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Harnessing the Power of Machine Learning in Dementia
Informatics Research: Issues, Opportunities and Challenges
Gavin Tsang, Student Member, IEEE, Xianghua Xie∗, Senior Member, IEEE, and Shang-Ming Zhou∗, Member, IEEE

Abstract—Dementia is a chronic and degenerative condition affecting
millions globally. The care of patients with dementia presents an ever
continuing challenge to healthcare systems in the 21st century. Medical
and health sciences have generated unprecedented volumes of data related
to health and wellbeing for patients with dementia due to advances
in information technology, such as genetics, neuroimaging, cognitive
assessment, free texts, routine electronic health records etc. Making the
best use of these diverse and strategic resources will lead to high quality
care of patients with dementia. As such, machine learning becomes a
crucial factor in achieving this objective. The aim of this paper is to
provide a state-of-the-art review of machine learning methods applied
to health informatics for dementia care. We collate and review the
existing scientific methodologies and identify the relevant issues and
challenges when faced with big health data. Machine learning has
demonstrated promising applications to neuroimaging data analysis for
dementia care, while relatively less efforts have been made to make
use of integrated heterogeneous data via advanced machine learning
approaches. We further indicate the future potentials and research
directions of applying advanced machine learning, such as deep learning,
to dementia informatics.

Index Terms—Alzheimer, Cognitive Assessment, Deep Learning, De-
mentia, Electronic Medical Records, Health Informatics, Machine Learn-
ing, NeuroImaging, NLP.

I. INTRODUCTION

BEING a chronic and degenerative condition, dementia has a
high prevalence within the elderly affecting 47.5 million people

globally [1]. The most common cause of dementia being Alzheimer’s
Disease (AD) making up 60-80% of cases [2]. Within the UK,
dementia affects 850,000 people with a forecast rate of prevalence of
1 million by 2025 and 2 million by 2051 [3]. The resulting cost of
dementia in the UK totals £26.3 billion with two thirds being paid
for by dementia patients and families in private social care as of 2018
[3].

The diagnosis and prognosis of dementia can be challenging.
Dementia diagnosis generally requires a battery of clinical tests,
such as cognitive assessments, patient histories and neuroimaging;
whilst other potential causes must be ruled out for a more conclusive
diagnosis [4]. A truly definitive diagnosis is only possible through a
post-mortem autopsy [5]. This diagnostic procedure is very time-
consuming and costly. On other other hand, due to advances in
information technology, medical and health sciences have gener-
ated huge amounts of data related to dementia, such as genetics,
neuroimaging, cognitive assessment, electronic health records etc.
Data-driven techniques continually become increasingly important in
making best use of these data resources. The complex interactions
between patient physiology and clinical events, coupled with con-
tinually degenerative symptoms, lead up to diagnosis of dementia a

Submitted for review: 30-Jul-2018, accepted: 22-Feb-2019.
∗Corresponding authors: X.Xie@swansea.ac.uk; S.Zhou@swansea.ac.uk
This study was undertaken with the support of the Health Data Research UK

(NIWA1), the Farr Institute of Health Informatics Research (MR/K006525/1).
This work was also supported by The Engineering and Physical Sciences
Research Council (EP/N028139/1).

G. Tsang & X. Xie was with the Dept. of Computer Science, Swansea
University, UK. Email: (see http://csvision.swan.ac.uk/)

S. Zhou was with the Inst. of Life Science, Swansea University, UK. Email:
S.Zhou@swansea.ac.uk

difficult task via traditional statistical means. Data driven Machine
Learning (ML) techniques have the capabilities of modelling such
complex associations, as proven within other fields such as object
recognition [6], natural language processing exampled by ubiquitous
voice assistant applications: Apple Siri, Amazon Alexa and Microsoft
Cortana [7]. Making the best use of these big health related data,
ML techniques provide a way of delivering high quality personalised
healthcare services in real time.

As a matter of fact, in medical informatics, ML has demonstrated
promising applications to neuroimaging analysis. Orru et al. [8] sur-
veyed the application of Support Vector Machines (SVMs), preceding
2011, in identifying imaging biomarkers of neurological and psy-
chiatric diseases. Mosconi et al. [9] reviewed the existing scientific
literatures involving the early detection of AD using neuroimaging.
Mosconi et al. focused on the effectiveness of neuroimaging detec-
tion, possible risk factors and the progression from healthy to general
cognitive impairment. Recent major reviews, such as by Ching et al.
[10] provides overviews of ML within biology and medicine. These
existing efforts of literature reviews are different from ours in this
paper where we focus on ML applied to dementia diagnosis. We
aim to evaluate the various ML approaches available to dementia
diagnosis in addition to highlighting the ML models commonly used
for differing types of data.

In what follows, a brief overview of the unique combination of
challenges within dementia care is presented, followed by an in
depth explanation and evaluation of common ML methodologies used
within dementia informatics. We then summarise relevant literature
and bring forward potential unexplored avenues of research.

II. REVIEW METHODOLOGY

An electronic search was conducted for relevant academic papers
using literature archives: PubMed and MEDLINE. The screening
criteria used for our survey included any accessible academic paper
from a 10 year period of 2008 to 2018 inclusive whose methodology
involved the use of any ML applications in the screening, diagnosis
or prognosis of dementia symptoms.

Preliminary research involved an online search of various com-
binations of the following keywords: “dementia, diagnosis, screen-
ing, machine learning, prediction, classification, detection, prognosis,
deep learning”.

Additional literature was gained through citations provided by
papers found during preliminary research. On further analysis of
preliminary papers, further keywords were compiled based upon
the specific dementia sub-categories emphasised for diagnosis for
each data-driven application category. For instance, great focus is
placed upon AD diagnosis within neuroimaging whilst semantic
dementia remains the sole focus of speech analysis applications. A
full diagram of review steps taken is shown in Fig. 1.. The resulting,
additional keywords compiled from said literature were included
into our search criteria as follows: “Alzheimers, semantic dementia,
patient records, patient history, electronic health records, cognitive
impairment, clinical decision support system”. The resulting literature
search uncovered 923 publications fitting the aforementioned search
criteria. The title, abstract and authors from the resulting literature
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Fig. 1. Process diagram of steps taken during literature survey stage. After an initial preliminary survey, the review literature was categorized into three data
centric categories. Each category was further surveyed in detail with additional keywords used before final screening, evaluation and review.

were then reviewed for duplicates and relevance to the topic at hand.
Literature surveys were set aside as additional literature sources but
not included as relevant literature. This resulted in a final selection
of 35 articles which will be discussed further.

III. DEMENTIA CARE - CHALLENGES

Dementia presents a unique assortment of varying challenges in
regards to diagnosis originating from dementia being a chronic and
degenerative set of conditions. The detection and diagnosis of the
initial stages of dementia or Mild Cognitive Impairment (MCI)
continues to be problematic [11] with a reliance on self reporting
or reports by relatives. Compounded with symptoms being obscured
by the regular effects of natural ageing, potential cases of dementia
are generally reported 2 to 3 years after onset [4]. The delayed
diagnosis results in continued unchecked decline which reduces
the effectiveness of any care given upon discovery and diagnosis
[12]–[14]. Such obscure symptoms also brings about the issue of
physicians being unable to give a definitive diagnosis of dementia and
as such apply for a full battery of cognitive assessments, expensive
neuroimaging or invasive tests such as lumbar puncture [4].

The current diagnostic model begins with several screening pro-
cedures used to identify potential dementia patients for further
evaluation leading to a definitive diagnosis, the most common being
the Mini-Mental State Examination (MMSE) and the Consortium
to Establish a Registry for Alzheimers Disease (CERAD) cognitive
assessments [15]. However, current cognitive assessments remain
problematic with the MMSE being called into question as an effective
screening measure, Tombaugh et al. [16] provides a thorough review
of literature evaluating screening effectiveness with a sensitivity
varying from 21-100% and specificity of 46-100%.

Such a combination of factors results in a slow and ineffective
system of diagnosis with an estimated two thirds of dementia cases
remaining undetected [17], [18].

