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Abstract—The type-1 ordered weighted averaging
(T1OWA) operator has demonstrated the capacity for
directly aggregating multiple sources of linguistic
information modelled by fuzzy sets rather than crisp
values. Yager’s OWA operators possess the properties
of idempotence, monotonicity, compensativeness, and
commutativity. This paper aims to address whether or
not T1OWA operators possess these properties when the
inputs and associated weights are fuzzy sets instead of
crisp numbers. To this end, a partially ordered relation of
fuzzy sets is defined based on the fuzzy maximum (join)
and fuzzy minimum (meet) operators of fuzzy sets, and
an alpha-equivalently-ordered relation of groups of fuzzy
sets is proposed. Moreover, as the extension of orness and
andness of an Yager’s OWA operator, joinness and meetness
of a T1OWA operator are formalised, respectively. Then,
based on these concepts and the Representation Theorem
of T1OWA operators, we prove that T1OWA operators hold
the same properties as Yager’s OWA operators possess,
i.e.: idempotence, monotonicity, compensativeness, and
commutativity. Various numerical examples and a case
study of diabetes diagnosis are provided to validate the
theoretical analyses of these properties in aggregating
multiple sources of uncertain information and improving
integrated diagnosis, respectively.

Index Terms—OWA operator, type-1 OWA operator, ag-
gregation, linguistic aggregation, fuzzy sets, soft decision
making, diabetes, integrated diagnosis.
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I. Introduction

In domains where information fusion/integration or
multi-factorial evaluation is needed, an aggregation pro-
cess is necessary to combine multiple sources of infor-
mation into a global result so that in the final deci-
sion, all the individual sources of information are taken
into account [1]. For example, in medicine, diagnosis
or measurement can rarely be decided based on an
individual criterion. Particularly, in the age of big data,
the use of information aggregation is rapidly increas-
ing, both because data is easily collected by ubiquitous
information technologies and because the availability
of cost-effective computational power allows combining
information from multiple sources to be readily feasible.

Yager’s ordered weighted averaging (OWA) operators
[2], [3] have become a popular tool to aggregate infor-
mation from multiple sources due to their flexibility for
modeling a wide variety of aggregation scenarios via the
appropriate definition/selection of the OWA operator’s
weighting vector [3]. However, Yager’s OWA operators
exclusively aggregate crisp numbers, while in real-world
decisions, one is often not certain about the exact value
of a crisp attribute. For example, in medicine, patients
often find it difficult to describe how they feel, and doc-
tors/nurses often find it difficult to describe what they
observed. Thus it is desirable to develop a technique that
can aggregate multiple sources of uncertain information
of attributes. T1OWA operators and the associated α-
level T1OWA aggregations are such a technique [4], [5],
in which uncertain information is modelled by fuzzy
sets. In this way, with appropriately definitions of un-
certain weights, T1OWA operators extend Yager’s OWA
operator [2], the meet operator of fuzzy sets and the join
operators of fuzzy sets [7], [8].

Since their appearance, the T1OWA operators have
received increasing attention in scientific applications
[9]–[14]. To select optimal routes under uncertain en-
vironments, T1OWA operators have been designed to
guide human decision-making in a fuzzy weighted graph
[10]. In addition to the α-level approach to fast imple-
mentation of T1OWA operators, another new method
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of calculating T1OWA was proposed via an opposite
direction searching [11]. A T1OWA unbalanced fuzzy
linguistic aggregation method has been applied to credit
risk evaluation [12]. In group decision making, T1OWA
operators can be used to combine multiple granular
linguistic information and improve consensus reaching
processes [13]. In type-2 fuzzy logic system modelling,
the type-reduction of general type-2 fuzzy sets can be
efficiently implemented via T1OWA operators [14].

Despite the above mentioned advances on the devel-
opment and applications of T1OWA operators, one issue
remains unclear regarding aggregation mechanism prop-
erties. Yager’s OWA operators are idempotent, monotonic,
compensative, and commutative [2]. The question to be
answered in our case is whether or not T1OWA oper-
ators hold these same properties when the inputs and
associated weights become uncertain, being expressed
as fuzzy sets instead of crisp numbers in soft decision
making. This question is not trivial at all, because the
mechanisms of operations on a group of (fuzzy) sets are
completely different from those on crisp values, with
more advanced computing techniques to be required. In
this paper, we aim to answer this important question.

To this end, based on the α-cuts of fuzzy sets, we
suggest a new relation of fuzzy sets, named the alpha-
equivalently-ordered relation of a group of fuzzy sets, and
address the join and the meet based partial order relation
of fuzzy sets. Then we prove that the T1OWA operation
is commutative, idempotent, monotonic, and compensative
with respect to the fuzzy set partial order relation.

The rest of this paper proceeds as follows. In Sec-
tion II, we briefly review two definitions of the T1OWA
operator: one based on the Extension Principle, the other
based on the α-cuts of fuzzy sets. Section III defines a
fuzzy set partial order relation based on the meet and
join operators of fuzzy sets. As the extension of the
andness and orness of Yager’s OWA operators. Section IV
defines the meetness and joinness of T1OWA operators.
The properties of a T1OWA operator are then analysed
and proved in Section V. Section VI provides a case
study of diabetes diagnosis and further validation of
computing efficiency of α-level T1OWA aggregation. The
paper concludes with Section VII.

II. Preliminaries

Although the T1OWA operators can be defined either via
Zadeh’s Extension Principle or via the α-cuts of fuzzy
sets [4], [5], their final aggregation results coincide.

