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Automatically Generating Natural Language
Descriptions of Images by a Deep

Hierarchical Framework
Lin Huo, Lin Bai, and Shang-Ming Zhou , Member, IEEE

Abstract—Automatically generating an accurate and mean-
ingful description of an image is very challenging. However,
the recent scheme of generating an image caption by maxi-
mizing the likelihood of target sentences lacks the capacity of
recognizing the human–object interaction (HOI) and semantic
relationship between HOIs and scenes, which are the essential
parts of an image caption. This article proposes a novel two-
phase framework to generate an image caption by addressing
the above challenges: 1) a hybrid deep learning and 2) an image
description generation. In the hybrid deep-learning phase, a novel
factored three-way interaction machine was proposed to learn the
relational features of the human–object pairs hierarchically. In
this way, the image recognition problem is transformed into a
latent structured labeling task. In the image description gener-
ation phase, a lexicalized probabilistic context-free tree growing
scheme is innovatively integrated with a description generator to
transform the descriptions generation task into a syntactic-tree
generation process. Extensively comparing state-of-the-art image
captioning methods on benchmark datasets, we demonstrated
that our proposed framework outperformed the existing caption-
ing methods in different ways, such as significantly improving
the performance of the HOI and relationships between HOIs
and scenes (RHIS) predictions, and quality of generated image
captions in a semantically and structurally coherent manner.

Index Terms—Human–object interaction (HOI), hybrid deep
learning, image captioning, image context, natural language
processing.
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I. INTRODUCTION

AUTOMATICALLY generating accurate and meaningful
descriptive sentences of an image, referred to as image

captioning, could have great impacts in different domains,
for instance, by assisting visually impaired people in var-
ious aspects of life (e.g., shopping and walking), improv-
ing visual data retrieval, providing more general knowledge
about the visual world implicitly encoded in human lan-
guage, etc. However, image captioning is challenging, which
involves machine learning, computer vision, and natural lan-
guage processing. Specifically, image captioning entails a
tradeoff between several design objectives [1]: how to repre-
sent an image, how to represent the sentences (i.e., language
modeling), and how to fuse the visual and textual information,
encoded by the images and the sentences, respectively. This
involves the tasks of not only identifying the objects contained
in an image (corresponding to the nouns in the caption) but
also identifying the relationships between the objects and the
appearance of the objects (corresponding to linguistic con-
stituents, such as verbs in the caption), moreover expressing
the above semantic knowledge in a natural language. A core
issue of such relationships is how to identify the human–object
interaction (HOI) and the associated RHIS [2], [3].

Some pioneering approaches have been developed to
address these image captioning challenges. Template-based
models [4] rely on explicitly predefined templates and hard-
coded visual concepts to generate sentences by filling detected
visual elements, such as objects. Retrieval-based models [5],
first learn joint embedding to map both sentences and images
into the same semantic space and then retrieve the sim-
ilar sentences to describe the query image. However, the
generated sentences by these methods often have a very
limited variety and cannot describe specific contents in an
image. Moreover, these methods cannot generate descrip-
tive sentences that should depict the verb and the adverbial
compositions [6], [7]. As a result, they cannot always generate
very realistic sentences that capture all image concepts.

Recently, a surge of interest focused on a scheme of infer-
ring the most likely sentence of words S = {S1, S2, . . .} from
an image I by maximizing the likelihood P(S|I), where each
word St comes from a given dictionary that describes the
image adequately [8]. However, this scheme cannot precisely
identify the HOI and the relationship between an HOI and a
scene [9]–[11].
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In this article, we propose a novel deep-learning framework
to generate natural language descriptions of images automat-
ically by addressing the challenges of the HOI identification,
RHIS prediction, and descriptive sentence generation. The
novelty of this framework lies in that it consists of two phases
to generate image caption: 1) a hybrid deep learning and
2) a description generation. The hybrid deep-learning phase
first uses a faster region-based convolutional neural network
(RCNN) to learn the features of objects at the low level.
Then, based on the low-level object features, we proposed
a novel factored three-way interaction machine (FTWIM) to
learn the relational features of the human–object pairs hierar-
chically with their 3-D spatial configuration at the high level.
In this way, the recognition problems are transformed into
latent structured labeling tasks in a unified max-margin learn-
ing problem. The description generation phase uses the HOI
and the RHIS as key ingredients and innovatively integrated
with a syntactic tree scheme to build an image description
generator. In this way, the description generation becomes
a tree-based lexicalized syntactic derivation process integrat-
ing both the tree structure and sequence cohesion into tree
growth inference, so that a substantially higher level of linguis-
tic expressiveness, precision, and flexibility than the previous
studies can be guaranteed.

In the remainder of this article, we first review the
related work in Section II. Section III gives an overview
of our proposed two-phase framework. The hybrid deep-
learning model, model inference, and learning are presented
in Section IV. Section V presents the details of the description
generator, including the tree-growth rules and process. Finally,
experimental results are provided in Section VI, followed by
conclusions.

II. RELATED WORK

Generating descriptive sentences of an image is a
fundamental task in computer vision and machine
learning [8], [12], [13]. Some approaches combine tree
algorithms with object detection methods to generate descrip-
tive sentences, but these models are prone to the problem
caused by false human or object detection [14]. In order
to alleviate issues, some research relies heavily on exten-
sive labor-intensive labels of objects during the training
phrase [15]. A number of approaches treat this task as a
retrieval task, which formulates descriptive sentences gener-
ation process as a ranking learning problem [16]. However,
these approaches can only annotate the query image with
descriptive sentences of the similar images already existing
in the training dataset. Obviously, they cannot precisely
depict the semantic relationship between the human and
objects in the query image. Inspired by recent studies in
machine translation, some researchers strove to build a joint
probability over a large image–sentence corpus to learn the
correct description. They generated the descriptive sentences
word-by-word based on the order of the objects learned from
experience [8], [9], [17]. However, these models focus on the
compatibility between objects and words; thus making them

powerless to predict the action, and the relationship between
HOI and other image parts (e.g., scene).