As mentioned previously, diagnosis generally involves the use
of neuroimaging after screening to further assess the potential for
dementia. The most common method being Magnetic Resonance
Imaging (MRI) and Positron-emission Tomography (PET). Current
evaluation of scan results requires the use of an expert radiologist or
anatomist in order to correctly identify and perform manual measure-
ments. Such manual tasks often result in excessive time consumption,
variability between different medical professionals and are limited to
only certain brain regions [19]. With current manual MRI evaluation
[20] the resulting separation between normal elderly and probable
dementia achieves accuracies ranging from 58-100%. Kloppel et al.
indicates a significant difference in diagnostic ability between general
radiologists and neuroradiologists in evaluation of clinical trial [21]
which may clarify the apparent variation in accuracy. Kloppel also
uses the results as an indication of the need for specialisation. All
of which, speaks for the need of more straightforward and effective
utilization of neuroimaging data.

Several shortcomings exist with the use of neuroimaging appli-
cations. The foremost challenge being cost at £169 and £844 per
patient within the UK for MRI and PET scans respectively [5], [22].
Cheaper and more readily available alternative diagnostic procedures
for dementia may serve to address the problematic issue of scarcity
and cost of specialist neuroimaging services.

Interestingly, social stigma also factors into the challenge of
needing a supplementary diagnostic procedure for diagnosis. Boustani
et al. [2], [23] reports high refusal rates of 51% of potential Dementia
screen patients for further diagnostic assessment after a positive
screening result. Boustani’s findings also suggested that patients
believed dementia to be a devastating condition with no available
treatment and would lead to issues such as depression, anxiety, social
stigma, insurance coverage and loss of independence. Changes to
diagnostic procedure which allows for immediate effective diagnosis
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may alleviate the issues of patient refusal.
The prognosis of dementia is signified with continued degradation

of mental ability, increased risk of co-morbidity [24] and increased
risk of institutionalisation resulting in a significantly higher risk
of death than non-demented patients [25]. The reduced health of
dementia patients also produces a corresponding significant increase
in healthcare costs [24]. The risks of acute conditions and events
resulting in hospitalisation are also affected with an onset of Diag-
nosis. The fall rate of nursing home residents with dementia nearly
doubles compared to residents without in a study by Van Doorn et
al. [26]. Further research is required in effective prognosis and care
post-diagnosis to alleviate the significant increase in co-morbidity risk
posed by dementia.

IV. OVERVIEW OF COMMONLY USED MACHINE LEARNING

TECHNOLOGIES

Within the reviewed literature, a consistent set of ML technologies
is applied within the diverse fields of dementia diagnosis. As shown
in Table I, the distribution of underlying ML methodologies used
indicates SVM as the popular methodology in use overall. Within
the majority of common methodologies being applied to the the
diverse data categories of neuroimaging, cognitive assessment data
and speech analysis, this highlights the adaptability of such methods
in dementia analysis in regards to data used.

Following on is an overview of some of the root ML technologies
in use by reviewed literature in addition to state-of-the-art ML
technologies with potential applications in dementia informatics.

A. Support Vector Machine

SVM is a supervised learning model which attempts to generate
separating hyperplanes across groups of observations in accordance
with class labels. Unlike Linear Discriminant Analysis (LDA), SVM
makes no assumptions on data distribution, allowing for great flexi-
bility in model generation.

By mapping observations from original feature space into a higher
dimensional space through the use of linear or non-linear kernel
functions, observations which were once non-linearly separable in
feature space may be mapped into a higher dimensional space which
supports separation by linear hyperplanes.

The separating hyperplanes within higher dimensional space are
defined by

wTφ(x) + b = 0 (1)

where w is the normalised normal vector to the hyperplane, b the
normalised perpendicular distance of the hyperplane to the origin and
φ(x) the linear or non-linear mapping function. The resulting classi-
fication function for any new observations is simply comparing the
observation position in relation to constructed hyperplane (1). Since
there exists an infinite set of hyperplanes which could potentially
separate class boundaries, an optimal separating hyperplane must be
generated based upon the structural risk minimisation principle. As
such, the optimal separating hyperplane is arranged so that there is
the greatest separating distance, or margin, between the borders of
class distributions defined as parallel hyperplanes. The superficial
observations which lie on the aforementioned parallel hyperplanes
are called support vectors.

The optimal separating hyperplane can be found by maximising
said margin distance using the Lagrangian dual of the optimisation
function

arga minLp(a) =

l∑
i=1

l∑
j=1

aiajyiyjK(xi, xj) (2)

TABLE I
TABLE OF UNDERLYING ML METHODOLOGIES USED WITHIN THE

REVIEWED LITERATURE.

ML model Total Count Literature

Cognitive Assessment

SVM 3 [15], [27], [28]
NB 3 [15], [28], [29]
LR 3 [29], [30]
DT 2 [28], [29]
NN 2 [15], [28]

LDA 1 [30]
RF 1 [15]

Neuroimaging

SVM 14 [8], [21], [31]–[42]
LR 5 [19], [31], [34], [43], [44]

LDA 4 [19], [34], [41], [45]
PCA 2 [39], [43]
NB 1 [34]
DT 1 [34]
NN 1 [34]
RF 1 [31]

CNN 1 [46]
DNN 1 [47]

Speech Assessment

NN 2 [4], [48]
LR 1 [48]
DT 1 [48]
NB 1 [49]

PCA 1 [50]

CNN: Convolutional Neural Network, DNN: Deep Neural Network, DT:
Decision Tree, LDA: Linear Discriminant Analysis, LR: Logistic Regression,
NB: Naive Bayes, NN: Neural Network, PCA: Principal Component Analysis,
RF: Random Forest, SVM: Support Vector Machine

subject to constraints:

l∑
i=1

aiyi = 0 (3)

ai ≥ 0 for i = 1, . . . , l (4)

where a are optimal Lagrange multipliers found through quadratic
optimisation and K(xi, xj) is the kernel mapping matrix.

B. Random Forest

Random Forests (RFs) are an ensemble learning method involving
the generation of multiple decision trees whose input dataset are
a random sample of features with replacement (feature bagging)
and also a random sample of observations with replacement (tree
bagging). Typically in a classification problem of p features, a subset
of b√pc features are selected [51] for each tree. Final classification
involves the aggregation, generally vote count, of prediction result
from every tree.

The use of ensemble classification in RF reduces overfitting whilst
also allowing for the evaluation of feature importance after training
using the out-of-bag (OOB) error [51]. By permuting individual
features across a dataset passed into a trained RF for evaluation, the
resulting OOB error can be compared against the original training
OOB error to determine feature importance with a greater difference
indicating a greater importance for said feature and vice versa. The
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Fig. 2. Diagram of SVM separating hyperplane across observations of a
binary class {−1,+1}. The optimal separating hyperplane produces the
maximum margin distance between class boundaries defined as parallel
hyperplanes which lie on superficially located observations called support
vectors.

OOB error serves as a validation metric without the need for a
entirely separate validation dataset by evaluating prediction accuracy
of observations on decision trees who’s training subset did not contain
said observations.

Decision trees involve the generation of a directed acyclic graph
in a tree like structure containing interior nodes corresponding to
individual features containing edges whose conditional response is
based on the set of possible values. Leaf nodes would correspond
to the final classification or regression result. Feature selection of
interior nodes is evaluated based on various possible metrics such as
the Gini impurity.

C. Principal Component Analysis

Principal Component Analysis (PCA) is a methodology used to
orthogonally transform a set of observations containing potentially
correlated features into a set of linearly uncorrelated features called
principal components. Principal components indicate the vector dic-
tating the direction of greatest variance in a normally distributed
dataset, eigenvector, whilst the eigenvalue corresponds to the variance
along said vector. Subsequent principal components provide the
next greatest variance along the orthogonal vector of all preceding
eigenvectors.

Through the eigendecomposition of the covariance matrix, A, of a
dataset x, given by A = xTx, A can be decomposed into the matrix
of eigenvectors V where Vi,: = (v1, . . . , vk) and eigenvalues Λ

A = V ΛV T (5)

where Λ = diag(λ1, . . . , λk). For each eigenvalue λi, a specific
eigenvalue equation exists which can be solved for to determine
the set of eigenvectors associated to each eigenvalue. Whilst solving
for such equations are trivial on small datasets, large feature and
observation datasets are solved through the use of various iterative
algorithms.

A common use of PCA involves its use as a precursor to di-
mensionality reduction. Lower order principal components of low
variance or eigenvalue can be removed while higher order principal
components are kept, reducing dimensionality whilst retaining as
much variance in the dataset as possible. Subsequent observations
can thus be transformed into eigenspace using the eigenvector matrix
,W , with lower order eigenvectors removed.