Let F(X) be the power set of fuzzy subsets on the
domain of discourse X. One can define the T1OWA
operator via the Extension Principle [4] as follows:

Definition 1. “Given n linguistic weights
{
W̃ i

}n
i=1

in the
form of fuzzy sets defined on the domain of discourse U =
[0,1], a T1OWA operator is a mapping Φ ,

Φ : F(X)× · · · ×F(X) −→ F(X)
(Ã1, · · · , Ãn) 7→ Ỹ

(1)

The membership function of outcome fuzzy set Ỹ (aggrega-
tion result) is

µỸ (y) = sup
n∑
i=1

w̄iaσ (i) = y

wi ∈U,ai ∈ X

(
µW̃ 1(ω1)∧ · · · ∧µW̃ n(ωn)
∧µÃ1(a1)∧ · · · ∧µÃn(an)

)
(2)

where ω̄i = ωi∑n
i=1ωi

, and σ : {1, · · · ,n} −→ {1, · · · ,n} is a per-
mutation function such that aσ (i) ≥ aσ (i+1), ∀i = 1, · · · ,n−1,
i.e., aσ (i) is the ith largest element in the set {a1, · · · , an}.”

Definition (2) can lead to a procedure for implement-
ing T1OWA operations, called the Direct Approach [4].
Alternatively, one can define T1OWA operators using the
α-cuts of a fuzzy set [5] as follows:

Definition 2. “Let
{
W̃ i

}n
i=1

be a set of linguistic weights
characterised by fuzzy sets on the domain of discourse U =
[0,1], and α ∈ [0,1]. The α-level type-1 OWA operator with
α-cuts

{
W̃ i
α

}n
i=1

is the operator that aggregates the α-cuts of
the fuzzy sets {Ã1, · · · , Ãn} as follows:

Φα

(
Ã1
α , · · · , Ãnα

)
=

n∑
i=1
ωiaσ (i)

n∑
i=1
ωi

∣∣∣∣∣∣ωi ∈ W̃ i
α , ai ∈ Ãiα , i = 1, · · · ,n

 (3)

where σ is a permutation function such that aσ (i) ≥
aσ (i+1),∀i = 1, · · · ,n − 1, W̃ i

α = {ω|µW̃ i (ω) ≥ α}, and Ãiα =
{x|µÃi (x) ≥ α}.”

In fact, one can use the α-level sets Φα

(
Ã1
α , · · · , Ãnα

)
to

create a fuzzy set as follows:

G̃ = ∪
0≤α≤1

αΦα
(
Ã1
α , · · · , Ãnα

)
(4)

where the membership function is

µG̃(x) = ∨
α:x∈Φα(Ã1

α ,··· ,Ãnα)
α (5)

The above two methods of aggregating fuzzy sets via
Yager’s OWA mechanism are equivalent [5] as stated
below.

Theorem 1 (Representation Theorem of T1OWA Op-
erators). “Given a set of linguistic weights

{
W̃ i

}n
i=1

in the
form of fuzzy sets on U . For any fuzzy sets Ã1, · · · , Ãn on
F(X), let Y be the outcome aggregation result defined in (2)
and G̃ be the result defined in (4), then Ỹ = G̃.”

According to this Representation Theorem, one can
implement the T1OWA aggregation through a series of
α-level T1OWA operators. This provides a new way of
theoretically analysing the properties of T1OWA op-
erators. The procedure for implementing the T1OWA
aggregation through a series of α-level T1OWA operators
is called the Alpha-Level Approach [5].
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III. Join and Meet Based Partial Order Relation of
Fuzzy Sets

Zadeh defined the meet and the join of fuzzy sets to
aggregate linguistic variables Ã and B̃ for the statements
“Ã and B̃” and “Ã or B̃” respectively [6]. The meet and
the join of fuzzy sets now become fundamental operators
in developing type-2 fuzzy systems [7], [8].

Definition 3. Given two fuzzy sets S̃ and T̃ , the join (∪)
and meet (∩) operators are defined as

µS̃∪T̃ (v) = sup
s∨ t = v
s, t ∈ X

(
µS̃ (s)∧µT̃ (t)

)
(6)

µS̃∩T̃ (v) = sup
s∧ t = v
s, t ∈ X

(
µS̃ (s)∧µT̃ (t)

)
(7)

where sup is a t-conorm, ∧ is the minimum operator and ∨
is the maximum operator.

It should be noted that the join (6) and the meet (7)
operators can aggregate a set of criteria based on an
imperative, such as “one of the criteria should be satisfied”
and “all the criteria should be satisfied” respectively [6].

A. Join and Meet are T1OWA Operators
By appropriately choosing linguistic weights in a
T1OWA operator, the join operator (6) of fuzzy sets is,
in fact, a special T1OWA operator.

Theorem 2. Let a T1OWA operator, J, be defined by the first
linguistic weight being the singleton weight 1̃: W̃1 = 1̃, all
other weights being the singleton weight 0̃: W̃i = 0̃ (i , 1),
where,

µ1̃(ω) =
{

1 f or ω = 1
0 f or ω , 1 (8)

µ0̃(ω) =
{

1 f or ω = 0
0 f or ω , 0 (9)

For any groups of fuzzy sets
{
Ãi

}n
i=1

,

J
(
Ã1, Ã2, · · · , Ãn

)
=

⋃n

i=1
Ãi (10)

Proof: Omitted

Example 2 in the Supplemental Material shows the join
operation as a T1OWA operator in nature.

Interestingly, in T1OWA aggregation, if the first lin-
guistic weight moves towards 1̃, all the others towards
0̃ (see Example 3 in the Supplemental Material), then this
operator demonstrates a join-like behavior. This type of
operator is called a join-like T1OWA operator.

Similarly, the meet operation (7) of fuzzy sets is also
a special T1OWA operator.