Emerging evidence indicated that the HOIs are the core
element of image contents [2], [3], [18], [19]. Recently,
increasing attention is being paid to the use of image con-
texts to aid visual recognition [20], [21]. Some studies used
objects interacting with human poses to improve action clas-
sifiers [22]. However, human poses parts may profoundly
change or be self-occluded when they participate in rela-
tions. Some approaches exploited 2-D spatial context between
objects to alleviate human pose issues. For example, the
studies in [23] and [24] used 2-D spatial context between
human and object to alleviate the shortage of human pose. Fei-
Fei’s team modeled the mutual context between the 2-D spatial
arrangement of objects and human poses to facilitate the
object detection and action recognition [25]. Some approaches
encode the interaction activities by a set of 2-D spatial layout
between human–object pairs [11], [26]. However, the meth-
ods based on the 2-D spatial layout share a common shortage:
2-D spatial context cannot precisely describe the spatial con-
sistency. For example, when a person and an object are far
away from each other, but look like a close or occluding
one from another in a special viewpoint, 2-D spatial context
would misunderstand and misinterpret their relationship in this
human–object pair.

In order to generate more accurately spatial context anal-
ysis, some researchers attempted to learn 3-D locations of
objects from video to improve spatial co-occurrence arrange-
ment between humans and objects [27], while others focused
on modeling the movement trajectories of objects, and used
this contextual information to aid the object prediction and
spatial layout analysis [28]. The most relevant research to ours
is the work of [29] and [30]. They reconstructed a 3-D spatial
layout of the indoor scene with the help of manual anno-
tation, and then modeled the consistent spatial relationship
between humans and objects across images [30]. However,
such a method heavily depends on manual annotations, and
can only work in limited domains [29].

Different from the approaches without or with limited
spatial context [5], [31], we directly take 3-D spatial co-
occurrence contexts between image parts as conditional
information for the HOI recognition as well as the RHIS
prediction. Moreover, the previous studies treated the spatial
context feature extraction and the recognition separately [3].
As a result, some important image context features could be
lost, and could not achieve the joint optimization performance.

Different from the separated strategy, we propose a new
deep hierarchical structure that directly treats 3-D spatial
contexts as an additional input to facilitate the recognition
of HOI and RHIS. Our proposed structure can innovatively
extract the joint features of spatial contexts and the image
blocks of a human–object pair. The joint features are further
used through multiple convolution-pooling layers to cap-
ture high-level relational features, which can improve the
HOI and RHIS predictions. This task has been proved to
be extremely difficult to implement by using the traditional
methodologies [26], [31].

Authorized licensed use limited to: Plymouth University. Downloaded on January 07,2021 at 08:34:28 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HUO et al.: AUTOMATICALLY GENERATING NATURAL LANGUAGE DESCRIPTIONS 3

Fig. 1. Architecture of our deep understanding framework. Our framework mainly contains two parts: the hybrid deep-learning model and the description
generator. The former focuses on learning the HOI and the relationship between this HOI and a scene, by modeling 3-D spatial context, in a hierarchical
stage. The latter discovers the prepositional phrase to describe the relationship between various image patterns and achieve the description generation problem
by using a lexicalized tree growth process.

For the image description generation, inspired by the recent
advance of the syntactic tree algorithm [20], [31], our tree-
based caption generator model combines the advantages of
lexicalized PCFGs and the syntactic tree method. One rel-
evant work to ours is the TreeTalk model proposed by
Kuznetsova et al. [5] to compose expressive image descrip-
tions by selectively combining the extracted (and optionally
pruned) tree fragments, but this model cannot generate lexi-
calized probabilistic context-free grammars. Different from the
previous methods without lexicalized tree process, our model
innovatively treats the HOI and the RHIS as the key nodes to
guide the process of tree composition. These properties enable
our model to generate semantically well-formed descriptive
sentences and capture the major contents of an image.

III. PROPOSED TWO-PHASE FRAMEWORK

Our proposed framework consists of two phases to generate
image captions: 1) a hybrid deep learning and 2) a description
generation, as shown in Fig. 1.

In the hybrid deep-learning phase, first, a Faster RCNN is
used to learn the features of objects at the low level. It has been
proved that Faster RCNN [32]–[34] can produce the invariant
features of objects. Then, at the high level, based on the low-
level object features, we proposed a novel FTWIM to learn
the relational features of the human–object pairs hierarchi-
cally with their 3-D spatial configuration, as shown in Fig. 2.
These high-level relational features are robust and characterize
HOIs well.

Let H, O, V , and R denote the sets of humans, objects, HOIs,
and RHISs in an image, respectively. The FTWIM model takes
the HOI v and the scene s as inputs and is trained to maximize
the likelihood P(r|v, s) of producing a target phrase r that
describes the relationship between the HOIs and the scenes. In
this way, the recognition problems are transformed into latent
structured labeling tasks by modeling spatial context between
image parts, which formulate the model learning as a unified
max-margin learning problem.

Specifically, to improve the recognition of the HOI and
the RHIS, we consider 3-D spatial contexts as additional
information to enhance the relationship recognition. We use
a 3-D spatial layout detection method, based on our previous
work [3], [35], to capture the 3-D spatial contexts of an
image. Thus, the HOI v∗ ∈ V can be predicted by maximizing

Fig. 2. Graphical illustration of our deep-learning model.

the likelihood of P(v|hi, oj, lll(hi, oj);α) given a human–object
pair hi ∈ H and oj ∈ O and their spatial context lll(hi, oj)

conditioned on parameters α

v∗ = arg max
v

P(v|hi, oj, lll(hi, oj);α). (1)