Fig. 3. PCA of a gaussian distribution showing the orthogonal eigenvectors.
The arrow vectors shown indicate the first and second principal component
eigenvectors. The first eigenvector pointing top-right lies on the direction of
greatest variance as seen within the distribution whilst the second eigenvector
lies orthogonal to the first indicating the direction of second greatest variance.

D. Linear Discriminant Analysis

LDA, one of the oldest classifiers still in use, is a supervised dimen-
sionality reduction technique. Similar to PCA, LDA produces prin-
cipal components or linear discriminants representing transformed
axis vectors. However, whilst PCA, a non-supervised methodology,
attempts to find eigenvectors which seek to maximise the variance
within a distribution, the supervised LDA seeks to find linear dis-
criminants which maximise the ratio of between-class distance Σ̃B

to within-class class variance Σ̃W

argV max J(V ) =
|Σ̃B |
|Σ̃W |

=
|V T ΣBV |
|V T ΣWV | (6)

where V is the matrix of eigenvectors. As such, (6) can be rearranged
into a classic eigenvalue problem using

S−1
W SBV = λV (7)

where V is the matrix of eigenvectors and λ the diagonal matrix of
eigenvalues which can thus be solved through eigendecomposition to
arrive at the linear discriminants.

Similar to PCA, dimensionality reduction can be performed by
thresholding out the lowest ranked linear discriminants. Classification
is also possible through a technique similar to Naive Bayes Gaussian
where class probabilities along linear discriminants are calculated
with new observations being classified based on the maximum a
posteriori decision rule where the highest probability class is used as
final classification decision.

E. Naive Bayes

Naive Bayes (NB) is a family of probabilistic classifiers based
on Bayes’ theorem. Unlike other machine learning methods, NB
requires no iterative parameter estimation, minimising computational
complexity; whilst also having a linear scaling in parameter count
versus feature count, minimising model complexity. The simplicity
of such a model is however reliant on the assumption of strong
independence between all features, a rare occurrence.

Let xi be a feature where xi ∈ x = (x1, . . . , xn). The naive
Bayes’ probability model is formulated as

p(Ck|x) =
p(Ck)

∏n
i=1 p(xi|Ck)∑

k p(Ck)p(x|Ck)
(8)

where the prior probability of class Ck is p(Ck), while p(x|Ck) is the
probability of feature vector x given class ck. The denominator, p(x)
is subsequently a scaling factor indicating the probability of feature
vector x across all classes. The Naive Bayes Gaussian method of
calculation is used on continuous valued features with the assumption
of a normal distribution. Whereas binary feature data can be measured
using the Bernoulli naive Bayes model.
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F. Neural Network

Neural Networks (NNs) are a diverse and robust ML application
able to model a variety of input-output mappings through the use of
various network architectures. NNs have been argued to be able to
equate to any optimal statistical classifier [15]. As such, NNs have
shown great promise and continued use in various disciplines and
domains [52]–[57].

Nevertheless the capabilities of NNs come with the price of
model complexity, with model parameters exponentially increasing
with feature count and capacity. As a result, overly complex NNs
suffer from long training times and issues with overfitting without
a large enough dataset to match network capacity or the adoption
of regularisation techniques [58]. Such high model complexity also
suffers from the inability to validate trained models past that of
empirical evidence from testing as opposed to theoretical validation.
The black box nature of NNs limits the capability of understanding
how a set of features and parameters are able to model a complex
problem, only that it is able to.

NNs consist of sets of interconnected nodes arranged in layers
called Multilayer Perceptrons (MLP). Each MLP maps multiple input
signals al−1

j through an activation function

alk = σ(wl
jka

l−1
j + blk) (9)

to form a singular output alk. Each input signal is modulated through a
weighting wl

jk and bias blk before being aggregated into an activation
function σ. Various σ functions exist with various properties and uses,
the most popular of which being the logistic sigmoid function.

Learning within a NN is based off the adjustment of weight and
bias parameters in a feed-forward and back-propagation process. The
forward pass consists of passing observations through a network
consisting of a randomly initialised set of weights to generate an
initial prediction. Through the use of a cost function, such as the
mean squared error

C =
1

2n

n∑
i

(yi − ŷi)2 (10)

where n is the number of training observations, y the ground truth
and ŷ the model output, a loss can be formed on the distance
error of prediction from ground truth. By minimising the cost and
subsequent model parameters, a NN can be pushed towards modelling
the problem space and subsequent classification. Many algorithms
exist which enable cost minimisation. An example of one being the
stochastic gradient descent algorithm providing the capability to back-
propagate changes in cost back through the NN updating weights and
bias.

Stochastic gradient descent involves iteratively stepping down
a hyperplane formed by the cost function and model parameters
towards zero error or, more generally, a local minima which closely
approximates the correct output. By determining the direction of
descent through the pre-defined partial derivatives of the cost func-
tion. The model error (11) and subsequent layer errors (12) can be
determined

δL =
∂C

∂ŷ
� ŷ (11)

δl = (W l+1)T δl+1 � ~al (12)

where ∂C
∂ŷ

is the cost function partial derivative, ~al is the activation
vector of layer l and W l+1 is the weight matrix of layer l. The

direction of travel for layer parameters weight and bias can thus be
calculated by

∂C

∂blk
= δlk (13)

∂C

∂wl
jk

= al−1
k δlj (14)

where blk is the bias parameter for MLP k in layer l, al−1
k is the

activation signal for MLP k in layer l and wl
jk the weight parameter

for MLP k in layer l to MLP j in layer l − 1.
Finally parameters are updated by iteratively stepping towards a

minima based on (11) & (12) through the following equations

wl
jk → w′ljk = wl

jk −
η

n

n∑
i

∂Ci

∂wl
jk

(15)

blk → b′lk = blk −
η

n

n∑
i

∂Ci

∂blk
(16)

where η is the learning rate indicating the length of stride for each
iteration, n the number of observations, blk the bias parameter for
MLP k in layer l, wl

jk the weight parameter for MLP k in layer l
to MLP j in layer l − 1 and b′ and w′ the future bias and weight
parameter.

Fig. 4. Diagram of a NN and multilayer perceptron with input, hidden
and output layer. Input is passed through the network as a forward pass for
error calculation before being backpropagated through the network to update
weights and bias.

G. Deep Learning

Whilst no strictly accepted definition of Deep Learning (DL) exists,
it is generally accepted as a broad family of ML models based
upon the use of large parameter spaces which attempt to learn
latent representations of data and thus be used for or in support
of training a more task orientated model. As a result, common
representations of DL involve the use of multi-layer NNs. Such
inclusion of multiple hidden layers allow for the construction of
continually deeper feature representations on a layer by layer basis
thus automatically engineering features suitable for complex tasks.

With the introduction of various advancements in optimisation
algorithms [59], loss functions [60], training strategies [61] and
regularisation techniques [62] in addition to powerful dedicated
hardware and large datasets, DL has quickly found it’s way to the
top of many areas of research [6], [63]–[65]. Common examples of
DL methods include deep NNs, autoencoders, Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs). Adoption
of DL methods, however, have been slow within health informatics
due to issues of model transparency, model validation and data
availability. (See section VI-D for a more detailed evaluation of DL
methods.)

In what follows will be a brief explanation of various DL models,
namely: autoencoders, CNNs and RNNs as shown in Fig. 5..
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1) Autoencoders: Autoencoders are a form of deep NN with
a distinctive architecture. Specifically, autoencoders have a strictly
mirrored architecture with input and corresponding hidden layers
(called the encoding layers), reflecting output and corresponding
hidden layers (called the decoding layers). Training objective is thus
to output observations as close to what was input into the model.
In order to stop encoding and decoding layers being trained into an
identity mapping, layer capacity can be reduced to less than that
of the input layer or through the use of regularisation techniques.
Consequently, models are forced into learning a smaller and deeper
representation of the data contained within the encoding layers. The
encoding layers can thus be used as a feature encoder within a larger
ML application much like PCA or LDA feature encoding.

2) Convolutional Neural Networks: CNNs are able to perceive
spatial relationships between neighbouring features, such as images,
unlike regular ML models in which flattened spatial data features
lose all association with neighbouring features [6]. CNNs include
the addition of convolution layers and pooling layers.

