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Abstract

A crucial step in group decision making (GDM) processes is the aggregation of individual opin-
ions with the aim of achieving a “fair” representation of each individual within the group. In
multi-granular linguistic contexts where linguistic term sets with common domain but different
granularity and/or semantic are used, the methodology widely applied until now requires, prior
to the aggregation step, the application of a unification process. The reason for this unifica-
tion process is the lack of appropriate aggregation operators for directly aggregating uncertain
information represented by means of fuzzy sets. With the recent development of the Type-1
Ordered Weighted Averaging (T1OWA) operator, which is able to aggregate fuzzy sets, alter-
native approaches to multi-granular linguistic GDM problems are possible. Unlike consensus
models based on unification processes, this paper presents a new T1OWA based consensus
methodology that can directly manage linguistic term sets with different cardinality and/or se-
mantic without the need to perform any transformation to unify the information. Furthermore,
the linguistic information could be assumed to be balanced or unbalanced in its mathematical
representation, and therefore the new T1OWA approach to consensus is more general in its ap-
plication than previous consensus reaching processes with muti-granular linguistic information.
To test the goodness of the new consensus reaching approach, a comparative study between the
T1OWA based consensus model and the unification based consensus model is carried out using
six randomly generated GDM problems with balanced multi-granular information. When dis-
tance between fuzzy sets used in the T1OWA based approach is defined as the corresponding
distance between their centroids, a higher final level of consensus is achieved in four out of the
six cases although no significant differences were found between both consensus approaches.

Keywords: Multi-granular linguistic information, Type-1 OWA operator, Group decision
making, Consensus.

1. Introduction

Decision making is an inherent activity of human beings. Everyday, human beings, con-
sciously or unconsciously, make decisions about different aspects related to their life. Group
decision making (GDM) has proven its usefulness as a decision methodology to address com-
plex decisions in which the participation of experts from different areas may be interesting
and even advisable. Moreover, in many of these decision making processes it is common to
encounter problems where experts have to assess qualitative aspects that cannot easily be eval-
uated using precise quantitative assessments. In these cases the use of linguistic assessments
seems be more appropriate to express experts’ preferences. The Fuzzy Linguistic Approach has
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proven its utility to deal with the imprecision and vagueness associated to qualitative informa-
tion [1]. In this approach, qualitative aspects are represented by means of linguistic variables
whose values are words rather than numbers. Concerning linguistic variables, semantic rules
are defined in order to associate to each element of the universe of discourse its meaning. This
interpretation of the meaning of a linguistic label is formally captured using the concept of
fuzzy set, and therefore linguistic labels can formally be considered and represented as fuzzy
subsets of their universe of discourse [1]. Another important aspect to be taken into account
in the linguistic approach is the “granularity of uncertainty”, i.e. the finest level of distinction
among different quantifications of uncertainty as represented by the cardinality of the corre-
sponding linguistic term set [2].

In GDM problems with experts belonging to different areas or with distinct levels of knowl-
edge about the problem, it seems natural to expect that they will express opinions and/or pref-
erences using different sets of linguistic terms and in general with different cardinality (granu-
larity). Consequently, the development of adequate tools to manage and model multi-granular
linguistic information becomes very important in the resolution of this type of GDM problem
[3–9].

In a multi-granular linguistic context, the aggregation of elements from linguistic term sets
of different cardinality and semantics is a challenging issue. A widely used approach in these
cases consists of carrying out a unification process previous to aggregation operation [6]. This
process is based on transformation functions with domain each one of the different linguistic
term sets and same co-domain, known as the base linguistic term set (BLTS). Although trans-
formation functions operate with the membership functions of the fuzzy sets used to represent
the linguistic terms to be aggregated, such functions have been always subject of criticisms be-
cause regarding the possible loss of information because they are not bijective. Recently, Zhou
et al. [10] proposed the Type-1 Ordered Weighted Average (T1OWA) operator that is able to
directly aggregate type-1 fuzzy sets. The T1OWA operator, which is developed via the applica-
tion of the extension principle to Yager’s OWA operator [11], has been successfully proven to
aggregate linguistic opinions in human decision making with linguistic weights [12–15]. This
operator has the following main characteristics: (i) it allows the direct aggregation of different
types of linguistic term sets – balanced or unbalanced sets, triangular or trapezoidal linguistic
labels, etc.; (ii) the weighting vector consists of elements that can be crisp and precise numbers
or fuzzy ones; (iii) it uses the whole membership function of the fuzzy sets to aggregate in the
computation of the fuzzy aggregated value; and (iv) it allows the implementation of the concept
of soft majority in the decision process if required. In summary, the use of the T1OWA operator
in developing decision making models makes the current unification process superfluous and
allows its direct application, i.e. there is no need to modify and/or adapt the model, to a wider
range of decision making problems under uncertainty.

GDM problems generally involve situations of conflict among its experts, and therefore it is
preferable that the set of experts reach consensus before applying a selection process to derive
the decision solution [8, 16–18]. Consensus is defined as the full and unanimous agreement of
all the experts, a definition that is inconvenient in practice because it only allows differentiating
between two states, namely, the existence and absence of consensus. The chances for reaching
such a full agreement are rather low, while it is recognised that most real life situation unanim-
ity is not necessary [19, 20]. Thus, one key issue that needs to be addressed in a GDM problem
is the evaluation of the level of consensus of the group of experts. Consensus is modelled math-
ematically via the use of similarity function measuring the concept of proximity of information
[21]. In the linguistic model, the computation of similarity degrees between experts relies on
the use of a distance function between the fuzzy sets representing their linguistic preferences.

