2020b. Effects of hydropower dam
- 550 construction on sulfur distribution and sulfate-reducing prokaryotes assemblage.
- 551 Sci. Total Environ. 705, 135819.
- 552 Song, B., Tian, Z., Weijden, R.D., Buisman, C.J.N., Weijma, B.J., 2021. High-rate
- 553 biological selenate reduction in a sequencing batch reactor for recovery of
- hexagonal selenium. Water Res. 193, 116855.
- 555 Staicu, L.C., Barton, L.L., 2021. Selenium respiration in anaerobic bacteria: Does
- energy generation pay off? J. Inorg. Biochem. 222, 111509.
- 557 Subedi, G., Taylor, J., Hatam, I., Baldwin, S.A., 2017. Simultaneous selenate
- reduction and denitrification by a consortium of enriched mine site bacteria.
- 559 Chemosphere 183, 536-545.
- 560 Tan, L.C., Nancharaiah, Y.V., Lu, S., Hullebusch, E.D.V., Gerlach, R., Lens, P.N.L.,
- 561 2018. Biological treatment of selenium-laden wastewater containing nitrate and
- sulfate in an upflow anaerobic sludge bed reactor at pH 5.0. Chemosphere 211,
- 563 <u>684-693</u>.

564	Tan, L.C., Papirio, S., Luongo, V., Nancharaiah, Y.V., Cennamo, P., Esposito, G.,
565	Hullebusch, E.D.V., Lens, P.N.L., 2018. Comparative performance of anaerobic
566	attached biofilm and granular sludge reactors for the treatment of model mine
567	drainage wastewater containing selenate, sulfate and nickel. Chem. Eng. J. 345,
568	545-555.
569	Throbäck, I.N., Enwall, K., Jarvis, Å., Hallin, S., 2004. Reassessing PCR primers
570	targeting <i>nirS</i> , <i>nirK</i> and <i>nosZ</i> genes for community surveys of denitrifying
571	bacteria with DGGE. FEMS Microbiol. Ecol. 49, 401-417.
572	Tomei, F.A., Barton, L.L., Lemanski, C.L., Zocco, T.G., Fink, N.H., Sillerud, L.O.,
573	1995. Transformation of selenate and selenite to elemental selenium by
574	Desulfovibrio desulfuricans. J. Ind. Microbiol. Biot. 14, 329-336.
575	Ucar, D., Sahinkaya, E., Yilmaz, T., Cakmak, Y., 2019. Simultaneous nitrate and
576	perchlorate reduction in an elemental sulfur-based denitrifying membrane
577	bioreactor. Int. Biodeter. Biodegr. 144, 104741.
578	Wang, S., Zhang, B., Li, T., Li, Z., Fu, J., 2020. Soil vanadium(V)-reducing related
579	bacteria drive community response to vanadium pollution from a smelting plant
580	over multiple gradients. Environ. Int. 138, 105630.
581	Wang, Y., Lai, C.Y., Wu, M., Song, Y., Hu, S., Yuan, Z., Guo, J., 2021. Roles of
582	oxygen in methane-dependent selenate reduction in a membrane biofilm reactor:
583	stimulation or suppression. Water Res. 198, 117150.
584	Wang, Z., Zhang, B., He, C., Shi, J., Wu, M., Guo, J., 2021. Sulfur-based mixotrophic
585	vanadium (V) bio-reduction towards lower organic requirement and sulfate

accumulation. Water Res. 189, 116655. 586 Wen, L.L., Lai, C.Y., Yang, Q., Chen, J.X., Zhang, Y., Ontiveros-Valencia, A., Zhao, 587 588 H.P., 2016. Quantitative detection of selenate-reducing bacteria by real-time PCR targeting the selenate reductase gene. Enzyme Microb. Tech. 85, 19-24. 589 590 Xia, S., Xu, X., Zhou, L., 2019. Insights into selenate removal mechanism of 591 hydrogen-based membrane biofilm reactor for nitrate-polluted groundwater treatment based on anaerobic biofilm analysis. Ecotox. Environ. Safe. 178, 123-592 129. 593 594 Xie, Y., Dong, H., Zeng, G., Zhang, L., Cheng, Y., Hou, K., Jiang, Z., Zhang, C., Deng, J., 2017. The comparison of Se(IV) and Se(VI) sequestration by nanoscale 595 zero-valent iron in aqueous solutions: The roles of solution chemistry. J. Hazard. 596 597 Mater. 338, 306-312. Yang, Z.H., StoVen, K., Haneklaus, S., Singh, B.R., Schnug, E., 2010. Elemental 598 sulfur oxidation by Thiobacillus spp. and aerobic heterotrophic sulfur-oxidizing 599 bacteria. Pedosphere 20, 7-79. 600 Yanke, L.J., Bryant, R.D., Laishley, E.J., 1995. Hydrogenase I of Clostridium 601 602 pasteurianum functions as a novel selenite reductase. Anaerobe 1, 61-67. Zhai, J., Rahaman, M.H., Chen, X., Xiao, H., Liao, K., Li, X., Duan, C., Zhang, B., 603 Tao, G., John, T., Vymazal, J., 2016. New nitrogen removal pathways in a full-604 scale hybrid constructed wetland proposed from high-throughput sequencing and 605 isotopic tracing results. Ecol. Eng. 97, 434-443. 606