Convolution layers consist of convolutional filters which sweep
through an input, applying a convolution operation to generate a
feature vector. These convolution filters support update through
back-propagation allowing for a number of features to be jointly
represented by a small set of parameters reducing the size of, what
would be, a large number of parameters in a regular NN. Said
filters also represent neighbouring relationships by only convolving
features within its receptive field. Due to sweeping convolutional
filters generating potentially large feature vectors, pooling layers
combine outputs of multiple clusters into a single output through
various strategies. Some of which include max pooling or mean
pooling, outputing the max or mean value of all inputs respectively.

Combinations of convolution and pooling layers can be stacked
to generate a deep structure. A regular fully connected MLP NN is
attached to perform final prediction based upon the learned encoded
features of the above convolution and pooling layers.

3) Recurrent Neural Networks: RNNs are an adaptation of the
MLP allowing for an internal memory state to be retained between
observations [66], [67]. Consequently, RNNs are applicable to tasks
involving time-series based data by “memorising” states from a
previous time-step for use in a future prediction. RNNs include
the addition of a weighted time-delayed recurrent connection which
feeds a MLP output back into the MLP as an additional input. Said
time-delayed recurrent connection enables a weighted output state to
be stored and later included as a feature in future time-steps. Due
to issues of vanishing and exploding gradients within the original
implementation of RNNs limiting the availability of long term state
memory, the Long Short-Term Memory (LSTM) unit was proposed
using separate input,forget, update and output gates to form a single
node.

Fig. 5. Examples of DL architectures. Circles are MLP nodes, squares are
convolutional filters and diamonds are pooling layers. Note how RNNs have
a recurrent connection within the hidden layers.

V. MACHINE LEARNING METHODOLOGIES IN DEMENTIA

DIAGNOSIS

The field of ML in dementia diagnosis has been very active over
recent years with applications making use of a variety of patient data
and methodologies for diagnosis with the overall goal of discovering
novel biomarkers for diagnosis or to improve upon diagnostic ability.
Various papers have proposed the use of more novel patient data
such as interview transcripts or Electronic Health Records (EHR) in
an attempt to move away from the expensive use of neuroimaging [5],
[22]. In regards to methodology, SVMs were the most popular ML
model used within reviewed literature. Various other methodologies
such as RF, LDA, Bayesian Network (BN), PCA and occasionally
NN are used in support of or as diagnostic methodologies.

Following on will be a review on the applications proposed by
various literature organised into categories of data used. As such, the
various data categories can be evaluated for potential advantages and
shortcomings in an informatics and clinical sense.

A. Cognitive Assessments

Initial screening of dementia patients is generally performed
through the use of various neuropsychological assessments. Used
to determine competency in various neurological abilities such as
orientation, attention, recall and language; such assessments serve as
a precursor to a more definitive and standardised diagnosis via MRI.
With multiple assessment criteria available, definitions of categories
of dementia vary amongst said assessments. While there is no official
standardisation of assessments; the MMSE (Table II) and CERAD
battery (Table III) are the common go to assessments [15]. However,
modern evaluation on the screening performance of such assessments
have shown highly varied results. A review of clinical trials evaluating
the MMSE by Tombaugh et al. [16] produces results ranging from
21-100% in sensitivity and 46-100% in specificity. Consequently the
need for improved, robust screening procedures remains an open area
of research. The use of current screening procedures in conjunction
with ML applications in improving diagnostic performance remains
an active area.

In addition to the development of the assessment battery by
CERAD, a central database of battery results along with demographic
information was also introduced [68]. Containing both AD and
corresponding control subjects with no confounding comorbidities,
the dataset represents a “clean” group of AD subjects. Overall the
dataset contains 1094 AD patients and 463 control subjects with the
majority including follow up assessments annually for greater than 3
years.

Literature involving the use of neuropsychological assessments
generally fall under categories of evaluation of ML model per-
formance, neuropsychological assessment category selection or a
combination of both. Literature considering diagnostic performance
of ML methods only consist of So et.al [15] and Maroco et al. [30],
both of which evaluate similar methodologies such as SVM, NN, RF
and Logistic Regression (LR).

The dataset used by Maroco is based on a hand picked selection
of 10 neuropsychological assessment categories spanning various
cognitive attributes. Evaluation was based on classification between
MCI and full dementia subjects with a 275 to 125 patient split
respectively. Statistical evaluation of validation results by Maroco
indates overall classification accuracy amongst all methods provide
similar performance with median accuracies ranging from 63% to
76% with SVM providing statistically significant improvements in
accuracy. Sensitivity and specificity, however, indicate a different pic-
ture. Methods such as SVM and NN show high sensitivities nearing
100% but fall short in sensitivity dropping below the baseline random
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TABLE II
MMSE ASSESSMENT CRITERIA

Category Description

Orientation to time Indication of current date and time
Orientation to Location Indication of location narrowing from

country to hospital ward
Registration Repeating name prompts

Attention and Calculation Basic arithmetic
Recall Recall names from Registration cate-

gory
Language 1 Name 2 objects
Language 2 Repeat a verbal statement
Language 3 Obey a 3 stage verbal command
Language 4 Read and obey a written command
Language 5 Write a sentence

Copying Copy an image of a pair of intersecting
pentagons

TABLE III
CERAD BATTERY ASSESSMENT CRITERIA

Category Description

Word fluency Enumerate as many instances of animal as
possible in 1 minute

Boston naming Respond to the name of the picture shown
MMSE See Table II

Memory function 1 Recall after knowing 10 noun words
Memory function 2 Recall previous 10 noun word list
Memory function 3 Repeat memory function category 1&2 on

new noun word list
Visuospatial function 1 Transcribe four line drawings of increasing

difficulty
Visuospatial function 2 Repeat previous category again

Mental flexibility 1 Draw a line linking sequential numbers
Mental flexibility 2 Link numbers and letters in an alternating

sequence

selection of 50%. Such results stem from unbalanced datasets and
an emphasis on predictions of the larger proportion class resulting in
high specificity and low sensitivity. Such validation results emphasise
the danger of evaluation based purely off of total accuracy and
the need for further evaluation through metrics such as sensitivity,
specificity and accuracy amongst others. Overall, RF and LDA were
evaluated to have statistically significantly higher sensitivity and
accuracy in relation to remaining methods.

So’s approach to evaluation was a two stage evaluation process
classifying control and MCI subjects using MMSE categorical scores,
and classifying MCI and dementia subjects using CERAD battery
categorical scores. Stage 1 consisted of 9799 control subjects and
4201 MCI patients representing the largest dataset used by sev-
eral orders of magnitude in comparison to other studies within
the same field. As such, results favour NNs with an accuracy
of 97.2% (Sensitivity (Sens.): 97% Specificity (Spec.): 96%) The
overall average accuracy across 7 classification models was 90.9%,
considerably higher than any comparable methodology proposed by
others, the use of significantly larger datasets is perhaps indicative
to improved performance. However with confounding factors such as
varied methodology and datasets in use, such a conclusion remains
speculative. Stage 2 consists of a significantly smaller dataset of 663
MCI and 573 Demented subjects containing categorical scores from
the CERAD battery. Highest performing model was evaluated as

SVM with an accuracy of 74.03% (Sens.: 73.8% Spec.: 73.8%) whilst
NN was worst performing. Results across all models were greatly
reduced however, such difficulty in classifying MCI and dementia is
apparent across all relevant studies which explore this classification
task.

Although such approaches have shown great promise in diagnostic
performance, within a clinical setting, the need to assess a patient for
a potentially large amount of assessment categories for accurate diag-
nosis is infeasible. The proceeding literature attempts to demonstrate
accurate diagnosis using a limited selection of assessment criteria
across multiple assessments based on feature selection algorithms.

Williams et al. [28] uses a wrapper feature selection method [69]
in which features are individually evaluated on predictive accuracy
and greedily selected based on current highest performing feature.
Subsequent iterations temporarily append features to be evaluated
onto the set of previously selected features and evaluated based on
accuracy. Greedy selection of best feature is permanently included
into the new dataset until a set number of features are chosen,
which in this case is 12 features. Several classification models (NB,
Decision Tree (DT), SVM, NN) were also evaluated in combination
with the full 149 feature dataset and the reduced 12 feature dataset.
Classifying between control, MCI and dementia patients, final results
show both increased and decreased accuracy when comparing the full
and reduced feature dataset dependant on classification model with
an average reduced dataset accuracy of 74.9% and an average full
dataset accuracy of 73.3%. As such, wrapper feature selection was
able to reduce feature size whilst not significantly altering accuracy
statistically. In terms of model evaluation, NB provides the highest
accuracy of 83.3% (Spec.: 90.0% Sens.: 81.9%) whilst the greatest
accuracy for the full feature dataset was NN with 80.3% (Spec.:
89.0% Sens.: 78.4%).