The relationship r∗ ∈ R between an HOI and a scene can be
learned by maximizing the probability of P(r|vi, sj, lll(vi, sj);β)

given the HOI vi ∈ V , scene sj ∈ O, and their spatial contextual
information lll(vi, sj) parameterized on β

r∗ = arg max
r

P(r|vi, sj, lll(vi, sj);β) (2)

where the variables hi and oj represent the ith human and the
jth object in the query image, respectively. The relationship
r∗ depicts the semantic relationship between the HOI and the
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Fig. 3. Illustration of 3-D spatial configuration of a human–object pair
(hi, oj). The center of cross represents the center of human hi in the current
depth location. We consider the location of object oj with respect to this new
coordinate frame defined by hi. We divide the space into eight different spatial
relationships that discretely detail 3-D spatial layout between the human–
object pair. It turns the lll(hi, oj) into a 8-dimension sparse binary vector. For
instance, oj is next to and back away hi.

scene (e.g., play tennis on a tennis court). The 3-D spatial
context is learned by our previous studies [3], [35], in which
we proposed a discriminatively trained model that incorporates
multiscale local-image features and a depth coordinate percep-
tion system to estimate 3-D depth information from a single
monocular image. Thus, lll(hi, oj) discretizes the 3-D spatial
layout between hi and oj into some of discrete canonical rela-
tions describing as: above, overlapping, below, near, next-to,
front, current, and back, as shown in Fig. 3. Hence, lll(hi, oj)

is a specific sparse binary vector of length K with some 1 for
the specific elements when the spatial arrangement satisfying
the human–object pair as well as lll(vi, sj).

As shown in (1) and (2), both P(v|hi, oj, lll(hi, oj);α)

and P(r|vi, sj, lll(vi, sj);β) share the similar form; thus, we
design a unified hybrid deep-learning model to achieve the
maximum-likelihood estimation of P(v|hi, oj, lll(hi, oj);α) and
P(r|vi, sj, lll(vi, sj);β) in a hierarchical strategy, as shown in
Fig. 2. This hybrid deep-learning model consists of three lev-
els. At the lowest level, the Faster RCNN is used to detect
people, objects, and scenes. Then, we propose a novel hier-
archical structure, called FTWIM, to extract the high-level
relational features. So at the second level for HOI prediction,
an FTWIM model takes a pair of human and object features
as inputs, and utilizes 3-D spatial layout as the conditional
input. The multiple hidden layers learn the high-level rela-
tional features of the human–object pair hierarchically, under
the guidance of the 3-D spatial layout, from these varieties of
image features. The learned features are used by the follow-
ing fully connection layers to identify the HOI. At the third
level for RHIS prediction, an FTWIM model takes both the
HOI and scene regions as inputs and uses a conditional layer
to extract the spatial context as condition input. In this way,
the second and third levels aim to learn the high-level global
features of the query image, with the aid of the spatial con-
text of the image. Finally, based on the extracted features, we
propose a lexicalized-tree-driven caption sentence generation
model to generate semantically well-formed image caption
by connecting various visual patterns (e.g., HOI, scene, and
object) syntactically.

In the description generation phase (Fig. 1), inspired by the
recent studies in lexicalized probabilistic context-free gram-
mars (lexicalized PCFGs) [5], we used the HOI and the RHIS

as key ingredients and innovatively integrated with a syntac-
tic tree scheme to build an image description generator. In
this way, the description generation becomes a tree-based lex-
icalized syntactic derivation process that takes the HOI and
RHIS as the anchor nodes to guide the application of tree
composition rules. Thus, our model innovatively integrates
both tree structure and sequence cohesion into tree growth
inference, which guarantees a substantially higher level of
linguistic expressiveness, precision, and flexibility than the
previous studies.

IV. HYBRID DEEP-LEARNING MODEL

Recent advances in image captioning have shown that, given
a discriminative model, it is possible to learn the correct
description of the query image block [3], [36]. It is natural
to exploit this idea to recognize the HOI by maximizing the
likelihood of the correct HOI phrase, given the features of the
human–object pair, which is also applicable to the relationship
between HOIs and scenes.

A. Factored Three-Way Interaction Machine

Our FTWIM consists of four layers: 1) the input layers;
2) the hidden layers; 3) the condition layers; and 4) the out-
put layers. The factors are the key ingredient of the proposed
FTWIM that looks like a three-way intersection. It modulates
the interactions in three different units. Compared with the
biased connecting weights between input units and hidden
units [37], our model allows the condition units as a special
input to directly adjust the interactions, thus truly integrate
the conditional information into the deep-learning architecture.
The hidden layers and the output layers constitute a deep neu-
ral network that contains three convolution-pooling layers and
fully connected layers. This hierarchical structure enables the
final prediction layer to predict the high-level concept of the
HOI, as well as the relationship between the HOI and scene.
Directly training the whole networks would lead to model
overfitting; therefore, we optimized the HOI recognition and
the image captioning under supervision separately.

Different from the previous studies, our proposed method of
the factored three-way interactions allow the real-valued con-
text features to control the hidden features learning directly,
as shown in Fig. 2. These special structures are powerful to
extract relational features of HOI via a joint probability distri-
bution P(xxx,yyy|ccc) over the input xxx and hidden yyy, conditional on
the context features ccc. The input xxx represents the features of
the human and object, and the hidden yyy represents the learned
relation features of the human–object pair. These variables are
all n-dimensional vectors. Thus, we propose a novel energy-
based algorithm to describe the configuration of the interesting
variables of FTWIM, in which the greater probability P(xxx,yyy|ccc)
indicates the more powerful FTWIM is configured to learn the
high-level relational features from inputs

P(xxx,yyy|ccc) = e−E(xxx,yyy|ccc)

Z
(3)

where Z = ∑
xxx,yyy e−E(xxx,yyy|ccc) and E(xxx,yyy|ccc) is the energy function

that captures all possible correlations between the components
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of FTWIM (input xxx, hidden yyy, and condition ccc)

E(xxx,yyy|ccc) = −
∑

f

⎛

⎝
∑

j

mx
jf xj

⎞

⎠

(
∑

i

my
if yi

)(
∑

k

mc
kf ck

)

−
∑

j

bjxj −
∑

i

diyi (4)

where f represents the index set of deterministic factors, xj

represents the state of the visible unit j, yi represents the state
of the hidden unit i, ck represents the state of the condition
unit k, and my

if represents the weight parameter that measures
the strength of connection from the hidden unit i to factor f ,
mx

jf represents the weight parameter that measures the strength
of connection from the visible unit j to factor f , and mc

kf rep-
resents the weight parameter that measures the strength of
connection from the condition unit k to factor f . In (4),

∑
j bjxj

and
∑

i diyi are the bias terms with respect to the activity of
the visible and hidden units.