Theorem 3. Let a T1OWA operator, M, be defined by the
last linguistic weight being the singleton weight 1̃ : W̃n = 1̃,
all the others being the singleton weight 0̃ : W̃i = 0̃ (i , n) .
For any groups of fuzzy sets

{
Ãi

}n
i=1

,

M
(
Ã1, Ã2, · · · , Ãn

)
=

⋂n

i=1
Ãi (11)

Proof: Omitted

Example 5 in the Supplemental Material shows the
results of the Meet operator to aggregate three fuzzy
aggregated objects.

Correspondingly, in T1OWA aggregation, if the last
linguistic weight moves towards 1̃, all the other weights
towards 0̃, then this operator demonstrates meet-like type
behavior (see Example 6 in the Supplemental Material). We
call it a meet-like T1OWA operator.

B. Partial Order Relation of Fuzzy Sets

The set of real numbers R is linearly ordered, and the
(R,∧,∨) forms a lattice. Then, for any a,b ∈R, a partially
ordered relation “ ≥ ”(“ ≤ ”) can be defined as

s ≥ t ⇐⇒ s∨ t = s
⇐⇒ s∧ t = t (12)

As a matter of fact, according to Zadeh’ Extension
Principle, the meet (∩) and join (∪) operators are just
fuzzification of the min (∧ ) and max (∨) operators of
crisp numbers, respectively. In this way, S̃∩ T̃ and S̃∪ T̃
are no other than the fuzzified minimum, S̃, and fuzzfied
maximum, T̃ , of the fuzzy sets. It can be proved that
(F(R),∩,∪) is a distributive lattice [15], with partial order
relation defined as follows:

Definition 4. Given two fuzzy numbers S̃ and T̃ , a par-
tially ordered relation “ < ” is defined as

S̃ < T̃ ⇐⇒ S̃ ∪ T̃ = S̃
⇐⇒ S̃ ∩ T̃ = T̃

(13)

We have the following theorem:

Theorem 4. Let S̃ and T̃ ∈ F(R) be fuzzy numbers with
core centres v1 and v2 respectively, and v1 ≥ v2, then based
on the t-conorm and t-norm,
S̃ < T̃ ⇐⇒ µS̃ (s) ≤ µT̃ (s) for s ≤ v2 and µS̃ (s) ≥ µT̃ (s)

for s ≥ v1.

Proof:
1) First, if S̃ < T̃ , then according to (13), for any s ≤ v2,

we have µT̃ (v2) = 1 and

µT̃ (s) = µS̃∩T̃ (s)
= sup

s1 ∧ s2 = s
s1, s2 ∈ X

(
µS̃ (s1)∧µT̃ (s2)

)

Because x∧ v2 = s,

µT̃ (s) ≥ µS̃ (s)∧µT̃ (v2)
= µS̃ (s)∧ 1
= µS̃ (s)

For any s ≥ v1, we have µS̃ (v1) = 1 and

µS̃ (s) = µS̃∪T̃ (s)
= sup

s1 ∨ s2 = s
s1, s2 ∈ X

(
µS̃ (s1)∧µT̃ (s2)

)
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Because v1 ∨ s = s,

µS̃ (s) ≥ µS̃ (v1)∧µT̃ (s)
= 1∧µT̃ (s)
= µT̃ (s)

2) If µS̃ (s) ≤ µT̃ (s) for any x ≤ v2 and µS̃ (s) ≥ µT̃ (s) for
any s ≥ v1, we prove S̃ ∪ T̃ = S̃ in the following.
Let us denote C̃ ≡ S̃ ∪ T̃ . For any s, s1 and s2 ∈ X
with s1 ∧ s2 = s, then s = s1 or s = s2. Hence,
the membership function of fuzzy set C̃ can be
decomposed as follows:

µC̃(s) = u1(s)∨u2(s)

where
u1(s) = ∨

s1:s1≤s

(
µS̃ (s1)∧µT̃ (s)

)
= µT̃ (s)∧

(
∨

s1:s1≤s
µS̃ (s1)

)
u2(s) = ∨

s1:s1≤s

(
µS̃ (s)∧µT̃ (s1)

)
= µS̃ (s)∧

(
∨

s1:s1≤s
µT̃ (s1)

)
Then if s ≤ v2, the µS̃ (·) and µT̃ (·) are both non-
decreasing functions. So we have u1(s) = µT̃ (s) ∧
µS̃ (s), and u2(s) = µS̃ (s)∧µT̃ (s), which lead to

µC̃(s) = µS̃ (s)∧µT̃ (s)
= µS̃ (s)

If v2 ≤ s ≤ v1, µT̃ (·) is non-increasing, and µS̃ (·) is
non-decreasing. Then we have u1(s) = µT̃ (s)∧ µS̃ (s),
and u2(s) = µS̃ (s)∧ 1 = µS̃ (s), which lead to

µC̃(s) = µS̃ (s)∨
(
µT̃ (s)∧µS̃ (s)

)
= µS̃ (s)

If v1 ≤ x, µT̃ (·) is non-increasing, and µS̃ (·) is
non-increasing. So we have sup

s1:s1≤s
µS̃ (s) = 1, and

sup
s1:s1≤x

µT̃ (s) = 1. Then,

µC̃(s) = µS̃ (s)∨µT̃ (s)
= µS̃ (s)

Hence S̃ ∪ T̃ = S̃.

Theorem 4 provides a more strict finding than that
investigated by Ramik and Rimanex [15] in the context
of fuzzification of the min and max operators, which
states that S̃ < T̃ ⇐⇒ there must be v1, u∗ and v2
with v1 ≥ u∗ ≥ v2, µS̃ (v1) = µT̃ (v2) = 1, µS̃ (s) ≤ µT̃ (s) for
any s < u∗ and µS̃ (s) ≥ µT̃ (s) for any s > u∗.