Weakley et al. [29] also uses a wrapper feature selection method
for classifying control, MCI and dementia subjects on a smaller 27
feature dataset. However, feature count threshold was determined as
a <2% increase in accuracy across iterations. Performance on the
full dataset was reported as accuracies between 66.2-79.7% (Sens.:
46.5-88.8% Spec.: 69.8-96.1%) whilst performance on the reduced
dataset was consistently higher, accuracy of 80.6-87.6% (Sens.: 58.8-
93.5% Spec.: 75.2-97.3%). Such indications of performance from the
aforementioned studies confirm the capability of data-centric based
feature selection.

Battista et al. [27] performs feature selection on a set of 131 neu-
ropsychological assessment criteria based on the class discriminatory
power of features via Fisher’s Discriminant Ratio with a selection
threshold of the top 5% of features. A baseline feature selection
by 2 experienced neuropsychologists based on redundancy, overlap
and relevance was also proposed. Selection methodologies were
evaluated by classifications, using SVM, of subjects measured on the
Clinical Dementia Ratings (CDR) scale, namely CDR = {0, 0.5, 1}
corresponding to control, MCI and demented respectively [15]. Com-
parisons were made against features selected by Fisher’s Discriminant
ratio and by neuropsychologists with no baseline full feature dataset
result. Results show comparable performance (Accuracy (Acc.): 81%,
Sens.: 78%, Spec.: 82%) compared with manual feature selection by
neuropsychologists whom provide marginally improved performance
(Acc.: 84%, Sens.: 82%, Spec.: 85%).

In retrospect feature selection methods, whilst still relatively un-
explored, show promise in reducing the size of neuropsychological
assessments whilst maintaining diagnostic performance comparable
to that of current expert human opinion. As such, there is potential for
the development of streamlined screening procedures incorporating
specific criteria from currently available assessments in conjunction
with machine learning techniques for improved or similar diagnostic
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performance.

B. Neuroimaging

According to studies, the progression of neuropathology in AD can
be observed years before clinical symptoms become apparent [9]. AD
is commonly characterised by the formation of intracellular neurofib-
rillary tangles, extracellular β-amyloid plaques and significant brain
atrophy [9]. The resulting neuropathology can thus be detectable
using neuroimaging techniques with MRI being the most popular
amongst the literature reviewed. Over the past few years, various
biomarkers and ML approaches have been proposed in identifying
patients with MCI and AD with varying results. With no definitive
pre-mortem method of reliably diagnosing AD currently, the use of
neuroimaging in diagnosis is still an open and challenging research
application.

The popularity of MRI based applications stem from MRI being
a non-invasive procedure whilst also able to provide high resolution
and contrast imaging of the various brain soft tissues allowing for
accurate segmentation and thus analysis of biomarkers within brain
regions [31]. As such, the popularity and reliance on MRI diagnosis
has allowed for the relatively high availability of datasets. Initiatives
such as Alzheimer’s Disease Neuroimaging Initiative (ADNI) [70]
provide large, standardised neuroimaging datasets for research into
AD biomarkers. With over 600 publications, ADNI has proven to be
a popular dataset within neuroimaging research [71].

MRI scans however, suffer from a prohibitive cost [5], [22] and
availability in regards to technology and training around the globe. As
a result, the use of MRI is infeasible as an initial, definitive diagnosis
with patients generally going through initial screening before MRI
scans are used as mentioned previously. The need for an expert
neuroradiologist for a consistently accurate diagnosis when compared
to a general radiologist [21] further limits availability and effective-
ness. With diagnosis determined through manual measurements of
various brain regions for specific biomarkers, there is opportunity for
automation through the use of ML.

Pre-processing

Normalisation and segmentation of scan data remains a open area
for novel methodologies to be developed. Based in part due to
variances in MRI hardware producing images of varying image, voxel
and slice sizes in addition to variances in overall brain structure
across patients. As such, comparisons across multiple individuals
requires non-linear image transformations for normalisation whilst
preserving features such as brain tissue volume and density. Various
methodologies and applications to address the aforementioned issue
have been proposed within literature.

With a heavy focus on White Matter (WM) regions of the brain
specifically, in addition to increasingly larger MRI datasets becoming
available such as from the aforementioned ADNI initiative, automated
image segmentation applications allow for fast segmentation of
relevant brain regions for further feature extraction. While manual
labelling is still done [45], the use of automated segmentation allows
for a push towards a fully automated clinical application while
remaining comparatively accurate to human labelling across multiple
segmentation methodologies within literature.

Costafreda et al. [33] uses an auto-context segmentation model
for automated hippocampal segmentation based upon the use of only
a few ground truth labelled brains [72] which has been reported to
produce accurate segmentation based on ground truth labels by human
experts [73].

A popular normalisation methodology after segmentation is the
Regional Analysis of Volumes Examined in Normalized Space

(RAVENS) voxel-based analysis method [74]. An adaptation of the
Boxel method for measuring volumes of WM, Grey Matter (GM)
and Cerebro Spinal Fluid (CSF) within different brain regions. The
normalisation of the variances in individual’s brain structures into
a global atlas for analysis (Talairach space), results in deformation
of original image volume. RAVENS preserves tissue volumes into
intensity-based maps which can thus be overlaid onto a global atlas
yielding a normalised intensity-based volume map of various brain
regions. RAVENS has been shown to be as reliable and accurate as
a trained operator in regards to volume computation of brain region
volumes [74] and remains popular amongst current literature 20 years
later [34], [35], [40].

In regards to specific brain region feature extraction, Shi et al.
[75] provides a novel approach for hippocampal volume calculation
by mapping an initial mesh representation of the hippocampus into
a common mesh structure across all subjects with one-to-one vertex
correspondence. This allows for a robust correspondence between
patients invariant to orientation and position. Costafreda et al. [33]
then proceeds to measure radial distances from center to each mapped
vertex corner as features for use in conventional patient classification.

Regional Brain Feature Selection

Amongst literature, the use of pre-defined Region of Interest (ROI)
such as the hippocampus have proven quite popular and effective
at distinguishing between the various cognitive categories. However,
several papers continue to propose novel ROI which also prove
effective in diagnosis. Through the use of various feature selection
methodologies, heat maps of MRI scans allow for visualisation of
potential ROI.

Davatzikos et al. [35] combined the latter concepts by proposing
the use of local voxel PCA on a region by region basis to determine
brain regions of maximum ”effect” between AD, MCI and healthy
subjects using RAVENS maps. The resulting reduced feature set is
passed to an SVM classification model for final diagnosis. As a result,
feature selection was able to identify several regions of high effect
for distinction between the various impairment categories with the
capability to classify between MCI vs. control and MCI vs. AD with
accuracies ranging from 84.3% to 100% respectively.

Whilst the aforementioned applications performing region selection
separate to that of classification have provided effective diagnostic re-
sults, several papers have proposed an integrated region selection and
classification methodology. The advantage of which is the capability
to more tailor ROI towards final classification providing a more valid
set of reduced final features, explicitly relevant to classification.

Examples of such integrated ROI selection include that of Teipel
et al. [43] in which, the derived Jacobian determinant maps of the
transformation matrix from a MRI scan to a data averaged brain
atlas, were generated. The resulting Jacobian determinant maps were
then segmented with GM and WM extracted and Gaussian smoothed.
Finally, the use of PCA on the co-variance matrix of all scans allows
for the determination of maximum variance between scans. The
principal components or eigenimages can thus be attributed to AD
based on correlation using Wilk’s lambda [76]. As such, AD could be
predicted based on specific regions of atrophy in brain matter (WM
& GM) and regions of enlargement in CSF spaces.

Kloppel et al. [37] also proposes a ROI selection methodology,
post-classification based upon the evaluation of SVM importance
weightings. By summing the weight and label multiplied scans on
a pixel by pixel basis, ROI which especially separate cognitive
categories can be shown in heat map form.