To learn the model parameters concisely, we estimate the
marginal probability distribution of P(xxx|ccc), rather than the joint
conditional probability of P(xxx,yyy|ccc). To this end, we propose
a free-energy function Fe(xxx|ccc) to accelerate the process of
parameters optimization

P(xxx|ccc) =
∑

yyy e−E(xxx,yyy|ccc)
∑

xxx,yyy e−E(xxx,yyy|ccc) (5)

Fe(xxx|ccc) = − ln
∑

yyy

e−E(xxx,yyy|ccc). (6)

Because the energy E(xxx,yyy|ccc) is replaced by the Fe(xxx|ccc), the
P(xxx|ccc) can be rewritten as P(xxx|ccc) = exp(−Fe(xxx|ccc))/Z. Instead
of computing the P(xxx|ccc), we estimate the log likelihood of
P(xxx|ccc) with the summation of visible units, as shown in

∑

xxx

ln(P(xxx|ccc)) = −
∑

xxx

Fe(xxx|ccc) −
∑

xxx

ln(Z). (7)

It is noted that there is a special inverse relationship between
ln(P(xxx|ccc)) and Fe(xxx|ccc), which implies that the energy of the
FTWIM is smaller, the probability P(xxx|ccc) is bigger, then the
FTWIM is stronger in relational feature extraction. According
to the properties of parameter configuration of the energy-
based model [37], the energy of a system is smaller, the system
is more stable, and the parameter configuration of this system
is more optimal. Thus, we capture the optimal estimation of the
free-energy function parameters by maximizing the likelihood
estimation of ln P(xxx|ccc)

∂ ln l(xxx|ccc, δ)
∂δ

=
∑

xxx

∂ ln(P(xxx|ccc))
∂δ

= ∂ ln(P(xxx|ccc))
∂δ

(8)

∂ ln(P(xxx|ccc))
∂δ

=
∑

yyy e−E(xxx,yyy|ccc)(− ∂E(xxx,yyy|ccc)
∂δ

)
∑

yyy e−E(xxx,yyy|ccc)

−
∑

xxx,yyy e−E(xxx,yyy|ccc)
(
− ∂E(xxx,yyy|ccc)

∂δ

)

∑
xxx,yyy e−E(xxx,yyy|ccc)

= EP(yyy|xxx,ccc)
(

−∂E(xxx,yyy|ccc)
∂δ

)

− EP(xxx,yyy|ccc)
(

−∂E(xxx,yyy|ccc)
∂δ

)

(9)

where δ is a collection of model parameters.

B. Deep Neural Networks

The hidden layers of FTWIMs consist of three convolution-
pooling modules, and the output layer is a fully connected
layers. They jointly mimic the primary cortex to learn the high-
level relational visual features. The convolution operation and
the followed max-pooling layer can be expressed as

yc = S

(
∑

i

yin ∗ ki + b

)

(10)

yout = S
(
β
∑

yn×n
c + d

)
(11)

where yin is the previous maps, ki is one of the trainable con-
volution kernels, S is a nonlinear activation function (e.g., a
hyperbolic tangent sigmoid), b and d are the biases, and yc

is the current convolutional map. In each convolution-pooling
module, the convolution map learns features from all the maps
in the previous layers, and then the max-pooling map has a
lower resolution, in which the noise information would have
been eliminated. The cascade of convolution-pooling modules
thereby extracts higher-level relational visual features as the
networks go deeper.

The top fully connected layers model the joint distribution
between the last feature layer of deep convolution networks vvv,
the hidden layer hhh, and the output layer yyy

P(vvv,hhh,yyy) = exp(−E(vvv,hhh,yyy))

Z
(12)

where E(vvv,hhh,yyy) = −vvvTUUUhhh − hhhTWWWyyy − dddTvvv − aaaThhh − bbbTyyy is the
energy function of the fully connected structure. Because of
the conditional independence properties of this network struc-
ture, given the last features vvv and the top hidden state hhh, the
conditional probability of its output yyy is explicitly expressed as

p(yj|vvv) = ebj
∏

i(1 + exp(
∑

k uikvk + wji + ai))
∑

n ebn
∏

i(1 + exp(
∑

k uikvk + wni + ai))
(13)

where yj denotes the jth structure label. The matrices of UUU
and WWW are the weight parameters that measure the connection
strength from the features vvv to the hidden states hhh and from the
hidden states hhh to the output states yyy, respectively. The dddTvvv,
aaaThhh, and bbbTyyy are the bias terms with respect to the activity
of the three types of layer units. We discriminatively train the
top fully connected layers by maximizing the likelihood of the
target label yj given the features vvv.

V. CAPTION GENERATOR

Recent advances in image description generation
[9], [38], [39] show that it is possible to achieve state-
of-the-art results by directly maximizing the likelihood of the
correct description given the features of an image. Hence, the
image caption can be learned by maximizing the probability
of the correct image caption P(g|vi, rj; θ) given the HOI
vi and the relationship rj between the HOI and the scene
parameterized on θ

g∗ = arg max
g

P(g|vi, rj; θ). (14)

In the previous study [3], we have proven that the correct
image caption g∗ can be learned via the tree composition pro-
cess, given the nouns (objects), the verbs (interactions), and
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the scenes. In fact, 92% of image descriptive sentences have no
more than three object nouns [40]. Therefore, if the recognized
objects in an image are more than three, our model automat-
ically divides them into several sentences that guarantee no
more than three object nouns appear in one sentence simulta-
neously. But how to order the visual patterns in a group and
how to connect these visual patterns via proper prepositional
phrases are two challenge tasks.