Based on the α-cuts of fuzzy sets, the following order
relation has been defined [15]:

Definition 5. “For any fuzzy numbers S̃ and T̃ , an ordering
relation ≥̃ is defined as

S̃≥̃T̃ ⇐⇒ S̃α+ ≥ T̃α+ and S̃α− ≥ T̃α−∀α ∈ [0, 1]

Fig. 1: Two fuzzy sets Ã and B̃ having ordering relation.

where S̃α =
[
S̃α−, S̃α+

]
and Tα =

[
T̃α−, T̃α+

]
are the α-cuts of

S̃ and T̃ , respectively.”

The following example shows an ordering relation
between two fuzzy sets.

Example 1 (Ordering Relation). Figure 1 illustrates two
fuzzy sets such that Ã ≥̃ B̃.

The relation ≥̃ is a partially ordered relation on F(R),
known as the fuzzy max order [15]. Interestingly, the
two apparently different order relations , < and ≥̃, are
equivalent on F(R) as it was proved in [15]:

Lemma 1. The following three relations are equivalent for
any fuzzy numbers S̃ and T̃ :
i) S̃ ≥̃ T̃ ; ii) S̃ ∪ T̃ = S̃; iii) S̃ ∩ T̃ = T̃

IV. Joinness and meetness of a T1OWA operator

A popular way to evaluate the behaviour of an OWA
operator is to use the measure of orness and its dual
andness proposed by Yager [2], [3]. The two measures
aim to assess the similarity of an OWA operator with the
maximum and minimum operators, respectively based
on the associated weighting vector.

Similarly, in T1OWA aggregation, the following def-
initions of joinness and meetness associated with the
linguistic weights evaluate how the T1OWA aggregation
behaves like the operations of join and meet, respectively.

Definition 6. For a T1OWA operator with fuzzy set weights{
W̃i

}n
i=1

on U ⊆ [0, 1], its joinness is:

µjoinness(u) = sup
jω1,··· ,ωn = u

µW̃1
(ω1) ∗ · · · ∗µW̃n

(ωn) (14)

where ∗ is a t-norm operator, and

jω1,··· ,ωn =
1

(n− 1)
n∑
i=1
ωi

n∑
i=1

(n− i)ωi (15)

The corresponding meetness of the T1OWA is:

µmeetness(u) = sup
mω1,··· ,ωn = u

µW̃1
(ω1) ∗ · · · ∗µW̃n

(ωn) (16)
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where

mω1,··· ,ωn = 1− 1

(n− 1)
n∑
i=1
ωi

n∑
i=1

(n− i)ωi (17)

Clearly, the defined joinness and meetness of a T1OWA
are fuzzy sets describing the linguistic expressions of ag-
gregations behaving like the join and meet, respectively.

It is not difficult to calculate that the joinness and
meetness of the join operator as a particular T1OWA
operator (see the Theorem 2), are joinness

({
W̃i

}n
i=1

)
= 1̃

and meetness
({
W̃i

}n
i=1

)
= 0̃, which further confirms that

this particular T1OWA operator is the join operator of
fuzzy sets. Correspondingly, the joinness and meetness
of the meet operator as a particular T1OWA operator
(see the Theorem 3), are joinness

({
W̃i

}n
i=1

)
= 0̃ and

meetness
({
W̃i

}n
i=1

)
= 1̃, confirming that this particular

T1OWA operator is the meet operator of fuzzy sets.
Moreover, Example 4 in the Supplemental Material

depicts the joinness of the T1OWA operator shown in
Example 3 in the Supplemental Material.

V. Properties of T1OWAOperators

Yager’s OWA operators possess the properties of idempo-
tence, monotonicity, compensativeness, and commutativity
[2]. In this section, we investigate the conditions for these
properties to be verified by T1OWA operators.

Firstly, because Yager’s OWA operators and the sup
operators in the 6 and 7 are commutative, the T1OWA
operator is commutative as well according to its definition
in (2).

7)

Theorem 5. For any T1OWA operator Φ and Ã1, · · · , Ãn ∈
F(R),

Φ
(
Ã1, · · · , Ãn

)
= Φ

(
Ãp1 , · · · , Ãpn

)
where the sequence {p1, · · · ,pn} is a permutation of the
sequence {1, · · · ,n}.

The T1OWA operators with linguistic weights also
verify the property of idempotence as addressed by the
following Theorem.

Theorem 6. For any fuzzy number Ã, the T1OWA operators
Φ with fuzzy number weights verify

Φ
(
Ã, · · · , Ã

)
= Ã

Proof: Let y ∈ R and w1, · · · ,wn, a1, · · · , an ∈ R such

that y =
n∑
i=1
w̄iaσ (i) with w̄i = wi

/ n∑
i=1
wi . Convexity of Ã ∈

F(R) implies that

µÃ(y) = µÃ

(
n∑
i=1
w̄iaσ (i)

)
≥ µÃ(aσ (1))∧ · · · ∧µÃ(aσ (n))
= µÃ(a1)∧ · · · ∧µÃ(an)
≥ µW̃ 1(w1)∧ · · · ∧µW̃ n(wn)∧µÃ(a1)∧ · · · ∧µÃ(an)

The above inequality is true for any possible set of values

w1, · · · ,wn, a1, · · · , an ∈ R such that y =
n∑
i=1
w̄iaσ (i) and

therefore it is true that

µÃ(y) ≥ sup
n∑
k=1

w̄iaσ (i) = y

wi ∈U,ai ∈R

(
µW̃ 1(w1)∧ · · · ∧µW̃ n(wn)
∗µÃ1(a1)∧ · · · ∧µÃn(an)

)

= µỸ (y)

where Ỹ = Φ
(
Ã1, · · · , Ãn

)
.