2



When the consensus level reaches a threshold value, agreed by the group of experts, the res-
olution process of the GDM is carried out; otherwise a feedback mechanism is activated, and
personalised recommendations generated to support the individual experts, until the threshold
level of consensus is achieved. The feedback recommendations will help the experts to identify
the preference values that should be considered for changing.

The aim of this paper is to present a new methodology to consensus reaching processes in
multi-granular linguistic contexts based on the T1OWA operator. The new consensus reaching
model allows the direct processing of the membership functions of the fuzzy sets modelling
the linguistic information and therefore makes the unification process step currently used in de-
veloped models unnecessary. Furthermore, because the membership functions are nor required
to fulfil extra conditions regarding their balanced or unbalanced distribution within the under-
lying domain of the variable used to measure preferences, nor they are required to be of the
same shape type, the proposed methodology offers a greater degree of flexibility or generality
in its application than existing models do. Having said this, a comparative study between the
T1OWA based consensus model and the unification based consensus model is included using
six randomly generated GDM problems with balanced multi-granular information. As it will
be elaborated further later in the paper, when the distance between fuzzy sets in the T1OWA
based approach is defined as the corresponding distance between their centroids, a higher final
level of consensus is obtained in four out of the six cases studied, although no significant dif-
ferences are found between both consensus approaches. Arguably, the T1OWA methodology
can be used with guarantee in consensus reaching multi-granular linguistic decision making
problems.

The rest of the paper is organised as follows. In Section 2 contains a short, but necessary for
the set of the paper, review of concepts concerning multi-granular fuzzy linguistic GDM prob-
lems, the unification methodology of multi-granular linguistic information and the consensus
reaching processes. Section 3 presents the T1OWA operator and its alpha-level fast implemen-
tation. Section 4 focuses on the presentation of the new T1OWA methodology to consensus
reaching processes in multi-granular linguistic contexts. A comparative study between the new
consensus methodology and the consensus methodology based on the unification process of
preferences is presented in Section 5. Finally, some conclusions are pointed up in Section 6.

2. Preliminaries

To make the paper self-contained, the main concepts that will be used are introduced here.

2.1. Linguistic variable
A linguistic variable is formally represented by a 5-tuple 〈L,T (L),U,S,M〉 [1] where (i) L is

the name of the variable; (ii) T (L) is a finite term set of (primary) labels or words (a collection
of linguistic values); (iii) U is a universe of discourse or base variable; (iv) S is the syntactic
rule which generates the terms in T (L); and (v) M is a semantic rule which associates with each
linguistic value X its meaning M(X) : U → [0,1]. Usually, T (L) is denoted as L when there is
no risk of confusion.

The semantic rule, also known as ‘compatibility function’ [1], associates with each element
of the base variable its compatibility with each linguistic value. This interpretation of the mean-
ing of a linguistic label coincides with that of a fuzzy set, and therefore linguistic labels can
be considered and formally represented as fuzzy subsets of their base variable. Therefore, the
nature of the base variable will dictate the general method to use when manipulating linguistic
values. A non numerical base variable makes the definition of the compatibility function ‘dif-
ficult to be formalized in explicit terms’ [1]. As a result, it turns out to be problematic when
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implemented at present in computer programmes. Thus, it is fair to say that most, if not all,
important linguistic decision models in the literature assume that the base variable is a subset of
the set of real numbers, and therefore numeric in nature. Indeed, these linguistic decision mod-
els usually start associating the linguistic values (labels) to be used with membership functions
(triangular, trapezoidal, Gaussian . . . ) to represent their meanings (see Figure 3).

2.2. Linguistic decision making problems
The majority of models developed to solve linguistic GDM problems can be classed as lin-

guistic symbolic computational models based on ordinal scales. Four main proposals can be
found in the literature following this ordinal scheme [22]: (i) the linguistic symbolic computa-
tional model based on ordinal scales and max-min operators; (ii) the linguistic symbolic com-
putational model based on indexes; (iii) the linguistic symbolic computational model based on
continuous term sets, and (iv) the 2-tuple linguistic computational model. The main advantage
of these ordinal proposals lies in their simplicity, however they fail to implement appropriately
the richness of the linguistic nature that is being modelled in these cases. Indeed, the above
models start by assuming a numeric nature of the base variable and membership functions are
provided to model the meaning of the linguistic labels used in the problem. However, these
membership functions are generally neglected and not fully used, which seems in contradiction
with the philosophy of the original linguistic approach in which they are based. In these cases it
seems paradoxical that concepts like membership functions, fuzzy sets, vagueness, uncertainty
etc. are used in their motivation because they are simply not fully implemented or use in their
model architecture. These ordinal models are based on a one-to-one map between the set of
linguistic labels and their indexes, which are derived from an underlying ordering the meaning
of the linguistic labels obey.

It could be argued, however, that the above mentioned ordinal approaches could be more
appropriate for linguistic decision models where the base variable is not numeric in nature, and
it could well be that this was the main rationale when developing them. However, they have
become so popular within the research community that it seems apparent that they have been
adopted by most researchers even when the base variable is numeric in nature. These ordinal
approaches do not seem the most appropriate here because their first step consists of replacing
the set of linguistic terms, which are supposed to be a set of fuzzy subsets of the set of real
numbers, by a set of crisp values before the computation process is carried out, and therefore
their expressiveness potential is lost in this way. In these case, Zadeh pointed out the following
recommendation to apply when the base variable is numerical in nature: ‘linguistic variables
can be treated in a reasonably precise fashion by the use of the extension principle for fuzzy
sets’ [1]. This is the methodology underlying the proposal put forward in this paper.