607 Zhang, B., Cheng, Y., Shi, J., Xing, X., Zhu, Y., Xu, N., Xia, J., Borthwick, A.G.L.,

608	2019. Insights into interactions between vanadium (V) bio-reduction and							
609	pentachlorophenol dechlorination in synthetic groundwater. Chem. Eng. J. 375,							
610	121965.							
611	Zhang, B., Feng, C., Ni, J., Zhang, J., Huang, W., 2012. Simultaneous reduction of							
612	vanadium (V) and chromium (VI) with enhanced energy recovery based on							
613	microbial fuel cell technology. J. Power Sources 204, 34-39.							
614	Zhang, B., Li, Y., Fei, Y., Cheng, Y., 2021. Novel pathway for vanadium(V) bio-							
615	detoxification by Gram-positive Lactococcus raffinolactis. Environ. Sci.							
616	Technol. 55, 2121-2131.							
617	Zhang, B., Qiu, R., Lu, L., Chen, X., He, C., Lu, J., Ren, Z.J., 2018. Autotrophic							
618	vanadium(V) bioreduction in groundwater by elemental sulfur and zerovalent							
619	Iron. Environ. Sci. Technol. 52, 7434-7442.							
620	Zhang, B., Tian, C., Liu, Y., Hao, L., Liu, Y., Feng, C., Liu, Y., Wang, Z., 2015.							
621	Simultaneous microbial and electrochemical reductions of vanadium (V) with							
622	bioelectricity generation in microbial fuel cells. Bioresource Technol. 179, 91-							
623	97.							
624	Zhang, B., Wang, S., Diao, M., Fu, J., Xie, M., Shi, J., Liu, Z., Jiang, Y., Cao, X.,							
625	Borthwick, A.G.L., 2019. Microbial community responses to vanadium							
626	distributions in mining geological environments and bioremediation assessment.							
627	J. Geophys. Res-Biogeo. 124, 601-615.							
628	Zhang, B., Wang, Z., Shi, J., Dong, H., 2020. Sulfur-based mixotrophic bio-reduction							
629	for efficient removal of chromium (VI) in groundwater. Geochim. Cosmochim.							

630 Ac. 268, 296-309.

631	Zhang, L., Zhang, C., Hu, C., Liu, H., Bai, Y., Qu, J., 2015. Sulfur-based mixotrophic
632	denitrification corresponding to different electron donors and microbial profiling
633	in anoxic fluidized-bed membrane bioreactors. Water Res. 85, 422-431.
634	Zhang, Y., Kuroda, M., Arai, S., Kato, F., Inoue, D., Ike, M., 2019. Biological
635	treatment of selenate-containing saline wastewater by activated sludge under
636	oxygen-limiting conditions. Water Res. 154, 327-335.
637	Zhong, C., Zhang, B., Kong, L., Xue, A., Ni, J., 2011. Electricity generation
638	frommolasses wastewater by an anaerobic baffled stacking microbial fuel cell. J.
639	Chem. Technol. Biot. 86, 406-413.
640	Zhou, L., Xu, X., Xia, S., 2018. Effects of sulfate on simultaneous nitrate and selenate
641	removal in a hydrogen-based membrane biofifilm reactor for groundwater
642	treatment: Performance and biofifilm microbial ecology. Chemosphere 211, 254-
643	260.
644	Zhu, L., Zhang, L., Li, J., Zhang, D., Chen, L., Sheng, D., Yang, S., Xiao, C., Wang,
645	J., Chai, Z., Albrecht-Schmitt, T.E., Wang, S., 2017. Selenium sequestration in a
646	cationic layered rare earth hydroxide: a combined batch experiments and EXAFS
647	investigation. Environ. Sci. Technol. 51, 8606-8615.
648	Zhu, F., Zheng, Y.M., Zhang, B.G., Dai. Y.R., 2020. A critical review on the
649	electrospun nanofibrous membranes for the adsorption of heavy metals in water
650	treatment. J. Hazard. Mater. 401, 123608.
651	