In order to prove µỸ (y) = µÃ(y), we only need to find
a specific combination of ŵ1, · · · , ŵn, â1, · · · , ân ∈ R such
that µW̃ 1(ŵ1)∧· · ·∧µW̃ n(ŵn)∧µÃ(â1)∧· · ·∧µÃ(ân) reaches
µÃ(y). For W̃ i (∀i) being a fuzzy number, there exists
at least one value ŵi such that µW̃ i (ŵi) = 1 (∀i). Taking
âi = y (∀i), we have

µW̃ 1(ŵ1)∧ · · · ∧µW̃ n(ŵn)∧µA(â1)∧ · · · ∧µÃ(ân)
= µÃ(y)∧ · · · ∧µÃ(y)
= µÃ(y)

Consequently µG̃(y) = µÃ(y).

In what follows, we investigate how monotonicity is
verified by T1OWA operators. Firstly, we propose the
alpha-equivalently-ordered relation between two sets of
fuzzy numbers:

Definition 7. Let
{
Ãi

}n
i=1

and
{
B̃i

}n
i=1

be two sets of fuzzy
numbers. The σ and η represent permutations of {1, · · · ,n}
defined by

{
Ãiα+

}n
i=1

and
{
Ãiα−

}n
i=1

, respectively. If for any
α ∈ [0,1]

Ã
σ (1)
α+ ≥ Ã

σ (2)
α+ ≥ · · · ≥ Ã

σ (n)
α+ =⇒

B̃
σ (1)
α+ ≥ B̃

σ (2)
α+ ≥ · · · ≥ B̃

σ (n)
α+

and
Ã
η(1)
α− ≥ Ã

η(2)
α− ≥ · · · ≥ Ã

η(n)
α− =⇒

B̃
η(1)
α− ≥ B̃

η(2)
α− ≥ · · · ≥ B̃

η(n)
α−

then the fuzzy sets
{
B̃i

}n
i=1

are said to be alpha-equivalently-

ordered with the sets
{
Ãi

}n
i=1

.

The following example illustrates the alpha-
equivalently-ordered relation, while Example 7 in
the Supplemental Material gives a counterexample of the
alpha-equivalently-ordered relation.

Example 2 (Alpha-equivalently-ordered Relation). Fig-
ure 2 illustrates a group of three fuzzy numbers {B̃1, B̃2, B̃3}
being alpha-equivalently-ordered with the group of three
fuzzy numbers {Ã1, Ã2, Ã3}.

The following Theorem states the conditions under
which T1OWA operators are monotonic in the sense of
partial order relation of fuzzy sets.

Theorem 7. Let Φ be a T1OWA operator. Supposing the
two sets of fuzzy numbers

{
Ãi

}n
i=1

and
{
B̃i

}n
i=1

be alpha-



IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. **, NO. **, ** 2019 6

Fig. 2: Alpha-equivalently-ordered fuzzy numbers
B̃1, B̃2, B̃3 (bottom) with Ã1, Ã2, Ã3 (up)

equivalently-ordered. If ∀i, Ãi < B̃i , then

Φ
(
Ã1, · · · , Ãn

)
< Φ

(
B̃1, · · · , B̃n

)
Proof: As defined in (3), for each α ∈ [0,1], the α-

level aggregation of
{
Ãi

}n
i=1

by Φ is

Φα

(
Ã1
α , · · · , Ãnα

)
=

n∑
i=1
wiaσ (i)

n∑
i=1
wi

∣∣∣∣∣∣wi ∈ W̃ i
α , ai ∈ Ãiα , i = 1, · · · ,n


We know from Theorem 1 that Φ

(
Ã1, · · · , Ãn

)
α

=

Φα

(
Ã1
α , · · · , Ãnα

)
, therefore(

Φ
(
Ã1, · · · , Ãn

))
α+

= Φα

(
Ã1
α , · · · , Ãnα

)
+

= max
W̃ i
α− ≤ wi ≤ W̃ i

α+
Ãiα− ≤ ai ≤ Ãiα+

n∑
i=1
wiaσ (i)

n∑
i=1
wi

= max
W̃ i
α− ≤ wi ≤ W̃ i

α+

n∑
i=1
wiÃ

σ (i)
α+

n∑
i=1
wi

Because Ãi < B̃i , and
{
B̃i

}n
i=1

is alpha-equivalently-ordered

with
{
Ãi

}n
i=1

, then we have that Ãσ (1)
α+ ≥ Ã

σ (2)
α+ ≥ · · · ≥ Ã

σ (n)
α+

implies B̃σ (1)
α+ ≥ B

σ (2)
α+ ≥ · · · ≥ B̃

σ (n)
α+ . Thus,

(
Φ

(
Ã1, · · · , Ãn

))
α+

≥ max
W̃ i
α− ≤ wi ≤ W̃ i

α+

n∑
i=1
wi B̃

σ (i)
α+

n∑
i=1
wi

= Φα

(
B̃1
α , · · · , B̃nα

)
+

Because Φ
(
B̃1, · · · , B̃n

)
α

= Φα

(
B̃1
α , · · · , B̃nα

)
, we conclude

that
(
Φ

(
Ã1, · · · , Ãn

))
α+
≥

(
Φ

(
B̃1, · · · , B̃n

))
α+
. A similar rea-

soning leads to
(
Φ

(
Ã1, · · · , Ãn

))
α−
≥

(
Φ

(
B̃1, · · · , B̃n

))
α−
.

Hence
Φ

(
Ã1, · · · , Ãn

)
< Φ

(
B̃1, · · · , B̃n

)

The following example illustrates how the monotonic
relation of aggregation in terms of < can be maintained
for the aggregated objects which are alpha-equivalently-
ordered.