2.3. Group decision making with multi-granular linguistic assessments
GDM problems are classically described as decision situations where, given a set of alter-

natives X = {x1,x2, . . . ,xn} (n≥ 2), a set of experts E = {e1,e2, . . . ,em} (m≥ 2) try to achieve
a collective solution. Preference relations, also known as pairwise comparison matrices, are a
popular and powerful method to model experts’ preferences in group decision making (GDM)
problems. The main advantage of preference relations is that individuals can focus exclusively
on two alternatives at a time, which facilitates the expression of their opinions [23–26], making
them more accurate than non-pairwise methods [27]. In decision environment pervaded with
uncertainty, experts might find comfortable providing their opinions and or preferences using
linguistic assessments rather than precise numerical ones [1, 16, 22]. Thus, linguistic prefer-
ences relations [8, 28], which are usually modelled as matrices, Pei = (plk

i ), l,k ∈ {1, . . . ,n},
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will be the focus of this paper. Each element of matrix plk
i = µPei

(xl,xk) represents experts
ei linguistic preference of the alternative xl over xk, which is formally represented as a fuzzy
subset of the unit interval [0,1].

As mentioned before, in GDM we can encounter problems where experts may have differ-
ent background and level of knowledge about the problem, and consequently linguistic term
sets with different cardinality might be used by different experts [6, 29, 30]. In any case, the
cardinality or granularity of the linguistic term sets should be small enough so as not to impose
useless precision levels but big enough to allow a discrimination of assessments in a limited
number of degrees [8]. Summarising, in a multi-granular linguistic GDM context each expert
ei will provide preferences using a linguistic term set Si = {si

0, . . . ,s
i
g}, with more two or more

linguistic term set having different cardinality.

2.4. Unification methodology of multi-granular linguistic information
Previous GDM problem with multi-granular linguistic information [8, 31] include as its

first step a unification process [6] by which experts’ linguistic preferences are transformed into
a single domain or linguistic term set know as the basic linguistic term set (BLTS) denoted by
ST . The selection of set ST was done using the following rules:

1. If there is only one linguistic term set, from the set of different domains to be unified,
with maximum granularity, then that set is chosen as the BLTS, ST .

2. If there are two or more linguistic term sets with maximum granularity, then the election
of ST depends on the semantics associated to them:

(a) If all of them have the same semantics (with different labels), then any one of them
can be selected as ST .

(b) If two or more of them have different semantics, then ST is defined as a generic
linguistic term set with a number of terms greater than the number of terms a person
is able to discriminate, which is normally 7 or 9 [32]. There are cases when a BLTS
with 15 terms symmetrically distributed has been used [6].

Once ST has been selected, the following multi-granular transformation function is applied
to transform every linguistic value into a fuzzy set defined on ST :

Definition 1. [6] If S = {c0, . . . ,cp} and ST = {l0, . . . , lg} are two linguistic term sets, with
g≥ p, then a multi-granular transformation function τSST : S→ F(ST ) is

τSST (ci) = {(lh,αh)
∣∣∣ αh = max

y
min{µci(y),µlh(y)},h = 0, . . . ,g} (1)

where F(ST ) is the set of fuzzy sets defined on ST , and µci(y) and µlh(y) are the membership
functions of the fuzzy sets associated to the linguistic terms ci and lh, respectively.

2.5. Consensus reaching process
A consensus reaching process can be defined as an iterative process that consists of several

discussion rounds in which experts express their preferences and try to achieve a minimum
level of agreement before making a decision [33]. In real-world problems, a human moderator
in charged of guiding the experts towards consensual positions that derive in a common and
accepted group solution.

A graphical description of a general consensus reaching process is depicted in Fig. 1. As
it can be seen, the figure of the moderator has the key role of supervising and coordinating the
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Figure 1: Consensus reaching process

whole process by providing appropriate advice to the experts in order to bring their positions
closer to improve the level of agreement.

Consensus is usually understood as the full and unanimous agreement of all the experts
regarding all the feasible alternatives. However, in practice, this definition is inconvenient be-
cause it only allows differentiating between two states: the existence and absence of consensus.
Furthermore, on the one hand, the chances for reaching such a full agreement are rather low,
and on the other hand, unanimity is not necessary or desirable in most real life situations. A
second meaning of the concept of consensus refers to the judgement arrived at by ‘most of’
those concerned, which has led to the definition and use of a new concept of consensus degree
referred to as ‘soft’ consensus degree [20, 26, 31, 34–40].

3. Type-1 OWA operator

Unlike Yager’s OWA operator that aggregates crisp values [11], the type-1 OWA operator is
able to aggregate type-1 fuzzy sets with uncertain weights, with these uncertain weights being
also modelled as type-1 fuzzy sets. As a generalisation of Yager’s OWA operator and based on
the extension principle, the type-1 OWA operator is defined as follows [10]:

Definition 2 (Type-1 OWA operator (T1OWA)). Given n linguistic weights
{

W i}n
i=1 in the

form of type-1 fuzzy sets defined on the domain of discourse [0,1], a type-1 OWA operator
(T1OWA) is a mapping, Φ,

Φ : P̃(R)×·· · P̃(R) −→ P̃(R)
(A1, · · · ,An) 7→ Y

such that

µY (y) = sup
n

∑
k=1

w̄iaσ(i) = y

wi ∈U,ai ∈ X

µW 1(w1)∧·· ·∧µW n(wn)∧µA1(a1)∧·· ·∧µAn(an) (2)
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where w̄i =
wi

∑
n
i=1 wi

; σ is a permutation function such that aσ(i) ≥ aσ(i+1), ∀i = 1, · · · ,n− 1,

and P̃(R) is the set of fuzzy sets on R.