A. Model Definition

To solve these problems and generate accurate and reliable
captions, we propose a novel description generation model
based on the lexicalized-tree growing strategy. We consider
the tree composition as a constraint optimization problem that
aims to capture the best combinations between various visual
patterns (e.g., object, scene, and HOI).

Our model is defined as a 6-tuple

G = (N, �, S, A, U, q) (15)

where N is a finite set of nonterminals in the grammar, �

is a finite set of lexical items in the grammar, S ∈ N is a
distinguished start symbol, A is a set of parameters that include
two types: αoi,pk and αoi,oj,pk , which encode the selection and
ordering of object nouns, and U is a set of tree composition
rules in which each rule takes one of the following three forms.

1) Y1(h); Y2(m) → X(h), where X, Y1, Y2 ∈ N; h, m ∈ �.
2) Y1(m); Y2(h) → X(h), where X, Y1, Y2 ∈ N; h, m ∈ �.
3) h → X(h), where X ∈ N; h ∈ �.
In this way, for each rule ul ∈ U, there is an associated

parameter q(ul) ∈ [0, 1] that represents the reasonable strength
of selecting the rule ul for the configuration between αoi,pk and
αoj,pk+1 . Therefore, our tree composition for every sentence
aims to maximize the following objective function:

(u∗
l , o∗

i , o∗
j , p∗

k)

= arg max
u,o,p

∑
q(ul)(αoi,pk + αoj,pk+1 + αoi,oj,pk) (16)

where αoi,pk ∈ [0, 1] measures the probability of selecting
the object noun oi for the kth position in a sentence; αoi,oj,pk

represents the joint probability of the object noun oi for the
kth position and oj for the (k + 1)th position.

However, there is a bottleneck for training the parameters of
(16) in a traditional way: the number of sentences grows expo-
nentially alongside the number of object nouns, there might
not be enough training data. Fortunately, the recognized HOIs
can provide the most important cues to identify the subject,
object, and predicate verb for each descriptive sentence. In
an HOI, the human, the interaction, and the object could be
regarded as the subject, the predicate verb, and the object,
respectively. Meanwhile, the last object noun is the adverbial
in a sentence, which always is a scene object. Hence, the num-
ber of useful sentences is significantly smaller than the number
of all possible sentences. In this way, the above-mentioned two
challenge tasks can be tackled using the HOI and the RHIS.

One remaining challenge is to find the specific prepositional
phrase p which best depicts the RHIS. To this end, we pro-
pose a statistical algorithm to capture the best compatibility

Fig. 4. Illustrating the mapping from the RHIS to the semantical space of
the prepositional phrase.

Fig. 5. Illustrating our caption generator. (a) Details rules of the tree com-
position, where h is the “key,” and m is the modifier word. (b) Describes an
example of a sentence generation process, where the red words are the “key,”
and the black words are the modifier word.

between p and r in terms of co-occurrence frequency. Fig. 4
illustrates the configuration between HOI, object, scene, and
prepositional phrase

(p∗, r∗) = arg max
pg,rj

�(P, R). (17)

The best score between p and r is obtained by searching
over all possible configurations between prepositional phrases
consistent with the representations of the RHISs

�(P, R) = �P
g �R

j 1(R=rj) · 1(P=pg) · γjg (18)

where P is the set of prepositional phrases and pg repre-
sents the gth prepositional phrases; similar to R and rj. 1(·)
is an indicator function [e.g., 1(R=rj) = 1 if R equals rj; oth-
erwise, 0]. γjg represents the strength of the co-occurrence
interaction between rj and pg (the larger γjg is, the preposi-
tional phrase pg is more suitable for describing this RHIS).
After the parameters γjg are trained, (18) can identify the
most suitable HOI–scene pair and the corresponding preposi-
tional phrase, thus significantly help confirm the nonterminal
symbols VP, PP, and the preposition IN in the caption sen-
tence. Fig. 5 illustrates the example of the proposed lexicalized
tree-based sentence generation process.
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Algorithm 1 Inference of the Best Configuration Between R
and P
Input:
1: The sets of RHIS R and the prepositional phrases P
2: Initialization: two sets W = {wj = 0, j = 1 · · · m},

C = {cj = Ø, j = 1 · · · m};
Algorithm:
3: for each rj ∈ R do
4: for each pg ∈ P do
5: if (wj < (1(R=rj) · 1(P=pg) · γjg)) then
6: wj ⇐ (1(R=rj) · 1(P=pg) · γjg)

7: cj ⇐ (rj, pg))

8: end if
9: end for

10: end for
11: return C

B. Model Inference

Given the RHIS set R and the prepositional phrase set P for
a real image, we compute the score function

(p∗, r∗) = arg max
pg,rj

�P
g �R

j · 1(R=rj) · 1(P=pg) · γjg. (19)

The aim of inference is to find the best configuration
between rj and pg. To this end, the straightforward solution
is to search for all possible combinations between them. But
there is a computational bottleneck: the inner maximization
over two sets of R and P. This computational bottleneck
is intractable for general pairwise potentials. In this article,
we propose an efficient search algorithm to accelerate the
inference as detailed in Algorithm 1.

C. Model Learning

Suppose two-tuples of {rj, pg} collection of the RHIS and
the prepositional phrase be given, respectively. We aim to train
a model 
 that captures the true combination between the
HOI–scene pair and the prepositional phrase, based on a new
collections of {r, p} in a new image. We formulate these pro-
cess as a regularized learning task, and use the cutting plane
algorithm [20], [41] to implement the training process

arg min
γjg,ξi

m∑

γjg

1

2
‖γjg‖2 + λ

m∑

i=1

ξi (20)

s.t. ∀k, pg,�(pg, rj) − �(pk, rj) ≥ L(pg, pk) − ξi.

Based on the constraint from (20), to a training image, the
score of the true combination of pg and rj is expected to be
higher than all other hypothesized combinations of pk and rj.
λ is a hyperparameter and

∑m
i=1 ξi are a set of slack variables.