Example 3 (Monotonic Relation). The fuzzy sets
{
B̃i

}3
i=1

depicted in Figure 2 are alpha-equivalently-ordered with{
Ãi

}3
i=1

, and Ãi < B̃i (i = 1,2,3). Figure 4 illustrates the
results of aggregating the fuzzy numbers in Figure 2 by a
T1OWA operator Φ with the linguistic weights defined in
Figure 3 respectively: Ḡ = Φ

(
Ã1, Ã2, Ã3

)
, Ĝ = Φ

(
B̃1, B̃2, B̃3

)
.

It is clear that for each α ∈ [0,1], Ḡα− ≥ Ĝα−, and Ḡα+ ≥
Ĝα+, i.e. Ḡ < Ĝ.

Fig. 3: Linguistic weights of a T1OWA operator: W̃ 1 (top-
left), W̃ 2 (top-right), and W̃3 (bottom)

Fig. 4: Monotonic relation preserved in the results of
aggregating the fuzzy numbers in Fig. 2 by a T1OWA
operator defined by the linguistic weights in Fig.3

The next Theorem states that the meet and join oper-
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ators are the lower bound and upper bound of T1OWA
aggregation in the sense of partial order relation.

Theorem 8. Any T1OWA operator Ψ is between the join,
J, and the meet, M:

J
(
Ã1, · · · Ãn

)
< Ψ

(
Ã1, · · · , Ãn

)
<M

(
Ã1, · · · Ãn

)
Proof: According to (3), for each α ∈ [0,1], the α-

level aggregation of
{
Ãi

}n
i=1

by the T1OWA operator, J ,
is

Jα
(
Ã1
α , · · · , Ãnα

)
=

n∑
i=1
wiaσ (i)

n∑
i=1
wi

∣∣∣∣∣w1 ∈ 1̃α , wi ∈ 0̃α (i , 1), ai ∈ Ãiα(∀i)


We have that 1̃α = {1}, 0̃α = {0}. Thus,

Jα
(
Ã1
α , · · · , Ãnα

)
=

{
aσ (1)|ai ∈ Ãiα , i = 1, · · ·n

}
=

{
max{a1, · · · , an}|ai ∈ Ãiα(∀i)

}
As a result, the end points of the α-cut intervals are

Jα
(
Ã1
α , · · · , Ãnα

)
+

= max
(
Ã1
α+, · · · , Ãnα+

)
;

Jα
(
Ã1
α , · · · , Ãnα

)
−

= max
(
Ã1
α−, · · · , Ãnα−

)
The α-level aggregation of

{
Ãi

}n
i=1

by a general T1OWA
operator Ψ is,

Ψα

(
Ã1
α , · · · , Ãnα

)
=


n∑
i=1
wiaσ (i)

n∑
i=1
wi

∣∣∣∣∣∣wi ∈ W̃ i
α , ai ∈ Ãiα(∀i)


Furthermore,(

Ψ
(
Ã1, · · · , Ãn

))
α+

= Ψα

(
Ã1
α , · · · , Ãnα

)
+

= max
W̃ i
α− ≤ wi ≤ W̃ i

α+
Ãiα− ≤ ai ≤ Ãiα+

n∑
i=1
wiaσ (i)

n∑
i=1
wi

= max
W̃ i
α− ≤ wi ≤ W̃ i

α+

n∑
i=1
wiÃ

σ (i)
α+

n∑
i=1
wi

≤ max
W̃ i
α− ≤ wi ≤ W̃ i

α+

n∑
i=1
wi max

(
Ã1
α+, · · · , Ãnα+

)
n∑
i=1
wi

= max
(
Ã1
α+, · · · , Ãnα+

)
We have proved that

(
Ψ

(
Ã1, · · · , Ãn

))
α+

≤
Jα

(
Ã1
α , · · · , Ãnα

)
+
. Similarly, we have

(
Ψ

(
Ã1, · · · , Ãn

))
α−
≤

Jα
(
Ã1
α , · · · , Ãnα

)
−
. So we prove that

J
(
Ã1, · · · , Ãn

)
< Ψ

(
Ã1, · · · , Ãn

)

We omit the proof of the other inequality:
Ψ

(
Ã1, · · · , Ãn

)
< M

(
Ã1, · · · , Ãn

)
, because it follows

the same above line of reasoning.

According to Theorem 8, the join and meet operators
are two extreme cases of T1OWA operators. T1OWA
aggregation is located between the meet and the join of all
the individual operands, i.e., T1OWA operators are com-
pensative: low aggregation in the sense of approaching
the meet operation is compensated by high aggregation
in the sense of approaching the join operation.

Example 8 in the Supplemental Material illustrates the
validation of how a T1OWA aggregation maintains the
compensative property in terms of partial roder relations
of fuzzy numbers.

VI. A Case Study and Experimental Results

A. Diabetes Diagnosis by T1OWA Based Fuzzy Inference
System

T1OWA operators have gained many real-world ap-
plications in different domains [10], [12], [13]. In this
subsection, we further provide a practical application
of T1OWA operators to ‘Pima Indian Diabetes’ for in-
tegrated patient diagnosis.

The ‘Pima Indian Diabetes’ dataset [18] describes the
clinical conditions of 768 females who develop Type-2
diabetes. All patients in this dataset were women (≥ 21
years old): 500 (65.1%) healthy and 268 (34.9%) with di-
abetes. It can be seen that this is an imbalanced dataset.
Eight attributes describe the patients: age (years), plasma
glucose concentration (plaGlu), number of times preg-
nant, triceps skin fold thickness (mm), diastolic blood
pressure (mmHg), body mass index (BMI) ((weight in
kg)/(height in m2)), 2-hour serum insulin (mmol/L),

and diabetes pedigree function. The outcome is a class
variable (0 or 1): 1=diabetic, 0=non-diabetetic.