From Definition 2, a direct approach to performing T1OWA operations was suggested in
[10]. However, this approach is computationally expensive, which inevitably curtails further
applications of the T1OWA operator to real world decision making. A fast approach to T1OWA
operations has been developed based on the α-cuts of fuzzy sets [12].

Definition 3 (α-level T1OWA operator ). Given the n linguistic weights
{

W i}n
i=1 in the form

of type-1 fuzzy sets defined on the domain of discourse [0,1], then for each α ∈ [0,1], an α-level
T1OWA operator with α-level weight sets

{
W i

α

}n
i=1 to aggregate the α-level of type-1 fuzzy sets{

Ai}n
i=1 is given as

Φα

(
A1

α , · · · ,An
α

)
=


n
∑

i=1
wiaσ(i)

n
∑

i=1
wi

∣∣∣∣∣wi ∈W i
α , ai ∈ Ai

α ,∀i

 (3)

where W i
α = {w|µWi(w)≥ α}, Ai

α = {x|µAi(x)≥ α}, and σ is a permutation function such that
aσ(i) ≥ aσ(i+1), ∀ i = 1, · · · ,n−1.

Using the Representation Theorem of type-1 fuzzy sets, the α-level sets Φα

(
A1

α , · · · ,An
α

)
obtained via Definition 3 can be used to construct the following type-1 fuzzy set on R

G = ∪
0<α≤1

αΦα

(
A1

α , · · · ,An
α

)
(4)

with membership function

µG(x) = ∨
α:x∈Φα(A1

α ,··· ,An
α)α

α (5)

Fuzzy sets obtained in (2) and (4) may seem different, however in [12] Zhou et al. proved
that both results are equivalent, in what it is known as the Representation Theorem of T1OWA
Operators.

Theorem 1 (Representation Theorem of T1OWA Operators). Given the n linguistic weights{
W i}n

i=1 in the form of type-1 fuzzy sets defined on the domain of discourse [0,1], and the type-1
fuzzy sets A1, · · · ,An, then we have that

Y = G

where Y is the aggregation result defined in (2) and G is the result defined in (4).

Therefore, an effective and practical way of carrying out T1OWA operations consist in the
decomposition of the T1OWA aggregation into the α-level T1OWA operations and then the
reconstruction of the output via the Representation Theorem 1.

When the linguistic weights and the aggregated sets are fuzzy number, the output of the
α-level T1OWA operator is a closed interval [12]:

Theorem 2. Let
{

W i}n
i=1 be fuzzy numbers on [0,1] and

{
Ai}n

i=1 be fuzzy numbers on R. Then
for each α ∈U, Φα

(
A1

α , · · · ,An
α

)
is a closed interval.
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Based on this result, the computation of the T1OWA output according to (4), G, reduces to
compute the left end-points and right end-points of the intervals Φα

(
A1

α , · · · ,An
α

)
:

Φα

(
A1

α , · · · ,An
α

)
− and Φα

(
A1

α , · · · ,An
α

)
+
,

where Ai
α = [Ai

α−,A
i
α+],W

i
α = [W i

α−,W
i
α+]. For the left end-points, we have

Φα

(
A1

α , · · · ,An
α

)
− = min

W i
α− ≤ wi ≤W i

α+

Ai
α− ≤ ai ≤ Ai

α+

n
∑

i=1
wiaσ(i)

/ n
∑

i=1
wi

(6)

For the right end-points, we have

Φα

(
A1

α , · · · ,An
α

)
+
= max

W i
α− ≤ wi ≤W i

α+

Ai
α− ≤ ai ≤ Ai

α+

n
∑

i=1
wiaσ(i)

/ n
∑

i=1
wi

(7)

It can be seen that (6) and (7) are programming problems. Solutions to these problems, so
that the T1OWA aggregation operation can be performed efficiently, are available from [12].

4. Consensus reaching process based on T1OWA operator

In the multi-granular context, the different theoretical models proposed in the literature
[8, 26, 31] address the consensus reaching process, in which transformation functions were
used to unify the multi-granular linguistic information. As pointed our earlier, a drawback of
such unification process is that the consensus reaching process loses information because the
transformations functions are not bijective. These proposed models did not address the issues
of direct manipulation of different elements belonging to linguistic sets of different granularity,
specially in the necessary aggregation step of GDM problems, because there were no mathe-
matical tools available at that moment. Interestingly, the introduction of the T1OWA operator
provides such a needed tool for the direct manipulating linguistic sets with different granularity
in consensus decision making. Unlike previous models [8, 31], the proposed consensus model
makes use of the T1OWA operator to compute the collective preference, and therefore the
whole membership functions of the fuzzy sets that represent the experts’ linguistic preferences
are taken into account. The two main advantage with respect to previous models are: (1) it
allows the direct aggregation of different types of linguistic term sets – balanced or unbalanced
sets, triangular or trapezoidal linguistic labels, etc. and therefore the unification process is not
just necessary; and (2) there is no loss of information in the aggregation process.

