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INVESTIGATION, D E V E L O P M E N T AND 
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D I G I T A L SIGNAL PROCESSING METHODS 

FOR ENHANCING HUMAN E E G s 

Mark Tremaine Hellyar BSc(Hons), A M I E E . 

ABSTRACT 
This thes is details the development of n e w and reliable techniques 

for enhancing the human Electroencephalogram { E E G I . T h i s deve lopment has 
involved the incorporation of adaptive signal p r o c e s s i n g ( A S P ) techn iques , 
within an artificial intelligence (Al) paradigm, more c lose ly matching the 
implicit signal ana lys is capabilit ies of the E E G expert . 

The need for E E G enhancement , by removal of ocular artefact (OA) , is 
widely recognised . However , convent ional A S P techniques for O A removal 
fail to differentiate be tween O A s and s o m e abnormal cerebral w a v e f o r m s , 
s u c h as frontal s l o w w a v e s . O A removal often results in the corrupt ion of 
these diagnostical ly important cerebral w a v e f o r m s . H o w e v e r , the 
experienced E E G expert is often able to differentiate be tween O A and 
abnormal s l o w w a v e f o r m s , and between different types of O A . T h i s E E G 
expert knowledge is integrated with selectable adaptive filters in an 
intelligent O A removal s y s t e m ( tOARS) . The E E G is e n h a n c e d by only 
removing O A w h e n O A is identified, and by applying the O A removal 
algorithm pre-set for the speci f ic O A type. 

Extens ive E E G data acquisit ion has provided a da tabase of abnormal E E G 
recordings from over 5 0 patients, exhibiting a variety of cerebral 
abnormali t ies. St ructured knowledge elicitation h a s provided over 6 0 
production rules for O A identification in the p r e s e n c e of abnormal frontal 
s low w a v e f o r m s , and for distinguishing be tween O A types . 

The l O A R S w a s implemented on personal computer (PCI b a s e d hardware in 
P R O L O G and C so f tware languages. 2 - s e c o n d , 1 8 - c h a n n e l , E E G signal s e g m e n t s 
are subjected to digital signal p r o c e s s i n g , to extract salient features 
from time, f requency, and contextual d o m a i n s . O A is identified us ing a 
fo rward /backward hybrid inference engine, wi th uncertainty management , 
using the elicited expert rules and extracted signal features. 

Evaluat ion of the s y s t e m h a s been carried out using both normal and 
abnormal patient E E G s , and this s h o w s a high agreement ( 8 2 . 7 % ) in O A 
identification be tween the l O A R S and an E E G expert . Th is novel deve lopment 
provides a signif icant improvement in O A remova l , a n d E E G signal 
enhancement , and will al low more reliable automated E E G ana lys is . 

The investigation detailed in this thesis h a s led to 4 papers , 
including one in a special proceedings of the l E E , and been sub jec t to 
several rev iew art ic les. 
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PURPOSE O F T H E INVESTIGATION. 

. To investigate, develop, and implement new and reliable methods of 

removing ocular artefact (OA) f rom the electroencephalogram (EEG). 

Adaptive signal processing w i l l be guided by a database o f rules and 

heuristics commonly used by the EEG experts, for the identification of OA, 

and the differentiation between OA and abnormal slow cerebral waveforms. 

The rules wi l l operate on characteristic features extracted f rom the EEG 

and electro-oculogram (EOG), using digital signal processing. The 

integration of Expert system (ES) techniques with conventional adaptive 

signal processing w i l l more closely match the implicit signal analysis 

capabilities of the EEG expert. 

. To provide the clinician with an intelligent, adaptive signal 

processing, tool capable o f removing OA from the EEG whilst maintaining 

signals of diagnostic importance. This w i l l lead to more reliable 

diagnosis of neurophysiological disorders and evaluation o f treatments, 

and enable more accurate automated EEG analysis. 

(xi) 



C H A P T E R 1 

lNTRODUg:TlQN. 

1,1 T H E ORIGIN AND M E A S U R E M E N T O F T H E E E C 

The Electroencephalogram (EEG) is a graphical representation o f the 

electrical activity of the brain. The EEG is a widely used and relatively 

inexpensive tool for the diagnosis of neurological disorders and the 

evaluation of subsequent treatments. These include brain abnormalities 

such as those related to tumours, epilepsy, brain in jury , Parkinson's 

disease, Huntin 's Chorea and schizophrenia [Ktonas, 1988]. 

The tiny electrical charges, produced by neuronal activity wi th in the 

brain (Creut^feidi. 1974}, are transmitted by cortical and skull 

tissue to the scalp surface, where they appear as voltages in the 

microvolt range. Electrodes, placed over the surface o f the scalp, are 

used to record the voltage changes, using an international electrode 

placement method (The 10/20 system [Jasper, 19581). 

Each electrode measures the gross electrical activity f r om a vast 

number o f underlying cortical neurons, having been modified by the 

transmission path. The observed effect is one o f a fluctuating voluge 

containing various intermittent rhythms in the range of zero to thirty 

Hertz, and sudden sharp discharges with voltages in the mi l l i vo l t range. 

Figure l . l illustrates the placement o f electrodes, using the 10/20 

system. 

page I 



• 

Figure 1.1 The 10/20 system of electrode localisation [Jasper, 19581. 

Silver silver chloride electrodes are commonly used fo r scalp 

recording electrodes because of their low impedance, low noise, and slow 

dr i f t . Further improvement is made to variations in impedance caused by 

changes in skin electrode contact, i.e. f rom movement, by the use of a 

saline je l ly acting as an interface between skin and electrode. 

EEG measurement is either, between two electrodes (bipolar 

derivation), or between one electrode and a common reference point 

(referential derivation). The reference point must be as distant as 

possible, f rom both the EEG source and also f rom other elecirical sources 

such as heart and muscles, to avoid the introduction o f artefact. Linked 

ear lobes are a popular choice for this reference. Bipolar and 

referential recording EEG measurement is illustrated in figures 1.2 and 
page 2 



1.3 respectively 

v4 

e1 e2 e3 e4 e5 
(a) Ser ia l bipolar l inkage, e l . .5 are e l e c t r o d e potent ia ls . 

V1 . .4 are channe l input vol tages. 

« 3 m* ' « S 

I I 
I 2 

T T 
« 5 

(b) Potential distr ibut ion along a s e r i a l bipolar l inkage 
using e and v a s above. 

Figure 1.2 Bipolar derivation recording. 

e l e2 e 3 
(a) Common reference derivation, ev.3 electrode potentials. 
V1..3 channel input voltages, er reference electrode. 

• 3 

• 3 • 3 • * 

I I I r 
I 2 J « 

(b) Potential distribution using common reference derivation 
using e and v as above. 

Figure 1.3 Common reference derivation recording, 
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A collection of suitably wired electrodes is referred to as a montage 

and each montage w i l l contain as many as 21 channels, or electrode pairs. 

Each montage measures the EEG over a range o f cortical areas (see figure 

1.1). During recording o f the EEG, several such montages w i l l be used, 

enabling the clinician to better localise waveform sources such as the 

likely site of a tumour. 

1.1.1 E E G SIGNAL PATTERNS, 

The EEG has been previously described as containing a number of 

intermittent rhythms and isolated waveforms. For quantitative analysis EEG 

rhythms are divided into 4 main frequency bands: Delta (0.5 - 4Hz) , Theta 

(4 - 8Hz), Alpha (8 - l 3Hz) and Beta (13 - 30Hz). Figure 1.4 illustrates 

examples of EEG rhythms with frequencies in these bands. 

{ 50 yV 

Figure 1.4 Example of rhythms from the standard EEG frequency bands, (a) 

delta, (b) iheta, (c) alpha, and, (d) beta ( f rom Cooper, et al . ,1980). 
page 4 



The respective amplitudes o f EEG signals in these bands is observed to 

be inversely proportional to their frequency [Remomi. / 977 / . The more 

common isolated waveforms are described by Hess, 1966. Figure 1.5 

subdivides isolated waveforms into normal and pathological patterns. 

The definitions o f normal EEG frequencies are a complex function, 

related to age of patient, state of arousal, and region o f the scalp or 

brain f rom which the EEG was obtained. In general, the EEG in infancy and 

early childhood is slower, higher in amplitude and shows less regional 

variation than o f older children and adults. Maturation o f the EEG occurs 

at an age of approximately 14, when the predominant 4-7 Hz (theta) 

measured in early childhood from all scalp regions, changes to a strong 

8-12 Hz rhythmical waveform. This waveform is strongest in the posterior 

regions o f the scalp - the alpha rhythm. The theta rhythm w i l l remain but 

wi l l gradually reduce to less than 25% of the total waveforms present by 

the age o f 20, and become abnormal beyond the age o f 30. 

Cerebral neurons alter their activity when subjected to illness or 

injury. This is most often reflected in the scalp EEG by: 

Slowing and decrease in amplitude of the EEG. 

Increase in the EEG frequency. 

Presence of sudden EEG discharges (paroxysmal activity) d i f fer ing 

f rom the background EEG either in frequency content or 

amplitude or pattern. 

[Ktonas. 1983/ 
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NORMAL PATTERNS 

Lambda waves: <50uV. 
Positive monophasic transients occurring 
occipital region. 

in the 

Sleep spindles: < 50u V. 
Episodic rhythm at about 14 Hz, occurring in the 
frontocentral location during certain stages of sleep. 

K'Complex: @200uV. 
A complex pattern consisting of one or several slow 
waveSy with superimposed faster activity. Maximum at the 
vertex. 

Vertex wave: <300uV. 
Negative sharp potential, maximum at the vertex. 

P A T H O L O G I C A L PATTERNS: 

! ; I Spikes: 
A clearly distinguished waveform lasting between 20-70 
mS, with variable amplitude and initial negative 
potential. 

Sharp wave: 
Similar to spike but of longer duration, 70-200 mS. 
Spikes and sharp waves can also be polyphasic, i.e. 
several negative and positive alternate deflections. 

Spikes and waves: < lOOOuV 
Surface negative slow waves, usually with a frequency of 
2.5-3.5 Hz having a spike associated with each wave. 

\ I Slow spikes and waves: 
Similar to spike and wave but with a frequency <3Hz. 

I 111 I I I Multiple spikes and waves: 
'^^mlf\\ri ( ^""'̂  ^/ followed by slow waves, occurring as a 

I v| M ^^^S^^ complex or repetitively. I 1 I 

Figure 1.5 examples of isolated EEC patterns, 
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Very slow activity in the delta EEG frequency band is considered 

abnormal in any adult EEG. A slowing of the EEG cannot be attributable to 

specific abnormalities and the same EEG slow activity may be produced by 

encephalitis, head trauma, carcbrovascular disease or tumours [Gibbs. 

1951]. Abnormal slowing o f the EEG may be either focal or diffuse. Focal 

slowing is indicative of an underlying cerebral disturbance which is focal 

in nature, i.e. infarcts, tumours, contusions, abscess, or haemorrhage. 

This may be spatially localised by observing the channel wi th either 

maximum negativity in a common reference recording, or phase reversal in a 

bipolar recording. Diffuse slowing is indicative o f a more widespread 

disturbance, i.e. inflammation, trauma, or metabolic problems. In general, 

the more acute the underlying disturbance is, the slower and higher in 

amplitude the abnormal waveforms w i l l be. 

1.2 A R T E F A C T S AND T H E I R ASSOCIATED P R O B L E M S . 

The measurement of the EEG is susceptible to a large number o f signal 

contaminations, or artefacts f rom a number of sources internal and 

external to the body:-

Intemal sources include the electrical activity produced by head 

and body movement, muscle and cardiac activity as well as extra-cranial 

generators, such as tongue and eye movement. 
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. External sources of artefact commonly include mains interference and 

bad electrode contact. 

Artefacts are defmed as those signals present in the measured EEG 

signal that are not of cerebral origin {Cooper, I980J. The large 

amplitude of these artefacts often obscures the true cerebral signals and 

the similarity of some artefacts to cerebral signals o f interest can make 

interpretation of an EEG record considerably more d i f f i cu l t for even the 

EEG expert. 

Figure 1.6 illustrates this problem by presenting two examples o f EEG 

artefacts. Figure 1.6(a) is a sample o f a conventional EEG trace showing 

contamination by cardiac activity which takes the appearance of abnormal 

spike patterns typical of epileptic activity. Figure 1.6(b) is a sample o f 

a topographic EEG obtained f rom a brain mapper (Neuroscience Ltd . ) . 

Individual diagrams show the potential at electrode sites, in the delta 

frequency band and sampled at 0.5 second intervals. The upper trace 

clearly shows a focus o f delta activity in the right parietal region of 

the scalp caused by poor electrode contact. Care would need to be taken by 

the clinician not to interpret this as indicative o f tumour. 

Improved electrical screening and correct electrode attachment 

techniques can help to eliminate the external sources o f artefact 

[Hector. 1980}. However, the internal sources of artefact present a 

constant problem to the clinician, the greatest o f these being caused by 

eye movement or ocular artefacts (OAs). 
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[ so uv 

Figure 1.6 (a) EGG artefact, (a) EGG, (b) contaminated EEG 

590 04:54.5 ^ireJ!r5.9'""S« B4:55.5 
EEG/3 

S 3 40uU 

32 

m 24 

16 

Band: DELTA 
Uiew: TOP 

Display : MULTIPLE FFflME 
Epoch Length: 2 sees 

I n t e r p o l a t i o n : 1 
Gain: 1 0 0 U U / C H 

F i l t e r s : 0.&s ?0Hz 

Figure 1.6 (b) Electrode artefact, 
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1.2.1 O C U L A R A R T E F A C T (OA), 

Associated with the eye is a corneo-retinal dipole potential o f about 

lOOmV [Young and Sheena. 1975}. The relative movements of the eye 

and/or the eyelid /Jen'is ei ai.. 1988} cause a change in 

electrostatic field o f the comeo-retinal dipole. This change in the 

potential field propagates over the entire scalp, being strongest in the 

frontal regions of the scalp. As a consequence, a signal measured at any 

point on the scalp w i l l be a function o f both genuine cerebral signals and 

OA. 

Various techniques have been studied for recording eye movement, 

including optical methods which use light and a lens system, the impedance 

oculogram (Sullivan and Weliman. 1963} which measures changes in 

electrical impedance across the eyes with movement, and the 

electrooculogram (EOG) [Shackei. 1967} which directly measures the 

changing electrostatic field. These are reviewed extensively in Young and 

Sheena, 1975. A l l methods produce an electrical signal which is a function 

of either eye position, or eye and/or eyelid movement but employ different 

means to obtain this. The most commonly used indication o f eye movement is 

that of the EOG which uses electrodes placed around the eyes to record the 

potential field in a similar manner to that of EEG measurement. The EOG 

method has several clear advantages over its alternatives:-

It can be used with open or closed eyes. 

The voltage measured is directly proportional to the degree of 

eye movement and proportional to the OA measured at any point on 

the scalp. 
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The method is simple and requires a minimum of calibration. 

. __ Standard EEC recording techniques and equipment can be used. 

The number o f electrodes used, and the positions for these electrodes 

for best measurement of the EOG is a matter for debate and several EOG 

montages have been exposed to rigorous analysis [ifeachor, ei al.. 1988; 

Jerx'is. et al.. 1988; Brunia. et al.. 1989/. Figure 1.7 illustrates the 

common electrode positions used for EOG recording. 

= 1 

Naslon 

Supra -orb i ta l ridge 

Infra-orbi ta l ridge 

Outer canthus 

Figure 1.7 Measurement o f eye movement: electrode positions. 
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Eye movements can be classified into 8 distinct types [Shackeli. 

1967}:-.-

Saccadic. 

Smooth: pursuit and compensatory, 

Nystagmoid. 

Torsional. 

Vergeni. 

Miniature. 

Blinking. 

Intra-ocular (lens, pupil) . 

The first three types are the common, larger movements, and the next 

three are equally common, smaller movements. Of the specified types in the 

above list, the first two comprise conjugate movements, that is both 

eyeballs move together in the same direction. The third and fourth are 

usually conjugate, while the fifth is not, the movements being in opposite 

directions. Miniature movements refer to the very small movements that 

occur continuously. These include drifts and flicks o f the two eyeballs 

(sometimes referred to as physiological nystagmus), and oscillatory tremor 

/Shackeli. 1967}. 

Figure 1.8 illustrates a number o f typical OAs by comparing the 

measured EOG and EEG respectively. EOG signals were recorded bipolarly 

between electrodes placed on the supra orbital ridge and the outer canthus 

for both left and right eyes. EEG signals were recorded referentially. 

page 12 



fOOuv 

( a ) EOG w i t h V E M . ( b ) E E G w i t h VEM OA. 

( c ) EOG w i t h HEM. ( d ) E E G wi th HEM OA. 

(e) EOG wi th R E M . ( f ) E E G wi th REM OA. 

(g) EOG wi th B l i n k , ( h ) E E G w i t h B l i n k a r t e f a c t . 

Figure 1.8 Typical eye movements and their effect on the vertex EEG, 
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with respect to linked ear lobes, at the scalp vertex. The OAs illustrated 

are caused by vertical eye movement ( V E M ) , horizontal eye movement ( H E M ) , 

rolling eye movement (REM) , and blink respectively. The extent o f eye 

movement in each case, barring bl ink, was that o f 30 degrees f rom the rest 

position. Figure l.S is seen to include examples of the larger saccadic 

movements for V E M and H E M , smooth movement for REM and finally bl inking. 

1,2.2 T H E NEED FOR OA R E M O V A L . 

The large magnitude o f OAs (upto several m V ) can often obscure 

the smaller cerebral signals. Further diff icult ies arise because o f the 

similarities between OAs and several o f the EEG patterns previously 

described. For example, in the diagnosis o f brain damage in babies, 

genuine abnormal slow waves cannot easily be distinguished f rom ocular 

artefact which is produced by moving or rol l ing o f the eyes. Similar ly , 

frontal slow waves caused by OA are often d i f f icu l t to distinguish f rom 

abnormal frontal slow waves caused by a frontal tumour. Figure 1.9.shows a 

portion of an EEG record containing an abnormal waveform of large 

amplitude and a frequency o f approximately 2Hz, termed bilaterally 

synchronous delta (BSD) and caused, in this case, by a gross cortical 

atrophy or loss o f brain surface material. The waveform can be seen to be 

present simultaneously in all channels and w i l l therefore be detected at 

both EEG and EOG electrodes making determination o f origin , even harder 

[Hellyor, et al., (in preparation)]. 
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Figure 1.9 Genuine abnormal EEG slow waves. 
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An attempt to restrain eye movement, by request during an EEG 

recordmg, is often made by the recording staff. This approach is however 

unsuitable for uncooperative patients, patients with illnesses displaying 

uncontrollable eye movements (e.g. Huntingtons chorea), and small 

children. In these cases the extent of OA contamination o f the EEG can, at 

best seriously reduce the usefulness of any EEG and at worst render the 

EEG useless fJervis. ei oi, 19851. This is also true for EEG e v e n t re*<*tc<i 

potentials [Low ei al.. 19661 in which EEG signals are measured 

between two auditory or visual stimuli. In addition to the normal 

involuntary eye movements and blinks it has been found that the stimuli 

used to elicit the evoked response can often cause an eye movement or 

blink. 

The value o f automated EEG analysis using computer systems is becoming 

more widely recognised because o f the potential increase in efficiency 

offered to the busy clinician and the improvement to EEG signal 

presentation and patient data archiving. Much of the clinicians expensive 

time is devoted to routine EEG analysis. A reliable automated analysis 

system would free this time for more demanding and specialised work. 

However, automation of the EEG signal analysis procedure, though desirable 

for reasons o f efficiency and diagnostic reliability, is severely hampered 

by the lack of effective ways to deal with unwanted EEG signal 

contaminations, or artefacts, and this is particulariy true of OA. A 

number o f systems have been investigated for computerised EEG analysis 

(CEAN) fBnrtow, 1977: Cooper. 1980; Kiomis. 1988/ which quantitatively 
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analyse a number of EEG signals to obtain either a spectral description of 

the ba.ckground rhythm, or to identify certain paroxysmal events, such as 

spikes, the purpose of which is to indicate to the clinician possible 

areas of abnormal EEG activity. Ktonas describes a number o f schemes for 

automated analysis of epileptic EEG, typif ied by paroxysmal waveforms. In 

all cases, false detections o f true epileptic activity due to bl ink type 

artefact seriously degraded results. See also /Gorman aiui Gloor. 

1976}. 

It is therefore concluded that proper ocular artefact recognition and 

removal is necessary and w i l l make the interpretation of EEG easier and 

allow more reliable automated EEG analysis. 

1.3 OA R E M O V A L P R O C E D U R E S . 

The need for OA removal has been clearly identified in the previous 

section as well as indicating some of the problems that are met when 

attempting to do so. These include the significant spectral overlap o f EEG 

and OA and the similarity o f many individual waveform patterns. OA removal 

has been investigated by a number o f authors /Jer\-is, 1988} and 

several schemes for the removal o f OA f rom the EEG have been established 

which can be divided into three main categories:-

Eye fixation /Borda ami Hablitz, 1973/. 

Artefact rejection [Gevins. et ai, 1977}. 

Electro-oculogram (EOG) subtraction /QuHier et al.. 1977/. 
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Eye fixation is probably the simplest and least reliable scheme for OA 

removal. Patients are often encouraged to fixate on a point or image 

or to refrain from blinking at critical times during a recording 

[Papakosiopouios. ei al.. 1973}. As previously discussed this is 

impractical and as many as 50% o f subjects are unable to successfully 

fixate (Borda and Hablitz. 1973}. 

Artefact rejection effectively ignores sections o f EEG signals in 

which artefact is detected above some pre-defined threshold. The remaining 

EEG is then considered free of artefact and open to further analysis 

(Gotman et al., 1973; John ei al, 1977; Verleger el al., 1982J. The 

l imit ing disadvantages of this scheme are: Firstly, the d i f f i cu l ty arising 

in selection of a suitable detection threshold, a simple amplitude 

threshold is clearly insufficient when discriminating between similar 

waveform patterns and inter patient variations. Secondly, this scheme 

provides a remaining EEG signal which is unrepresentative o f the original 

EEG signal, having large amount of signal removed along with the corrupted 

sections. This is particularly relevant in uncooperative patients and 

those with uncontrollable eye movements. 

EOG subtraction offers the most promising way of removing O A . The 

scheme is based on the principle that the OA is additive to the background 

EEG and is linearly related to the EOGs. Therefore a 'corrected' EEG (with 

OA removed) may be obtained at any electrode site by subtracting, f r om the 

measured EEG, a simple proportion o f the EOGs. This procedure has been 

attempted in the time domain [QuHter et al.. 1977}, and the frequency 
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domain [Casser ei at.. 1986} and EOG proportions can be calculated 

off - l ine , prior to recording jMcCallum and Walter. 1968: Girion and 

Kamiya, 1973}, OT on-line during recording [Quilter et al.. 1977; 

Jervis, et at., 1985; Ifeachor et al., 1986}. The method described here 

is that of on-line, time domain EOG subtraction as this allows inter and 

intra-subject differences to be accommodated, and allows real-time EEG 

signal processing. 

1 J.1 m i E DOMAIN ELECTROOCULOGRAM (EOG) SUBTRACTION. 

The measured EEG at any point on the scalp, at time i , can be modelled 

as a linear combination of EEG and ocular artefact, and is represented by 

the signal y(t) . 

y(t) = oa(t) - f eeg(t) 1.1 

The ocular artefact potential is estimated using a proportion o f EOG 

signal, called the OA coefficient (k) . 

y(t) = k.eog(t) 4- eeg(t) 1.2 

Rewriting equation 1.2 in discrete form gives. 

y(i) = k.eog(i) + eeg(i) 1.3 

i = 1,2 m 
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where i represents the sample number 

and m is the number of data samples 

Where multiple EOG signals are used to estimate the OA contamination, 

equation 1.3 is more conveniently represented using vectors for the EOGs 

and OA coefficients. 

y(i) = k | e o g i ( i ) + k2eog2(i) + kn^ogpO) + eeg(i) 

i = 1,2, m 

y(i) = K EOG'^(i) + eeg(i) 1.4 

where EOG^( i ) = [eog | ( i ) , eog2(i), . . . eogj^(i)] 

and K = [ k , , k2 , - . . , k^F 

and n is the number of EOG signals 

and ^ indicates transposition 

n.b. eeg(i) represents an error term in this equation. 

I f K can be estimated, then an estimate of the true EEG, eeg(i), can 

be obtained f rom 

ee'g(i) = y(i) - K EOG'^(i) i = 1,2, ,m 1.5 

A 

where K are estimates o f K 

and eeg(i) is the estimate o f eeg(i) 

and m is the number o f samples used in the estimation 
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K are estimated either off- l ine or on-line with respect to signal 

recording and several techniques have been utilised for this estimation 

/Jer\-is. et al.. 19S8J. The numerous estimation techniques d i f fer 

mainly in the number o f EOG signals that are used and the way these are 

measured. 

Off- l ine methods allow more sophisticated removal techniques lo be 

employed. For example, the Ordinary Least Squares (OLS) method (see 

appendix A) optimally estimates K by minimising the sum of squares o f the 
A 

error term, represented by eeg(i) (i = l . . . m ) in equation 1.5 [Fongens 

and de Bruin, I983J. This method makes a number o f inaccurate 

statistical assumptions, such as eeg(i) being uncorrelated noise wi th zero 

expectation fffeachor, I984J, and involves lime consuming inverse 

matrix calculation. The requirements of the clinical laboratory, costs, 

and trends towards real-time signal processing, dictate that artefact 

removal should be done on-line, that is, as data are being acquired. This 

has prompted the use o f real-time removal o f OA from the EEC and the use 

of iterative methods for estimation of the Ks 

1.3,2 ADAPTIVE OA R E M O V A L . 

Figure 1.10 illustrates an adaptive on-line ocular artefact remover 

(ifeachor. ei ol.. 1986}. EEG and EOG signals are digitised and K are 

estimated using a numerically stable form of the Recursive Least Squares 

(RLS) algorithm (Appendix A ) . The RLS algorithm updates K at each sample 

point so that changes in ocular movements can be reflected in K. The RLS 
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contaminated E E G corrected E E G 

E O G signals 
kO 

eogO(i) 

eog •(!) 
OA estimate 

eoG2 I 

Qog3(i) 

eeg( 

eogO(l) to oog3(i) and y(l) are the ('"digital samples 
derived (rom the EOQ and EEQ electrodes respectively 

Figure 1.10 Adaptive OA remover. 

algorithm is a recursive implementation o f the OLS algorithm and overcomes 

the time consuming calculation of the inverse matrix by updating the K at 

each sample point according to the error in the previous estimate. The 

algorithm converges on an optimum value for KfYoung. 1974; Hayk'm, 

1986}. A suitable RLS algorithm is obtained by exponentially weighting 

past data to gradually remove its effect on the estimate. 

The OA estimate is subtracted f rom the measured EEG to obtain the 

estimate o f the true EEG. In figure 1.10, y(i) and eogO(i) to eog3(i) are 

the ith digital samples of the measured EEG and EOG signals respectively. 

Four EOG signals are used in this example. k(0) to k(3) are the ocular 
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artefact parameters and eeg(i.) is the estimate of the true EEC. This then 

represents adaptive fi l tering o f OA ' s f rom the E E C 

1.4 PROBLEMS E N C O U N T E R E D W I T H OA R E M O V A L . 

The on-line adaptive OA removal technique of section 1.3.2 has been 

subjected to considerable experimentation [Heiiyar. ei ai, I99i(in 

press): ifeachor. ei ai.. !988j. This has revealed a number o f areas 

where the performance of the removal algorithm is prone to significant 

errors. This section is intended to highlight these observed errors with a 

view to improving the OA removal algorithm. 

1.4.1 INFRINGEMENT OF C O R R E L A T I O N R E Q U I R E M E N T S . 

The performance o f the adaptive fi l ter, (figure 1.10), relies on the 

EOG being highly correlated with the OA and weakly correlated with the 

E E C This cannot be guaranteed in practice because o f the wide range in 

EEC waveform patterns, and the lack o f electrical isolation between EEC 

and EOG electrodes. The EEC may contain abnormal waveform patterns which 

resemble the OAs and/or the EGGs may contain signals o f cerebral origin 

fGoiman. et al., 1975; Muras and Binnie. 19701. Under these 

conditions, the correlation requirements o f the OA removal algorithm are 

not satisfied and the adaptive filter cannot perform correctly. For 

example, it was found in previous work [Jen'is ei al., I988J that when 

abnormal waveform patterns, such as slow waves or epileptic spike and wave 
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complexes, were detected at both the EEG and EOG electrodes, the 

corresponding waves in the EEG, after OA removal, were reduced in 

amplitude. The waveforms of figure 1.11 clearly illustrates this problem, 

showing the appearance o f abnormal slow waveform patterns in both the EOG 

and EEG channels. Figure 1.11 illustrates the results f rom the use of the 

conventional OA removal algorithm on one signal f rom figure 1.9. The 

resultant estimate of the true EEG shows a significant attenuation and 

corruption o f the clinically important slow waveform pattern. This is 

clearly an unsatisfactory result and represents a significant problem when 

it is considered that the abnormal EEG often appears as an increase in the 

slow waveform pattern activity (see section 1.1.1). 

Ocular artefact 
Abnormal Del ta wavea 

UNCORRFCtED EEO Ch 

150UV 

C 0 3 R E C I I 0 N U S I N G C O N V E N I I O N A L - E T H O O S 

1 ^ y 
Attenuated Ocular artefact Corrupted Delta waves 

TIME 

Figure 1.11 Conventional adaptive signal processing applied to the 

signals illustrated in figure 1.9. 
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1.4.2 NONSTATIONARITY O F T H E E E G . 

A typical EEG recording w i l l show a variety of changing waveform 

patterns, an example o f which would be the common waxing and waning of the 

alpha rhythm. The EEG is therefore regarded as being statistically 

nonstationary in that the statistics, such as mean and variance, of 

individual signals vary over time. This nonstationarity is also aggravated 

by the random occurrences of OAs and possible abnormal waveform patterns. 

Figure 1.12 illustrates a sample of EEG containing a V E M OA which changes 

significantly the underlying EEG signal statistics. This is clearly 

identified by the concurrent display of the respective OA parameter, and 

the estimate of the true EEG after OA removal. The OA parameter displays 

considerable disturbance at the onset o f the OA and attached change in 

signal statistics, resulting in an estimate o f the EEG which contains 

visible remnant OA. 

The nonstationarity of the EEG creates an environment in which the 

operation o f the conventional adaptive OA removal algorithm is prone to 

error. The object o f the recursive algorithm, described above (see also 

appendix A ) , is to obtain the ocular artefact parameters K. The estimates 

of K are updated for each new sample of measured EEG and EOG and w i l l , for 
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Figure 1.12 Random occurrences of large OA causes large variations in the 

OA parameters ( K ) , and significant error in the estimated true EEC. 

(a) contaminated EEG, (b) K, (c) estimated true EEG. 

a stationary signal, converge to an optimum set o f parameters. However, 

for a nonstationary signal, the optimum set of parameters w i l l be 

changing. Therefore, not only must the algorithm converge on an optimum 

set o f parameters, but also track these parameters as they change. This 

can lead to significant lowering in performance unless the algorithm 

converges quickly [Ferrara and Widrow, 1981/. 
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1.43 M U L T I P L E A R T E F A C T S . 

The various occular movements defined in section 1.2.1 produce OAs in 

the EEG which have characteristic differences. These differences are seen 

to be attributable to the potential distribution and the waveform shape 

[Overton and Shagass, 1969; Corby and Kopell. 7972/. Figures 1.13 

Hlusiraie the potential distribution o f three major OA waveforms: V E M , 

H E M , and blink. 

The differences in potential distribution of the various types o f OA 

wi l l mean that each electrode position wi l l be contaminated with different 

proportions of OA from the respective eyes. Therefore, each type o f OA 

wi l l require a different set o f optimal OA parameters (K) for each 

electrode position. The simple resetting of the OA parameters, as 

discussed in section 1.4.2, w i l l therefore, not provide adequate OA 

removal because o f the need to converge on different OA parameters for 

each new OA type. 

1.4.4 SECONDARY A R T E F A C T S . 

Signals occurring in the EOG which are not o f eye movement or igin , for 

example electrode noise or electrical activity f rom the orbitaJ and 

temporal muscles, may be introduced into the estimated EEG as secondary 

artefacts. This is particularly relevant when there is little or no OA 

[Quiiier, et al., I977j. Figure 1.14 illustrates the introduction of 

secondary artefact into the estimated true EEG and is caused by an EOG 
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H E M D o t c n K o i s o r e a d 

Figure 1.13 Potential distribution: Average o f 30. 

page 28 
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Figure 1.14 Secondary artefact contamination of the EEG. 

(a) Fp2, (b) F8, (c) F8-T4, (d) estimated true EEG. 

Note: EOG signals are on half vertical scaling. 

signal which contains significant muscle potential. The estimate of the 

true EEG has attenuated OA but is corrupted by muscle activity not evident 

in the original signal. 

1.4.5 OA R E M O V A L A L G O R I T H M M E M O R Y . 

The OA removal algorithm has a memory o f previous input data 

(asymptotic sample length) that effects the present estimation, and 

represented by the formula: 
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Memory(No of samples) = 
(1 - ASL) 

This memory is weighted so as to gradually remove the effects of old 

data on the present estimate. An ASL of 0.998 represents a memory o f 500 

samples, or approximately 2 seconds, an ASL of 0.98 represents a memory of 

50 samples, or 0.2 seconds. An ASL of 0.998 has been found empirically to 

provide an estimated EEG that does not fluctuate wi ld ly with changes in 

input data [Ifeachor, 1984]. However, sudden nonstationarities, such as OA 

and in particular blink type OA, require the OA removal algorithm to 

respond quickly to the change in input signal, hence requiring shorter ASL 

when OA is detected. A longer algorithm memory w i l l result in 

undercorrection of the OA, and a shorter algorithm memory wi l l result in 

wi ld fluctuations in estimate, and therefore overcorrection o f true EEG 

signal after the OA has ceased. Figure 1.15 illustrates this problem on a 

section of EEG containing two blink type OAs. Remnant OA is visable with 

A S L = 0.998 (b) and background EEG is attenuated with A S L = 0.98. 
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Figure 1.15 The effective memory of the OA removal algorithm 

(a) corrupted EEG, (b) estimated EEG: A S L = 0 . 9 9 8 , (c) K: A S L = 0.998, 

(d) estimated EEG: A S L = 0.98, (e) K: A S L = 0.98. 

page 31 



1.5 PLAN OF T H E INVESTIGATION. 

This chapter has introduced the general problems associated with 

artefact contamination of the EEG. Particular attention is paid to OA 

which is described as a significant EEG contaminant. Current OA removal 

strategies are described, and section 1.4 details a number o f significant 

problems associated with their implementation. These problems are not 

easily solved using conventional digital signal processing and this 

investigation aims to make improvements to the current OA removal by 

developing new and reliable techniques. 

This investigation is divided into 5 work packages each of which is 

documented in this thesis, when possible, as a separate chapter. Figure 

1.16 represents the temporal relationship between these work packages. The 

5 work packages are :-

Theoretical development o f new OA removal techniques. 

Data acquisition. 

Investigation o f OA removal procedures. 

Intelligent OA removal system development. 

Evaluation. 

An initial literature search was to provide adequate theoretical 

material to enable new and reliable techniques for OA removal to be 

devised. Chapter 2 presents this theory in an applied fo rm, addressing 

each of the problems associated with the conventional OA removal 

algorithm. The development o f an intelligent OA removal system is 
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Figure 1.16 Investigation work packages, and their 

temporal relationship. 
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considered which incorporates, into the OA removal algorithm, some of the 

expert-knowledge o f the EEG clinician. The incorporation of this knowledge 

into the OA removal algorithm w i l l improve the performance o f the 

algorithm by identifying OA, and differentiating OA f rom abnormal slow 

cerebral waveforms. 

Having carefully planned the investigation it was necessary to acquire 

sufficient EEG data f rom the collaborating hospital. This data was lo: -

Provide information on a range of EEG artefacts. 

Provide a database of both normal and abnormal EEG signals. 

A l l o w a comparison o f OA removal techniques. 

Provide information with which to develop intelligent removal 

strategies. 

Enable evaluation of intelligent OA removal strategies and 

comparison with conventional OA removal. 

In order to acquire sufficient data, in controlled experiments, a data 

acquisition system was designed and constructed. Chapter 3 details this 

development and forms the second work package. 

Initial analysis o f the acquired data f rom normal patients enabled 

conventional adaptive OA removal to be repeated. Funher, several aspects 

of OA removal were investigated. For example, both referential and 

bipolarly recorded EOGs were used to remove OA from EEGs recorded in 

referential and bipolar montages. The results o f this were compared to 

investigate the hypothesis that for best results, bipolar and referential 

page 34 



EEG montages require different OA removal strategies. This work package 

also enabled the best EOG signals to be identified for OA removal f rom a 

much larger number of EEG signals than previously examined. Chapter 4 

details the procedures used in this work package and the results o f the 

analysis. 

Having identified appropriate EOG signals for OA removal f rom various 

combinations of EEG signals over the scalp, it was necessary to 

characterise the main OA waveform groups by analysis of, for example, 

potential distribution over the scalp. This would enable detection o f 

possible OA signal contamination. Further, the acquired data f rom a number 

o f abnormal patients exhibiting various abnormal EEG waveforms were 

analysed in a similar fashion and the comparison o f characteristics 

allowed a number of rules to be developed to allow differentiation 

between, for example, abnormal slow waves and OA. The results o f this 

analysis, together with elicited information f rom EEG experts, allowed a 

knowledge base o f rules and heuristics to be compiled that captured the OA 

identification and differentiation skills that are commonly utilised by an 

experienced EEG expert. 

Having developed intelligent strategies to allow the identification o f 

OA waveforms and therefore the directed use of a selected OA removal 

algorithm, a software simulation system was developed. The system was 

implemented using personal computer (PC) based hardware and consisted of a 

graphical user interface, an expert system, and a number o f selectable 

adaptive fil ter algorithms. The development of the intelligent OA removal 

system is detailed in chapter 5. This chapter represents the kernel of 
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this investigation and draws together the information contained in all 

previous chapters into a working system. 

The performance of the intelligent OA removal system is evaluated in 

chapter 6. This takes the form of four distinct evaluation stages, 

representing distinct stages in system development. The first stage 

evaluates consistency of the transcribed expert knowledge. The second 

stage evaluates the operation of the system, using key features extracted 

from the EEC, using signal processing techniques. The third stage 

evaluates the performance of the system when used to remove OA after 

having been identified. The final stage of evaluation details the results 

of a preliminary clinical evaluation of the system, and provides important 

end user comments. 

The fmal chapter of this thesis critically examines the results 

obtained from this investigation and discusses a number of aspects related 

to the intelligent removal of OA from the EEC. This discussion enables 

possible further work to be introduced and the thesis is concluded by 

summarising the principle advancements made during this investigation. 
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CHAPTER 2 CHAPTER 2 

2.1 INTRODUCTION. 

Chapter I has described how ariefactual waveforms can corrupt the EEG, 

and shown the need for their removal to maintain the integrity of abnormal 

slow waveforms that provide crucial diagnostic information. The main 

limitation with the current OA removal techniques, using conventional 

signal processing, is the inability to differentiate between artefactual 

and abnormal waveforms fifeachor, et ai. 1989]. This can mean that 

the removal process can attenuate abnormal waveforms and can, at worst, 

remove them entirely. This problem and the ones outlined in section 1.4 

are not easily solved using conventional signal processing techniques 

because of the similarity in characteristics of the ariefactual waveforms 

and abnormal cerebral waveforms. This chapter introduces a number of 

techniques to overcome these deficiencies using an artificial intelligence 

(AI) approach to applied signal processing. 

2.2 IMPROVING CONVENTIONAL OA R E M O V A L , 

An EEG expert is often able to recognise and differentiate between OAs 

and can distinguish OAs from abnormal slow cerebral waveforms. The expert 

utilises a wealth of experience and knowledge when analysing the EEG. It 
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has been found (see section 4.5) that the key elements used in EEG 

analysis are the use of time and frequency domain information. This is 

underpinned by a knowledge of the patients clinical history. Figure 2.1 

illustates a conceptual view of EEG analysis. 

M u I L i - c h a n n e l E E G s i g n a l s 
i = — i 

Frequency domain 

Power spectral density 

Time domain 

Cross-correlation 

Contextual domain 

Context 

Patient age: 59 
History: Previous 
abnormal slow waves. 

Analvsis of multi-channel EEG signals. 

Figure 2.1 A conceptual view of EEG analysis. 

The deficiencies of the present signal processing techniques can be 

overcome by incorporating EEG expert knowledge into the OA removal 

algorithm. The expert knowledge wil l allow the problems related to the 

conventional OA removal algorithm, detailed in the last chapter, to be 

addressed: 

(a) Infringement of correlation requirements. 

In order to overcome this problem, it will be necessary to distinguish 

between OAs and abnormal waveform patterns before applying the OA removal 
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algorithm. Only then, when identified, can the OA be removed without fear 

of further signal corruption. It wi l l be necessary to characterise the OA 

and abnormal waveforms. Characterisation of the waveforms will involve 

elicitation of the knowledge used by the EEG expert in differentiating 

between OA and abnormal cerebral waveforms. Characteristic features will 

then be extracted from the EEG using digital signal processing techniques 

to identify areas requiring OA removal. 

(b) Nonstationarily of the EEG. 

A possible solution to this problem involves resetting the OA 

parameters of the algorithm to a suitable set of values when significant 

change in signal statistics is detected. Sharman, (1987), utilises a 

similar technique for the estimation of an all pole model for a set of 

incoming data. Detection of a change in the signal statistics are based on 

quantities such as:-

. Current and previous estimates of the all pole model parameters. 

. Acceptable range bounds for the estimation error. 

. Statistical measures of input signal (mean, variance etc.) 

. History list of the estimation performance. 

. History list of input samples. 

. A priori probabilities and characteristics of interferences. 

Upon detection of a change in signal statistics the current parameters 

are discarded and the algorithm is restarted. The finite memory of the OA 

removal algorithm ensures that the effect of old data are purged and only 

new data used in the subsequent adaptive process. 
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(c) Multiple artefacts. 

The simple resetting of the OA parameters, as discussed in above, will 

not provide adequate OA removal because of the need to converge on 

different OA parameters for each new OA type. However, as there exist only 

a finite number of ocular artefacts it should be possible to store in 

memory an optimal set of OA parameters for each type of OA, and for each 

electrode position. Upon detection of possible OA and identification of 

the type of OA, by examination of the extracted characteristic features, 

it should be possible to reset the OA removal algorithm to the new stored 

optimal OA parameters. This regime would have the effect of applying a 

separate and most suitable filter to each OA type and would mean that for 

individual OAs, 'the optimal set of parameters would be found much more 

quickly without the need for re-convergence 

(d) Secondary artefacts. 

The effects of secondary artefact contamination can be minimised by :-

EOG signal pre-processing. 

Directed OA removal. 

EOG signal pre-processing would involve minimising the EOG artefacts. 

An FIR low pass digital filter can be used to attenuate signal 

contaminants such as muscle activity and electrode pop. Directed OA 

removal would involve applying the OA removal zilgorithm only where OA is 

detected and identified. 
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(e) OA removal algorithm memory. 

It is preferable to apply the OA removal algorithm only in the regions 

of the EEG thai are actually contaminated with OA, The effects of the old 

data can be minimised during the transition period of changing OA 

parameters by reducing the effective memory of the algorithm. 

2.3 DECISION SUPPORT, 

The role of an intelligent OA removal system is seen to be twofold. 

Firstly, such a system can be used at recording time to provide a OA free 

record of the EEG recording. This wil l be in addition to a conventional 

'OA corrupted' record of the same EEG. OA removal will be under the 

control of the recording personnel and could incorporate a threshold for 

OA removal. The second role for an intelligent OA removal system, and 

probably the most important one is under the control of the EEG expert 

during post recording analysis and diagnosis. In this role the intelligent 

OA removal system will be able to scan through large amount of EEG data 

identifying OA without necessarily performing OA removal. The expert 

system will be able to justify any decisions made by retracing the 

inferences it made in order to reach the decision. This is a fundamental 

attribute of any expert system, but in an intelligent OA removal system 

this will prove to be a valuable decision support aid for the EEG expen. 

Once the expert is satisfied with the reasoning behind an OA 

identification, OA removal could be carried out at the touch of a button. 

This will provide the EEG expert with an intelligent real-time EEG signal 

processor. 
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The combination of an A I approach with conventional signal processing 

will produce an elegant solution to the problem of total OA removal. The 

OA recognition and differentiation knowledge, of an EEG expea, is 

embodied into an expert OA removal system. This enables a directed and 

selective, or intelligent signal processing, approach to OA removal, 

illustrated in figure 2.2. 

l a g m a n l 

V 
. a t o n i n g 

convent iona l OA removal 

In te l l igent OA removal 

Figure 2.2 Comparison between conventional OA removal 

and an intelligent approach. 

OA removal is directed because OAs are only removed when they are present 

and OA removal is selective because different artefacts are distinguished 

from one another enabling the most suitable adaptive filter to be applied. 

The remainder of this chapter details the developmental aspects involved 

in the use of an A I approach to EEG signal processing. 
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2,4 A R T I F I C I A L I N T E L L I G E N C E , 

Artificial intelligence (AI) is a branch of computer science which 

makes an attempt to model human cognitive processes using sophisticated 

computer techniques f^vinston, i984j. An expert system (ES) is an 

application of A I which involves the incorporation of a human experts 

knowledge, of a specific problem area, organised in a highly structured 

manner [Forsyth. 1984]. The main components of an ES are, a knowledge 

base, and a reasoning or inference mechanism. The knowledge contained in 

the knowledge base is likely to be a mixture of rigorous scientific 

formulae and heuristics, or rules of thumb, that an expert would regularly 

use to solve the particular problem. The inference mechanism is an 

algorithm for the manipulation of the knowledge, combined with certain 

acquired facts, to enable some new knowledge or fact to be inferred. This 

algorithm will generally obey some formal rule of logic and the resultant 

new knowledge or fact will represent a decision and will therefore dictate 

the next operation to be taken, either by some control mechanism or a 

human operator. The knowledge base will be highly structured and quite 

separate from any 'code' that will be used to manipulate it . This 

separation of 'code' and 'data' enables the knowledge base to be easily 

modified and allows the same inference mechanism to be used on a different 

knowledge base. 

Expert systems have been shown to be successful in solving complex 

tasks in restricted problem areas, and are reported extensively 

[Rauch-Hinden. 1985J. An expen System, containing the OA 

identification capabiliies of the EEG expert will allow intelligent 
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enhancement of the EEG, by directing the OA removal algorithm. This will 

ensure -minimal algorithm application, and hence the retention of maximum 

EEG information. An expert system approach is well suited to the 

intelligent enhancement of the EEG, for a number of reasons: 

. There exist EEG experts who are able to communicate their knowledge 

and experience. 

. The problem area is restricted to a finite number of artefacts. 

. Extensive literature is available on artefacts. 

. EEG analysis is by nature heuristic. 

. There is an abundant supply of clinical data. 

Expert systems are implemented using one of the following three 

formats: 

A commercial ES shell. 

A *from scratch' development typically using an A I software 

language. 

A mixture of the two above. 

A commercial ES shell generally provides a standard inference 

mechanism and an empty knowledge base. It is therefore, the developers 

responsibility to acquire and develop a separate and appropriately coded 

knowledge base on which the inference mechanism operates. An ES shell is 

generally considered to operate best when applied to a problem domain with 

a close similarity to the. problem domain on which the ES shell was 

developed. The developer is also required to provide an appropriate means 
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of interfacing the ES with the application environment. This investigation 

has involved the development of an EEG ES 'from scratch' using an AI 

software language. This has enabled the inference mechanism, the user 

interface and the knowledge base to be developed specifically for the 

problem of OA detection and identification. 

2.5 D E V E L O P M E N T CONSIDERATIONS FOR AN 

I N T E L L I G E N T OA R E M O V A L S Y S T E M . 

This section discusses some of the developmental aspects of an expert 

system for OA identification and differentiation and in particular focuses 

on the theoretical aspects involved. These aspects include the type of 

knowledge that the system must contain, how to represent it and how to use 

it in order to affect improved OA removal. Chapter 5 builds on these 

issues and describes the current working implementation. 

2.5.1 KNOWLEDGE REPRESENTATION AND MANIPULATION. 

Central to the development of an intelligent OA removal system is. the 

way in which expert knowledge is represented, and the inference mechanism 

used to manipulate it. The representation of the knowledge wi l l depend 

largely on the type and format of the knowledge, and how the inference 

mechanism will use this knowledge. OA detection and identification 
of 

knowledge consists of heuristic rules and a large number precise . 

electrical measurements. The inference mechanism used for the 
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identification and differentiation o f OAs w i l l depend on the expen 

knowledge available and the way in which this is represented in the 

computer system. Because of the fundamental importance and strong 

interdependence o f the knowledge representation and manipulation both must 

be carefully considered during the development o f the intelligent OA 

removal system. 

Common knowledge representations include :-

Procedural: Where the expert knowledge, and the knowledge o f how 

and in exactly what order to perform the task, are stored together. This 

is common in most high level computer languages. 

Semantic networks: Where the expert knowledge is represented by a 

network o f interconnected nodes. The nodes represent objects and a 

connection between objects represents some relationship that one object 

has to the other fWhiston. 1984}. Closely related to this 

representation is that o f a ' f rame' fMhisky. 198I; Graham and Jones. 

1988] where a frame is capable o f holding knowledge in 'slots' within 

the frame. Each slot represents some relationship in a similar way as a 

l ink, and the contents o f the slot is the object o f that relationship. In 

this manner the representation can be viewed as a relational database. 

Productions: Where the expert knowledge is represented by 

discrete statements, or rules, of knowledge [Newell and Simon 1972], 

Each statement is described as a production rule and is used to 

encapsulate either factual or heuristic knowledge in the fo rm: -

R U L E A: 

IF Very low frequency waveforms are present 2.1 

• ' T H E N artefacts are very likely to be present 
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The production rule representation o f knowledge has been selected for 

this investigation because it is easy to understand, and it can represent 

knowledge o f both heuristic and specialised nature. Because each rule 

forms a distinct piece o f knowledge, it can easily be amended or replaced. 

This is also the most commonly used structure in existing systems 

[Jatisen, et ai, 1985; Baas, ei al., 1984; Jagannaihan. et aL, 1982; 

Bourne, et al., 1981; Sortliffe. I976J. 

Production rules, representing the expert knowledge, are quite 

seperate f rom the inference mechanism that is used to manipulate that 

knowledge. However, each production rule forms a logical sentence that 

obtains its format f rom a subset o f formal logic [Kowalski, 1983J. The 

use o f such a logical statement, together with acquired facts enables a 

new fact to be inferred using a manipulation based on formal logic. In 

this way logic is used as the inference mechanism and is attractive for a 

number o f reasons:-

Logic has a long and established tradition with a strong 

mathematical formalism. 

Any inferences made using the rules o f logic can be proved, 

assuming that the original rules and data are valid. 
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The remainder of this chapter details the use o f a formal logic for 

the development o f an ES for the detection and identification o f O A . 

Section 2.5.1.1 introduces the use o f logical sentences fo r the 

representation o f EEG expert knowledge. Section 2.5.1.2 describes the use 

of logical rules to make inferences. Section 2.5.2 describes the 

implementation o f the logical inference mechanism using the logic 

programming language PROLOG [Ciocksin and Meiish, i987j. Finally, 

section 2.5,3 extends the standard PROLOG inference mechanism to allow 

more efficient inference. 

2.5,1.1 n R S T ORDER P R E D I C A T E L O G I C , 

First order predicate logic [Dowsing, et oi. 1986] allows the 

knowledge o f the EEG expert to be represented unambiguiously. For example, 

consider the case when the knowledge o f the EEG expert in ident ifying an 

OA waveform is simplified to the fol lowing implication :-

"To be an OA waveform implies that the waveform has a frequency in the 

delta band, is o f maximum amplitude in the frontal electrode positions, 

and is not coincident with an obvious EEG waveform on another part o f the 

scalp" 

This implication is represented with first order predicate logic as 

V ( X ) [OA(x) ^ ([delta-frequency(x)] 
A [max-amp-froni(x)] 

A -1 9 (y)[equal-eeg(x,y)])] 2.2 
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where: 
X rs an unidentified waveform. 
OA(x) is a predicate that is true when x is an O A 
delta-frequency(x) is a predicate that is true when x has a frequency 
in the delta frequency band 
max-amp-front(x) is a predicate that is true when x is o f maximum 
amplitude in the frontal regions o f the head 
equal-eeg(x,y) is a predicate that is true when there is an EEC 
waveform coincident with x 

V(*)this is true for all x. 
- •BWthere is no y that w i l l make this true. 

A represents 'and' 
V represents 'or ' 
-1 represents 'not' 
<^ represents 'implies' 

Equation 2.2 can be written in the fo rm of the production rule of 
equation 2 . 1 : 

IF 2.3 
frequency is delta 

and 
amplitude is maximal in the front 

and 
no equal EEC exists 

T H E N 
waveform is OA 

2.5.1.2 I N F E R E N C E . 

I f the rule represented by equation 2.2 is provable f rom a given set 

of axioms, or facts, we write:-

Facts /— Rule 
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The facts correspond to features extracted f rom the EEC signals, and 

the rules elicited f rom an EEG expert. A formal proof o f the rule f rom a 

set o f facts follows a finite sequence. Each step in the proof generates a 

new fact f rom ex; isting ones, using a logical rule o f inference. For 

example, in order to prove the rule represented in equation 2.2 it is 

first necessary to establish the truth o f the individual components o f the 

antecedent - IF clause. The truth of these components w i l l be established 

f rom other rules in the knowledge base. 

A production rule represents a logical rule o f inference termed modus 

ponendo ponens (MPP). For example, given the facts: 

1 waveforjn is OA <^ frequency is delta 

and amplitude is maximal in the front 

and no equal EEG exists 

2 frequency is delta 

3 amplitude is maximal in the front 

4 no equaJ EEG exists 

then the rule o f MPP allows the fo l lowing new fact to be inferred: 

waveform is OA 

1 2 3 4 h 5 

In addition to MPP, the rule o f Reductio Ad Absurdum ( R A A ) is used to 

remove facts f rom a knowledge base when a contradiction is found. R A A is 
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of principal importance when considering resolution using proof by 

refutation. Resolution is used to automate the process o f inference and is 

used by the PROLOG language. Resolution can be used to prove the truth of 

a theorem, i.e. 'waveform is O A ' , by proving that the negation o f this 

theorem cannot be true (Amble. 1987]. The theorem may consist o f a 

large number of rules and facts. For example, Given the fo l lowing facts:-

6 - ^ P v Q 
7 P 

and the theorem to be proved is Q, then by negating this theorem, 

8 - i Q 

Resolution o f axioms 6 and 7, using RAA above, simplifies to:-

9 Q 

which is in contradiction to 8, hence proving Q to be false and Q 

to be true. This is called proof by refutation. 

Resolution requires that the facts are in a clause fo rm that contain 

disjunctions o f predicates and negated predicates only - a H O R N clause. 

This is the f rom of facts 6 and 7 above. Equation 2.2 is converted to H O R N 

clause form using the fo l lowing procedure: 

V (x) [ O A ( x ) < : ([delta-frequency(x)] 
A [max-amp-front(x)] 
A-* 3 (y)[equal-eeg(x,y)])] 2.2 

STEP I : implications are eliminated using the substitution : 

A ^ B = ->A V B. 

V (x) [OA(x)v-»([del ta-frequency(x)] 
A [max-amp-front(x)] 

A -< 3 (y)[equal-eeg(x,y)])] 2.4 
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STEP 2: negations are moved inside the atomic formulae. 

- -a ( x ) [A(x ) ]= \ / ( x ) [ - A ( x ) ] 

V (X) [OA(x) V (-i[delta-frequency(x)] 
V ~ i [max-amp-front(x)] 

V i^(y)[" 'equal-eeg(x,y)])] 2.5 

STEP 3: Universal quantifiers are moved to the left . 

V ( x ) V ( y ) [ O A ( x ) V ^ delta-frequency(x) 
V - 1 max-amp-front(x) 
V equal-eeg(x,y)] 2.6 

STEP 4: A l l variables are assumed universally quantified and can 
therefore be removed. 

OA(x)v"*delta-frequency(x)v-*max-amp-front(x)v equal-eeg(x,y) 2.7 

Equation 2.7 is now in the correct form for proof by refutation. 

Further details can be obtained in Graham, (1988), and Kowalski (1983). 

For example, the analysis o f a segment o f EEG provides a number of 

measurements related to a suspect waveform x, and a genuine EEG waveform 

y. This allows the fol lowing facts to be established:-

10 OA(x)v"'delta-frequency(x)v"<max-amp-front(x)v equal-eeg(x,y) 
11 delta-frequency(x) 
12 max-amp-front(x) 

13 *^equal-eeg(x,y) 

To prove the theorem OA(x) is true, it is necessary to negate the 

theorem, i.e. 

14 T O A ( x ) 

Resolving 10 and 11 produces the resolvent:-

15 OA(x)v"'max-amp-front(x)v equal-eeg(x,y) 

Resolving 15 and 12 produces the resolvent:-

16 OA(x) vequal-eeg(x,y) 

Resolving 16 and 13 produces the resolvent:-

17 OA(x) 
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The contradiction between facts 17 and 14 proves that the negated 

theorem is false and therefore proves that the waveform is an O A , given 

the initial facts. 

2.5,2 PROGRAMMING IN L O G I C (PROLOG). 

Representation of EEC expert knowledge and manipulation using the 

methods detailed above is automated when programming using PROLOG. PROLOG 

is a common name for a family o f programming languages which implement 

Predicate logic as a programming language. PROLOG is a declarative 

programming language meaning that no explicit control structure exists, 

and in place of this is an implicit search of the program clauses for a 

contradiction to provide proof o f a theorem (Amble, T., 1987; Rowe, N.. 

1988]. The program clauses consist o f a list o f rules and facts which 

are both represented in H O R N clause fo rm: -

a l v - i b l v - » b 2 . . . v-» bn 

which is equivalent in PROLOG syntax to :-

a l : - b l , b 2 , . . . b n . 

n = 1 represents a PROLOG rule 
n = 0 represents a PROLOG fact 

A theorem is proved by presenting the PROLOG program with a goal 

clause, which could consist o f a conjunction o f positive literals with 

variables or more simply a single literal, e.g. 

remove-OA? 
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PROLOG w i l l effectively negate this goal and add this to its list o f 

clauses. The program w i l l proceed by attempting to find a contradictory 

clause to the negated goal clause f rom the list o f fact and rule clauses 

and to then resolve to produce a new negated goal clause. This process 

wi l l continue until either no contradictory clause can be found - fa i l , or 

the goal clause is empty - true. Resolution is said to be linear because 

for any goal clause the contradictory clause w i l l be found in the list o f 

clauses. Resolution is said to be selected because the particular literal 

to resolve must be selected f rom the goal clause. In most PROLOG 

implementations this selected literal is the first in the goal clause. 

The resolution o f clauses can be viewed as a search path which is 

directly effected by the selection o f literals to resolve. The path may 

not always directly provide an empty goal and when no contradictions can 

be found, alternate clauses are attempted by retracing, or backtracking, 

to the last resolution clause, replacing unified variables as necessary. 

This search of the list o f clauses can be viewed as a search space of the 

rules and facts. 

2.5.2.1 S E A R C H . 

To illustrate the concept o f a search, consider figure 2.3. The goal 

clause here is that o f 'remove-OA?'. Figure 2.3(a) is a list o f the PROLOG 

programs rule and fact clauses, which is simplified in the second part o f 

2.3(a) for ease of presentation in the resolution diagram o f figure 

2.3(b). The resolution procedure of section 2.5.1.2 is fol lowed and the 
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1 remova-OA? :- OA(x).no-abnor rnal. 
2 O A ( x ) only-EOa. 
3 O A ( K ) : - ( J o M i - l r * q < * ) . m a x - a i i > 0 - " o n t ( x > , n o t ( e Q U « l - « e g ( K , y > 

4 d e l i s - c a a l x ) :- t r a q > 0 . 5 H z . t r a q < 4 H < . 
S ( r « q > 0 . 6 H c 
6 t reQ<4Hc. 

7 m a x - 8 m p - l r o A l ( x ) . 

8 no-sDnormal 

This Is s imp l i f i ed to the fo l lowing 

1 e.c. 
2 0 : - 0. 
3 b i - e.t.g. 
4 « : - tl.l. 
0 h. 
6 1. 
7 1. 
8 C . 

Figure 2 . 3 ( a ) PROLOQ program c lauses . 
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(ll Icl 
• 
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• I) 

Flaure 2 . 3 ( b i Proof of a. 

Figure 2.3 An example o f theorum proving using PROLOG search. 

diagram first shows the negated goal clause { a } . The first clause found 

that causes a contradiction o f the goal is that o f clause 1 and the 

resolvent o f this, i.e. {b,c} becomes the new goal clause. From this goal 

clause the negated literal b becomes the focus o f attention and i t is this 

literal for which a contradiction w i l l next be sought f rom the list o f 

clauses. The execution o f the PROLOG program is therefore described as:-

Top down, because only goals are executed. 

Lef t to right o f the conditions. 

First to last o f the conditions. 

Depth first search with backtracking. 
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PROLOG keeps a current sequence of conditions which it tries to solve 

with the same substitutions for all the stated variables. Such a condition 

sequence is called the goal. 

It is clear f rom the above example that the order o f the clauses is 

important to the efficiency o f program execution, a reversal o f clauses 2 

and 3 would in this example improve the efficiency o f execution. This 

indicates that the control structure o f PROLOG is in fact a declarative 

and procedural hybrid and that careful consideration needs to be taken 

when compiling the list o f fact and rule clauses for the intelligent OA 

removal system. 

2.5.3 ADDITIONAL S E A R C H S T R A T E G I E S . 

Section 2.5.2.1 has described PROLOGS implic i t search strategy, based 

on a top down, depth first search with backtracking. This search strategy 

is effective for this application because o f the large amount o f low level 

feature data generated from the analysis o f the EEG/EOG data segment. 

Classification o f each analysis segment relies on a search through a 

decision tree, or search space, generated f rom the production rules 

elicited f rom the expert, similar to that o f figure 2.3. 