In contrast to other studies using the ‘Pima Indian
Diabetes’ dataset, we take into account two further un-
derlying issues with the data. One issue is that clearly
this is an imbalanced dataset: hence, the widely used
assessment metric, classification rate (CR) (also known as
accuracy), is not appropriate and not reliable to assess
such a real clinical scenario. For imbalanced datasets,
which are very common in clinical studies, the F1-
score and balanced CR (BCR) are a preferred metric,
as they makes more sense than others: F1 − score =
(2×recall×precision)/(recall+precision); BCR = (sensitivity+
specificity)/2.

The second issue is that the majority of the existing
studies using this dataset did not consider its underlying
missing value problem. Indeed, there are no specifically
labelled missing values in the dataset. But this cannot be
the case, because so many zeros are used to represent the
status of attributes where they are biologically impos-
sible, such as the attributes of glucose concentration (5
records of zeros), triceps skin fold thickness (227 records
of zeros), blood pressure (35 records of zeros), insulin
(374 records of zeros), and body mass index (11 records
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of zeros). It is highly plausible that these zero values
were actually originally used to encode missing values
in these fields. In our study, we considered these zeros
as missing values and used the nearest-neighbor method
to impute them. Then we apply different T1OWA aggre-
gations to non-stationary fuzzy sets [16], [17] to find the
optimal diagnoses of diabetes.

Given a standard fuzzy system as a baseline sys-
tem, the T1OWA based non-stationary fuzzy system
(T1OWANFS) (see Figure 8 in the Supplemental Material)
proceeds as follows. First, in each run, the crisp num-
bers of each input variable are fuzzified by a fuzzifier
function, such as singleton or non-singleton function.
These fuzzified input sets then feed into the inference
engine with the given rulebase to conduct operations of
union and intersection on these fuzzy sets, and perform
composition of the relations. Such a process is repeated
n runs, so n fuzzy set outputs are produced. Then a
T1OWA aggregation operation is applied to these sets
to achieve an overall solution. Finally, a crisp output is
generated via defuzzification of this overall output fuzzy
set.

The rulebase in this study consists of the following
four rules based on two attributes of plaGlu and BMI:

1) Rule 1: if (plaGlu is high) then Diabetic;
2) Rule 2: if (plaGlu is medium) and (BMI is high) then

Diabetic;
3) Rule 3: if (plaGlu is low) then Non-Diabetic;
4) Rule 4: if (plaGlu is medium) and (BMI is low) then

Non-Diabetic.

where the variables plaGlu, BMI and outcome are de-
scribed by baseline fuzzy sets (see Figure 9 of the Sup-
plemental Material). Their corresponding non-stationary
fuzzy sets were generated based on these baseline sets
[16], [17]. In our study, the non-stationary fuzzy sys-
tem ran ten times to generate the diagnoses for each
patient (Figure 10 in the Supplemental Material shows
an example of ten fuzzy decision outputs for a patient).
The system performance is evaluted in terms of F1-score
and BCR.

We use five different types of T1OWA operators in this
case study to aggregate the fuzzy diagnosis from non-
stationary fuzzy inference engine (see Figure 8 in the
Supplemental Material):

1) the standard join operator: denoted as join NFS;
2) the standard meet operator: denoted as meet NFS;
3) join-like T1OWA operators with the linguistic

weight W̃1 as in Figure 3a and others W̃i(i , 1) as in
Figure 3b in the Supplemental Material to aggregate
the 10 output sets for diabetes diagnosis: denoted
as JLT1OWA NFS;

4) meet-like T1OWA operators with the last linguistic
weight W̃10 as in Figure 3a and others W̃i(i , 10) as
in Figure 3b in the Supplemental Material: denoted
as MLT1OWA NFS;

5) a T1OWA operator with linguistic weights
implementing the fuzzy majority represented

by the type-2 quantifier ‘most’ [4]: denoted as
T2MT1OWA NFS.

Figure 5 depicts an example of corresponding results
of aggregating ten fuzzy decisions from non-stationary
fuzzy inference engine for one patient (See Figure 10
in the Supplemental Material) by the above five T1OWA
operators. These aggregated fuzzy outputs are then de-
fuzzified to generate crisp values as final outputs.

The above examples demonstrate the advantages of
these T1OWA operators to aggregate the uncertain infor-
mation modelled by fuzzy sets. The T2MT1OWA NFS
operator implements the ‘soft’ majority in aggregating a
group of uncertain decisions (perhaps expressed linguis-
tically as “most of the decisions should be satisfied”), which
is much closer to the real human perception in decision
making than traditional aggregation methods. Figure
11 in the Supplemental Material illustrates the joinness
of the operator, T2MT1OWA NFS, which clearly shows
that the quantifier ‘most’ guided operator approaches the
meet operation (expressed linguistically as “all decisions
should be satisfied”). As a matter of fact, such a linguistic
quantifier based aggregation can be treated as a mani-
festation of a semantically guided aggregation [2], [4].

Fig. 5: Example of aggregation results of 10 fuzzy output
decisions (from non-stationary fuzzy inference engine
for a patient) by the five different T1OWA operators.