The loss function L measures the incorrect level between the
hypothesis pk and the true component pg. Thus, we consider
the form of the loss function is 0 − 1

L(pg, pk) =
{

1, if pg 
= pk ∩ ¬∃k, s.t. ol(pg, pk) > 50%pg

0, otherwise
(21)

where ol(pg, pk) > 50%pg means that pg and pk are syn-
onyms. Our loss function can correctly penalize predictions

that false prediction considered as true positive, when they
are not synonym.

VI. EXPERIMENTS

To extensively evaluate the effectiveness of the proposed
model, we conducted the experiments on three different
datasets: 1) UIUC phrasal recognition dataset [42]; 2) six-
class sport dataset [43], [44]; and 3) Microsoft COCO captions
dataset [9], [14]. Section I-A Data Source and Representation
in the supplementary material provides more details about the
three different datasets. sFig. 1 (see supplementary material)
shows the examples of the first two datasets. Our experiments
focused on the evaluations of the recognition of HOI and
the RHIS (on the first two datasets) and the quality of the
generated sentences (on the third dataset).

A. Evaluation of the Hybrid Deep-Learning Model

In this experiment section, we compare with state-of-the-art
methods: Liyue model [25], HO [36], HO-RCNN [36], DNN-
ONLY [26], and Bo model [11]. Section I-B The State-of-
the-Art Methods in the supplementary material provides more
details about these methods.

1) Human–Object Interaction Recognition: One of our
goals is to detect the HOI in images. In the experiment setting,
following the previous works, we use the average precision
(AP) evaluation metric as the major performance metric [44].
We compare with four existing methods: 1) Liyue model [25];
2) HO [36]; 3) HO-RCNN [36]; and 4) Bo model [11].

Figs. 6 and 7 illustrate the comparison results of the four
comparative methods and our model on two different datasets,
respectively. In Fig. 6, the types of HOI and the abbreviation
are person riding horse (PRH), person next to horse (PNTH),
person riding bicycle (PRB), person next to bicycle (PNTB),
person next to car (PNTC), person waiting for bus (PWFB),
person riding motorbike (PRM), and person next to motorbike
(PNTM). The evaluations of these five methods are based on
best possible performances using the first two datasets.

It can be seen that our model achieves the best performance
on the UIUC phrasal recognition dataset. Our model, Liyue
model, HO-RCNN, HO, and Bo model perform overall AP
of 76.8%, 68.3%, 71.4%, 62.5%, and 73.5%, respectively,
which implies that the proposed model outperforms the Liyue
model, HO-RCNN, and HO by 8.5%, 5.4%, 14.3%, and
3.3%, respectively. This justifies that learning relational fea-
tures of the human–object pair can significantly benefit the
HOI recognition. Comparing with these methods without or
with a limited human–object-relational features, the proposed
FTWIM enables our model to learn the relational features
between different image regions at a great length. Furthermore,
even comparing with the Liyue model and Bo model where
the ground-truth visual pattern labels are used, our model
still achieves more than 5% average improvement. Indeed, on
the one hand, the proposal FTWIM can learn the high-level
relational features of the human–object pair to significantly
improve the HOI recognition; on the other hand, the spe-
cial structure of the FTWIM, that is, the factored three-way
interaction mechanism, allows any prior information to be used
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Fig. 6. HOI recognition results on the UIUC phrasal recognition dataset.
The x-axis labels are the abbreviation of eight classes of HOIs. The y-axis
label is HOI recognition AP.

Fig. 7. HOI recognition results on the SCS dataset. The x-axis labels are
six classes of sport activities. The y-axis label is sport recognition AP.

to directly facilitate the relational features to be learned in
a unified single network architecture, so that the extracted
features are very effective for the goal of recognition task.

On the SCS dataset, the performances of our model, Liyue
model, and Bo model are very close in some specific recog-
nition tasks (e.g., tennis forehand). The main reason could be
that the scenes of the sports images are very simple and con-
cision where the negative impact of the clutter scene is thus
decreased. However, the overall AP result of our model is
still better than other models. Moreover, comparing with the
Bo model where the similar spatial context is used, the spe-
cial structure of our model ensures the hidden layers could
learn the global relational features of a human–object pair
while alleviating the negative impact of the clutter scene in
the hierarchy. On the other hand, our model combines the
feature extraction and recognition stages in a unified hierar-
chical architecture so that the loss of useful information is as
little as possible.

2) Evaluation of the FTWIM: In order to further evalu-
ate the performance of the proposed FTWIM, we use the

TABLE I
RECALL@K SCORES FOR HOI ACROSS TWO DATASETS. WE COMPARE

OUR METHOD RESULTS WITH THE LIYUE MODEL, BO MODEL,
HO-RCNN, HO, AND DNN-ONLY

Recall @K, the fraction of ground-truth instances that are
correctly recalled in top K predictions, as the supplemen-
tary performance metric. In the HOI evaluation, we reported
Recall@50 and Recall@100. We set the true positive bound-
ing box if it overlaps with the ground-truth bounding box with
an intersection over union greater than 0.5. We compared with
five state of the arts: 1) Liyue model; 2) HO; 3) HO-RCNN;
4) DNN-ONLY; and 5) Bo model.

Table 1 illustrates the results of Recall@50 and Recall@100
across the UIUC and SCS datasets. It can be seen that our
model achieves the best performance across two evaluation cri-
teria. Comparing with the HO-RCNN model and DNN-ONLY,
our model outperforms the Recall@50 and Recall@100 by
over 10% and 15% on both datasets. The core modules of
the HO-RCNN model and DNN-ONLY are RCNN to extract
the invariant features of the input image. Such deep-learning
structure is also an important part of our model, but we differ
from them is that the proposed FTWIM is used to combine
the human features, object features, as well as the spatial
context features into a unified deep network architecture in
order to learn the relational features of the human–object pair.
With such a unique property, our model outperforms these
deep-learning methods.