Repetition o f the same search path for each new analysis segment can 

be wasteful o f time and is often unnecessary. The nature o f EEG signal 

analysis is such that waveforms are viewed in the context o f the 

surrounding waveforms, and the history o f the patient. For example, a 

suspect waveform occurring between two clearly abnormal waveforms is more 
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l ikely to be interpreted as an abnormal waveform also, and therefore 

remove the need for signal enhancement. Similar ly, a suspect waveform 

occurring in the EEG o f a patient with previously observed abnormal 

waveforms is also more likely to be interpreted as an abnormal waveform 

also. The depth first backward chaining search mechanism o f PROLOG does 

not accommodate this type o f heuristic search and therefore additions to 

the search mechanism are necessary. 

2.5.3.1 FORWARD AND BACKWARD CHAINING HYBRID 

SEARCH. 

The experts use o f contextual features to aid with the identification 

of OA waveforms is simulated by the addition o f several contextual facts 

into the knowledge base. These facts include the immediate past and future 

analysis segment classifications, and a frequency prof i le for all the past 

analysis segment classifications. Each successful segment classification 

then enables the contextual feature facts to be updated and asserted into 

the knowledge base. The decision tree is restricted, or pruned [Winston, 

1984] by utilising special rules in the knowledge base that examine the 

contextual features and direct further search according to their success. 

For example:-

Rule I V : 
IF abnormal waveforms have been identified in the previous 

segment 
T H E N there is an increased reason to believe that the present 

segment contains abnormal waveforms. 

Upon success o f this rule, subsequent search is continued at a point 

in the search space where this hypothesis can be corroborated by obtaining 
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further evidence to support it - a j ump to a so caJIed node marked 

'abnormal only ' . The belief in the previous segment classification is 

carried through to the belief in the classification o f the present 

segment. I f this search path provides insufficient evidence to support the 

heuristic, then search continues in the conventional manner. The addition 

o f contextual information allows a mixed search strategy to be employed. 

The inclusion o f contextual facts allow inference to a conclusion to be 

made by forward chaining. Additional facts are then sought to conf i rm the 

conclusion by backward chaining. This more closely matches the experts 

method of analysis as well as improving the efficiency o f the inference 

mechanism for the vast majority o f cases. 

2.6 SUMMARY O F C H A P T E R 2. 

This chapter has advanced a number o f important concepts for improved 

OA removal to overcome the deficiencies o f the conventional OA removal 

algorithm detailed in chapter I . Expert system techniques have been 

introduced and their role in a prospective intelligent OA removal system 

discussed. A structure for the representation o f a human EEG experts 

knowledge has been detailed, together with a formal method o f knowledge 

manipulation that utilises this structure. The PROLOG programming language 

has been introduced as a medium for the implementation o f formal knowledge 

manipulation and an example of OA identification given that demonstrates 

the principles o f search in a decision space. Lastly, extensions to this 

search technique are given which w i l l more closely match that o f a human 

EEG expert. 
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C H A P T E R 3 C H A P T E R 3 

3.1 INTRODUCTION. 

The design of an intelligent system for the removal of OAs from the 

EEG requires that EEG and EOG data is acquired from a large sample of 

patients. This will provide data from a wide variety of cerebral and eye 

movement activity to enable the compilation of a comprehensive EEG/OA 

database. Intelligent strategies to overcome the deficiencies detailed in 

chapter 2 will be formulated using the information contained in the 

database, information elicited from consultation with EEG experts and 

appropriate data analysis techniques. The development of a suitable EEG 

data acquisition system (DAS) was therefore crucial to this investigation. 

In addition to the acquisition of regular EEG recording data, the DAS 

would also provide the necessary hardware interface required between an 

eventual intelligent OA removal system and the conventional EEG recording 

equipment. The following section describes the specifications for the DAS 

and the details of its design. 

3.2 DESIGN SPECinCATIONS 

The following specifications were required of the EEG DAS. 

The system must be compatible with standard EEG machines and be able 

page 69 



to acquire data from the auxiliary output of a standard EEG machine. 

The system must be capable of collecting data continuously from 16 EEG/EOG 

channels for a maximum of 30 minutes. 

. The system must cause minimal distortion to data signals in the 

frequency range of 0 to 30 Hz. 

. Data must be archived for future reference in a convenient and 

easily accessible form. 

The system must be compact and unobtrusive for the clinical 

environment and present the minimal disturbance to patients. 

. The system must be easily operated by an unskilled person. 

. The cost of the system should be kept to a minimum. 

. The system must conform to hospital health and safety conditions. 

The above requirements are elegantly met by using a standard Personal 

Computer (PC) with additional specialised data acquisition hardware. The 

PC is responsible for master control via a suitable user interface and the 

storage of EEG/EOG data on Winchester disk. The additional hardware is 

responsible for continuous data acquisition, consisting of multi-channel 

input signal conditioning, analogue to digital conversion, short term data 

buffering and communication with the controlling PC. 
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Careful consideration was made to minimise signal distortion in the 

additional hardware. Particular attention was paid to the analogue input 

signal conditioning and the analogue to digital conversion. These being 

the two areas where signal distortion could easily occur. 

Signal distortion in the analogue input signal conditioning is related 

to the quality of design, and component layout. High quality components 

and low distortion designs were used in this area. Signal distortion in 

the analogue to digital conversion process is directly related to the 

choice of sampling frequency in the digital system. Section 1.1 

illustrated that the conventional EEG frequency bands ranged from 0.5Hz to 

30H2. The sampling frequency was chosen as a compromise of minimimal 

aliasing error, and simplified filter design and data storage. 

3.3 AN E E G DATA ACQUISITION S Y S T E M (DAS), 

This section details the design of the EEG DAS used in this 

investigation. The system was installed in the department of clinical 

neurophysiology at Derriford hospital in Plymouth approximately 2 years 

ago and has been available for data acquisition for this period. 

The DAS is positioned alongside conventional EEG recording equipment 

in the clinical environment and regular data acquisition is carried out by 

hospital technical staff. Plate 3.1 illustrates the DAS and plate 3.2 

illustrates the utilisation of the DAS in the clinical environment. 
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Plate 3.1 The Data acquisition system. 
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Plate 3.2 The DAS in use in the clinical environment. 
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3,3.1 S Y S T E M O V E R V I E W . 

Figure 3,1 illustrates a conceptual diagram of the DAS. The system 

consists of three units. The first unit incorporates the analogue signal 

conditioning, analogue to digital conversion and digital control/data 

processing. The second unit is a standard personal computer (PC) with 

interfaces to the other units. The third unit is a standard Winchester 

disk backup tape streamer used for data archiving. Connection to the EEG 

machine is made via the first unit. 

te oandllmllaa $ingla aigitml 
ie cttann0t§ amoHtl»a e/tanntlt mi / / l /p /»x»d aala a-oit to bug 

EEQ 
uac r i l n* 
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Signal 

CsndlllenlnB 

_^ A to 0 
Cenvaralon 

I 
Cont ro l 

PC 
inter l ac* 

PC 

E£Q macfilna control aattlngt 

Figure 3.1 Conceptual illustration of the DAS. 
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The PC provides the main control features for the system. This includes 

the user interface which allows data acquisition to be started, stopped or 

paused at any time. The graphics facilities are utilised for real-time 

EEG/EOG signal display, both during recording, and as a previewing 

facility. The PC also provides temporary data storage on Winchester disk. 

Data archiving is provided by a standard backup tape streamer and 

conventional paper trace record. Al l three units are mounted on a trolley 

so that the system is easily transportable between EEG examination rooms. 

At the start of each patient recording the equipment is turned on. The 

PC keeps a permanent record of data already on the Winchester disk so that 

data is not over-written after power is removed. On power up, devices are 

reset and the system will perform a short self examination of connections 

and disk space, reporting on any malfunctions. After entering a few 

patient details using the PC keyboard, the control of the data acquisition 

is all carried out using the PC keyboard space bar. During recording an 

index number is displayed on the PC screen. This enables the recording 

staff to mark the paper trace enabling easier cross referencing. Modem 

EEG machines, such as the Siemens Mingograph EEG21 provide an additional 

computer interface. This removes the need for manual cross referencing and 

allows the DAS to elicit, directly from the EEG machine, the montage 

configuration, and values of amplifier gain and filter settings. 
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3.3.2 ANALOGUE SIGNAL CONDITIONING. 

The analogue signal conditioning, for each channel, consists of an 

instrumentation amplifier ( lA) , a band-limiting filter, and a sample and 

hold amplifier. The necessity to have 16 of these channels in the one unit 

meant that careful consideration had to be given to chip count and 

physical layout. 

(a) Instrumentation ampliers. 

Instrumentation amplifiers were chosen to minimise common mode signals 

and were designed around the common 3 operational amplifier configuration 

fRiskin. 1984: Meiksin and Thockray. 1984/. Monolithic components 

would have decreased the chip count but proved to be cost prohibitive. 

OP07 bipolar operational amplifier were used in the construction because 

of their high linearity, low input offset and high common mode rejection 

ratio {CMRR)fRuikowski, I984J. The auxiliary output of the EEG machine 

delivers a maximum of + / - 1.4 volts and therefore the gain of the lAs was 

set to 6 in order to utilise the full dynamic range of the analogue to 

digital converter circuits (see later). Appendix B contains the 

instrumentation amplifier circuit diagram. 

(b) Bandlimiting Alters. 

Signals were bandlimited using a second order Butterworth low pass 

filter. The Butterworth filter was chosen because it has maximally flat 

passband, a reasonably good phase performance and only uses 1 operational 
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amplifier in it's construction (Lynn. 1982J. The disadvantages of this 

design were the relatively poor roll off rate of the filter (-40dB/decade) 

and a gain loss at the cut off frequency. In order to overcome these, the 

cut off frequency was chosen to be 40 Hz as opposed to the highest 

frequency of interest which was 30Hz and the sampling rate was chosen to 

be 256 Hz. This gives an aliasing error of approximately 4.8 % at 40 Hz 

fZuch. 1983(a)]. Appendix B contains the bandlimiting filter circuit 

diagram. 

(c) Sample and hold. 

Simultaneous sampling was chosen to avoid the introduction of delays 

between corresponding time points. Monolithic sample and hold amplifiers 

have similar cost to discrete component ones and reduce chip count. 

Therefore, an LF398 sample and hold amplifier was used in each channel 

[National; Chen, 1980; Zuch, (b)j. Sample hold control signals were 

derived from the microprocessor control circuit (see later). The system is 

not operated at high frequencies, therefore, the charge holding 

characteristics are of more importance than the speed of the device. 

Charge was held using a polypropylene capacitor. This exhibits a high 

insulating resistance and a very low dielectric absorption. A 0.01 uF 

capacitor allows an acquisition time of 25 )JS to 0.01% of target voltage 

and a final sag in the order of 2mV in lOV in a period of 3.9mS. This 

gives more then adequate performance with a final error in hold voltage of 

less than 0.03%, considerably less then half the quantisation level of a 

I2bii analogue to digital converter. 
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3,3.3 ANALOGUE T O D I G I T A L CONVERSION 

The resolution selected for the DAS was of 12 bits. This complies with 

common procedures in medical applications. A single SAR analogue to 

digital converter (ADC) integrated circuit (AD574) is used in conjunction 

with a multiplexer integrated circuit (AD7506). This minimises chip count 

and because of the use of multiple sample and hold amplifiers, does not 

introduce channel phase errors. Analogue signals are amplified to + / - lOv 

to utilise the full dynamic range of the ADC. The control of the signal 

sampling, mutiplexing, and conversion were carried out by the 

microprocessor control circuit. A software program carried out the 

sequencing of these events. Appendix B contains a circuit diagram of the 

multiplexing and conversion circuit. 

3.2.4 MICROPROCESSOR C O N T R O L C I R C U I T 

The Motorola 10 MHz MC68000 was chosen as the microprocessor (pP) used 

in this system. This was chosen because of the speed of the processor, 

the 16 Mbyte addressable memory space, the cost and the availability of 

software development tools. The MC68000 is also an industry standard and 

considerable experience exists in its use (Motorola, 1987; Wilcox, 1987). 

Figure 3.2 illustrates a block diagram of the microprocessor control 

circuit. The microprocessor control circuit is comprised of the 

microprocessor, the timing clock, the reset and watchdog timer circuits, 

the system random access memory (RAM), the system read only memory 

(EPROM), the programmable umer module (PTM), and the dual port ram (DPR). 
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Figure 3.2 Microprocessor control circuit block diagram. 

Each device in the DAS is memory mapped into the 16 Mbyte address space 

and^devices address is only partially decoded, giving each device I Mbyte 

of address space. 

The reset circuit provides a hard reset to the 68000 on power up and 

under the control of a front panel reset button. The watchdog timer 

monitors data hand-shaking within the 68000 system and initiates a reset 

should failure occur, preventing possible system hang ups. The decoder and 

DTACK generator circuits provide the necessary chip enable control lines 

and data acknowledge hand-shaking signals required by the 68000. EPROM and 

RAM provide the conventional memory areas for program code and data 
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respectively. The PTM is responsible for providing sample hold signal 

timing,and is programmable during operation. The PTM sample hold signal 

generates a prioritised interrupt to the 68000 for every sample from the 

sample hold signal. The detected interrupt is serviced by the 68000 by 

jumping to a special software routine which is responsible for control of 

the analogue to digital converter circuit and data storage in the DPR. The 

DPR is a temporary buffer necessary to ensure continuous data acquisition 

and is addressable by both the DAS and the PC controlled by two latches. 

Data storage to Winchester disk is via two 64k RAM buffers which are each 

filled in approximately 8 seconds when the DAS operates at a sampling 

frequency of 256Hz. When one buffer is ful l , fuaher data storage is 

transferred to the second buffer and the DAS instructs the PC to read and 

store the contents of the first buffer onto Winchester disk. This is 

carried out in approximately 2 seconds enabling the DAS to operate upto a 

maximum sampling frequency of 1024Hz. This process is repeated when the 

next buffer is ful l . At any time the DAS will be connected to read from 

one buffer and write to the other and the PC wil l have the reverse 

connections. The control of the latches which enable this communication is 

carried out by the 68000. Appendix B contains the microprocessor control 

circuit diagram. 

3.3.5 PC I N T E R F A C E . 

The PC interface provides the communication link between the PC I/O 

address space and the DAS processor board. The interface is positioned in 

one expansion slot inside the PC. Both control latches and the DPR on the 
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DAS processor board are addressable by the PC through the lO addresses 

300h and 301h. To read or write to a latch or DRP buffer the address is 

first written to 300h which enables decoding to produce the relevant chip 

enable (CE) control lines. This is followed by a single byte read or write 

to or from that address. Appendix B contains the PC interface circuit 

diagram. 

3.3.6 DATA S T O R A G E 

The contents of each DPR buffer, containing 8 seconds of 16 channel 

EEG/EOG data, is saved to Winchester disk as a separate binary disk file. 

Files are sequentially numbered and each file index reflects the patient 

number and data block number. Files are automatically attributed date and 

time values by the Disc operating system (DOS). In addition to the signal 

data, a header file is stored for each patient that contains the patients 

age, sex, initials and any relevant information regarding the patient. For 

example a known history of epilepsy could be of importance. 

When an examination is completed, patient data are archived using a 

standard backup tape streamer. The current system uses an Everex 40 Mbyte 

cassette tape steamer. This enables a 40 Mbyte Winchester disk to be 

backed up in approximately 10 minutes. A CT600H compact cassette backup 

tape will therefore hold the contents of between 3 and 5 patients data, 

depending on the length of the examination. 
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3,3.7 S O F T W A R E . 

The software used with the DAS is divided under two sections, (i) the 

control 'software, and (ii) the support data software. The control software 

consists of the system program, DAS3, and the PC control software, 

PCDSP14. The support data software consists of a number of data editing 

and manipulation programs used for data analysis, VIEW programs, (see 

appendix C). 

3.3.7.1 DAS S Y S T E M SOFTWARE 

The system software is written in 68000 assembly code, and is 

responsible for coordinating the data acquisition and storage routines 

under a supervising main program [Bramer. 1986}. Figure 3.3 

illustrates a fiow diagram for this program. 

tttt 

read PC 
• l i t u a la tc r f 

read PC 
Blatua l a t c i 

diaable 
In ie r rup la 

read 
b u f f e r No 

conve r t 
c f i an 

atora 
data 

i 
Cnan*l 

no 

[ v r l t e to Pcl 
tatua late 

end ot inttrruot 

Figure 3.3 DAS system software flow diagram, 
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When powered up, the system software wil l run a short test on its 

status. Data acquisition is commenced, by enabling interrupts, when the 

system software detects the command word, in a latch written to by the PC. 

The DAS system is interrupt driven, the interrupt signal is derived from 

the PTM on the microprocessor board, which operates at a frequency of 256 

Hz. This signal provides the sample and hold circuits with the hold 

command and also interrupts the microprocessor with a level 4 interrupt. 

During the interrupt service routine the uP selects each channel by 

writing the appropriate address to the M U X . Conversion is initiated by 

writing to the ADC. When the end of conversion signal is detected, the 

converted signal can be read and the next conversion initiated using one 

read of the ADC. Each 12-bit conversion is read as 16 bits this enables 

the remaining 4 bits to be used to indicate status conditions, such as 

breaks in data acquisition caused when a pause is requested. 16-bit words 

are stored in the DRB as 2 consecutive 8-bit words. This allows easy 

access for PCs with only 8-bit I/O ports. Once 64 Kbytes of samples have 

been acquired, every 8 seconds, the system software writes a status word 

to a latch which is read by the PC. Subsequent samples are written to the 

other 64 Kbyte RAM buffer in the DRB. The supervising program monitors the 

status of the PC to ensure that the RAM buffer has been read before it is 

written to and also to detect when data acquisition is to cease. 

3.3.7.2 PC C O N T R O L S O F T W A R E . 

The PC control software is written in a Compiled BASIC with the data 

communication routines written in 8086 assembly code [IBM 1984; Scanlow. 

1985}. Figure 3.4 illustrates a flow diagram of this program. 
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Figure 3.4 PC control sofware flow diagram. 

The program consists of the user interface, data storage, data 

archiving and supervising routines. Compiled BASIC was chosen because of 

the ease with which a user friendly graphics interface could be written. 

Compiled BASIC is also considerably faster than its interpreted version 

and code can be written in an easily understood and structured manner. 

Assembly language routines were however necessary where speed was 

critical. 

When the system is powered up the PC software tests the status of the 

system. Problems with the DAS will be reported on the screen and will 

normally request for the system to be reset using the button on the front 
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of the DAS. Provided this is successful the user will be presented with a 

menu .screen (see plate 3.2), from which 3 choices are available, (i) a 

status check on the available disk space, (ii) a preview of the data to be 

read, and (iii) to record data. 

It was vital to include features such as start, stop and pause into a 

user interface that imposed as little as possible on the operator. 

Therefore, control of the program is achieved by selecting an option from 

a menu using a single key press However, the user interface also enables 

the operator to enter patient data such as initials, age, sex and any 

other pertinent details via the normal alphanumeric keys. This is used in 

order to make patient data identification easier as well as providing 

useful information. This additional data are stored as a separate ASCII 

file with the sampled data. 

When record data are selected the software writes to a latch read by 

the DAS. This initiates recording and the PC software then monitors the 

status of a latch written to by the DAS to detect when a R A M buffer is 

fu l l . Once detected the PC software reads the data into memory using an 

assembly coded routine, opens a new file on the Winchester and writes the 

data to disk as one 64 Kbyte block of binary data. This was found to be 

the fastest method of storage. Once data are written the PC informs the 

DAS by writing to the latch read by the DAS. 
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3.3,7.3 SUPPORT SOFTWARE. 

The support data software programs were also written in compiled 

BASIC. Data editing is carried out off-line. Therefore, speed was less 

critical than good graphics and ease of code development. Programs in the 

VIEW suite (see appendix C) allow the user to edit 2,4 or 8 second 

segments from single or multiple recorded channels. The programs allow 

rapid scanning through recorded data by displaying multiple channels on 

the graphics display. The display is also used to identify data that are 

being viewed, so that recorded data and paper records are more easily 

synchronised. Breaks in data recording are indicated on the display as 

vertical bars through the data. Edited section of data are saved onto disk 

for separate channels as ASCII files. This allows easy transportation to 

the various analysis programs used later. 

3.3.8 HARDWARE CONSTRUCTION 

Careful consideration needed to be given on the construction of the 

DAS. Not only did the system have to conform to clinical safety 

conditions, but also the system needed to be robust, introduce minimal 

noise and be compact for the working environment. This section details the 

major aspects concerning the construction of the DAS. 

The ADC circuit board was constructed on a double sided single Euro 

size PCB and mounted in a separate metal area within the DAS enclosure to 

allow electrical screening of the critical components. The microprocessor 
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control circuit was constructed on a double sided, double, extended EURO 

PCB. .The use of a separate PCB enabled the high frequency digital 

components to be physically and electrically isolated from the critical 

analogue to digital conversion circuits. 

Careful consideration had to be given to circuit layout and grounding 

procedures, to minimise signal distortion. The presence of both analogue 

and digital grounds on the circuit boards further added to this need. Each 

channel has its own signal ground, there is also a power supply ground and 

a digital ground for each board. These grounds are all connected to a star 

point at the power supply [Brokaw. 1984; Rich, 1983/. The use of a 

separate PCB for analogue to digital conversion components enabled better 

control over the critical circuit layout and grounding requirements of 

these circuits [Bradshaw and Osgood, 1984J. Analogue and digital 

components are separated on the PCB. Separate, multiple, analogue and 

digital grounds are provided as well as power supply grounds for 

decoupling components. These are all taken off the board and connected 

together at a star point at the power supply. Analogue and digital grounds 

are also connected close to the ADC to provide a reference for conversion. 

An analogue ground plane surrounds all the components on the ADC PCB. 

3,4 SUMMARY OF C H A P T E R 3. 

Chapter 3 has detailed the specifications and design of a high quality 

and inexpensive data acquisition system suitable for interface to standard 

EEC measurement equipment. Use is made of a standard PC interface to allow 
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for data archiving using Winchester disk and explanatory user interface. 

Data acquisition has allowed an extensive database of EEG/EOG signals to 

be compiled and the developed acquisition system forms the hardware basis 

of a proposed intelligent OA removal system. 
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CHAPTER 4 CHAPTER 4 

4-1 INTRODUCTION 

The equipment described in the previous section has been used in order 

to create a BEG database. The objective of this is to acquire data on (i) 

all types of ocular artefacts and (ii) cerebral signals whose 

interpretation is made difficult by the presence of OAs. A large and 

comprehensive database, has enabled the production of new intelligent OA 

removal strategies to be developed and tested. Section 4.2 describes the 

techniques used to acquire patient data, together with illustrative 

examples of the data obtained. Sections 4.3 - 4.5 detail the development 

of the new intelligent OA removal stategies. Section 4.3 extends previous 

research to establish suitable EOG subtraction models for OA removal from 

different EEG signal derivations. Section 4.4 investigates the application 

of the OA removal algorithm in a selective and directed manner. Selective, 

depending on the type of OA present, and directed to avoid applying the 

algorithm to uncontaminated EEG. Section 4.5 investigates the 

characterisation of OA and abnormal slow waveforms, to establish 

techniques to enable their differentiation. 
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4.2 E X P E R I M E N T A L T E C H N I Q U E S AND DATA. 

Patient data has been acquired from a selection of both normal and 

abnormal patient populations. This has enabled a wide variety of OA 

waveforms to be obtained. Normal patient data was acquired from 

volunteers, whilst abnormal patient data was acquired from patients 

normally admitted to the EEG department. 

4.2.1 DATABASE ORGANISATION. 

Patient data are stored on compact cassette backup tapes and as 

standard paper trace records. Each patients data consists of a header file 

and a number of data files. The header file contains the date and the age, 

sex and initials of the patient. Pertinent details, such as "prior signs 

of frontal slow waves", etc. can also be stored in this file. Al l patient 

data are governed by rules of confidentiality. To enable sections of data 

to be more easily referenced to paper records, the data files are divided 

into sequentially numbered 8-second blocks and are automatically time and 

date stamped. In addition to the digital and paper data records, 

technicians reports on patient data are stored. Each technicians report 

consists of general observations on the patients behaviour during the 

recording and also technical details of the records content. General 

observations include the patients state of awareness and whether eyes are 

open or closed etc., and technical details include a catalogue of the 

types of waveforms seen to be present. For example, a typical technical 

report will consist of: 
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Patient was conscious and alert throughout. 

Regular alpha in the occipital region, upto 50./*V... 

The technicians report and paper record allowed relevant sections of 

EEC to be selected for further analysis. This was of particular importance 

when attempting to elicit knowledge from the EEC expert regarding specific 

instances of waveforms. 

4,2.2 P R E C L I N I C A L V O L U N T E E R DATA ACQUISITION, 

Pre-clinical testing of the equipment was required for a number of 

reasons. Firstly the DAS could be subjected to rigorous examination to 

enable the reliability of the system to be tested in the working 

environment. This was likely to be easier using volunteers than by using 

patients who were unlikely to be entirely cooperative. Secondly, data 

acquisition using volunteers would provide eye movement data from a normal 

or non-patient group. This data would contain no abnormal waveforms and 

therefore enable easier OA identification. Characteristics obtained from 

the volunteer OAs would be used as parameters for OA identification in the 

patient group data. Pre-clinica! trials were conducted at Derriford 

Hospital in Plymouth, using 3 volunteers. Data acquired from volunteers 

has enabled a comparison to be made between EOG subtraction models and 

different OA removal strategies. In addition, these data have provided 

information on other EEC artefacts, such as muscle artefact caused by 

head, neck, jaw and face movement. 
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The pre-clinical trails consisted of volunteers making a series of 

repetitive eye/eyelid and facial movements over controlled excursions. 

Figure 4.1 details the pre-clinical trial protocol. Volunteers were 

positioned approximately 2m in front of a plain wall. The wall was marked 

with 8 points constructing a circle of radius l . l 5 m , the centre of which 

was in line with the volunteers eyes. The technician used a pointer with a 

bright spot on one end to point to the appropriate points on the circle. 

The volunteer was asked to maintain head position and to follow this 

point. Vertical eye movements (VEM), horizontal eye movements (HEM) and 

eye roiling movements (REM) were therefore measured over 60 degree 

movements, or 30 degrees from the rest position. Each ^movementslasted 

approximately 2 minutes and the whole test approximately 30 minutes. 

Figure 4.2 illustrates the electrode positions used in the trials. 9 

EEC signals were measured and 7 additional EOG signals. 4 of the EOG 

signals were also EEC signals so that in total 13 EEC signals were used. 

Al l signals were measured referred to linked mastoids (A1-A2). Fronfi these 

referential signals all frontal EEC signals and EOG signals could be 

derived. Figures 4.3 - 4.5 illustrate typical EEC recorded from a number 

of referential EEC signals. Figure 4.3 illustrates EEG contamination by 

vertical eye movement (VEM) OA. Figure 4.4 illustrates EEG contamination 

by horizontal eye movement (HEM) OA. Figure 4.4 illustrates EEG 

contamination by blink OA, 
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VOLUNTEER PRE-CLINICAL T R I A L PROTOCOL 

Volunteers should be seated and positioned over mark on Hoor. facing 
the wall. Volunteers should be asked to maintain head position and to 
follow the pointer with their eyes only. 

tests: 

1. 20 seconds of data is acquired while the patient is at rest. 

2. VEM: pointer to move to 6 o'clock and then to 12 o'clock f rom central 
position. 10 repetitions. Each movement to last approx I second. 

3. 5 second pause. 

4. HEM: pointer to move to 9 o'clock and then 3 o'clock from central 
position. 10 repetitions. Each movement to last approx I second. 

5. 5 second pause. 

6. DEM: pointer to move to 2 o'clock and then 8 o'clock from central 
position. 10 repetitions. Each movement to last approx I second. 

7. 5 second pause. 

8. REM; pointer to travel around circle clockwise. 10 repetitions. Each 
rotation to last approx 4 seconds. 

9. 3 second pause. 

10. Blinking: Blink 10 limes at approx I second intervals. 

11. S second pause. 

12. Nystagmus: text is positioned 0.25m in front of volunteer at eye level. 
Volunteer is asked to read text. 

13. 5 second pause. 

14. Head movement: Volunteer should move head to look at four cornares of 
room. Repeat twice. 

15. S second pause. 

16. Jaw movemenL Volunteer should chew teeth for approx 10 seconds. 

17. 5 second pause. 

18. Facial movement: Volunteer should raise eyebrows and move face for 
approx 10 seconds. 

Figure 4.1 Pre-clinical volunteer trial protocol, 
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E E G Electrode positions E O G Electrode positions 

Figure 4.2 EEG and EOG electrode positions used in the 

pre-clinical volunteer trials. 

down 

lOOt/V 

.23 soconas 

Figure 4.3 EEG and EOG signals illustrating typical Vertical eye 

movement (VEM): (a)I2, (b)Fp2, (c)F8, (d)N, (e)F4, (0T4, (g)Pz. 
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JOOuV 

25 soconas 

Figure 4.4 EEG and EOG signals illustrating typical Horizontal eye 

movement (HEM): (a)I2, (b)Fp2, (c)F8, (d)N, (e)F4, (0T4, (g)Pz. 

23 soconas 

Figure 4.5 EEG and EOG signals illusiratmg 

typical Blink: (a)I2, (b)Fp2, (c)F8, (d)N, (e)F4, (0T4, (g)Pz. 
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4.2.3 C L I N I C A L PATIENT DATA ACQUISITION. 

Clinical patient data acquisition was carried out on patients admitted 

to the department of Neurophysiology at Derriford Hospital. It has 

provided EEG/EOG data from 50 patients in all age groups containing a 

variety of abnormalities. Standard EEC examinations procedure was followed 

during the recording and no special electrode positions were used. Each 

recording typically consists of the measurement of cerebral activity using 

upto 8 electrode montages, which are shown in figure 4.6. Each recording 

typically lasted 20-30 minutes, during which time the patient was asked to 

open or close eyes and be subjected to a number ofevokoHve p^c« lwr^s 

such as stroboscopic light. The specific recording protocol wi l l vary 

according to the observations made by the recording technician. However, 

EEG montages 1, 2, 3, 4, and 8 are used as standard in the acquired 

patient data. 

Figures 4.7 - 4.10 illustrate a sample of the data acquired from 

abnormal patient data acquisition. The samples illustrate common OA and 

abnormal frontal slow wave observed in the data. Each sample is 

accompanied with a summary of the technicians report for the particular 

patient. Appendix D contains the technicians reports for all acquired 

patient data for further reference. Figures 4.7 - 4.10 represent 

multi-channel EEG (montage 1) showing high amplitude frontal delta 

activity. Figures 4.7 and 4.8 illustrate common OA waveforms , and figures 

4.9 and 4.10 illustrate common abnormal frontal slow waveforms. The VEM 

illustrated in figure 4.8 appears simmilar to the abnormal frontal delta 

waveforms illustrated in figure 4.10. However, the potential distribution 

is cleariy different. 
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Figure 4.6 EEG electrode recording montages 

used in clinical trials. 
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E E G Electrode montage 1 

Rolling eyo movements 

lOOuV 

TECHNICIANS REPORT; 

Drowiy throughout recording. 

Bilaterally synchronous very slow 

frontal delta waveforms. 0.25-0.5 Hertx. 

upto 300uV. 

1 seconds 

Figure 4.7 Sample data and technicians report 1 
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E E G Electrode montage 1 

tas! vertical eye movements 

TECHNICIANS REPORT; 

Tbeta elements with sharp components 

in both temporal regions. Slow activity from 

hyper-ventilation appearing bilaterally. 

Bilaterally synchronous delta waveforms. 

2-4 Herts, upto 100 uV. 

WOuV 

/ eeoonas 

Figure 4.8 Sample data and technicians report 2 
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E E G Electrode montage 1 

UftLUE 

T E C H N I C t A N S R E P O R T : 

Slow waves 2-3.5 Hertz. 50-I50uV. bilateral 

more on the right than the l e f t , apeartng in 

1-5 secoad bursts. Delta, 1.5-3.5 Hertz, upto 

ISOaV. both mid temporal areas. 

GeDeralised slow waves 

lOOuV ^ 

1 seconas 

Figure 4.9 Sample data and technicians report 3 
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E E G Electrode montage 1 

Abnormal slow waves 

tOOuV 

T E C H N I C I A N S R E P O R T : 

BllateralJy synehronous delta. 2-3 Hertx. 
upto ISOaV. ID 1-4 seeoDcf bursts, maxtmam 

froDtally and temporally. 

1 seconas 

Figure 4.10 Sample data and technicians report 4 
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4.3 O F F - L I N E INVESTIGATION INTO O C U L A R A R T E F A C T 

R E M O V A L 

The data acquired from volunteers has been used to investigate several 

OA removal hypotheses. These were: (i) bipolar and referential EEG 

montages require different EOG montages for best OA removal, and (ii) 

different OAs require different EOG models for best OA removal. This 

investigation was necessary to establish suitable EOG montages for all 

common types of OA and for all common EEG signal derivations. Suitable EOG 

montages were determined by comparing the corrected EEG obtained from 

application of the OA removal algorithm to sections of EEG contaminated 

with the most common OA types. Qualitative and quantitative comparisons 

were carried out using time and frequency domains. Previous research was 

extended to include many more EEG signals from different scalp positions. 

Data analysis was carried out using the Interactive Laboratory System 

(ILS) (STII software package on a PC. This is a package that contains 

many mathematical, statistical, and digital signal processing routines and 

facilities as well as graphical display to enable hard-copies to be made. 

4.3.1 INVESTIGATION P R O T O C O L . 

From the acquired data 504 2-second segments of EEG were edited, and 

their mean values removed. The edited segments were those that appeared to 

contain contamination from only one type of artefact, these being: 

vertical eye movement (VEM), horizontal eye movement (HEM), and blink. In 
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addition to this, segments were also chosen that appeared to contain no 

artefact contamination, to enable the effects of OA removal on uncorrupted 

data to be observed. Each 2-second segment of data provided a number of 

EEG and EOG signals and off-line data analysis was to firstly calculate OA 

parameters for each EEG/EOG combination, and secondly use these OA 

parameters to correct each EEG signal. OA parameters were calculated using 

linear multiple regression, and the performance of each correction 

compared in view of the above investigation objectives. 

4.3.2 E E G SIGNALS AND E O G SUBTRACTION MONTAGES. 

Analysis of the data has extended previous research [Ifeachor, 1984; 

Jenis et al.. 1988/ by using several previously successful EOG montages 

on a greater number of - derivations. For the analysis, 9 referential 

and 9 bipolar EEGs were used. These were Fz, Cz, Pz, F4, C4, T4, F3, C3, 

T3, al! referenced to linked mastoids, and F4-C4, Fp2-F4, Fp2-F8, C4-T4, 

F4-T4, T4-F8, C3-T3, F3-T3, T3-F7 (See figure 4.2). 4 different EOG 

montages were selected for the analysis. Two of these were derived 

referentially and two were bipolar in derivation. Figure 4.11 illustrates 

the EOG mo ntoges »ASC<i. 

The EOG montages used were chosen to enable a comparison to be made 

between smaller simpler montages that would enable easier, faster 

implementation and larger more complex montages that have been 

investigated previously fJenis. ei al., 1988/. The inclusion o f both 

referential and bipolar EOG montages would enable a comparison to be made 
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E O G Electrode montage 2. E O G Electrode montage 9. 

referential 

E O G Electrode montage 4. E O G Electrode montage 5. 

oiooiar 

Figure 4.11 EOG montages used in pre-clinical trials. 

of their respective abilities to remove OA from both bipolar and 

referential EEG montages. This is particularly true of models 5 and 9 

which use identical electrode positions. The comparison was to be made 

using a large number of EEG signals measured over a large scalp area and 

not simply the vertex or frontal electrode positions used in previous 

studies. The montages used were not an exhaustive representation of all 

montages previously used. However, the method of recording would allow 

other montages to be investigated. 

4.3.3 O C U L A R A R T E F A C T P A R A M E T E R S 

Ocular artefact parameters were calculated off-line for each EOG/EEG 

combination by modelling the EEG/EOG samples as a linear multiple 
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regression given by:-

EEG = KlEOGl + K2EOG2 KmEOGm + 6 4.1 

Where EEG is the measured EEG sample or response variable. 

EOG are the EOG samples or regressor variables. 

Km are the ocular artefact parameters. 

£, is the error in the response variable having zero mean. 

The sample of n observations that are taken, consists of n sets of 

(m+1) values: one value is for the EEG, and one value for each of the m 

EOG measuremeots. For example for estimation of the OA parameters in a 2 

second segment of EEG n wil l be equal to 512. 

The best estimates of the OA parameters and the error variance is 

calculated using the least squares method [Bajpai, et at., I983J. This 

necessitates the minimisation of:-

S = I = £ f « ^ J - ^ )^^£o<^^.\ 4.2 
J - I J " \ , j 

and will produce the estimated regression equation: 

EEG = K j E O G i + ... Kj^EOGp^ 4.3 
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Minimisation of S, for a fixed set of data depends upon the values of 

the parameters. Therefore we write S = S (Kj ,K9 , . . . K^^). We require 

<) S = bS = ... =^0^5 = 0. This set of conditions provides (m+1) 

equations. 

K m 

For example^ for two EOG signals the OA parameters are estimated by 

minimising:-

r • 

= ^ E E G j - K lEOGi j -K2EOG2j ) ' 

3= • 

Differentiation of S and equating to zero leads to a set of normal 

equations fifeachor, 1986; Bojpai, et ai.. I983/(SQ& appendix A for 

further details). These are represented in matrix form as:-

^ E E G j EOG 

r E E G : E 0 G 2 i 

^__E0GijE0G2j 

^ T E O G H E O G o ; Z E O G ^ . 

A, 

A 

K2 

4.4 

This gives the least squares estimate of the ocular artefact 

parameters Km and can be solved using a suitable matrix inversion 

technique. To calculate the large number of parameters involved in this 

stage of the investigation, a specialised digital signal processing 

software package, the interactive laboratory system (ILS) 5̂77, ]988J 

was utilised. 
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The true EEG was estimated using the estimated OA parameters from 

equation 4.4 and equation 1.5 from section 1.3.1, which is repealed here 

for clarity. 

eeg(i) = y(i) - K EOG^i ) i = 1,2, ,m 1.5 

where K = [ k j , k7, . . . , k^^]' are the calculated OA 

parameters. 

eeg(i) is the estimate of the true eeg(i) 

EOG'^(i) are the sampled EOGs 

m is the sample number. 

^ indicates matrix transposition 

4.3.3.1 A V E R A G E D O C U L A R A R T E F A C T P A R A M E T E R S , 

OA parameters were calculated for each of the 504 2-second EEG 

segments and an average was calculated for each parameter, at each 

electrode site, and for each of the three main OA types. This provided an 

averaged representation of OA potential distribution over the scalp (See 

appendix E). 

4.3,4 C O M P A R A T I V E R E S U L T S . 

To enable the EOG subtraction montages to be compared, both 

qualitative and quantitative analysis was carried out on the results 

obtained above. A qualitative comparison of OA removal was carried out 
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using time and frequency domain representations, and a quantitative 

comparison was made by quantifying the accuracy of the regressive model. 

4.3.4.1 Q U A L I T A T I V E COMPARISON 

Qualitative analysis was achieved by plotting the uncorrected EEG and 

the corrected EEGs, from the four respective EOG OA correction montages, 

on a single graph, synchronised in time. This graphical representation 

allowed the corrections to be visually assessed by two EEG experts (1 

consultant, 1 chief technician) in addition to the author. 

Visual analysis lacks an easy quantitative description and can be 

subjective in nature. However, this type of analysis has been found, in 

previous studies, to be extremely sensitive to remnant artefact caused by 

unsatisfactory OA removal fifeachor a oL. 7955/, and to the 

distortion of clinically significant EEG waveforms. In addition to this, 

visual analysis wil l be the final test for clinical acceptance and is no 

more subjective than conventional EEG analysis. 

(a) T I M E DOMAIN. 

Figures 4,12-17 illustrate the uncorrected and corrected EEG with 

respective EOGs and OA parameters for various combinations of referential 

and bipolar EEG recordings represented in the time domain. These figures 

also show the results of visual assessment made by the two EEG experts. 

The EEG signals are chosen as those which are most effected by the 

respective OA. 
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OOuV 

.35 seconds 
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Figure 4.12 Comparison of four EOG montages for OA removal 

from EEG recorded at Fz and containing vertical eye movement. 
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Figure 4.13 Comparison of four EOG montages for OA removal 

from EEG recorded at Fp2-F4 and containing vertical eye movement. 
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Figure 4.14 Comparison of four EOG montages for OA removal 

from EEG recorded at F8 and containing horizontal eye movement. 
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Figure 4.15 Comparison of four EOG montages for OA removal 

from EEG recorded at F7-T3 and containing horizontal eye movement. 
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Figure 4.16 Comparison of four EOG montages for OA removal 

from EEG recorded at F4 and containing blink, 
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Figure 4.17 Comparison of four EOG montages for OA removal 

from EEG recorded at Fp2-F4 and containing blink. 
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Analysis of these results allows the following observations to be 

made:-

, For all instances of artefact using most electrode derivations, all 

4 EOG models exhibited visually similar OA removal in that a significant 

attenuation in OA amplitude was observed. This is in agreement with 

Ifeachor, et al., 1986 but extends this to new EEC signals and EOG 

montages. However, it can be seen from the results that the different EOG 

montages generate corrected EEGs that differ in detail. This appears to be 

particularly true when comparing bipolar and referential EOG models. The 

bipolar EOG models appear to have maintained the detail of the uncorrected 

EEG to a greater extent than the referential models. This can be seen most 

clearly when comparing models 9 and 5 in figures 16 and 17 which employ 

identical electrode placements and only differ in derivation. 

An explanation to this observation can be made by studying the 

measurement of the EOG signals. Consider the EOG signal measured between 

Fp2 (above the right eye) and F8 (to the right of the right eye), i.e. 

Fp2-F8. :-

F p 2 . - -

F8 
A 

Fp2-F8 

linked ears 

Figure 4.18 Derivation of a bipolar EOG signal, 
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It can be seen that a bipolarly derived signal wil l have the effect of 

removing any common signal between them. The common signal in the EOG is 

likely to include frontal EEG signals, and therefore the bipolarly derived 

EOG signals will reflect more accurately the true EOG. The removal of the 

EEG contamination in the EOG will therefore prevent this common signal 

from further corrupting the original EEG signal, hence reducing so called 

'secondary artefacts' in the corrected EEG. This indicates that a bipolar 

EOG montage is more suitable for OA removal. 

, EOG model 2 was derived from electrodes placed only above and below 

the eyes - the position where maximum amplitude is observed from V E M OA, 

It was therefore, not expected to correct as well for all types of OA as 

the other models which included additional electrodes. In particular, for 

HEM, model 2 was expected to give poorer results than model 4 which 

included the same electrodes as model 2, but additional electrodes placed 

on either side of the eyes - the position of maximum amplitude observed in 

HEM OA. However, the above results indicate that both models performed 

comparably when correcting for HEM, i.e. both models significantly 

attenuated the large OA potential due to eye movement. Comparing the 

corrections of models 2 and 4 only differ in detail of correction. 

It must be borne in mind that there is no effective isolation between 

scalp electrodes, and therefore, although attenuated, it appears that the 

electrodes of model 2 contain sufficient information to enable significant 

attenuation of the OA waveform to be affected. Additional electrodes 

provide apparently no further information and might therefore be 

redundant. Observation of the respective OA parameters for models 2 and 4 

support this hypothesis as it can be seen that for instances of HEM the 
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vertical EOG electrodes placed above and below the eyes in model 4 are of 

less significance than the same electrodes of model 2, and are of much 

less significance than the horizontal EOG electrodes of model 4. 

. Three exceptions to the above observations were observed. In EEC 

derivations recorded at Fp2-F4, T4-F8, and T3-F7, the corrected EEC, using 

a bipolar EOG montage, was visually inferior to that of the referential 

EOG montage. It is noticed also that the EEC signals, in each exception, 

were of bipolar derivation, recorded close to the eyes, and showed 

differences in correction most noticably when the EEG signal contained 

large anefactual signals and/or a possibility of multiple artefact. This 

observation would indicate that the bipolar EOG models contain less 

information than the referential models and that as a consequence, remnant 

OA is left in the corrected EEG signal. It is hypothesised that this 

phenomenon is linked to that of observations made above, and that the 

subtraction of EOG signals of equal polarity has the effect of attenuating 

true EOG signal in addition to removing signal commonality. 

The visual comparison of corrections from bipolar and referential EOG 

models showed that OA attenuation was, in the majority of EEG derivations, 

similar and significant, which is in agreement with Ifeachor, 1984. 

However, this investigation has extended this finding to new EOG montages 

and new EEG signals and found that better detail in correction is observed 

when using bipolar EOG montages. It is therefore concluded that a simple 

bipolar EOG montage, such as montage 5 above, provides adaquate OA removal 

from the EEG channels investigated. 
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(b) F R E Q U E N C Y DOMAIN. 

Spectral analysis was carried out to enable a comparison to be made 

between the spectral components in the uncorrected and corrected EEG, for 

each EEG/EOG combination of (a) above. Figures 4.19 - 24 illustrate the 

Power spectral density for the uncorrected and corrected EEGs shown in 

figures 4.12-17. For clarity each figure also displays the respective OA 

parameters and visual assessment of the previous figures. 

! i 

Ft 
Model 2 
Model 9 
Model 4 
Model 5 

Figure 4.19 Comparison of four EOG montages for OA removal 

from EEG recorded at Fz and containing vertical eye movement. 
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Figure 4.20 Comparison of four EOG montages for OA removal 

from EEG recorded at Fp2-F4 and containing vertical eye movement. 

F3 
Moaol 2 
Model 9 
Model 4 

Figure 4.21 Comparison of four EOG montages for OA removal 

from EEG recorded at F8 and containing horizontal eye movement. 
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Figure 4.22 Comparison of four EOG montages for OA removal 

from EEG recorded at F7-T3 and containing horizontal eye movement. 

r 

F4 
M o r f f f / 2 
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Figure 4,23 Comparison of four EOG montages for OA removal 

from EEG recorded at F4 and containing blink, 
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Figure 4.24 Comparison of four EOG montages for OA removal 

from EEG recorded at Fp2-F4 and containing blink. 

Analysis of these results allows the following obsei^ations to be 

made:-

. In the frequency range of 0-20Henz, Al l EOG montages significantly 

attenuated the large low frequency component attributable to the OA. 

. Montage 9 showed greater remnant OA spectral power. 

. None of the models introduced additional spectral peaks in the 

0-20Hertz frequency band. Model 2 introduced spectral peaks into the 

estimated EEG above 25 Hz. This is most clearly seen in the case of blink 

anefact in EEG channel Fp2-F4 on figure 4.20 (the frequency scale does 
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not show this). 

The frequency domain montage comparison has further corroborated the 

previous findings. All EOG montages provide significant OA attenuation 

from the EEG. Bipolar montages provide least attenuation and this appears 

linked to the detail of the corrected EEG 

4.3.4.2 QUANTITATIVE COMPARISON, 

Quantitative comparison of different EOG subtraction models has proved 

difficult. Verieger et al. (1982) pointed out the lack of a quantitative 

assessment of the validity of OA removal techniques and several authors 

have addressed this problem since then. The major stumbling block for any 

attempt at quantitative comparison of EOG subtraction models, and in EEG 

analysis in general, is the absence of a measurable 'true' EEG signal with 

which to compare any corrected EEG signal. Jervis et al, (1988) discusses 

several quantitative techniques including measurement of covariances of 

EOG and EEG before and after OA removal fVerieger, et al., 1982], 

measurement of deviations, between corrected EEG and an estimate of the 

true EEG taken from an area of EEG with no obvious OA contamination 

[Gratton et al. 1983], and measurement of residual after OA removal 

[Berg, 1986/. However, it has been found that in some cases, these 

quantitative methods can give misleading results [Ifeachor, et ai, 

1988J. Such cases are when EOGs contain other artefacts not related to 

ocular movements, such as muscle artefact and frontal EEG activity. 
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The quantitative comparison carried out here is an adaptation of 

Gratton et al. (1983) and quantifies the amount of correction, for each 

EOG model, by calculating a value which represents the error between the 

estimated EEG from the regressive model, and the measured EEG. This was 

called the percentage error of fit (PEOF) and reflects the error in the 

fit of the regressive model, which uses the EOGs as the regressor 

variables. 

The percentage error of fit (PEOF) is calculated as: 

PEOF = { ( y ( L > « 3 ( t ) ) 2 } X 100 4.5 

{ y( i ) ^ } 

where y(C) is the measured EEG 

and €6g(i.) is the estimate of the ' 

e.g. for a 2 parameter EOG model 

#1 r\ 

ctg ( i . ) = fej eo^ i ( L ) + ^ 2 ^o^2^^^ 
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A small PEOF will therefore indicate that the EOG model estimate 

provides a close approximation to the measured EEG signal. When comparing 

the PEOF from different EOG subtraction models, the model calculated as 

having the lowest PEOF will therefore have provided the highest amount of 

OA attenuation and would therefore be considered as the best EOG 

subtraction model. The PEOF of the multiple linear regression model was 

calculated for each EEG/EOG combination and table 4.1 gives the PEOF for 

the models and EEG signals illustrated in figures 4.12 - 17 (4.19 - 24) 

(See Appendix F for the complete set of results). 

Model 
Fz 

Fp2-F4 

F3 

T3-F7 

F4 

T4-F8 

VEM HEM B L I N K 

6.69 6.48 e.66 0.26 

7.30 r.ie 6.87 7.23 

2.08 1.64 2.03 2.37 

1.80 0.28 0.S2 0.66 

7.3 6.48 16.42 18.16 
11.92 1.82 4.3 4.81 

Table 4.1 Values of PEOF for the EEG signals and EOG 

models illustrated in figure 4.12-17. 

Analysis of these values of PEOF and careful comparison to the results 

of visual qualitative EOG model comparison has enabled the following 

observations to be made:-
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. The PEOF is proportional to the difference between the estimated EEG 

using the EOGs as regressor variables, and the measured EEG. This 

difference is viewed as the "true" EEG plus any non OA related artefact, 

as seen in equation 1.5 of section 1.3.1. The true EEG wil l give a finite 

error, or PEOF, and will be variable between EEG segments and channels, 

depending on the type of EEG activity present. For example, a segment of 

EEG containing high amplitude delta waveforms will produce a higher PEOF 

than one containing little or no significant EEG waveforms. Values of PEOF 

from different EOG subtraction models can therefore only be compared using 

the same segment of EEG signal. A further difficulty arises when EOG 

signal derivations contain frontal EEG activity. In this case a model 

giving a minimum PEOF might have introduced 'secondary artefact' into the 

corrected EEG s.ignal and therefore might be visually assessed as having 

'overcorrected' the EEG signal. This effect is illustrated in model 9 on 

the HEM OA illustrated in figure 4.15. 

Referential EOG models give a smaller PEOF than the bipolar models but 

it can be seen that this is at the expense of reduced EEG signal 

amplitude. This is again linked to the observations made above and it can 

be seen that the respective EOG signal derivations for referential EOG 

models contain frontal EEG signals resulting in a corruption in the 

corrected EEG. It was concluded therefore that the PEOF is only of any 

real use when the difference in corrections of any two models is large. By 

contrast the qualitative visual inspection described above enabled subtle 

differences in correction to be evaluated. 
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4.3,5 SUMMARY O F R E S U L T S F R O M O F F - L I N E A N A L Y S I S . 

In conclusion to this section of the research, the results to date 

indicate that it is not necessary to use a particular EOG model to remove 

a particular OA as all the models examined performed similarly when 

compared visually and with spectral analysis. This is true with most EEG 

derivations examined. The results also indicate that referential and 

bipolar EEG derivations do not require different EOG models for OA 

removal. In most cases the bipolar models gave similar artefact removal 

but gave visually better results when comparing detail. However, OA 

parameters were dependant on electrode derivation and OA type. This 

observation can be exploited by using the averaged OA parameter values, 

for each electrode derivation and type of OA, as a pre-loading value for 

any on-line adaptive OA removal. This would minimise the time taken for a 

particular OA removal algorithm to settle to an optimum value. 

Qualitative differences in OA removal of EOG subtraction models has 

been largely attributed to the presence of artefacts within the EOG 

signals. There is therefore justification in enhancing the EOG signals, to 

remove artefact. This is likely to improve the quality of OA removal in 

both bipolar and referential EOG models. Analysis of EOG spectral content 

shows that little significant activity exists above 5 Hertz and none above 

8 Hertz fWhinon ei al., 1978J. A digital finite impulse response 

filter (FIR) [Terrell, 1980/ wil l be used to process the EOGs prior to 

using the EOGs for OA removal. 
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The results to date indicate that the simple bipolar model 5 provides 

sufficient information on eye movement to enable visually adequate OA 

removal. This model will be easy to implement meaning faster correction. 

Model 5 also uses standard EEG electrode positions so that intelligent OA 

removal could be carried out without requiring special electrode 

placements. This is significant when only a limited number of channels is 

available on standard EEG equipment. 

It wil l be necessary to develop a means of quantitatively measuring 

the correction from the EOG models. It is proposed to subject segments of 

EEG containing no artefacts to spectral analysis. From this powers in the 

main EEG frequency bands can be extracted and these used as a reference. 

Sections in which OAs have been removed may then be compared to this 

reference to quantify the correction. In the on-line case this reference 

will be updated to track any intra and inter patient changes in the EEG 

activity. 

4.4 ON-LINE INVESTIGATION INTO O C U L A R 

A R T E F A C T R E M O V A L . 

In order to remedy the deficiencies of the present on-line correction 

method (see chapter 2) it was necessary to investigate further the 

Recursive Least Squares (RLS) algorithm (see section 1.3.2 and appendix 

A). In particular it was important to investigate: (i) The selective use 

of the OA removal algorithm by pre-loading the RLS algorithm with ocular 

artefact parameters most suitable for the type of artefact present. These 

were obtained from off-line investigation, (ii) Directing the OA removal 
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algorithm only to sections of contaminated EEG, i.e. the algorithm is only 

applied when an artefact is present. This investigation wi l l provide a new 

means of applying the RLS algorithm in an intelligent manner. Section 

4.4.1 describes the techniques and data used in this investigation. 

Section 4,4.2 - 4.4.3 details the RLS algorithm and compares the use of 

the recusive algorithm to the results obtained during off-line 

investigation. Section 4.4.4 - 4.4.5 investigate the use of the OA removal 

algorithm in a selective and directed manner and this is quantified in 

section 4.4.6. 

4.4.1 INVESTIGATION P R O T O C O L . 

From the acquired patient data, 8-second segments of EEG and EOG 

signals were edited, and their means removed. On-line OA removal was 

simulated by presenting the edited signals, stored as a computer disk 

file, to a software program that employed the RLS algorithm to effect OA 

removal. The corrected EEG signal and calculated OA parameters were also 

stored as computer disk files to allow analysis and graphical presentation 

using the ILS software package. The RLS algorithm using the U-D 

factorisation (Appendix A) was implemented in software using the C 

programming language [Kernighan and Ritchie, 1988], Figure 4.25 

illustrates a conceptual view of the on-line OA removal process, and 

figure 4.26 presents the fiow diagram for the OA removal software program 

(Appendix G lists this program). The software program enabled the 

selection of the same EEG and EOG signals as those used in the off-line 

investigation above. 
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Figure 4.25 Conceptual view of on-line OA removal simulation. 
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4.4.2 T H E M O D i n E D R L S OA R E M O V A L A L G O R I T H M . 

The RLS algorithm is a recursive implementation of the least squares 

algorithm described above, which overcomes the time consuming calculation 

of the inverse matrix by updating the Ks (OA parameters) at each sample 

point according to the error between the previous sample of measured EEC 

and the previous estimated EEC [ifeachor, a oL. 1986/. The Ks will 

therefore converge on the optimum for a signal with stationary statistics. 

From section 1.3.1 the true EEG is obtained from:-

eeg(i) = y ( i ) - K (i)EOG'^(i) 1.5 

where K(i) = [ki(i) , kVo , . " , Mi)]'^ are the 

calculated OA parameters. 

eeg(i) is the estimate of the true eeg(i) 

EOG'^(i) are the sampled EOGs 

m is the sample number. 

^ indicates matrix transposition 

Past EEG samples are exponentially weighting to gradually attenuate 

their effect on the current estimated EEG. Estimation of the Ks is 

obtained by minimising Werr, the weighted sum of squares of the estimated 

true EEG, or error term. 

Werr = ifeeg(i) 0 < 1 4.6 
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Minimisation of Werr w.r.t the values of K leads to the recursive least 

squares algorithm (See appendix A). 

K(i+1) = K(i) + G[y( i + l ) - EOGO+l) K(i)] 4.7(a) 

P ( i + l ) = I [ P(i) - I P(i) EOG(i + l ) EOG'^(i + l ) P(i)] 4.7(b) 

where 

<^ = )i + EOG^(i + l ) P(i) EOG( i+ l ) 

EOG'^(i+l) = [eogi( i+l)eog2(i + l ) eogn(i+l)] 

G = P ( i + l ) EOG( i+ l ) = P(i) E O G ( i + l ) / c ^ 

N.B. P is referred to as the error covariance matrix and G as the gain 

vector. 

The argument ( i + l ) is used to emphasise the fact that the K are 

obtained from the last values. ^ is referred to as the 'forgetting 

factor' and prevents the matrix P(i+1) from tending to zero( and K ( i + 1 ) to 

a constant) as i increases, thus allowing the tracking of slowly varying 

parameters within the signal. 

To avoid the inherent numerical instability of the covariance update 

equation (4.7b), P is factorised using the U-D factorisation method 

[Bierman, I976J. Appendix A provides a description of this method, and 

figure 4.26 illustrates a flow diagram representation of the U-D 

factorisation algorithm. 
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4.4.3 COMPARISON O F ON-LINE AND O F F - L I N E OA 

R E M O V A L . 

The comparison of the on-line OA removal with the previous off-line OA 

removal was considered necessary in order to established the integrity of 

the on-line removal algorithm. Figure 4.27 illustrates a comparison of OA 

parameters obtained using the off-line regression model, and the modified 

RLS algorithm. The variation of the RLS OA parameters with time and signal 

content is clearly visible. It should also be observed that the RLS OA 

parameters finally settle to the same as those of the regression model 

obtained in the off-line investigation. 

The settling of the RLS algorithm, and therefore the sensitivity of 

the algorithm to changes in the signal is related to the G A M M A , or 

•forgetting factor', of equation 4.6 above. In figure 4.27 gamma is set 

equal to 1, so that all previous data estimates have an effect on the 

current estimate. 

4.4.4 O C U L A R A R T E F A C T P A R A M E T E R P R E - L O A D I N G . 

Section 1.4.2 introduced the problems associated with errors in OA 

removal caused by sudden changes in signal statistics. Such changes are 

most noticeble with random OA occurrences. Pre-loading of the OA 

parameters in the removal algorithm, when such a change is detected, was 

put forward as a possible solution to this problem. Off-line investigation 

of OA removal has provided a set of averaged OA parameters for a number of 
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Figure 4.27 Comparison of off-line and on-line OA 

parameters whilst removing VEM OA from EEC recorded at Fz. 
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electrode sites and OA types (See section 4.3.3.1). These OA parameters 

reflect the average strength of OA potential for a particular electrode 

position, and OA type. These parameters therefore represent the 

pre-loading values for the removal algorithm. 

To pre-load the algorithm the following procedure was carried out 

prior to subjecting the algorithm to the data:-

Vector K is loaded with the averaged parameters for OA type and 

electrode position. 

Matrix P is loaded to stabilise the parameter updating. 

The error covariance matrix P is used by the algorithm to control the 

adjustment of the-vector K at each sample point. Having pre-loaded K it is 

necessary to pre-load P to prevent wild fluctuations in estimates of K. A 

suitable value for P is calculated from the data as:-

P(m) = [EOGj^'^EOGni]-^ 4.8 

where m is the number of samples in the section of data. 

P is also determined empirically by observing the values of P after 

the algorithm has settled, and was observed to between 4.0E-7 and lO.OE-7. 

This value compromised between preventing fluctuations whilst allowing the 

tracking of slowly varying parameters. 
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To illustrate the concept of pre-loading, consider figure 4.28. This 

illustrates a section of simulated EEG (10 hertz sine wave) contaminated 

by a large OA (square wave). The estimated true EEG (figure 4.28b) shows a 

significant error in OA removal as a result of the step change in signal 

mean at time 4 seconds. This error corresponds to the change in the OA 

parameter k (figure 4.28c) as the algorithm attempts to re-converge k to a 

new value. Figure 4.28d shows the squared error (log scale) between true 

EEG and the estimated EEG. Pre-loading K and P at time 4 seconds removes 

the error due to re-convergence almost entirely. 

Three sections of EEG data have been isolated that contain significant 

OA contamination from VEM, HEM, and blink artefact respectively. The 

following section, illustrates the use of OA parameter loading on real EEG 

data and as an example uses EEG signal measured at electrode F4 and 

contaminated with VEM type OA. Figure 4.29a illustrates the measured EOG 

(Fp2-F8) and the contaminated EEG respectively. The EOG is observed to 

contain two major features: (a) a sharp potential, due to blink, at time 

1.3 seconds, and (b) a longer duration and higher amplitude potential, due 

to VEM, at time 4.3 seconds. Both of these artefacts are measured at F4 

where they appear attenuated. 

Figures 4.29b and c expand the time axis of 4.29a and illustrate the 

comparison between OA removal using the conventional removal algorithm, 

and that obtained using the VEM OA pre-loaded algorithm at time 4.3 

seconds. The estimated EEG for conventional OA removal shows the same 

disturbance as that obtained in the simulated data, i.e. the step change 

in signal mean at time 4.3 seconds results in an error in the estimated 

EEG. This error corresponds to the change in OA parameter k (figure 4.29c) 

as the algorithm attempts to re-converge k to a new value. The error 
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Figure 4.28 Comparison of conventional and pre-loaded adaptive OA 

removal algorithm using simulated EEG. (a) EOG, genuine EEG and measured 

corrupted EEG, (b) Corrected EEG with and without OA parameter 

pre-loading, (c) OA parameters with and without pre-loading, (d) Squared 

error in OA removal. 
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Figure 4.29 Comparison of conventional and pre-loaded adaptive OA 

removal algorithm using EEG measured at F4 and EOG measured at Fp2-F8. 