652 Figure Captions.

653 Fig. 1. Se(VI) removal performance in S(0)-driven Se(VI) reduction biosystems. (a)

Time histories of Se(VI) removal efficiency during three consecutive operating cycles

- during batch trial; (b) Pseudo first-order kinetic plots for Se(VI) removal; (c) Time
- histories of Se(VI), NO₃⁻-N in influent, Se(VI), Se(IV), NO₃⁻-N, and SO₄²⁻ in effluent,
- 657 corresponding Se(VI) and NO₃⁻-N removal efficiencies, and Se(VI) removal capacities
- during 258 d operation of the column trial.
- 659 Fig. 2. Characterization of products from Se(VI) bioreduction. (a) Selenium speciation
- 660 percentages in the effluent. (b) SEM, (c) XPS, and (d) XRD analysis of the precipitates
- after reaction. SEM: Scanning electron microscope; XPS: X-ray photoelectron
 spectroscopy; XRD: X-ray diffraction.
- 663 Fig. 3. Microbial community evolution in inoculum and at different stages of column
- trial. (a) Non-metric multidimensional scaling (NMDS) plot for the distribution of
- 665 microbial community; (b) Venn plot of microbial richness (b); (c) Class-level relative
- abundance; (d) Heatmap of functional genera.
- 667 **Fig. 4.** Metabolic processes of S(0)-driven Se(VI) bioreduction. (a) Abundances of
- 668 functional genes; (b) Contents of electron transfer compounds and intermediate
- 669 metabolites. Cyt c: Cytochrome c; NADH: Nicotinamide adenine dinucleotide; VFAs:
- 670 Volatile fatty acids.
- Fig. 5. Mechanistic pathways of microbial Se(VI) reduction processes linked to S(0)
- 672 oxidation. VFAs: Volatile fatty acids.
- 673

Stage	Period (d)	Flow rate (mL/min)	Initial Se(VI) (mg/L)	Initial NO ₃ - -N (mg/L)	Se(VI) removal efficiency (%)	Se(VI) removal capacity (g/(m ^{3/} d))	NO3 ⁻ -N removal efficiency (%)	NO3 ⁻ -N removal capacity (g/(m ³ /d))
1	0-94	0.56	10	-	98.1 ± 6.3	41.5 ± 4.1	-	-
2	95-135	0.56	50	-	94.1 ± 6.2	193.0 ± 11.9	-	-
3	136-176	0.56	100	-	84.2 ± 5.1	346.8 ± 30.2	-	-
4	177-217	1.68	10	-	89.7 ± 10.3	117.0 ± 12.7	-	-
5	218-258	0.56	10	10	82.8 ± 3.7	35.2 ± 2.1	97.9 ± 0.8	40.6 ± 3.3

Table 1. Ambient conditions and Se(VI) removal performance for each stage during 258-d operation in column trial.

Fig. 1. Se(VI) removal performance in S(0)-driven Se(VI) reduction biosystems. (a) Time histories of Se(VI) removal efficiency during three consecutive operating cycles during batch trial; (b) Pseudo first-order kinetic plots for Se(VI) removal; (c) Time histories of Se(VI), NO₃⁻-N in influent, Se(VI), Se(IV), NO₃⁻-N, and SO₄²⁻ in effluent, corresponding Se(VI) and NO₃⁻-N removal efficiencies, and Se(VI) removal capacities during 258 d operation of the column trial.

Fig. 2. Characterization of products from Se(VI) bioreduction. (a) Selenium speciation percentages in the effluent. (b) SEM, (c) XPS, and (d) XRD analysis of the precipitates after reaction. SEM: Scanning electron microscope; XPS: X-ray photoelectron spectroscopy; XRD: X-ray diffraction.

Fig. 3. Microbial community evolution in inoculum and at different stages of column trial. (a) Non-metric multidimensional scaling (NMDS) plot for the distribution of microbial community; (b) Venn plot of microbial richness (b); (c) Class-level relative abundance; (d) Heatmap of functional genera.

Fig. 4. Metabolic processes of S(0)-driven Se(VI) bioreduction. (a) Abundances of functional genes; (b) Contents of electron transfer compounds and intermediate metabolites. Cyt c: Cytochrome c; NADH: Nicotinamide adenine dinucleotide; VFAs: Volatile fatty acids.

Fig. 5. Mechanistic pathways of microbial Se(VI) reduction processes linked to S(0) oxidation. VFAs: Volatile fatty acids.