A general sketch of the consensus process proposed is depicted in Figure 2. The model
has a set of multi-granular linguistic preferences as input, with a final output being a set of
recommendations to the group of experts to increase the level of agreement when this is below
a threshold value for the next consensus round. Specifically our proposed model includes the
following steps:

1. Computation of the consensus degree: (1.1) Similarity degrees; and (2.2) Consensus
matrix.

2. Consensus control.
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Figure 2: T1OWA based consensus model

3. Feedback Mechanism: (3.1) Computation of the collective linguistic preference rela-
tion; (3.2) Identification of the preference values to change; and (3.3) Generation of
advice.

These steps will be presented in more detail in following subsections. A step-by-step exam-
ple to illustrate the computation processes involved in each step is also provided. This example
is taken from [8] where a unification methodology to consensus was applied to.

Example 1. An investment company wants to invest a sum of money in the best industrial sec-
tor among four possible alternatives: car industry (x1), food company (x2), computer factory
(x3) and arms industry (x4). Before making a decision a minimum level of agreement among
four experts, {e1, . . . ,e4}, is required. These experts belong to different departments within the
company (risk analysis, growth analysis, social-political analysis and environmental impact
analysis department) and they use linguistic term sets with different granularity and semantics.
Two key parameters in any consensus reaching process are the consensus threshold, i.e. the
minimum level of agreement that experts want to achieve, and the maximum number of con-
sensus rounds that they are willing to carry out in order to achieve it. Both parameters have
to be fixed in advance and their values depend on the type of problem. In this example, these
parameters are set to be 0.75 and 10, respectively.

Experts provide preferences using one of the possible three linguistic label sets A, B, C
with elements modelled using triangular fuzzy numbers (TFNs) in the numeric domain [0,1],
as represented in Figure 3.
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Figure 3: Linguistic label sets A, B and C (from left to right)

A triangular fuzzy number (TFN) membership function µ : [0,1]→ [0,1] is:

µÃ(x) =


0, 0≤ x < a
x−a
b−a , a < x≤ b
c−x
c−b , b≤ x < c
0, c < x≤ 1

(8)

A TFN can shortly represented in its parametric form (a,b,c), with a and c known as the
lower and upper bounds, respectively, while b is known as its modal value. When the TFN is
symmetrical, i.e. when b = (a+c)/2, then b is also its centroid. The parametric representation
of the above three linguistic label sets A, B, C using TFNs is given in Table 1.

Label set A Label set B Label set C
a0 = (0,0,0.12) b0 = (0,0,0.16) c0 = (0,0,0.25)
a1 = (0,0.12,0.25) b1 = (0,0.16,0.33) c1 = (0,0.25,0.5)
a2 = (0.12,0.25,0.37) b2 = (0.16,0.33,0.5) c2 = (0.25,0.5,0.75)
a3 = (0.25,0.37,0.5) b3 = (0.33,0.5,0.66) c3 = (0.5,0.75,1)
a4 = (0.37,0.5,0.62) b4 = (0.5,0.66,0.83) c4 = (0.75,1,1)
a5 = (0.5,0.62,0.75) b5 = (0.66,0.83,1)
a6 = (0.62,0.75,0.87) b6 = (0.83,1,1)
a7 = (0.75,0.87,1)
a8 = (0.87,1,1)

Table 1: TFN parametric representation of linguistic label sets A, B and C

Example 2 (Example 1 continuation). Experts e1 and e2 provide linguistic assessment using
set C, while expert e3 uses set A and expert e4 set B. Their initial linguistic preference relations
being:

Pe1 =


− c0 c0 c2
c4 − c3 c4
c3 c0 − c1
c2 c1 c3 −

 Pe2 =


− c2 c0 c4
c1 − c1 c1
c3 c3 − c1
c0 c4 c3 −



Pe3 =


− a1 a4 a3
a5 − a8 a4
a4 a1 − a2
a5 a5 a7 −

 Pe4 =


− b0 b4 b5
b6 − b1 b6
b3 b4 − b2
b0 b1 b4 −


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4.1. Computing the consensus degree
It was mentioned before that consensus is a measure of agreement, and thus in the context

of GDM it will represent the level of agreement among the experts. Mathematically, consensus
can be defined using similarity functions measuring the concept of proximity of information
[21]. In the linguistic model, the computation of similarity degrees between experts relies on
the use of a distance function between the fuzzy sets representing their linguistic preferences.
This is elaborated in the following subsections.

4.1.1. Similarity degress
In the following, we provide the formal definition of distance and similarity functions as

given in [41]:

Definition 4 (Distance). Let A be a set. A function d : A×A −→ R is called a distance (or
disimilarity) on A if, for all x,y ∈ A, there holds

1. d(x,y)≥ 0 (non-negativity)

2. d(x,y) = d(y,x) (symmetry)

3. d(x,x) = 0 (reflexivity)

Definition 5 (Similarity). Let A be a set. A function s : A×A −→ R is called a similarity on
A if s is non-negative, symmetric, and if s(x,y) ≤ s(x,x) holds for all x,y ∈ A, with equality if
and only if x = y.

The main transforms between a distance d and a similarity s bounded by 1 are [41]:

d = 1− s; d =
1− s

s
; d =

√
1− s;d =

√
2 · (1− s2); d = arccoss; d =− lns

In this paper, we use the first transform to go from a distance function to a similarity function.
There are two main approaches to compare two fuzzy sets A1 and A2 using a metric,

d(A1,A2). The first approach, based on the application of the extension principle to a numeric
distance such as the Hamming or Euclidean distances [42–44], to extend their application to
the case of fuzzy sets. The output of such metric is a fuzzy set. However, it is well known
that the set of fuzzy sets (numbers) is not totally ordered [45], and therefore alternative ap-
proaches might be needed if this type of ordering is required. A widely used approach in this
case is to convert the fuzzy sets into a representative crisp value, and perform the comparison
on these representative values [46, 47]. This is the approach implemented in this consensus
model, with the centroid being the representative element of the corresponding linguistic label
used to compute similarity degrees.