(a) EOG, and measured corrupted EEG, (b) Corrected EEG with and without OA 

parameter pre-loading, (c) OA parameters with and without pre-loading. 
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appears as a sharp negative potential in the estimated EEC representing a 

misleading estimate of the true EEC. This could lead to the interpretation 

of the waveform as abnormal (see section 1.1.1). Pre-loading K and P at 

time 4.3 seconds with the average VEM OA parameter reduces this error 

significantly and is visually assessed as better representing the true 

underiying EEC. For a quantitative analysis of OA removal and a discussion 

of the problems involved with this see section 4.4.6. 

OA parameter pre-loading is seen to reduce the errors due to 

re-convergence of the adaptive OA removal algorithm. As such it is 

transforming the fixed set of updating equations within the algorithm to a 

selective set that are dependent on the signal contents. This selectivity 

forces the algorithm to operate in a non-continuous environment where 

identification of different OAs will force the algorithm into pre-defined 

states. The following section investigates the use of the 'selective' and 

adaptive OA removal algorithm in a non-continuous environment. 

4.4.5 D I R E C T E D OA R E M O V A L , 

To operate selectively, the modified OA removal algorithm discussed 

above must operate in a non-continuous environment, i.e. the algorithm 

wil l only be applied to sections of EEC which have identified OA 

contamination. To investigate the operation of the algorithm under these 

conditions consider the following 8-second segment of EEC recorded at Fz 

and contaminated with blink artefact. Figure 4.30 illustrates the measured 

EEC and EOG signals. Eight major signal contaminations are observed in the 

measured EEC which correspond to blinks measured in the EOG. 
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Figure 4.30 EEG measured at FZ corrupted with blink type 

artefact, (a) EOG, (b) measured EEG, (c) estimated EEG, (d) K 
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Blink OAs were identified with the aid of an EEG expert and the OA 

boundaries were manually identified from the data, see e.g. figure 4.31. 

Blink artalact boundarlei 

Figure 4.31 Blink artefact boundary identification. 

The boundary of each blink was identified as the first minimum, below 

EEG signal mean value, and on either side of the blink maximum. The OA 

removal algorithm was 'directed' by applying the algorithm to the data 

(EOG model 5), only between the artefact boundaries having been pre-loaded 

with the averaged blink OA parameters. 

Three methods of directed algorithm application were considered and 

figure 4.32 illustrates the results obtained using these methods on the 

selected data. The three directed methods were:-
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The OA removal algorithm is applied continuously to the data but 

the estimated EEG is only output during artefact. During the 

inter-artefact period the measured EEG is simply passed through 

unaffected by the algorithm. This method involves the same number 

of calculations for each sample point as the conventional 

algorithm and wi l l , because of re-convergence in the 

inter-artefact period, result in non optimised OA parameters. 

The OA removal algorithm is normally inactive. When an artefact 

boundary is detected, the removal algorithm is started with the 

appropriate OA parameters. This method reduces the number of 

calculations overall because the algorithm is not updated for 

each sample point, but by starting with the same pre-loading 

values for each artefact the algorithm will not track 

intra-subject variations in individual artefact characteristics. 

.The OA removal algorithm is normally inactive. When an artefact 

boundary is detected, the removal algorithm is restarted .with the 

pre-loading values retained from the end of the previous instance 

of that artefact. For the first instance of artefact, this method 

is identical to that above, but subsequently the OA parameters 

are allowed to adapt further and to track intra-subject 

variations. Detection of the end of artefact wil l initiate the 

storage of the pre-loading values ready for the next artefact 

instance. 
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(a) estimated EEG using method I 

(b) t: Continuous calculation. 

(c) estimated EEG using method 2 

(d) k: pre-loaded at the start ot each artefact 

(e) estimated EEG using method 3 

0) K; pre-loaaea at the .tatl. and held at the en<t ol each artetaci 

Gamma • 0.99 

A IT 1 
(g) estimated EEG using method 3 

Gamma • 0,996 

laj s: pre-loaded at the start, and held at the end ol each artefact 

Figure 4.32 Comparison of directed OA algorithm application methods. EEG 

is the same as in figure 4.30. (a) directed method I , (b) K for a, (c) 

directed method 2, (d) K for b, (e) and (g) directed method 3, (0 and 

(h) K for e. 
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Visual qualitative analysis of the results illustrated in figure 4.32 

indicated that the selective and directed application of the OA removal 

algorithm, particulariy in the third method of direction, resulted in a 

more accurate estimation of the true underlying EEG. However, in order to 

quantify the level of OA removal an approach put forward in section 4.3.5 

will be adopted. 

4,4.6 QUANTIFYING OA R E M O V A L . 

Quantification of OA removal is made particulariy difficult because of 

the lack of a measurable 'true' EEG. Several attempts have been made to 

make such a quantitative comparison of OA removal [Jervis, et al, 1988; 

ffeachor. 1984} These methods commonly utilise a measurement of 

correlation between measured EEG and that obtained after OA removal. The 

principle of this technique being that as the removal algorithm attempts 

to minimise this correlation, the lower the correlation the better the OA 

removal. However, as was highlighted in section 4.3.4.2, any correlation 

is dependent on signal content and as a result cannot be used in a 

comparison involving different EEG signals. 

In an attempt to overcome this problem and to provide a means for 

continuous quantification of OA removal in an automated system, the 

following strategy has been developed based on that used by Gratton. 

Gratton et al. (1983) devised a quantitative means of representing OA 

removal in evoked EEG potentials by calculating the sum of squares of the 

deviations of the estimated EEG, obtained after OA removal, from the true 
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EEG, where the true EEG was taken as that obtained with no significant OA 

contamination. This method is however inappropriate for general EEG 

recording because of the inevitable phase and instantaneous signal 

differences between two sections of EEG. As a result the sum of squares of 

deviations in the time series is high and misleading. 

To extend this method to general EEG recording the phase information 

is removed by performing a similar calculation on the power spectrum of 

the estimated EEG after OA removal and the true EEG, where the true EEG is 

taken as the last segment of EEG with insignificant OA contamination. This 

produces a measure of spectral correction (MOSC):-

MOSC = ^ ( M E E G j - REEGi)2 - ^ C E E G i - REEGi)^ xlOO% 

(MEEGi - REEGj)^ 

4.9 

where MEEG is the power spectrum of the measured, OA corrupted, 

EEG. 

and REEG is the power spectrum of the measured uncorrupted EEG. 

and CEEG is the power spectrum of the estimated EEG obtained 

after OA removal, 

and i is the frequency sample number, 

and M is the total number of frequency samples 
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The MOSC is used on a frequency range of 0 - 20 Hertz representing the 

EEG signal bandwidth; this being indicated by MOSC20-

To quantify OA removal, consider the waveforms illustrated in figure 

4.33 which uses the same EEG signals illustrated earlier in figure 4.29. 

Figure 4.33a illustrates the respective power spectrums (0- 20 Hertz) for 

the signals shown in figure 4.29 (c) and is calculated using the 

Blackman-Tukey or moving average (MA) method [Childers. 1978J. 

The power spectrums shown are of the reference 

uncorrupted EEG, the corrupted EEG, and the estimated EEGs respectively. 

Figure 4.33b and c illustrate the modulus of the instantaneous spectral 

error between the two estimated EEGs and the reference true EEG. 

The MOSC estimates the quantity of OA removal by calculating the 

summated spectral error, between true and estimated EEGs, as a percentage 

of the change in spectral content of the reference EEG caused by OA 

contamination. For a signal which, after OA removal, closely matches the 

reference spectrum, the spectra! error will be minimal and, therefore the 

MOSC will be maximum; 100% MOSC therefore represents zero error between 

reference and signal spectrums. In figure*^t^e calculated values of MOSC 

for the two estimated EEGs is 96% and 98% respectively complementing the 

visual assessment made in section 4.4.5. 
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Power spectral deoslty 

instantaneoui spectral error 

without pre-loading 

tmtl. 

With pre-loadlDg 

Figure 4.33 Quantification of OA removal, (a) Power spectral density 

of reference EEG, corrupted EEG, and estimated EEGs, (b) instantaneous 

spectral error in estimated EEG without pre-loading, (c) instantaneous 

spectral error in estimated EEG with pre-loading, 
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4.4.7 SUMMARY O F R E S U L T S F R O M ON-LINE 

INVESTIGATION. 

Analysis of the results obtained from the investigation of the on-line 

OA removal algorithm has allowed the following observations to be made:-

Presetting of the ocular artefact parameters allows the optimal point 

for OA removal, for each artefact/electrode combination, to be converged 

upon quicker than by conventional means. This results in a decrease in 

estimation error caused by the algorithm re-convergence 

The selective RLS algorithm has been successfully employed in removing 

VEM and blink OAs from the frontal EEC signals investigated. A comparison 

of this method with conventional removal techniques demonstrates a 

qualitative improvement in estimated signal contents. 

Directed application of the selective OA removal algorithm minimises 

unnecessary OA removal allowing uncontaminated EEC to pass through the 

filter unaffected. The effect of this is to reduce both 'overcorrection' 

of the EEC, and the introduction of secondary artefacts. 

Intra subject variations in OA characteristics during EEC recording 

are better tracked by allowing the OA parameters to adapt during artefact 

instances only, and by freezing the OA parameters during the inter 

artefact period. 

Quantification of OA removal using the MOSC allows continual 

evaluation of filter performance to an uncontaminated reference. However, 
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use of the MOSC has highlighted a number of shortcomings: (a) The MOSC is 

insensitive to subtle qualitative differences in OA removal, such as 

waveform shape. This is clearly observed when comparing the MOSC of the 

two estimated EEGs in figure 4.39. The MOSC wil l be biased towards the 

differences in low frequencies containing greater power. The 'spike' 

introduced by the conventional removal algorithm contains frequencies 

outside the MOSC bandwidth and of less power than the low frequency 

baseline variations and is therefore not represented adequately in the 

MOSC. (b) The MOSC is susceptible to errors caused by secondary artefacts, 

such as muscle activity, which will produce a small finite error, (c) The 

MOSC is susceptible to variations in EEC signal content. The underlying 

EEC signal can change often and suddenly ( c . f alpha rhythm waxing and 

waning). Whilst a very recent uncontaminated reference is likely to 

provide an accurate spectral estimation of that under examination, it is 

likely that, due to OA contamination, this reference will be of 

significant temporal disparity to that under examination, and therefore a 

significant spectral error might be unavoidable. Preliminary studies have 

shown that a 6% variation in background EEC over a period of 8 seconds is 

possible. 

The directed OA removal algorithm is susceptible to baseline offset in 

both measured EEC and EOG. This can cause discontinuity in the estimated 

EEC during the period of algorithm application and result in a qualitative 

and quantitative dissatisfaction. Baseline offset adjustment is therefore 

necessary prior to algorithm application. 
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In conclusion to this stage of the investigation, the results obtained 

from the use of the new selective and directed OA removal algorithm show 

significant improvement over conventional application. Selective OA 

removal is dependent upon correct identification of OA type and directed 

OA removal is dependant upon correct artefact localisation. This has been 

achieved up to this point by 'manual' off-line methods with the aid of an 

EEC expert, and is obviously inadequate for any proposed automated system. 

The following section investigates methods for automated identification of 

OA using the knowledge of an experienced EEC clinician. The elicited 

knowledge, combined with the control structure developed in chapter 2, 

will enable the 'selective' and 'directed' OA removal algorithm to be 

applied under the control of the EEG expert knowledge. 

4.5 CHARACTERISATION OF A R T E F A C T S AND ABNORMAL 

SLOW WAVEFORMS. 

Chapter 2 has identified a method of knowledge representation and 

described clearly the theoretical aspects of knowledge manipulation, using 

this representation. The remaining problem is one of eliciting from the 

expert, a series of IF-THEN, or production, rules that encapsulate the 

knowledge required to identify OAs and to differentiate them from abnormal 

waveforms. These rules, once coded, will allow sections of EEG containing 

significant OA to be identified so that the OA removal algorithm can be 

applied in a selective fashion. 
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4.5.1 K N O W L E D G E E L I C I T A T I O N . 

The database of EEG and EOG activity, detailed in section 4.2 has 

allowed extensive knowledge elicitation to be carried out using techniques 

detailed in the literature [Welbank, 1983; Burton, 1987], Knowledge 

elicitation involving interviews with the consultant neurophysiologist and 

4 experienced technicians in the department of neurophysiology, at 

Derriford Hospital in Plymouth have been carried out. Interviews were 

recorded onto cassette tape and later transcribed. Appendix I gives 

examples of two such interviews. The objectives of the interviews were: 

(i) to acquire as much information as possible on the subject of EEG 

interpretation, with particular emphasis on how the expert approaches the 

problem, and (ii) to elicit from the expert specific knowledge regarding 

identification of OA waveforms, and differentiation between OA waveforms 

and between OA and abnormal slow waveforms. The knowledge elicitation 

sessions were divided into two parts. Firstly, informal interviews were 

held to elicit general information, and secondly, structured interview 

techniques were used to elicit specific rules for the intelligent OA 

removal system. 

4,5.1.1 INFORMAL I N T E R V I E W S . 

Appendix I is the transcription of an informal interview held with a 

consultant clinical neurophysiologist. The purpose of this interview was 

to elicit general information on the subject of EEG analysis, leaving the 

expert to talk reasonably freely on the subject - to elicit course grain 
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information. Whilst this was informal in the respect that no specific 

information was being requested, data was presented to the expert on which 

to base the discussions. This dau being drawn from the database of 

EEG/EOG data recorded using the DAS. 

During transcription, an attempt was made to capture any hesitation 

and uncertainty in an answer by representing a 1 second hesitation by a 

full stop and uncertainty by the phraseology of the expert. Uncertainty in 

a rule is an important concept and will be covered later. 

Each informal interview consisted of presenting the expert with an EEG 

paper trace recording. Each recording was of 16 channel EEG/EOG and were 

recorded using a variety of recording montages. The expert would scan the 

recording by turning pages forward and backward. This was to build an 

overall impression of the recording. The two main questions which were 

asked were (a) to identify any OA activity and (b) to identify any 

abnormal activity. Any section found to be of interest and used in the 

discussion was photocopied so that the respective digital data could be 

identified for analysis. Appendix I deals solely with patient P.R. 

Visual EEG analysis is essentially heuristic in nature which is a 

desirable characteristic of a problem suited to an artificial intelligence 

(AI) approach. It has been found that the key elements used by the expert 

in analysing the EEG is the use of spatio-temporal information. 

Particular attention is paid to the symmetry or otherwise of any suspect 

wave. Ocular artefacts will tend to appear concentrated in the anterior 
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regions of the scalp rather than the posterior and also tend to be 

symmetrical. Figure 4.34 illustrates this on a section of EEC paper trace 

record. 

EEQ Ch 

• EEa Ch.2 

EEO Ch.3 

EEO Ch.4 

30(bV 

- r EEQ Ch.e 

EEO Ch.7 

EEO Ch.8 

ISOUV 

Figure 4.34 EEC signals showing the symmetry and anterior 

concentration of Ocular artefact. 

The phase relationship between signals close to the eyes is also of 

importance. VEM and blink will produce signals which appear synchronous, 

whereas HEM will produce convergent signals one side and divergent on the 

other. Figure 4.35 illustrates this point. The time course of the 

artefacts tends also to be different. Blinks produce shon duration 

positive potentials above the eye, and small negative potentials below the 

eye. Eye movement also can have associated with it faster muscle activity 

produced by the orbital muscles. 
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Figure 4.35 EEC showing phase reversal associated 

with lateral eye movements. 

An abnormal wave will have limited amplitude and time course. However, 

OAs can have similar appearance, in this case attention wil l be focused on 

the potential distribution of the wave. If the wave is confined or 

predominant to one hemisphere or localised in one part of the scalp this 

could indicate a tumour. Asymmetry is indicative of abnormality. The 

synchrony will also be compared at different parts of the scalp. 

Synchronous slow waves appearing on both sides of the scalp are likely to 

be abnormal. Figure 4.36 illustrates an EEC trace exhibiting bilaterally 

synchronous delta (BSD). This shows that the waves are symmetrical, 

synchronous and present in the frontal electrodes. The current OA removal 
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Figure 4.36 Bilaterally synchronous delta waveforms are 

symmetrical, synchronous and present in the frontal electrodes. 

process will significantly attenuate these waves because of their presence 

in the frontal electrodes. However, the waveforms are of similar amplitude 

centrally, temporally and fronially. indicating a deeper source than the 

eyes which will exhibit waves that are more concentrated frontally. 

Slow waves are described as more sinusoidal in shape and lack the fast 

edges of the OAs. They are also often observed with spike activity and 

therefore the presence of one might reinforce a suspicion of the other. 

Slow waves will often occur in regular bursts and tend to appear similar 

over the scalp. OAs tend to be random and appear different depending on 
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the point they are measured. An exception to this might be rolling eye 

movements which appear when a patient becomes drowsy and are quite regular 

in occurrence. 

4.5.1.2 S T R U C T U R E D K N O W L E D G E E L I C I T A T I O N . 

Appendix I is the transcription of a structured interview with a 

consultant clinical neurophysiologisi. This is combined with a copy of the 

data used in this interview. The purpose of this interview was to elicit 

specific rules for the identification of OA waveforms, and for 

differentiation between OA and abnormal slow waveforms - to elicit fine 

grain information. 

From the acquired patient data. 16 8-second portions of data were 

selected. Each portion contained 16-channels of EEG/EOG and were recorded 

using various standard electrode positions. Each portion was then 

subdivided into 4, 2-second segments which were to form the 'analysis 

segments'. Figure 4.37 illustrates this subdivision and is a portion of 

data used in the transcribed interview of appendix I . Staictured 

interviews, with the expert, were undertaken in order to classify each of 

the resultant 64 analysis segments into one of the following four 

categories :-

1. Only artefacts present. 

2. Only cerebral signals present 

3. Both artefact and cerebral signals present. 

4. Neither artefact nor cerebral signal present. 
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Figure 4.37. Example of data used in structured 

knowledge elicitation, showing segmentation, 
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Al l data were presented to 2 EEG experts and the only additional 

information available to the experts were the individual signal 

derivations. The purpose of limiting the information available to the 

expert was to enable rules based on individual signal qualities and inter 

channel relationships to be separated from those based on contextual 

information, such as patient history, age, and remaining EEG recording. 

During the interview the expert was encouraged to describe any 

problems found in categorising the segments and to note any points of 

interest on the appropriate analysis segment. This enabled the most 

important features that the expert uses to be identified. A l l such 

structured interviews were tape recorded and later transcribed. It can be 

seen in figure 4.37 that waveforms of significance to the expert have been 

noted by either underlining or by writing the appropriate identification 

number next to it. The overall classification for each analysis segment is 

noted at the bottom of each segment and is dependant on the contents of 

the segment. In the figure, all four segments contain delta slow waves 

which have been identified as OA. However, the expert has identified 

segments 2, 3 and 4 as containing additional suspected abnormal slow 

waves. The abnormal slow waves can be seen in channels 14 and 15 and are 

identified because of their measurement position on the scalp. Two rules 

which could therefore be inferred from this portion of data are: 

RULE I : 

IF slow waves are present on channels 1,5,9 and 13 

THEN there is an increased reason to believe that OA is present. 
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RULE I I : 

IF slow waves are present on channels 14 and 15 

THEN there is an increased reason to believe that non OA is 

present. 

Channels 1,5,9 and 13 are the channels closest to the eyes and 

therefore it is unlikely that OAs are present i f there is no activity in 

any of these channels. 

Identification of OA may not always be possible based on one piece of 

information or one rule. For example, the expert wil l look at every 

waveform in context and will use information obtained from earlier in the 

recording and other montages as well as patient history information in 

order to make a decision. It was clear from the knowledge elicitation used 

in this stage of the investigation, that any rules devised would not have 

100% certainty in identification success and careful consideration would 

therefore have to be given to how a successful rule would contribute to 

the belief in a final decision. A suspect waveform may not be identified 

unambiguously using any one piece of information. However, taken 

collectively, successful rules will increase the belief in a decision. 

4,5,2 UNCERTAINTY MANAGEMENT. 

Uncertainty is not easily incorporated into the logical representation 

that has been chosen. Firstly, the first order predicate logic used for 
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inference does not accommodate values of truth to be other than true or 

false. This is not realistic as an expert will rarely be able to make such 

a decision and the features, used by the expert, and obtained from the 

data wil l often be noisy so that certain identification is difficult. 

Secondly, most implementations of PROLOG do not make any extension to the 

logical inference mechanism to handle uncertainty, although such 

implementations exist [Martin. T. 1985/, they are not yet widely 

available. 

This section details the extensions to the inference mechanism that 

will need to be made in order to accommodate the uncertainty associated 

with the knowledge required to identify OA waveforms. Uncertainty 

management is incorporated into the knowledge representation at two 

levels. These are uncertainty in the extracted features (antecedent level) 

and uncertainty in the rules themselves (consequent level). 

4.5.2.1 F E A T U R E UNCERTAINTY. 

Uncertainty at the antecedent level may be caused by a combination of 

measurement error, natural biological variations in signals, and 

externally introduced noise. For example, rule I above requires that each 

of channels I , 5, 9 and 13 contain slow waveforms, or waveforms with 

frequencies in the delta EEG frequency band. Traditional binary logic will 

require that a suspect waveform either has a frequency in this band, or it 

doesn't. However, this binary classification is not always easy and small 

natural variations in the frequency of a waveform, combined with the 
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unavoidable inaccuracy involved in frequency estimation using a fast 

Fourier transform (FFT), will vary the measured frequency of the waveform. 

Traditional binary logic offers no fiexibility to accommodate these 

variations and as a result, a waveform can be wrongly classified as not 

being a slow waveform even when its frequency lies barely outside the 

delta frequency band. However, an EEG expert is more likely to classify 

the waveform as slow but with a little less certainty under these 

conditions and therefore the traditional binary delta frequency band set 

of figure 4.38(a) is more naturally replaced by the fuzzy delta frequency 

band set of figure 4.38(b):-

n e l t a f r e a u e n c v b a n d 

r r a d i i i o n a i del ta frequency band Fuzzy dei ta treguency dand 

1-0 t.O 

set 
membership 

1.0 2.0 3.0 

frequency Hz 

(a) 

4.0 1.0 2.0 3.0 

frequency Hz 

(b) 

4 . 0 

Figure 4.38 Comparison of traditional binary set and 

intuitive Fuzzy set for the representation of delta EEG frequencies. 
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Figure 4.38(b) shows that a waveform is attributed to the delta EEG 

frequency band i f its frequency lies between OHz and 4.5Hz. The Y axis 

quantifies this as the set membership where the delta frequency band is 

the set. This representation is viewed as the certainty that a waveform 

has a frequency in the delta EEG band, and is described as the delta band 

'Fuzzy set'. This representation is an example of fuzzy set theory 

[Zadeh, 1965] and extends first order logic by allowing truth values 

to have any value between 0 and 1. The Fuzzy set illlustrated in figure 

4.38(b) can be simplified by considering that the output of the FFT 

algorithm is a discrete sampled frequency spectrum. This simplification of 

the 'discrete' Fuzzy set is illustrated in figure 4.39. 

Discreie Fuzzy oa i ia freauency band 

1.0 

set 
membofShiD 

i I I I 

0 1.0 2.0 3.0 4 .0 

frequency Hz 

Figure 4.39 discrete fuzzy set for the delta EEG frequency band. 
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The delta frequency Fuzzy set is extended to the remaining EEC 

frequency bands in figure 4.40 illustrating each as a Fuzzy set. 
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Figure 4.40 EEC frequency band fuzzy sets. 

The frequency of a waveform will be attributed to a particular 

frequency set i f its frequency lies within the range of the set. Its 

membership of the set will depend on its frequency. The more central to 

the set the frequency is, the greater the certainty of its membership. For 

example, rule I can be rewritten as: 
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RULE I : 

IF delta waves are present on channel 1 

AND delta waves are present on channel 5 

AND delta waves are present on channel 9 

AND delta waves are present on channel 13 

THEN there is an increased reason to believe that OA is present. 

A frequency transformation of the signals of figure 4.37 shows that 

the slow waves in channels 1,5,9 and 13 have a frequency of approximately 

2.5Hz. Referring to figure 4.40 it can be seen that this frequency falls 

in the Delta frequency set with a set membership of 1.0. Each clause in 

the IF statement of rule I will therefore be true with a certainty of 1.0. 

Waveforms with a frequency near the boundaries of the conventional EEG 

frequency bands (e.g. Delta band 0-4Hz) will be interpreted as belonging 

to two EEG frequency bands. The membership of the sets wil l vary according 

to the frequency and a small variation in the frequency will only change 

the value of this membership. 

The combined certainty for multiple IF clauses in a rule is calculated 

as the minimum of the individual certainties. 

AC(Rule) = min { cert(clause l),...,cert(clause n) } 
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where AC(Rule) is the combined antecedent certainly. 

cert(Clause) is the fuzzy set membership, 

n is the number of antecedent clauses to the rule. 

This relationship is covered in depth in Kandel, 1982. 

AC(Rule B) = min { 1.0,1.0,1.0,1.0 } 

AC(Rule B) = 1.0 

4.5.2.2 R U L E UNCERTAINTY. 

Consequent certainty represents the confidence level in a rule, i.e 

how often a rule is likely to have both antecedent and consequent 

satisfied simultaneously. This is a number ranging from 0 to I and has the 

effect of attenuating the certainty of the rules combined antecedent 

clauses. 

OC(Ru!e) = RC(Rule) x AC(Rule) 

where OC(Rule) is the overall certainty in the truth of the rule 

RC(Rule) is the rule confidence. 

For example i f the confidence in Rule B was 0.8, OC(Rule B) is 

calculated as: 
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OC(Rule B) = 0.8 x 1.0 = 0.8 

Two methods were used to elicit the rule confidence values:-

Heuristic values elicited from the experts. 

Statistical values derived from the acquired data. 

Heuristc values were initially used in order to develop a prototype 

intelligent OA removal system. The EEG expert was requested, during 

structured knowledge elicitation, to attribute, to each rule, a measure of 

confidence. This measure was mutually agreed to be on a scale of 1 to 5, 

with 5 representing almost complete confidence in the rule and 1 

representing very little confidence in the rule. The measure of confidence 

was then scaled linearly to the range of 0 to 1 respectively to provide 

the individual values of RC(Rule). The 1 to 5 scale chosen for the experts 

measure of confidence was chosen to be a compromise between being vague 

and being over precise. A scale of 'very little', 'average', 'almost 

complete' was considered too vague and would present the problem of 

translating the scale into a numeric value. A scale of 1 to 100 was 

considered too precise for the expert to be able to satisfactorily 

discriminate between similar numbers. 

Structured knowledge elicitaiion enabled statistical values for the 

rule confidence to be compiled. From the 64 analysis segments used to 

generate the rules a ratio was calculated for each rule :-
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FORS = number of segments satisfying both rule antecedent and consequent 

total number of segments satisfying rule antecedent 

This ratio was identified as the frequency of rule satisfaction ( F O R S ) 

with a standard error calculated as: 

S E = / F ( 1 - F ) / N 

assuming an approximate Binomial distribution, where N is the total 

number of segments and F is the proportion of N which satisfies the 

conditions to the rule. 

Table 4.2 compares heuristic rule confidence values elicited from the 

E E C expert to the F O R S (frequency of rule satisfaction) for a sample of 

the rules elicited from the expen. 

F.O.R5 • 

Rule Heuristic F.O.R.T 
STO 

Error 

3 .8-1.0 0.93 » / - 0 . 0 4 ( 

4 .8-1.0 0.867 > / - 0 . 0 4 ( 

5 .6-.e 0.857 • / - 0 . 0 4 I 

6 .e-.B - V - 0 . 0 4 ( 

7 .6-.8 0.667 • / - 0 . 0 4 ( 

8 .4-.e - • /-o .04e 

10 .8-.8 0.6 V - 0 . 0 4 ( 

12 .4-.6 0.5 . / - 0 . 0 4 ( 

13 .2-.4 0.33 • / • 0 . 0 4 ( 

14 .8-1.0 0.8 • / - 0 . 0 4 ( 

number of segments satisfying 
both rule antecedent and consequent 

total number of segments 
satisfying rule antecedent 

Table 4.2 Comparison of heuristic and statistical rules 

of confidence for a selection of rules, 
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4.5.2.3 B E L I E F PROPAGATION. 

The belief in the classification of suspect waveform at any point in 

the inference path will be a function of the rules used to identify it and 

the certainty of evidence found to satisfy the rules. A final decision of 

whether or not to remove an OA, will be based on the final waveform 

classification and the belief in this classification. For example, the 

expert user could decide that OA removal should only be carried out when 

an OA waveform is identified with a measure of belief greater than 80%. 

The final measure of belief is calculated by updating the accumulated 

measure of belief from previous successful rules. Two principles are 

important for this to be carried out:-

Approximate reasoning [Zodeh, 1976] 

Certainty factors [ShortUffe, 1976} 

Approximate reasoning uses and extends fuzzy logic in an attempt to 

reason with uncertainty. Antecedent clauses to rules which return fuzzy 

truth values can be propogated through to fuzzy consequent clauses - a 

fuzzy relation. For example rule I above may be simplified to:-

RULE I : 

IF delta waves are definitely present on frontal channels 

THEN the presence of OA is more likely. 
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The truth of both rule antecedent and consequent are represented by 

fuzzy sets. The fuzzy set representing the antecedent was illustrated in 

figure 4.40. The fuzzy set representing the conseqent is represented in 

figure 4.41 

OA likelyhood fuzzy set 

more tlkely less lively 

1.0 

set 
membershiD 

OA likelyhood 

Figure 4.41 Rule consequent fuzzy set. 

The rule can be represented as the product of these sets and is 

represented as a fuzzy set which is the Sup-Min composition ^ H > j ^ j > ^ o ^ f ^ ^ 

w j o f the two. This is shown geometrically in figure 4.42. 

The output fuzzy set is determined by taking a section of figure 

4.42(b) at the point of measured frequency. This is illustrated at 

frequencies of 2.5Hz and 3.5Hz and is represented by sections x and xx 

respectively. The output fuzzy set for these frequencies are illustrated 

in figure 4.43 
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aeita not OA 
suD. 

Figure 4.42 Sup-min composition of the antecedent and consequent. 

section at x sect ion at xx 

set 
membershiD 

Figure 4.43 Output fuzzy sets showing likelyhood of OA for 

waveform frequencies of 2.5Hz and 3.5Hz respectively. 
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The output fuzzy set will be passed to further rules which wi l l use 

this set as an antecedent. For example, to invoke OA removal the following 

rule would use likelihood of OA fuzzy set. 

RULE III 

IF the presence of OA is very likely 

THEN apply the appropriate OA correction algorithm. 

The final measure of belief is calculated from the least squares 

distance metric of the fuzzy output set and the 'OA very likely' fuzzy 

set:-

MB = 1 

w here: is the previous rule output fuzzy set. 

^gis the final rule antecedent fuzzy set. 

and N is the number of elements in the set. 

Certainty factors [Shoniiffe 1976] assumes that each successful 

rule provides further evidence to support the belief in a classification 

and each unsuccessful rule provides evidence to support the disbelief in a 

classification. The certainty in the classification of a waveform, C, at 

any time given evidence E is therefore calculated as the measure o f belief 

(MB) in C given E minus the measure of disbelief (MD) in C given E. 

CF(C:E) = MB(C:E) - MD(C:E) 

where MB and MD both range from 0 to 1 
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A simplification of the certainty factor principle is used for the 

classification of suspect waveforms, and assumes that only successful 

rules are used in the inference path, therefore removing the need for MD. 

For example, given the current measure of belief in a classification, 

MB(C:E), derived from previous rules and previous evidence E, than upon 

new evidence, OC(Rule), from a successful new rule, the new measure of 

belief, MB'(C:E,OC(Rule)), is calculated from :-

MB'(C:E,OC(Rule)) = MB(C:E) + { OC(Rule) x [ 1 - MB(C:E) ] } 

where MB'(C:E,OC(Rule)) is the new measure of belief in 

classification C, given evidence E and OC(Rule). 

In this manner successive new evidence will increase the measure of 

belief in a classification asymptotically towards 1, or complete belief. 

4.6 SUMMARY O F C H A P T E R 4. 

Chapter 4 has provided several key results to demonstrate the success 

of the 'selective' and 'directed' approach to OA removal. It is clear that 

a significant improvement in OA removal is achievable using OA dependent 

adaptive filters only in sections of EEG containing OA contamination, 

leaving uncontaminated EEG uneffected. Further, inter artefact retention 

of OA parameters allows for tracking of intra subject artefact 

variations. 
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Extensive data acquisition and knowledge elicitation with experts in 

EEC analysis have provided a set of rules for the identification o f OAs 

and for the differentiation of OAs and abnormal cerebral slow waves. 

Important features, such as frequency, potential distribution, correlation 

and contextual patient details, have been identified which form the 

critical feature primitives on which the expert wil l operate in order to 

identify OA. Key enhancements to the inference engine have been devised to 

allow reasoning which more closely matches that of the expert, including 

the use of uncertainty management and Fuzzy logic. 
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CHAPTER 5 CHAPTER 5 

Chapters 2 and 4 have provided the necessary foundations for the 

implementation of an intelligent OA identification and removal system. 

This includes :-

. Compilation of a knowledge base of rules to identify OA and to 

differentiate between OA and abnormal slow waveforms, 

. Identification of a knowledge representation that will accommodate 

the rules. 

. Description of an inference mechanism that wi l l identify OA using 

the elicited rules and key spatio-temporal features. 

. Identification of a software language that will allow implementation 

of the knowledge representation and inference mechanism. 

. Development of the inference mechanism to accommodate uncertainty. 

. Improvements to the OA removal algorithm to incorporate multiple OA 

dependent filters. 

This chapter details the implementation of the Intelligent OA Removal 

System (lOARS) using standard personal computer (PC) technology and 

commercial software languages. The decision to use PC technology is 

founded on the progressive and inevitable movement towards computer based 

patient data recording and the universal use of PC tools. PC technology 

provides powerful computing facilities and also enables the development of 

a sophisticated graphical user interface. 
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5.1 O V E R V I E W . 

Figure 5.1 illustrates a conceptual block diagram of the Intelligent 

OA Removal System (lOARS). The lOARS can be divided into five functional 

blocks which are identified in Figure 5.1 using broken lines. The five 

functional blocks are:-

. Signal pre-processing. 

. Feature extraction. 

. Reasoning. 

. Adaptive filters 

. User interface. 

Multichannefc 
• E E G / E O Q - f 

Signals 

User Interface 

Feature 
extraction 

Pre 
Processing 

Inference 
Engine 

TokenisationLJ 

Knowledge 

Adaptive 
Fi l ters 

Corrected 
E E G 

Figure 5.1 Intelligent Ocular Artefact Removal System (lOARS). 
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The overall function of figure 5.1 is to provide intelligent removal 

of OA from the E E C . This is achieved by allowing reasoning to control the 

OA removal algorithm and therefore adaptive filter. Reasoning employs the 

use of an inference engine that operates on a number of rules, contained 

in a knowledge base, and a number of key features extracted from the 

E E G / E O G . Multi-channel E E G / E O G signals are preprocessed to enhance feature 

extraction and features are tokenised into a symbolic form to allow 

manipulation by the inference engine. The knowledge base performs a 

central role in the operation of the l O A R S and contains the elicited 

rules, details of channel relationships, tokenisation symbols, and lastly 

filter pre-loading parameters. The knowledge base is therefore a dynamic 

structure allowing knowledge flow in both directions from relevant 

functional blocks. 

Each functional block has been implemented in software using one, or a 

combination, of the following languages:-

. P R O L O G - fClocksin and Melish, 1987]. 

. C - [Kermghan and Ritchie, I988J. 

. 80286 Assembler - [Murray and Poppas, 1986]. 

The dialects of P R O L O G and C used were Turbo P R O L O G (Borland 

International USA) and Turbo C (Borland International U S A ) respectively. 

Appendix K contains the software listings for all software routines and 

forms the system software. 
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P R O L O G was used primarily for knowledge representation and inference. 

Secondly however, its power of symbolic manipulation was utilised in 

feature extraction, for tokenisation of numerical signal features. C was 

used to enhance and complement P R O L O G in areas of numerical manipulation. 

These are areas where P R O L O G is at its weakest and where the fast and 

efficient qualities of C are of most benefit. In addition to C , Assembler 

was used for maximum speed in areas of extreme numerical intensity. This 

included graphical image manipulation in the user interface. P R O L O G was 

used to maintain ultimate control in the system, with the additional 

languages providing utility functions. As such the system was linked into 

one complete program to operate on the P C . The use of software packages 

from the same vendor eased the problems associated with interfacing 

multiple languages into one system. 

The operation of the TOARS in its present form is essentially 

off-line. This is due to the software simulation of digital signal 

processing (DSP) functions such as multi-channel Fast Fourier Transform 

( F F T ) . Initial development has utilised the I L S (Signal Technology Inc. 

USA) software package for execution of all DSP algorithms. This however is 

extremely time consuming for multi-channel signals and therefore 

calculations are completed prior to analysis. A final implementation of 

the l O A R S is likely to comprise of multi, DSP dedicated, processor units 

to enable real time operation. 
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5.2 SIGNAL PRE-PROCESSING. 

Signals are acquired by the system in 8-second, l6-channel blocks, 

such as that illustrated in figure 4,37. This corresponds to standard E E C 

signal montages and provides 2048 samples of each signal/channel. Prior to 

extraction of key features from these signals two pre-processing 

operations are carried out in order to maximise the relevant information; 

these are:-

. Mean removal. 

. Frequency band limiting. 

Preprocessed signals provide a single left and right E O G signal and 16 

E E C signals that reflect the activity in the left, right, front and back 

regions of the scalp. Finally, each 8-second block is divided into 4, 

2-second analysis segments in preparation for feature extraction and 

signal analysis. 

5.2.1 MEAN R E M O V A L . 

D C offset in a signal often occurs as a result of improper recording 

electrode calibration and variations in skin electrode resistance. The 

result of any D C offset is minimal in the lime domain but is amplified in 

the frequency domain, due to the greater energy content, and produces a 

large D C frequency component. Due to the low frequencies involved in E E C 

and OA analysis, this large D C component can often mask underlying 

frequency content. D C offset is therefore minimised at the pre-processing 

stage by subtracting the mean from each signal. 
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5.2.2 BAND L I M I T I N G F I L T E R S . 

Analysis of the spectral characteristics of the E E G and O A (See 

section 1.1 - 1.2) has shown that most of the energy lies in the regions 0 

- 30 Hertz and 0 - 5 Hertz, respectively. For this reason E O G signals are 

band-limited to 0.5 - 5 Hertz and E E G signals are band-limited to 0.5 - 30 

Hertz. Band limiting E O G signals has the advantages of further attenuating 

very low frequency potentials caused by skin/electrode resistance 

variations and also attenuating higher frequency cerebral potentials which 

appear as artefacts in the E O G . Band limiting E E G signals again further 

attenuates very low frequency potentials, and also attenuates external 

sources of artefact such as muscle and electrical activity. 

The band limiting of the E E G / E O G signals involved the design of three 

simple filter lypes:-

. low pass - 1 : cut off frequency = 5 Hertz. 

. low pass - 2 :cut off frequency = 30 Hertz. 

. high pass : cut off frequency = 0.5 Hertz. 

The three filter types were used in combination, as illustrated in 

figure 5.2. 
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Figure 5.2 Band limiting E E G and E O G signals using simple filter 

types, (a) band-limited E O G signal, (b) band-limited E E G signal. 

Finite impulse response (FIR) digital filters [Johnson, 7 9 5 9 / were 

chosen for all filters to allow a linear phase response over the critical 

pass band. The following specifications were set for the three filter 

types: 

Low pass filter 1 

cut off frequency: 5 Hertz 

transition width: 1 Hertz 

passband ripple: < 0.5dB 

stopband attenuation: >20dB. 
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Low pass filter 2 

cut off frequency: 25 Hertz 

transition width: 5 Hertz 

passband ripple: < 0.5dB 

stopband attenuation: >20dB. 

High pass filter 

cut off frequency: 0.5 Hertz 

transition width: 0.4 Henz 

passband ripple: < 0.5dB 

stopband attenuation: >20dB. 

Implementation of the fillers was made more difficult by the low 

transition width to sampling frequency ratio. Approximate empirical 

relations have been obtained [Rabiner and Gold. 1975] that give 

satisfactory relations between the filter parameters and allow estimation 

of the number of required filter coefficients for the above 

specifications. These relations are:-

N = 1 + U o X £ i ^ - f ( & l , S 2 ) F 5.1 

A F 

where: 
N is the required number of coefficients. 
A F is the transition width, normalised to the sampling frequency. 
6 J is the passband ripple. 
69 is the stopband ripple. ^ 
0.(^1 ,^2) = [0.005309(logiofcl)2 + 0.07114 logiQ^i 
- OA%\i \og^QSo - [0.0026feTlog,o^ir 

+ 0.5941 log,o4 + 0-4278] 
f(Si ,S2) = 0.51244 logio(^ 1/^2) + 11-01 
dB Passband ripple is given by: 

Ap = 20 log(l + 6i) 5-2 0̂ ) 
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dB stopband attenuation is given by: 

As = 20 log(i2) 

The ratio of transition width to sampling frequency is critical in 

determining the number of coefficients required for filter approximation 

and for the above specifications N is calculated, using equation 5.1 as: 

Filter N 

LPF-1 203 

L P F - 2 61 

H P F 525 

The large number of coefficients required make filter coefficient 

approximation impractical using the optimal method (For which the above 

equations are derived). Filter coefficient approximation was therefore 

accomplished using the window method [Rabiner and Cold, J975; Oppenheim 

andSchafer, 1975}. 

For an F I R filter, the coefficients are approximated, using the window 

method, from the truncated impulse response h(n) of the desired filter. If 

H|-)(&'^) is the desired filter magnitude response, the impulse response 

hj-j(n) is calculated using the inverse Fourier transform. 

hD(n) = l/2ft Hi3(ei^) ei"^" dw 5,3 
J 

•Tf 

The filter coefficients h(n) are calculated by weighting the desired 

impulse response hQ(n) with an appropriate window function W(n). 

h(n) = h^(n) W(n) 5.4 
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where W(n) for a Hanning window is: 

For odd N: 

W(n) = 0.5 + 0.5cos[2n'n/(N-l)] - (N- l ) /2< n <(N- l ) /2 

For even N: 

W(n) = 0.5 + 0.5COS 2n(2n-Hl) 

2(N-H1) 

(N/2)< n (N/2-1) 

5.5 

5.6 

Figure 5 . 3 - 5 illustrate the magnitude and phase responses for the 

filters L P F - 1 , L P F - 2 , and H P F respectively. 

Figure 5.3 Magnitude and phase response of L P F l 
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Figure 5.4 Magnitude and phase response of L P F 2 . 

Figure 5.5 Magnitude and phase response of H P F . 
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5.3 SIGNAL F E A T U R E E X T R A C T I O N . 

Signal pre-processing provides the feature extraction functional block 

with 18 channels of 2-second signal segments. Feature extraction reduces 

this large quantity of numerical signal data into a concise symbolic list 

of features which closely represents those implicitly extracted by the E E G 

expert. Section 4.5 has shown the importance, when analysing the E E G , of 

the following signal characteristics: 

. Frequency and amplitude 

. Shape 

. Phase relationships 

. Previous recognised activity 

These characteristics are obtained by extracting features from three 

domains, these being: 

. Frequency domain. 

. Time domain. 

. Contextual domain. 

Waveform frequency and magnitude is calculated from the frequency 

domain transformation of each signal. Waveform shape and phase 

relationships are calculated from the time domain signals using inter 

channel correlations. Previous recognised activity forms a context to 

signal analysis and contextual domain features include the comparison of 

spatio signal features and temporal signal features. 
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5.4.1 F R E Q U E N C Y DOMAIN. 

Frequency domain features are extracted from the power spectral 

density (PSD) of each 2-second signal segment using Turbo C routines 

(Appendix K ) . Figure 5.6 illustrates the flow diagram for spectral feature 

extraction. PSD is calculated for each channel using the Blackman-Tukey or 

moving average (MA) method [Childers, 1978] (see also appendix H). 

From each PSD, spectral peaks are identified by comparison to a magnitude 

threshold which is related to the average power in the standard E E C 

frequency bands. This magnitude threshold is illustrated in figure 5.7. 

input 
channel 

read (LS 
(lie 

compare 
mag. 

compare 
width 

array 
to Mat 

• 

binary deta 

magnitude array 

width and magnitude array 

linked Hat 

Figure 5.6 spectral feature extraction routine flow diagram. 

The first three significant, and distinct, peaks in each channel are 

then used to compile a feature matrix that contains the magnitude, centre 

frequency and threshold width for each peak. Figure 5.8 illustrates the 
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Figure 5.7 Spectral peak magnitude threshold. 

process of spectral feature generation from a simplified signal segment. 

The feature matrix is read by Turbo P R O L O G routines which are used to 

convert the numerical features into symbolic tokens. The symbolic tokens 

are used to create individual spectral feature facts in a dynamic 

knowledge base that changes for each analysis segment. For example, in 

figure 5.8 the waveforms in channels I and 5 of figure 5.8(a) are 

transformed to the clear spectral peaks of frequency 2 Hertz in figure 

5.8(b). The feature matrix of figure 5.8(c) shows that for channel 1, only 

one spectral peak greater than the threshold exists. This spectral peak 

has a centre frequency of 2.0 H e m , a magnitude of I.5e9, and a threshold 

width of 1.2 Hertz. Figure 5.8(d) shows the respective tokenised feature 
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Figure 5.8 Spectral feature extraction and symbolic tokenisation. 
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fact which will be stored in the dynamic knowledge base. The feature fact 

states that a spectral peak exists in channel Fp2-F4 (channel 1), that it 

is the first spectral peak, and that it is attributable to the delta 

frequency band. The certainty of the fact is calculated as the membership 

of the delta frequency band, from the centre frequency of the spectral 

peak and the delta frequency band Fuzzy set (see section 4.5.2.1). This 

certainty is represented by the figure in the final parenthesis, i.e. 1.0. 

Incorporation of fuzzy set theory allows a spectral peak which has a 

frequency close to one of the conventional E E G frequency band boundaries 

to be represented as two feature facts in the dynamic knowledge base. For 

example, if the spectral peak of figure 5.8(c) had a centre frequency of 

4.0 Hertz the respective feature facts would be: 

["f-feature","fp2-f4","peak!","delta","med-mag","med-freq"] [0.5] 

["f-feature","fp2-f4","peakl","theta","med-mag","med-freq"] [0.5] 

where "theta" is the next adjacent E E G frequency band. 

The last two elements in the first set of parenthesis for each 

spectral feature fact refer to the relative magnitude and frequency of the 

spectral peak. These values are used for spectral peak power distribution 

comparison over the scalp. 
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5.3,2 T I M E DOMAIN, 

Time domain features are extracted from the correlation calculated 

between various 2-second signal segments using Turbo C routines (appendix 

K ) . The cross-correlation between frontal E E G signal segments and 

posterior, temporal, and occipital signal segments is calculated together 

with the auto-correlation of frontal E E G and E O G signal segments. Figure 

5.9 illustrates the fiow diagram for the correlation feature extraction 

routine. Both cross and auto-correlation routines employ a similar feature 

extraction routine. 

5.3.2.1 C R O S S - C O R R E L A T I O N . 

The cross-correlation function ( C C F ) is a measure of the similarities 

or shared properties between two E E G / E O G signal segments. The C C F is used 
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Figure 5.9 correlation feature extraction routine flow diagram, 
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to provide information on scalp potential distribution together with 

symmetry and phase differences between signals from different scalp 

regions. The cross-correlation function ( C C F ) , for two signal segments 

x(k) and y(k). each with N samples, is calculated as: 

C C F ( n ) = C^y(n) 5.7 

[Cxx(0)Cyy(0)]1^2 

where Cxy(n) is the cross-covariance and defined as: 

Cxy(n) = l / N / ^ x ( k ) y ( k + n) n = 0,1,2, .. . 5.8 

and Cxx(O) = l /rO[x(k)]2 , Cyy(O) = l / N ^ [ y ( k ) ] 2 

The cross-covariance is used to compile a feature matrix that contains 

the magnitude of the first peak, the time lag to the first peak, the 

number of peaks, and the time between peaks (see figure 5.8). The feature 

matrix is read by Turbo P R O L O G routines (appendix K) which are used to 

conven the numerical features into symbolic tokens. The symbolic tokens 

are used to create individual covariance feature facts to append to the 

spectral feature facts in the dynamic knowledge base. Figure 5.10 

illustrates the process of cross-covariance feature generation from a 

simplified signal segment. Figure 5.10 shows that the covariance of 

channels 1 and 5 in figure 5.10(a) is transformed to a clear peak at t=0 

in the cross-covariance of figure 5.10(b). The feature matrix of figure 

5.i0(c) shows that only one peak exists in the cross-covariance of 

channels 1 and 5, peak has a magnitude of 500e5, and with a time lag of 
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Figure 5.10 Cross-Covariance feature extraction 

and symbolic lokenisaiion. 
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zero. No other peaks exits and therefore the last two cells are empty. 

Figure 5.10(d) shows the respective tokenised feature fact which wi l l be 

stored in the dynamic knowledge base. The feature fact states that a time 

domain feature exists for channels Fp2-F4:Fpl-F3, and that there is a high 

similarity between these channels. This indicates a high degree of 

symmetry between the left and right frontal EEG channels. Unlike the 

spectral feature facts no uncertainty is incorporated into the covariance 

feature facts. 

5.3.2.2 A U T O - C O R R E L A T I O N . 

The auto-correlation function (ACF) is a special form of the CCF 

involving only one signal. The ACF is used to provide an estimation of 

waveform shape by displaying the periodicity of the signal. A periodic 

signal wil l result in a periodic auto-correlation function of the same 

frequency as the original waveform but with attenuated high frequency 

noise and enhanced periodic signal. Any periodicity in a signal segment is 

indicative of an abnormal waveform because of the more likely random 

occurrences of OA. 

The auto-correlation function (ACF), for a signal segment x(k), with N 

samples, is calculated as: 

ACF(n) = Cxx(n) 5.9 

Cxx(O) 
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where Cj^j^(n) is the auio-covariance and defined as: 

Cxx(n) = l / N / > x(k)x(k + n) n= 0,1,2, . . . 5.8 

The auto-covariance is used lo generate covariance feature facts in 

exactly the same manner as described above for the cross-covariance. For 

example figure 5.11 illustrates the process of auto-covariance feature 

generation from a simplified signal segment. The feature fact of figure 

5.11(d) states that a time domain feature exists for channel Fp2-F4, and 

that the signal is highly periodic. This indicates the possible presence 

of abnormal slow waveforms 
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Figure 5.11 Auto-Covariance feature extraction 

and symbolic tokenisation. 
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5.3,3 C O N T E X T U A L DOMAIN, 

A considerable amount of skill used by the EEG expert in the analysis 

of the EEG lies in the ability to view the EEG in context of previous and 

future activity, and knowledge of patient details. This allows the expert 

to 'ignore* insignificant details and to concentrate on particular areas. 

This contextual domain can be viewed as existing on three levels: 

. Current context 

. Local context 

. Historical context. 

Figure 5.11. illustrates the relationship of these contexts to a 

multi-channel section of EEG/EOG. 

historical context ' = C 

< = = ^ = 3 local contexti 

current 
O c o n t o x t " ^ 

channel 1 
channel 2 
channel 3 

channel n | 

past 
segment 

present 
segment 

future 
segment 

Figure 5.11 Conceptual representation of contextual domain features. 
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Current contextual features include spectral features and 

inter-channel correlations, obtained above from frequency and time domains 

respectively. Local contextual features include the relationship between 

the features of immediate past and future signal segments, to the current 

signal segment. For example, i f a previous signal segment has been 

identified as containing abnormal slow waveforms, then the current signal 

segment is more likely to contain abnormal slow waveforms than it would 

have been should the previous segment not have contained any abnormal slow 

waveforms. Historical contextual features again will influence the 

analysis of the current signal segment, but the accumulated historical 

signal features will now be used. For example, an EEC that has contained 

abnormal slow waveforms some time previously, will make the possibility of 

the current signal segment containing abnormal slow waveforms that much 

greater. However, this possibility will decrease as time passes with no 

abnormal slow waveforms being detected. 

Contextual domain features are generated during feature extraction and 

are influenced by acceptability of a final segment classification. Current 

contextual features are generated from frequency and time domain feature 

extraction. Local and Historical contextual domain features wi l l be 

generated as a result of the usei*s response to segment classification. 

If the previous segment has been classified to the users satisfaction 

a local context is asserted into the dynamic knowledge base which consists 

of previous segment classification and final classification measure of 

belief (4.5.2.3), over-writting any previous local context. For example i f 

the previous segment was correctly classified as 'abnormal slow waves 
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only' with a measure of belief of 0.8, then the following feature fact 

would be asserted into the dynamic knowledge base: 

["c-feature","local","abnormal only"] [0.8] 

In addition to the local contextual feature fact, the historical 

context is amended upon detection of an abnormality. Two contextual 

feature facts are used for this purpose: 

["c-feature","total classifications"] [oldX] 

["c-feature","historical","abnormality"] [oldY,oldZ] 

where oldX is the total number of correctly classified signal segments, 

and oldY is the total number of correctly classified abnormal segments, 

and oldZ is the historical measure of belief in abnormality. 

the historical feature facts will be updated after the above correctly 

classified segment as: 

newX = oidX -\- I 

newY = OldY + 1 

newZ = OldZ + [(1-oldZ) newY/newX MB] 

where MB is the measure of belief of the correctly classified segment. The 

new historical contextual feature facts will be: 

["c-feature","total classifications"] [newX] 

["c-feature","historical","abnormality"] [newY,newZ] 
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Should the previous segment classification have been incorrect, then 

the historical feature facts are updated as: 

newX = oldX 

newY = oldY 

newZ = oldZ - [oldZ (oldY-oldX)/oldY MB] 

The measure of belief in the historical context is therefore either 

increased or decreased asymptotically in proportion to the measure of 

belief of classification and the proportion of abnormal segments to normal 

segments. 

5.4 REASONING. 

Feature extraction has provided a list of symbolic tokenised features 

which attempts to quantify those key aspects of the EEG that the expert 

uses in identifying OA, and in differentiating OA from abnormal slow 

waveforms. This section details the implementation of the reasoning system 

which operates on the stored rules and extracted features in order to 

select appropriate OA removal. The reasoning system is divided into two 

pans: 

. The knowledge base. 

. The inference engine. 
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5.4,1 K N O W L E D G E BASE. 

The knowledge base is a self contained, separate, ASCII file divided 

into two sections: 

. Dynamic knowledge, 

. Static knowledge. 

The dynamic, or 'short term\ knowledge base contains the extracted 

segment features from the current analysis segment, and the contextual 

features obtained from other segments. The static, or 'long term', 

knowledge base contains the elicited rules from the expert, and static 

signal information including, channel numbers and their location, 

relationships between channels, and tokenisation values for feature 

extraction. Separation of the knowledge from the inference engine allows 

easy modification of the knowledge, and alternative knowledge bases to be 

used with the same inference engine. 

5.4.1.1 DYNAMIC K N O W L E D G E . 

The dynamic knowledge base is not initially part of the stored 

knowledge. Feature extraction generates the tokenised features and these 

are temporarily stored together with the static knowledge. The dynamic 

knowledge is updated for each segment being analysed and it is only the 

contextual features that maintain any information on previously analysed 

segments. Figure 5.12 illustrates the typical contents of the dynamic 

knowledge base. 
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[f-feature,fp2-f8,peakl,delta,med-mag,med-freq],[1.0] 

[f-feature,fp2-f8,peak2,delta,low-mag,high-freq][ 1.0] 

[f-feature,fpl-f7,peakl,delta, med-mag,med-freq][i.O] 

[f-feature,fpl-f7,peak2,delta,low-mag,high-freq][ 1.0] 

[f-feature,fp2-f4,peakl,delta,med-mag,med-freq][1.0] 

[f-feature,fp2-f4,peak2,delta,low-mag,high-freq][ 1.0] 

[f-feature,fpl-f3,peakl,delta,med-mag,med-freq][1.0] 

[f-feature,fpl-f3,peak2,delta,low-mag,high-freq][ 1.0] 

[t-feature,fp2-f8,high-corr,zero-!ag,no-periodicity,zero-freq] 

[t-feature,fp l-f7,high-corr,zero-lag,no-periodicity,zero-freq] 

[t-feature,fp2-f8: fpl-f7,high-corr,zero-lag,low-periodicity,low-freq] 

[t-feature,fp2;f8: f8-t4,med-corr,zero-lag,low-periodicity,low-freq] 

[t-feature,fpl-f7:f7-t3,med-corr,zero-lag, low-periodicity, low-freq] 

[c-feature,totals][4] 

[c-feature,local,blink][0.8] 

Figure 5.12 Typical dynamic knowledge base contents. 

5.4.1.2 STATIC K N O W L E D G E . 

Extensive knowledge elicitation and data anaJysis yielded a set of 

neariy 60 rules and 80 conditions for both segment identification and OA 

classification. These rules constitute the search space in which the 

inference engine will operate. Figure 5.13 illustrates a simplified search 

space for the implemented system, and each node in the search space 

represents one or more alternative rules. 
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4 
ft 

cerebral only artefactual only 

^ ^ ^ 1̂  
peraplration movement eye movement other 

^ ^ ^ ^ 
vertical horizontal blink complex 

Figure 5.13 search space for the classification of EEC 

segments: representation as a decision tree. 

Appendix M lists all the elicited rules, in the knowledge base format, 

and figure 5.14 illustrates a sample of these rules showing the 

respective rule confidence (see section 4.5.2.2) in parenthesis after the 

rule. The rule confidence was calculated as the average of the heuristic 

and statistical values elicited in section 4.5.2.2. 

Section 4.5 identified the key elements, used by the expert, in 

analysing the EEC, and in differentiating between OA and abnormal 

waveforms. In summary these were, the spatio-temporal, and spatio-spectral 

signal qualities. Particular attention was paid to the symmetry between 
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Rule 1: 
segment could contain abnormal slow waveforms (0.5) 
if abnormal slow waveforms have been observed previously. 

Rule 3: 
segment is more likely to contain abnormal slow waveforms (0.6) 
if the last segment contained abnormal slow waveforms. 

Rule 12: 
segment contains no slow waves (l.O) 
if no significant spectral activity exists in the delta band. 

rule 15: 
segment contains artefact only (0.93) 
if slow activity is maximum in the frontal channels 
and pre-frontal channels are symmetrical 
and EOG channels are symmetrical 
and slow waves only appear in frontal channels 

rule 23: 
segment contains artefact only (0.4) 
i f slow activity is maximum in the frontal channels 
and slow waves only appear in anterior channels 
and no slow waves exist in the EEG that are not present in the EOG 

rule 32: 
segment contains both artefact and abnormal waves (0.8) 
if slow activity is not maximum in the frontal channels 
and pre-frontal channels are symmetrical 

and slow waves exist in the EEG that are not present in the EOG 

rule 46: 
artefact only contains OA only (0.8) 
if EOG channels are symmetrical 
and slow waves are attributable to more than one electrode 
and slow activity is maximum in the EOG channels 
rule 53: 
OA only contains blink artefact (0.9) 
if slow waves are larger in pre-frontal channels than in temporal 
and the slow waves are of short duration 
and the slow waves are in phase in temporal channels 
and the slow waves are phase reversed around the eyes 

Figure 5.14 Sample of rules used in the lOARS. 
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cerebral hemispheres of any suspect wave, as well as signal phase 

relationships. 

The key features utilised by the rules in categorising each analysis 

segment are: 

. The context of previous segment content 

. The position of maximum delta band spectral magnitude 

, The similarity of spectral content in left and right EOG signals 

. The cerebral distribution of spectral peaks in the delta band • 

. The correlation between combinations of EOG and EEG signals 

. The periodicity of waveforms in frontal channels 

These features are obtained from the dynamic knowledge acquired from 

each segment, such as that of figure 5.12. The rules of figure 5.14 form a 

small subset of the total rules shown in appendix M , but are used here to 

illustrate the classification of the waveforms shown in figure 5,8. It is 

assumed that the dynamic knowledge acquired from the waveforms of figure 

5.8(a) are that of figure 5.12. 

Rules are investigated sequentially in the knowledge base. Therefore 

there is a natural ordering to rules which result in the same consequent. 

Rules which have larger numbers of antecedent clauses are generally harder 

to satisfy; as a result the confidence in the rule, once satisfied, is 

larger. Consecutive rules have increasingly relaxed conditions, and hence 

reducing rule confidence, until no other rules can be found and that 

branch of investigation fails. 
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Figure 5.12 shows no abnormal slow waveforms in either historical or 

local context and as a result rules 1 and 3 are by-passed by the inference 

engine (see later). Rule 12 is used to ignore segments with insignificant 

spectral activity in the OA frequency band. This is a valid process 

because of the known OA frequency band and the limitation of this 

implementation to only remove OA. 