Mesh mapping has also been attempted on whole brain scans
as opposed to individual ROI. Lerch et al. [19] adapts a cerebral
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TABLE IV
LITERATURE INVESTIGATING THE DIAGNOSTIC POTENTIAL FOR ALZHEIMERS’ DISEASE OF VARIOUS ML MODELS WITHIN NEUROIMAGING.

ROI
Sample

Model Avg. Accuracy(%) Reference
Healthy Control MCI Alzheimers’ Disease

Hippocampus 88 103 71 SVM 80 [33]
Hippocampus 21 14 15 LDA 89.7 [45]

Medial Temporal Lobe 75 - 75 LDA, SVM 92 [41]
Multiple Parahippocalampal Gyrus 17 - 19 LDA 94 [19]

All Brain Regions 52 99 51 AE, SVM 85.6 [47]
All Brain Regions 28 - 58 SVM 84 [36]
All Brain Regions 226 - 191 SVM 84.2 [32]
All Brain Regions 190 - 190 SVM 89.3 [38]
All Brain Regions 34 - 34 SVM 94 [21]
All Brain Regions 37 - 37 SVM 100 [35]
All Brain Regions 18 24 32 LR 83 [43]
All Brain Regions 232 411 200 CNN 89.47 [46]

AE: Autoencoder, CNN: Convolutional Neural Network, LDA: Linear Discriminant Analysis, LR: Logistic Regression, SVM: Support Vector Machine

cortex deformable model [77] to generate large vertex meshes (81,920
polygons) of WM and GM. The resulting meshes are then used
to perform automated cortical thickness measurements of distances
between linked vertices. The resulting methodology is a attempt
at direct automation of the standard manual clinical procedure of
regional dimension measurements for diagnosis which shows great
promise with reported accuracies of up to 94% using an LDA model.

Deep learning models have also been proposed for brain region
encoding. Stacked autoencoders were used to extract latent patterns
from GM tissue volume of 93 ROI within MRI and PET scans before
being passed into a SVM classification model to identify between AD,
MCI and healthy subjects [47]. Stacked autoencoders outperformed
direct input of unencoded features consistently by 1-5% depending
on classification task.

Performance

On the high-end of diagnosis using ML with MRI scans, appli-
cations have proven to be extremely effective with diagnostic ability
rivalling, if not beating that of expert neuroradiologists. Kloppel et
al. [21] provides an example of such conclusion through a study
involving the direct comparison of diagnostic performance between
a SVM model and a selection of 6 radiologists with varying levels of
experience. Over 3 datasets comprised of 52 confirmed AD cases
with an equal, age matched control and Fronto-temporal Lobar
Degeneration (FTLD) samples, the SVM model with an Acc. of
92.4% (Sens.: 92.8%, Spec.: 91.8%) was able to outperform human
radiologists with an Acc. of 80.0% (Sens.: 77.2%, Spec.: 82.0%). The
aforementioned dataset however, was limited to individuals showing
no neurological co-morbidities resulting in reduced confounding
variables or influences, poorly reflecting real world samples. In
addition, AD patients were limited to definitively diagnosed cases
and as such had limited mild AD cases. As a result, the overall
dataset can be argued to not be a true representative sample of real
world cases, providing a possible explanation to the model’s high
performance. Due to the human radiologists being evaluated on a
the same data sample however, the conclusion that SVM is able to
outperform their human equivalent is still very much applicable.

Classification model

Within reviewed literature, the popularity of SVM as the primary
diagnostic model is highly prevalent [8] with methodology novelty

originating from image preparation, feature selection and objectives.
Alternative classification models have been proposed such as LDA
[45], RF [78], NN [46] and LR [44]. With models exhibiting
different strengths and weaknesses, comparisons against each other
are difficult due to various confounding factors such as: dataset
source, preparation and population demographics.

Stepping away from AD diagnosis, Chen et al. [34] attempts to
evaluate multiple classification models (SVM, NB, LR, LDA, NN
and DT) on general dementia diagnosis based upon a set of 113
dementia and control subjects using RAVENS GM maps as features.
As shown in Table V: SVM, LR and LDA are amongst the highest
performing classification models across all brain regions as well as
specific ROI. However, with a total of 91 features across the entire
RAVENS map and 12 on the specific ROI whilst having a limited
training set of 33 dementia and 50 control samples, methodologies
such as NN which require significantly larger datasets will remain
limited in performance. As such, model evaluation can only feasibly
be restricted to similar datasets as opposed to on a more widespread
scale.

TABLE V
RESULTS FROM MULTIPLE CLASSIFICATION MODELS EVALUATED BY [34]

Method
Accuracy (%)

All brain regions Medial temporal lobe

NB 69.9 77.1
DT 57.8 71.1

SVM 79.5 73.5
NN 68.7 69.9

LDA 75.9 80.7
LR 75.9 80.7

Classification was performed using RAVENS GM maps on whole brain scans
and on specifically the medial temporal lobe.

Chen et al. also provides results on ROI feature selection based on
model parameters taken from NB, DT, LDA and LR. In all of which,
the right hippocampus features as the most influential ROI supporting
the popularity of AD diagnosis based on the aforementioned ROI.
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C. Speech Analysis

Semantic dementia (SD) is characterised by cognitive deterioration
involving semantic memory, language and perceptual processes. All
of which, exhibit heavily during periods of Spontaneous Speech
(SS) resulting in reduced semantic fluency with an over-utilisation of
generic vocabulary (’thing’, ’stuff’, that’, etc.) [79]. As such, there is
opportunity in the development of a non-invasive diagnosis technique
without the need for specialised personnel or laboratory equipment
via SS analysis.

With initial clinical studies in the past mainly focusing on individ-
ual words and concepts in an attempt to quantify level of deterioration
[80], [81], only very recently have studies attempted continuous SS
analysis. With relatively recent advancements in the field of ML and
Natural Language Processing (NLP); the use of ML in continuous
SS analysis has only recently been proposed.

Initial analysis of SS has shown distinguishable separation between
discourse by SD subjects compared to their equivalent control. 42
transcripts by SD and control subjects of The Cookie Theft picture
description task [82] based upon word frequency (Bag of Words) were
analysed by Garrard et al. [50]. Transcripts from SD and control
subjects were able to be clustered based on the first two principal
components within PCA transformed space based upon transcript
bag of words. With feature variance of said principal components
emphasising grammatical function words, general uncertainty and
generic concepts; said conclusions coincided with previous clinical
studies providing indication of the potential of SS analysis in seman-
tic dementia diagnosis.

Garrard et al. continues his work using continuous SS analysis for
direct diagnosis of SD versus control whilst also attempting to predict
temporal lobe asymmetry in either the left or right side in SD patients.
Using bag of words to encode transcriptions from participants using
the Western Aphasia Battery, a naive Bayes’ classifier was used for
classification resulting in an average accuracy across both models
of 95%. Garrard also attempted feature selection of word categories
based upon the Information Gain Algorithm by Mitchell [83], but was
unable to discern a statistically significant improvement in accuracy
based upon a reduced feature dataset.

Other methods of speech encoding have also been explored outside
the bag of words approach. For instance Jarrold et al. [48] attempts a
combination of acoustic-level and lexical feature extraction involving
the measurement of word and letter durations, length of pause and
other undisclosed features for acoustic-level feature extraction whilst
lexical feature extraction measures frequency of word types such as
nouns, verbs, etc. Using NN as the classification model across a set
of 48 patients, reported accuracies of 88% in determining between
AD and control show promising results.

Lopez et al. [4] expands on the concept of acoustic-level features
through the evaluation of emotional response during SS through a
novel emotional temperature feature proposed in earlier work [84].
Using a combination of emotional response and regular SS fluency
features [85]. Using NN on a set of 20 AD patients and 50 control,
the proposed method was able to reach validation accuracies of up
to 97.7% outperforming established methods of diagnosis such as as
MRI.

Speech analysis has shown great promise in diagnostic capability
whilst being non-invasive and readily available. With a great focus on
predictive accuracy and automation of diagnostic procedure, perhaps
due in part to the complexities of human speech and emotion,
without more work into the interpretability of features and models
and validation on larger clinical trials; the use of speech analysis as
a definitive diagnostic procedure is still far from ready. In regards
to the methodology currently proposed, the potential for time-series
based classification models such as RNN based off of NN is apparent.

In fields of speech recognition, RNN has shown improvements over
previous attempts [86].