Definition 6. The centroid of a type-1 fuzzy set A in a continuous domain X is calculated as,

cvA =

∫
x
x ·µA(x)dx∫

x
µA(xi)

. (9)

The centroid of linguistic preference plk
i provided by expert ei when comparing the ordered

pair of alternatives (xl,xk) will be denoted by cvelk
i . Thus the first step to compute similarity

degrees between experts is to derive their corresponding matrix of centroids.
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Example 3 (Example 1 end). We only show here the matrix of centroids of expert e1:

CVe1 =


− 0.0833 0.0833 0.5

0.9167 − 0.75 0.9167
0.75 0.0833 − 0.25
0.5 0.25 0.75 −


Note 1. Unlike previous models [8, 31], the elements of the matrix of centroids are now more
meaningful and understandable. For example, the linguistic preference value p14

1 = c2 given by
e1 represents a central assessment of indifference within the linguistic set C, and therefore its
associated representative value should be the equivalent in the numeric preference domain, i.e.
0.5, as it is the case with its centroid value, cve14

1 = 0.5.

Definition 7 (Similarity degree between fuzzy sets). Given two fuzzy sets, A1 and A2, their
similarity s(A1,A2) is:

s(A1,A2) = 1−d(cvA1,cvA2) (10)

In the particular case of TFNs A1 =(a1,b1,c1) and A2 =(a2,b2,c2) we have cvA1 =(a1 +b1 + c1)/3
and cvA2 = (a2 +b2 + c2)/3. Using the Hamming distance

s(A1,A2) = 1−
∣∣∣(a1−a2)+(b1−b2)+(c1− c2)

3

∣∣∣. (11)

An alternative expression for the distance between TFNs is [48]:

d′(A1,A2) =
|a1−a2|+ |b1−b2|+ |c1− c2|

3
.

Expression (11) will be used in this paper.
For each pair of experts ei, e j (i < j), a similarity matrix, SMi j = (smlk

i j), is obtained

smlk
i j = s(plk

i , plk
j ) (12)

where smlk
i j represent the similarity degree between the preferences of the experts ei and e j on

the ordered pair of alternatives (xl,xk). The closer smlk
i j to 1 the more similar plk

i and plk
j are

considered, while the closer smlk
i j to 0 the more distant plk

i and plk
j are considered.

Note 2. By definition, we have smlk
i j = smlk

ji and therefore we can impose the constraint i < j
when computing similarity matrices.

4.1.2. Consensus matrix
As it was mentioned before, consensus within a group of experts will measure the level of

agreement of all the experts in the group on the question to solve. This definition implicitly
implies that consensus can be mathematically modelled by fusing the similarity degrees previ-
ously defined. Thus, the aggregated value of all the similarity degrees on a particular ordered
pair of alternatives will represent the degree of consensus of the group of experts on that par-
ticular pair of alternatives. The matrix obtained in such a way will therefore be referred to as
the consensus matrix, CM = (cmlk), i.e.

∀ l,k = 1, . . . ,n : cmlk = φ(smlk
i j); i, j = 1, . . . ,m ∧ i < j. (13)
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The operator φ represents an appropriate aggregation operator that will change depending on
the problem to be solved or the constraints imposed to the problem. For example, if a solution
of consensus is to be achieved when ‘most of’ the expert agree on it the aggregation operator
could well be Yager’s OWA operator guided by the linguistic quantifier representing the concept
‘most of’. Because, one of our objectives in this papers is to compare the new consensus
methodology here presented with the unification based consensus model presented in [8], we
will be using the simple average as the aggregation operator φ .

Consensus can be measured at the three different levels of the relation: pair of alternatives,
alternatives and relation [49]:

Level 1. Consensus on pairs of alternatives to measure the degree of consensus of the group of
experts on the ordered pair of alternatives:

cplk = cmlk, ∀ l,k = 1, . . . ,n ∧ l 6= k. (14)

Level 2. Consensus on alternatives to measure the degree of consensus of the group of experts
on the alternatives:

cal =

n

∑
k=1, l 6=k

cplk

(n−1)
. (15)

Level 3. Consensus on the relation or global consensus of the group of experts

cr =

n

∑
l=1

cal

n
. (16)

Example 4 (Example 1 continuation). The degree of consensus at the three different levels
are:

Level 1. Consensus on pairs of alternatives: CM =


− 0.7706 0.6422 0.6717

0.6039 − 0.5183 0.5839
0.8333 0.5757 − 0.9600
0.6472 0.5600 0.8950 −

 .

Level 2. Consensus on alternatives: ca1 = 0.6948; ca2 = 0.5687; ca3 = 0.7900; ca4 = 0.7007.

Level 3. Global consensus: cr = 0.6886.

4.2. Consensus control
The global consensus degree cr obtained in the previous phase is compared against a con-

sensus threshold, λ , agreed by the set of expert previous to the application of the consensus
process. If cr is greater or equal than this consensus threshold then the consensus reaching pro-
cess is considered successful and hence it should end. Otherwise, the experts need to discuss
and attempt to bring their opinions closer for their consensus degree to increase and achieve
the threshold value set. In the following we present a feedback mechanism to generate ad-
vice rules to support the experts in achieving this goal. Note that the model uses a parameter,
Maxrounds, which represents the maximum number of rounds allowed before stopping the con-
sensus process. In this way the model guarantees the end of the process. Both parameters, λ

and Maxrounds, must be fixed in advance before starting the consensus process.
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4.3. Feedback mechanism
When cr < λ a feedback mechanism is activated to generate personalised advice to some

or all of the experts on a number of preference values that are identified as contribution low
to consensus, i.e. those preference values whose similarity to the corresponding collective
preference value are below the consensus threshold value. To do this, the following there steps
are carried out: Computation of the collective linguistic preference relation, Identification of
the preference values that should be changed and Generation of advice.