Having focused the problem to one of identifying the slow wave 

activity detected in the segment, rules 15 onwards are utilised. Ocular 

artefact potential appears strongest in the anterior regions of the scalp, 

around the eyes, and is also symmetrical. Rules 15 and 23 identify a 

segment as containing only artefactual waveforms if the detected slow wave 

activity is maximum in the frontal channels. Rule 15 is investigated first 

and will succeed if all its conditions are satisfied with some degree of 

certainty (see section 4.5.2.1). Rule 23 is only investigated should rule 

15 fail. For example rule 15 investigates the symmetry of the frontal E E C 

channels, and the E O G channels and is therefore given a higher confidence 

than rule 23 which does not have these conditions. The waveforms of figure 

5.8(a) are symmetrical and only appear in the frontal channels, and 

therefore will satisfy the conditions of rule 15. The current measure of 

belief (MB^) is therefore calculated as: 

MB^ = 0.93.[min(l.0,1.0.1.0,1.0)] (see section 4.5.2.3) 

= 0.93 

Segments identified as containing only artefact are further classified 

as containing only OA by examination of the E O G channels. For O A to be 
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present, the slow waves must have maximum power in the EOG channels, be 

present in more than one channel, and have a symmetrical spectral content 

in the EOG channels. Rule 46 investigates these conditions and for the 

waveforms of figure 5.8 will succeed. MB^ now becomes: 

MB^ = 0.93 -h {(1 -0.93) 0.9 [min(l.0,1.0,0.5)]} 

= 0.962 

For OA identification the phase relationship between signals close to 

the eyes is also of importance. Vertical eye movement (VEM) and blink 

produces potentials that are in phase on both sides of the scalp, while 

horizontal eye movement (HEM) will produce convergent potentials on one 

side of the scalp and divergent potentials on the other. The time course 

of OAs are also different, blinks produce large, short duration, negative 

potentials above the eye, and small positive potentials below the eye. VEM 

and HEM produce longer duration potentials. Rule 53 investigates these 

time domain features by examination of the t-features in the dynamic 

knowledge base. The waveforms of figure 5.8 are finally identified as 

being attributable to blink-type OA with a measure of belief (MB^): 

MB^ = 0,962 + {(1 - 0.962) 0.9 [min(l.0,1.0,1.0,1.0)]} 

= 0.9962 

This is sufficient measure of belief to allow the OA removal algorithm 

to be applied with coefficients preset to values most suitable to 

blink-type OA. 
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Segments are categorised into one of the four types detailed in 

section 4.5.1.2. Segments identified as containing OA only, with a 

sufficient measure of belief, are subjected to OA removal, and these 

segments are cleariy identified. Adaptive filter coefficients can be 

retained at the end of each segment so that further segments of the same 

type of OA can utilise the stored coefficients. 

The primary aim of the intelligent OA removal system is to apply the 

OA removal algorithm only where appropriate. This means that segments 

containing no significant OA, and those that contain both suspected 

abnormal waves and OA are passed unaltered. Rule 32 identifies a segment 

as containing both abnormal waves and artefactual waves when the maximum 

delta activity occurs away from the EOG channels but the EOG channels 

still contain delta waves and are symmetrical. These rules are attempted 

when the inference engine has failed to successfully identify a segment as 

containing artefact only. The conditions of these rules are often the 

inverse of conditions for OA only and there is no need to re-evaluate 

these because the inverse of a condition found to be false with certainty 

0.8, is simply true with a certainty of 0.8. Segments where suspected OA 

and abnormal waves exist are clearly identified but are not altered. 

Rules 12 and 23 of figure 5.14 are illustrated in the knowledge base 

format in figure 5.15. This illustrates the five main component parts of 

the static knowledge base, which are: 
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textual rules: 

text-rule(12,l,"segment","no significant delta waves",[4]) 
text-rule(23,0.4,"segment","artefact only",[5,13,16]) 

textual conditions: 

text-cond(3,"any significant spectral activity exists in the delta band) 
text-cond(4,"not any significant spectral activity exists in the delta band) 
iext-cond(5,"sIow activity is maximum in the frontai channels") 
text-cond(6,"not slow activity is maximum in the frontal channels") 
text-cond(13,"slow waves only appear in anterior channels") 
text-cond(14,"not slow waves only appear in anterior channels") 
text-cond(15,"slow waves exist in the EEG that are not present in the EOG") 
text-cond(16/'not slow waves exist in the EEG that are not present in the EOG") 

numerical conditions: 

num-cond(3,["f-feature","","","delta","",""]) 
num-cond(5,["max-front"]) 
num-cond( 14, ["posterior-features"]) 
num-cond(i5,["non-eog"]) 

feature demons: 

cl(["non.eog"],[],[ 
["inipred","channel","X","eeg"], 
("f-feature","X","","delta","","A"], 
["intpred","notpeak","peak","A"], 
["anyeog","A"], 
["intpred","notpeak","peak","A"]]) 

cl(["any-eog","A"],n,[ 
["intpred"/'channer',"Y","EOG"], 
["f-feature","Y","","delta","","A"], 
["intpred"/'assenpeak","peak","A"], 
["intpred","cutback","",""]]) 

cl(["any-eog","A"],[],[ 
["intpred","true","",""]]) 

contextual facts: 

anterior("fp2-f8") 

channel(0,"fp2-f8","EOG") 

freqbounds("delta",6,18). 

Figure 5.15 The rules of figure 5.14 transcribed into knowledge base format. 
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. Textual rules. 

. Textual conditions. 

. Numerical conditions. 

. Feature demons. 

. Contextual facts. 

In order to provide the explanation facilities crucial to this system, 

rules and conditions are stored in a textual format. This is augmented by 

the necessary numerical rules which operate on the features obtained from 

the data. Some numerical conditions can be implemented by searching the 

dynamic knowledge base for one simple asserted feature fact, for example 

condition 3, which searches for a delta frequency spectral peak. However, 

some conditions require more sophisticated search, in which case the 

numerical condition is implemented using a rule contained in the knowledge 

base and referred to as a feature demon. For example, examination of 

figure 5.15 shows the equivalence of textual and numerical condition 15 

which tests for the existence of delta spectral peaks present in the EEG 

but not in the EOG. Condition 15 is the inverse of condition 16. Condition 

15 is implemented by the use of the feature demon 'non-eog' (see inference 

engine later), which is a rule which searches for combinations of spectral 

peaks. Condition 15 will be found to be false i f delta frequency waveforms 

are found in the EEG that are uncorrelated with those in the EOG. causing 

condition 16 to be found true with the appropriate certainty. 
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5.4.2 I N F E R E N C E ENGINE. 

The inference engine is built in PROLOG following the theory 

introduced in chapter 2. The basic inference engine is based on a simple 

expert system shell - GENI [Borland international Inc./. This basic 

shell is enhanced by accommodating uncertainty, complex knowledge base 

structure, and hybrid search techniques. Figures 5.16 represents the 

intelligent OA removal system as a decision tree. This equates to a 

program flow chart for a procedural language. Figures 5.17-19 illustrate 

the simplified decision tree structure for the inference engine (INFER). 

Appendix K contains the full program listings for the complete system. 

With reference to figure 5.16, it can be seen that the lOARS is 

essentially procedural in the initial stages. This involves loading the 

knowledge base and data, and displaying the data for user selection (see 

section 5.6). However, upon selection of the data further data processing 

is dependent on the outcome of the data classification, from the inference 

engine - infer. A path is taken which will result in either OA removal, OA 

indication or preservation of original data. Figure 5.16 also indicates 

that this process is a repetitive cycle of data selection,inference, and 

action. 

Figure 5.17 illustrates the construction of the inference engine. This 

shows that the inference process is continually looking for rules to 

satisfy and i f no rules are found then the search is assumed completed and 

a classification is made. However, a rule will be satisfied by satisfying 

all attached conditions and this process is a repetitive cycle until no 
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Figure 5.16 lOARS decision tree. 
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further conditions exist, in which case a new rule is searched for. A 

condition can be satisfied as being true or untrue in two ways. Firstly, 

i f the condition has been previously proved true, or untrue, and secondly 

by searching for relevant facts in the dynamic knowledge base. I f neither 

the condition or its inverse has been previously investigated, then the 

truth of the condition is determined by feature consultation - consult 

features. 

Figure 5.18 illustrates the construction of the feature consultation 

clause for which five possibilities exist for satisfaction. Success of the 

condition or not condition will satisfy the first two, and result in 

assertion of the appropriate facts in the dynamic knowledge base. Failure 

of the condition will result in the opposite facts being stored in the 

dynamic knowledge base. Lastly, failure to find an appropriate condition 

will result in the user being asked to supply the relevant information. 

The dynamic knowledge base is interrogated by the clause - head. 

Figure 5.19 illustrates the construction of the feature interrogation 

clause - head. Head provides several key extensions to the simple PROLOG 

inference engine by using 'Meta' programming techniques [Borland 

international Inc. 1989, PROLOG reference; Heyshim, 1988J. Meta 

programming techniques enable the construction of control structures other 

than the simple backward chaining depth first of conventional PROLOG. 

These control structures 'can however, be written using PROLOG and act 

effectively as an interpreter within PROLOG. An interpreter was 

constructed for the lOARS to allow the following extensions to 

conventional PROLOG to be made: 

page 219 



. To allow rules to be contained in the knowledge base. 

. To allow variables to be manipulated in the knowledge base 

Reference to figure 5.15 shows the use of these two extensions in the 

feature demon *non-eog'. Rules are contained in the knowledge base as a 

list of clauses where each clause can represent a feature fact or another 

feature demon. Variables are represented as capital letters. The 

interpreter is responsible for breaking each rule up and investigating 

each of the integral feature facts. 

A condition can take one of three forms for the interpreter to deal 

with: 

. Internal predicate 

. Fact 

. Rule 

An internal predicate is used as a function of two variables, such as 

' > , < , = , etc., it is also used to assert and retract facts from the dynamic 

knowledge base. An internal predicate is always an integral condition of a 

rule. A fact is simply a feature fact extracted from the data, i.e. it is 

a rule with no conditions, it may however pass variables and must be 

unified after satisfaction. A rule may contain any number of feature 

facts, internal predicates and other rules. Each condition of the rule is 

interpreted by the clause 'body' which itself uses 'head' to satisfy 

individual conditions. 
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5.5 ADAPTIVE H L T E R S . 

Classification of a segment as containing OA only will allow the 

application of the OA removal algorithm. The OA removal algorithm is an 

adaptive filter and utilises the RLS algorithm, as described in section 

4.4.2, for parameter updating. The algorithm has starting parameters which 

are dependent upon the classified OA type (see section 4.4.4). These 

'pre-loading' parameters for the OA removal algorithm are stored as a 

number of matrices in the static knowledge base and represent the long 

term values obtained from statistical data (see section 4.3.3.1). During 

OA removal these values are transferred to the dynamic knowledge base 

where their value is free to be updated with the data. Each matrix 

represents a particular OA and will contain the pre-loading parameters for 

P and K for each relevant electrode position. A simplified matrix for 

blink type OA at a number of frontal electrode positions is illustrated in 

figure 5.20. 

B L I N K P R E - L O A D I N G P A R A M E T E R M A T R I X 
parametot 

:hannel 
D . D . Uo 

F p 2 - F 4 0.3 0.1 4.0E-7 4.0E-7 - 1.0 

F p l - F 3 0.1 0.3 4.0E-7 4.0E-7 -1.0 

F p 2 - F 8 1.0 0.0 4.0E-7 4.0E-7 -1.0 

F p l - F 7 0.0 1.0 4.0E-7 4.0E-7 -1.0 

HB aatti. assumts a 2 oaramatar lUiar moett using ina eOG 
c^annais aaiaiiao in sacHen 4,3, ana in» UD tactofsaiion 

atporitnm 

Figure 5.20 OA removal algorithm pre-loading matrix 
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The matrix of figure 5.20 is stored as a number of facts in the 

knowledge base, where a fact exists for each combination of OA type and 

electrode position. For example, the matrix of figure 5.20 is stored in 

the knowledge base as the following facts: 

oa-parameter(blink,fp2-f4,0.3,0.1,4.0e-7,-1.0,4.0e-7) 

oa-parameter(blink,fpl-f3,0.1,0.3,4.Oe-7,-1.0,4.Oe-7) 

oa-parameter(blink,fp2-f8,1.0,0.0,4.Oe-7,-1,0,4.0e-7) 

oa-parameter(blink,fpl-f7,0.0,L0,4.0e-7,-l.0,4.0e-7) 

Appendix G contains the software listing for the OA removal algorithm 

which is essentially the same as that shown in the flow chart of figure 

4,32. The algorithm is implemented in ' C and utilises the segment 

classification, and the oa-parameter facts contained in the knowledge base 

to effect OA removal. 

5.6 USER I N T E R F A C E . 

The user interface, i f not the most important, is surely the most 

prominent, and by definition visual, functional block of the system. A 

primary purpose of this investigation was to provide the clinician with an 

adaptive signal processing tool capable of removing OA from the EEC; the 

emphasis being on the word tool. Such a tool must be:-

. Reliable. 

. Easily used. 

. Convey, to the user, all necessary information in a form that is 

easily understood. 
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These criteria have been addressed and partly met in this 

implementation by utilising the graphics display capabilities of the PC. 

Analysis of the above criteria allowed the following specifications to be 

made for an appropriate user interface:-

. To display real time EEG/EOG time domain signals. 

. To allow, upon request, identified OA to be indicated. 

. To provide adequate explanation of OA identification. 

. To allow, upon identification and under user control, removal of OA. 

Real time display of EEG and EOG signals is achieved elegantly using 

scrolling high resolution graphics display. This can be an extremely time 

consuming procedure using standard PC hardware and this area is one in 

which the use of fast Assembly language routines was unavoidable. The 

present system is capable of 8 channel display on a 640x480 graphics 

terminal, directly upgradable to 16 channel display on a 1024x768 display 

(See plate 5.1). 

Indication of OA is achieved on a segment by segment basis, where a 

segment represents 2-seconds of multi-channel EEG/EOG. The user can select 

a segment for analysis and will be presented with a classification of this 

segment after a period of reasoning. Turbo PROLOG'S windowing facilities 

allow this classification information to be displayed in a 'pop up' 

window. 

One significant advantage in the use of expen system technology for 

this system lies in the inherent explanatory facilites offered. A 
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classification will be as a result of the successful navigation through a 

search space such as that depicted in figure 5.13. Explanation for a 

classification will therefore be readily available i f a record is made of 

the successful rules and conditions encountered in the navigation of the 

search space. For the implemented system these rules and conditions are 

displayed to the user, upon request, in a Turbo Prolog 'pop up' window. 

Chronological ordering of the successful rules and conditions illustrate 

the reasoning process explicitly. 

5.7 SUMMARY OF C H A P T E R 5. 

Chapter 5 has detailed the implementation of an expert system for OA 

identification and classification - the intelligent ocular artefact 

removal system (lOARS), and is based on the theoretical aspects of expert 

system technology introduced in chapter 2. Fundamental to the development 

of the expert system is the knowledge which it is to contain, and the 

implementation here details the manner in which the expert knowledge, 

elicited in chapter 4, is represented in the expert system. Chapter 4 

identified key features used by the expert in the identification of OA and 

this chapter has firstly, described the process by which these features 

are extracted from the EEG/EOG by the lOARS, and secondly, the manner in 

which the knowledge base of rules utilises this feature information, in 

order to identify OA. Several important techniques are described to match 

closer the signal analysis abilities of the EEC expert. These include the 

use of feature fact uncertainty and the use of contextual information to 

influence a classification, 

page 225 



R E F E R E N C E S FOR CHAPTER 5. 

Borland. 

"Turbo C users guide/reference guide". Borland International, 1988. 

Borland. 

"Turbo Prolog users guide/reference guide". Borland International, 
1989. 

Childers, D. G. (editor) 

"Modern spectrum analysis". IEEE Press. 1978. 

Clocksin, W.F. and Mellish, C.S. 

"Programming in prolog". 3rd edition. Springer-Verlag, 1987. 

Hashim, S. H. and Seyer, P. 

"Turbo Prolog. Advanced programming techniques". Tab books inc., 1988. 

Johnson, J.R. 

"Inioducrion to digital signal processing", Prentice-Hall International 
editions. N.J.. U.S.A., 1989. 
Kandel, A. 

"Fuzzy techniques in pattern recognition". Wiley, 1982. 

Kernighan, B. W. and Ritchie. D. M. 

"The Cprogramming language (second edition)". Prentice Hall software 
software series, 1988. 

Murray, W.H., and Pappas, C.H. 

"80386/80286 Assembly language programming", Osbourne McGraw-Hill, 
Berkley, Cai, 1986. 

Oppenheim. A.V., and Schafer. P. W. 

"Digital signal processing", Prentice-Hall, Englewood Cliffs. N.J., 1975. 

page 226 



Rabiner. L.R.. and Gold, B. 

"Theory and application of digital signal processingPrentice-Hall, 
Engleyvood, Cliffs, 1975. 

Scanlow, L.J. 

"IBM PC and XT Assembly language, a guide for programmers". Brady 
Communications Company Inc.. 1985. 

Schildt, H. 

"Advanced turbo Prolog. Version LI". Borland-Osbourne/McGraw-Hill 
programming scries, 1987. 

Schildt. H. 

"C power users guide". Osbourne McGraw-Hill, 1988. 

Schildt, H. 

"C: The complete reference'. Osbourne McGraw-Hill. 1988. 

Stan Kelly-Boottle 

"Mastering Turbo C". Sybex inc., California. 1988. 

577 (Signal Technology Inc.) 

"ILS "(Interactive Laboratory system), 5951 Encina Road, Coleta, CA 93117, 
U.S.A. 

Weiskamp, K., Shammas. N. and Pronk, R. 

"Turbo Libraries. A programmer's reference'. Wiley, 1989. 

page 227 



6.1 INTRODUCTION. 

Chapters I to 5 have described the development of an expert system for 

intelligent removal of OA from the EEC. Chapter 5 has detailed the 

implementation of a system for OA identification which will enable 

intelligent OA removal. This implementation however, is the first stage in 

what is essentially an iterative development cycle, which wi l l eventually 

lead to a system capable of working routinely in the clinical environment. 

Essential to this iterative cycle is the feedback obtained from system 

evaluation which wil l stimulate refinement and possible redesign during 

the development process [Hayes-Roih. et oL, 1983}. This chapter 

details the procedures used in obtaining feedback from system evaluation, 

using real worid data, together with the results obtained. 

Gaschnig, et al., 1983, has proposed a number of criteria for system 

evaluation, which have been modified and extended by many other authors 

[Liebowitz, 1986; O'Keefe et at., 1987; O'Leary et al., 1990; Berry and 

Hart, 1990}. This investigation follows the original suggestions of 

Gaschnig et al., who describe evaluation as considering the following 

questions: 
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. Is the knowledge representation scheme adequate or does it need to 

be extended or modified? 

. Is the system coming up with the right answers and for the right 

reasons? 

. Is the embedded knowledge consistent with the experts? 

. Is it easy for users to interact with the system? 

. What facilities and capabilities do users need? 

Of these points, the first three, are viewed as expert system 

verification, whilst the last two are viewed as decision tool validation. 

In order to address these questions, the evaluation process is carried out 

throughout the development of the system. Evaluation is viewed as 

continuous and provides constant feedback to the development cycle. The 

development and evaluation cycle is illustrated conceptually in figure 

6.1-

Clinical aeployment 

EVALUATION 
Final 

•Ta laa l lOQ OA removal 

OA Tvmoval 
a loor l lbm OA identiilcaUo 

lal*r*oc* Rules 

r a l « bai* Rules 

Elicit 

SYSTEM DEVELOPMENT ra 

K Q O W U d O * 
r tp r*ioa iat ioD 

Figure 6.1 Phases of system development and evaluation, 
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The evaluation phase of the investigation has been planned as four 

distinct stages, reflecting clear developmental landmarks in the lOARS. 

Each stage addresses the questions above and are identified as: 

STAGE 1: Rules. 

STAGE 2: OA identification. 

STAGE 3: OA removal. 

STAGE 4: Clinical deployment. 

Stage 1 evaluates the transcription of the knowledge elicited from the 

expert, into a set of production rules. Stage 2 evaluates the use of 

extracted signal features in satisfying the rules. Stage 3 evaluates the 

application of the OA removal algorithm, based on OA identification. Stage 

4 evaluates the use of the tool in the clinical environment. Each stage 

relies on the verification of previous stages, and the final clinical 

deployment wil l be dependent on validation of the system as genuine tool. 

6.2 S T A G E 1: R U L E S . 

Section 5.4.1.2 has described a number of the rules elicited from the 

experts, and transcribed into the production rule format. The consistency 

of these rules, with the knowledge of the experts, was evaluated by 

presenting the rules to the expert - a face verification approach 

[O'Keefe, er oi. I987}K The face verification approach is a 

^O'Keefe, ei al., use the term validation instead of verification 
in the description of qualitative evaluation methods. However, in order to 
maintain consistency with the definitions made in section 6.1, abd the 
Oxford English Dictionary definitions of verification and validation, the 
term verification is used here. 
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useful preliminary technique, which relies on the experts subjective 

analysis of the rules at face value. This is carried out using their 

knowledge and intuition of the problem domain, together with their 

understanding of the system specifications and acceptable performance 

range. By requesting the expert to provide a value of rule confidence for 

each rule (see section 4.5.2.2), the expert was forced to address the 

correctness, consistency, and completeness of the rule set. Rules were 

written in a form easily understandable by the expert (see figure 6.2) and 

perceived mistakes were rectified prior to further development. 

Face verification of the initial rule set provided the following 

observations: 

Experts Rule confidence (1-5) 

Rule I : 
segment could contain abnormal slow waveforms (5) 
i f abnormal slow waveforms have been observed previously. 

Rule 12: 
segment contains no slow waves (5) 
i f the EEG is flat. 

rule 15: 
segment contains artefact only (5) 
if slow activity is maximum in the frontal channels 
and pre-frontal channels are symmetrical 
and EOG channels are symmetrical 
and slow waves only appear in frontal channels 

rule 23: 
segment contains artefact only (4) 
if slow activity is maximum in the frontal channels 
and slow waves only appear in anterior channels 
and no slow waves exist in the EEG that are not present in the EOG 

Figure 6.2 Example of rules used in stage 1 evaluation. 
Appendix N contains the complete list of rules. 
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. The EEG expert was comfortable with the representation of their 

knowledge in a production rule format. This does not mean that this is 

necessarily the best representation, but the heuristic nature o f the 

knowledge lends itself to this representation, and more importantly, the 

expert was able to express their knowledge easily using this knowledge 

representation. This indicates that the expert would be comfortable making 

modifications of the knowledge base, if necessary. 

. The expert was satisfied that the key factors in OA identification 

had been addressed in the rules. In particular, these were, the spatial 

distribution of potential, the symmetry of potential, and the synchrony of 

waveforms. 

. The expert was less satisfied with the use of waveform shape as a 

key factor. The rules have related the sharpness of a waveform to 

classification of OA, i.e. a' sharp waveform is likely to be attributable 

to OA. This was considered a contentious point when applied generally to 

the EEG, as abnormal spikes (see section 1.1.1) can often occur. However, 

it has been pointed out that this evaluation is concerned with abnormal 

slow waves only; In this frequency band it is blinks and fast eye 

movements only that contain any sharpness in the waveform. 

The expert found difficulty in attributing a value of rule 

confidence to each of the rules. This is primarily because, it is a task 

which is not normally carried out explicitly. These values are therefore 

more likely to be of use as a guide to the statistical values calculated 

from the data. 

. The rules compiled here are elicited from a number of people with 

considerable experience in the field of EEG analysis. However, all experts 

are taken from only one centre of EEG analysis and therefore bias could 
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exist in the rule base. This observation deserves further investigation, 

and development of the knowledge base should accommodate the knowledge of 

experts from additional knowledge sources. 

6.3 S T A G E 2: OA IDENTIFICATION. 

Having established a prototype rule set which was correct and 

consistent, further system development focused on automating the feature 

extraction procedure. Having obtained a functioning OA identification 

system implementing feature extraction by using signal processing 

techniques (see section 5.3), evaluation of system performance was carried 

out in a rigorous manner. Evaluation at this development stage was carried 

out at two levels: 

. Evaluation using a limited feature set. 

. Evaluation using a full feature set. 

Evaluation of the system using a limited feature set enabled isolation 

of an important subsystem - a subsystem verification approach [O'Keefe. 

et ai. }987p'. Decomposition of the system into a limited feature 

extraction subset allows the performance of the subsystem to be observed 

under a given set of input data. The same input data can then be used with 

additional feature extraction subsets to observe the effect. In this way 

each feature extraction subset is verified as it is developed. O'Keefe, et 

9 See footnote 1 on page 230. 
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al., describes three significant advantages of a subsystem verification 

approach: 

. Verification is incorporated into the development. 

. Subsystems are easier to verify. 

. Error detection is easier. 

6.3.1 E V A L U A T I O N USING A L I M I T E D F E A T U R E S E T . 

In order to evaluate the performance of the system 140, 2-second, 

l6-channel EEG/EOG segments were selected from the extensive patient 

database (see section 4.2). For a fair cross section of data, segments 

were selected using a stratified sampling approach; that is, randomly 

selected within each identifiable result type. 40 segments were selected 

from normal volunteer data containing various types of OA, and 100 

segments were selected from the patient data containing abnormal EEGs. The 

abnormal EEG segments contained a wide variety of both OA and abnormal 

slow waveforms. Use of data recorded using standard EEG methods, meant 

that data segments contained EEG signals recorded from a number of signal 

derivations. EOG signals were taken as those described in section 4.3.2 

and were measured bipolarly using two electrodes for each eye. Figure 6.3 

illustrates the EEG and EOG signals used for the data in this evaluation. 

Appendix O contains the full evaluation data set, and shows the 

respective expert and lOARS classifications. 
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E E G Electrode montage 1 E E G Electrode Montage 2 

E O G Electrode positions 

Figure 6.3 Stage 2 evaluation signal derivations. 

O'Keefe, et al., describe a number of methods for qualitative system 

verification ^. This investigation employs a predictive verification 

method, involving a comparison of the OA identification abilities between 

EEG expert, and lOARS. 

The selected data segments were presented to an EEG expert, who was 

requested to classify the slow wave activity in each segment into one of 

the four categories detailed in section 4.5.1.2; these being: 

'See footnote 1 on page 230. 

page 235 



. Abnormal only 

. OA only 

. Both OA and abnormal 

. Neither 

NB The experts* classification of a segment, as containing abnormal 

waveforms, was based only on the slow wave, or delta frequency band, 

contents of each segment, and not on any higher frequency abnormal 

waveforms. 

Segments were also presented to the intelligent OA removal system 

which was to produce a similar classification. For the purposes of this 

subsystem evaluation, the Knowledge base could only call upon features 

extracted from frequency domain, these included: 

. waveform frequency 

. waveform magnitude 

6.3.2 R E S U L T S O F E V A L U A T I O N USING A L I M I T E D 

F E A T U R E S E T . 

Tables 6.1 details the comparison between the segment classifications 

of the EEG expert and the lOARS. Appendix P contains the complete results. 

Table 6.1(a) shows the number of segments classified for the 40 normal, 

abnormality free, volunteer data segments, and the percentage distribution 

of classifications of the segments containing OA only. Table 6.1(b) shows 
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the number of segments classified for the patient data segments, and the 

percentage distribution of classification of the segments containing OA 

only. 

Number of seoments 

OA Abnof rnal Both Neither 
Numbe r of segments Only Only 

»ip«rl OA 
Only 

None 
OA 

Only 
24 1 0 0 

OA 
Only 32 0 At) normal 

Only 
1 15 4 0 

Nona 0 8 Both 4 13 31 0 

Neither 1 0 6 
OA only 

Neither 6 

True Fat«« True Fat«« 
OA only 

Positive 100 True Faiae Positive 100 u True Faiae 

Negative 0 100 Poalllve 80 1.4 

Negative 20 98.6 

(a> Normal Volunteers b) Abnormal Patients 

Table 6.1 Comparison of segment classification between EEC 

expert and lOARS, using a limited feature set. 

The results show that for normal volunteer EEC data segments, 100% of 

segments containing only OA were correctly classified. These segments 

contained blink, vertical eye movement, horizontal eye movement and 

rolling eye movement. The abnormal patient EEC data segments show that 80% 

of segments containing only OA were correctly classified. For the abnormal 

data segments, the percentage of correct segment classifications was 

75.2%. For both normal and abnormal data segments, the overall percentage 
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of correctly classified data segments was 82.2%. Appendix P shows the 

incorrectly classified segments asfll-

Predictive verification of the OA classification, with a limited 

feature set has allowed the following observations to be made: 

. Waveform frequency and magnitude are key features, used by the EEG 

expert, in the identification of OA. 

. EEG exhibiting no abnormal slow waveforms, and containing OA were 

identified in every case. This is principally because of the large 

magnitude of the slow waveforms, and the spatial distribution of the 

waveform magnitude; significant waveform magnitude is often only present 

in frontal channels, and shows maximum magnitude in the EOG channels. 

These factors make the presence of abnormal slow waves unlikely. However, 

it must also be noted, that the data from which the normal data was 

selected, was from volunteers making deliberate large eye movements; 

natural eye movements occurring during patient EEG recording are likely to 

exhibit smaller, more ambiguous, waveform magnitude. 

. Examination of table 6.1(b) reveals that 43% of segments containing 

abnormal slow waves only, from patient data, were wrongly classified, by 

the lOARS, as containing both OA and abnormal slow waves. These results 

are marked as in appendix P. However, this disappointing result is to 

be expected at this stage. Al l abnormal slow waves used in this evaluation 

were of frontal focus; frontal slow waves are the principle problem when 

applying the OA removal algorithm (see section 1.4.1). Frontal abnormal 

slow waves are misinterpreted as a combination of abnormal waveforms and 

OA, when using frequency domain features only, because of a wide spatial 
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distribution of slow waveform magnitude. The extracted frequency domain 

features in this case have provided evidence of frontal slow activity, but 

this activity is not necessarily of maximum magnitude in the EOG channels. 

This indicates that waveform magnitude and frequency is not sufficient for 

differentiation between OA and frontal abnormal slow waveforms. It w i l l be 

necessary, in these cases, to provide further features, such as 

correlation and phase, to the inference engine. 

Examination of table 6.1(b) reveals that 87.5% of segments 

containing OA only, from patient data, were identified correctly. This 

confirms the suspicions cast above on the equivalent results obtained with 

normal volunteer data. Normal eye movements occur in a wide variety of 

types (see section 1.2.1) and also in varying degrees of magnitude. This 

raises several important issues, namely: (a) what extent of eye movement, 

i f any, is the magnitude considered insignificant, with respect to 

background noise, to remove the need for OA removal; (b) is" the 

classification of OA directly dependent upon the EEG machine gain 

adjustment during recording. The first of these issues is approached in 

the lOARS using a magnitude threshold, in the power spectrum, that is 

proportional to the average magnitude of EEG frequency band waveform. The 

magnitude threshold dictates the level of a significant spectral peak. 

However, a small amplitude OA, with several frequency components, for 

example when sharp element are visible in the time series, will appear 

'smeared' in the power spectrum. Such an eye movement will fail to provide 

a spectral peak that will exceed the magnitude threshold, without reducing 

the threshold and introducing erroneous significant spectral peaks in the 

frequency domain feature list. The second issue is related to the first in 

that the calculated power spectrum is directly proportional to the 
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amplitude of the acquired time series data, and wi l l consequently effect 

the significance of a spectral peaks. For this evaluation all data was 

recorded using the same value of EEG machine gain, and therefore no 

adjustment was necessary. However, any development should ensure that 

power spectral estimation is calculated from the true EEG signal and is 

irrespective of EEG machine amplifier gain settings. 

. Errors occurring in the classification of segments tended to err on 

the side of safety, i.e. segments that contained slow waveforms which in 

any way might be considered abnormal, were classified as containing 

abnormal slow waveforms. This classification ensures minimal application 

of the OA removal algorithm, but also leads to insufficient OA removal. 

This observation, together with the previous observation regarding 

threshold adjustment, indicates that a level of user interaction might be 

necessary in application of OA removal. This is likely to take the form of 

a single adjustable level of OA removal, to be made by the user during 

decision tool use. This will be linked to the quantitative measure of OA 

removal described in section 4.4.6. 

. Generally the final measure of belief for incorrectly classified 

segments was low. This final measure of belief will also affect the 

threshold, above which the OA removal algorithm wil l be applied. 

. The measure of belief for segments classified as containing OA only, 

was higher than for other classifications. Segments classified as 

containing both OA and abnormal slow waveforms were attributed a much 

smaller measure of belief (indicated in appendix P as ). For the 

classification of a segment as OA only, a greater number of rules nnust be 

satisfied. Each satisfied rule adds proportionately to the final measure 

of belief in a classification, and therefore the final measure of belief 

page 240 



can be misleading. The principle of evidence adding to the belief in a 

hypothesis is sound, however it seems that careful consideration needs to 

given to the confidence in rules, to prevent inconsistencies. The expert, 

in providing a segment classification, was not asked to provide a value of 

belief, this might aid in this problem. 

. The values of rule confidence, obtained from the relationship in 

section 4.5.2.2, were calculated from a small sample of patient EEG data, 

extracted from the EEG database, for knowledge elicitation. The database 

itself taken from a sample of patients most likely to display abnormal 

frontal slow waveforms. These values are appropriate for the evaluation 

carried out here, because the evaluation data is taken from the same 

source. However, further development wil l necessitate that these values 

are recalculated to accommodate the more general cases. 

. The knowledge base compiled to date does not take into account the 

differences in OA potential caused by eyes being closed, and special 

medical cases, such as ocular occlusions (surgically removed eyes). It is 

assumed here that OA potentials are present for both eyes open and closed 

and simply attenuated for the eyes closed condition. This assumption needs 

to be further investigated. Special medical cases, such as ocular 

occlusions etc. wil l need additional knowledge base facts, to be 

instantiated upon receipt of further contextual features, such as patients 

medical history. Such rules will have to compensate for the inevitable 

resultant asymmetry of OA potential. These specialised cases have not been 

investigated here. 
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6.3.3 E V A L U A T I O N USING A F U L L F E A T U R E S E T . 

The previous section has detailed the evaluation of the lOARS with a 

limited feature set. Development of the feature extraction facilities and 

extension of the knowledge base have provided an lOARS with feature 

extraction from the frequency domain, time domain, and the contextual 

domain (see section 5.3). A second evaluation is detailed here which 

investigates the performance of the lOARS with the full feature extraction 

facilities. This closely matches the features that are available to the 

expert, and will allow the effects of the further feature extraction 

subsystem to be analysed. 

In order to compare this evaluation with that carried out previously, 

the same 140, 2-second, 16-channel, EEG/EOG segments were selected from 

the extensive patient database. The data was not shown to the expert a 

second time, and so the previous expert classification was considered as 

the true classification. The data was presented to the enhanced lOARS 

which was to classify the data into one of the same previous four 

classifications. The classification for each segment was noted, together 

with the extracted dynamic knowledge base for each segment. The operation 

of the lOARS was essentially the same as for the previous evaluation. 

However, incorporation of contextual domain features results in the 

classification of segment being dependant on previous segments within the 

same data. Data taken from consecutive time frames of the same patient 

also added to the contextual domain features. 
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6.3.4 RESULTS OF EVALUATION USING A F U L L F E A T U R E SET, 

Tables 6.2 shows the results of the evaluation of the enhanced lOARS. 

Appendix Q contains the complete results. 

Number of seg ments 
^^^.« part OA Abnormal Both Neither 

Number of segmenta Only Only 

OA 
Only 

None 
OA 

Only 22 1 0 0 

OA 
Only 

32 0 Abnarmal 
Only 

1 22 3 0 

None 0 8 Both 4 5 33 0 

Neither 3 o n 6 
OA only 

Neither 3 £ \j 6 

Trua Falee 
OA only 

100 A Trua 100 Trua P c i i e 

N«gallv« 0 100 Poiltlve 73.3 1.3 

Nesetlva 26.6 98.7 

(a) Normal Volunteers (b) Abnormal Patients 

Table 6.2 Comparison of segment classification between EEG 

expert and lOARS, using a full feature set. 

The results show that for abnormal patient EEG data the percentage of 

correct segment classifications, using a full feature set was 80%. This is 

compared with 75.2% for a limited feature set. The overall percentage 

classification of segments, including both volunteer and abnormal EEG 

data, was 86% compared to 82.2% with a limited feature set. However, the 
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percentage of segments correctly classified as containing OA only fell 

from 80% to 76%. Appendix Q shows the incorrectly classified segments 

as 

Predictive verification of the OA classification, with a ful l feature 

set has allowed the following observations to be made: 

. Incorporation of time domain and contextual domain features into the 

dynamic knowledge base have improved the overall classification 

performance of the lOARS. 

Contextual domain features have contributed to classification of 

segments containing only abnormal slow waveforms. Comparison of appendices 

P and Q shows that data 14, 15, and 16 illustrate this to the greatest 

extent. 

. Once a segment has been classified as containing abnormal slow 

waveforms only, the measure of belief in subsequent segment classification 

is increased. For example, data 16 shows that the measure of belief in the 

classification of abnormal slow waves only is increased from 0.61 to 0.94, 

as each segment is analysed. This reflects the increasing belief that an 

expert is likely to have in the classification, as further waveforms of 

similar characteristics are observed. The measure of belief is calculated 

for each segment based on previous classified abnormal segments (see 

section 5.3.3). 

. Errors in classification can be divided into three main types: (a) 

Very slow artefacts, (b) Small posterior slow waves, (c) Segmentation 

errors. 

Errors occur in segment classification, where the signal data is 
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contaminated with very slow artefacts, such as rolling eye movements 

(REM). For example data 4, segments 3 - 4 are incorrectly classified 

as containing no slow waves. The reason for this error lies in the way 

the data is presented to the EEG expert and the lOARS. Data is 

presented to the EEG expert in its raw, unprocessed, form. This allows 

the expert to analyse the data in a format which closely resembles 

their normal working medium. The lOARS is however, presented data 

which has undergone signal pre-processing (see section 5.2.2). This 

signal pre-processing includes mean removal, and signal band-limiting 

The effect of the high pass filters on the EEG/EOG is to remove the 

REM corruption, and therefore no significant spectral peaks are 

detected in the signals, that correspond to the anefact. This error 

does not therefore, present a serious problem to the system, because 

the very slow artefact will have been removed in filtering, and will 

not need further OA removal. 

Six segments were incorrectly classified as containing abnormal slow 

waveforms. For example, data 5, segment 4 is classified as containing 

both abnormal slow waveforms and OA. The EEG expert classified this 

segment as containing only OA. Inspection of the power spectrum for 

this data, shows that spectral peaks exist in this segment, in 

posterior channels, and at the same frequency as those in previous 

segments. Previous segments were classified as containing possible 

abnormal slow waveforms. This observation indicates that either the 

threshold for waveform significance in posterior channels is too low, 

or that the expert has overiooked this waveform for whatever reason. 

Further investigation of this needs to be made in consultation with 

the EEG expert. 
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The segmentation of EEG/EOG signal data is carried out to enable 

signal processing to be carried out. However, segmentation can lead to 

misleading power spectral estimates, when slow waveform bursts occur 

on a segment boundary. A truncated waveform will result in attenuated 

fundamental component in the spectra, and additional harmonics. When 

such a condition occurs, power spectra often fail to provide 

significant spectral peaks in the delta band. The result of this is 

that a segment is incorrectly classified. Larger segments will create 

fewer segment boundaries, and hence reduce this problem. However, 

larger segments are more likely to contain changing statistical 

properties which can contravene mathematical assumptions made in 

spectral estimation. Bodenstein, et al. , 1985, describe the use of an 

adaptive segmentation method that can segment the EEC into and 

segments of differing length, but 'weakly stationary' activity. This 

method could be investigated to overcome the problem of information 

loss due to segmentation. The significance of this problem is hard to 

estimate, however, it will be noted that the data of 15 and the 

subsequent continuing data of data 16 is correctly classified, once a 

segment is classified as containing abnormal slow waveforms. 
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6.4 S T A G E 3: OA R E M O V A L . 

The lOARS has at this stage been evaluated at a number of levels. This 

evaluation has established the consistency and correctness of the rule 

set, and quantified the performance of the system in identifying segments 

of EEC, containing OA contamination. Stage 3 of the evaluation process is 

concerned with the evaluation of the OA removal process using the 

segmentation process described above. 

The operation of the present lOARS is limited to segment 

identification only. OA removal is achieved by implementing a real-time 

adaptive filtering algorithm to those segments identified as containing OA 

only. The OA-dependant starting coefficients for the filter are derived 

from off-line analysis, using multiple regression, of segments containing 

the respective OA (see section 4.3.3.1). These coefficients pre-load the 

adaptive filter and are then adjusted in real-time, for the duration of 

the segment only, using the Recursive least squares algorithm. The final 

coefficients are then stored and act as the starting coefficients for the 

next segment containing that particular type of OA. This evaluation stage 

consisted of a qualitative and quantitative examination of OA removal 

using the metrics described in section 4.4.6. 

6.4.1 Q U A L I T A T I V E AND QUANTITATIVE E V A L U A T I O N O F 

OA R E M O V A L . 

Figure 6.4 illustrates an example of the output obtained from the 

intelligent OA removal system, for a block of data containing OA and 

abnormal slow waves. 
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Figure 6.4 Example of the use of the use of the selected 

OA removal algorithm on segmented EEG data. 
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Figure 6.4a shows four contiguous segments of the first eight recorded 

EEG signals of montage 1, and the two EOG signals. Figure 6.4b compares 

the EEG of channel 1, before and after OA removal, using the conventional 

OA removal algorithm, and the intelligent selective approach. Segments 1,2 

and 3 are identified, by the lOARS, as containing only OA, whilst segment 

4 is identified as containing abnormal slow waves. The classification is 

made because of the spatio spectral distribution of the slow waves, and 

the frontal channel correlations. The OA is further classified as being 

attributable to vertical eye movement (VEM). because of the spectral 

composition of channels Fp2-F8, and Fpl-F7; There is low frequency delta 

but none of the additional high frequency components associated with blink 

type waveforms. An adaptive filter is therefore applied to segments 1,2 

and 3, pre-loaded with the VEM OA parameters (see section 4.3.3.1). 

Segment 4 is passed unaltered, which has the effect of avoiding the 

corruption of the abnormal slow waves introduced by the conventional OA 

removal algorithm (illustrated in the middle trace). 

Figure 6.4 enables firstly, a qualitative comparison to made between 

the conventional OA removal approach and the intelligent selective 

approach, and secondly, a qualitative assessment of the appearance of the 

EEG after OA removal. Quantification of OA removal is achieved using the 

process described in section 4.4.6, to obtain the measure of spectral 

correction (MOSC). Figure 6.5 shows the respective power spectra of the 

raw EEG, and EEG after OA removal, from conventional, and intelligent 

methods. 
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Figure 6.5 Power spectra of: (a) raw EEG, (b) EEC after 

conventional OA removal, (c) EEG after intelligent OA removal. 

Analysis of the results obtained from qualitative and quantitative 

evaluation of OA removal has enabled the following observations to be 

made: 

. Both methods of OA removal appear to have substantially attenuated 

the large potential attributable to OA. 

. Abnormal slow waves in the EEG are left completely unaltered. 

. high frequency Tme grain' information has been maintained in the 

EEG after intelligent OA removal. 

. The EEG after intelligent OA removal appears to have enhanced slow 
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waves prior to second 6. This could be linked to the previous observation, 

and may be caused by 'over correction' in the EEG using conventional OA 

removal. The enhanced slow waves are also corroborated by the power 

spectra, which shows a larger spectral peak atlSHz. 

. Baseline offset is an important consideration when applying the OA 

removal algorithm in the selected manner. This observation was first made 

in section 4.4.5, when the OA removal algorithm was applied in a directed 

manner to EEG contaminated with blink type artefact. Mean removal is not 

always appropriate for minimisation of baseline offset, due to the large 

monophasic OA potentials. As this can result in a mean which is offset 

from the natural signal baseline. Offset adjustment is therefore more 

appropriate through baseline calculation prior to OA removal algorithm 

application. The baseline can be calculated from a segment of data by 

constructing a histogram of signal amplitude. The most common signal 

amplitude is therefore used as the signal baseline. The calculation of 

this baseline becomes more accurate, as the segment length is increased. 

Figure 6.6 illustrates a block of evaluation EEG data that has undergone 

OA removal based on the classification of the lOARS. Figure 6.6b shows the 

discontinuity at segment boundaries, as a result of OA removal, when the 

EEG is improperiy adjusted for baseline offset. Figure 6.6c shows the 

effects on OA removal with appropriate baseline adjustment. 
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Figure 6.6 The effects of baseline offset on OA removal 

using the intelligent, selective, approach, 
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6.5 S T A G E 4: C L I N I C A L D E P L O Y M E N T . 

Evaluation of system performance to this point has concentrated on the 

verification of the expert system side of the lOARS. This has included 

knowledge base correctness, and classification consistency. However, 

section 6.1 has described the evaluation process as one of decision tool 

validation, in addition to the expert system verification. This stage of 

the evaluation process is concerned with feedback from the potential end 

users of such a system. The end user feedback wil l be valuable for a 

number of reasons: 

. To validate the concept of an OA removal decision tool. 

. To provide further system verification using unknown data. 

. To re-evaluate user requirements, 

. To establish appropriate interactive interface requirements. 

O'Leary, et al., 1990, propose a 'staged third party' verification 

paradigm, which involves three parties in the verification process; the 

system designer, the expert, and a third party who acts as coordinator and 

is responsible for verification. This paradigm has been adopted here for 

the clinical evaluation stage. 

The clinical evaluation stage of any new development is likely to be 

long and rigorous. This investigation details the first preliminzu7 

clinical evaluation of the use of the lOARS, conducted in a clinical 

neurophysiology department of a busy general hospital. 
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6.5.1 P R E L I M I N A R Y C L I N I C A L E V A L U A T I O N . 

Forty, 2-second, l6-channel EEG/EOG segments were selected from the 

extensive patient database (see section 4.2). The segment chosen were ones 

that had not previously been used for evaluation. For a fair cross section 

of data, segments were selected using a stratified sampling approach; that 

is, randomly selected within each identifiable result type. 16 segments 

were selected from normal volunteer data containing various types of OA, 

and 24 segments were selected from the patient data containing abnormal 

EEGs. The abnormal EEG segments contained a variety of both OA and 

abnormal slow waveforms. For this evaluation EEG data was standardised to 

the montage 1 configuration (see section 4.2.3). Abnormal patient data was 

selected from data recorded in montage 1. Volunteer data, which was 

recorded using referential techniques, was re-montaged into a montage I 

configuration; this was possible because the referential signals enabled 

derivation of the bipolar montage 1 signals, and all signals were 

reference to the same source (linked ear lobes). EOG signals were taken as 

those described in section 4.3.2 and were measured bipolarly using two 

electrodes for each eye. 

The selected evaluation data was presented to the EEG expert (senior 

EEG technician) in order to make a further independent selection of the 

data with which to evaluate the system. The result of this selection was 

32, 2-second, 8-channel, EEG/EOG data segments, that were unknown to the 

system designer. Having selected appropriate evaluation data, both the 

expert and the coordinator were issued with identical versions of the 

lOARS and evaluation data for them to evaluate the system. The full 

evaluation data is contained in appendix R. 
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The lOARS was designed to enable the user to select and display, in 

real time, any of the evaluation data blocks. Classification of a segment 

could be initiated by the user, who was informed of the classification and 

the reasons why. The user was requested to confirm or reject the 

classification that the system made, and to make observations on the 

reasoning behind the classification. The system was designed to log all 

user responses, and, for each segment, .the extracted dynamic knowledge 

base and list of successful rule conditions. The use of a log enabled 

error tracking to be carried out, and the usability of the lOARS to be 

evaluated [Berry (Hid Han. 1990/. The expert log is attached as 

appendix S. 

6.5.2 RESULTS O F PRELIMINARY C L I N I C A L E V A L U A T I O N 

Table 6.3 illustrates the quantitative results obtained from the data 

OA o n l y 

T r u e 

88 14 

N e g a t i v e 12 86 

N u m b e r of s e g m e n t s 

O A 
O n t y 

A b n o r m a l 
O n l y 

B o t h N e l t h e f 

O A 
O n l y 

16 0 0 1 

A b n o r m a l 
Only 

0 3 0 0 

B o t h 0 0 0 0 

N e i t h e r 2 0 0 3 

(a ) A b n o r m a l P a t i e n t s 

Table 6.3 comparitive results in segment classification between 

EEG expert and lOARS. 
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used in the preliminary clinical evaluation. Appendix T contains the 

complete set of evaluation results. 

Analysis of the expert log, evaluation results, and user comments have 

enabled the following observations to be made: 

Discussion with the expert examined the applicability of the 

knowledge base developed so far. This is limited to one EEG recording 

montage and does not take into account the state of the eyes, i.e. open or 

closed. The knowledge base is specific to an EEG recording montage because 

of the need to know the derivation, and spatial positioning of signals, in 

order to infer their meaning. An alternative EEG recording montage is 

accommodated by supplying a new knowledge base with alternative signal 

characteristic facts (see section 5.4.1.2 which describes the structure of 

the static knowledge base). However, a final clinical lOARS would include 

the front end EEG recording equipment and so this problem would be most 

easily overcome, by recording all signals referentially. Al l traditional 

EEG montages could then be calculated from these signals for display 

purposes. 

The state of the eyes does not present a serious problem to the lOARS. 

It is assumed that OA due to eye movements, even when closed, are 

characterised in a similar manner as that described in section 4.5, i.e. 

the spatio spectral characteristics remain unchanged, and it is only the 

amplitude and time domain characteristics that are effected. However, for 

the purposes of the evaluation carried out in this investigation, patient 

data was recorded eariy in an examination, using montage 1. The data is 

therefore from alert patients with eyes open. Transitory eye closures 

appear as normal eye movements and blinks. 
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. The expert expressed a satisfaction with the operation of the lOARS. 

The selection of data was straightforward and the explanation facilities 

were easily understood. The evaluation system was not equipped with full 

real time signal processing facilities and the graphical data 

representation requires further work. It was observed that user 

interaction via a standard keyboard was 'clumsy', and more sophisticated 

media, i.e. touch screens would be more appropriate. 

. The display of data in this evaluation, only gave the expert the 

first eight channels of EEG on which to make a classification. This needs 

to be extended to a possible 24 or 32 to allow signals from the entire 

scalp to be used in the analysis. 

The clinical evaluation data showed an overall percentage of 

correctly classified segments of 88%, a percentage of segments correctly 

classified as OA of 88%, and a percentage of segments correctly classified 

as containing only abnormal slow waves of 100%, these results are not 

dissimilar to the results obtained from the second phase evaluation of 

stage 2, but the number of segments finally used in the evaluation is not 

high enough to give too much confidence in the results. The small number 

of segments was chosen because of the time needed on behalf of the expert, 

and the preliminary nature of this evaluation, A further more detailed 

evaluation is required, using the same evaluation paradigm. Appendix T 

shows errors in classification a s ^ , 

. The preliminary clinical evaluation showed a consistent error in the 

classification of segments containing only OA. These segments are further 

classified into the type of OA present, and this classification was 

consistently reversed, i.e. segments that the expert had classified as 

containing blink type OA, were wrongly classified as containing vertical 
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eye movement type OA, and segments that the expert had classified as 

containing vertical eye movement type OA, were wrongly classified as 

containing blink OA. Appendix T shows these errors in OA classification 

a s f l . 

. The backward chaining PROLOG inference engine causes a problem in OA 

classification. Section 2.2.2.1 described the importance of rule order to 

the resolution path, and that careful consideration needs to be taken when 

compiling the list of fact and rule clauses. For example, the static 

knowledge base contains a series of rules that are used to classify OA 

into OA type. These rules are attempted sequentially, i.e. the rule for 

blink type OA is only tried when the rule for VEM type OA has failed. The 

implication of this is that the conditions for the rule to classify VEM 

type artefact must be complete and correct. Failure to accommodate every 

variation of VEM type in the conditions that satisfy this rule wi l l result 

in possible failure of the rule, and subsequent classification of the OA 

as an alternative OA type. This problem becomes apparent in the 

transcription from the conditions elicited by the expert, to the 

conditions that are used to obtain this information from the extracted 

features. 

. The expert classification of OA type, is achieved using four key 

features: (a) the symmetry of the EOG, (b) the position of maximum OA 

potential, (c) the phase relationship between signals around the eyes, and 

(c) the shape of the OA. Investigation of the expert log, and in 

particular the dynamic knowledge base for the incorrectly classified 

segments, has revealed a number of sources for error in the completeness 

of the transcribed conditions that classify OA into OA type: 

The symmetry of EEG signals is measured by comparing the power 

spectral peaks of each channel. In order to be symmetrical the same 
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spectral peaks must appear in both channels. This is clearly 

inadequate and has proved a source of a number of errors. For example, 

the lOARS reports asymmetry in the EOG channels for data 2, segment 1. 

This is clearly not the case. The reason for this error lies in the 

manner in which the spectral peaks are tokenised, to appear as 

features in the dynamic knowledge base. Spectral peaks are tokenised 

for magnitude, using three magnitude bands ( see static knowledge base 

facts - power bounds, in appendix M), This tokenisation does not use 

fuzzy logic, and therefore a spectral peak is tokenised to a power 

band in a binary logic. This causes errors when two spectral peaks are 

close in power, but on different sides of the power band threshold. 

For data 1 segment 2, three spectral peaks are detected in the EOG 

channels, and only one is considered asymmetrical. The result is that 

the EOGs are reported as asymmetrical. Fuzzy logic could be used to 

provide flexibility in the power band tokenisation, thus avoiding the 

problem of threshold adjustment. However, a more appropriate method 

would be to use the cross-correlation of the two EOG channels to 

obtain the measure of symmetry. The cross-correlation with zero time 

shift will give the instantaneous symmetry, and the normalised 

cross-correlation coefficient will be regarded as the measure of 

certainty, that the inference engine will use. 

The position of maximum OA potential, is measured by comparing 

the magnitude of spectral peaks above the eye, to those to the side of 

the eye. Vertical eye movement (VEM) and blink should be greatest 

above the eye, and horizontal eye movement (HEM) should be greatest to 

the side of the eye. However, the tokenisation of power bands, and the 

more likely occurrence of the greatest spectral magnitude in the EOG, 
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renders these conditions open to error. For example, data 1 segment 2 

is clearly identified as containing OA attributable to VEM, but, the 

lOARS attributes the OA to blink. The alternative to this condition is 

to firstly test that the potential is maximum in frontal channels, and 

then test the phase of the EOG potential alone, using the 

cross-correlation of the two EOG channels. VEM and blink wil l provide 

EOGs which are in phase, whilst HEM wil l provide EOGs that are out of 

phase by approximately 180 degrees. 

Shape of the OA is estimated using the frequency content of the 

EOG channels. It is observed that the spectral content of a V E M is a 

single wide spectral peak in the lower half of the delta EEG frequency 

band. The spectral content of a blink is that of a fundamental 

component in the lower half of the delta EEG frequency band, and a 

number, (2 or 3), of harmonics in the upper half of the delta EEG 

frequency band. OA is therefore classified as being attributable to 

blink, i f there are power spectral peaks in the upper half of the 

delta EEG frequency band. However, this transcription of the condition 

is open to error, i f the VEM contains very fast rising edges and is 

short in duration, i.e. the closer to blink that a VEM appears, the 

more prone the condition is to error. It is noted however, that the 

EEG expert also experiences difficulties in these situations. However, 

other conditions also result in spectral peaks in the upper half of 

the delta EEG frequency band, such as, noise, and abnormal slow waves. 

Under these conditions the spectral peak estimation of waveform shape 

is inadequate and alternative algorithms are required. Alternative 

algorithms could include, syntactic analysis [Fu, 1982; Lister, and 

Bishop, 1988], fractals [Katz. 1988], neural networks [Cevins 

and Morgan, 1988}, 
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6.6 SUMMARY OF CHAPTER 6. 

Chapter 6 has detailed the evaluation of the implemented lOARS. The 

evaluation carried out to date has concentrated on the verification and 

validation of the system. This has included, the consistency, correctness, 

and completeness of the classification rules, together with end user 

requirements, and system I/O capabilities. Four distinct stages of 

evaluation are described which reflect the ongoing development of the 

system. The development, and hence the evaluation, is not complete, but 

three separate evaluations have indicated that the lOARS is capable of 

identifying segments containing OA, and to differentiate segments 

containing OA from those containing abnormal frontal slow waveforms. This 

is shown to be the case in approximately 80% of segments under evaluation. 

Evaluation has provided insight into errors in the transcription of rules 

elicited from the EEC expert, into rules which test the signal features 

extracted using signal processing. These errors are likely to continue, 

whilst complex human signal analysis is estimated using simple signal 

processing functions. 
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C H A P T E R 7 C H A P T E R 7 

»DIS©EJSSl©WI| iJ»REiW©B^ 

7.1 INTRODUCTION. 

This investigation has described the development of new and more 

reliable methods of removing ocular artefacts (OAs) from the human 

electroencephalogram (EEG). This development has involved the 

incorporation of digital signal processing (DSP) techniques, within an 

artificial intelligence (AI) paradigm, to match more closely, the implicit 

signal processing capabilities of the EEG expert [Hellyar. et ai, 

1991J. The integration of EEG expert knowledge into the OA removal 

algorithm, allows real-time adaptive filters to be applied to the EEG, in 

a selective and directed manner. The EEG is enhanced by only removing OA, 

when OA is identified. This avoids the corruption to the EEG observed when 

the EEG contains abnormal frontal slow waves f/feachor, et al., 1988]. 

The intelligent OA removal system (lOARS) presents a significant 

improvement in OA removal, and EEG signal processing, and wil l allow more 

reliable automated EEG analysis. This final chapter attempts to unify the 

fundamental aspects of this investigation, in the form of a critical 

discussion, a view of future work, and finally, the conclusions that can 

be made from this investigation. 
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7.2 DISCUSSION. 

This section critically discusses the key issues which have emerged 

during the investigation, and draws upon, observations from developmental 

stages, results, and conclusions made from rigorous development 

evaluation. These issues are discussed under two main section headings: 

. PERFORMANCE. 

. VALIDITY. 

Many key issues exist under these main section headings and figure 7.1 

illustrates the relationship between the issues discussed in this chapter. 

( - PARADIG 

f - PERFORMANCE 

M 

VAUDITY 

R E S U L T S 

t - REQUIREMENTS 

IMPROVEMENTS 

REPRESENTATION 

I N F E R E N C E 
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L FULFILMENT 

, - E F F I C I E N C Y 

UNIFORMITY 
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C O M P L E T E N E S S 

ACCURACY 

ADEQUACY 

DISCRIMINATION 

C O R R E C T N E S S 

Q U A U T Y 

QUANTITY 

Figure 7.1 Relationship between discussion issues. 
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7.2.1 PERFORMANCE. 

The performance of the lOARS has been evaluated in chapters 4 and 6 of 

this thesis. Chapter 4 has discussed, in detail, the modifications made to 

the adaptive on-line OA removal algorithm. The modifications made to the 

OA removal algorithm, were as a result of the problems encountered with 

current OA removal techniques, and described in chapter 1. The 

modifications made, followed the proposed techniques described in chapter 

2, as a means of overcoming the deficiencies of the existing OA removal 

techniques. Chapter 6 has discussed the evaluation of the software 

implementation of the lOARS. The implementation of the lOARS was expounded 

in chapter 5, based on the proposed inlelligeni techniques described in 

chapter 2. The following sections discuss individual aspects of lOARS 

performance taken from those shown in figure 7.1. 

(a) CONSISTENCY. 

The issue of consistency is related to the representation of the 

elicited expert knowledge as a number of production rules. Questions that 

arise from this issue are: whether (i) production rules a good 

representation of the experts knowledge, (ii) the elicited rules 

accurately represent the experts knowledge, and, (iii) the transcribed 

conditions of rules, used by the system, match the conditions used by the 

expert. Production rules are not the only representation that could have 

been used in this investigation; other representations exist [Graham and 

Jones. 1988; Winston, 1984]. However, the production rule representation 

of knowledge is simple and easily modified, and has been used successfully 
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in a large number of applications [Jansen, 1985; Bourne, et al., 1983: 

Jagannaihan, 1981]. The expert (consultant clinical neurophysiologist) 

found the representation immediately comprehendible, and was able to 

suggest new rules and modifications using this format. This enabled the 

accuracy of the rule representation to be evaluated at an early stage 

(chapter 6). The disadvantage of this representation lies in the large 

number of rules necessary to account for small variations in waveform 

characteristics. It was found that the expert had difficulty in expressing 

the reasons for some classifications. This places doubt on the validity of 

rule conditions. Knowledge elicitation, using additional experts from 

different locations, will generate more rules, but will also verify the 

conditions. This problem is linked to the question of condition 

transcription. It was found that transcription of the conditions of an 

experts rule, to that which the system could use to obtain information 

from the extracted features, was very subjective in nature. The 

transcription was based on the system designers (the author) understanding 

of EEC characteristics. Whilst this was obtained from the expert, via 

knowledge elicitation, discrepancies have occurred (chapter 6). The 

transcription of conditions requires careful evaluation to avoid 

representational errors. 

(b) COMPLETENESS. 

The completeness of the rule set is related to the scope and 

efficiency of the knowledge elicitation. The structured knowledge 

elicitation used in chapter 4, relied on data from the EEG database 

(chapter 3). This data was acquired from patients exhibiting frontal slow 

waves, because of the need to improve OA removal in the presence of 
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abnormal frontal slow waveforms. The scope of the knowledge elicitation 

was therefore, limited to the characterisation of OA and frontal slow 

waves. The scope of the rule set will need to be extended to other types 

of artefact and other abnormal waveform types. The efficiency o f the 

knowledge elicitation is indicated by the effectiveness of the lOARS at OA 

identification. The results shown in chapter 6 indicate an acceptable 

level of OA detection. However, further data will provide more variations 

in waveform characteristics, and therefore require rule set extension. 

(c) ACCURACY. 

The accuracy of the iOARS depends upon the correct classification of 

OA, for the right reasons. This was evaluated by the experts during both 

internal, and clinical studies. The inference path was traced for each 

classification to establish the reasoning process. This reasoning process 

was also logged during the preliminary clinical evaluation, an example of 

which is included in appendix S. An intrinsic part of the reasoning 

process, and one which will effect the removal of OA, when a 

classification is made, is the measure of belief in the classification, MB 

(chapter 4). The measure of belief is calculated from uncertainties 

accrued in the reasoning process. Uncertainty of rules was obtained as a 

combination of elicited values and statistical values, both of which are 

highly subjective; elicited values because of the use of only one expert, 

and statistical values because of the limited scope of patient data in the 

EEG database. Additional experts should be used to obtain these values, 

and a protocol for conflict resolution established. Further data 

acquisition should be carried out to obtain more accurate statistical 
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values. Uncertainty of conditions was obtained from digitally signal 

processing the waveforms. For example, the fuzzy frequency set membership 

of a peak in the power spectrum (chapter 5) [Jagannathan. et al., 

1982]. However, the use of fuzzy sets was only utilised in the frequency 

dimension, and this need to be extended to the magnitude dimension of the 

power spectrum to account for variations in magnitude due to noise and 

inaccuracies in the FFT estimation techniques. 

(d) ADEQUACY. 