To validate the compensative property of these
T1OWA operators, let us assume the aggregation
results of the five operators shown in Figure 5
(join NFS, meet NFS, JLT1OWA NFS, MLT1OWA NFS
and T2MT1OWA NFS) be represented as J̃ , M̃, J̃L, M̃L,
and T̃ , respectively. Taking T2MT1OWA NFS as an ex-
ample, for any α level in Figure 5, it can be seen that

J̃α+ ≥ T̃α+ ≥ M̃α+ and J̃α− ≥ T̃α− ≥ M̃α−∀α ∈ [0, 1]

Therefore, according to Definition 5, and because the
relations < and ≥̃ are equivalent, we get J̃ < T̃ < M̃,
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TABLE I: Performances of different approaches to diabetes diagnosis

Approach CR Recall Specificity Precision F1-score BCR
Meet NFS 0.760 0.519 0.890 0.716 0.602 0.704
MLT1OWA NFS 0.760 0.519 0.890 0.716 0.602 0.704
T2MT1OWA NFS 0.759 0.586 0.852 0.680 0.629 0.719
JLT1OWA NFS 0.746 0.683 0.780 0.625 0.652 0.731
Join NFS 0.746 0.683 0.780 0.625 0.652 0.731
FWA 0.751 0.619 0.822 0.651 0.635 0.721
TSFSTR 0.716 0.455 0.856 0.629 0.528 0.656

TABLE II: Time-costs of Type-1 OWA Aggregations for Diabetes Diagnoses (in minutes)

Setting nx = 100,nu = 30,n = 10 nx = 10,nu = 5,n = 3
Method Alpha-Level Approach Direct Approach Alpha-Level Approach Direct Approach
join NFS 2.927 Infeasible 0.295 8.786
JLT1OWA NFS 2.861 Infeasible 0.294 123640.3
MLT1OWA NFS 2.919 Infeasible 0.302 109579.8
meet NFS 2.982 Infeasible 0.297 8.589

i.e., the T2MT1OWA operator verifies Theorem 8, and the
compensative property holds in this case study.

Furthermore, we show a comparison (in terms of F1-
score and BCR) with the following existing methods:
(i) standard fuzzy weighted average (FWA) operators
[19]; and (ii) a zero-order Takagi-Sugeno fuzzy system
with two rules (TSFSTR) [20]. Table I summarises the
performances of these approaches. It can be seen that the
JLT1OWA NFS and join achieved the best performance
in terms of F1-score and BCR. The JLT1OWA NFS sig-
nificantly improved the recall without sacrificing much
precision, so that a better F1-score was achieved.

B. Validation of Computing Efficiencies of Alpha-Level Ap-
proach to T1OWA Operations in Real World Applications
The Direct Approach [4] and Alpha-Level Approach [5]
generate the same results of aggregating fuzzy sets as
shown in the Representation Theorem of Type-1 OWA Op-
erators (Theorem 1). However, the Direct Approach is an
exponential-time algorithm that takes O (Kn) operations
[5], in which the constant K depends on nu · nx, where
n is the number of fuzzy sets to be aggregated, nu is
the number of sampling points on the domain [0, 1]
of the T1OWA operator’s linguistic weights, and nx is
the number of sampling points on the domain of the
fuzzy sets to be aggregated. In comparison, the Alpha-
Level Approach is a linear-time algorithm, taking O(n)
operations [5]. Therefore, the Alpha-Level Approach can
be used to implement T1OWA aggregations in real-time
applications.

In the subsection VI-A, the T1OWA based fuzzy deci-
sion making for diabetes was implemented by the Alpha-
Level Approach. The domains of the linguistic weights
and fuzzy sets have to be discretized. The default settings
are: nu = 30 and nx = 100, while n = 10 (i.e. ten fuzzy
decisions). However, such settings are unworkable for
the Direct Approach in implementation due to the over-
sized vectors which need to be created by the computer.

For comparison, therefore, simplified settings are used,
such that nu = 5 and nx = 10, while n = 3. Even under
such simplified settings, it is estimated that the Direct
Approach still takes days to complete the diagnoses for all
768 patients using the meet-like or join-like T1OWA oper-
ators. Our solution to calculation of time-cost was: firstly,
the time-cost, tc1, of the Direct Approach to aggregating
three fuzzy decisions for only one patient is calculated;
then, the total time-cost is 768 · tc1. Table II shows the
time-costs of the two approaches to diagnosing diabetic
patients by the T1OWA operators, join NFS, meet NFS,
JLT1OWA NFS and MLT1OWA NFS. This validated
that the Alpha-Level Approach can achieve much higher
computing efficiency than the Direct Approach to aggre-
gating fuzzy sets in the manner of OWA operation in
real-world applications.

The experimental results were generated in R on
a computer with Intel(R) Core i5-4440@3.10GHz and
16GB memory. The R codes for type-1 OWA aggregations
are available upon request.

VII. Discussion and Conclusion

As a generalization of Yager’s OWA operator, T1OWA
operators provide an efficient tool to aggregate uncertain
information modelled by fuzzy sets in soft decision
making. By appropriately selecting fuzzy sets for the
weights, various forms of T1OWA operators can be
created to fulfill different tasks under multi-granular
linguistic contexts. This has been demonstrated in the
above case study of diabetic diagnosis, which is an
imbalanced data problem. By appropriately selecting
the uncertain weights to favour the rare class, such as
the join-like T1OWA operator for the diabetic class, the
T1OWA aggregation approach has the potential to en-
able standard classifiers to be a cost-sensitive approach,
whereby the cost of misclassifying the rare class is higher
than the cost of misclassifying the other class. This topic
merits further research. In addition, to date, T1OWA
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operators only consider the t-norm (minimum) and t-
conorm (maximum); but how T1OWA aggregations and
properties vary by using different forms of t-norm and
t-conorm is an interesting research problem.

In summary, this paper has proven that T1OWA oper-
ators verify the same properties which hold for Yager’s
OWA operator, namely: idempotence, monotonicity, com-
pensativeness, and commutativity. Such theoretical analy-
ses provide a solid foundation for T1OWA operators to
be applied widely in different scenarios.
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