VI. OPPORTUNITIES & FUTURE RESEARCH

Whilst the general field of Big Data analytics continues to mature,
the current state of ML in dementia diagnosis remains behind
current state of the art methodologies. Nonetheless many studies have
proposed applications able to deliver promising dementia biomarkers
or propose diagnostic procedures in collaboration with ML methods
able to outperform current procedure. Several avenues of research
still remain relatively unexplored in addition to advances in fields of
ML opening previously unavailable avenues.

A. Potential unexplored machine learning methodologies

Within the fields of NLP, computer vision, and time-series based
analysis, the incorporation of modern ML applications have enabled
the potential for complex and novel modellings of various problem
spaces.

1) Natural Language Processing: Current literature involving the
application of NLP algorithms have shown promise in the diagno-
sis or screening of SD through analysis of semantic fluency over
continuous periods of SS. Being non-intrusive and passive whilst
maintaining reported performance metrics comparable to current
established screening practice, such applications show great potential
as complementary tools in conjunction to current procedures within
social or primary care establishments.

NLP still remains in it’s infancy however, with current state-of-
the-art being described as lagging behind the pace of other growing
and innovating technologies [87]. Cambria et al. [87] justifies this
viewpoint through their envisioned evolution of NLP research indi-
cating the three paradigms of current and future research direction.
Of which, state-of-the-art NLP remains within the first category of
syntactic analysis, the use of keyword, punctuation and co-occurrence
frequency in analysing language. While the next major step in NLP
technology is predicted to be the incorporation of word and phrase
semantics and sentics into MLP applications.

The advancement of NLP technologies provide far reaching effects
considering the continuing ubiquity of NLP applications such as voice
assistants within smart phones and household appliances. Current
dementia diagnosis applications using NLP, rely on bag of words or
word2vec [88] methodologies for word encoding, following the first
paradigm of NLP research as mentioned previously. Incorporation of
word and phrase semantic encoding directly applies to applications
analysing patient syntactic complexity and semantic fluency in spoken
vocabulary. The reduced semantic fluency of patients suffering from
SD can be directly attributed to semantic encoding complexity as
compared to those not suffering from SD.

Further research directions include time-series based analysis of
sequential words within sentences. With word order of appearance
currently being largely ignored. Lopez lightly touches upon this
concept with his use of sliding window emotional temperature
analysis [4], however the flattening of said time-series features
eliminates the potential for word order analysis. Such time-series
based analysis techniques allow for the incorporation of the changing
conditions shown by dementia subjects during the interview process.
Several papers observe a noticeable drain on energy and patience
in dementia subjects as interviews continue generally resulting in
early termination of interviews. Analysis of such features coupled
with Lopez’s emotional temperature and time-series based modelling
provide a possible novel approach to diagnosis.
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2) Computer vision: A major challenge currently in neuroimaging
based diagnosis consists of image normalisation prior to classifica-
tion. The need for consistent features across various MRI hardware
and brain compositions, current feature encoding focuses greatly
on regional GM densities, ROI dimensions or flattening of images
into non-spatial vectors. Applications such as CNNs which reference
spatial relationships between neighbouring pixels enable the potential
identification of ROIs simultaneously to classification training.

Common applications within the field of computer vision include
the recently established methodology of transfer learning pre-trained
large scale image classification models for use in various alternative
ML tasks using limited observation datasets [89]. Fields of research
within neuroimaging provide an excellent and novel area in which
such methodologies can be leveraged for improved ROI identification
and even Alzheimer’s diagnosis. Additionally, CNN medical image
segmentation continues to advance rapidly such as the recently
proposed 3D volumetric medical image segmentation application by
Milletari et al. [90] advancing segmentation of volumetric medical
image data, such as MRI, from the previous 2D segmentation slice
and merge methodologies to a simultaneous 3D segmentation whilst
improving processing time.

Such applications however, are potentially limited by the black box
nature of NN methodologies. The interpretability of such methodolo-
gies remain an ongoing research avenue within various fields [91],
health informatics being one such potential field.

Mesh representation feature encoding of ROIs generate irregular
domains such as in Electroencephalogram (EEG). As such, the use
of regular domain ML methodologies which respect regional features
such as CNNs produce inefficient sparse representations of said
domain. Irregular domain ML applications such as graph based CNNs
[92] would provide a better fit by respecting the irregular domain
interactions between nodes.

With such a heavy reliance on edge measurements of various
ROI, improved segmentation applications are also open for further
research.

B. Health data linkage

A major prerequisite for any Big Data based complex modelling
and applications is data availability. With the majority of research
currently relying on small patient groups with observations in the
hundreds to occasional thousands, various organisations have devoted
immense effort into the creation of large-scale datasets appropriate for
research. The ADNI dataset for MRI scans and patient demographics
was mentioned previously along with the CERAD database for
neuropsychological assessments. Several other databases exist, as
shown in Table VI, for generic EHR which provide extremely large,
full featured datasets of patient history. Opening a new avenue into
dementia prognosis based on the chronic and degenerative nature of
dementia providing continual data on individuals. Coupled with time-
series modelling, EHR enable the exploration of dementia prognosis.

TABLE VI
SEVERAL LARGE SCALE EHR AND DATA LINKAGE DATABASES.

Name Region
Secure Anonymised Information Linkage (SAIL)
[93]

Wales, UK

Scottish Informatics Programme (SHIP) [94] Scotland, UK
Data Linkage Western Australia [95] Western AUS
Institute for Clinical Evaluative Sciences (ICES)
[96]

Ontario, CAN

Manitoba Centre for Health Policy (MCHP) [97] Manitoba, CAN

EHRs however, provide multiple challenges which limit potential
applications. The predominant challenge being the wide-ranging
and non-specific patient information recorded in such datasets. The
resulting patient data presented are generally sparse and highly
dimensional, compounded by a lack of prior knowledge in what
constitutes as relevant data utilised in specific domains such as
dementia diagnosis. The use of sparse, high dimensional EHR data
within health informatics presents two major challenges: human
interpretability, requiring the employment of sparse optimised feature
selection, dimensionality reduction or representation learning for
effective biomarker and risk factor identification; and adequate data
coverage producing meaningless artefacts and bias termed sparse
data bias, potential solutions of which exist [98].

In regards to EHR encoding, various avenues of research exist
which address this challenge: representation learning technologies
remain a constantly evolving field [99] with which to adapt into
the field of EHR health informatics, whereas methodologies from
alternative ML fields with similar data structures allow for potential
adaptation into EHR encoding such as word representation method-
ologies within NLP, of which, methodology such as word2vec by
Mikolov et al. remains highly popular [88]. With no single de facto
methodology for EHR encoding, there remains great potential in the
proposal of novel tailor-made encoding methodologies for EHRs.

Finally, relatively little research has focused on evaluation or
diagnosis across simultaneously multiple data types. With health data
linkage continuing to provide the possibility for full, structured and
detailed records for individual care, the use of detailed assessments
such as MRI, EEG, and cognitive assessments can be coupled with
long term patient histories from EHRs allowing for the creation of
fully fledged and thorough diagnostic support systems. While such
work has been attempted using statistical methods [2], and through
ML methods [5], little research has continued within such research
avenue.

C. Prognosis

Within reviewed literature, the difficulty of classifying MCI versus
dementia patients remains a continual observation. With reported
evaluation accuracies indicating a consistent significant drop in
comparison to control versus MCI or full dementia classification.
The use of neuroimaging, cognitive assessment and discourse analysis
have been unable to classify continued degeneration effectively whilst
other approaches such as EHR remain unexplored.

In retrospect, little research has also gone into actual prediction
of MCI and dementia conversion based on historical patient history.
Such research applications would provide great potential into identi-
fication of risk factors and biomarkers indicating rates of cognitive
decline. Several clinical studies have attempted equating cognitive
decline to cognitive assessment scores statistically [100] however,
the use of modern ML techniques may provide novel indications.