Moreover, the proposed model outperforms the state-of-
the-art models, Liyue model and Bo model, as well, by a
considerable margin in both evaluation metrics. It is worth not-
ing that both Liyue model and Bo model use region detectors to
facilitate the HOI recognition based on the ground-truth visual
pattern class labels. Especially, Bo model’s deep network struc-
ture is similar to ours, but does not adopt the FTWIM. Hence,
the proposed FTWIM not only achieves a better recognition
performance but also demonstrates that the factored three-way
interaction structure of the FTWIM enables the relational fea-
ture learning of the human–object pattern to be significantly
improved by the context information of the human–object pair,
while such a context information is very difficult to be extracted
by the traditional deep-learning networks.

Furthermore, the special structure of FTWIM unifies the fea-
ture extraction and recognition stages in a hierarchical stage,
so that the model parameters can be jointly optimized for the
target of the HOI recognition. Our experimental results show
that each type of HOI always falls in a very small number
of spatial layouts. This means that the spatial layout between
humans and objects is more robust across various HOI classes
and clutter scenes as shown in Fig. 8. Comparing with the
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Fig. 8. Rows from 1 to 6 illustrate the recognition results of HO, DNN-ONLY,
HO-RCNN, Liyue model, Bo model, and our model, respectively.

above existing methods, only our FTWIM can directly embed
the image context into the relational feature extraction and
recognition stages. It is no wonder that the proposed model
achieves better performance.

3) Relationship Between HOI and Scene: We further evalu-
ate the performance of our model in estimating the relationship
between HOI and scene using the Recall@50 and Recall@100
as the major performance metrics. The reason for using recall
instead of precision is that the relationship between the HOI
and the scene is incomplete, where some true relationship is
unlabeled. We compare our model with four state-of-the-art
relationship prediction methods: 1) Dai model [6]; 2) GAN
model [10]; 3) Li model [45]; and 4) DNN-ONLY. In the
experiment, all the training and test images are manually
annotated with the ground-truth label of RHISs. For example,
riding bicycle on the road, playing tennis on a tennis court,
etc. We use Faster-RCNN [34] to detect the scene stuffs of
every image on the UIUC phrasal recognition dataset and the
SCS dataset, respectively.

The evaluation results are summarized in Table II. On
both two datasets, it can be seen that our model outper-
forms the existing models considerably. The GAN model and
DNN-ONLY perform poorer than the other models, as it is
hard for the traditional deep network to learn the high-level
invariant features for both object detection and the relation-
ship prediction. Comparing with the Li model and the Dai
model using a limited image context, our model explores very
detailed image context information between image regions by
using the FTWIM, thus detects the relationship between HOI
and scene effectively. Furthermore, our FTWIM unifies the

TABLE II
RECALL@K SCORES FOR MODELING THE RELATIONSHIP BETWEEN AN

HOI AND A SCENE ON TWO DATASETS. WE COMPARE OUR METHOD

RESULTS WITH THE DAI MODEL, GAN MODEL, LI MODEL, AND

DNN-ONLY

Fig. 9. Examples of the recognition of the relationship between HOI and
scene. Rows from 1 to 5 describe the results of the Dai model, DNN-ONLY,
GAN model, Li model, and our model, respectively.

feature extraction and recognition stage under a deep network
architecture, so that the model parameters can be effectively
optimized with respect to the target of the recognition task.
The experiments demonstrate that the proposed FTWIM can
significantly improve the advanced image recognition task by
jointly learning the relational features of a variety of image
context.

Fig. 9 shows the visualized comparisons on modeling RHIS
examples. It can be seen that our model outperforms these
baseline models. For example, on the riding bicycle image,
PRB on the road, which is next to the grass, only our model
can precisely describe the relationships between the HOI and
the road. Instead of taking spatial context analysis as bias,
our model treats 3-D spatial layout as a special input that
directly guides the high-level relational features extraction.
The performance demonstrates that this special structure of
our model could fully exploit the advantages of the spatial
context for the prediction of the HOI and the RHIS.

B. Evaluation of the Image Captioning Model

In this section, we evaluate the effectiveness of our model in
image caption generation using two metrics: 1) the automatic
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TABLE III
BLEU-N EVALUATION RESULTS OF THE SENTENCE GENERATION TASK

ON THE MICROSOFT COCO CAPTIONS DATASET. HIGHER SCORE MEANS

BETTER PERFORMANCE. BLEU-N REPRESENTS THE N-GRAM

BLEU SCORE

evaluation and 2) human evaluation. For both of evalua-
tion metrics, we compare our model with five state-of-the-art
methods: 1) GAN model [10]; 2) WC model [9]; 3) LYBP
model [46]; 4) KJKL model [38]; and 5) JD model [32].
Section I-B The State-of-the-Art Methods in the supplementary
material provides more details about these methods.

1) Automatic Evaluation: For the automatic evaluation, we
use the BLEU score to estimate how similar the generated sen-
tences and the humanity-standard descriptions is. The BLEU
score is originally proposed for measuring the performance
of automatic machine translation. Now, BLEU is the standard
evaluation matric for image description generation [9], [39].
Following previous studies, the evaluation metric of BLEU
scores includes four different criteria: BLEU-1, BLEU-2,
BLEU-3, and BLEU-4. For our model and five comparative
methods, every generated descriptive sentence is compared
against the same manually generated sentence. The perfor-
mances of our model and five other methods are shown in
Table III where a higher score represents better performance.

It can be seen that our model achieves the best scores among
all four BLEU-n criteria. Especially, in terms of the BLEU-
2 and BLEU-3 indexes, our model scores more than twice
as much as the other methods do. In particular, the BLEU-2
and BLEU-3 indexes represent the two-character words and
the trisyllabic words, which cover most of the subject–verb
phrase, subject–verb–object phrase, and the adverbial phrase.
This demonstrates that the proposed image caption generator
can capture the most important parts of an image accurately
(e.g., subject, verb, object, and adverbial), and order these
parts in syntactically well-formed sentence precisely. Indeed,
comparing with the other methods with or without limited
verb prediction, the tree composition strategy used by our
model takes the HOI as the anchors to present the subject,
verb, and object accurately, which other models cannot gen-
erate. Such a strategy significantly improves the efficiency of
our model in object ordering and the relationship description
between subject and object. Moreover, our model explores the
adverbial structure and the corresponding prepositional phrase
in detail by jointly optimizing the RHIS, the prepositional
phrase, and the tree composition rules. This guarantees that the
major relationship between image parts (e.g., subject, object,
and adverbial) can be well described within syntactically and
semantically well-formed descriptions.