The adequacy of the inference mechanism used in the lOARS hinges on 

the use of the backward/forward chaining hybrid, with uncertainty 

handling. This discussion is not concerned with whether or not this 

paradigm is a good model of human reasoning, as this is beyond the scope 

of this thesis. This discussion is solely concerned with the use of this 

paradigm as^model for OA classification. This paradigm is logical and 

simple to comprehend, but significant limitations exist. Firstly, there is 

no accommodation for alternative classifications in the reasoning; the 

rules must be constructed to account for every waveform variation. Only 

when one rule fails, is another path/alternative attempted. This lead to 

several errors in OA type classification in the preliminary clinical 

evaluation (chapter 6). It would be preferable to be able to obtain 

several alternative classifications, and then to select the most likely, 

or the one with the greatest measure of belief, using some pre-defined 

protocol for conflict resolution. Secondly, the use of Certainty Factors 

fShortiiffe, 1976], to accommodate uncertainty in the reasoning 

process, is open to some debate [Tonn and Goeltz. J990: Graham and 
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Jones. 1988J. Tonn and Goeltz, (1990), found that the use of certainty 

factors was acceptable, but showed discrepancies with experts when 

•combining compound certainty values. The use of certainty factors has been 

justified (chapter 4), and whilst no universally accepted alternative 

exists, this method represents a straightforward and easily comprehending 

solution. 

(e) DISCRIMINATION. 

The discrimination of the OARS refers to the ability of the system to 

differentiate between OA and abnormal frontal slow waves. This criterion 

was a primary motivation for this research, as it was found in chapter 1. 

The successful application of the OA removal algorithm was highly 

dependent upon this discrimination [ifeachor. 1984]. Chapter 6 has 

documented a number of evaluations that incorporated the discrimination 

between OA and abnormal frontal slow waves taken from the acquired patient 

EEG database. The overall percentage of correctly discriminated data 

segments was 82.7%. This indicates that the discrimination of OA and 

abnormal frontal slow waves is possible, given the sample data, and that 

consequently, a reduction in EEG corruption due to incorrect OA removal 

algorithm application is possible. 

(f) CORRECTNESS. 

The lOARS has been shown to discriminate between OA and abnormal 

frontal slow waves in 82.7% of cases. However, the correctness of the 

classification, i.e. OA type, as a secondary issue to OA identification, 

will effect the OA removal algorithm application. The preliminary clinical 
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evaluation data (chapter 6), showed that there was a consistent error in 

this classification due to unsatisfactory condition transcription (see 

point (a") above). This error was in contradiction to the results obtained in 

a previous evaluation study (chapter 6) and further examination of this is 

required. 

(g) QUALITY. 

The quality of OA removal, having applied the removal algorithm in a 

selective manner was assessed visually in chapter 6. The visual assessment 

made was the same as described in chapter 4, and that prescribed by 

Ifeachor, (1984). Visual analysis lacks an easy quantitative description 

and can be subjective in nature. However, this type of analysis has been 

found, in previous studies, to be extremely sensitive to remnant artefact 

caused by unsatisfactory OA removal [Ifeachor et al., 1988], and to 

the distortion of clinically significant EEG waveforms. In addition to 

this, visual analysis will be the final test for clinical acceptance and 

is no more subjective than conventional EEG analysis. The quality of OA 

removal, using the selective and directed OA removal algorithm was 

considered to be superior to that of the conventional algorithm. 

(h) QUANTITY. 

Quantification of OA removal was achieved using the measure of 

spectral correction (MOSC), detailed in chapter 4, and based upon the 

method of Gratton et al. (1983). The MOSC provides a continual evaluation 

of removal algorithm performance, by comparing an EEG signal before and 
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after OA removal, to an uncontaminated reference EEG with similar 

characteristics. However, use of the MOSC has highlighted a number of 

shortcomings: (a) the MOSC is insensitive to subtle qualitative 

differences in OA removal, such as waveform shape (chapter 4), (b) the 

MOSC wil l be biased towards the differences in low frequencies containing 

greater power, (c) the MOSC is susceptible to errors caused by secondary 

artefacts, such as muscle activity, which wil l produce a small finite 

error, and, (d) the MOSC is susceptible to variations in EEG signal 

content, which is exaggerated by the nonstationarity of the EEG signal. 

Whilst no measure of true EEG signal is available this quantitative 

measure provides a good indication of removal algorithm performance. A 

comparison of the MOSC obtained from contaminated EEG signals subjected to 

intelligent OA renjoval and conventional OA removal, was in agreement with 

the results obtained from qualitative analysis. 

7.2.2 VALIDITY. 

This section discusses the validity of the lOARS as a useful decision 

support tool for the clinical environment. The validity of the system 

address two issues, as illustrated in figure 7.1, i.e., the requirements 

made of the system, and the improvements made possible by the system. Many 

of the issues attached to lOARS validity will not be fully answered until 

comprehensive clinical evaluation can be made. However, close 

collaboration with the clinical department, experts, and preliminary 

clinical evaluation have allowed the validity to be partially assessed. 

The following sections discuss individual aspects of the validity issues. 
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(i) SATISFACTION. 

Chapter 2 described the role of the lOARS as twofold; f irst ly, as a 

tool to be used at recording time, and secondly during post recording data 

analysis. This thesis has mainly addressed the later of these roles, as a 

post recording data analysis tool. In this role the lOARS is able to scan 

through a large amount of EEG data, allowing the user to select data 

segments for analysis, identifying OA without necessarily performing OA 

removal. The system is able to justify any identified OA, by tracing the 

reasoning process and features extracted from digital signal processing. 

This is a fundamental decision support aid for the EEG expert. Once the 

user is satisfied with the reasoning behind a segment with identified OA. 

the removal algorithm may be applied. This provides the EEG expert with an 

intelligent EEG signal processor. 

(j) FULFILMENT. 

The lOARS fails to fu l f i l a number of the initial requirements; (a) 

operation in real time, (b) fully graphical user interface. The operation, 

as described in chapter 5, is essentially off-line. This involved 

performing the time consuming DSP operations on multi-channel signals, 

prior to system operation. However, in addition to this, the time taken 

for segment analysis and OA identification would take as long as 10 

seconds, for a 2-second, 18-channel data segment. This is obviously 

prohibitive to real-time operation, even i f the DSP operations are 

performed on dedicated multi-channel DSP hardware. The solution to this 

problem is likely to be twofold. Firstly, overall speed improvement, is 
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achievable with faster computing resources; a 25MHz 80486 PC is likely to 

show at least a halving of the classification time. Secondly, the program 

code can be optimised. This wil l involve intensive code analysis and 

re-compilation, using C or assembler, in time consuming areas. The 

graphical user interface has been described in chapter 5. However, a 

real-time system would require OA to be identified during data 

acquisition; the OA would be indicated on the screen as the data scrolls 

across. This is likely to require dedicated graphic processing components 

and a great deal of further work before a commercially viable end product 

could be realised. 

(k) EFFICIENCY. 

Intelligent OA removal makes the concept of automating EEG analysis a 

more realisable goal. Previous research [Kyionas. 1988; Bourne, et «/.. 

1983; Michael and Houchin. 1979; Barlow, 1977; MacCillivray, 1977; 

Praetorius. et at.. 1977} have attempted to automate the evaluation of 

EEG signals. However, all systems documented to date, have failed to 

successfully address the issue of artefact contamination; at best detected 

artefactual signals are ignored. Chapter 1 described the presence of OA as 

continuous, and in a patient with uncontrollable eye movements, simple 

artefact rejection will result in meaningless data. Kytonas, (1988), 

describes a number of schemes for automated analysis of epileptic EEG, 

typified by sudden EEG waveforms. In all cases, false detections o f true 

epileptic activity due to blink type artefact seriously degraded 

performance. Successful OA processing, and in particular intelligent EEG 

enhancement through selective OA removal, will allow the performance of 
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these systems to be drastically improved. Attention to the less common 

artefactual type will eventually allow the full potential of the automated 

EEC analysis systems to be realised. 

(I) UNIFORMITY. 

Chapter 2 described EEG analysis as heuristic, as such differences in 

interpretation can exist between EEG centres. Explicit documentation of 

the EEG analysis protocol, and waveform characterisation, have allowed the 

development of a small knowledge base. Extension of this knowledge base, 

to incorporate further expert knowledge from different centres, together 

with the characterisation of different waveform patterns, wil l standardise 

the analysis of the EEG. 

7.3 FUTURE WORK. 

This section discusses the issues concerned with the projection of 

this novel research, in to the routine clinical environment. The research 

documented in this thesis is still in an early stage of development, and 

extensive further evaluation will be necessary before this technology is 

readily accepted in the medical environment. This is inevitably a slow 

process, that wil l involve piecewise introduction of computer aided 

decision making, and the gradual familiarisation of the required 

technology, on the part of the medical personnel. This may seem a daunting 

task on initial inspection. However, the potential benefits associated 

with the introduction of integrated computer patient data 
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storage, diagnosis, and treatment evaluation, is recognised by many as 

incentive enough to pursue this challenge. This thesis has dealt with only 

one small aspect of clinical data analysis and management, and many other 

research areas and projects exist. However, the results indicate that E E G 

signal processing can be improved and this may lead to intelligent E E G 

analysis support tools which will enable the busy clinician to use their 

time more efficiently. Three areas of importance for future research in 

this project are: hardware implementation, neural networks, and automated 

learning. These issues will be dealt with briefly. 

7.3.1 HARDWARE IMPLEMENTATION. 

Much of the lime consuming processing of the signals, currently 

carried out in C and using the ILS software package, will be more 

appropriately accomplished using dedicated signal processing hardware, 

such as the TMS32030 which performs a 1024 complex point F F T in less than 

3 milliseconds. Figure 7.2 illustrates the conceptual view of an 

appropriate hardware implementation. Much of the hardware utilised in the 

data acquisition system, described in chapter 3, will be utilised. 

However, multiple dedicated DSP processing chips, such as the Texas 

TMS320C30 [Texas, 1989/, or the Motorola DSP96000 [Motorola, 

1989], are included in each signal path. These devices are chosen 

because of their speed and dynamic range. These processors will calculate 

power spectral density, auto and cross-correlations, to provide the 

relevant features for signal identification. Supervision of the signal 

processing channels, will be performed be another dedicated processor. 

Communication will be bidirectional to allow interrogation of signal 

channels should further processing be needed to resolve conflicting 

information. p^^^ 
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Figure 7.2 Conceptual hardware implementation of lOARS signal processing. 

7.3.2 ^fEURAL NETWORKS. 

In areas of waveform classification, where the expert finds difficulty 

in verbalising the analysis procedure, feature extraction may be too 

simplistic, or based on incorrect cognitive assumptions. Neural networks 

have been utilised in waveform classification, where traditional methods 

have proved inadequate [Gevins and Morgan. 1988; Pao, 1989; Anderson and 

Rosen/eld (Eds.), 1989/. Preliminary studies have investigated the use 

of neural networks as blink waveform identifiers in a hybrid neural 

network/ lOARS fPaiel, I990J. Neural networks were developed to act as 
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front end pattern recognition processors. The output of the neural 

network, for each channel, was converted to a symbolic feature for 

interface to the standard lOARS dynamic knowledge base. The final output 

node weight represented the fuzzy set membership. The hardware 

implementation of the lOARS will accommodate the use of neural network 

pattern recognition processors using the dedicated DSP chips or more 

specific hardware configurations. 

7.3.3 LEARNING. 

The present lOARS relies upon explicit coding of the experts knowledge 

as a series of productions, to form the knowledge base. When used as a 

post recording analysis tool, there would be a requirement for the system 

to learn, from the user, as new and as yet unidentified, waveforms emerge. 

The static knowledge base of this system would be dynamic and increase in 

size as exceptions to the rules are accommodated. This learning would 

ideally be transparent to the user, and require minimal programming skill 

on their part [Micholski. et al., 1986; Forsyth and Rada, 1986J. 

Learning would also be an integral part of the neural network pattern 

recognition processors described in section 7.3.2. Errors in blink 

waveform identification, would force the network into a new learning cycle 

to accommodate the wrongly identified waveform. 
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7.4 CONCLUSIONS. 

This section concludes this thesis by slating concisely, the key 

achievements made during this investigation and the contribution that has 

been made to knowledge: 

. Previous research has been extended by investigating various EOG 

subtraction models on new EEG signal derivations. This has resulted in 

establishing a simple EOG subtraction model for OA removal fronn both 

bipolar and referential E E G signal derivations. 

New techniques have been investigated that allow the real-time 

adaptive OA filter algorithm to be implemented in a non-continuous 

environment. This has enabled the algorithm to be succesfully applied, 

only to sections of EEG that contain OA corruption. 

. Major OA types and abnormal frontal slow waveforms have been 

characterised by their spatio-temporal potential distribution. This has 

enabled a knowledge base of rules to be devised that: (i) allow the 

detection of OA, (ii) enable differentiation between OA and abnormal 

frontal slow waveforms, and (iii) reflect the analytical processes of the 

E E G expert. 

. A novel intelligent E E G signal processing tool has been designed and 

implemented. The tool integrates E E G expert knowledge with OA dependent 

adaptive filters to enable 2-second segments of 16-channeI E E G signals, 

containing OA contamination to be analysed. Segments identified as 
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containing OA are enhanced by removing OA in a selective and directed 

manner. This has significantly improved the quality and reliability of OA 

removal, and reduced further E E C corruption. 
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1. THE ORDINARY LEAST SQUARES (OLS) METHOD. 

Equation 1.5 estimates the true EEG (eeg(i)) from the measured EEG 
(y(i)), the EOG (EOG(i), and the OA coefficients (K) and is repeated here 
for convenience. 

ee'giil = y{i) - K EOG(i} i = 1,2,...m 1.5 

where K are estimates of K, the ocular artefact coefficients. 
eeg(i) is the estimate of the true EEG 
m is the number of samples used in the estimation. 

EOG'( i ) = [eog^(i),eog2(i),-..eog^<i)l 
n is the number of eog signals used in the estimation, 

indicates transposition. 

if eeg(i) represents an error term in the above equation, then a least 
squares estimate of K can be obtained by minimising the sum of squares of 
eeg(i) i ^ ] ^ ^ ) , where: 

E L S = / 

= leeg(l).eeg(2}....eeg(m)]'''[eeg(l|,eegi2},...eeg(m}l = E ^ ^ E ^ 
A1 

A 
Differentiating A2 w.r.t and equating to zero [Ifeachor, 19841 

Equation A3 can be simplified to: 

Km = < E O G ^ ^ E O G ^ ) - 1 E O G ^ ^ Y ^ A 4 

Equation A4 gives the OLS estimate of the OA coefficients. From the 
estimates of the OA coefficients, an estimate of the true EEG is obtained 
from equation 1.5. Implicit in the OLS estimation is the assumption that 
the EOGs are not perfectly collinear. This would prevent the existence of 
tjfie inverse matrix (EOG,^ EOG^^) and therefore the calculation of 

Km-

A 1 



2.THE RECURSIVE LEAST SQUARES (RLS) METHOD. 

The RLS algorithm allows an iterative estimation of K which will 
converge to an optimum set of values given a statistically stable input 
signal. 

K( i+1) = K(i) + Gain(i + U (v(i + l ) - EOG(i + l)K(i)l A5 

= K(i) + Gain(i+1) eeg(i + l ) 

where (i + 1) indicates the new sample estimate 
(i) indicates the previous sample. 

A 

An estimate of K is made at each sample point and the previous m 
samples contribute to the estimate. To reduce the effects of old data 
samples on the present estimate, previous error terms (eeg(i) i = 
1,2,...m) are exponentially weighted: 

WERR = > ^ eeg (i) 0 < )i< ^ 4.6 

rate 
respectively from A5 

This generates the following partitiioned matrices for and E O G ^ 

m yd) 

^6^ y(m-1) 

y(ml 

y(m) 

A6 

^ ^ E O G " " " ! ! } 

EOG^(m) 

IS EOG m-1 

EOG*''(m) 

A7 

Equation A4 gave the OLS estimates of K as; 

•<m = <EOG^' 'EOG^»" 'EOG^^Y^ A4 

A matrix P^^ is defined as: 

= (EOG^ '^EOG^) -^ 
m m' 

A8 

which, using the definition of EOG^^ in A7 above becomes: 

EOG''"(m) 

A 2 



= E O G " ' " ^ . I E O G ^ . 1 + EOGimlEOC'^im) ] 

= l^p- ' 'm-1 + EOG(m)EOG"''(m} r"" 

where G = P^EOGim) 

From A4 now becomes: 
A 

Km = 

where 

A9 

[Ifeachor, 1984] 

A10 

E O G ^ ' ^ Y ^ = ( ^ J ^ O G V l i E O G ( m ) l 

= ^ E O G ' ^ ^ . I Y ^ . , + EOG(m|y(m) 

y(m} 

therefore 

P^ l^P -1 
m 

+ EOG{m)y(m) 

1 T = P^[P'^^-EOG(m)EOG'(m)]K^.^ +P^EGG(m)y(m) 

= C l - P n , E O G ( m | [ y ( m l - E O G V m . l J 

A l l 

A12 

A13 

Which is now in the form of equation A5, where Gain = P^EOG{m) 

A 3 



3. U-D FACTORISATION. 
The error covarience matrix, P, is factored to avoid the numerical 

instability of the conventional RLS update formula A9 . The main reason for 
this instability is that P is computed as a difference of positve 
semi-definite matrices (Bierman, 19761. In the absence of any EOG, P will 
increase exponentially as it is being constanly divided by (less than 
-1). 

' 'm+ 1 factored as: 

^ m + l = ^ m + l ° m + 1^^m+1 

is an upper triangular matrix with unit diagonal elements and is 
a diagonal matrix. A S is rewrinen as: 

where V = D^uVoGm + T 

If the term in the square brackets is factored as: 

where the bar is used to distinguish the U-D factors of lD^-1 v 
from those of 1, then A14 becomes: m 

= 1 U ^ U ^ D ^ U ^ ^ U ^ ^ A15 m +1 — m m m m m 

noting that the product of two upper triangular matrices is itself an 
upper triangular matrix, and the symmetry in A15 , then 

= ^m^m ^ ^ ^ ^ l = ^ A16 

U j ^ ^ ^ and + 1 are modified using the following algorithm: The 
algorithm is initiated by assigning starting values to both U and D. At 
each new sample the new values of EOG and EEG are used in the update 
algorithm to obtain a new P. 

1. V = u'̂ ^n^EOG 
2. bj = Dlj^v 1 = 2,3 n 
3. = ^-i-b^v^ 

5. bl = D l ^ ^ i v 1 

for i = 2,3 n recursively evaluate 6 to 10. 

6- <̂  = 1 +vjbi 
7. Fi. = 

for k = l ,2 , . . . j -1 recursively evaluate 8 and 9. 

8. U k i ^ ^ i = U k j ^ +bkPj 
9. bk = bk + bj U k j ^ 

10- Dim+1 = Dim'"j-l /*"^«) 
11. G ^ ^ l = bi/<^„ 

A 4 



APPENDIX B. 

The following diagrams represent the combine^circuit diagram for the 
Data Acquisition System (DAS), detailed in chapter 3. The diagrams fornn the 
implementation of the system conceptualised in figure 3.1. Each circuit 
represents one block in figure 3.1, with the exception of the 
instumentation amplifier circuit and ADC circuit which constitutes the 
analogue signal conditioning block in figure 3.1. 
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APPENDIX C . 
The following software listings represent the D A S software and data 

editing suite. These programs were used in conjunction with the DAS 
hardware to acquire EEG data for this thesis. The Software is comprised of: 

-DAS system software listing. 
,PC control sofware listing. 
.Editing software listing. 

The DAS system software listing is written in 68000 assembler and was 
developed using the METAI multi assembler system. The software provides the 
basic interrupt handling within the DAS microprocessor board. At each 
interrupt each of the 16 signal channels are sampled and selectively 
converted. 

The PC Control software provides control of the system via the PC 
interface circuit and a buffered RAM area (DRB). Control is supplied to the 
user via a menu system displayed on the PC screen. Data is archived to 
Winchester disk and later transferred to backup tape streamer. The software 
has been written in Basic using the MICROSOFT QUICK BASIC software package. 

The editing sotware provides the neccesary tools for reviewing and 
selecting sections of EEG data for further analysis. Edited sections are 
transferred via ASCII file to allow easy access to the ILS signal 
processing software package. The software has been written in Basic using 
the MICROSOFT QUICK BASIC software package. 



c:\c«to\6S000.tBb/ 

.C t r l 2?,15 

t i t t e "68000 data acqu is i t ion systcci" 

; This program is designed to test the 68000 D . X . S . as a corclete sysieni 

segcwnt byte at FQOOOO 'boot' 

Ihe f i r s t eight bytes ot H0« are accessed at reset by appearing to be 
addresses 000000 to 000007 r e s p e c t i v e l y , these hold the supervisor stack 
pointer and the program counter (pointing to ROM) 

dc.b too 
dc.b too 
dc.b t10 

dc.b too 
dc.b too 
dc.b tFO 

dc.b too 
dc.b tos 

; l abe ls used throughout 

sdc equ tAOOOOO 
avecti equ t70 
drb 12000 
drba equ t100000 

drbb equ tzooooo 
drbcon «^ t300000 
innstat ec^j t700000 
(TTKtat equ »600000 
rux equ 1900000 

pause equ 12010 
pttnO equ 1800000 

ptrol equ 1800002 

ptmZ «^ 1800004 
ptim^ equ 1800008 
pti:6 «TJ 180000A 

ramadr equ 12004 
Stat cqa IBOOOOO 

;PC 

; i n i t l a l i s a t i o n 

move.b n S 7 , n n s t s t ; t e l l pc that data logger is reset 

move.I • in t ,avec t4 ;(O0d autovector 4 with in te rne t routine address 

move.b nOF,drbcon .-select ORB_* for yritir»9 to. 

move.I *drba,drb ;ram register 

c l r . t roRiadr ; c l e a r ran displacement register 

move.I m 0 0 0 , p a u s e ; c l e a r pause f lag 

raove.b fftC7,ptm1 ;CR2 

nove.b n e i , p t n 2 ;M » 129 

move.b rtl7,pto5 ;L = 23 
move.b tflOl.ptirO ; reset interrupts . 

move.b tflOO.pteO ;s t8 r t PIM tiiner. 

C I 



(M*1)(L*1> 1.25uS = 3.9 CIS whfch i s the s a i p l i n g period 

; the next routines w i t for the PC to request recording to s ta r t i ^ t i l 
; enabling the PTH to cause i n t e r n ^ i t s . 

s tar t d r . I 00 
oove.y cpstat.DO 
and.w KOOFF.DO 
ctrp.w 01OOAA,DO 
bne stor t 

read the s ta tus of the PC 

has the PC requested that interrupts s t a r t ? 
i f not, keep looking. 

s t in t pove « 2 3 0 0 , S » .-supervisor node and interrtjpt mask level 5 

As soon as the PC has read a buffer i t t e l l s the 6S000. the next routine 
then stops the PC from reading i t aga in . 

c l r . l 00 
nove.w cpstat.OO 
and.w nOOFF.OO 
ccp . y nFF.DO 
beq.s stop 
b ra .s wait 

read the s ta tus of the PC 

has the PC requested that interr i^i ts stop? 
i f so , stop i n t e r r u p t s . 
wait for a stop or f in ished reading comand. 

stop move.u fftOOOO.pause 
move.b KSO.oTRstst 
m v e K2700.S8 
b r e . s s t a r t 

;se t the pause f l a g . 
; t e l l the PC not to read the buffer again 
.-supervisor node and interrupt mask level 7 
;ua i t for a s t a r t canaand. 

Interrupt serv ice routine 
This routine i s enterred whenever the processor recteves a level 4 
Interr \4it , cleaning that the PTM has timed ou t . 

movem.l D0-07/A0-A6,-(A7) 
move.w it%00,ma 
bsr s ta tus 
fflove.u adc.OO 

,-SBve r e g i s t e r s 
. -select channel 0 

rdunny reed 

bsr s ta tus 
move.w adc.OO 
odd.w pause,DO 
move.I drfo.AO 
add. I raoiadr.AO 
ouve.b 00.<A0}* 
i s r . w «8,00 
arvl.H 0S1F,DO 
move.b DO,(AO)* 
oddq.l ffZ.roBisdr 

;s tore lower 8 b i t s 
;3h{ f t r ight 8 b i t s 
,-isask out ins ign i f i can t b i t s 
,-store t^iper 4 b i t s 
; increment ran dlptacement 

OOve.W 11,DUX 
bsr s ta tus 
cnove.H adc.OO 
bsr s ta tus 

Stic, 00 
add.w pause,00 
move.I drb,AO 



add.I 
rnove.b 
I s r . u 
ond.w 
oove.b 
addq.l 

ronadr.AO 
00,(AO)* 
08,00 
M1F,D0 
DO,(AO)* 
02,rsfnadr 

;store lower 8 bi ts 
; s h i f t right 8 b i ts 
;(n3Sk out insigni f icant b i ts 
;store upper 4 b i ts 
;incre(nent ran diplaceoent 

laove.M 
bsr 
move.y 
bsr 
move.y 
add.w 
move.I 
add. I 
move.b 
I s r . y 
and.w 
move.b 
addq.l 

status 
adc,DO 
status 
adc.OO 
pause,00 
drb,AO 
ramadr,A0 
00,(AO)* 
#8,00 
« 1 F , 0 0 
DO,(AO)* 
02. 

;store lower 8 bi ts 
; s h i f t right 8 bi ts 
;inask out insigni f icant b i ts 
; s io re i*per 4 b i ts 
;incre(nent ran diplacetnent 

move.w 
bsr 
eove.w 
bsr 
[nove.w 
add.w 
move.I 
add. I 
move.b 
Isr .w 
and.w 
move.b 
addq.l 

03,mux 
status 
adc.DO 
Status 
adc.OO 
pause,00 
drb.AO 
ramadr.AO 
DO,(AO)* 
«a.oo 
n u . o o 
00.(AO)* 
« .ramadr 

;store lower 8 b i ts 
; s h i f t right 8 b i ts 
;inask out insignif icant b i ts 
;store upper 4 b i ts 
;incre(nent ram diplacetnent 

move.w 
bsr 
move.w 
bsr 
nove.w 
add.w 
move.I 
add.I 
move.b 
Isr .w 
and.w 
movo.b 
addq.l 

M.cux 
status 
adc.DO 
status 
adc.OO 
pause,00 
drb.AO 
ramodr.AO 
DO,(AO)* 
S8,D0 
MIF.DO 
DO,(AO)* 
HZ.ranadr 

;store lower 8 b i ts 
.-shift right 8 b i ts 
;maslc out ins igni f icant b i ts 
;store i4]per 4 b i ts 
;tncre(nent ran diplaccment 

move.w 
bsr 
move.w 
bsr 
oiove.w 
add.w 
move.I 
add. I 
move.b 
Isr .w 
enJ.w 
move.b 
addq.l 

s tatus 
adc.OO 
status 
adc.OO 
pause.DO 
drb.AO 
ransdr.AO 
00,(AO)* 
«8,00 
« 1 F , 0 0 
00.(AO)* 
H.ramsdr 

;store lower 8 b i ts 
; s h i f t right 8 b i ts 
.-mask out insigni f icant b i ts 
;s tore i^per 4 b i ts 
;increment rata diplacement 

move.w S6,DUJi 



bsr 

bsr 
move.y 
add.u 
move.I 
add. I 
RDve.b 
I s r . w 
and.u 
cxive.b 
sddq. l 

s ta tus 
adc.OO 
scatus 
Bdc.DO 
pause,DO 
drb,AO 
raciadr,AO 
00,<AO)* 
«8,D0 
« 1 F , 0 0 
00, (AO)* 
fl2,ramadr 

;s tore lower 8 b i t s 
. -shift r ight 8 b i t s 
;paslc out ins ign i f i can t b i t s 
.-store i43per 4 b i t s 
.-increment ram diptacccicnt 

oove.u 
hsr 
move.w 
add.u 
move.I 
add.t 
nove.b 
I s r . u 
and.w 
move.b 
addq.l 

fl7,nj* 
s ta tus 
0dc,DO 
s ta tus 
edc.OO 
pause, 00 
drb,AO 
ratnadr.AO 
00, (AO)* 
tfS.OO 
tftlF.DO 
00,(AO)* 
ttZ.ramadr 

;s tore lower 8 b i t s 
: s h f f t r ight 8 b i t s 
;(nask out ins ign i f i can t b i t s 
;s tore t^Jper 6 b i t s 
.•increment rom diplacement 

move.w 
bsr 
DDVe.W 
bsr 
(nove.w 
odd.w 
move.I 
add. I 
tnove.b 
tsr .w 
anj.w 
fflove.b 
addq.t 

tta.cux 
s ta tus 
ode,DO 
s t a t u s 
adc,00 
pause,00 
drb,AO 
rociodr,AO 
DO,(AO)* 
«8,D0 
iirsiF,00 
0G,<A0)* 
02,ra(nadr 

;s tore lower 8 b i t s 
. s h i f t r ight 8 b i t s 
.-mask out ins ign i f icant b i t s 
;s tore t^sper 4 b i t s 
jincreiaent raa diplacement 

bsr 
oove.w 
hsr 
move.w 
add.w 
move.I 
add. I 
move.b 
I s r . y 
and.H 
pove.b 
addq.l 

s t a t u s 
adc.OO 
s ta tus 
ode,00 
pause,00 
drb.AO 
ra(nadr,AO 
DO.(AO)* 
«8.D0 
n i F . O O 
00, (AO)* 
#2,romadr 

;s tore lower 8 b i t s 
, -shift r ight 8 b i t s 
,-nask out ins ign i f i can t b i t s 
; s t o r e i^iper 4 b i t s 
.-incrcfnent ram dlplacement 

Bxjve.w 
bsr 
fflove.w 
bsr 
move.w 
add.w 
move.I 
add. I 
move.b 

tflO.mux 
s t a t u s 
adc.DO 
s t a t u s 
adc,00 
pause.00 
drb,AO 
ramadr.AO 
00,(AO)* rstore tower 8 b i t s 



Isr.w 08,00 .-shift r i g h t 8 b i t s 
and.w tfSIF.OO .-mask out i n s i g n i f i c a n t b i t s 
move.b 00.(AO)* .-store t^per 4 b i t s 
oddq.l tfZ.raoiadr ; increment ram diplscement 

move.w n n . B u x 
bsr status 
move.w adc,00 
bsr status 
move.u ode,00 
odd.w pause,00 
move.I drb.AO 
add.I ramadr.AO 
nove.b 00,(AO)* .-store lower 8 b i t s 
Isr.w 1(8.00 : s h i f t r i g h t 8 b i t s 
and.w KIF.OO ,-mask out i n s i g n i f i c a n t b i t s 
pove.b 00,(AO)* ;store u ^ r 4 b i t s 
addq.l «2,raniadr ; increment rata diplacement 

move.w 012,nix 
bsr status 
move.w adc.DO 
bsr status 
move.u adc,00 
add.u pause,00 
move.I drb,AO 
add.I ramadr,AO 
move.b 00,(AO)* ;5tore lower 8 b i t s 
Isr.w 08,00 ; s h i f t r i g h t 8 b i t s 
and.w n i F , o o ,-cask out i n s i g n i f i c a n t b i t s 
move.b 00,(AO)* ; s t o r e i^iper 4 b i t s 
addq.l 02,remadr .•increment ram diplaceraent 

move.w 013,mux 
bsr status 
move.u sdc.OO 
bsr status 
move.w adc.OO 
add.u pause,00 
move.I drb.AO 
add. I ramadr.AO 
move.b O0.(AO>« .-store lower 8 b i t s 
Isr.w 08,00 .-shift r i g h t 8 b i t s 
and.u 0S1F,OO .-mask out i n s i g n i f i c a n t b i t s 
move.b DO,(AO)* .-store i43per 4 b i t s 
addq.l 02,ra(nadr .•increment ram diplacement 

move.w 014.CUX 
bsr status 
move.w adc.OO 
bsr status 
nove .u adc,DO 
add.w pause.DO 
oove.t drb.AO 
add. I rainsdr.AO 
oove.b 00.(AO)* .-store lower 8 b i t s 
I s r . u •8,00 .-shift r i g h t 8 b i t s 
and.H niF.DO ;rnask out i n s i g n i f i c a n t b i t s 
move.b 00,(AO)* .-store ufiper 4 b i t s 
addq.l fZ.ramadr ;increment ran diplacenent 

move.u 015,nix 
bsr s t a t u s 
CDve.w ode.00 

C 6 



bsr 
nove.u 
add.w 
move. I 
add.I 
move.b 
Is r .w 
end.w 
nove.b 
addq.l 

s ta tus 
adc,DO 
pa use,00 
drb,AO 
roeodr.AO 
00,(AO)* 
tfS.DO 
n u . o o 
00.(AO)* 
«2.ratnadr 

;s tore lower 8 b i ts 
.•shift r ight 8 b i ts 
;maslc out ins igni f icant b i t s 
;s tore \^)fxr 4 b i t s 
;increinent ram dtplacement 

move.w 01.DUX 

bsr s ta tus 
move.w ode,00 

d r . I 01 
move.b (»2,D1 

read move.w 
bsr 
move.w 

Ol . c iux 
sta tus 
sdc.DO 

move.t drb.AO 
add.I romadr.AO 

move.b 
Is r .w 
and.w 
move.b 
addq.b 
addq.l 
orp.b 
brii.B ^ 
bsr 
move.w 
move. I 
add. I 
move.b 
I s r . w 
and.w 
move.b 
addq.l 

00 , (A0) * 
#8.00 
tfSOF.OO 
00,(AO)* 
#1.01 
#2.ramodr 
#16.01 
read 
s ta tus 
adc.OO 
drb.AO 
ractadr.AO 
DO,(AO>* 
#8,00 
#t0F.00 
DO.(AO)* 
tfZ.ramadr 

;se t channel register 

connect next channel 

read l a s t channel 

;read which buffer 
;add displacement 

;store lower 8 b i ts 
;$hi f t right 8 b i ts 
;mask out insigni f icant b i ts 
;store t^per 4 b i ts 
; incrccKnt channel reg is ter 
; increaent ram diptaceoent 
; a l l channels converted 7 
; i f not read next channel 

;read chamel 16 
;read which buffer 
;edd displacement 
;sCore lower 8 b i t s channel 16 
; s h i f t right 8 b i ts 

;8tore t^iper 4 b i t s channel 16 
;incrcraent rao diplacement 

move.w #11000.pause 
cmp.L 0tFFDF,ramadr 

b n i . s endint 

j c l e a r pause flag 
; i s ram fu l l ? 
.-note: only 2G47«32 bytes is stored 
; i n RAM. This is equal to 7.996 
.•seconds of data. 
; i f not , wait for next i n t e r n e t 

i f the buffer i s f u U , then the various control reg is ters oust be set 
so that on the next interrupt the other DRB i s written to. 
The PC oust a lso be told which ORB ft should read from. 

d r . I 

move.I drb.D4 
oxjve.l drb.OI 
e o r . l #»300000,D4 
move.I 04.drb 

; c l e a r ran displaceiaent 

which buffer ? 

swap buffer 
save ran register 



move.b 020,02 
I s r . l 02,01 

; f ind out which buffer ii 
;re3dy to be read. 

arvJ.l tfJ.DI 
add.I mS4,D1 

cnp.b « 5 6 , 0 1 
beq.9 brdy 

ardy move.b 01OA,drbcon 
b ra .s pcrdy 

;set up other buffer to be 
iwri tten to. 

brdy oxjve.b fflOS.drbcon 

pcrdy move.b Ol.nntstat 

endint move.b pttal.DO 
move.b ptm4,D0 
oovem.l (A7)*.D0-07/A0-A6 

; t e U PC which buffer to read. 

iread PTH status 
:read PIM counter 
;restore reg is ters 

r te 

; The following routine ensures that the ADC is not read before it has 

; corpleted conversion of the channel. 

delay d r . I 03 
move.b 06,D3 

delayl dbra 03,delayl 
r t s 

status move.w s t a t , 0 7 
move.w 07,12008 
and.w «01,07 
csp.w tf01,D7 
beq.s status 
r t s 

end 
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DECLARE SUB ax is i (chX) 
DECLARE SUB browsel (bufsegX) 
DECLARE SUB d isplay l (toreadX, bufsegX, chX) 

'PROGRAM PC0SP12.BAS 

'Program to handle the reoding of data from the 
'68000 D.A.5 and the storage of th is data to the 
'P .C Winchester hard d i s c d r ive . 

' ( c ) H. I .Hel lyar August 1988 : A l l r ights reserved. 

COKMON SHARED storedXO 
COMMON pratat, ppstat , blockX 
COHHON toreadX, rdyX, hdX. b2t, c2 
COKHON bufXO 

OECURE sua check (toreadX, IstrdX, red) 

DECLARE SU8 warning (> 
DECLARE SUB co l lec t (rdyX, blockX, hdX, bufsegX) 

DECLARE SUB scsket ( t i t l e t ) 
OECURE SUB contin ( ) 
DECLARE SU8 head (hdX) 
DECLARE sua status ( ) 
DECLARE sua Stat ( ) 
DECLARE SUB record (bufsegX. fu l lup) 
DECLARE SUB menu (> 
DECLARE SUB pause (keyS) 
DECLARE SUB f u l l (keyS) 
DECLARE SUB dat in (bufsegX) 
DECLARE sua display (toreadX. bufsegX. chanX) 

DECLARE sua axis (chanX) 
DECLARE sua browse (bufsegX, chanX) 
DECLARE SUB transfer (s toredXO) 

DECLARE sua uin2diBc ( p a t i e n i l , t o t a l b l k s l ) 
DECLARE SUB newdisc (> 

OIH storedXd TO 20) 
REH UTNAMIC 
OIH bufX{0 TO 32760} 
bufsegX = VARS£C(bufX(0)) 
bufptrX = VARPTR(bufX(0)) 

labels: 

pastat a 773 
r s t o 0 
blockX * 0 
toreadX = 0 
hdX « 0 
rtfyX a 0 
AL1 ' 768 
AL2 = 769 
PEHA = 771 
PEKB =" 772 

CONST fa lse = 0, true ° NOT fa lse 



REH Read 68000 s ta tus , has i t been r e s e t . 
COLOR 4. 0, 6 
CLS 
WHILE rst <> 84 

rs t = INP(pRtstat) AND 252 
L0CA1E 10, 16 
COLOR 3. 0, 6 
PRINT "Please press the reset button on the data logger" 

UEND 
COLOR 7, 0 , 6 
CLS 

REM main progran loop 

DO 

cent s fa lse 
fulti4> = f a l s e 
CALL menu 
OO 

LOCATE 23. 24: COLOR 3, 0, 6: PRIHT "please se lec t your choice 
c h o i c e ! = INPUT«(1> 

LOOP UNTIL IMSTR(«'1234a'', choiceS) o 0 
cont = true 
IF cho ice ! - "1" THEM CALL s t a t u s : GOTO again 
I f chofcel « "2" THEM CALL dat ln(bufsegX): GOTO again 
IF cho ice ! = MJ" THEH CALL record(bufsegX, fut lup): GOTO again 
IF cho ice ! » "4" THEH coot = f a l s e 

IF cho ice ! = "a« THEH CALL t rans fc r (s toredX( ) ) : GOTO again 

again: LOOP WHILE cont AKD ful l i f> = f a l s e 

IF fu l l i f i THEN CALL warning 

END 

REH ISTATIC 
SUB ax is (chanX) 
DRAW "fata 0,0" 
DRAW "a 0,200" 
ORAU "hm 0,25" 
ORAU °m 512.25-
ORAW "bra 0.75" 
DRAW "B 512,75" 
DRAW "bo 0,125" 
DRAW - n 512,125" 
DRAW -bra 0,175" 
DRAW "n 512.175" 
FOR f s 0 TO 512 STEP 64 

FOR j « 0 TO 3 

I = j • 50 • 23 
M n I • 5 
DRAW "bnP" • VARPTR!(i) • " ,=" • VARPTR$(l) 
DRAW "OS" * VAHPTR!(I) • " , » " • VARPTR!(w) 

NEXT J 
NEXT i 
labelX • ((chanX - 1) • 4> 
LOCATE 4, 70: PRIHT " c h - " ; labelX * 1 
LOCATE 10. 70: PRINT " c h - " ; labelX * 2 
LOCATE 16, 70: PRINT " c h - " ; labelX * 3 
LOCATE 22, 70: PRIHT " c h - " ; labelX * 4 

c / o 



LOCATE 1, 65: PRINT "Press any key" 
LOCATE 2, 65: PRIHI "to continue." 
LOCATE 24, 1: PRINT "0" ; 
LOCATE 24. 33: PRINT -1-; 
LOCATE 24. 65: PRINT - 2 " ; 
LOCATE 24, 70: PRINT - t t o e ( s e c s ) " ; 
END SUB 

SUB a x i s i (chX) 
ORAU «bra 0.0" 
ORAU "m 0,200" 
ORAU -bra 0.100" 
DRAy "o 512,100" 
FOR i c 0 TO 512 STEP 64 

z " 98: w = 102 
ORAU "brp" * VARPIRt(i) • ",=" * VAflPTR»(2) 
ORAU "OP" * VARPTR«(i) * " , = " • VARPTR»(w) 

HEXT i 
LOCATE 13, 70: PRINT " c h - " ; chX 
LOCATE 1, 65: PRINT "Press any key" 
LOCATE 2 . 65: PRINT "to continue." 
LOCATE 24, 1: PRINT "0"; 
LOCATE 24, 33: PRINT "1" ; 
LOCATE 24, 65: PRINT - Z " ; 
LOCATE 24. 70: PRINT '•time(secflj": 

EHD SUB 

sua browse (bufsegX, chanX) 
ppstat = 774 
OUT ppscat . 170 
SCREEN 2 
LOCATE 12. 27: PRUT "Loading data b u f f e r . . " 
00 

red G f a l s e 
toreadX = INP(773) AKO 3 
IF toreadX = 1 OR toreadX « 2 THEN CALL check(toreadX, Is i rdX . red) 
IF red = true THEN CALL displ8V(torea(a, bufsegX, chanX) 

LOOP UHILE IKKETS = "" 
OUT ppstat . 255 
SCREEN 0 

END SUB 

SUB browsel (bufsegX) 
PRINT "Uhich channel do you wish to d isp lay "; 
INPUT ChX 
ppstat = 774 
OUT ppstat , 170 
SCREEN 2 
LOCATE 12, 27: PRINT "Loading data b u f f e r . . " 
00 

red E f a l s e 
toreaca = INP(773} AND 3 
IF toreadX = 1 OR toreadX ° 2 THEM CALL check(toreadX. IstrdX, red) 
IF red « true THEN CALL d isp layUtoreadX, bufsegX, chX) 

LOOP UHILE IMKETS = "" 
OUT ppstat , 255 
SCREEN 0 

END SUB 

SUB check (toreadX. (s t rdX, red) STATIC 
IF toreadX a IstrdX THEN red = f a l s e ELSE red = true 
IF red = true THEN IstrdX = toreadX 



EMD SUB 

SUB c o l l e c t (rdyX, blockX, hdX, bufsegX) STATIC 
blockX « blockX • 1 
CALL drbCbufsegX, rdyX) 
OEF SEC « bufsegX 
path* = "crVnarkwXqbtVdatoXd" 
bS = STR«(blocU) 
c » LEH(bl> - 1 
b2S » STR»<h<a) 
c2 = LEN(b2») - 1 
f i l e t ° paths * RICHTS<b21, c2) * RIGHTt(bS, c ) * " .dat" 
BSAVE f i l e * . 0, 65504 
OEF SEC 
5toredX(hdX} « blockX 
LOCATE 23. 9: COLOR J , 0, 6 
PRINT "Data froo buffer - ; rdyX; " has been saved as d"; RlGHTS(b2S, c 2 } ; RIGHTS(bS. c ) ; " . d a t . to y inchester . 
EMO SUS 

SU8 cont in 
LOCATE 23, 27: COLOR 3. 0, 6 
PRINT "Press any key to continue": PRINT 1KPUT»<1> 
END sua 

SUS dot in (bufsegX) 
' CALL SCSkel{"CHECK INPUT SIGNALS") 

COLOR 5, 0 . 6 
LOCATE 7. 23: PRINT "THIS OPTION DOES HOT RECORD DATA I" 
LOCATE 10. 10: PRINT "To ensure that data is being recieved by the data a c q u i s i t i o n " 
LOCATE 12. 10: PRINT "systeni, you have the option of d isplaying any 4 channels o f 
LOCATE 14, 10: PRINT "the 16 data channels evo i lab le . -

CALL contin 
00 

CALL SCSkeU"CHECIC INPUT SIGNALS") 
COLOR 5. 0. 6 
LOCATE 6, 30: PRINT "Your options are :" 
LOCATE 9 . 20: PRINT "1 . Select 1 to view channels 1 to 4" 
LOCATE 11, 20: PRINT "2 . Se lec t 2 to view channels 5 to 8" 
LOCATE 13, 20: PRINT -Z. Se lec t 3 to vieu channels 9 to 12" 
LOCATE 15, 20: PRINT "4 . Se lec t 4 to view channels 13 to 16" 
LOCATE 17, 20: PRINT "5 . f i n i s h . " 
DO 

LOCATE 23. 24: COLOR 3. 0, 6: PRINT "please se lec t your choice : " ; 
choices = INPUTSd) 

LOOP UNTIL IHSTR<"12345a", choiceS) <> 0 
chan% = VAL(choiee») 
IF chanX > 0 AND chanX < 5 THEM CALL browse(bufsegX, chanX} 
IF ChanX ' 0 THEN CALL browseUbuf&egX) 
LOOP UNTIL ChanX = 5 

END sua 

SUB d isp lay ttoreadX, bufaegX, chanX) STATIC 
CLS 
CALL axis(chanX) 
CALL drWbufsegt, toreodX) 
OEF SEC = bufsegX 
X » (ChanX - 1) • 8 

fOR i = 0 TO 511 
d = i • 32 • X 
FOR t » 0 TO 3 

datpointlX = PEEK<d • <i • 2 ) ) : daipoint2X = PEEK((d • ( i • 2>) • 1) 
CALL add(datpointlX, dstpointZX) 



dstpointX = datpofntlX 
IF datpointX > 4095 THEN datpointX <= datpointt - <096 
datpointX » datpointX / 82 
• datpolntX B 50 - datpointX 
datpointX a daipointX • ( I " 5 0 ) 
PSET ( i , datpointX) 

NEXT 
MEXT j 
DEF SEG 

EKD sua 

sua d isp lay l (toreadX, bufsegX, chZ) 
CLS 
CALL ax isUchX) 
CALL drh{bufsegX, toreadX) 
OEF SEG » bufsegX 
K c (chX - t) • 2 
DRAU "bm 0,100" 
FOR j e 0 TO 510 

d " j • 32 • X 
dfl tpointU = P£EK<d): datpoint2X « PEEK<d • 1) 
CALL add(datpolnt1X, dstpointZX} 
datpointX = datpolntlX 
IF dstpointX > 4095 THEN datpointX ° datpoi'ntX - 4096 
datpoiniX « datpointX / 21 
' datpointX B 200 • datpointX 
'PS£T ( j , datpointX) 

DRAW " B P " • VARPTR»(i) • " ,=" • VARPTRS(datpointX) 
NEXT j 

DEF SEC 

END SUB 

SUB fu l l (keyt) STATIC 
OUT ppstat, 255 
LOCATE 10, 19: PRINT " DATA HEHCftT IS FULL. PRESS AMY (CET. 
PRINT INPUTSd) 
key* • "n" 
END SUB 

sua head (hdX) STATIC 
CALL 6CSkel(" PATIENT DATA") 
LOCATE 8, 14: COLOR 5, 0, 6 
PRINT "To enable eas ier identt f icat fon of data, please enter" 
LOCATE to, 14 
PRINT - t h e pat ients i n i t i a l s , age and sex. Special features" 
LOCATE 12, 14 
PRINT "of the pat ient , such as 's iQns of frontal slowing' e t c , " 
LOCATE 14, 14 
PRINT "could a lso be entered irOtr addit ional i n f o n B a t f o n . " 
LOCATE 16. 14 
PRINT -Th is information u i l l be kept conf ident ia l . Thank you. » 
CALL cone in 
CALL s c s k e K " SAVE PATIENT DATA") 
hdX 3 hdX «̂  1 
LOCATE a. 14: COLOR 5, 0. 6 
INPUT "Please enter the patients i n i t i a l s : " ; i n i t t 
LOCATE 10, 14 
INPUT "Please enter the patients age :"; agel 
LOCATE 12, 14 
INPUT "Please enter t h e pat ients sex :" ; sex l 

C ' 3 



LOCATE 14, K 
IMPUT "Additional inforaat ion a i t 
pothZt = "c:Viarky\qb4\data\hd" 
bZS e STRS(hdX) 
c2 • LEH(b2«) - 1 
f i l e » > path2t «- RICHTS<b2t, c2> * - . d a f 
OPEN tiic2% fCm OUTPUT AS 
PRINT n, i n i t l 
PRINT n. &HFF 
PRINT 03. ages 
PRINT 03, SHFF 
PRIHT « , sexS 
PRINT n , iHFF 
PRINT 03. ait 
PRINT 03. tHff 
CLOSE 03 
PRINT aS, bS, cS. <S 
CALL cont in 
END SU8 

SUB taenj STATIC 
CALL s c s k e U " N E N U") 
PRINT CKRt(196) 
LOCATE 7. 13 
COLOR S . 0 . 6 
PRINT "Th is prograo controls the storage of EEC data to a PC." 
LOCATE 9, 13 
PRINT "The following options are ava i l ab le to the user . " 
LOCATE U , IS 
COLOR 7, 0, 6 
PRINT "1 . Select 1 to d isp lay the recording s t a t u s . " 
LOCATE 16, IS 
PRINT "2. Select 2 to check the tncoraing s i g n a l s . " 
LOCATE 18, 15 
PRINT "3. Select 3 to reconJ EEC data . " 
END sua 

sua newdisc 
CALL S C s k e U - TRANSFER DATA") 
LOCATE 10, 10: COLOR S , 0 , 6: PRINT " Inser t a blank disc in dr ive A and press any key to continue." 
PRINT INPUTSd) 
CALL s e s k e U " TRANSFER DATA") 
LOCATE 8 . 1 

END SUB 

sua pause (keyt) STATIC 
CALL scskel("DATA RECOROING PAUSE") 
LOCATE 12. 22: COLOR 3. 0, 6 
PRINT "Do you u ish to continue recording 7 " 
LOCATE U . 10 

PRIHT "Press 'SPACE BAR' to re lease the pause or any other key to s top ." ; 
rft B iNPUTtd) 
IF r$ a " " THEM keyt » V ELSE keyt - - n -
IF keyt > "y" THEN CALL s c s k e U " RECORDING DATA"): LOCATE 10, 19: COLOR S , 0. 6: PRINT " To pause data recording press SF| 
IF keyt n "y - THEM OUT 774, 170 
END SUB 

sua record (bufseflX, fu l l i^ j ) STATIC 
CONST f a l s e • 0, true • NOT f a l s e 
keyt - »y-
ppstat ° 774 
b l o c U s 0 
CALL spaceCdxX. axX, 3) 
IF dxX < 0 THEN dx0 B dxX • 65S36 ELSE d*0 = dxX 



IF axX < 0 THEN autt = anX * 6SS36 E L S E ax0 = axX 

r o O T l = Itua • 65556 * a x S ) / 6 5 5 J 6 

CALL h e a d ( h d X ) 

CALL s c s k e U " RECORD DATA") 

COLOR 5 , 0 , 6 

LOCATE 10, 10: PRINT " B e f o r e r e c o r d i n g d a t a , p l e a s e c h e c k t h a i the c a b l e c o n n e c t i n g " 

LOCATE 12 , 10: PRINT " t h e d a t a l o g g e r to t h e EEC mach ine i s p r o p e r l y i n s e r t e c f " 

LOCATE U , 10: PRINT " a t both e n d s . Thank y o u . " 

CALL c o n t i n 

CALL S C S k c K " RECORD DATA") 

COLOR 5 , 0 , 6 

LOCATE 10, 10: PRINT "At the end of e a c h t e s t p l e a s e p a u s e r e c o r d i n g s o t h a t o n l y " 

LOCATE 12, 10; PRINT " t h e r e l e v e n t t e s t d a t a i s r e c o r d e d . " 

CALL c o o t i n 

CALL S C S k e U " RECORDING DATA") 

LOCATE 10, 19: COLOR 5 , 0 , 6 : PRINT " To p a u s e d a t a r e c o r d i n g p r e s s SPACE BAR" 

TIMES = " 0 0 : 0 0 : 0 0 " 

OUT p p s t a i , 170 

00 

r e d = f a l s e 

LOCATE 18, 2 2 : COLOR 7, 0 . 6 

PRINT " E l a p s e d t i m j i s " ; T I M E t ; " h r : m i n : s e c " 

t o r e a d X = 1NP(773> 

torea<ft = t o r e e d X AND 3 

I f t o r e a d X = 1 OR toreadX = 2 THEN CALL c h e c k ( t o r e s d X , I s t r d X , r e d ) 

IF r e d = t r u e THEN CALL c o l l e c t l t o r e a d X . b l o c k X , hdX, b u f s e g X ) 

I F I N K E T * s " " THEN OUT p p s t e i , 2 5 5 : CALL p a u s e ( k e y » ) 

I F b l o c k X = roOfflX THEN CALL f u l U k e y t ) 

LOOP UHILE kcyi = " y " 

OUT p p s t e t , 255 

IF b l o c k X = roomX THEN f u l l u p = t r u e 

END sua 

SUB s c s k e l ( t i t l e * ) 

CLS 

LOCATE 3 , 30 

COLOR 6 , 0 , 6 

PRINT t i l l e l 

COLOR 6 , 0 , 6 

LOCATE ^ , 10 

FOR i = I TO 6 0 : PRINT CHRS(205>; : NEXT i 

LOCATE 20 , 10 

FOR i « 1 TO 6 0 : PRINT C H R t ( 2 0 5 ) ; : NEXT i 

LOCATE 2 1 , 6 i : PRINT "mth S S " 

END SUB 

SUB S t a t u s S T A T I C 

CALL S C S k e l C RECORDING STATUS") 

dxX > 0 : SJiX e 0 

CALL s p a c e ( d x X , a x X , 3 ) 

I f dxX < 0 THEM d j i f » dxX •• 65536 E L S E d x « = dxX 

I F axX < 0 THEN 8A« » a * X • 65556 E L S E axff = axX 

REM Out = H E X « ( d x X ) : a x » = M E X K a x X ) : PRINT d x t , a x l : END 

LOCATE 10, 2 0 : COLOR 5 , 0 , 6 

IF dx« « 65535 THEN 

PRINT " D I S C ERROR-

E L S E P R i m "you have - ; d x f ' 6 5 5 J 6 * B X « ; " b y t e s l e f t on d i s c " 

END IF 

efTi = d x # • 65536 • a x « 

t i f f l l f l = e r p / 8192 

minX = t i m l f t / 60 

s e c s X = t i o l f t - ( la inX " 60 ) 

C / 6 



IF secsX < 0 THEN secsX = secsX *• 60: QinX = minX - 1 
IF ciinX > 30 THEN oinX B 30; secX " 0 
LOCATE 14. 15: 
PRINT "This i s "; oinX; " minutes and " ; secsX; " seconds of recording" 
LOCATE 16. 15 
PRINT "lime ava i lab le , out of a maximun of 30 mirutes ." 
CALL cont in 
END sua 

SUB transfer (s toredXO) 
CALL s c s k e K " TRANSFER DATA " ) 
LOCATE 9, 10 
storeddata = f a l s e 
FOR i B 1 TO 20 

tota lbtks B s toredXt t ) 
IF to ta lb lks <> 0 THEN PRINT "patient i ; 
IF to ta lb lks <> 0 THEN l i s t S = t i s t S • S I R f ( i ) 
IF to ta lb lks > 0 THEN storeddata » true 

NEXT i 
IF storeddata ° f a l s e THEN 

LOCATE 12, 25; COLOR 5, 0. 6: PflINT "There i s no data to t ransfer . 
CALL cont in 
ELSE LOCATE 6. 20: COLOR 5. 0, 6: PRINT •H>ata e x i s t s for the fol toying pat ients " 
LOCATE 14, 10: PRINT "To t rans fe r patient data to floppy d i s c , please enter the" 
LOCATE 16, 10: PRINT "patient m r t x r s as a l i s t , i .e 13 wi I copy pat ients 1 " 
LOCATE 18, 10: PRINT "and 3 ' s data but not patient 2 ' s . " 
LOCATE 23, 30: INPUT copyS 

END IF 
IF storeddata THEN CALL neudisc 
IF storeddata THEN 

FOR i = 1 TO 20 
to ta lb lks B stored3l(i) 
pats B S T R t ( j ) 
pat len B LEN<patt) - 1 
pa t i en t * B RiCHT*(pat», patlen) 
IF INSTR<copy*, p a t i e n t * ) o 0 AW) INSTR( l is t * , pat ient * ) THEN CALL u i n 2 d i s c ( j . to ta lb lks ) 

NEXT j 
END IF 

END SUB 

sua warning STATIC 
CALL SCSkeU" DATA BUFFER FULL") 
LOCATE 8 . 16: COLCB 5, 0. 6 
PRINT " You have f i l l e d the memory ava i lab le to you." 
LOCATE 10. 16 
PRINT "To record more data you nust res ta r t the system." 
LOCATE 14, 33: COLOR 7, 0, 6 
PRINT " W A R N I N G " 
LOCATE 17. 13 
PRINT "This w i l l destroy the data you have already c o l l e c t e d . " 
END SUB 

SUB uin2disc (pat ient . t o t a l b U s ) STATIC 
pat * = STR*(pat ient ) 
pat len « LEN(pat*) - 1 
pat ient* « RICHT*(pat* . pat len) 
SHELL "copy c:\markw\q&4\data\hd" • pat ient* ".dat a : " 
SHELL "del c:\ciarku\e|b4\data\hd» • pat ient* • ".dat a : " 
FOR 1 B 1 TO to ta lb lks 

irvlexft = STRt( i ) 
b lk len = LEH(index*) - 1 
t r a n f i l e * " RIGHT*(index*, b lk len) 
OO 

CALL 5pace(dxX. axX. 1> 



IF dxX < 0 THEN dxS » cUX • 65536 ELSE dx0 = dxX 
IF axX < 0 THEN ax0 a axX « 65536 ELSE ax0 ° axX 
IF dxff o 65535 THEN PRINT "DISC ERROR" 
enp ° dx0 • 65536 • axiV 
IF enp > 65511 THEN 

SHELL "copy c:\(narkM\qb4\data\d» • pat ient* • t r a n f i l e t • " .dat a : 
SHELL "del C:\fflarkw\qb4\data\d" • pat ient* * t r a n f i l e S • " .da t" 
ELSE CALL newdisc 

END [F 
LOOP UNTIL erp > 65S11 

NEXT i 
storedX(p8tient) = 0 

EKO sua 

o n 



e g 



'PROGRAM VIEV2.BAS 

'ProBrom to handle the reading of stored data 
'and d isplay ing i t one channel at a time 
' to the screen 

' ( c ) H.T.Hetlyar August 1988 : A l l r ights reserved. 