Continued cognitive decline provides a sequential time-line of dis-
crete events indicating the gradual worsening of dementia symptoms,
such time-series based data serves as a perfect example for modelling
on time-series based methodologies. As mentioned in section IV-G,
RNNs allow for short term memory of past events hence, ideal
for applications modelling dementia conversion. Such applications
can potentially provide improved predictions of cognitive decline
allowing for personalized tailored medical care or identify future at-
risk individuals for close monitoring. However, DL technologies such
as RNN remain a concern in human interpretability and validation.
Consequently, following on from the example of at-risk identification,
indications to the reasoning behind predicting an individual as at-risk
remain unknown. Such issues, remain an ongoing research challenge.
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The degenerative nature of dementia results in an increase in
comorbidities [24], institutionalisation [25] and fall rate [26]. Several
studies have proven the statistical significance of dementia as a risk
factor to hospitalisation [24], [101]–[103]. There remains untapped
potential in prediction of institutionalisation risk and hospitalisation
outcomes for dementia patients using ML applications.

D. Deep Learning

A highly advanced and influential field of ML, DL architectures
such as deep NNs, RNNs and deep belief networks are at the heart
of various high profile applications such as IBM Watson [63] and
Google Translate [64] within the field of NLP or AlphaGo beating
the then current human European Go champion [65]. In computer
vision, deep CNNs revolutionised image classification during the
2012 ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
with SuperVision outperforming other entries by a margin of 11%
image classification error [6]. Subsequent challenges have thus been
dominated by various adaptations of deep CNNs [104]. DL has
seen use within medical fields such as drug discovery [105], patient
categorisation [106], imaging [107], biomedical text mining [108]
and EHRs [109]. With DL proving capability in representing complex
functions within other fields, the merger of such DL architectures with
Dementia healthcare applications have potential for novel approaches
to current research.

There is, however, criticism on various aspects of DL methodolo-
gies which limit widespread use within fields such as medicine. Crit-
icisms which originate from the general NN model that architectures
such as CNNs, RNNs and deep belief networks stem from. Issues
of transparency or the “black box” nature of models limit validation
of trained models to purely empirical evidence formed from unseen
test data. As a result, the reliance on a model to correctly represent
relevant aspects of the dataset are not always guaranteed as shown by
Ribeiro et al. [110]. However, the limiting of such potential issues of
dataset bias, indicated by Ribeiro, remain a primary concern within
health informatics with great emphasis on minimising confounding
bias in population demographics made on the majority of reviewed
literature.

While attempts have been made to improve acceptance of ML
among medical experts through the integration of existing medical
knowledge into RF models for diagnosis [111], there remains poten-
tial for adapting DL architectures for improved acceptance within
medicine. With acceptance, comes the possibility of adapting the
proven capabilities of DL within other fields into the mainstream
of health informatics.

VII. CONCLUSION

Health informatics in dementia research remains a open research
field with a multitude of research avenues spanning into various
other regions of ML and data analytics. Our findings suggest great
and continued interest in adapting current diagnostic procedures with
ML models in order to improve upon diagnostic performance or to
identify novel, potential biomarkers as new avenues for diagnosis.
Classical ML approaches such as SVM, PCA, RF and LR remain
highly popular whilst modern DL methodologies are slowly being
proposed with promising but mixed results.

This focus of this review on ML applications within dementia
diagnosis, whilst thorough, focuses purely on ML based applications.
As such, there is still further work available in direct comparison
of ML against the more established statistical methodology of other
clinical trials. Such an evaluation could provide greater illumination
on the current state of ML as a whole within the space of health
informatics. Outside of health informatics, there remains great interest

in ML applications for individualised physical care such as in fall
detection, robotics and support systems for dementia patients. Such
applications fall outside of the scope of informatics, however, further
review and evaluation of such systems remain open.

Current applications of ML have shown promising results; with
continued advances in information technology enabling access to
large scale patient records. The modern era of Big Data opens avenues
into complex modelling and consequent potential for significant
advances in dementia care. The chronic and degenerative nature of
dementia provides a unique collection of challenges in the diagnosis,
prognosis and care of patients which still remain to be fully addressed,
there remains much to do in resolving the issue of dementia and in
improving the care of current dementia sufferers.
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[8] G. Orrù, W. Pettersson-Yeo, A. F. Marquand, G. Sartori, and
A. Mechelli, “Using Support Vector Machine to identify imaging
biomarkers of neurological and psychiatric disease: A critical review,”
Neuroscience and Biobehavioral Reviews, vol. 36, no. 4, pp.
1140–1152, 2012.

[9] L. Mosconi, M. Brys, L. Glodzik-Sobanska, S. De Santi, H. Rusinek,
and M. J. de Leon, “Early detection of Alzheimer’s disease using
neuroimaging,” Experimental Gerontology, vol. 42, no. 1-2, pp. 129–
138, 2007.

[10] T. Ching, D. S. Himmelstein, B. K. Beaulieu-Jones, A. A. Kalinin,
B. T. Do, G. P. Way, E. Ferrero, P.-M. Agapow, M. Zietz,
M. M. Hoffman, W. Xie, G. L. Rosen, B. J. Lengerich, J. Israeli,
J. Lanchantin, S. Woloszynek, A. E. Carpenter, A. Shrikumar, J. Xu,
E. M. Cofer, C. A. Lavender, S. C. Turaga, A. M. Alexandari, Z. Lu,
D. J. Harris, D. DeCaprio, Y. Qi, A. Kundaje, Y. Peng, L. K. Wiley,
M. H. S. Segler, S. M. Boca, S. J. Swamidass, A. Huang, A. Gitter,
and C. S. Greene, “Opportunities and obstacles for deep learning
in biology and medicine,” Journal of The Royal Society Interface,
vol. 15, no. 141, p. 20170387, apr 2018.

[11] L. Glodzik, L. Mosconi, W. Tsui, S. de Santi, R. Zinkowski,
E. Pirraglia, K. E. Rich, P. McHugh, Y. Li, S. Williams, F. Ali,
H. Zetterberg, K. Blennow, P. Mehta, and M. J. de Leon, “Alzheimer’s
disease markers, hypertension, and gray matter damage in normal
elderly,” Neurobiology of Aging, vol. 33, no. 7, pp. 1215–1227, jul
2012.

[12] G. M. McKhann, D. S. Knopman, H. Chertkow, B. T. Hyman,
C. R. Jack, C. H. Kawas, W. E. Klunk, W. J. Koroshetz, J. J.
Manly, R. Mayeux, R. C. Mohs, J. C. Morris, M. N. Rossor,
P. Scheltens, M. C. Carrillo, B. Thies, S. Weintraub, and C. H.
Phelps, “The diagnosis of dementia due to Alzheimer’s disease:



RBME-00046-2018 13

Recommendations from the National Institute on Aging-Alzheimer’s
Association workgroups on diagnostic guidelines for Alzheimer’s
disease,” Alzheimer’s and Dementia, vol. 7, no. 3, pp. 263–269, 2011.

[13] American Psychiatric Association, Diagnostic and statistical manual
of mental disorders, 5th ed. American Psychiatric Association, 2013.

[14] M. Lamar, S. M. Resnick, and A. B. Zonderman, “Longitudinal
changes in verbal memory in older adults,” Neurology, vol. 60, no. 1,
pp. 82 – 86, jan 2003.

[15] A. So, D. Hooshyar, K. Park, and H. Lim, “Early Diagnosis of De-
mentia from Clinical Data by Machine Learning Techniques,” Applied
Sciences, vol. 7, no. 7, p. 651, 2017.

[16] T. N. Tombaugh and N. J. McIntyre, “The mini-mental state
examination: a comprehensive review.” Journal of the American
Geriatrics Society, vol. 40, no. 9, pp. 922–935, 1992.

[17] V. G. Valcour, K. H. Masaki, J. D. Curb, and P. L. Blanchette, “The
detection of dementia in the primary care setting.” Archives of internal
medicine, vol. 160, no. 19, pp. 2964–2968, 2000.

[18] C. M. Callahan, H. C. Hendrie, and W. M. Tierney, “Documentation
and evaluation of cognitive impairment in elderly primary care
patients.” Annals of internal medicine, vol. 122, no. 6, pp. 422–9, mar
1995.

[19] J. P. Lerch, J. Pruessner, A. P. Zijdenbos, D. L. Collins, S. J. Teipel,
H. Hampel, and A. C. Evans, “Automated cortical thickness measure-
ments from MRI can accurately separate Alzheimer’s patients from
normal elderly controls,” Neurobiology of Aging, vol. 29, no. 1, pp.
23–30, 2008.

[20] G. Chetelat and J.-C. Baron, “Early diagnosis of alzheimer’s disease:
contribution of structural neuroimaging,” NeuroImage, vol. 18, no. 2,
pp. 525–541, feb 2003.
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