4.3.1. Computation of the collective linguistic preference relation
The collective linguistic preference relation,Pcol, is calculated by aggregating all experts’

preference relations {Pe1, . . . ,Pem} at the level of pairs of alternatives. This aggregation is
carried out using the T1OWA operator:

Pcol = Φ(Pe1, . . . ,Pem). (17)

In this way, the model can aggregate directly multi-granular linguistic labels represented by
fuzzy sets without loss of information, being this one of the key aspect of the model.

The similarity between the collective linguistic preference values and the corresponding
individual ones will be used to identify the the preferences values to be changed. Thus, the cor-
responding matrix of centroid, CVcol , associated to the collective linguistic preference relation
is also computed here.

Example 5 (Example 1 continuation). Figure 4 shows the individual linguistic preferences
provided by each one of the experts when comparing the ordered pair of alternatives (x1,x2)
(solid lines) and the aggregation result (dashed line) using the T1OWA implementation of the
average operator.

The collective matrix of centroids is:

CVcol =


− 0.1922 0.3341 0.6537

0.6813 − 0.5294 0.6488
0.6238 0.4061 − 0.2695
0.3175 0.4877 0.7588 −


Note 3. The visualisation of expert’s opinions with respect to the collective one as shown in
Figure 4 constitutes a powerful tool to support the experts in understanding their standing with
respect to, on the one hand, the group and, on the either hand, another expert within the group
he/she might be interested to follow or analyse. It can be easily deducted from Figure 4 that
expert e2 is the furthers of all with respect to the collective linguistic preference, while expert
e3 linguistic preference value is very similar to the collective one.

4.3.2. Identification of the preference values to change
In order to increase the global consensus degree, cr, the first step is to identify those al-

ternatives that contribute less to consensus, i.e. the alternatives (xl) with a consensus degree,
cal , lower than the global consensus degree. Next, for each identified alternative, the pairs of
alternatives with a consensus value, cplk, below the global consensus degree are proposed to
be changed because these are the values that contribute less to consensus. However, not all ex-
perts will require to modified the identified preference values but those with a proximity value
with respect to the collective preference at these pairs of alternatives lower than the average
proximity value for the whole group.

Therefore the steps to follow are:
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Figure 4: T1OWA aggregation: solid lines: individual linguistic preferences represented as TFNs ; dashed line:
collective linguistic aggregation result, also a TFN

Computing the proximity matrix Using the distance function (12), a proximity matrix is
computed for each expert, PMi = (pmlk

i ):

pplk
i = 1− | cvelk

i − cvlk
col | (18)

where pplk
i represents the proximity between the preference of expert ei and the collective

one on the pair of alternatives (xl,xk).

Identification of alternatives The set of alternatives with a consensus degree lower than the
threshold value is identified:

IA =
{

l ∈ {1, . . . ,n}
∣∣∣cal < cr

}
. (19)

Identification of preferences The set of preference values to consider for change in the next
consensus round is:

IP =
{
(l,k) ∈ {1, . . . ,n}2

∣∣∣l ∈ A∧ cplk < cr
}

(20)

Preference values to change The set of preference values to change and the experts that will
be requested to change them is:

PC =

{
(i, l,k) ∈ {1, . . . ,m}×{1, . . . ,n}2

∣∣∣max{cal,cplk}< cr∧ pplk
i <

∑
m
j=1 pplk

i

m

}
.

(21)
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Note 4. In (21), a general aggregation operator θ could be used to compute the average prox-
imity of the group at the level of pairs of alternatives, pplk = θ(pplk

1 , . . . , pplk
m). Thus, the

general definition of the set PC would be:

PC =
{
(i, l,k) ∈ {1, . . . ,m}×{1, . . . ,n}2

∣∣∣max{cal,cplk}< cr∧ pplk
i < pplk

}
. (22)

Example 6 (Example 1 continuation). Applying the rules given above we have:

IA = {2}.

IP = {(2,1),(2,3),(2,4)}.

PC = {(2,2,1),(2,2,4),(2,2,3),(4,2,1),(4,2,3),(4,2,4)}.

4.3.3. Generation of advice
The experts previously identify to change some of their preferences will receive person-

alised recommendations of the direction of the change expected to be done if consensus is to
be increased. For all (i, l,k) ∈ PC, the following two direction rules are proposed:

DR.1. If cvelk
i − cvlk

col < 0, then expert ei should increase the linguistic assessment associated
to the pair of alternatives (xl,xk).

DR.2. If cvelk
i − cvlk

col > 0, then expert ei should decrease the linguistic assessment associated
to the pair of alternatives (xl,xk).

Note 5. The case cvelk
i − cvlk

col = 0 is not possible to happen at this stage. Indeed, if we have
cvelk

i − cvlk
col = 0 then by (18) it would be pplk

i = 1, i.e. the proximity between the preference
value of expert ei and the collective preference value on the pair of alternatives (xl,xk) would
be maximum and, consequently, we would have that (i, l,k) /∈ PC.