COKKOM pntstat. ppstat , blockX 
OXMON loreadX, rcfyX, hdS, h2». c2 

CCMHON bufXO. cont 
COHKOW SHARED (nontS() 

DECLARE SU8 a A r s (chanX) 
OECUHE SUB plotdata (chanX. yind) 
DECLARE sua cornnand (hdX, blockX. chanX, wind, cont. h ibUX) 
DECLARE sua readdata <hdX, blockX) 
DECLARE sua (abelgraph <hdX, blockX, chanX. wind) 
DECLARE sua «di t <hdX, blockX. chanX. wind!) 
DECLARE sua trans (hdX, blockX. chanX. u indl ) 
DECLARE sua break (x) 

DIM m n t J d TO 16) 
REM tOTNAMIC 
DIM bufX(0 TO 32760) 
bufsegX = VARS£G<bufX{0)) 
bufptrX = VARPTR(bufX(0)) 

OEF SEG « bufsegX 

CONST f a l s e = 0. true = HOT f a l s e 

ON ERROR GOTO errsub 

REN nain progran loop 

sett4>: ChanX = ^ 
blockX - 1 
wind > 1 
cont " tnjo 
nont»<l) • "12" 
oont»(2) • "FP2» 
nontt(3) • " f4» 
tBontt(4) » -CA" 
o o n t X S ) • -16" 
oont»(6) a - I I " 
aontS(7) • " fP»" 
oont»(8) • "F3" 
mont»(9) • "CS" 
monttdO) B "T5" 
iDon t»{T l ) « " F S " 
nont»{12) B "N" 
Pont» (13 ) = - F T " 



m o n t K U ) = "FZ" 
ronttdS) = "CZ" 
oont»(16) = -PZ" 

SCREEN 2 

LOCATE 1. 1: INPUT " l a s t block mrber "; hiblkX 
INPUT "Patient "; hdX 

D s i n : 00 

CLS 
IF blockX <> lastblockX OR hdX <> lasthdX THEN CALL readdatathdX, blockX) 
lastblockX = blockX: lasthdX ° hdX 
CALL axisCchanX) 
CALL labelgraphthdX, blockX, chanX, wind) 
CALL plotdata(chanX, wind) 
CALL comarxKhdX. blockX, chanX, u i rd , cont. hiblkX) 

LOOP UHILE cent 

END 'end of ca in progroci 

errsub: 

LOCATE 1, 1; PRINT " I n s e r t correct d i s c and press any key to continue": PRIHT UPurt«l); RESUHE o a i n 

REH tSTATIC 
SUB ax is (ChanX) 

DRAW "to 0,0" 
ORAU "o 0,200" 
DRAW "ta 0,100" 
DRAW -o 512,100" 
FOR i s 0 TO 512 STEP 64 

2 3 98: u o 102 
ORAU "bnp" VARPTRt<i) * " , s " *• VAfiPTRt(i) 
ORAW "0*8" • VASPrRt<i) • " ,=" • VARPTRt(u) 

NEXT i 

LOCATE 13, 70: PRIHT montt(chanX) 

END SUB 

SUB break (x ) 

DRAW "bros" • VAJIPTR»(x) + " . 0 " 
ORAU " B P " • VABPTRt<x) • ",200" 
END SUB 
SUB comand (hdX. blockX, chanX, wind, cont , h ib lkX) STATIC 

DO 
choices ° INPUTt(l) 

LOO^ UMTIl INSTB{"1256789iK", choicet ) o 0 
IF ehoicct » "1" THEN LOCATE 1, 1: INPUT "channel"; chan: chanX » chan 
IF choicet - "2" THEN CALL edit(hdX, blockX, chanX. wind) 
IF choices 1 "5" THEN btockX a blockX - 1: IF btockX > hiblkX THEN b l o c k ! > hiblkX 
IF choices > »6" THEN LOCATE 1, 1: INPUT "patient "; head: hdX ° head 
IF choices " "7" THEN blockX = 1 
IF choices s "8" THEN LOCATE 1, 1: INPUT "block "; b U : btockX a blk 
IF choices B "9" THEN cont = f a l s e 
IF choices • "z" THEN wind - wind - 1: IF yind < 1 THEN wirvl = 4: btockX s btockX • 1: IF blockX < 1 THEN blockX =1 
IF choicet o " X " THEN wind " wind • 1: IF yind > 4 THEN wind = 1: btockX > blockX * 1: IF blockX > hiblkX THEN blo^ 

EHD SUB 

sua curs <xX) 
ORAU "tSf^" * VARPTRt(xX) * " , 0 " 
DRAW " C P " • VARPTRt{xX) • ".200" 

END SUB 



SUB edit (hdX. blockX. chanX, wind) 
LOCATE 1, 1: INPUT "save t h i s block for ana lys is ( y / n ) " ; analS 
IF analS ^ -y« OR anal» = "Y" THEN CALL t r a r a i h t a . blockX, chanX, wind) ELSE LOCATE 1, 1: PRINT 
EMO SUS 

SUS lobelgreph (hdX, btockX, chanX, wind) 
LOCATE 1, 70: PRINT "No " ; hdX 
LOCATE 2, 70: PRINT "Block blockX 
loX = ((wind - 1) • 2) • {(blockX - 1) • 8) 
hiX « (wind • 2) • ((bloekX - 1) • 8) 
toS = ST«<loX) 
h i» = SIR»<hiX) 
c1 = LEN(loS) - I 
c2 = LEH(hi»> - 1 

LOCATE 24, 1: PRINT R[GHTS(lot, c 1 ] ; 
LOCATE 24, 65: PRINT RICHT»(htt, c Z ) ; 
LOCATE 24, 71: PRINT "ttme(secfl)"; 

END SUB 

SUB plotdata (chanX, wind) STATIC 
X o (chanX - 1) • 2 
DRAW "bo 0,100" 
FOR j = 0 TO 510 

d • ( ( (wind - 1) • 512) • 32) • ( ] • 32) • x 
datpointX = PEEK(d} * 256 • PEEK<d * 1) 
IF datpointX > 4095 THEN CALL b reak ( j ) 
IF datpointX > 4095 THEN datpointX s datpointX • 4096 
datpotntX = datpointX / 21 
datpointX o 200 - datpointX 
ORAU "np" • VARPTHS(i) • " , = - • VARPTRt(datpointX) 

NEXT j 

EMD SUB 

SUB resddata (hdX, blockX) STATIC 
paths 1 • a : \ d -
bS ' STRS(blockX) 
c = LEN(bS) - 1 
b2S > STRS(hdX) 
C2 = LEN(b21> • J 
f i l e s = paths * RiGHTS(b2S, c2) • RIGHTS(bS, e) • " .dat" 
BLOAO f i l e s , 0 

END SUB 

SUB relabel 
CLS 
c a 1 
DO 

PRINT "Enter mnemonic for channel c ; 
INPUT aS 
IF aS •> THEN aS > fluntS(c) 
nontS(c) B aS 
c • c • 1 

LOOP UNTIL c > 17 

EMO SUB 

SUS trans (hdX, blockX, chsnX, wind) STATIC 
pothS » -c: \mrfata\ed" 
FOR X s 0 TO 30 STEP 2 'Save 16 channels 

nuTtierX <> nuTberX * 1 
nuaS » STRS(nuitoerX) 



lengthX = LENCnuift) - 1 
index* = RICHTKnuiS, tengthX) • - .da t" 
fflenofnet " pa th* * index! 
OPEN filename* FOR OUTPUT AS *3 

insert to save 1 channel K " (chanX - 1 ) * 2 
FOR j » 0 TO 510 

d = ( ( (wind - 1) • 512) • 32) * ( i 
datpointX « peEr<d) • 256 • P€EC<d 
datpointX = datpointX - 2048 
PRINT tf3, datpointX 

32) 
1) 

NE)(T j 
LOSE 193 

include the following l i n e s to save a header f i l e for each ed i t f i l e . 
paths " "c:\mdata\eh" 
filenames = pathS • indent 
OPEN filenames FOR OUTPUT AS « 
PRINT 03. hdX 
PRINT tf3. blockX 
PRINT «3. wind 
PRINT « , ChanX 
CLOSE » 

NEXT X 

END SUB 

C2Z 



APPENDIX D 

The following appendix contains an abrieviated technicians report 
for a selection of the data acquired using the D A S . This illustrates the 
type of data recorded during this investigation on which the rules 
developed for the lOARS were elicited. Inclusion of this appendix will 
enable subsequent researchers to understand the basis of any rules 
developed. 



This file contains information regarding patients data held on tape for 
use with the E V E R E X tape streamer system. Data is held on several cassete 
type data cartridges. Each patients data in held in a seperate dataset and 
are sequentially numberred. Each dataset contains a file HD*.dat which 
also identifies each dataset when it is reloaded onto Winchester disk. 

The following information describes the data presented in this file. 

dataset number patient identifier 
tape number 
data directory (ie c:\markw\qb4\daia?) 
header data file number (ie c:\markw\qb4\hd7.dat) 

patients initials 
patients age 
patents sex 
date of data recording 

1. V- I 
tape I 
data dir -
hd 1 

initials S.H 
age 32 
sex F 

This data provided information regarding eye movements from a series 
of controlled experiments (see notes for details). 

2. ab-1 
tape 1 
data dir -hd 1 

initials N.H 
age 70 
sex M 
date 16-2-89 

Theia (4-6 Hz) 
posterioral temporal 
movements. 

right (posterior). 2.5-4 Hz max 
more on the left. Rolling eye 



3. ab-2 
tape I 
data dir 
hd I 

initials C.C 
age 
sex F 
date 

Drowsy. 

4. ab-3 
tape I 
data dir -
hd 1 

initials M R 
age 8 months 
sex M 
date 23-2-89 

Irregular slow activity 3-5 Hz 5uV left centro-temporal. 

5. ab-4 
tape 1 
data dir -
hd I 

initials E.H 
age 53 
sex M 
date 24-2-89 

5-7 Hz post central, 10-40uV symetrical. Ill- defined theia/delta 3-5 
Hz 4uV bilateral. 
theta. 

6. ab-5 
tape 1/2 
data dir -
hd I 

initials S.D 
age 54 
sex F 
date 2-3-89 

Theta elements 
activity from hyper-ventilation bilaterally, bilaterally synchronous 2-4 
Hz lOOuV. 



10. ab-9 
tape 2 
data dir -
hd 

initials T.O 
age 1 
sex M 
date 25-7-89 

Post central rhythm 4-5 Hz, 30-IOOuV, symetrical and Increases on eye 
closure. Intermitiant low voltage Beta 15-25 Hz. Frequent slow waves 2-3 
Hz, bilateral. Slow activity increases in sleep, bilaterally. Vertex sharp 
waves. Sigma 13-14 Hz. K complexes 

montage block 
1 I 
2 7 
3 18 
4 31 
5 
6 
7 

8 54 

pause at 68 

I I . ab-10 
tape 2 
data dir 2 
hd 1 hu>cj<. 

initials A.V 
age 21 
sex M 
date 13-9-89 

Short clinical attack 3-4 minutes. 
4-8 Hz, 10-50uV fainter on the left. Low voltage beta up to 30Hz, diffuse, 
symetrical. Lamda 20-30Hz symetrical. 
Bilaterally synchronous short duration burses, up to 3 sees. 2-3.5 Hz. 
150uV. Sharp and slow waves 2-3Hz 200uV, mainly anterior and on the left. 
Infrequent 2-3.SHz delta, generalised bilaterally. 
2 mins of hyper ventilation evoked a generalised slowing of the background 
to 3-6Hz. Generalised increase lo slow and sharp waves and miximal 
anteriorly. During the attack, theta 5-8Hz, lO-30uV generalised bilateral, 
followed by 6secs of flattening. 

Block numbers were not recorded on the paper trace and the technician 
experienced frequent problems withe the E E G machines paper feeder. As a 
result data is likely to be fragmented and difficult to identify montages. 
Montages 1.2.3.4,7.8 were used. 

0 ^ 



7. ab-6 
tape 2 
data dir -
hd I 

initials N.T 
age 85 
sex M 
date 7-3-89 

= 71 

Alpha 9-IOHz, beta IS-2SHz bilateral, theia and delta elements 3-7 Hz 
temporal (right centro-temporal). 

8. ab-7 
tape 2 
data dir -
hd 1 

initials P.R 
age 33 
sex M 
date 16-3-89 

MAM 6k0CK -

Slow waves 2-3.5 Hz. 50-150uV bilaterally more right than left. 1-5 
sec bursts. Delta 1.5-3.5 Hz, upto 150 uV. both mid-temporal areas, more 
right than left. Generalised slow waves. 

9. ab-8 
tape 
data dir 
hd ' I 

2 

initials S.M.T 
age 58 
sex M 
date 7-4-89 

Bilaterally synchronous delta 2-3 Hz, upto 50uV in 1-4 sec bursts 
maximal anteriorally and temporally. 



12. a b - l 1 
tape 2 
data dir 4 
hd I 

initials C.G 
age 27 
sex F 
date 14-9-89 

Header only. 

13. ab-U 
tape 2 
data dir 4 
hd I 

initials C.G 
age 
sex 

M A X 6*-OC(C 9 7 

27 
F 

date M-9-89 

Alpha 11-12 Hz and SOuV, symetrical. Intermittant tow voltage beta 
15-25 Hz bilateral. Theta 4-7 Hz frequently recorded bilaterally, mainly 
frontal and temporal, more on the left . 
Occasional delta, 3-3.5 Hz mainly left temporal, both anterior and 
posterior. 
When patient was drowsy there was an attenuation of the alpha which was 
replaced by low voltage beta and theta. 
Hyper-veniilation increased theta and delta. Rare sharp elements are also 
recorded frontally. 
montage block 
1 1 
2 43 
3 53 
4 64 
5 
6 76 
7 
8 86 

H.V during blocks 19-34 

OS 



14. ab-12 
tape 2 
data dir 4 
hd 2 

initials D.H 
age 83 
sex F 
date M-9-89 

Drowsy during recording, 
post central rythmn 7-8 Hz. 20-40 uV. symatrical. Iniermitiant low voltage 
beta 15-20 Hz 
Widespread slow 3-5 Hz, bilateral, usually independantly, occasional 
higher voltage slow activiiy, occurs in bursts o f between 1 and 2 seconds. 
As patient becomes drowsy there is an attenuation o f the background 
rhythmn and there are several bursts of bilaterally synchronous slow 
waves,maAimai lef t and of 4 second duration. 

montage block 
1 1 
2 14 
3 26 
4 38 
5 
6 66...may not be recorded 
7 
8 62 

15. ab-13 
tape 2 
data dir 6 / O T , 
hd 1 

initials R.B 
age 20 
sex M 
date 15-9-89 

patient slept lightly. 
low voltage beta 15-25 Hz dominant and symmetrical, rare alpha 10-11 20uV, 
bilateral. Occasional alpha 4-7 Hz, mainly frontal. 
frequent low voltage sharp waves 40uV central parietal, left and occuring 
in repetitive runs. 
Onset of drowsiness increases theta and sharp waves. During light sleep 
vertex sharp waves are recorded. 
Hyper ventilation increases theta. 
montage block 
1 1 
2 42 ECG is measured at the wrist between blocks 47 and 53 
3 53 
4 69 
5 
6 81 
7 
8 90 -

103 photic stimulation 



16. ab-14 
tape 2/3 
data dir 8 
hd 1 

initials R.W 
age 17 
sex M 
date 21-9-89 

ALpha 8-9 Hz. 20-50 uV .symmetrical is measured but attenuated with 
eyes open, intermittant low voltage beta, 15-25 HZ, bilateral. Alpha 4-7 
Hz diffuse bilaterally. 
Frequent delta 2-3 Hz, predominant post temporal, both synchronously and 
independently, slightly more predominant on the right. 
2 bursts of bilaterally synchronous spike and wave 2-4Hz. 300uV, 3 seconds 
(eyelid fl ickering occured and the patient momentarily opened his eyes). 
Hyper-ventilation increased slow activity and sharp wave activity. 
Prolonged runs of 3Hz slow waves, posterior temporal but gradually 
spreading to dominate, several short bursts 1-2 seconds of spike and wave. 

montage block 
1 1 hyper-ventilation during blocks 14-34 
2 53 FP2 rejelled at block 56 
3 65 FPi rejelled later at block 58 
4 75 
5 
6 
7 
8 86 

102 photic stimulation 

17. ab-15 
tape 3 
data dir 8 
hd 2 

initials G.N 
age 29 
sex M 
date 21-9-89 

Fairly regular post-central rhythmn 6-7 Hz. 30-80 uV, symmetrical and 
attenuated by eyes opening. Intermiiiani low voltage beta 15-25 Hz 
Slow waves 3-5 Hz recorded bilaterxilly mainly temporal and in particual 
centre and postcrio-temporal 
NO hyper-ventilation 

montage block 
1 1 
2 6 
3 15 
4 27 

6 36 

8 37 

44 photic stimulation 
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APPENDIX E 
This appendix contains a tabulation of the OA parameters obtained 

from a number of referential electrode positions. The average of these 
parameters is used to enable the OA removal algorithm to be pre-set to an 
appropriate value for a specific electrode postion on Identification of an 
OA. 
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1 - T r i - -c^' - .ot̂ ^ c»A1 1 • 'it*. ' i t 

•^SiJ -^.iJ>l-?7U,| -̂ 521 i U - .1*21* •.>-fi 

••«?-) 1 .-1'/ •ti7^ii- t>7')| 'Oi^ - " t i 1 
•1'ri 1 

- o"* t, 1 1^ 1 - o z • ojs . m l 
- .Ti,/1 VJ1>| - • •i70 

1 I 

1 

^=es! 
1 1 

' .^iSl ^ 5't :> Ji. 1 > 3i3< 02,7 o '6 3 / 0 o-t ) 

Fz Cz Pz F4 C4 T6 F3 C3 T5 
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 

I'-i^ ( -.-)7 •ob̂ ) l |--'5C '9^ Zl I ••^(, 1 oy^ 
^ ou -'?27 •oug •CO 7 • l-'V 

•Ofcy. •'7 1 00 •*oC •nz 1 si3 1 oiz • r •iS •21 1 

••h2 13S -.lot. I 1 
"Sb • o^v- ' I f? - -f 1*1*. 

-•C2 - oS 'V ' - " i 1 1 
• i n 1 1 

1 1 
1 i 
1 1 
1 1 
1 I 
1 1 

1 i 1 

! 1 j 

1 1 1 
1 1 

1 1 1 1 
1 1 1 1 

1 1 1 1 1 1 1 
os9 0 oi7 0 -06 

e / 



Fz Cz Pz F4 C4 T6 F3 C 3 T5 

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 t 2 

-.OJ*> -751 •Oil •7S2 - 00^ 

--"W.3 -. u«t> -It"? -.flit* --•bl 
-16 •o3/ .*3a 

-.oj-7 

- ofcta - ••3ê  -.tan ...JO 
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APPENDIX F 

This appendix contains the full tabulated Percentage Error Of Fit 
(PEOF) results obtained during off-line analysis. The results are shown for 
four E G G electrode montages (2,4,5,9), nine referential electrode sites, 
and nine bipolar electrode sites. These results have enabled a suitable and 
simple E G G electrode montage to be determined for G A removal from both 
referential and bipolar EEG signals. 
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APPENDIX G 
This appendix contains the software implementation of the R L S OA 

removal algorithm with U-D factorisation. The software interfaces with the 
data edited using the sofware given in appendix C. Data is read in in 2-8 
second blocks and the user is requested to select EEG signals and EOG 
montages. The same EEG signals and EOG electrode montages are used for this 
on-line algorithm to enable an objective comparison to be made ' with the 
off-line analysis results. The software is written in C using the BORLAND 
TURBO C software package. 



/ ' F I L T E R : Program u> ntier ihe EEC daia using ihc RLS EOG iubtraaion "/ 
/* algorithm u i d using the UD fnctoriuUion of the error ' / 
/* covarlcnce malrix. */ 

called 05 rilter9 < nicnamel > < nienameS > 

w.here filcnamel a a binary <lAia file eoniaining EEC/EOG umples 
(i.e. from D.A-S) 

and nicnamel is an ASCII file thai contains the corrected EEC 

^include <s id io .h> 
finclude < alloc.h> 
^include <conio .h> 
/ • ^include < graphics.h> • / 

Mefinc inbuf size 65502 / ' buffer to hold his is for S-scconds of 16 ' / 
/ • channel EEG/EOC data • / 

idcfine ouibuf_8i2c 2CM6 f 2048 samples = gseconds x 256 Hertz ' / 

ffdcfine true I 
tfdennc false 0 

ini inpui_data(char •input.char far •input_buffer): 
ini output_data(chaf 'output.int far •outpui_buffcr): 
int filter(chttr far ' input^buffer.int far •ouiput_buffer,im j ) ; 
ini udu nt(doublc X[],double Y.ini far •output_bufrcr.int model.im 11); 

/* Initialisation of matrices - Global delcaiations "/ 

/ ' UD factorisation variables ' / 

double U110I = {4.0e-4.-1.0.4.0c-4.100.100.100.100.100.100.100}: 

double •mETA [4 | - {0.3.O.3.0.0.O.0h 

double BMI •= {O.O.O.Oh 

double V{4| » (0,0.0.0}: 

double G A M M A ° 0.998; 

/ • double ALPHA = I.O0:V 

/ • EEC and EOG set upt • / 

ini NPAR(4I - (4.4.4.2); 

char 'channcIO = ( 
' F i * . 
•Cz*. 



•Pz ' . 
•F4- . 
•C4- . 
• T 4 ' . 
•F3- . 

• a \ 
•T3*. 
•F4-C4-. 
-Fp2-F4-. 

•Fp2-F8*. 
•F4.T4-. 
•C4-T4-. 

•T4-F8 ' . 
•F3-T3-. 
-C3-T3-. 
•T3-F7* 

/ • EOG model numbers V 

inteog_moddI41 = {2 .9 .4 .5}; 

/ • EOG chanl byic index into Tilenamcl ' / 

mteog_chanl[4]{4) » { 
0.2.10.12. 
2.20.12.24. 
2.12.20,24. 
2.12.0.0 

/ ' EOG chan2 byte index into niennmc I 

imcog_chan2[4l[4l = { 
0,0.0.0. 
0.0.0.0. 
0.10.22.22. 
20,24,0.0 

/ ' EOGchon) mulitplicr •/ 

i n i m u l i l ( 4 l | 4 | => I 
1.1.1,1. 
1.1.1.1. 
1.1.1.1. 
1.1.0.0 

/ • EOG chJin2 multiplier •/ 

tmmuia{4]14| - I 
0.0.0.0. 
0.0.0.0. 
l . I . l . I . 
O.O.O.O 

int o j t c f sa = TaJsc: 
double base: / ' lost value of EEC before OA removoJ •/ 



/ • Stan of main program • / 

main(im aigc.char •argv[I) 

( 

inl mod_num,key_prcss: 
char far 'Uipui_bu(Tef; 
im far •oulpui_bufrcr; 
char •input = a rgv ( l ] : 

/ • check and aJlocaie buffer tLoiagt space ' / 

if((inpui_buffcr = (char ' ) farcalloc(lnbuf_size,sizeof(chftf)) = = N U L L ) 

{ 
prinirC\nFlLTER9; memory allocaiion fa i lure ' ) ; 

) 

if((oulpui_bufrer = (ini ' ) rarcaJloc(ouibuf_size,5izeof(int») = a N U L L ) { 
prinifCVnFILTER: memory altocAlion failure*): 
" i i ( l ) ; 

} 

/* check calling argumant count ' / 

i f ( a r g c ! - 3 ) { 
p r i n i f C n L T E R ; argument mismaich\n*); 

I 

/ • read data from nicnaniel • / 

ift(input_dau(inpui.input_bufrcr)) = « 0) 

{ 
printr(*F)LTER9: data has been readVaXii'); 

fof<mod_aum =3:mod_Qum < 4;mod_oum+ + ) ( 
char 'output = argv|2); 

/ ' niter input file to output TiIc • / 

if((riIier(inpui_burfer.outpui_burfer,mod_Qum)) = - 0 ) 

{ 
if((outpui_data(output.ouq)uI_buncr)) 1) exit ( I ) ; 

prinif("\n\nFILTER9; job dane!\n\nDala f rom %t has been Tiltcred inlo %i . \n ' . input , outpui); 

p r i n l f C \ n n L T E R 9 : PRESS A N Y KEY TO CONTINUE. . . .* ) : 

key_pres j -gachO; 

} C 1 K 

cj».t(I); 

farfree( input_bu f fc r ) ; 
far frcc(ouiput_bu f fcr): 

63. 



return 0; 

) 

/ ' end o f main pragrem ' / 

/ ' inpui_daia: lo read daia from das file lo memory. • / 

int input_daXa(chai •input.char far ' input_boffcr) 

F ILE S f p : 

if(( irp « fopenOnpui.'rti ')) - = N U L U { 

prinlf(*FILTER: can't open %s\n*,input); 
rciura 1; 

)else{ 
ir[(frea(l((chaf far •) inpui_buffer .s izeof(chaj) . inbuf_si£c. ifp)) ! = inbuf_sizc) { 

printfCFlLTER: file read error\n ' ) ; 
fcloscfifp): 
return 1; 

I else 
return 0; 

} 

f output_data: to wrtie filtered dsU toon ILS file. */ 
ini output_data(char "output,int far •ouiput_buffer) 

FILE -o fp ; 
int i ; 

i r [ (orp= fopen(output,-M*)) = = N U L L ) { 

p r i n t f C n L T E R : cant open %»\n ' .ouiput) ; 
return I ; 

}e l«{ 

for( i =0: i < (outbuf_size- l ) ; i + + ) 
rpriaif{ofp.*%d\n*.output _bufrer(i |) : 

I 
return 0 : 

/ " filter: contrail the mti ia l iui iao of matrices and invokaiion of the */ 
/ • U D algorithm •/ 

int fi]tcr(char far *input_burfer,int far *output_buffer,ini model) 

i 

int c,i,j.k.chan.index,ecg_chanl,ceg_chan2,cl,c2: 

double X l . X 2 . X l 4 I , Y l . Y 2 . Y : 

double Xl_o ld mcan|4) = {0.0.0.0.0.0,0.0^ 

64-



double Xl_new_meant4l = (0.0.0.0.0.0.0.0}: 
double X2_old_meanI4I - {0.0 .0 .0 .0 .0 ,0 .0}: 
double X2_ncw_ineanl4J - {0.0.0 .0 .0 .0 .0 .0}: 

double Yl_old_mcan - 0; 
double Yl_ncw_mean •= 0; 
double Y2_old_mean « 0: 
double Y2 ncw_mean » 0; 

/ • command screen • / 

textai i /(LIGHTGRAY + ( B L A C K < < 4 ) ) ; 

clrtcrO: 

t cxLai i r (WHITE+(BLUE< < 4 ) ) : 
goioRy(28.l); 
cpf imfCEEG ARTEFACT REMOVAL*) : 
gotoxy(19.4); 
iexuuir(WHITE + ( e L U E < < 4 ) ) : 
cprimfCThe following channels can be corrected'); 
£oioxy(22.6) ; 
c p r i m f C l . Fz 10. F4-C4 * ) ; 
goioxy(22.7); 
cprimf(-2. Cz 11. Fp2-F4'); 
goioxy(22.8): 
cprimrC3. Pz 12. Fp2-F8-): 
go[oxy(22.9); 
c p f i n l f C 4 . F4 13, F4-T4 

goioxy(22.10); 
cprimfCS. C4 14. C4.T4 • ) ; 

goioxy(22.1l) : 
cprinlf(*6. T4 15. T4.F8 ' ) ; 
gotoxy(22.l2): 
cprintfC7. F3 16. F3-T3 *); 
EOtoxy(22.l3); 
cprimfCS. C3 17. C3'Ti '): 
goioxy(22.I4) ; 
cpr imfC9. T3^ IS. T3-F7 ' ) ; 

gotoxy(3l,20): 
cprimf(*Using Model %d*.eog_model(model)}: 
goioxy(2.24); 

cprinifCSelect an EEG channel to f i l ter . . \ b \b ' ) : 

while((scanf(-%d-.&c)) < 0 11 c > 18) 

{ 
gotoxy(2.24): 

cprintf<*FILTER: not an EEG channel please re-enter.. \b\b*): 

} 
t ex ta tU(LIGHTGRAY+(BLACK< < 4 » : 

cIrscrO: 

;f(c - = 0) 
return I : 

cite 

iextaU /(WHrrE + ( B L U E < <4)): 

twitch (e) 

{ 

case l:ecg_chai)l B26-.ccg_chan2': l ; c l « I:c2e0;break 
case 2:eeg_chanl « 2 8 ; « e g _ c h a n 2 a l ; c l = I ; c 2 « 0 : b r c a k 
case 3:ccg_chanl B 3 0 : e e g _ c h a n 2 ° l : c l = I ;c2B0;brealc 
case 4:e<g_chanl <-4:ccg_chan2 ° l : c l « I :c2 -0;break: 



case 5:ccg_chanl -
case 6:e<g_chanl = 
case 7:ceg_chanl= 
case 8:ceg_chanl = 
case 9:eeg_chan I • 
case 10:ecg_chaal 
case I l:ccg_chanl 
case 12:eeg_chanl 
case l3:eeg_chanl 
case t4:eeg_chanl 
case I5:ceg_chanl 
case I6:ecg_chan) 
case I7:ecg_chanl 
case IS:ecg_chanl 

6;eeg_chan2 = I 
8-.ceg_chan2"l 
14;eeg_chan2 = 
16;ceg_chan2 = 
lB;e<g_chan2-

•4;ecg^chan2 = 
=0;ccg_chan2" 
= 2;ecg_chan2" 
=4;eeg_chan2 = 
=6:eeg_chan2 = 
•8;ceg_chan2 = 
= I4;eeg_chan2" 
" I6:ceg_chan2 
= ia;eeg_chan2 

: c l - l : c 2 = 0 ; b r c a k ; 
: c l « l : c 2 •30:brcaJc: 
l ; c l = ' l : c 2 = 0 ; b r c a k 
I ; c l = l :c2=0ibrcak 
I ; c l - I ; c 2 = 0 : b r c « k 
6 ; c l » l : c 2 - l ; b r e a k 
0 : c l - l : c 2 » 0 : b r e a k 
20:cl = I:c2 = l:brcak; 
8:cl = l :c2 = I:break: 
8;cl- |- .c2<"l:brealc; 
20;cl = l : c2o l ;b r cak : 

» I 8 ; c I « l ; c 2 « I : b r e a k 
» I 8 : c l = l ; c 2 - I ; b r c a k 
- 2 4 ; c l = . l ; c 2 - t ; b r c a k 

prinif( 'VnFILTER: filtering channel %s using model %d, please wait...*,chaiinel(c-l).cog_model(model|): 

f o r f i =0: i < outbuf_iize;i + + ) 

{ 

index = ( i "32 ) + 7; 
Y l = input_buf rc r l ( ind« + ecg_chanl)| + 256 ' input_buffer((inde*+eeg_chanl + 1 ) ) ; 
Y l = YI.2048: 

/ • remove mean from EEG ' / 

Y l Qcw mcan = (GAMMA'Yl_o td_mean) + ( ( l - G A M M A ) ' Y l ) ; 
Y l = Y l - Yl_ncw_mean: 
Yl_old_mean •» YI_new_mean: 

Y l = c l * Y l : 
Y2 = 0 ; 

iftc2) 

Y2 = input_buffcr[(index+ecg_chan2)| + 256 • inpui_bufferl(indcx+eeg_chan2+1)1; 
Y2 = Y2-2048; 

Y2_new_mean = ( G A M M A " Y 2 _ o l d _ m c a n ) + ( ( l - G A M M A ) « Y2): 
Y2 - Y2 - Y2_nc«/_mean; 
Y2 old mean = Y2 new mean; 

Y2 - c2"Y2: 

} 

Y l - Y2; 

forOc *'0;k < NPARImodcl];k -t- + ) 

X I = inpin_bufrer((index+cog_chaiil(model)[kI)) + 256'inpui_buffcr((index+eog_cbanl(modcll[k|-t-1)1; 
X I - Xl-2048; 

/ • remove mean from EGG ' / 

Xl_ncw_mcantkl = ( G A M M A ' X I _ o l d _ m c a n ( k | ) + ( ( l - G A M M A ) " X I ) ; 
X I « X I - Xl_ncw_m6an(kl; 
XI_old_mcannc] = Xl_new_mean[kl; 

X I = m u l t l [ m o d e l ] I k | ' X l : 
X2 = 0: 

if(muIt2Imodel|[k|) 
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{ 
X2 - input_buffcr({indcx-i-cog chan2[model]lk))l -4- 256"trpui_buffcr|(inde)i+eog chan2(modcl)(kl 11] 

X2 - X2-2a48-. 

X2_new_mean[kl = ( G A M M A ' . \ 2 _ o l d _ m e a n ( k | ) + ( ( I - G A M M A ) * X 2 ) : 

X2 - X2 - X2_ncw_mcaxilk|; 

X2_old_mcan(kI = X2_ncw_mcanilc|: 

X2 = muIc2|modcl] |kl"X2. 

) 

XIk | = X1-X2: 

) 

i f ( i<2048) 

{ 
arlcfaci = iruc; 
if{(udu_ll[(X.Y.ouipui_buffcr.model, i)) ! = 0) return l ; 

1 

clu: 

I 
ancfact = fftJie; 

ouiput buf fc r j i ) *• V: 

1 

) 

f o r { j = 0 : j < N P A R [ m o d e l l : j - pr imf(- \nFILTER: THETA%d ° I T . j - I .TMETAlj ] ) : 

I 
return 0: 

1 
/ • • / 

/ ' udu f l i : RLS filtering of (he EEC uting U D factorisation ' / 

ini udu n[(doublc X(|,double Y,tm far •ouipui buffcr . im mod.ini 11) 

{ 

double SF.PERR.ALPHA.BETA.BETA I .DELTA.P. 

int J l . m . j . k . i ; 

SF = 1 / G A M M A . 

PERR = Y: 

for(j =0;j < NPARimodl:j + + ) 

( 
PERR - PERR - (XUI • THETAUl)-. 

) 
m = 0: 

V |0 | - XIOI: 

r o r ( j = l : j < N P A R ( m o d i : j + + ) 

{ 

VUI = X U I : 
Jl = j ; 

f o r O ( = 0 : k < J l : l c + + ) 

{ 
m = m + I : 
VUI - V y i ^ ( U ( m r X [ k | ) ; 

) 
m = m * 1; 

BUI ° U | m | • V( j ) ; 
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BIOI = U(01 • XtOI; 
A L P H A " G A M M A + (8(01 ' V|OI); 
DELTA =. 1/ALPHA; 
U[OI = U[01 • DELTA: 

m =>0: 

for( j = 1 ; j < NPAR|modl;j + + ) 

{ 
BETA I = A L P H A ; 
ALPHA = ALPHA + ( 8 ( j l " V ( j l ) l 
P = -V[i] • DELTA: 
DELTA = l / A L P H A ; 

J l - j : 

f o r (W=G;k<J l : I c++) 

{ 
m = m + 1 : 
BETA = U l m ] ; 
Ulml = BETA + ( B M ' P); 
B[k|=BncI +(BUI • B E T A ) : 

} 
m = m + I ; 
U(ml = Ulml ' BETA I ' DELTA ' SF; 

\ 

PERR - PERR/ALPHA: 

for(j = 0 ; j < NPARlmodI , j+ + ) 

{ 

THETAUI = THETAU) + (BU| • PERR): 

I 

output^bulTerlll) =• Y ; 
f o r ( i - 0 : i < N P A R t m o d ] ; i + + ) 

{ 
output burrcHIl) -> output_bufrer t l l | - ( X l i ) " T H E T A ( i l ) : 

) 

outpui_burrerll l] = output_bufrer(n) +(artcfact " base); 

return 0: 
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APPENDIX I 
This appendix contains a example transcription of the non-structured 

interviews held with a consultant clinical neurophysiologist. This 
interview was carried out to obtain general and specific information 
regarding EEG analysis from data acquired using the DAS. This form of 
transcription is crucial for knowledge elicitation to help in understanding 
the problem domain and provide a hard copy reference for any rules 
developed. 



Transcription of interview with Or E.M. Allen 

Date: Ist June 1989 

Location: Dept of Neurophysiology 
Derriford Hospital. 

Plymouth. 
Devon. 

EM so what is it you want, you want me to tell you about the abnormal 
bits? 
MH Yes that's right well this is the first patient PR. Now what I would 
like you to do is to pick out some of the abnormal waves, and i f we can 
mark it so that I can photocopy those sections later. 
EA um err wi l l I need to know, do 1 need to know where you have been 
recording..on the bit thai you've got on your. 
M H well the whole thing has been recorded. 
EA ahh..good,right... 
M H yes for this one yes I have slow waves..bilateral, more right than 
left . . f ive second bursts.delta,yes those are all the notes, an abstract of 
the notes that Tve taken... 
EA Right well here's an example of the delta waves more marked on the 
right than the left. this is right...left..right.left.n and umm...if I 
take this channel here.channel two you wil l see that there are some slow 
waves here that are not on channel..six which is the equivalent channel on 
this side..um.suggesting .um you know and then one would go on to know 
wether or not that was like it all the lime. 
M H umhm 
EA ah in there's another instance.where they don't look so prominent on 
the left as they do on the right and.here's another example and there 
are some slow waves there.which are not.um are different 
M H yes they look quite sharp 
EA yes they're slower.. 
M H yes 
EA so this one occupies for instance more than half a second and on the 
other side..it occupies less than a second, i f we take just that one slow 
wave. 
M H yes.. 
EA see, that's a second and that more, so that you might say is a more or 
less equivalent.er wave, its in an equivalent channel. 
M H and where about on the scalp is that 
EA and that's in the temporal phase, temporal, and then going back to this 
parietal (unintelligible word) ahh it's a similar thing really, they 
are...sort of what we call theta waves here occupying about a f i f t h of a 
second.but here they occupy something more like a third of a second, see 
those wave here.um.one way of looking at that the slow waves are more 
abundant on the. on the right than the left..not only more in quantity and 
when they are there they are also slower...slower in frequency, so they 
are more abundant on the right than the left and um and slower in 
frequency and this occurs in both biparieial planes and the temporal 
plane..some of them to complicate matters are bilaterally synchronous 
here... 
M H yes. 



EA and the question arises therefore are they eye movements.. 
M H fo r instance that one you showed me, the slower delta. 
EA yah 
M H that.that has a similar appearance to some of the.the er eye movements 
that we've seen 
EA yes 
M H with the sharp leading edge and the trailing. 
EA yes that's right 
M H but you didn't seem to think that that was 
EA that's because its coming f rom the wrong part of the head 
M H right 
EA its coming f rom the posterior aspects of the head.. 
M H ok 
EA um.so that was the reason that I didn't suggest eye movements, its 
coming up posterior, all right 
M H urn hm 
EA um..there are eye movements here.where I think its impossible to know 
which is which.that one and that one... 
EA yes, yes, there's another instance there where they are bilaterally 
synchronous and I , I , I don't think I know there which is which.and I 
think what, in order to cope with that situation one looks for where one 
sees real eye movements and I think that that is a real eye movement there 
and there. That's a sort of equivalent to a blink..but um... 
M H wi l l it be possible just to mark, give this page a mark so that I 
can..refer back to it (unintelligible word) 
EA yes 
M H that's f ine 
EA um.there's a blink 
M H right 
EA blink, blink and an eye movement.... that's quite interesting that 
these eye movements are not absolutely symmetrical... 
M H bigger on the.on the right, yes or. 
EA bigger on the lef t , on the left 
M H oh I see sorry, yes 
EA now what this is I don't know.9,10,11.12..yes there just so 
asymmetrical.. 
M H could i t be a lateral eye movement 
EA yes I think it has to be a lateral eye movement.because they're not so 
bad when that they are a little asymmetrical a bit.but 1 think they are an 
oblique movement really...because they're just that little bit 
asymmetrical but not too, too - marked..now I'm just concentrating on the 
first 16 channels I 'm not taking into account these other channels..ok 
M H there's no other way you could tell, I suppose you wouldn't be 
interested but would there be any other way that you would tell that that 
was a lateral or.vertical eye movement. You mentioned in the past about um 
EA well I think that you could consider that it might be in that.here we 
have um between 13 and 14, that's on the left ssside..its diverging but 
you would expect it to converge on this side, but it's not quite doing 
that either..I wonder i f infact this chaps got what you might call a 
disconjugate gaze.. 
M H where one eye. 
EA yes 
M H moves and the other is stationary or? 
EA yes that's right 
M H does that happen alot. 
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EA it happens when people are very sick.. 
M H urn hm 
EA and I would imagine that by looking at this EEC that this chap is very 
sick., urn 
MH yes that's interesting actually..because, yes one of the main 
attributes thai we've drawn out is this..is this converging and diverging 
method of being able to identify eye movements, i f the eyes aren't moving 
EA yes i f they are wandering around you would 
MH it would cause problems. 
EA I yes, um..it would be an un. I mean a fairly unusual situation and 
um.and I think that you call the.You would want to be in the knowing of 
what was happening at other paru of the..head. So it doesn't worry me 
unduly because..what I see happening here is um something thai is alot 
more marked in the temporal..plane. 
MH yes 
EA that's 4 righi.4 left in the parietal, 4 right, 4 left 
M H again delta 
EA delta is a higher voltage slower in the temporal than it is in the 
parietal. There isn't so much asymmetry this time...it's a very d i f f i cu l t 
record I might add, very d i f f icu l t , but in that particular patch is 
symmetrical.. 
M H is it d i f f i cu l t because of the..cerebral signals 
EA yes, yes no, there's no artefacts here to speak of here..! think the 
cerebral interpretation of what's happening cerebraly is very 
difficult . .and what is so infuriating is that at the end of the day is 
that it probably doesn't make all that much difference to the patient. A l l 
one knows is that he's got a very sick brain..and that it's probably 
imflammatory.nature..and that added to which there's an ECG artefact all 
the way through...you can really notice that 
M H Do you note that from the periodicity of it 
EA Yes..um 
M H just picking it out on, it seems to be the, is it the temporal? 
EA It's the regularity...um 
M H would you expect to see it on other parts of the scalp rather than 
round here 
EA Usually you see it on the left temporal area more than elsewhere...but 
um..If someone is really hypertensive, got high blood pressure, which I 
don't know i f this chap did or no..you can see it all over...and for some 
reason unhealthy brain seem to transmit..particularly dead brain, 
transmits an ECG artefact much better than a healthy brain. 
M H so its actually the brain the transmits the artefact rather than a 
muscle or an artery 
EA Yes. it's acting as a conductor..so there's an asymmetry and a temporal 
preponderance..there's, waves.that are..are quite synchronous and.pretty 
symeirical stop, and rest 
M H I think that 
EA And that.here,here's something that's eye movement, what's happening 
here. That*s definitely rolling eye movement, all right 
M H o.k yes, that's because of the amplitude and position on the scalp 
EA The slowness of it all....now the question is, is this the rolling eye 
movement going the other way...in a slightly lateral way perhaps...! think 
it probably is because here's a situation where you can actually see..the 
divergence..there and the convergence, here, all right..so that's going 
away..so there was an upward eye movement..and here was a lateral eye 
movement, so we know that this chaps got rolling eye movements, slow 
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rolling eye movements..urn probably going in all directions-.another way 
to..(unintelligible word) and honestly in such a situation you could have 
got this disconjugate eye movements... 
M H do those, er do those rolling eye movements, would they suggest 
anything else to you? 
EA No, I mean it could be just going to sleep,it could be on a hot day and 
going to sleep..er...I think..that bil*s not showing us anything that 
we*ve not already seen, so that, that's certainly the main gist of 
this..this..EEC..here's some slow waves sort of in the mid-line, now they 
are quite interesting because..we don't as it happens, we're not as it 
happens seing bilaterally synchronous eye movements 
M H un hm 
EA as such, sorry, bilaterally synchronous slow waves and sometimes when 
you've got bilaterally synchronous slow waves and you don't know wether 
they're eye movements or not, i f you go to a position when you're, where 
you're recording across the head...then they tend to do, to do er 
..this(starts to draw diagram)so you've got the. perhaps you've got 
ihe.eye movements going up like that in channels I.5..1 and 5 and then 
you're going across the head, and then you have them diverging.accross the 
head.but when you've got some um.slow waves here,which across the head are 
in ract..doing that....and that is in the middle of the head.now that's 
normally some abnormal brain wave.because eye movements are not usually 
recorded there..so anything that occurs in what we call the mid-line 
M H You're less likely to have any problems 
EA Yes because they cancel each other out you see..thats..so i f you 
see.slow waves which could be eye movements, actually recorded in the 
mid-l ine.I think we've mentioned this before, then they're less likely to 
be eye movements, and here's that wave again. This particular position is 
one that which goes round the head, so that's 2 right, f think, I in the 
middle and 2 lef t , and here you see eye movement, one and you see there's 
almost no eye movement there..and here.the slow wave is actually at it's 
maximum in the mid-line..a]l right..mid-line... 
M H Do you think we could possibly mark this page as well 
EA Right, so um..anything else 
M H Well I think that you've just about shown me all the abnormalities 
EA Lots of interesting, there's ECG don't forget to mention, you could 
wonder what that was.because..it could look like a funny blip..now here's 
something that's going on here, now this is, this is..seems to be..it's in 
position 2 (montage 2). So the first bit we talked about was position 
L.what we're talking now about is position 2...now we've got some very 
funny stuff happening here...but here these um 1,2,3,4,5,6,7,8..we've got 
a slow wave here.occuring on the left.so here we have the situation where 
it's worse on the left than on the right..yes.because that slow wave is 
happening on the left and not on the right.! don't think its eye 
movement.this is left,right.because this is the position that 1 mentioned 
before and we're going across the head, so i f anything is eye movement, 
that's eye movement, but I don't know wether it is or not, it could be and 
A ) you have in the middle these particularly slow waves, yes, so they're 
happening in the mid-line.. 
M H Where you wouldn't expect any eye movement 
EA Yes, that's right, and now i f we come back to this bit . so in fact 
we've got eye movements happening here as well 
M H so in this cas it's a combination of the 2 
EA Yes, that's right. There's these great big slow wave in the mid-line, 
and., and this is left..and I think that this little eye movement is..this 
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one 
M H Why should that movement.on er.why should that movement not be part of 
the slow wave.. 
EA U m , because it's going in the opposite direction,.as we've just 
mentioned 
M H Yes 
EA It's, that, and that, and we've got that in the middle(referring to 
diagram)....so that's where we've got a combination of it.and there's even 
a bit there.and a bit there..and there's another um 1 don't know 
whether there's eye movement there or not.. 
(Break in interview caused by telephone) 

is 





APPENDIX K 

This appendix provides the software listings for the complete lOARS. 
The software is comprised of three sections: 

-PROLOG software listings. 
.C software listings. 
.Assembler software listings. 

PROLOG is used for symbolic EEG feature conversion, knowledge 
manipulation, user interface, and rule representation. The PROLOG software 
listings consist of the following modules: 

. main - provides the entry to other modules via a main loop. 

. cnv - provides the conversion routines to map between numerical and 
symbolic EEG features. 

. inf - provides the forward/backward inferencing mechanism with 
uncertainty management. 

. sup - provides the support routines to handle data loading/saving. 

. win - provides the window definition routines. 

. ut - provides various utility routines. 

The software was written using the BORLAND TURBO PROLOG software 
package. 

C is used for numerical feature extraction. The C software listing 
consists of the following module: 

extoprol - this is a large program that includes three callable 
modules: 

. extract-psd - provides the PSD feature extraction routine. 
extract-ac - provides the autocorrelation feature extraction 

routine. 
extract-cc - provides the cross-correlation feature extraction 

routines. 

The software was written using the BORLAND TURBO C software package. 

80286 assembler is used for file transfer and fast graphical EEG 
display. The assembler software listings consist of the following modules: 

. readPSD - reads an ILS PSD file. 

. readCORR - reads an ILS correlation file. 

. line - plots an EEG time series. 

. load - loads a mode 12h graphics screen. 

. readEEG - reads a binary EEG data file (from DAS) 

. scrorig - scrolls the graphics screen. 

. vidmode - sets the graphics video mode. 

The various modules are linked together using a project file with the 
assembler files in a library called EEG.lib and the compiled exioprol file. 



/ • FILE: •main2-mo.pro* •/ 

/ • make using EEC.prj and l ib files Prolog,EEG.fpS7.MMhl wid C I . ' / 

/ • EEC2.pr]: 
mnin2-mo+ / ' includes dec6_mc>d.pro • / 

cnv2-modi-
inf6-mod+ / ' include* uni^mod-pro V 
sup3-rnod + 
uU-mod + 
win 2-mod -t-
e;tioprol.obj 

• / 

/* EEC incorporates as&cmblcr rou t inu called from c cKicmal predicaics */ 

/ ' EEG.lib: 
ReadPSO.asm - read PSD ILS HIc. 
RcadCORR.asm - taul Corcclaiion ILS file. 
LINE.asm - plot EEC time series. 
LOAD.asm - load graphics mode 12 Kcrecn. 
READEEG.asm - read binary EEG dau . 
READKBD.ftsm - icon Vc>-board(including emended keys). 
SCRORlG.asm • 

B L A N K S C R E E N - turns display o f f while image is loaded. 
S C R E E N O R I G J N • sets start address o f video display, 
SETWIDTH • seu width of display. 
SHOWSCREEN - turns display on. 
SPLITSCREEN • creates two graphics display areas. 

^'IDMODE.asm • sets the graphic* display mode. ' / 

/ • called as EEG2 cxc ' / 

project "EEG2* 
include *dcc6-mod.pro" / ' global dcclaraiions mt>dule ' / 

predicates 

run declared in dce5_mod,pro as global ' / 
main_choice(INTEGER) 
siop_main{lNTEGER) 
-onirol_choice(INTEGER) 

opconlroKINTEGER) 

goal 

tcjttmodc<24.80), special to old pcV v g a ' / 

load_lcb. 
nevk_condi. 
repeat. 
main_window, 
main_mcnu(Choicel), 
main_cboicc(Choice I ) . 
stop_main(ChoiceI), 
rcmovewindow. 



/ • 'stop* is a backuack&ble predicate to cause a failure i f the choice is 

not 'ESC' or EXIT, hence repeal to the main menu • / 

siop_main(0). 

$iop_main(3) :-

s h i f t w i c d o u t i ) . 

curwjr<12.17). 

WTitc(*F I N I S H . ore y o u sure ? (y or n) ' ) , 

readchar(C), 

UTi lC<C) . 

c=-y. 
trans_iru2Iog. 
goodb>c_window, 

wTiic<*\n EEG\n Termirmtcd"). 

uait_count(20000), 

».-aii_count(20000), 

u-aii_count(20000), 

r e r a o v e m n t l o w , 

reraovc«-indow<1.0). 

siop_conirol(0). 

siop_conifol(5). 

/ * 'main_choicc' is a scries of windows selected from the main window to give 

access to the highest lc\'cl program functions. */ 

main_choice(l):-

gct_dala. 

c)car_C0Rteju, 

start coateju. 

main_choice(2):-

rcpeal, 

control_mcnu( Cho ice2), 

contral_choicc(Choice2), 

5iop_control(Choice2). 

m a i n choicc(3) 

main_choicc(_) :• 

stop_matn(3). 

/ ' *control_choicc' is a scries o f wudows selected from the maia window to give 

access to the second level program functions. ' / 

contj-ol_choice<l) :-

daia(J . 

montur, 

con t ro l_cho ice (2 ) :• 

d a t a t j . 

s c l ec i_segmcm. 



control_choicc<3) :• 

clcJir. 

n c w _ c l a i « _ c o n d s . 
p f O c e s i _ w i n d o w , 

g a _ f c a i u r c s , 

l o g _ f c a t u r c s . 

r e m o v c w i n d o w , 

( l c c i i i o D _ w i n d o w , 

decision. 

r e m o v c w i n d o w , 

conuol_choice(3) :-

not(seg(J). 
w a r R i n g _ w i n d o w , 

wTiteCYou must select a segment f i rs i*) . 
wTi[e('\nPrcss any key to continue.. . ' ) , 
rcadchar(X). 
removcwindow. 

cont ro l_choicc(4) 

i n i p e c i _ k b . 

control choicc(S) 

conirot_choice( Choice):-
not(datfl(_)). 
Choice< > 0 . 
warning_window. 
writcCYou must load data firsf). 
writeCVnPress any key to continue...*). 
rcadchar<X). 
rcmov'cwindow. 

con t ro l choicc<_) :-

s top_cont ro l (5) . 





/ ' File: dec6-mod.pro •/ 

/ • This module contains the global domains, daiabases and predicate 
dcclaraiions. •/ 

global domains 

CONDITIONS = Cond_No' 
HISTORY = Rulc_No« 
Rule_No. Cond No, FNO = INTEGER 
CATEGORY ° STRING 
data_rilc - Oiing 
file = save_rilc 
slisi = string' 
nisi = CCAI" 

CF - real 
CFS = CF-
INT-rcfcrcncc INTEGER 
INTlist » I N T " 
PARAMETER = reference SYMBOL 
"-MR-patrCPARAMETER.PARAMETER.INTl 

. IRJ t s i -PAlR ' 
PARWlisi = PARAM ETER' 
Uis i = PARMli$i" 

global database 

rule(Ruic_No.CF.CATEGORY,CATEGORY.CONDmONS) / ' text ru le ' / 
tcx_cond(Cond_No.STRING) /"text condition'/ 
num_cond(Cond_No.PARMIist) /•numcricaJ condition'/ 
ycs(Cond_No,CF) /'successful condition and certainty'/ 
no{Cond_No,CF) /'unsuccessful condition and certainty'/ 
f rf(CF) /'successful condition demon certainty'/ 
minimum(CF) 

cl(PARMIisi.CFS.Uisi) /'clausal represeataiton for inteqjrener'/ 
eeg_pcak(PARAMETER.PARAMETER.PARAMETER) / ' fact asserted by demons'/ 
sym_peak(PARAMETER.PARAMETER) / ' f ac t asserted by demons*/ 
larg(PARAMETER.PARAMETER) / ' fact asscncd by demons'/ 
• ta_file<daia_file) 

..anncK I NT, PARAM ETER. PARAM ETER) / 'EEG/EOG channels present'/ 
auu>corr(INT) / ' channels to obtain auiocorrciation ' / 
crosscorr([NT,INT,INT) /'channels and file to obiatn crosscorrclalien */ 
adiacent(PARAMETER.PARAMETER) 

lr_sym(PARAMETER.PARAMETER) / '(ymeirical anribmes'/ 
pcak(rcal.PARAMETER) /'peak names'/ 
froi_bounds(PARAMETER,real.reaJ) / ' fuzzy frequency bounds-/ 
powcr_bounds(real,PARAM ETER) / ' fuzzy power bounds'/ 
similar_bounds(real,PARAMETER) / ' fuzzy correlation bounds "/ 
<lata(ctring) / ' daiasei number ' / 
seg(aring) / ' segment number ' / 

global predicates 

run 

evalans(char.HISTORY.CATEGORY.CF) - ( i . i . i . i ) / ' clause io ul-mod.pro ' / 
dear / " clause in ui-mod.pro ' / 
waii_count(INTEGER) - ( i ) / ' clause in ui-raod.pro ' / 
feve^se<CONDmONS.CONDmONS) - (i .o) / ' clause In ut-mod.pro ' / 
reversel(CONDiTIONS.CONDmONS.CONDrnONS) - ( i . i .o) / ' clause in ut mod.pto ' / 
no_fyi_error(siring,integer) • ( i . i ) / ' clause in utJ-mod.pro ' / 
main window / • clause in wind-mod.pro ' / 



mjiin_menij(INTEGER) - (o) / • clause in wind-mod.pro ' / 
control_mcnn([NTECER) - (o) / • clause la wtn2-mod.pro ' / 
pfOCc»s_window / " clause in wind-mod.pro ' / 
dcc is ion_wii jdow / • clause in wind-mod.pro • / 
l i s i_wif ldow/" clause in wtnd-mod.pro ' / 
logopt_wiadow([NTECER) - (o) / ' clause in wiad-mod.pro " / 
listopt_window(INTEGER) - (o) / " clause in wind-mod.pro ' / 
cdit_window / ' clause in wind-mod.pro • / 
question_wiRdow(INTEGER) - (o) / • clause in wind-mod.pro ' / 
explain_window/» clause in wind-mod.pro ' / 
goodbye_wiadGw / • clause in wind-mod.pro " / 
(cb_select_window(siring) - (o) / ' clause in wiod-mod.pro • / 
daia_ficlect_window<string) • (o) / • clause in win2-mod.pro • / 
sclcct_segracnl_wTndow(Ktring) - (o) / ' clause in wmS-otod.pro ' / 
rulcs_selea_window<string) - (o) / ' clause in win2-mod.pro ' / 
w a m i n g _ w i i i d o w / • clause in win2-mod.pro • / 
load_kb /'clause in sup2-mod.pro */ 

nondeterm repeal / 'clause in tdonu.pro ' / 
gct_reatures /'clause in conv-mod.pro • / 
decision /'clause in inf4<inod.pro ' / 
edit_kb /'clause in Eup2-mod.pro */ 
' - spec t j og /'clause in Bup2-mod.pro ' / 

{>cct_kb/'clause in sup3-mod.pro • / 
list /'clause in sup2-mod.prD • / 
nondetcrm savc_kb /'clause in Rip2-mod.pro ' / 
gct_lcb /'clause in sup2-mod.pro ' / 
get_data /'clause in Eup3-mod.pro ' / 
selecl_scgment /'clause in sup3-mod.pro ' / 

nondetcrm shew_ruIe(Ru]e_No,string) - (i.o) / 'clause in inf4-mod.pro ' / 

nondetcrm rcport(HISTORY,suing) - (i .o) /'clause in inf4-mod.pro ' / 

nondcterm mfer(HISTORY.CATEGORY.CF) • ( i . i . i ) /'clause in inf4.mod.pro ' / 
erase /'clause in sup2-mod.pro ' / 

start_contexi / ' l o a d dummy starting context proftles ' / 
clear_conteja / 'clear conuxiual features*/ 

contcxi_asscrt(chaf.CATEGORY.CF) - ( i . i . i ) / ' prov'ule a local conteju for mfercncc ' / 
measure_of_belief(PARAMETER.CF.CF.CF.CF) - ( i . i . i . i . o ) / 'certainty combinaiion'/ 
oew_conds / ' clause in sup3>mod.pro */ 
new_data_conds / ' clause in sup3-mod.pro */ 
log_feaiurcs / • clause in sup3-mod.pro ' / 
l og_coQd» / ' clause in sup3-mod.pro ' / 

' <;_resulu(chaf .CATEGORY.CF) - ( i . i . i ) / • clause tn lupa-mod.pro ' / 
j i s_uu21og/" clause in sup3-mod.pro • / 

/* the fol lowing predicates are cxtcrruil and wrioen in c. A l l predicates ' / 

/ ' ore contained ia the Tile exioprol.c because the prolog project facility ' / 

/ * seems unable to l ink muliiple external object files. */ 

CAUactPSD([NTEGER.nist) - ( i .o) language c / ' clause in exioprol.c. INTEGER i i the ' / 

/ • I L S record Tile number, and flist is the returned l inked ' / 

/ • l i s t o f spectral peak features'/ 

extractCORR([NTEGER .nin) • ( i .o) language c/* clause in extoprol.c. INTEGER is the ' / 

/ ' I L S record f i l e number, and flist is the raurned l inked ' / 

/ ' l i s t o f correlation features'/ 

monitor - language c /* clause in mon.c. Displays graphics data ' / 

KG 



/ • F I L E : cov2-niod.pro'/ 

/* Program to convert input feature Itsis to asscaed feoiure facts 

in clausal form. V 

project 'EEC2 ' 
include *dec6-iiiod.pro* 

domaiiu 
clement =p(PARAMETER): 

l(CFS) 
XI is iB element* 
Y l i a - X l i a -

predicates 
/* gct_reaiures declared in dec4'mod.pro */ 

get_AC_fcaiurcs 
gei_CC_fcaiures 
ga_PSD_fcaturca 
tol;eaiBe_PSD(nia.PARAMETER) 
•'-kcnise_AC(nin.PARAMETER) 

.cnisc_CC(nist,PARAMETER.PARAMETER) 
change_PSD(nia.Xliu) 
Plc_aMen(Ylisi.rcal.PARAMETER) 
f r«L« ' l t ( rcal ,PARAMETER.rcaJ) 
powcr_[Ok(rcaJ .PARAM ETER) 
widUi_tolc(real .PARAMETER. P A R A M ETER) 
[ag_tok(real.PARAMETER,real) 
corf_tok(reai .rcaJ. PARAMETER) 
n_lok(rcJiJ.PARAMETER) 
fm_lok(real.PARAMETER) 
appcnd(PARMlist.PARMIisi.PARMli$i) 
calc_FRF(rcal . r e a l . real, real) 
icl_specd(rea] .rcAl .real .PARAMETER), 
garbage 
no_ihcta 
no_aJpha 
no_t>cU 

/ ' s t a i t ^ c o n t c A i declared in dcc5-mod.pro • / 
/ • •caf_conieja declared in dec5-mod.pro ' / 

/ • -n tc«_as te r t ( char .CATEGORY,CF) declared in decS-mod.pro • / 
sir in g_to_ty tnbol (CATEGORY. PARAM ETER) 
asscnJoc_ctt( PARAM ETER.CF) / • local come;it • / 
aisen_hin_cu( PARAM ETER.CF) / • historical context • / 
ga_old_his t (PARAMETER.CF.CF) / • old historical context • / 
gc t_a«_rac (PARAMETER.CF.CF.CF) 
any_abnonnal(PARAMETER.PARAMETER.CF) 
tsAn$Yes(char) 

c l a u s e i 

get_feaiure«:-

ga_AC_realurci. 

gct_CC_featurci. 

get PSD features. 

ga_fcaturcs:-

writc(*ERROR: f a i l e d to extract fea tu re* .* ) . 

w . r i i e ( ' \ n \ i i p r e M any key to c o n t i n u e . . . " ) , 

r cadchar (Ant ) . 



gc t_AC_feaJur« : -
autoca rr(Chan_Qu in). 
chftflnd(Chan_num .Chun,_). 
writer(*VaConsuUing ILS for Autocorrclaiioo Vndaia from channel %a*.Chan). 
cxtraciCORR(Chan_num.Feai_List). 
o l . 
wTitc<Feal_Ua). ' / 
token Lse_AC(Fcat_Lia,Chan). 
rcadchaf(AQ8).-/ 
f a i l . 

gei_AC_ features;-

gct_CC_fcanircj:-
cras£corr(Chan_aum I ,Chcin_num2,File), 
chiUinel(Ch&n_ouni I .Chan I . _ ) . 
channcl(Chiu]_atim2 ,Chan2._). 
wTiicf(*\nCoQsuIiing ILS for Crosscorrclatioo \ndaia from channels %s and %s*,Chanl.Chan2), 
cx t ra«CORR(Ft Ie . FeaI_Lisi). 
wrue(Feat_List). ' / 
iok<n'ise_CC<Fcfti_List.Chan I ,Chan2), 
readcharCAns)."/ 
fa i l . 

get CC fcaiurcs:-

get_PSD_fcaturc«:-
channd(X.Qian._), 
wTticfCVnConsuItiog ILS for PSD daia from Vnchanncl %s'.Chan). 
extract PS D(X. Feai_Lia) . 
n l . 
wriie<Feat_List), ' / 
wTite('\n\nTokeni<ing PSD data....\n"), 
token i»c_P$D(Fcai_Usi .Chan) , 
f a l l . 

-^_PSD_fealures:-
garbage, 
no_thcta. 
no_a]phA. 
no_bctA, 

rcadchar(Ans)."/ 

tofceniie_AC(t_.F' ' rs tJ«g.F»'r t_m»g.La8.Co"I.Chan):-
writeCVnTokcnising AutocorrclaiioD\ndata....*). 
lag_tok(Uig.Spccd.FRF). 
corr _tok(Lag .Con . C y d c j ) , 
n _ t o k ( F i f « J a g .Phaie). 
rm_tok(FiTtt_inag .Strength), 
appcnd(['ac_rcaiurc*.Cban|,(Phuc.Sirength,5pced.Cyclc3).Tfcai). 
n l . 
wr i t e fTfca i ) , ' / 
as«n(cICTfeai.[FRFl.ll)). 

token ise_AC(_. Chan): -
w f i i e ( | ' \ n W A R N I N G : failed to extract AC feaiuresfrom channel lis.*.Chan). 

1^3 



tokenise_CC(|_,Firsi_lag.First_mag.Lag.Corr I.Chan l.Chan2):-
wriie('\nTokcnising CroiscorrclationVndaia....'). 
tag_u)k(Ug.Speed.FRF). 
corr_tok(Lag.Corr .Strength), 
n tok(First_lag,Phase), 
fm iok(Firsi_mag.Similar). 
concal(Chan I . " : * .Label 1). 
concat(Label I .Chan2. Label 2). 
append((*cc_fcaturc*,Label21.(Phase.Similar.Speed .Strengthl.Tfcai). 
nl . 
uTi icfTfcat) , ' / 
asscn(cl(Tfeai .[FRF].())). 

iokcnisc_CC(_.Chan I .Chan2);-
wTilcfCXnWARNING: failed to extract CC fcaiuresfrom channel 5ts: %s. *.Chan I .Chan2). 