In other BLEU-n scores, our model also outperforms
existing methods by a large margin. Different from the
existing methods, our model explicitly captures the co-
occurrence compatibility between activity and the RHIS,

TABLE IV
HUMAN EVALUATION FOR OUR MODEL AND OTHER FIVE METHODS

ACROSS FOUR EVALUATION CRITERIA

as well as the corresponding linguistic expression by the
proposed lexicalized-tree growing strategy. Moreover, our
model combines the lexicalized-tree growing strategy and
the natural language rules into sequence inference. These
advanced inferences enable our model to create more seman-
tic, flexible, and creative image descriptive sentences than
those methods which used probability estimates of object
co-occurrence [9], [10], [46].

2) Human Evaluation: The above automatic evaluation
directly measures the accuracy and grammatical correctness of
generated sentences. Furthermore, in this section, we conduct
a human judgment on the quality of the generated sentences.
Following previous studies [10], [38], we invite ten students
as raters to estimate the quality of the generated descriptive
sentences produced by our model and these four methods. The
performance evaluation metrics include four criteria on a scale
from 1 to 5.

1) Grammar: Give high scores if the generated sentence
does not include obviously grammatical errors.

2) Cognition: Give high scores if the generated sentence is
rational, and can depict the major caption of the query
image.

3) Action: Give high scores if the generated sentence
correctly describes the interaction of a human–object
pair.

4) Scene: Give high scores if the generated sentence cor-
rectly describes the scene of the query image.

Then, we randomly select 100 images from the Microsoft
COCO dataset, and obtain five descriptive sentences for each
test image from these six methods (including our model and
the five other methods) for human judgment experiments.
Table IV illustrates the mean scores of each criterion for
our model and the other five methods. The manual standard
descriptions elicited judgments around five, which are sig-
nificantly better than the model-generated sentences on all
aspects. All methods produce highly grammar performance,
with mean ratings of between 3.8 and 4.2. There are no big
differences between our model and five other methods in terms
of Grammar criterion. This result can be explained by the
fact that all of the methods rely on natural language grammar
rules. In terms of the criteria—Cognition, Action, and Scene,
it can be seen that our model significantly outperforms the five
existing methods.

In terms of the Action criterion, our model achieves a
remarkable score 4.4, which shows the strength of our model
in the description of the SVO phrase and the adverbial struc-
ture. The other five methods only earn scores from 2.8 to 3.5,
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Fig. 10. Some examples of generated descriptions produced by our model
and five other methods, respectively.

even though the semantic relation predictions are used in the
Bo model and the LYBP model. This might benefit from that
our model has the ability to precisely recognize the interaction
relationship between subjects, while the other methods just
learn the phrase of <subject, predicate, object>. Comparing
with the approaches without adverbial generating, we design
a special statistical algorithm that explores the best preposi-
tional phrase to depict the semantic relationship between SVO
and scene in the lexicalized-tree growing process. These prop-
erties of the proposed image caption generator guarantee the
generated sentences can detail the action attribute of the query
image.

In terms of the Cognition criterion, it can be seen that
the five existing methods generate similarity scores, with
mean ratings from 3.5 to 3.8. The reason might be that all
these methods only have limited relation estimation between
regions lacking the ability to predict the relation between
SVO and scene. In contrast, our syntactic-tree-based model
focuses on the recognition of the variety of semantic relation-
ship between image parts, and optimizing the compatibility
between the phrase structure, HOI, and RHIS. Therefore, our
model achieves the mean score 4.2 by an average improve-
ment from 0.7 to 0.4. For example, in the second picture of
Fig. 10, our model precisely describes that the adverbial struc-
ture of the scene is in a grass field. Thus, the proposed model
significantly improves the cognition of the generated sentence.

In terms of the Scene criterion, it can be seen that our model
significantly outperforms the five existing methods, even show-
ing 0.7 average improvement over the GAN model and the
LYBP model where the ground-truth scene labels are used.
It is noted that the proposed lexicalized-tree growing strategy

focuses on learning the relationship between SVO and scene,
then the relationship is further processed through a special
statistical algorithm to explore the best compatibility between
the prepositional phrase and the scene. These properties of the
proposed model enable our model to generate a syntactically
and semantically well-detailed description and outperform the-
state-of-the-art methods across different human assessments.
From the examples of the generated sentence in Fig. 10, we
also learn that for the action recognition and the relation-
ship between an HOI and a scene, the visual phrases always
fall in a specific small number of spatial layouts. This situa-
tion indicates that our model always capture the most suitable
conjunctions for the descriptive sentence generation.

VII. CONCLUSION

In this article, we have proposed a hybrid deep-learning
model and an image caption generator in a deep network archi-
tecture to generate image descriptive sentences. The former
consists of the proposed FTWIMs and the cascade of deep
convolutional networks to learn the high-level relational fea-
tures of the HOI and the RHIS, given the image spatial context,
in a hierarchy of stages by progressively integrating vari-
ous features from lower levels. The experiments demonstrate
that the high-level relational features dramatically improve the
relationship recognition. The latter treats the image caption
generation as a syntactic-tree generation process. It takes the
HOI and RHIS as anchors to improve the tree-growth pro-
cess in generating syntactically well-formed descriptions. The
extensive experimental results demonstrate that the proposed
model outperforms the existing methods in the prediction of
the HOI and the RHIS. Moreover, the proposed description
generation model not only discover the most suitable linguis-
tics phrase to describe the semantic relationship between the
image parts but also generate semantically image descriptive
sentences.
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