Example 7 (Example 1 end). Assuming that the experts implement the recommended changes
by choosing as new linguistic preferences the linguistic label that is just before or the following
one in the ordinal scale defined by their meaning and/or the corresponding centroids of their
associated TFNs, we summarise the main parameters of whole consensus process in Table 2.

Round number Consensus degree Number of changes
First round 0.6885 7
Second round 0.7283 7
Third round 0.7648 End

Table 2: Consensus process results

5. Comparative study: T1OWA model vs. Unification model

The output of the transformation function, τSST , given in (1) when applied to linguistic
preference values, plk

i , (with TFNs as membership functions) is a fuzzy set on the BLTS, ST =
{l0, . . . , lg}, p̃lk

i = τSiST (plk
i ) = (α lk

i0 , . . . ,α
lk
ig ). Formally, this is a discrete type-2 fuzzy sets

[50, 51]. However, in [6] these type-2 fuzzy set were transformed into discrete type-1 fuzzy
sets by associating to each element (linguistic label), lh, of the BLTS set its subindex, h, in
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order to carry out the next step of the unification based consensus model, i.e. the computation
of the centroid of the unified linguistic preferences using the discrete version of the Equation
(9):

cvelk
i = cv(p̃lk

i ) =
∑

g
h=0 h ·α lk

ih

∑
g
h=0 α lk

ih
. (23)

The T1OWA based consensus process and the unification based consensus process were
applied to six randomly generated GDM problem with multi-granular linguistic information
for comparative purposes. The following constraints were imposed:

(i) Number of experts and alternatives were kept low as in Example 1.

(ii) The same three sets A, B and C of symmetric and balanced linguistic terms of Example 1
were used.

(iii) A consensus threshold γ = 0.75 and Max rounds = 10 were fixed in advance.

Both consensus models were implemented and executed with the mathematical software
MATLAB. The T1OWA operations were carried out using the R-software environment [52].
Figure 5 depicts the evolution of the global consensus degree for each model during the differ-
ent consensus rounds. The T1OWA based consensus model achieves a final global consensus
higher than the unification based model in four out of the six cases. Figure 6 summarises the
changes suggested and implemented in each consensus round as well as the aggregated number
of changes for both models. It can be seen that the unification based model achieves a higher
final consensus degree than the T1OWA based model when its aggregated number of changes
is higher, otherwise the T1OWA based model achieves a higher final degree of consensus.

The above comparison cannot be considered a rigorous technique because values that differ
might not be significantly different from a statistical point of view. Greater rigour can be
achieved through statistical testing. The Wilcoxon Signed Rank Test [53] was applied to the
final global consensus achieved to ascertain whether or not there was a significant difference
between both consensus model using the centroid values to define consensus and proximity
degrees. Thus, the hypothesis tested was:

H0 : The T1OWA based consensus model and the Unification based consensus model do not
produce significantly different global consensus degrees.

TEST SET T1-model U-model Differences Absolute Value Rank Signed Rank
Example 1 0.7784 0.7648 0.0136 0.0136 3 3
Example 2 0.7518 0.7501 0.0017 0.0017 2 2
Example 3 0.7813 0.7654 0.0159 0.0159 5 5
Example 4 0.8133 0.7758 0.0375 0.0375 6 6
Example 5 0.7931 0.8074 -0.0143 0.0143 4 -4
Example 6 0.7931 0.7944 -0.0013 0.0013 1 -1

Table 3: Wilcoxon Signed Rank Test data

Table 3 shows the computation necessary to apply the one-sided Wilcoxon Signed Rank
Test, i.e. the alternative hypothesis was:
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Figure 5: T1OWA model v Unification model: Comparison of the evolution of the consensus degree

H1 : The T1OWA based consensus model results in global consensus degrees significantly
higher than the Unification based consensus model.

From Table 3 we compute the statistic: T− = 5, i.e. the sum of absolute ranks assigned
to negative differences. We assume that a test p-value under the null hypothesis lower than
or equal to 0.05 (α) will be considered as significantly different; we refer to it as the test
being significant and therefore we conclude that the null hypothesis tested is to be rejected.
Otherwise, we will fail to reject the null hypothesis. In terms of the value T−, the null hypothesis
tested is to be rejected in favour of the alternative one when T− is lower than or equal to the
critical value. For a sample size of 6, the critical value is 2 and therefore we conclude that
we fail to reject the null hypothesis. We conclude that both consensus models do not produce
significantly different global consensus degrees.

6. Conclusion

In this paper, a new approach of a consensus reaching process based on the T1OWA operator
is proposed to deal with GDM problems in multi-granular linguistic contexts. Unlike previous
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Figure 6: Comparison of number of changes

consensus models that require balanced linguistic term sets, the new consensus reaching model
allows the direct processing of the membership functions of the fuzzy sets modelling the lin-
guistic information and therefore makes the unification process step currently used in previous
models unnecessary. Furthermore, because the membership functions are nor required to ful-
fil extra conditions regarding their balanced or unbalanced distribution within the underlying
domain of the variable used to measure preferences, nor they are required to be of the same
shape type, the proposed methodology offers a greater degree of flexibility or generality in its
application than existing models do.

A comparative study between the T1OWA based consensus model and the unification based
consensus model is included using six randomly generated GDM problems with balanced
multi-granular information. Under the same conditions of application, i.e. when the distance
between fuzzy sets in the T1OWA based approach is defined as the corresponding distance
between their centroids significant differences are found between both consensus approaches.
Arguably, the T1OWA methodology can be used with guarantee in consensus reaching multi-
granular linguistic decision making problems.
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