•nkcnisc_PSD((J.J: 

tokcni»c_PSD( |Pk .A.B.C |L | ,Chan) : . 
nndaJI(Pcak.changc_PSD((A.B,Cl.Pcak).Ylist). 
Pk a5scrt(Ylist.Pk.Chan). 
lofccnisc PSD(L.Chan). 

tokcnisc_PSD(_,Chan):-
wri tcf(*\nWARNING; failed to extract PSD features\nfrom channel %s.'.Chan). 

Pk_asscn([l._.J: 

Pk_asscn(i[p(B).p(A).p(S).l(FRnist)I | Rcst_PksI.Pk.Chan): 
pcak(Pk.Pk_sym). 
append(['f_fcature'.Chan.FV_syml.lB.A.Sl.Fcai). 
nl . 
wriie(Feat),"/ 
nl . 
M.Tiic(FRFlin).'/ 
a£scn(cl(Fcat .FRRist . [])) . 
Pk asficrt(Rcst FVs.FV.Chan), 

/* changc_PSD is a noo daerminisiic predicate used in fmdall ' / 

change_PSD((Fre<].Power.Widthl.(p(Band),p(Amp).p(Speed).I({FRFl)l): 

ffeq_iok(Fre<].Band,FRF). 
power_tok(Power,Amp). 
width_lok( Fret).Band .Speed). 

f rrcq_tok is o noo daerminisiic predicate used to identify multiple bands */ 

/ • for the some PSD peak... therefore there is no need for a cut. ' / 

fre<i_tok(Fre<i.Band.FRF):-
rrcq_bounds(Band,Lbound.Ubound). 

Frcq > oLbound, 



Freq< aUbound. 

calc_FRF(Lbound. Ubound. Fre<]. FRF). 

powcr_tok(ft)wci,Amp):-

Power_bound5(Lbound.Amp). 

Pov-CT > eaUmund. 

widtS_tok(Freq.Band.Speed):-

frcq_bounds(Band.U>ound,Ubound), 

rcl _spccd(Freq, Lbound .Ubound .Speed). 

_tok(0.nonc_spced. 1.0): 

lag_iok( Lag .Speed. FRF):-
F r e q - ( 2 5 6 / U g ) ' 4 . 
freq_tok(Freq .delta. FRF), 
freq_boundi(dclia.Lbound,Ubound), 
rel_speed(Frc(].LbouQd,Ubound .Speed). 

log_lok(_.non_delta. 1.0). 

corT_iok(Lag.Corr.*high_c>-clcs ') ; 

/ • Lag '{CorT- l )> - 2 5 6 . V 

Lag 'Cor r> - 2 3 6 , 

c o r r _ t D k ( _ . _ , * l o w _ c y c l e a ' ) . 

n _tok(Firsi_Iag,' oone_pluise'): 

F i r a j a g < " 1 0 , 

n_tok(Fira_lflg, "delay j jhasc*) . 

rai_tak(Fira_inag.Strength)> 

similar_boundx(LbouDd,Sueogth). 
Rrst_(nag> oL iMund , 

append(n.UL):-

a p p e n d a X | L I I . L 2 . I X | U | ) : 



appcnd(L l .L2 .U) . 

;aIc_FRF(Lbound.Ubound.Fre<i,FRF): 
Frcq> =Lbound, 
Frcq< =Lbound*4 . 
FRF = ( I -((Lbound ^ 1 )-Frcq))/d. 

calc_FRF(Lbound.Ubound.Frc<),FRFl: 
Freq> =Ubound->, 
Freq < =Ubound. 
FRF = (Ubound.Frcq)/-:. 

calc_FRF(_._._.1.0). 

rcl_spccd(Freq.Lbound.Ubound.'highspccd'):-
Frcq> =Ubound-J. / ' ((Ubound-Lbound)/3). ' / 

rcl $peed(Freq.Lbound.Ubound.'med speed*):-
Freq> =Lbound*-l , /•((Ubound-Lbound)/3). ' / 

rcl_speed(_,_,_.'low_speed"): 

garbage:-
rcUaci<cU|f feature. . ._._._).10| .J) , 
fai l . 

garbagc:-

noihcta:-
reifacLaJI(cl([f_feaiure._._,ihcia._,_)._._)), 
fail . 

noalpha:-
r e t r 8 C t « l l ( c l ( [ f _ f c a i u r c , _ . _ . a l p h a . _ , _ ) ) , 
fai l . 

no alpha:-

no_bcta:-
reuactall(cl((f_fealure._._.bcta._._)._,j). 
fai l . 



/ • context clauses. These clauses are used to assert contextual features. •/ 
/ • in clausal form, into the knowledge base. */ 

ct6ar_conicxt;-
reuaaa l l (c l{ lc_fea tu re ._ . j ,_ . j ) . 

start^coniexi:-
assert<d(["c_rcalure'.'cla3S_tota]5*I.I01.(l)). 

CO ntexi_a»sen<Ans .Classificaiton, M B):-
UAnsYes(Ans). 
sir in g_u>_sy mbol(aassi ficotion .Symbol). 
assenJoc_cu(Symbol.MB). 
osscn hist ctx(Symbol.MB), 

conicxi_asseit(_ . _ , _ ) : • 
rctractaH{cI(Ic_feature,local. J . _ . J ) . 

isAnsYe$(Ans):-
A n s o ' y ' . 

!. 

isAnsYcs(Ans):-
Ans=.-Y-. 

siring_to_s>mbol(Clas4tricalion,Symbol):-
fronaolcen(Classiricaiion,Symbol._Class). 

assen_loc_ax(Symbol,MB):-
rctraaall(cl((c_fealure.locaJ.J,_,J). 

assert(cI(rcJ"""'^' ' ' '<«*^'-SymboII.fMBl,t])). 

assen_hia_ax{SytnboI_in.MB>:-
any_abnornial(Symbol_in.Symbol_out.Proportion). 
get_oId_hisi(Symbol_out.Old_MB,OId_num), 
cl((c_feaiure,clau_totali|.(Total).[]), 
New_num=OId_num+ I . 
New_to t=To ta l+ l . 
FraciiOQ = Proportion 'New^num, 

gct_an_facC + " . Fraction. N e w t o t . A F ) . 

measure_of_belief(' + -.AF.MB.01d_MB.Ncw_belieO, 
retractall(cl([c_feaiure,historical .Symbol_out|.[_. _ ] , [ ] ) ) , 
asscrt(d((c_feaiure,hi£torical.Symbol_oui|.[Ncw belief.New num],!))). 
retractAll(cI([c_feaiure.clau_totals|.[_].U)). 
asscrt(d((c feaiure.class uiuili) ,[New to t | , ( | ) ) . 

assert_h is i_ax(_,M B): -

gei_old_htst(abnormal,01d_MB,01d_num), 
O I d _ n n m < > 0 , 
cl([c_featurc.class_totals),(Total),IJ). 
N e w _ t « - T o t a l + l , 
gct_aa_fac(*.',OId_oura,New_ioi,AF). 

mcasure_of_belief('- ' .AF,MB.OId_MB,New_belieO. 
rctractftlI(cI((c_feaiurc,hisiorical.abnormalI,|_._J,())), 
as£crt(cl((c_reaturc,historica],abaormal],(Ncw_bclicf,01d_num].())), 
reU'BCta]l(cl<(c_rcaiurc.clau_totals|,(_),(])). 
asscn(d((c feaiure.class toials|.(New tot),{))). 



assert_hist_ctx(_. J ; -
cI(tc_fcaturc.class_totalsl,(Toial),[)), 
Ncw_tot -Tota l + 1 . 
retractall(cl({c_fcaLure.class_totals|.[_|.(])), 
assert(cl([c rcaiure.elsss_toials),lNcw_ioil.t])). 

any _abnormal([nainly_OA,abnormal .0.2):-

any_abnormal(dctectabIe_OA.abnormaI.0.4):-

!. 

any_abnormal(mainIy_abnormaJ.abnormal.0.6): 
I 

any _abnormal(abnorma] .abnormal .0.8). 

-et_old_hist(SymboI.MB,Nutn):-
cl([c_fealure.hisU)rical.Symbol|.(MB,NumI,[l). 

!. 

gct_old^hisi(_,0.0). 

ga_ait_facC +*.Num,Tota!.AF): 
AF"Num/To ta l . 

ga_aa_facC-' .Num.Total.AF): 
A F = (ToiaJ-Num)n"otAl. 





/ • File: i n f 6 - m o d . p T O ' / 

project •EEG2" 
include 'dec6-mod.pio' 
include "uni-mod.pro" /* unification module for prolog interpreter "/ 

/ • This module contains the inference mechanism for ihc system. The inference 
iVMcm works by negotiating a tree type decision structure... 

start state wave 
1 
I 

I I 
level I cerebral artefactual 

I I 
I ...1 1 I I I I 

I I i 
level 2 FUTURE EXPANSION other perspiration movement eye movement 

I 

l> J{goal) vem hem blink 

The ultimate decision, of lAhether or not to correct, is at ihe goal level. 
This decision is. however, influenced and dictated by the result of 
ncgoiiaiing levels 1. 2 and 3 of ihc decision tree. tnf2-mod.pro also incorporates 
uncertainty in it's reasoning, using similar CERTAINTY FACTORS as those used 
in M Y C I N . ' / 

dumsins 
Mygoal s= siring 
N T - I N T E G E R 

predicates 

/* inference predicates */ 

/* cision calling predicate for reasoning • declared in decj-mod.pro ' / 
/• infer(HISTORY.CATEGORY,CF) predicate to cuplorc decision tree • declared in dec5-mod.pro ' / 

combine certainiy(CF.CFS,CF.CF) /'combine rulc.conditions and previous ceru in iys ' / 
test conds(Rule_No.HISTORY.CONDITIONS.CFS.CFS) / T m d the Uuth of an individual condi t ion ' / 
get certainiy(Cood No.Cond No.Rule No.HISTORY.STRING.NT.CF)/ 'get certainty f rom either kb. features or user'/ 
enq_user(NT.HlSTORY.Rule_No.Cond_No.Cond_No.STRING.CF) / 'get user supplied certainty'/ 
do_answer(NT.HISTORY.Rule_No.STRlNG.Cond_No.Cond_No.INTECER.CF) /'process user certainty'/ 

/ • mea»ure_of_bel ief(CF.CF.CF.CF) declared in dec5-mod.pro ' / 
lib_andcombine<CFS.CF) / ' C F = minimum(CFS)'/ 
con_andcombinc<CFS.CF)/'CF - iniersection(CFS)'/ 
min_cf (CFS.CF) / 'min ' / 
min(CFS,CF) / ' m i n ' / 
cf_member(CF,CFS) / • to find out if CF is a member of the CRist •/ 
a**en_fff(PARMIiEi.CF)/'assen a futzy factor'/ 
frf_combine<CF.CFS) / ' f u u y factor combination'/ 
merge<CFS,CFS) /'produce a list of fuzzy factori from asserted f a c u ' / 

/* feature consultation predicates ' / 

consull_feaiures(Cond_No.Cond_No.Rulc_No.HISTORY.STRING.NT.CR / T m d truth of an individual condi t ion ' / 
/ ' by invoking rule interpretter"/ 



hcad(PARMlisi.PARMlist,PAIRJi5t.PAlR]i5(.IND/*rcaiurc demon rule head*/ 
body(Uis i .PAIR]ia .PAlRl ia , INT, lNT) / ' femurc demon rule head"/ 
iPred(PARAMETER.PARAMETER.PAlUMETER) /"imcrpreaer acccw to iniernal predicaicsV 
dcuniry(PAR.Mlii:,PAIR]id,PAJRlta)/ 'reverse actoa o f unincaiton*/ 
deuniry_B(PARAMETER.PAlR]t«.PAJRlist) 

/ • cAplonaiioo predicates • / 

/ • show_rulc<Rale_No.siring) display rule - declared in dec4-mod.pro • / 
show_corid(Cond_No,afing) / 'display conditions*/ 
sub_^CATEGORY.CATECORV.CATECORY) 
show_condiiions(CONDmONS .siring) 
add(Cond_No,suing,EUbg) 

/* rcport(HISTORY,siring) display hisiory of reasoning - declared to dcc4-mod.pro */ 
/ ' log_coads • save true conditions to temp log • declared to dec6-mod.pro */ 
/* log_rcsuIU(char.CATECORY.CF) - save results to temp log - declared io dec6>mod.pro*/ 
/* traru_tru2Iog(ctiar) - transrer temp log to proIog.log - declared in dec6-mod.pro ' / 

/ • I - " ' -ence clauses • / 

decision:-
clcarwindow, 
M y g o a l " 'segment)' 
n l . 
o l . 

inferdUlygoal .O) . 

decision:-
WTiic<*Vo\nThe knowledge base does not identify i h u . 
cvalansCo\D." .0) . 

infer(HISTORY J^ygoaJ .Prcv_CF):-
not(rulc(_._.Mygoal._.J) . 
I 

data(Dname). 
£eg(Sname). 
wrttcf(*\n%B %s contains %s.*,DQajne,Snaine.Mygoal). 
wriieft'VnTbe measure of belief « ' ) , 
wr i ie f [*f t 1.2r.Prcv_CF).nl,nl, 

- wr i teCl i this correct? (enter y .n or ?) ' ) , 
reaachar<Ans), 

^ ^ f l J y s f ^ ^ I S T O R Y . M y g o a i , P r e v _ C F ) . 

urTitef(*\n\nPlcasc wait a moment \nwtiile I record this session...*). 
cootext_asscft(Aos.Mygoal,Prev_CF). 
log_conds, 
log_rcsDlts(Aru>1ygoaJ.I^cv_CF). 
rcmovewiodow. 

infer(HIST0RY>1ygoaI.Prcv_CF ) : -
nile(RtiIe_No.RuIc_CF,MygaaJ,NY.COND). 
wrilcC\nMygoal is ' .Mygoal .* and NY U " . N Y ) . ' / 
writcfC\o\nRuIe ftd\n'.Rule_No). 
tcst_cond»(RuIc_No.HISTORY. COND.t 1 ] .OUT_CFS). 
combine_certa inty(Rul e_CF .OUT_C PS ,Prcv_CF. N e w C F), 
•mrerflRuIe_No| HISTORY] . N Y . N e w C F ) . 

test_conds(Rule_No.HISTORY.|999I.IN_CFS.OUT_CFS): 



OUT CFS=IN CFS. 

i « i _ c o n d s ( R u k _ N o . H I S T O R Y . I C o n d N o I RESTI.IN_CFS.OUT_CFS): 
/ ' i*Titc(*\niest_condi I').'/ 

>cs(Cond_No.CF). 
I _ 

tcit conds(Rulc No. HISTORY. REST. |CF| IN CFSl.OUT CFS). 

tcM_conds(_._.|Cond N o l J . I N CFS.OUT CFS): 
* r i t c < * \ n t c M conds 2"),*/ 
no(Cond_No,_). 
OUT C F S - I N CFS. 

(Ail. 

lcsi_concls(Rule_No.HlSTORY.iCond_No|REST].IN_CFS.OUT_CFS):-
wriic('\n(esr_condi 3 ' ) .* / 
icj(_cond(Cond_No.NCOND). 
rronttoli;cn(NCOND.'not'._COND). 
frontchar(_COND. .COND). 
lcx_cond(Cond Nol .COND) . 
g«_cena imy(Cond_Nol .Cond_No .Ru lc_No .HISTORY.COND. l .CF) . 
I 

icM condi(Rule_No. HISTORY. REST.|CF| IN CFS|.OUT CFS), 

i « t _ c o n d s ( _ . _ . I C o n d _ N o | J . I N _ C F S . O U T _ C F S ) : 
wtiieC\nteM_conds 
ie)i_cond(Cond_No.NCOND). 
fconilok;cn(NCOND,"not"._COND). 
fronichar{_COND._.COND). 
lc*_cond(Cond_No I .COND). 
ycs(Cond_Nol._). 
OUT CFS = IN CFS. 

rail. 

-M_conds(Rulc_No.HISTORY.ICond_No[RESTI.IN_CFS.OUT_CFS):-
wriie<-\nlcs_condt 5") , ' / 
icx_c<3nd(Cond_No.COND). 
no((fronnoken(COND."noi*,_COND))."/ 
conctttCnot ' .COND.NCOND), 
[«_cond(Cond_No I .NCOND), 

g«_ccr tam:y(Cond_Nol .Cond_No,Rulc_No.HlSTORY.COND.O.CF) . 

ica_condi(RuIe_No. HISTORY. REST.(CF|IN CFSl.OUT CFS). 

ica_conds(_._.[Cofid_No|_).IN_CFS.OUT_CFS): 
wTiic<'\nlMi c o n d « 6 ' ) . V 
ieR_«iod(Cond_No.COND). 
noi(fromioken(COND, 'noi ' ,_COND)). ' / 
conauCnoi ' .COND.NCOND). 
iM_M)nd(Cond_Nol.NCOND). 
>c*(Cond_Nol._). 
OUT CFS = IN CFS. 

fai l . 

test conds(Rulc No.HISTORY.ICond No] REST).IN CFS.OUT CFS): 



wTiie<*\nlcsi_conds 7*)."/ 
tcjt_coml(Cond_No.TEXT). 
enq_user(0.HISTORY.RuIc_No,0.Cond_No.TEXT.CF). 
test_conds(Rule_No. HISTORY. REST.ICF] IN_CFS1.0UT_CFS). 

tcsi_condsC_._.(Cond_No|_I.IN_CFS.OUT_CFS): 
OUT C P S - I N CFS. 

t« i_conds (_ . _.U.IN_CFS.Oin-_CFS):-
" OUT CFS = LN CFS. 

gei_ccnflint}<Cond_No I .Gjnd_No,_,_._._,CF): 
no(CoQd_Nol,CF). 
assen(>'c&(Cond_No .CF)). 

ga_ccnaint}'(Cond_Nol ,Cond_No._,_,_,_._): 
yM(Cond_NoI.CF). 
ftssert(oo(Cond No.CF)), 

f a i l . 

gM_cenfllmy{Cond_Nol,Cond_No.Ru!e_No.HiSTORY.COND.NT.CF);-
tM_coad(Cood_No, Co nd i t ) , 
wriierC\nCondiiioQ %d'.Cond_No). 
consult_feaiures(Cond_NoI.Cond_No.Rule_No.HISTORY.COND.NT.CF). 
wFiiefCNjiCF = 5t f \n ' ,CF>. • / 

•/ 

consul i_feiiiiirM(Coad_No 1 .Cond_No,_._._._.CF): 
num_con<l(Cotid_No.Feature). 
head(Featufc.Feaiure,0,_.O). 

frf_coaibme(CF.CFS). 
/ • writeft'Vnmerged f r f t o * ) . 

write<CFS).V 
/ • writef(*VomIa f r f « %r .CF)."/ 
/" rc t raa4l l ( l f t rg(_,J) .V 

f ar t tc taJK«g_pe*l t (_ '_ '_)* • 
retnicuJI ( ty m j )eak(_ . J ) . 
assert(iio(Cond_Nol ,CF)). 
«se r t (yes (Cond_No. CF)). 

consuli,fciilurcs(Cond_Nol.Cood_No._._._._.CF):-
num_cond(Cond_No I . Feature). 
head(Featurc. Feature.(1, .0 ) . 
frf_combme<CF.CFS). 
writcf('Vnmerged f r f i = ' ) , 
write<CFS). 

wf i te f fViunm f r f " ? * r . C F ) . ' / 
r e i r a c u l l ( l a r g ( _ . j ) , ' / 
rciractaJ 1 (eeg_peak(_._._)). 
rciractal I (sy m_pcak{_._)), 
asKn(no{Cond_No.CF)). 



ttsscn(yc*(Cond_Nol ,CF)). 
I 

fai l . 

consull_fcaiurc*(Cond_NoI,Conel_No CF): 
num_con(J(Cond_No._), 
frf_combirc(CF.CFS). 
'*Tiief('\nmcfged frfs = " ) , 
wriic(CFS). 
wTilcfCVnmin f r f=%r .CF) . ' / 
rclrac:aJK1nJg(_,J).'/ 
rc(raciAjl(ccgj>eak (_ ,_ ._) ) . 
rcl raciAJ 1 (ly m j w a k (_ ._)) , 
ttSsen(no(Cond_No.CF)). 
a*senOci<Cond_Nol.CF)). 

Tail. 

consult fcaiurcs(Cond_Nol.Cond_No,_,_,_,_.CF): 
num_cond(Cond_No 1,_), 
frf_combinc<CF.CFS). 
wriicrCVnmergcd frfs = * ) . 
wriic<CFS). 
wraef{ ' \nmm f r f - % r , C F ) . V 
r«raciaJl(lt tJ-g(_.J),*/ 
rctraciaJI(eeg_pcak(_._._)). 
rctract4JI(sym_pealc (_._)) . 
asKn(no(Cond_Nol .CF)). 
astcn(yc&(Cond_No.CF)). 

consuIi_fcaiurc»(Cond_No I .Cond_No.Rule_No,HISTORY,COND.NT.CF): 
c n q _ u » c r ( N T . H I S T O R Y . R u l e _ N o . C o n d _ N o l . C o n d _ N o . C O N D . c n . 

•ad(Scl .Acl . lN.OUT.NUM):-
Acl=Cint_pred ' .O.Pl .P2) . 
iPred(O.PI.P2). 
uniry(Scl .AcI .Cim_pred- ,0 ._ ,P2l , IN,OUT.NUM.O).V 
unify(Scl .Fcl .Acl . lN.OUT.NUM.O). 

h « d ( _ , I • i n i_p r« l* ,_ ,_ ._} ._ ._ . J ; 

fai l . 

hMd(Scl .Acl . lN,OUT.NUM): 
S c l - C d e u n i f y ' l L i a l . 
deuni fy(Lin . IN.OUT) , 

hcad(ScI. A c l . IN .OUT . N U M l : -
cl(Fd.FRFlis: . ( l ) . 
FRFlL«t = ( F R f | R c « | . 
unify(Scl .Fcl .Acl . lN.OUT.NUM.O). 
asKrt f r f (Acl ,FRF) . 



hcad(Scl .Acl. lN.OUT.NUM):. 
gcibaclarack(BTOP), 
c l { F c l . a ( H | T ] ) . 

uoify(Scl .Fcl .Acl . lN.TBLA.NUM.O). 
body<(H|Tl .TBlJ^.OUT.NUM.BTOP). 

t>ody( I l .TBL.TBL. . . J -

bodydScI | J , I N . I N . N U M . B T O P ) : -
S c l « 1 * ini_pred', "cuiback*._._], 
cuibacktrBclc( BTO P). 

bodydSdlSrenl . lN.OUT.NUM.BTOP): -
uniry(Sd .Scl. A c l . l N . T B L A . N U M . I ) . 
hcad(Sc l^c l .TBLA.TBLB.NUM). 
body(Src« .TBLB.OUT.NUM ,BTOP), 

dcunify(U.IN.lN). 

deuni fy( tH |Tl . IN.OUT): -
deunify_B(H.IN.List) . 
dcunily(T,List,OUT). 

dcunify_B(A.( | .D). 

j u n i f y _ B ( A . [ p a i r ( A . T e n n . N U M ) | T l l , [ p a i f ( A . A . N U M ) | T 2 I ) : -

deunLry_B(A.TI.T2). 

dcumfy_B(A. (PAIR|Tl l . [PAlR |T21) : -
deunify_B(A.Tl .T2) . 

/ • hVTERNAL PREDICATE CALLS: Qausal conditions cannot access the staodord */ 
/* Prolog prcdicalei. This is ovecome by the use of the inijted predicate "/ 
/* which calls iPrcd to execute the internal predicate. ' / 

iPredCchannel'.X.Y): 

chanocJL.X.Y). 

iPredClr_sym*.X.Y): 
i r_ tym(X.Y) . 



iPre<lCIr_sym'.X,Y):-
Ir 6ym(Y.X). 

iPrcdC< > * , X . Y ) : -

X O Y . 

iP f« J ( ' = * , X . Y ) : . 
I 

X - Y . 

i P r c d C f a i l ' . _ . J : -

fa i l , 

rcd(*lfuc*._._):-
1. 
true. 

tPrcdCnotjieak*,Mag.Freq):-

noi(eeg_pciJcCdi:iifl*,Mag.Ffcq)). 
I 

iPred(*as5en _peak*.Mag,Frcq):-
; 

asscn(ceg_peakCdclia'.Mag,Ffcq)), 
!, 

i Prcd( * no t_sy m_pcak *. M . _ ) : -
!. 
not(i>-m_peak(*dclta* , M ) ) . 
!. 

iPfedCasa_sym_peak* . M , J ; -

asscrt(sym_peakCdelta',M)), 

i P r c d C > - . X . Y ) : -
I 
•» 
X > Y . 

iPredCrcadJrg-.C.V): 
larg(chan.C), 
larg{amp.V), 

i p f e d C f t M j r g ' . X , A ) : -
rcuactaJl(lajg(_,J). 
auert(targ(chan,X)). 
asscrt(tar g(anip, A ) ) . 



ipredCass_lrg_ecsi* . X . A ) : 
asscn(liLrg(ctian,X)). 
aS5ert(larg(anip.A)). 

iprcdCni_ftdj".A.B):-

noi<adjaccni(A.B)). 

/ • user enquiry predicate clauses. Should the ftaiure database noc coniain ' / 
/ ' (he information necessary to satisfy the rule conditions, then ihe user'/ 
/ • is requested for the information. ' / 

enq_user(KT.HISTORY.RuIe_No.Cond_Nol.Cond_No.TEXT,CF);-
wri teCIi it true thai ' . T E X T . * : *) , 
quesiioo_wtndow,<CHOICE). 
do_«infcer(rJT,HISTOR Y.Rule_No.TEXT.Coiid^No I .Cond_No.CHOICE.CF>. 

_ a n s w T r ( _ . 0 . 0 ) : 
erase, 
clear.'/ 
removewindow, 
run. 

do_an5wer(0._._._.Cond_No 1 .Cood_No.CHOICE.CF):-
CHOICE < 7. 
CF=(6-CHOICE)/5. 
ajsert(yes(Cond_No,CF)). 
as»ertiiio(Cond_No 1 ,CF)). 
shiftwindowp), 

writef( ' \o + %g*,CF). 
n l . 

•i_answer(0._._,_,Cond_Nol.Cond_No.CHOrCE.J: 
CHOICE > 6. 
CHOICE < 12. 
CF-{CHOICE-6)/5, 
asscrt(no(Cond_No.CF)). 
assen(yes(Cond_No 1 .CF)). 
fihiflwindow.t3). 
writcf["\n-%g*.CF). 
o l . 
f a i l . 

do_nnswer(I ._._,_,Cond_No I .Cond_No,CHOICE. J : 
CH0ICE<7" 
CF-(6-CHOICEy5. 
assert(Qo(Cond_No .CF)). 
assen(ycs(Cond_No I .CF)). 
•hiftwindow(3), 
WTitea"Vn + %g*.CF). 
n l . 
rail. 

do_answer(l._._._.Cond_Nol.Cond_No.CHOICE.CF): 
CHOICE > 6. 



CHOICE < 12. 
CF=.(CHOICE-6)/5. 

asscrtfy cs(CoDd_No ,CF)) • 
asscn(no(Cond_Nol .CF)), 
ihif twindow(3) , 

wr i ic fC\n-%g" .CF) . 
n l . 

do_aiis*er(NT.HISTORY.Rulc_No.TEXT,Cond_NoI.Coad_No.l2.CF):-

r. 
explttin_window, 

rule( Rule_No._, MygoaJl. MygoaJ2. _ ). 
sub_cai(Mygoal I .Mygoal2.Lstr). 
concaiCIl is necessary to show thai; ' . U t r . L s t r l ) . 
concat(L£ir l ." \n\nBy using rule number * .Ls l ) . 

ar_int(Str_num.Rule_No). 
concat(Lal ,Str_nuiii,Ans). 
show_ruIc(Rulc_No.Usl) . 

concat( Ans.Us 1. Ans 1). 
rcporUHlSTORY.Sng). 
concat(Ansl.Sag.Answ). 
display(Answ). 
removewindow. 

quest ion_window(CHOICE). 
do_answer(NT.HISTORY.Rule_No.TEXT.Cond_Nol.Cond_No.CHOICE.CF). 

/* dealing with uncertainty is a necessary pan of this expert system. The */ 
/ • certainty of a Tina] decision is derived from the combinalioo of previous*/ 
/ • certainties. Each atcccedcnt of a rule wi l l have a certainry or fuzzy ' / 
/ ' reliability representing uncertainty in its truth, when more than one •/ 
/ ' anteceedcn 

kz'h 



t exists the overall ccraiaty of the alcceedcnts is taken as • / 
/ • the mean of the 'liberal and' and 'conservative and*, the liberal and is • / 
/ • calculated as the maximum intersection o f the certainties, te u-hen the • / 
/ • certainties are maximally dependent on one another. The conservative and •/ 
/* is calculated as the minimum intersection o f the ccnaintics, ie when the*/ 
/ • certainties are maximally independent of one another. The combined */ 
/* anteceedent ccitaioiies are then attenuated by the rule certainty which */ 
/ ' reflecu the degree o f coondcnce that the expert has In the rule */ 
/* indicating that the consequent is true given the aieceedenis. A decision ' / 
/ ' is represented by a conjunction o f several such rules, where progressive • / 
/ • rules form a subsa of the precceding one. The overall certainty is ' / 
/ ' therefore calculated a j the minimum o f the conjunaive rules. ' / 

comb ine_certainty ( R u I e C F . Certs. P r e v C F .New_C F):-
write<'\nCcru are * ) . 
write<CcrU). 

Hb_andeombine<Cens.Cond_CFI). 
/ • con_andcombinc(CerU.Cond_CF2).*/ 
/ • Cond_CF=(Cond_CFl+Cond_CF2)/2 .0 . ' / 

/ • wri icf[ ' \QRuIe_CF=%g\oCond_CFt=%g\nPrev_CF=ag' .RuIe_CF.Cond_CFl.Prev_CF).V 
mcasure_of_belicf(' + ' .Rulc_CF.Cond_CFl,Prcv_CF.New_CF). 

/ • writef("\ncurrent measure o f b c l i e f - % g ' . N e w _ C F ) . " / 

measure_of_belief[-+ • .RuIe_CF.Cond_CF.Prev_CF^MB): 
A T r _ C F = RuIe_CF-C:ond_CF, 
M B = Prev_CF+(( l -Prcv_CF> 'ATr_CF) . 
Iib_andcombtnc<|ATT_CF.Prcv_CFl,New_CF)."/ 

mcasurc_of_beliefC.-.Rule_CF.Cond_CF,Prev_CF.MB): 
A T T _ C F - R u l e _ C F « C o n d _ C F . 
M B " P r c v _ C F - ( P r c v _ C F - A r r _ C F ) . 

lib_andcombine(CFS.CF):* 
asscn(minimum(l)), 
ra'ui(CFS.CF). 
min_cf(CFS.CF).V 
reuacta]t(minimum(_j). 

min((Num|(II ,Num):-
minimum(Smallest). 
N u m < "Smallesl. 

mtn((Num|n].SmAllest):-
mioimum(Smallest), 
N u m > Smallest. 

minUNum | R e s t | ^ i n ) > 
mintmum(Smal Icsl). 
N u m < °Smal l c s l . 
retractaJl(minimu m(_)), 
assert{mtnimum(Num)), 
min(Rea.Min), 

min([Nura |Rea | ,Min) : 
min(Resi.Min). 



in_cf(CFS.0.25)i-
cf me(iit>cr{0.2i.CFS). 

min_cf(CFS.0.5):-
cf mcmbcr(0.5.CFS). 

min_cf(CFS.0.75):-
cf memb€((0.75.CFS). 

min cf(CFS.I) : 

cf mcmbcr(X. |X| _)):-

cf_member(X.|_| Y | ) : -
cf mcmbcr(X.Y). 

con_ajidcombine<|Xl,X), 

con_andcombinc((XI L] .0) ; -
co^_ftJldcombinc(L,X2). 
X + X 2 < 1,0. 

con_andcombine<(X|L|.Toi):' 
con_andcombine(L.X2). 
X 3 = X + X2. 
no((X3< 1.0), 
T Q I - X + X2-I .0 , 

a s« r t_ f r f (_ .FRF) : -
ttisert(frr(FRF». 

icrt_frf(_.J. 

frf_combine(CF.Oui):-
fncrge((ll ,Ou[). 
lib_andcombine<Out.CF). 

mergc^In.Out):-
f r f{Num). 
rctract(frr(Num)). 
mcrgc(lNumtln| .Out). 

merge<Out.Ou[). 

/ ' explanaiiOD is necciiary as to «.hy a particular fact ii being w u g h l . or ' / 
/ • how a panicual decision was arived at. the following clause* aJlo* ' / 
/ ' inieraciion berwcen the uier and the inference mechaniim.•/ 

/ • CAplanaiion clauics •/ 



show_role<Rulc_No.Sirg):-
rule( Rule_No.CF. Mygoal I . Mygoal2. CONDINCELSER). 
sir_int(RuIe_No_sir.Rule_No). 
su_rca!(CF_nr.CF), 
concaiCVn Rule • ,Ru le_No_« / .Af i s ) . 
concai(Ans/: * .Ans l ) . 
sub_cai(MygoaI I .MygoalZ.Lar) . 
concat(Aasl ,Lcu,Ans2) . 
CO ocat(Ans2,' ( ' . An s3 ) . 
concai(Afis3.CF_sir.Ans4). 
concai(Ans4.*)Vn i f . A n s 5 ) . 
rcveru(CON Dl N GELS ER. CON ILS). 
ihow_conditions(CONIL5,CoD). 
concal(AnsS,Con.Strg). 

show condi t ions([ ] ," ) . 

show_condiiioQs({COND).Ans): 
show cond(COND.Ans), 

show_conditions([COND|REST].Ans):-
show_cond(COND.Text). 
concat('\Q and ' .TejU.Nsir ) . 
show_eondi t ions(R£ST.Ncxi_ans) , 
concai{NeAt_an5. Nstr. A n j ) . 

show_cond(999.-ALWAYS T R U E ' ) : -

show_cond(COND.T3a):- / 'change T x i lo T E X T ' / 
tcx_cond(COND.TEXT). 
add(COND.TEXT.TxO, 
!. /"remove'/ 

add(COND.TEXT.Txt) 
yes(COND.CF). 
str_real(CF_su ing .CF), 
conc« l (TEXT. ' ( + • .Txt I ) . 
concaifTMl .CF_suing .Tj ia ) . 
concal(TM2. ' ) ' .TxO.! . 

add(COND.TEXT.Txt) :-
no(COND.CF). 
str_rcal(CF_stfing,CF), 
concaKTEXT.' (-• . T x i l ) . 
concalfTwl.CF_str ing.Txi2) . 
cancal(Txi2. • ) • ,Txt ) . ! . 

add(COND.TEXT.TEXT) :-!. 

5ub_cat(Mygoa] I .Mygoal2,Lsu):-
concal(Mygoa]l , ' contain* ' . S i r ) . 
concai(Su.Mygoai2,Ut/) . 

r c p o n d l . " ) . 



rcpon([Rulc_No|RESTJ.Sug) ;-
rulc< Rulc_No._. Mygoal 1. Mygoal2. J . 
sub_cai(My goal 1 ,My goal2. Lstr). 
concal('\n\nll has previously been shown thai: * ,Ls t r ,LI ) , 
concal(Ll. ' \nBy using rule number *,L2), 
ttr_im(Sir_Rulc_No,Rule_No). 
concai(L2 .Sir_Rule_No .L3). 
concat(U, ' ; \n • .L4) . 
show_rulc(Rulc_No.Sir). 

concai(L4.Str.L5), 
report(REST.Nexi_strg). 
concal(L5,Ne)it_strg.Strg). 

7 / ' File: uni-mod.pro ' / 

/ ' This module contains the addiiional unincation algorithm predicates •/ 
/• necessary for ihc condiiioni lo contain, as argumcnu. other predicate ' / 
/ ' calls. The following binding tables arc necessary to enable the ' / 
/ • predicates lo accept variables.'/ 

pred''-'»lcs 
i fy (PARMlis i ,PARMlis t ,PARMlis t .PAiRli t t .PA]Rli t t , lNT,INT) 

/ • unify_A(PARMIist,PARMlist.PARMIisi,PAlRJisi.PAJRlisl.INT.INT) •/ 
unify_B(PARWlist.PARMIist,PARN11ifil .PAIRlin,PAIRlitl . lNT,INT) 

unify_C(PARAMETER,PARAMETER.PARAMETER.lNT,PAlRlis t .PAlRIis l . lNT) 
unify_D(PARAMETER,PARAMETER.PARAMETER.INT.PAlRlis t .PAlRlis t ) 

Lnify_E<PARAMETER.PARAMETER,PARAMETER.INT,PAlRliM.PAlRlis i ) 
unify _F(PARAMETER,PARAMETER.PARAMETER,INT.PAlRJist ,PAlRIisi) 

unify _G(PARAMETER.PARAMETER.lNT.PAlRlist .PAlR!isi) 
uni fy_H(PARAMErER,PARAMETER,PARAMETER, lNT.PAlRl i« .PAIRI i s i . INT) 
unify _J(PARAMETER,PARAMETER.PARAMETER,INT.PAlRli i i ,P.AlRIiu) 

varLablc(PARAMETER) 
capital (PARAMETER) 
member(PAlR,PAlRlisi) 

•n i fy((Head |Sl is t ) , [Hcad |Ris i | , |Head |Al iEt | . IN. iN.NUM.O): ' 
Head =int_pred, 
Sli5t=Cchannel*._._), 
uniry_A(|Head|Sl ia | . (Hcad|Ris() , [Head|Alis t | . lN,OUT.NUM.O), 

unir>((Head|Si;st] . [Hcad|nist | , (HeadtAlist | . lN.iN.NUM.O): ' 
Hcad-int_pred. 
S l i s t - r 
unify_A(|Hcad|Sl iEt | . [Hcad|Rist | . [Head|Alis i ] . IN.OUT.NUM.O), 

uniry((Head|Sl is i ) , IHcad|ni5t | , lHead|Alis i | . lN.IN.NUM.O):-
Head = tnt_pred, 
Slist=Cread_lrg*._._), 

unify_A((Hcad|Slist | , IHcad|F1isi) ,(Hcad|Ali$i] , lN,OUT.NUM,0), 

unify{[Head |Sl is t t . [Head |Ris i | . (Hcad |Al i5i | . IN,IN.NUM,0): 

Head = int_p red. 



unifyaHead|Slisi) . [HeadtFlisi) . (Head|AJtst | . IN.OUT.NUM.A): 
unify_B(Slis i .Fl iH.Alis t . IN.OLnr.NUM.A). 

"nify_B(().(I.(I.TBL.TBL._.J: 

unify _ B ( ( S | S r e s t | . ( F | F r c a l . | A | A r e s i I , I N . O U T . N U M . X ) ; 

unify _ C ( S . F . A . N I ; M . I N , 0 U T A . X ) . 

unify_B(Srea.Frest ,Arcsi ,0UTA.0UT.NUM.3C)-

unify _ € < • _ * - F ' A . N U M . I N . I N . J : 

unify _C<S .Fbv .A .NUMJN.OUT.J : . 
bound(Fbv). 
variflble(Fbv), 
un i fy_D(S .Fbv .A.NUM.lN.OUT) , 

unify _ C ( _ . F ^ b v . N U M . I N . O U T . J > 
bound(Abv). 
variablefAbv). 

unify _ C ( F ^ b v . N U M . I N . O l 7 T ) . 

unify _ C ( S . F ^ f . N U M . I N . O U T . A ) : -
frce(AO. 
unify _ H ( S . F . A f . N U M . I N . O U T . A ) . 

unify _C(S .F f J \ .NUM.IN.OLrT.J : -
free(FO. 
un i fyJCS.Ff .A .NUM.IN .O i rO. 

i f y _ C ( _ . F . F . _ . T B L . T B L . J -

uniry_D(S.Fbv.Ab.NUM,IN.OUT):-
bound(Ab). 
u n i ( y _ E ( S . a v ^ b . N U M . I N . O U D . 

u n i f y _ D ( S . F b v . A f , N U M . I N . O i r n : -

frec(AO. 
u a i f y _ F ( S . F b v ^ f . N U M . I N , 0 l 7 n . 

unify _E(_ .Fbv .Ab .NUM.TBL.TBL) : . 
membcr(pair(Fbv.Ab,NUM).TBL). 

unify _EL.R>v .Ab .NUM. lN . lpa i r (Fbv .Ab .NUM) | IN) ) : 
noi( mcmbcr(pa ir<_ .Ab ,N U M ) . IN)) . 



/ • this is to catch variables • / 
unify_E(S.Fhv.Ab.NUM.TBL.(pai r (Fbv.Ab.NUM)|TBLI) : -

mcmber(pair(S.Ab.NUM).TBL). 

uni fy_F(_ ,Fbv._ .NUM.[Mpair tFbv.Fbv.NUM)l) . 

unify _F(_ .Fbv .Af ,NUM.[pa i r (Fbv ,Fbv .NUM) |Rl . lpa i r (Fbv .Fbv .NUM) |Rl ) . 

unify _FC .Fbv .Af .NUM.(pa i r (Fbv .Af .NUM) |R | . ( pa iKFbv .Af .NUM) |RI ) . 

unify_F(_.Fbv.Ar.NUM,lPAlRlIN).(PAlR|OUTI):-
unify_F(_.Fbv.Af.NUM.rN.OUD. 

fai l . 

uni fy_G(F.Abv.NUM .n . lp«i r (Abv,F.NUM)|) . 

unify _G(F .Abv .NUM. lpa i f (Abv .Abv .NUM)fR | . (pa i r (Abv ,F .NUM) |RI ) . 

un i ry_G(F .Abv .NUM.(PAlR | IN | . IPAlR |OUT]) : -
un i fy_G(F.Abv.NUM,IN.OUT) . 

unify_H(S.F.F._.[J,n.J-

i i f y _ H ( S . F . F . _ . T B L . T B L . l ) . 

unify_H(S.F.F.NUM.(pair (S.S.NUM)|Ri . (pai r (S.F,NUM)|R) ,J . 

unify _H{S .F .Af .NUM.(PAIR | IN | , (PAlR |OUT] ,A) : -
uni ry_H(S.Fj^f .NUM.IN.OUT.A) . 

unify_J(S.Ef.Er._.[J.D). 

unify J(S.Ef,A.Nt;M.tpBir(S.S,NUM) (RI,[pair(S Jk .NUM) | R l ) . 

uniryJ<S,S.A.NUM,(pair tS.A,NUM)|R| . [pair (S.A.NUM)|R|) . 

unify _J(S .Ef .A.NUM,[PAlR| INl . (PAlR|Oini ) : -
unify_i(S.Ef.A.NUM.lN.OUD. 

vartablc<String);-
f ronts t r<l .Suing.CHAR.J . 
capital (CHAR). 



capital(Ucbar):-
uppci_lo'u.-er(Uchar.Lchar). 
U c h u < >Lchar. 

inember(X.rXIJ): 

mcmber (X.L |Y] ) : -
raember(X.y). 



/ • File: sup3-tnod.pro •/ 

project *ceg2* 
include *dcc6-mod.pro* 

/* This module contains the suppon predicates for the expen system, ie 
knovhiedgc base updating and listing. */ 

/•project "EEC* 
include "dec-mod.pro''/ 

predicates 

/ • load_kb - declared in dec4-mod.pro •/ 
/ • tave_kb - declared in dec4-mod.pro •/ 
/ • gct_fcb - declared in dec4-mod.pro V 
/ • gel dola • declared in dec6-mod.pro ' / 
/* seleci^tcgment • declared in dec6_mod.pro */ 

sclect_kb(suing) 
scleci_dala(suing) 
—^leci_rules(aring) 

JopUINTEG ER ,str ing) 
/ ' list - declared in dec4.mod.pro • / 

llisi(HISTORY.string) 
/ • edit_kb . declared in dec4-mod,pro ' / 

save_y (char, suing, string) 
/* erase - declared in dec4-mod.pro */ 
/ ' inspectjog - declared in dec5-mod.pro •/ 

logoptdNTEGER.siring.suing) 

I og_ftai$(PA RAM ETER) 

clauses 

Ioad_kb :-
consult(^noml.kb') . 

save_kb :-
process_window. 
u>Tite<'Saving (craich Knowledge base. pl< 
taveCscraich.kb'), 
clearwindow. 
uait_couni(20000). 
wait_coum(20000). 
removewindow. 

list :-

rindaJl(RNO.ruIe<RNO._._._.J.Li£t). 
llist(Ltst.Str). 

1 istopt_wiodo w(CHOI CE). 
liswpi(CHOICE.Str). 

l l i s i ( U . " ) :-

l l ts taRNOIUstl .Slr) : -
llisi(Usi.01dstr). 
show ™lc<RNO.RNO_Sir), 
concat(RNO_Su.01dsu,Sir). 



l i s u > p t ( l . S u ) 

\fcf iicdcvicc( screen). 

display(SLr).!. 

l i s t o p i ( 2 . S i f ) :* 

cursor ( 3 . 2 3 ) . 

w r i i c C W a i l i n g f o r p r i d l t r . . . ' ) , 

c u r s o r ( l 2 . 1 8 ) , 

*Tiicdevicc(pr i n i e r ) . 

w T i i c ( ' \ 2 7 ' . ' \ l J ' ) , 

«.Tilc(Slr). 

v̂ T iiedn-ice(screea), 

l i s i o p i p . S t r ) 1-

cursof(3.23). 

u-Tlie<*Writing K B to rules.osc.. .*), 

opcn\kTiie<save_rilc,'ruIes.asc*), 

u.Tiiedn'icc<save_ril c ) . 

« .T i t c (S i r ) . 

closcriIc(savc_rile). 

wriiedcviccticreen). 

e<l i t_kb :-

s d e c i _ l : b ( K b n a i n c ) . 

r i I e _ c i r ( K B n a m o . D j u a ) . 

e d i i ( D e t a . E d i t « l D a l a . * E E G C o r r e c t i o n * . 

K B n o m e . ' T o exii i he e d i t o r p r c u ESC o r F l O . ' . l . ' h e l p . u t * 

I . O . I . 0 . _ . J . 

c l e o r ^ i n d o w . 

w r i u C S a v e K n o M i e d g e B a 5 £ (en ter y o r n ) * ) . 

r e a d c h s r ( A n s ) , 

s ave_) ' (Ans . Ed i ted Da ta , K B n a m e ) . 

^ i l _ k b . 

" v e J * ( ' y •. Data . K B name) : -

o p e n w T i i c ( B a v e _ r i l e . K B r i a m e ) . 

W T i t e d r v i c c ( s a v e _ r i l c ) . 

w r i t e t D a i a ) , 

c Iose r i I e (Eavc_r i l c ) , ! . 

gci_daia:-

scl cct_dAia( D n a m e ) . 

p roceu_window, 

w r i i e f t ' L o a d i n g %s\n\nplease w a i t . . . * , D a a m e ) , 

conca i (*copy c : \ \ i l s \ \ n i i l s \ \ * . D i i & i n e . D p a i h ) , 

concal(Dpaih.*\UalA.dal' .FullDPalh). 
sy Hem(FulI D Path , 0 . E r r l c v e l ) , 

no_sy »_erTOr(Ful I D p a i b , E r r ! c v c l ) . 

r e i r a c i a ] l ( d f l i a ( J ) . 

a s5c r t (d i i a{ D n a m c ) ) , 

removcwindow. 

I c S l 



select d a u i ( D n a m c ) : -

d a L a _ s c l « : i _ w i n d o w ( D p a i h ) . 

f r o n i s i r ( I S . D p a i h . Pa ih , D n a m e ) . 

r e m o v c w i n d o w . 

g « _ k b : -

s c l « : i _ k b ( K B n i i m « ) . 

pro<css_ w i n d o w . 

w r i i c r { * L o a d t n g K n o w l e d g e b a s c . \ n \ n ^ 5 s \ n \ n \ n p l e a « w a i t . . . * . K B n a m c ) . 

erase, 

e o n E u l ( ( K B n a n i e ) , 

r e m o v c w i n d o w . 

i e l c e i J c b ( K B n a m e ) : -

V;b_M:lcet_window(KBnamc). 

fcmovcwindow. 

leet r u l c s ( R n a m c ) : -

r u l e s _ « l e c t _ w i n d o w ( R n a m c ) . 

r e m o v c w i n d o w , 

i c l e « t _ s c g m e m : -

daLa( D n a m e ) , 

s e l c c t _ s c g m e n [ _ w . i n d o * ( S p a i h ) . 

f r o n u u ( l 7 . S p a i h . P a i h . S n a m e } . 

r c m o v c w i n d o w . 

process_ w i n d o w . 

w r i t e r C L o a d i n g data f r o m ^^sVnVnXnplcase w a i t . . . * . S n a m e ) . 

conca i (*copy c : V \ i l s \ \ m i l s \ \ ' . D n a m e . S p e t h l ) , 

c a n c a i ( S p a t h l . * \ \ * .Spa ih2 ) , 

conca t (Spa ih2 .Snamc , S p a i h 3 ) . 

c o n c a t ( S p a i h 3 . * \ \ V ' * , F u I l S P a i h ) . 

s y s i e m ( F u H S P a i h . O . E r r l e v e l ) . 

n o _ s y i _ e r T o r ( F u l l S p a l h . E / r l c v e l ) . 

r c t r B c l a J I ( s c g ( J ) , 

a ^ n ( s c g { S n a m c ) ) , 

r e m o v c w i n d o w . 

erase:-

retract ( _ ) . 

f a i l . 

i n i p c c i l o g : -

n i e _ s l r C p r o l o g . l o g " . D a U ) . 

to g o p i w i n d o M C H O I C E ) . 

l o g o p t < C H 0 1 C E . D a i a , * p f o l o g . l o g ' ) . 

r e m o v c w i n d o w . 

i n s p c c t l o g . 

i n spcc i^Vb : 



s e l c c t _ f u l c s ( R n a n i e ) . 

TLI e_su (Riuune , D U A ) , 

1 o g o p i _ w i c d o w ( C h o i c e ) . 

l o g o p ^ C h o i c e , D a u . R n a m e ) . 

r c m o v c w m d o w . 

mspeci_kb. 

lo gop t ( I . D a l a . N a n i e ) : -

« J i i ( D a i a . E d i t e d D i i u i . - S P O O L E D L O G *. 

N a m e . ' T o w i t f r o m v i e w i n g press ESC or F l O . ' . l . ' h c l p . U l " 

1 . 0 . 0 . 1 . . . J . 

l o g o p t ( 2 . D j i i a . N f t m e ) :-

c u r s o r ( 8 . 2 3 ) . 

w r U e ( ' W a i i i n g f o r p r i m e r . , . ' ) , 

w r i t edcv icc(p r i n t e r ) , 

w i i e f ( * \ n \ n f t i * . N « m e ) . 

w-Tite(Daia) , 

UTi tedev icc ( s c reen ) . 

n c w _ c o n d s ; -

s y s u m ( * d e l c o n d s . i n i * . 0 . _ ) . 

o p c n w T i t c ( s a v c _ n i e . * c o n d s . i n j * ) . 

c loscrac<save Ti le) . 

n c w _ d j i t a _ c o n d i :-

d a u f D i u u n e ) . 

K g ( S n A m e ) , 

o p e M p p e n d ( « a v e _ r i I e . ' c o n d s . u u * ) , 

i*Titedcvice(Mve_riIe), 

v , T i t e f C V n f t « % t \ n \ n ' . D n f t n i e , S n i i i n e ) . 

w r i t e f C U s t o f e x i r a c t e d feaiuresVn = = 

closeri le<save_rj e ) , 

UTitedevice(Krecn), 

= = = = = = = = « . \ n \ n - ) . 

l o g _ f e a i u r e » : -

l o g _ f c a t t ( " c _ f c a n i r e ' ) . 

l o g _ f c a t f i C l _ f c a l u r e ' ) , 

10 g _ f t m ( • f _ f e a i u re • ) . 

l o g J e a u f T y p e ) : -

c K F c a i u r e . l F R F I J . J . 

Feature = ( T y p e | _ J , 

o p e n A p p e a d ( s a v e _ r i l e . * c o n d s . i n i * ) , 

w r i t c d e v i c e ( s a v e _ r i l e ) , 

t i l . 
w r i t c ( Fea tu re ) , 

u r i t e f t ' ftr.FRF). 

c l o s e r t I c < u v e _ f i l e ) , 

f a i l . 

l o g _ f 6 a U ( J -

l o g _ c o n d s : -



y e s ( C n u [ i i . C c e n ) , 

ICR c o n d ( C n u m . C i c ) n ) . 

o p c n a p p c n d ( t a v e _ n i c , ' c o n < J s . ( r u ' ) . 

w r i t c d c v i c c ( t f l v e _ r i l e ) . 

n l . 

w r i t c ( C t c x t ) . 

u.TLicfC % r . C c c r t ) , 

c l o « n i e ( i a v c _ r i l c ) . 

f a i l . 

log_conds . 

10it_rcsulis< A g r e e . C l a i * . C c r t ) : -

o p c n a p p c n d ( s a v c _ r i l e . ' c o n d s . i r u ' ) . 

w r i t c d c v i c c ( w i v c _ r i l c ) . 

w r i i e f C \ n \ n i e g m e m u a i c l u s i i f i e d us c o n L o i n i n g V n ^ s w i t h a ce r t a in ty o f % f . \ n \ n T h e users response w i i s l l c \ n ' . C l a s s . C c n . A g r e e J . 

c t o s c f i l c ^ u v c n i c ) . 

M r u c d c v i c c ( screen) . 

i r n n s j r u Z l o g : -

r i l e s t r C c o n d s . t r u ' . D a L o l . 

o p c n a p p c n d ( s a v c _ r i l c , ' p r o l o g . l o g * ) . 

u r i i c d c v i c c ( s a v c _ f i l c ) . 

-•*'TttC(DBLB). 

c l o s e r i l e ( s a v e _ f i l c ) , 

w r i i c d e v i c c ( screen) . 





/ • F I L E : u O _ m o d . p r o • / 

u i i l i i i c s m o d u l e ' / 

p ro jec t ' E E G 2 ' 

inc lude ' d c c 6 - m o d - p r o * 

predicates 

! ' these a i e o i l dec la red g l o b a l l y in f i l e ' d e c - m o d . p r o " to enable access 

f r o m Ihc w h o l e p r o j e c t ' / 

wai t c o u n l { 0 ) : 

w a i t _ c o u n i ( N u m b e r ) :-

S c w N u m b e r = N u m b e r - 1 , 

wa i t c o u n i ( N c w N u m b e r ) . 

r c i r a c i a J l ( y e s ( _ . J ) . 

r c i r a c u i J I ( n o ( _ . _ ) ) . 

r e u a c t j i j l ( c l ( l t _ f e a i u r e , J ) . 

r c i t a c u U I ( c l ( i r _ f ( i a l u r e . _ . _ . _ . _ , _ ) . _ . J ) . 

r c i f a c t a l U e « g j » e a k ( _ _ , _ . J ) . 

r e i r a c l A l U s y m _ p o ^ ( _ . J ) . 

T c U a c u i J H l u g ( _ . _ ) ) . 

f a i l . " / ' 

c v a J a n s C y ' , _ . _ . _ ) : -

/ • w . r i i c ( ' \ n \ n l t * s n ice to be r i g h t ! ' ) . ' / 

w r i t e (* \n \nPrc5s any key to c o n t i n u e . * ) . 

r e j i d c h f t r ( A n s ) , 

w r i t c ( A n s ) . 

c v a J a n s C ? - . H I S T O R Y , M y g o a J . P r c v _ C F ) : 

exp l a in w i n d o w , 

r c p o r t ( H I S T O R Y . S T N G ) . 

d i s p l a y { S T N C ) , 

r c m o v c w i n d o w , 

i n f e r < H I S T O R Y . M y g o a J , P T c v _ C F ) , 

c v a l a n s ( _ . _ . _ . J : -

wTi tc (* \n \nPlease update the K n o w l e d g e Base!*) . 

w r i [ e ( ' \ n \ n P r e s s any key lo c o n t i n u e . ' ) . 

t c a d c h a r ( A n s ) . 

w r i t c ( A n s ) . 



r e v e r e c ( X . Y ) : . 

r e v e r s e l ( D . X . Y ) . 

r c v c r w l ( Y . [ ] . Y ) : . 

r c v c f s e l ( X l . ( U | X 2 | . V ) : -

f c v e r K i a U | X I I . X 2 . Y ) . 

t io_sy B_c iTor (_ , EiTorLe%-cJ): 

E r r o r L c v e l BO, 

ao_sys_ciTOr< C o m m a n d , E r r o r L c v d ) : -

w a r n i n g _ w i n d o w , 

w T i t c f l ' S Y S T E M E R R O R % d . . . X n S s ' . E r r o r L e v e l . C o m m a n d ) . 

wTitc(*\nPress any key l o c o a i i n u e . . . * ) , 

rcadctiAr(X). 
r e m o v e w i n d o w . 



/ ' F I L E : w i n 2 - m o d . p r o • / 

/ • T h e w i n d o w s d c n n i i i o n m o d u l e , cal led by f l i c ' m a i n - m o d . p r o * ' / 

p r o j e c i ' £ £ 0 2 * 

i n c l u d e ' d e c 6 - m o d . p r o ' 

i n c l u d e ' t d o m s . p r o * 

i n c l u d e * l p f e d s . p r o ' 

i n c l u d e ' m e n u - p r o " 

predicates 

/ • these are aJl declared g l o b a l l y in Mlc 'dc<-mod,pro' lo enable access 

f r o m the w h o l e pro jec t • / 

clauses 

m a i n w i n d o w :-

m a k c w i n d o w d , 7 , 1 . • ( I N T E L L I G E N T E E C C O R R E C T I O N ( e v a l u a t i o n ) ) " . 0 . 0 . 2 4 , 8 0 1 . 

c u r s o r ( 2 l . - l } , 

w r i i e C c v a J u a i i o n release only m i h 9 l " ) . 

d e c i s i o n _ w i n d o w 

m a k e w i n d o w ( 3 . 3 . l 4 , ' ( D c « i s l o n m a k i n g ] " , 3 . 0 . 2 1 . 3 0 ) . 

c l e a r w i n d o w . 

q u c s i i o n _ w m d o w ( C H O I C E ) :-

m c n u ( 4 . 5 0 . 3 0 . l 4 . 

( " O i a T r u e 

•uA 

' u a 

' W 

' u a i U n k n o w n " , 

•ua 

•04 

•04 

•aaiFftJse • . 

• ? w h y • ) . • < A n s w e r > M . C H O I C E ) . 

cAp la in w i n d o w ;-

m a k e w i n d o w ( 4 . 1 3 . 7 . * < Exp lana t ion > ' . 5 . 0 . 1 3 . 7 6 ) , 

l i s i _ w i n d o w 

maJcewindDw(6.48 .4B." < L i s t i n g o f K n o w l e d g e > " , 2 . 0 , 2 0 . 7 0 ) . 

l i s l o p t _ w i n d o w ( C H O I C E ) :-

m e n u ( 5 , 2 7 . 3 0 . 1 4 . ( - S c r e e n " . • p r i n t e r " , ' F i l e ' I . ' < L i s i t o . . > • . I . C H O I C E ) , 

l o g o p i _ w i n d o w ( C H O I C E ) 

m e n u ( S , 2 7 . 3 0 , 1 4 . ( ' S c r e e n * . " P r i n t e r " I , " < V i e w u s i n g . . . > " , I . C H O I C E ) . 

g o o d b y e _ w i n d o w i -

m a k c w m d o w x a . 6 4 , 7 . * < Goodbye > " . 3 , 3 0 . 7 . 2 0 ) , 

m a i n m e n u ( C h o i c e l ) :-

m e n u ( 5 , 2 7 . 3 0 . I 4 . 

I "Select Data 

' C o n s u l t a t i o n 



- e X i l ' I . 

* < M a i o M c n u > ' . 

I , 

Chotcel). 

c o n t r o I _ m c n u ( C h o i c e 2 ) :• 

m e n u ( $ . 2 7 . 3 0 . l 4 . 

I " P r e v i e w data 

•Selec t segment 

• a a s i i f y M g m e n t 

' L i u k n o u - l e d g e 

• e X i i ' 1 . 

* < Consu l t a i i oD M e n u > 

C h o i c e 2 ) . 

p r o c c s $ _ w i n d o w :-

m a l c e w i n d o w < 2 . 3 0 . 3 0 . ' < M e s s a g e W i n d o w > M 2 . 3 0 . I 0 . 4 8 ) . 

. i t _ w i n d o w : -

[ n a k c w i n d o u t S . 7 . 3 3 , ' < K n o w | c d g e Base E d i t o r > ' . 2 . 0 . 2 0 . 8 0 ) . 

k b _ s e I e c i _ w t n d o w ( K B n a z n e ) : • 

m a k e u l n d o w < 9 . 3 0 . 3 0 . * < S c l e c t the K n o w l e d g e B a s e > - . 4 . 1 0 . 1 0 . 6 0 ) . 

d i r ( " . * V k b ' . K B n a m e ) . 

r u l cs_scl c c i _ w i n d o w ( R n a m c ) : • 

m f t k c w i a d o w ( 1 2 , 3 0 . 3 0 . - < S c I e c t the K n o w l e d g e B a s e > • . 4 . 1 0 , 1 0 , 6 0 ) , 

d i r ( * ' . ' ' . a s c * . R n a m c ) . 

d a i a _ s e l e c t _ v , i n d o w ( D n a m c ) : -

maJccwiadow(7 J 0 . 3 0 . - < Select the D a t a > ' . 4 . 1 0 . 1 0 . 6 0 ) . 

d i r C c ; U i l 5 \ \ m i I s \ \ d a t a s ' . * V . D n a m c ) . 

s e l e c i _ s e g m e i i t _ w i n d o w ( S n a m e ) 

m a k e w i n d o w ( 1 0 . 3 0 . 3 0 . * < S e l e c t a segment t o ana lyse > * , 4 . 1 0 . 1 0 . 6 0 ) . 

d i r < * c : W i I s \ \ m i I s \ \ B e g 9 * . ' V ' * . S n a m e ) . 

U T i r n i n g _ w i n d o w : . 

m a k e w i n d o w ( l 1 . 7 1 . 7 1 . ' < W A R N I N G > " . 1 . 1 . 5 . 3 9 ) . 



/ •EKTOPROL: P r o g r a t n t o e x t r a c t s p e c t r a l f e a t u r e s f r o m EEC d a t a and pass t o PROLOG*/ 

/ • c a l l e d a s : C J i t r B C t ( c h a r » e l r x i i f c e r , f e a t u r e l i s t ) f r o m PROLOG." / 

/ • i n p u t T l f i l e n o i t w r f o r EEC/EOC d a t a ( r e p r e s e n t s m o n t a g e 1 o r 2 ) " / 

/ • n o " f p 2 - f i . e t c . ' / 

/ • o u t p u t : a l i s t o f f e a t u r e s t a l , b l , c l , d l , e l , a 2 e J ] * / 

/ • a = c h a n n e l , b = p e a k n i j i t o e r , c = i i i a 8 n i t u d e , d = f r e q u e n c y , e = M t d t h * / 

/ ' c o m p i l e t h i s p r o g r a m u s i n g MHCPROL.TC o p t i o n s , i e l a r g e m o d e l , no u r « 3 e r b a r s . * / 

• d e f i n e 

a d e f i n e 

• d e f i n e 

• d e f i n e 

• d e f i r y ; 

« d e f i n e 

• d e f i n e 

• d e f i n e 

• d e f i n e 

• d e f i n e 

• d e f i n e 

• d e f i n e 

• d e f i n e 

• d e f i n e 

• d e f i n e 

• d e f i n e 

• d e f i n e 

• d e f i n e 

• d e f i n e 

• d e f i n e 

• d e f i n e 

• d e f i n e 

• d e f i n e 

t i n e 0 

a r p l i t u d e 1 

f a l s e 0 

f r e q _ d i s c r i t n 2 

f r e q _ t h r e s h 6 

f r e q u c T K y 0 

P S 0 9 u f _ s i i e 81 

C o r r B u f s i z e 512 

/ " f e a t u r e n a t r i x i n d e x f o r a m p l i t u d e o f s p e c t r a l peak * / 

/ • s p e c t r a l peak d i s c r i m i n a t o r t o p r e v e n t d e t e c t i o n o f t o o many peaks " / 

/ • s p e c t r a l peak d i s c r i m i n a t o r t o p r e v e n t d e t e c t i o n o f t o o f e w peaks " / 

/ • f e a t u r e m a t r i j i i n d e x f o r f r e q u e n c y o f s p e c t r a l peak • / 

/ • 8 1 p s d e s t i n a t e s / 2 - s e c o n d s e g n e n i / c h a n n e l ' / 

/ • 5 1 2 c o r r e l a t i o n s a r p l e s • / 

f i l e s i z e 6 6 5 6 

b u f f e r o f f s e t 3 9 0 / " o f f s e t t o s t a r t o f d a t a i n I L S s i n g l e r e c o r d f i l e * / 

nax_PSO_peaks 4 

f n a x _ P S O _ f e a t u r e s 3 

maK_c_peaks S 

m a « _ c _ a t t r i b s 2 

m a x _ c _ f e a t u r e s 4 

m n x _ p e a k s _ r o w 10 

m a x _ p c a k B _ c o l 10 

m a x _ f e a t u r e s _ r o w 10 

m a x _ ( e a t u r e s _ c o l 10 

t r u e 1 

y i d t h 2 

l i s t f n o 1 

n i l f n o 2 

c o n s i d e r o n l y t h e f i r s t { m a x _ p e a k s > peaks * / 

o n l y (max PSO f e a t u r e s ) f e a t u r e s h e l d i n a r r a y f e a t u r e s * / 

/ • f e a t u r e n a t r i x i n d e x f o r y i d t h o f s p e c t r a l peak 

t y p e d e f s t r u c t r l i s t ( 

i r a i g r w d c h a r f t r t c t o r ; 

d o u b l e v a l u e ; 

s t r u c t r l i s t " n e x t ; 

> d u b l i s t ; 

i n t c o r p B r e _ m a g ( f l o a t • i n p u t _ b u f f e r , d o u b l e p e a k s ( m B x _ p e a k B _ r o y J [max _ p e a k s _ c o l ) ) ; 

i n t c o m p a r e _ M i d t h ( i n t e x c u r _ n u i i , f l o a t " i n p u t ^ b u f f e r , d o u b l e p e a k s l m a x _ p e a k s _ r o w ] [ E i a x _ p e a k s _ c o l l . d o u b l e f e a t u r e s t m a x _ f e a t u r e s _ r o y ] [ o 

i n t i n j l t i _ p e a k ( i n t • p e a k _ n u n , f l o a t ' i r v u t _ b u f f e r , d o u b l e p e a k s [ ( n a x _ p e a k s _ r o y ] t n a x _ p e a k s _ c o l J . d o u b l e f e a t u r e s t m a x _ f e a t u r e 3 _ r o y ) {cax_ 

i n t s t r ^ l e _ p e B k ( i n t • p e a k _ n i j n . f l o a t - i n p u t . b u f f e r , d o i i > l e p e a k s t m a x j j e a k s . r o y ] { n a x j s e a k s ^ c o l l . d o u b l e f e a t u r e s [ i n a x _ f e a t u r e s _ r o y ] [nax 

v o i d a r r a y _ t o _ l i B t ( i n t r o w s , ( n t c o l s , d u b l i s t • • l i s t ) ; 

i n t f i n d _ p e a k s ( f l o a t f a r • i r p u t _ b u f f e r , d o u b l e p e s k s l m a x _ p e a k 5 _ r o y ) [ i n a x _ p e a k s _ c o t ] ) ; 

i n t c o r p a r e _ l a B S ( i n t c _ p e a k _ n i i n , d o u b l e p c a k s t n a j i j i e 8 k s _ r o w J [ n a x _ p e a k s _ c o l l . d o u b l e f e a t u r e s [ m a x f e a t u r e s _ r o w l [ n a x _ f e B t u r e s _ c o l 1 ) ; 

i n t e x t e r n R e e < * > S O ( f l o a t f a r • i n p u t _ b u f f e r , i n t j ) ; 

i n t e x t e r n R e o d C o r r ( f l o a t f a r • i n p u t _ b u f f e r , i n t j ) ; 

v o i d * a l l o c _ g s t a c k ( i ^ u i g r > e d ) ; 

v o i d * _ i r a ( ( o c ( ^ j ^ s t s r « d ) ; 

v o i d • f r e e ( v o i d • ) ; 

/ * G l o b a l v a r i a b l e a r r a y i n i t i a l i s a t i o n * / 

d o u b l e p e a k s C i n a x j > e a k s _ r o w ] { m a x _ p e a k s _ c o l ] = { 

( 0 > 



d o U i l e f e a t u r e s [ c i a x _ f e a t u r e s _ r o w l [ i n a x _ f e 8 t u r e s _ c o U = ( 

C0> 

) ; 

/ * P50 s p e c t r a l f e a t u r e e j i t r a c t i o n p r o c e t l u r e ' / 

e x t r a c t P S O _ 0 < i n t j . d u b l i s t " o u t l i s t ) 

< 

inx. i , k , I , m, e x c u r _ n i i i ) , p e B l t _ n a n ; 

f l o a t f a r • t n p u t _ b u f f a r ; 

/ • f l o a t _ l i 5 t " o u t l i s t ; - / 

i n p u t _ b u f f e r " ( f l o a t f a r • ) a t l o c _ g s t a c k ( f i l e s i z e ) ; 

/ • z w f ( " X l u b y t e s f r e e a f t e r f n p u l a l l o c \ i V . c o r e l e f t O ) ; * / 

/ * r e a d 1 s e ^ n e n t o f 2 s e c o n d p s d e s t i t n a t e s * / 

/ • i w f C M X o - . ] ) ; * / 

i f ( < R e a c P S O ( i n p u t _ b u f f e r , j ) ) « 0 ) 

< 

i n p u t _ b u f f e r * = b u f f e r _ o f f s e t ; 

/ • t e s t p r i n t o u t d a t a * / 

/ • f o r ( l t = 0 . k < P S D B u f _ s i r e ; l c * * ) 

i M f < " X a . 4 e \ n " , i n p u t _ b u f f e r ( k i ) ; 

' / 

/ • c l e a r peak a r r a y • / 

f o r ( I = 0 ; I < m a j i _ p e a k 8 _ r ( n i ; l * -» ) 

< 

fo r< inaO; i s< inax _ p e a k s _ c o l ; n * « ) 

t 

f e a t u r e s C H D n ] = O . 0 ; 

) 

y 

e x c u r _ n u B = c o n p 8 r e _ i n a s < i n p u t _ t X J f f e r . p e a k s ) ; 

/ * z « f { " \ n " ) ; 



f o r ( l = 0 ; l < 2 ; t * » > 

C 
f o r ( i f f = 0 ; i i K m a x _ P S O _ p e a k s ; r » * » ) 

( 
i M f C ' M - . p e a k s t U ( o O ) ; 

> 

V 

/ • c l e a r f e a t u r e a r r a y * / 

f o r ( 1 = 0 ; 1 t m a > _ f e a t u r e s _ r o w ; > 

< 

f o r ( m = 0 ; m < m a x f e B t u r e s _ c o l ; m » » ) 

( 

f e a t u r e s d l Cfa] = 0 . 0 ; 

> 

) 

peak n u n = c a T p a r e _ w i d t h { e x c u r _ n u n , i n p u t _ b u f f e r , p e a k s , f e a t u r e s ) ; 

} e l s e 

( 

) 

z w f ( " \ n " > ; 

f o r ( l = 0 ; l < i n a K _ P S O _ p e o k s ; l * * ) 

{ 

t o r ( t i » = 0 ; i n < i n a « _ P S r _ f e a t u r e s ; m » * > 

< 
iw#("1 l8 .4e » , f e a t u r e s l l l ( n U ) ; 

) 
i w f ( " \ n " > ; 

) 

a r r a y t o I i s t ( p e a k _ n u i i . m a * _ P S O _ f e a t u r e s . o u t 1 i s t >; 

i w f ( " \ n E * t r a c t P S O : f i l e e r r o r T I X d \ n " , j ) ; 

/ • e n d o f e n t r a c t P S O * / 

/ * c o r p s r e m a g : t o c o r p a r e t h e o a g n i t u d e o f t h e PSO w i t h t h a t o f a p r e s e t * / 

/ • t h r e s h o l d s o t h a t p e a k s c a n b e i d e n t H i e d . t h e t n f x j i i s t h e • / 

/ • a r r a y " i r v u t _ b u f f e r " a n d t h e o u t p u t i s t h e a r r a y " p e a k s " ' / 

/ • w h i c h s t o r e s t h e s t a r t a n d s t o p f r e q u e n c y o f e a c h e x c u r s i o n . * / 

i n t c c « i p a r e _ m a g ( f l o a i • i r ^ t _ b u f f e r , d o u b l e p e a k s C n a x _ p e a k i _ r o « ] { r a x _ p e a k s _ c o l l ) 

I 



i n t i , s t a r t , e x c u r _ r u i i ; 

f l o a t ( s a 9 _ t h r e s h ; 

s t a r t = f a l s e ; 

c x c u r _ f u n = 0 ; 

f o r ( i = 0 ; i < P S O B u f _ s i z e ; i » * ) 

{ 

j f < ( i > = 0 ) t ( i < 6 ) ) 

( 
o a g _ l h r e s h = J 0 0 e 6 - ( i - 2 8 . J 3 J e « ) ; /'iQQe6 t o 130e6 i n O h i t o 1.5 h i • / 

> 

i f ( ( i > = 6 ) 4 ( i < 1 2 ) ) 

C 
m a g _ t h r e s h = 1 3 0 e 6 - ( ( i - A ) » 1 3 . 3 3 3 e 6 ) ; /'MOct t o 5 0 e 6 i n I . S h i t o 3h2 • / 

> 

i f ( i > = 1 2 ) 

C 
n w i g _ t h r e s h = 5 0 e 6 - < ( i - 1 2 ) - 5 a a . 2 3 5 e 3 ) ; / • 5 0 e 6 t o 10e6 i n 3hi t o 2 Q h i • / 

> 

/ • z w f ( ' ' \ n s a r p l e = X S . 4 e : t h r e s h = X 8 . 4 e - , i n p u t _ b u f f e r t i J , ( n a g _ t h r e s h ) ; * / 

i f ( ( i n p u t _ b u f f e r t i l >= n a g _ t h r e s h ) & < i s t a r t ) ) 

( 

p e a k s t O n e x c u r _ f » j i O » i - 1 ; 

s t a r t » t r u e ; 
> 

i f ( ( i n p u t , b u f f e r ( i ) < ° n a g . t h r e s h ) ft ( s t a r t ) ) 

( 

p e a k s [ 1 1 { e x c u r ^ n u n ] « ( i ) ; 

s t a r t ' f a l s e ; 

e x c u r _ r x * i i * * ; 
> 
i f ( e x c u r _ n u i i > ( i n a j i _ P S O j w a k s - l ) ) r e t u r n m a x _ P S O j ) e a k s ; 

) 

i H f ( " \ n e K C u r _ n i i 3 = X d \ n " , e x c u r ^ r u n ) ; 

r e t u r n e x c u r _ n u n ; 

) 

/* - / 

/ * c o a p a r e _ H i d t h : t o c o n p a r e t h e w i d t h s o f e x c u r s i o n s o f t h e p s d a m p l i t u d e V 

/ • t h r e s h o l d , i n c a s e o f m u l t i p l e p e a k s , t h e i n p u t i s t h e V 

/ * a r r a y s " p e a k s " a r ^ ' ' i n p u t _ b u f f e r " a n d t h e o u t p u t i s i n t h e * / 

/ * f o n n o f s p e c t r a l f e a t u r e s , i e peak f r e q u e n c y , a n p l i t u d e * / 

/ ' a n d y i d t h . t h e s e a r e h e l d i n a r r a y " f e a t u r e s " w h i c h s t o r e s * / 

/ * t h i s i n f o r o a t l o n f o r e a c h p e a k a n d c h a n n e l f o r a 2 - s e c o n d * / 

/ • s e g o e n t o f d a t a . * / 

i n t c o t n p a r e _ w i d t h ( f n t e x c u r _ n u D , f l o a t * i n p u t _ b u f f e r . d o u b l e p e a k s C n a x _ p e a k s _ r o w ] [ ( n o x j j e a k s _ c o l j . d o u b l e f e a t u r e s t n a x _ f e a t u r ^ 

C 

i n t i . p e a k _ r u a : 

p e a k _ n u n « 0 ; 

f o r ( t E O ; i < e x c u r _ r » j a ; ! • • ) 

( 
i t ( p e a k _ n u n < tnax_PSO_peaks} 

< 

/ • z w f ( » \ r ^ a k s ( 1 ] [ X d l - p e a k s t O ] r b f l n X d N n " , i , i ,pe8k8(ll ( i l - p e a k s l O ] [ i l ) ; * / 

i t ( ( p e a k s ( i n i } - p e a k s ( O J (i 1 ) » = f r e q _ t h r e s h ) 



( 
CTJI t i _ p e B k ( 4 p e i i k n n , i n p u t _ b u f f e r , p e a k s , f e a t u r e s , i ) ; 

> e l s e 

( 
s i r > g i e _ p e a k ( l p e f l k _ r x m , i n p u t _ b u f f e r , p e a k s , f e a t u r e s , i ) ; 

> 

> 

/ • i H f t " \ n p e a k _ r x i n = X d \ n " , p e a k _ r u n ) ; ' / 

r e t u r n p e a k _ n u n ; 

) 

/ • s i r > 9 l e _ p e a k : i s e n t e r e d when an e x c u r s i o n o v e r t h e a r t J l i t u d e t h r e s h o l d • / 

/ • a n d n a r r o w e r t h a n 2»l i s d e t e c t e d i n t h e a r r a y " p e a k s " . ' / 

/ • t h i s i s l i k e l y t o r>ean t h a t t h e r e o n l y one s p e c t r a l p e a k . • / 

/ • t h i s r o u t i n e f i n d s t h e p e a k and s t o r e s t h e peak f e a t u r e s i n ' / 

/ • i n i h e a r r a y " f e a t u r e s " . * / 

i n t s i n g l e _ p c a k ( i n t • p e o k _ r x « n . f l o a t • i n p u t _ b u f f e r , d o u b l e p e a h s t n a i j j e a k s _ r o n l l m a * _ p e a k s _ c o l l . d o u b l e f e a t u r e s [fnaji_f e a t u r e s _ r o w ] [ca* 

( 

i n t k ; 

f o r ( k » p e a k s I O ] t i l ; k < p e a k s M 1 11"! ; k * » > 

{ 

/ • i w f ( " N n k - l ' X f , k=X1. k * l = X f " , i n p u t _ b u f f e r [ k - 1 ) , i n p u t _ b u f f e r [ k j , i n p u t _ b u f f e r [ k * 1 ] ) ; • / 

i # ( ( i n p u t _ b u f f e r [ k j > i n p u t _ b u f f e r Ck • U ) * ( i n p u t ^ b u f f e r f k J > i n p u t _ b u f f e r ( k » I J ) ) 

< 

f e a t u r e s [ • p e a k _ n u a j [ f r e c u e n c y ] = k ; 

f e a t u r e s [ * p e a k _ r u a ] [a>npl i t u d e ] <= i r ^ t _ b u f f e r [ k } ; 

f e A t u r e s ( * p e a k _ n u a J t x i d t h l = 0 ; 

( • p e a k _ r x j n ) » « ; 
r e t u r n ; 

> 

i f ( ( i n p u t _ b u f f e r [ k j > i n p u t _ b u f f e r t k - 1 J > & C i n p u t _ b u f f e r [ k l >= i n p u t _ b u f f e r [ k * 1 ] ) ) 

i 

i f ( ( i f ^ t _ b u f f e r t k » l j >= i n p u t _ b u f f e r t k . 2 j ) ) 

< 
f e 8 t u r e s t * p e B k _ r * « J t f r e q u e n c y j " k * l ; 

f e a t u r e s ( * p e a k _ r f c / n ] [aiTBt i l u d e j = i n p u t _ b u f f e r ( k » l J ; 

f e a t u r e s t * p e a k _ n u i O t w i d t h ] « O; 

( • p e a k _ n u » ) * * ; 

r e t u r n ; 
) 

> 

/ " B i i l i i _ p e a k : i s e n t e r r e d when an e x c u r s i o n o v e r t h e a n u l i t u d e t h r e s h o l d " / 

/ • a n d w i d e r t h a n Z»z i s d e t e c t e d i n t h e a r r a y - p e a k s " , t h i s • / 

/ • i s l i k e l y t o tnean t h a t t h e r e i s n o r e t h a n one peak t x j t c l o s e • / 

/ • t o g e t h e r , t h i s r o u i i r > e f i n d s t h e peaks end s t o r e s t h e p e a k • / 

/ • f e a t u r e s i n t h e a r r a y " f e a t u r e s " . * / 



i n t n i t t i _ p e a k ( i n t * p e 8 k _ r u D , f l o a t * i n p u t _ b u f f e r , d o i i ) l e p e B k 5 [ B \ a x _ p e a k s _ r o w ] [ n a x _ p e a k s _ c o l ] . d o i l i l e f e a t u r e s C c i a x _ f e a c u r e s _ r o ^ 

( 

f n t k ; 

f a r ( k = p e a k s t O l ( i l ; k < p c a k s C U t i ) ; k * » ) 

/ • d o n ' t a s s e r t a r w t h e r peak i f t h r e e h a v e a l r e a d y b e e n a s s e r t e d * / 

i f ( • p e a k _ n u D < i n a * _ P S O _ p e a k s ) 

C 

/ • z « f < - \ n k = X d \ n - , k ) : « / 

/ * d o e s t h e p r e s e n t s a o p t e r e p r e s e n t a l o c a l c a x t c u a ? • / 

i f ( < l n p u t _ b u f f e r ( k j > i n p u t _ b u f f e r l k - 1 ] ) & { i n p u t _ b u f f e r ( k l > i n p u t _ b u f f e r ( k * l ) > ) 

{ 

/ • f i r s t p e a k 7 V 

l f C p e a k _ n u a > 0 > 

< 

/ ' OO - p e a k s n i g h t b e t h e same ' / 

/ ' l u f < » \ n f e o t u r e s O t d J t 0 j = x a . 4 e \ r t C d - t S . 4 e « x a . 4 e \ n » , ' p c a k _ n u n i - l . f e a t u r e s [ < » p e a k _ n u n ) - l l | 

/* is t h e p r e s e n t l o c a l t n a x i i i u a c l o s e r t h a n 0 . 5 H z t o t h e l a s t ? * / 

i f ( k - f e a t u r e s ( ( * p e a k n u D ) - 1 ] ( f r e q u e n c y ) > f r e q _ d i s c r i o > 

( 

/ * y e s - p r e s e n t i i a x i o u a i s a new peak * / 

f e a t u r e s [ * p e a k _ r u n } I f r e q u c T K y ] > k ; 

f e a t u r e s ( * p e a k _ n u n ] ( a m p l i t u d e ] = i r < p u t _ b u f f e r ( k l ; 

f e a t u r e s ( * p e a k _ n u i ) ] ( w i d t h ] ° 0 ; 

( • p e o k _ n u n ) * * ; 

k " l ; 

)etse 
< 

/ * n o - p e a k i s h a l f way b o t u e e n t h e t w o and o v e r u r t t e s t h e l a s t p e a k * / 

f e a t u r e s [ ( * p e a k _ r u n ) - 1 1 [ f r e q u e n c y ] = k * l ; 

f e a t u r e s [ ( * p e a k _ n u n ) - 1 ] ( Q i r p l t t u d e ] = i n p u t _ b u f f e r [ k - 1 ] ; 

f e a t u r e s [ * p e a k _ n u n ] ( w i d t h l » 0 ; 

k » » 1 ; 
) 

} e l s e 

< 

/ • y e s - a s s e r t t h e p r e s e n t l o c a l c a x i t u n " / 

f e B t u r e s [ * p e a k _ n u i i } ( f r e q u e n c y ] = k ; 

f e a t u r e s [ * p e s k _ n u i O ( a m p l i t u d e ] = i n p u t ^ b u f f e r ( k ] ; 

f e a t u r e s ( * p e a k _ n L f a l t u f d t h j = 0 ; 

( • p e a k _ n u a ) + * ; 

k - t ; 

v o i d a r r a y _ t o _ l ( 8 t { i n t r o w s , i n t c o l s . d i A U s t — l i s t ) 

C 

i n t j . k ; 

f o r ( j = 0 ; j ' < r o w s ; j * * ) 

( 

d u b l i s t • p 5 « l i s t = a U o e _ g s t o c k ( s i i e o f ( d u b l i s t ) ) ; 



p->fLnctorBl i s t f r » o ; 

p - > v a l o e = j » l ; 

l i s t = l C l i s t ) - > n e x l ; 

f o r ( k = 0 ; k » c o l s ; k * * ) 

( 

d u b l i s t • p = - l i s t = a U o c _ g s t a c k ( s i i e o f < d u b l i s t ) ) ; 

p - > f L T t c t o r = l i St f n o ; 

p - > v a l u e o f e a t u r e s C j ] ( k ] ; 

i w f C ' X S . t e " . f e a t u r e s l j ) ( k } ) ; • / 

l i s t = « ( " l i s t ) - > n e « t ; 

d u b l i s t *r>=*\ i s t = e l l o c _ g s t a c k ( s i l e o f ( c h a r ) ) ; 

p - > f i x c t o r a n i l f n o ; 

/ • C o r r e l a t i o n f e a t u r e e x t r a c t i o n p r o c e d u r e • / 

c x t r a c t C O B R _ 0 ( i n t j , d u b l i s t " o u t l i s t ) 

( 

i n t l . n . c _ p c a k _ n u i i , c _ f e a t u r e _ n u n ; 

f l o a t f a r " i n p u t _ b u f f « r ; 

i n p u t _ b u f f e r = ( f l o a t f a r • ) a l l o c _ g 9 t a c k ( f i l e s i l e ) ; 

/ • i y f ( " \ n i n p u t _ b u f f e r a d d r e s s - X K " , i n p u t _ b u f f e r ) ; • / 

/ • l y f C ' X l u b y t e s f r e e a f t e r i n p u t a l l o c W . c o r e l e f t ( ) > ; • / 

/ • r e a d 1 segment o f 2 s e c o n d c o r r e l a t i o n • / 

/ • i y f ( " X d \ n ' ' . i ) ; - / 

i f ( ( R e a d C a r r ( i n p u t _ b u f f e r , j ) ) == 0 ) 

( 

/ • c l e a r t i n e l a g s - 1 0 t o 0 i n c o r r e l a t i o n a r r a y - t o e n a b l e peak i d e n t • / 

i n p u t b u f f e r * « ( b u f f e r _ o f f s e t - 1 0 ) ; 

f o r ( l = 0 ; l < 1 0 ; l » * ) 

( 
i n p u l _ b u f f e r [ l ] = 0 . 0 ; 

> 

i n p u t _ b u f f e r * « 1 0 ; 

/ • c l e a r t i m e l a g s 5 1 2 t o 522 i n c o r r e l a t i o n a r r a y - t o e n a b l e peak i d e n t • / 

i n p u t _ b u f f e r * s 5 1 2 ; 

f o r ( l = 0 ; l < 1 0 ; l » * ) 

( 

i n p u t _ b u f f e r [ I I = 0 . 0 ; 



> 

input_buffer-«512; 

c_pe8k_fKn » #ifyi_peaks(input_buffer,peaks); 

i f ( c _pcak_fKiri>0) 
( 

i y f ( " \ n " ) ; 
f o r ( I =0; I <c_peak_nua; I ) 
< 

f or < (5sO; i«max_c_a 11 r i bs; ) 
t 

2wf<"Xa.4e " . p e a k s l U t o J ) ; 
> 

iyf(»Vn-); 
> 

c_feature_fUJD o corpare_lBss(c_peak_nun,peaks, f e a t u r e s ) ; 

ZHf("\n"); 
f o r d =0; I<inaj(_c_features; I•*> 
( 

rwf("M.4e features 10) ( U ) ; 
) 

i f ( c _ f e a t u r e _ n u i i ) 
< 

Brray_to_Ust(1,max_c_features,out l i s t ) ; 
> 

>else 
t 

iyf(»\n\nWO SIGNIFICANT PEAKS"); 

) e l s e 
C 

z«f("\n£)itractC0R8: f i l e e r r o r NUXd\n«,i); 
} 

/' end of ejttractCORR 0 •/ 

/ / 
I n t f ind_peaks(f l o a t f a r *{nput^buffer,double peaksC(Bax_peak8_row] (max_peaks_col]) 
{ 

i n t f.l.o.e_peok_nua; 

/• c l e a r peak a r r a y •/ 

for<lsO;t<iitaA _peak8_row;l**) 
( 

for<iff=0;ia<max_peak8_col;D»*) 
< 

p c a k s d l [iiO=0.0; 



c_peBk_nuiRO; 

for< i = 0 ; i <CorrBuf_sile; 
( 

iwf("\ni=Xd spl=t8.4e pk_nu:(=*d", i, input_buf f er [ i ] ,c j x a ^ j x n i ; ' / 

/• don't assert another peak i f eight have already been asserted •/ 
i f (c_peaV_naiKrBj(_c_peal(.s) 
{ 

i f < i n p u t _ b u f f e r ( i l > 2 0 e 5 ) 

(•'>0");*/ 
* d o e s the present s i m p l e represent a l o c a l m a j i i n x i ? • / 
i ( ( i n p u t _ b u f f e r [ i 1 > inpu _ b u f f e r { i - l ] > 
( i n p u t ^ b u f f e r t i l > input. ̂b u f f e r t i -21 ) 
( i n p u t . . b u f * e r [ i ) > input. . b u f f e r d -3] ) 
( i n p u t . _bufferCi) > input. . b u f f e r t i •41 ) 
( i n p u t . . b u f f e r t i ] > input. b u f t e r t i •51 ) 
{ i n p u t . _ b u f f e r t i ] > input. b u f f e r d -6] ) 
(i n p u t . _ b u f f e r [ i j > input. . b u f f e r t i •71) 
(i n p u t ^ b u f f e r [ i ] > input. . b u f f e r t i -81) 
(i n p u t . b u t f e r l i j > input. . b u f f e r t -91) 
(i n p u t _ b u f f e r [ i l > input. . b u f f e r t •101) 
(i n p u t , b u f f e r t i l > input . b u f f e r t -111 ) 
( i nput. _ b u f f e r l i l > input. . b u f f e r t -121 ) 
< input _ b u f f e r ( i l > input^ . b u f f e r ! -131 ) 
( i n p u t _ b u f f e r [ i ] > input . b u f f e r [ - U l ) 
( i n p u t ^ b u f f e r [ i } > input _ b u f f e r t •151 ) 
(i n p u t _ b u f f e r [ i ] > input _ b u f f e r t -161) 
(i n p u t _ b u f < e r t i ] > input _ b u f f e r t -17] ) 
(i n p u t _ b u t ( e r [ i ] > input _ b u f f e r t -181) 
(i n p u t _ b u ( f e r t i l > input ^ b u f f e r t •191) 
(i n p u t _ b u f f e r ( i j > input _ b u f f e r t -20] ) 
(i n p u t _ b u f f e r [ i ) > input _ b u f f e r t •11) 
( i n p u t _ b u f f e r t i ] > input _ b u f f e r [ •21 ) 
( i n p u t _ b u f f e r [ i ] > input _ b u f f e r [ •31 ) 
( i n p u t _ b u f f e r ( i ] > input _ b u f f e r [ •41 ) 
( i n p u t _ b u f f e r { i ] > input _ b u f f e r ( •51) 
(i n p u t _ b u < f e r [ i ] > input _ b u f f e r t •61) 
( i n p u t _ b u f f e r [ i l > input _ b u f f e r t •71) 
(i n p u t _ b u f f e r [ t j > input _ b u f f e r t •81) 
(i n p u t _ b u f f e r t i } > input _ b u f f e r t •91) 
(i n p u t _ b u f f e r [ i l > input _ b u f f e r t •101) 
(i n p u t _ b u f f e r [ i j > input _ b u f f e r t •11] ) 
(i n p u t _ b u f f e r t i ) > input _ b u f f e r t •121 ) 

L ( i n p u t _ b u f f e r [ i l > input _ b u f f e r t •131 ) 
(i n p u t _ b u f f e r [ i ] > i r p u t _ b u f f e r t •14] ) 

I ( i n p u t _ b u t f e r [ i ] > input _ b u f f e r t •151) 
I ( i n p u t _ b u f f e r t i ] > input _ b u f f e r t •161) 
L ( i n p u t ̂ b u f f e r t i ] > input _ b u f f e r t •171) 
L ( i n p u t _buffer£i] > input _ b u f f e r t •181) 
I ( i n p u t _ b u f f e r l i ] > input _ b u f f e r t •19) ) 
I ( i n p u t _ b u f f e r t i l > input _ b u f f e r t •201 ) ) 

peakstc_peak_n«iO (time! = i ; 
peaks tc_peak_nuTi) tampl i tude] 
c _ p e a k _ n u a " ; 
2«f(" • • • " ) ; 

input b u f f e r t i l 



) / • e l s e 
i f ( ( i n p u t _ b u f f e r [ i j > i r p o t _ b u f f er t f • 1 ] ) 
t ( i r p u t _ b u f f e r C f I >= input_buffer[l»tn) 
f 

i f ( { i n p u t _ b u f f e r { i * U >= i n p u t _ b u f f e r [ i • Z J ) ) 
( 

pealcs{c_peak_nunl ( t i i n e l c i * ] ; 
peaks[c_peok_nuQl [atnpliiudel = i n p o t _ b u f f e r [ i * l l 
c _pcBk_nsa**: 

> 

> 

) 
r e t u r n c_peak_nun; 

> 

/ • ' / 

i n t coRpare_lags(int c_peak_nLfn,double peakslcisx_peBks_rou] [max_peak5_col],double fc&tures[inax_f eature8_row] ticax_features_c^ 

i 

i n t i ; 
i n t o u l t ; 
i n t lag; 
i n t corr_nun; 
i n t j e t : 

if(c_peak_nuiK3) 
< 

features[0][01=pe8ks (01(t tmel; 
features[0]C11=pe8ks(01[amplltudel; 
f e a t u r e s (0) C2lspeak8C(e_peak_nua-l)l ttimel-peaksIO] [ l i m e ] ; 
f e atures (0) C31 =c_peak_r»ja; 

>else 
< 

corr_nLnp2; 
do 
( 

j ' i * ! ; 
a u l t = 2 ; 
do 
C 

zyf < " \ n i =Xd: j eXdicijl t=Xd: corr_nuB=Xd", i , i . n j l t , corr_nun); 

lag = (peBks(ilIttmel-peBk8(01(iimel)«ii*jlt • p c a k s ( O n t i i i i e ] ; 
i f ( < p e a k 8 [ i l [ t i i a e j > ( l a g - 50>) I (peakBLjHtimel « <lag *50)» 
( 

corr_nuB»**; 
] • • ; 
CTjlt**; 

} e l s e 
C 

i f < p e a k s ( j n t i i a e l > ( l a g *S0)> 
< 

l e l s e 

K60 



{ 

> 
> 

) w h i l e ( i < c _peak_nun); 

if<corr_nLm>l) 
C 

features[01{0]=pcaks[0] [time] ; 
fe a t u r e s [ 0 ] [ l l = p e a k s ( 0 ] ( a r p l i t u d e l ; 
features[01 [ 2 1 = ( p e a k s [ i 1 ( t i m e l - p e a k s ( 0 ] [ t i m e j ) ; 
features CO] [3] =corr_rxiii; 
break; 

>while< i<<c_peak_rxiii-1>); 

i f{corr_nun>0) 
( 

r e t u r n 1; 
le l s e 

r e t u r n 0; 

/•MN.C : Progran t o c o n t r o l the d i s p l a y of grap*iics data •/ 

(tdefine lEKO 6^0 
Odefine TEND 480 
•define VPACESIZE ((XEMD/8>*TEHD) 
•define buf s i i e 65502 

void ptot(insign«d char t a r • i n p u t _ b u f f e r ) ; 
void extern S p l i t S c r e e n ( i n t > ; 
v o i d w t e r n Scre«rOr i g i n ( i n t , i n t ) ; 
void extern SetVideo«ode(int1; 
int extern [ n p u t O a t a ( u n s i g r ^ char f a r ' i n p u t _ b u f f e r ) ; 
void extern LoadScreen(); 
void extern BlankScreen(>; 
void extern Showicreen(); 
i n t extern PlotOataO; 
in t extern Bea^eyO; 

cxxiitor 0(> 

/• mainOV 
( 

int c; 
in t « = 1; 
int y " 0; 
i ^ i g n e d char f a r • i n p u t _ b u f f e r ; 

/• if((input_buff«r = f a r o a l l o c ( b u f _ s i z e > ) NULL) 
( 

pri n t f ( " \ r n i e m o r y a l l o c a t i o n f a i l u r e " ) ; 

M5/ 



e x i t d ) ; 
> 

input buffer = (char f a r •) alloc_gstack<buf_size>; 

i f ( ( I f V u t O a t a ( i n p u i _ b u f f e r ) ) 0) 
< 

/• printf<"MOH: dota has been read\n\n");»/ 
z y f c m u : data has been reBd\n\n"}; 

> 

SetVidecMode<ax12); 

spl i t S c r e e n ( 4 6 0 ) ; 
ScreeK)rigin(0,20); 

BlankScreenO; 

LoadScreenO; 

ShowScreenO; 

do 
t 

c=ReadlCey(); 
syttch<c) 
< 

case 77 : p l o t ( i n p u t _ b u f f e r ) ; b r e a k ; 
> 

> t A i l e ( c i = 2 7 } ; 

ScreerOrigin(0,0); 

SplitScreen(0x3FF); 

SetVideoModeO); 

> 

v o i d p l o t d r a t g n e d char f a r • i n p u t _ b u f f e r ) 
< 

i n t i,x,y,yl,y2,index!,indexZ.yl,Chan; 

i n t l»t_scr_old(lAl • <U,92.140.168,256,284,332.380.428.476,52*.572,620,668.716,7«); 
i n t t h i 8 _ s c r _ o l d t l 6 ] - C44.92,140,188.236,284.332.380,428,476,524,572,620,668.7l6.764>; 

index1>7; 
Index2»7; 

f o r ( i " 0 ; i < 3 ; i * * ) / • ( i n t )(2048/(XEND*tc));i»*)V 
< 

for{x=1;x<=XEKD;x**) 
< 

ScrcerOrigin(x,20); 

f or < chan=0; chan<a; Cham*) 



( 
i f ( i ) 
( 

[ 5 t_scr_old[chan] sPlotOata( input_buf fer ,chan, indexl ,x -1, l s t _ s c r _ o l d [ c h a n l ,x, 1 >; 
i r > i e x l . = 2; 

) 
t n i s scr_old[chanl =PlotData( input buf f c r ,chan, index2,x-l, t h i s s c r ^ o l d [ c h a n l U>; 
irxJex2•=^: 

> 
inde«2*=112; / • t l 2 16 for last 8 chans and 3*32 to raiss two samples'/ 
i f ( i ) 

ireiex1. = n 2 ; 



•^5 7/ 



incodPSO.asiii: read ILS PSO record f i l e t o oerory 

; t h i s program i s designed t o read PSO data frora an ILS record f i l e . Data i s held i n 
; f t o o t i n g point format. ReedPSOCinput_bufler, i ) i s c a l l e d from C where i is the index 
•of the f i l e ( H i ) , and i r v u t _ b u f f e r i s a pointer to prealocated tnemory. 

input; 
far p o i n t e r t o the s t a r t of the al l o c a t e d memory {inp u t _ b u f f e r ) . 
irele. of t i f i l e ( i ) . 

.-output: 
A)(=0 f o r c o r r r e c t t e r p i n o t i o n else error code. 

BeadPSO.IEKI SEWEMT byte p u b l i c 'CODE' 

datgrp GROUP data.bss 
ASSUME cs:Rea<*>SO TEXT,dsidatgrp 

CR 
LF 
;F1LE_S1ZE 
FILE_S!ZE 

;stack frame 

equ 
cqu 
equ 
equ 

OOh 
OAh 
11776 
6656 

ReadPSOParms 

BUF_OfF dw 
BUF_S£C dw 
Index dw 

far r e t u r n address 

bp 

;input data buffer o f f s e t address 
.-ifwut data buffer segment address 

ReadPSOParro erxJs 

; ReadPSO i s not _ReB<ff»SO because of PBOLOG requirements 

PUBLIC ReadPSO 

ReatfSO proc f a r 

push bp 
mov bp.&p 
push s i 
push d i 
push ds 

mov ax,data 
mov ds.ax 

a., [bp-Index] f i l e index to read 



d o i ^ l e : 

ccp a l . l O 
j b s i n g l e 

nov (latgrp:F{lenanw«Z,31h 
em datorp:Fna(ne«4,31h 
sub a l . l O 
add al,30h 
nov datsrp:Filenafl«*},al 
GOV d3tgrp:Fitenarie*4,0 
mov datgrp:Fnaine«5,al 
jnp open 

;convert d o i i i l e decimat mrber t o a s c i i 

;$tore In data segnent 
•end marker 

s i n g l e : 
add al,30h 
Qov datsrp:F(lename*2,at 
CTov datgrp:Filen8fie*3.0 
mov datgrp:Fnaine*4.at 
nov datgrp:Fname*5,20h 

.-convert s i n l e decieial nurber to a s c i i 
s t ore i n data segment 

:end marker 

Open: 
nov 
mov 
i n t 

d x , o f f s e t Fname 
ah.9 
21h 

i p r i n t f i l e name i n t e r f e r s w i t h PROLOG 

nov 
i n t 
i c 

ah.Jdh 
Bl.O 
d x , o f f s e t Filename 
21h 
NoFile 
(Handlol.ax 

;dos interupt-open f i l e 

I r ^ x j t : mov oh,3fh 
nov 
nov 
push 
tnov 
nov 
i n t 
pop 
i c 

bx.(Handle] 
cx.FILE_SIZE 
ds 
d5.[bp»eUF_SEG] 
dx,[bp*BUF_OFFl 
21h 
ds 
ReadErr 

;d03 i n t e r n ^ i t - r e a d f i l e 

;nuTter of bytes 

;segnent address of po i n t e r 
.-offset address of pointer 

mov ah.SEh 
nov bx,[Handle] 
i n t 21h 

;dos i n t e r r i ^ t - c l o s e f i l e 

ax.O [ r e t u r n correct termination code 

jnp fieacPSOEnd 

MoFUe: ;mov d x , o f f s e t ErrHsgl 
;mov ah, 9 
; i n t 21h 
mov ex.1 
jmp fleadPSOEnd 

[ f i l e does not e x i s t 

: r e t u r n e r r o r code 

RcadErr: ;c)ov d x , o f f s e t ErrHsg2 ; f i l e read e r r o r . 



;mov 
; i n t 
mov 

o h , 9 
21h 
ax.2 [ r e t u r n error code 

ReadPSOEnd: 

pop 
pop 
pop 
pop 
ret 

; r esiore regs, 

ReadPSO IHO? 

ReB<ff>SD TEXT ENDS 

dAto SEWEHT byte PUBLIC 'data' 

filename db ' t i n ' , 0 , 0 
Fname db cr,If,'T1nx',cr,It,'»' 
handle dw 0 
ErrMsQl db cr,If,'READ: f i l e not f oi«l'.cr, i f , 
ErrNsgZ db cr,If,'HEAD: f i t e reod e r r o r ' , c r , l f , ' f 

data ENDS 

bss segnent word p u b l i c 'bss' 

bss ENDS 

END 





;fteadCORR.asin: read ILS C o r r e l a t i o n record f i l e to metnory 

t h i s program i s desigr>ed to reod C o r r e l a t i o n data from an ILS record f i l e . Data i s held i n 
f l o a t i n g point format. S e a d C o r r ( i n p u t _ b u f f e r , i ) i s c a l l e d from C where i i s the indea 
of the f i l e (MUi), and i n p u t _ b u f f e r i s a po i n t e r t o prealocated memory. 

far p o i n t e r l o the s t a r t of the a l l o c a t e d incrnory ( i n p u t _ t x j f f e r ) , 
indej< of NU f i l e ( i ) . 

AX=0 f o r co r r e c t t e n a i n a t i o n else e r r o r code. 

ReadCORt) TEXT SEGMENT byte publ i c 'CODE' 

datgrp GROUP data.bss 
ASSUME cs:ReodCOttR_TEXI,ds:datgrp 

CR 
LF 
FILE SIZE 

equ OOh 
equ OAh 

66S6 

[Stack frame 

ReadCorrParms St rue 
? 
7 
? 

far r e t u r n address 

BUf_OFF du 
BUF,SEG dy 
Indei du 

;input data b u f f e r o f f s e t address 
.•input data b u f f e r segment address 

ReadCorrPanta ends 

; ReadCorr is not _ReadCorr because of PROtOC requirements 

PUBLIC ReodCorr 

ReadCorr proc f a r 

push 
mov 
push 
push 
push 

bp 
bp.sp 
si 
d i 
ds 

mov 
nov 

ax,data 
ds.ax 

nov 
mov 

cl.JOh 
a«, {bp*lnde«l 

i n i t decimal co«^t r e ^ 
f i l e irden to read 



double: 

cnp al,10 
j b s i n g l e 

sub 
add 
arp 
jge 

a l . l O 
c l , 1 
al.10 
(toubte 

;comt decimal 

nov datgrp:Fileneine«2,cl 
nov datgrp:fname*4,cl 
add al.30h 
eov datgrp:Filenane*3,al 
oov datgrp:Fjlenonie«4,0 
pov datgrp:fnacie*5,al 
jmp open 

.-convert doable deeioal rurter to a s c t i 

.-store i n data segment 
;end marker 

s i n g l e : 
add al.JOh 
nov d a t g r p : F i l e n a i n ^ 2 , a l 
eiov datgrp:F{lenanie*3,0 
nov datgrp:Fnafne«&,al 
nov dotgrp:Fn8ine«S,20h 

.-convert s i n l e decimal nurber t o a s c i i 
.'Store i n data segment 

rend marker 

Open: 
oov 
nov 
i n t 

d x . o f f s e t Fname 
ah.9 
21h 

; p r i n t f i l e name i n t e r f e r s with PROLOG 

nov 
nov 
nov 
i n t 
jc 
nov 

oh,3dh 
al.O 
d x . o f f s e t Filename 
21h 
NoFile 
[Handle], ax 

;dos interupt-open f i l e 

Input: mov ah.Jfh 
nov 
mov 
push 

i n t 
pop 
jc 

bx,[Handle] 
cx.FILE_SIZE 
ds 
d3,(bp»BUF_SEC] 
d*.(bp*BUF_OFF} 
2 l h 
ds 
ReadErr 

.-dos i n t e r n j p t - r e a d f i l e 

; n utter of bytes 

;segment address of p o i n t e r 
; o f f s e t address of po i n t e r 

mov eh.3Eh 
mov bx.(Handle] 
t n t 21h 

;dos i n t e r n j p t - c l o s e f i l e 

ax.O .-return c o r r e c t t e n n i n a t i o n code 

icp ReadCorrEnd 

NoFile: .-mov dx . o f f set ErrMsgl i f i l e does not e x i s t 



;mov 
; i n t 
nov 
jnp 

;mov 
;mov 
; i n t 
nov 

ah,9 
21h 
a«,l 
ReodCorrErx] 

d x , o f f s e t ErrMsg2 
ah,9 
21h 
a.,2 

i r e t u r n error code 

f i l e read e r r o r . 

; r e t u r n error code 

ReadCorrEnd: 

pop 
pop 
pop 
pop 
ret 

restore regs. 

ReadCorr 

ReadCORR TEXT EMDS 

data SE»ENT byte PUBLIC 'data' 

Filename db '«Ux',0,0 
F ( W » db cr. If.'WUxn'.cr, I f , ' f 
handle dw 0 
ErrHsgl db c r , I f,'ReodCorr: H i e not f cx«J', cr, I f, • J-
ErrHsg2 db cr,I(,'ReodCorr: f i l e read e r r o r ' ,cr, 11,'»' 

data ENDS 

bss segment word p u b l i c 'bss' 

bss ENDS 

END 





Fast assertJler icplementat ion of Bresenfiam's l i n e drawing algorithm 

Line lEKT segment byte publ i c 'code' 
assuTK cs:Line TEXT,ds:Oata 

EVGA_SCIJEEN_UIDIH_IH_BTTES 
EVGA_SCfiEEM_SEGHEWI 
GCJHDEX 

SET_RESET_IKDEX 
ENABLE_SET_RESET_IMDE)( 
9tT_HASKJH0E)( 

GRAPH 1CS_WX)E 
COL OUR _Cm PARE 
H£AD_NAP 
0[SPLAreo_SCREEW_SIZE 
SC.INOEK 
HAP KASK 

equ 
equ 

0 
1 
equ 8 
equ 5 
equ 2 

equ 
(6tO/S)-480 

equ 
equ 

;640x480 p i x e l s 
OaOOOh ; 
equ Jceh .-graphics cont'r index 

;reg'r port 
;CC r e g i s t e r 

3c4h 
2 

rstack frame 

PtotDataParms 
dw 7 ;far r e t u r n address 
dw 7 ; " 
dw 7 ;bc 

BUf_OFF dw ? ;input data buffer segment address 
BUFSEG dw ? ;input data buffer o f f s e t address 
CHAN dw ;data channel 
INDEX dw 7 ;data ndex 
XO dw ? .-parameters passed t o EVCALine 
TO dw ? ; 
XI dw ? 

Colour db 7 
db 

; ' ' 

PiotOataParns ends 

;Line drawing macros 

;L1NE1 is for drawing l i n e s where deltax i s greater or equal t o dettaT. 

input: 
HOVE LEFT: 1 i f deltaX <0. 0 else 
*L: p i x e l mask f o r i n i t i a l p i x e l 
BX: |deltax| <x distance between s t a r t and end p o i n t s ) 
DX: address of CC data r e g i s t e r , with index r e g i s t e r set to 

index of BIT HASK r e g i s t e r . 
SE: d e l t a r (T distance between s t a r t and end poin t s ) 
0S:01: di s p l a y memory address f byte containing i n i t i a l p i x e l 

; output: 

LINE! HOVE_LEFI 
local LineLoop.MoveXCoord.VextPixel.LinelEnd 



l o c a l H o v e T o M e x t B y t e , R e s e t s i t H o s k A c c u i u l a t o r 

l o c a l P I x e l O n L i r w . P i x e l N o t O n L i n e . N e x t P i x e l E n d 

n o v 

o o v 

j c x z 

s h l 

mov 

s h l 

a d d 

a h . a l 

c x . b x 

L i n e l E n d 

s i . l 

b p . s i 

b p . b x 

b x , 1 

s i . b x 

h x . s i 

; B I i s u s e d t o s t o r e a c c u n u l a t e d b i t mask 

;nrt)er o f p i x e l s 

; n o m o r e p i x e l s ? A l l w a y s a t l e a s t 1 

r e r r o r t e r n c a l c u l a t i o n 

e n d d s : ( d i ] . a l ; i 5 i n i t i a l p i x e l o n a g r i d l i n e ? 

j z L i n e L o o p ; n o 

n o v a l , 0 ; y e s 

L i n e L o o p : 

a n d 

j s 

b p . b p 

M o v e X C o o r d 

; i s e r r o r t e r m - v e ? 

; y e 3 • s t a y a t some y c o o r d 

o u t d x . a l ; s e t u p p i x e l b i t mask 

mov d s : ( d i ] , s t . - d i s p l a y b y t e 

a d d d I ,EVGA_SCREEH_WIDTH_IH_BYIES ; m o v e down \ l i n e 

a d d b p . s i . - a d j u s t e r r o r 

i f HOVE_LEFT 

e l s e 

e n d t f 

r o l a h . l 

a h . l 

a d j u s t p i x e l mas l i a c c o r d i n g t o 

e n t r y c o n d i t i o n s 

j n c 

j o p 

R e s e t S t t H a s k A c c u i u l a t o r . - d i d n ' t w r a p t o n e x t b y t e 

s h o r t H o v e T o N e x t B y t e . - d i d 

H o v e X C o o r d : 

a d d b p . b x l a d j u s t e r r o r t e r m 

i f HOVE.LEFT 

e l s e 

e n d i f 

r o l a h . l 

a h . l 

; a d j s t p i x e l b i t m a s k , a d j u s t i n g d i s p l a y 

; m e o » r y a d d r e s s y h e n u r a p s a n d w r i t t i n g 

; b y t e 

i n c N e x t P i x e l ;same b y t e s o d o n ' t m o d i f y d i s p l a y n e c n r y 

o u t d x . a l 

mov d s : ( d i l . a l 

. - d i s p l a y t h i s b y t e 

M o v e T o H e x t B y t o : 

i f NOVE LEFT 

e l s e 

e n d i f 

d e c 

. - m o d i f y d o s p l a y memory a d d r e s s 



R e s e t s t t H a s U c c u T u l a i o r : 

s u b a l . a l 

; c l e a r p i x e l b i t mask 

K C K t P i x e l : 

p u s h a;i 

n o v a l , d s : ( d i l 

a n d a h , a I 

j l P i j i e l N o t O n L i n c 

: s a v e o l d b i t tnask a c c L i r u l a t o r 

i s new p i x e l o n g r i d l i n e ? 

P w e l O n t i n e : 
p o p ax ; y e s - d o n ' t u p d a t e b i t mask a c c u n j l a t o r 

j i r p s h o r t M e x t P i x e l E n d 

P i x e U o t O n L i n e : 

p o p «« 

o r a l . a h 

; n o - u p d a t e b i t mask a c c i m r l a t o r 

M e x t P i x e l E n d : 

L i n e l E n d : 

l o o p L i n e L o o p 

; g e t n e x t p i x e l 

o u t d x . a l 

mov d s : [ d i ) , a l 

. - d i s p l a y l a s t p i x e l 

H N E 2 i s f o r d r a - i n g l i n e s w h e r e d e l t a X i s l e s s t h a n d e l t a T . 

MOVE LEFT: 1 i f d e l t a x < 0 . 0 e l s e 

A L : p i x e l mask f o r i n i t i a l p i « e l 

BX: ) d e l t o x | (X d i s t a n c e b e t w e e n s t a r t a n d e n d p o i n t s ) 

OX: a d d r e s s o f CC d a t a r e g i s t e r , w i t h i n d e x r e g i s t e r s e t t o 

i n d e x o f BIT MASK r e g i s t e r . 

S I : d e l t a T (Y d i s t a n c e b e t w e e n s t a r t a n d e n d p o i n t s ) 

0 S : 0 1 : d i s p l a y memory a d d r e s s f b y t e c o n t a i n i n g i n i t i a l p i x e l 

; o u t p u t : 

L1KE2 m a c r o HOVE_LEFI 

l o c a l L i n e L o o p , M o v e T C o o r d , E T e n n A c t i o n , L i n e 2 E n d 

l o c a l P i x e l N o t L B l u e 1 , P i x e i N o t L B l u e 2 

l o c a l MoveTCoordEnd 

mov 

s h I 

mov 

fiub 

s h l 

s u b 

a d d 

C X , S 1 

b i . l 

b p , b x 

b p , s i 

s i . l 

b x , s i 

s i , h x 

; n o o f p i x e l s 

r e r r o r t e n s c a l c u l a t i o n 

mov a h , d s : [ d i ] 

and e h , a l 

)2 s h o r t P i x e l N o t L B l u e l ; 

i s i n i t i a l p i x e l on g r i d l i n e ? 



a l . O 

P t x e l M o t L B l u e l : ; n o • d i s p l a y b y t e 

o u t d x . a l 

n o v d s : ( d i ) , a h 

i c x i L i n e Z E n d ; n o c o r e p i x e l s ? 

L i n e L o o p : 

a n d b p , b p 

j n s E T e m A c t i o n 

; i s e r r o r t e r m - v c T 

:no • a d v a n c e X c o o r d i n a t e 

a d d b p . s i 

s h o r t H o v e Y C o o r d 

; i n c r e a s e e r r o r t e r n a n d I n c r e a s e y 

E T e m r t c t i o n : 

i f HOVE LEFT 

e l s e 

e r x J i f 

r o l a l . l 

s b b d i . O 

r o r 

a d c 

a l . l 

d i . O 

r a d j u s t b i t mask a c c c o r d i n g t o e n t r y 

r c o n d i t i o r t s 

a d d b p . t i x . - a d j u s t e r r o r t e r m 

N o v e T C o o r d : 

a d d d i ,EVGA^SCREEH_UIOTH_ lH_aT IES .-move y c o o r d down 

mov a h . d s : [ d i l 

a n d a h . a l 

j n z s h o r t M o v e T C o o r d E n d 

(Dov a l . O 

; i s new p i x e l o n g r i d l i n e ? 

P i x e l N o t L B l u e Z : 

M o v e r C o o r d E n d : 

L i n e Z E n d : 

o u t d x , a l 

tXN d s : E d i l . a h 

l o o p L i n e L o o p 

; n o - d i s p l a y b y t e 

t i n e d r a w i n g r o u t i n e 

p u b l i c _ P l o t D a t a 

p u b l i c P l o t D a t a 

P l o t O a t a p r o c f a r 

1^ 



f a r 

p u s h bp 

mov b p . s p 
p u s h s i 

p u s h d i 

p u s h d s 

p u s h c s 

mov a x , [ b p * B U F _ S E G ] 

mov d s , B X 

mov b * . ( b p * B U f _ O F F ] 

(DOV d i , [ b p * [ N O E M ] 

mov a h , [ b x l [ d t * 1 ] 

rnov a l , [ b x ] [ d t ] 

s h r a x j 

s h r a x , 1 

s h r O R . l 

s h r a « . l 

s h r a * , 1 

s h r 

a d d a x , U 

n o v b x , (bp»CHAN) 

Bhl b « , 1 

s h l b x , 1 

s h l h x , l 

s h l t w . l 

mov d i , b x 

s h l b x , 1 

a d d b x , d i 

a x . b x 

mov e s , ax 

mov ax,EVGA_SCREEN_SEGMEN 

mov d s . a x 

n o v dx.CC_IHOE)< 

m j v a l .CRAPHICS.MOOE 

o u t d x . a l 

i n c dx ; 

i n a l . d x 

mov a l , 0 0 0 0 1 0 0 0 b 

j f f p » *2 

o u t d x . a l 

d e c dx 

mov a l .SET_«£SET_ IHD£) ( 

o u t d x . a l 

i n c dx 

mov a l , [ b p * C o l o u r ] 

;y=y*H 

; y s y » ( 4 8 x c h « n ) 

s e t \jp w r i t e mode 0 a n d r e a d n o d e 1 

; s e t s e t / r e s e t r e g i s t e r t o a l l w a y s 

; w r i t e p i x e l s i n c o l o u r 



o u t d x . a l 

d e c dx 

B o v a l ,ENAaLE_SET_RESET_INOEK 

o u t d x . a l ; 

i n c dx 

n o v a l . O f h 

o u t d x . a l 

d e c 

ClOV 

o u t 

i n c 

n o v 

o u t 

dx 

al ,COL0Ua_C0W>AllE 

d x . a l 

dx 

a l , 9 

d x . a l 

; c o R p a r e p i x e l c o l o u r u i t h 1 S ( l i g h t b l u e } 

i n r e a d o » d e 1 

: 1 5 

n o v 

D O V 

s u b 

i n s 

SI . e s 

a x . [ b p * r O ) 

S t . a x 

C a I e s t A d d r e s s 

( b p * T l l ; s e t d e l t a x 

mov 

mov 

x c h g 

mov 

n e g 

a x . e s 

d x , [ b p * x 0 1 

d x , C b p » X l l 

( b p » x O i . d x 

s i 

(bp*^T1) ; i f d e l t a X i s - v e swap c o o r d s s o t h a t 

; d e l t a Y i s a l l a y s * v e 

C a l c S t A d d r e s s : 

s h l 

s h l 

s h l 

s h l 

mov 

s h l 

s h t 

a d d 

mov 

a n d 

G h r 

s h r 

s h r 

a x , 1 

a x . l 

a x . l 

a x . l 

d i . a x 

a x . l 

B X . 1 

d i . a x 

d x . l b p * X O ) 

c l . d t 

c i . r 

d x . 1 

d x . l 

d x . l 

d i . d x 

YD X SO 

p i x e l m a s k i i 

; b y t e a d d r e s s o f c o l u m 

. • o f f s e t o f l i n e s t a r t i n d i s p l a y s e g o e n t 

o u t 

i n c 

d x . G C . I N O E X 

a l . B I T _ H A S K _ I K D £ X 

d x . a l 

dx 

; s e t 14) GC i n d e x r e g i s t e r t o p o i n t t o 

; b i i mask r e g i s t e r a n d l e a v e OX p o i n t i n g 

; t o CC d a t a r e g i s t e r 

Qov a l . S O h 

s h r a l . c l 

. -se t i4> i n i t i a l p i x e l mask 

rov b x . ( b p » X l l 

b x . [ b p * X 0 1 

; d e l t a x 

N O e l t a X l 

b x . s i 

r h a n d l e c o r r e c t l i n e o r i e n t a t i o n 



O c t i 

O c t 2 : 

P l o t D a t a O o n e : 

; _ P l o t O f l t a 

P l o t O a t a 

L i n e TEXT 

j b O c t l 

L I H E 1 0 • 

j n p P l o t D a t a O o n e 

j c p N D e l t a X • 

L INE? 0 

j r p P l o t D a t a O o n e 

n e g bx 

cmp b x , s i 

i b O c t 2 

L I N E I 1 ; 
jmp s h o r t P l o t O a t a O o n e • 

L INE2 1 

n o v e l . Oh ; 0 f f h i n o r i g i n a l 

o u t d x . a l ; 
d e c d x ; 
P O V al ,Ct(ABLE_SET_RESET_ IKOEX 

o u t d x , a l ; 
i n c dx ; 
s u b a l , a l ; 
o u t d x , a l 

mov a x , e s 

p o p e s 

p o p d s 

p o p d i 

p o p s i 

p o p b p 

r e t 

e r d p 

e n d p 

e n d s 

s t s c k s e g s e f f n e n t p a r a s t a c k 'STACK' 

eft) 5 1 2 d i4 ) ( ? ) 

s t a c k s e g e n d s 

O a i a s e g m e n t w o r d ' O A I A ' 

d a t a e n d s 
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t o t o o d a mcxlc 12h s c r e e n 

segmen t b y t e p u b l i c ' c o d e ' 

assLTie c s i L o a d T E X T , d s : D a t a 

EVCA_SCREEW_U10IH_lN_BTrES 

EVW_SCREEN_SE GHENT 

CC_|MOEX 

SEI_RESETJNDEX 

EN*BLE_SET_RESET_IKDEX 

an _KASK JUDEX 

CR«PHICS_HOOE 

COLOUR_COKPAIlE 

RE«)_MAP 

0ISP(.<rE0_SCRCEK_SJ2E 

SC_INDEX 

MAP MASK 

e q u 

c q u 

a o 

ecu 

0 

1 

e q u 

e q u 

e q u 

OaOOOh 

e q u 

8 

5 

2 
e q u 

( W 0 / 8 ) * 4 a 0 

e q u 

e q u 

; 6 4 0 x 4 & 0 p i x e l s 

3 c e h 

;CC r e g i s t e r 

; g r a p h i c s c o n f r i n d e x 

; r e g ' r p o r t 

Sc4h 

2 

_ t . o a d S c r e e n 

o a d S c r e e n 

L o e d S c r e e n 0 

p u b l i c _ L 0 8 d S c r e e n 

p u b l i c L oadSc r e e n 

p u b l i c L o o d S c r e « n _ 0 

p r o c f a r 

p r o c f a r 

p r o c f a r 

p u s h b p 

m v b p . s p 

p u s h s i 

p u s h d i 

p u s h d s 

p u s h e s 

mov 

mov 

a x , D a t a 

d s . a x 

mov 

o u t 

i n c 

mov 

o u t 

d x , C C , [ N D E X 

B l , B I T _ t « S K _ I M D E X 

d x . a l 

d x 

a l . O f f h 

d x . a l 

mov 

mov 

i n t 

a h , V « i 

d x , o f f s e t F i l 

a l , a l 

2 1 h 

mov 

j n c 

mov 

mov 

i n t 

[ H a n d l e ] , s x 

B e s t o r e T h e S c r e e n 

a h , 9 

d x , o f f s e t E r r M s g l 

21h 
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s h o r t Done 

mov dx ,SC_INDEX 

n o v 

o u t 

i n c 

a l ,KAP_HASK 

d x . a l 

dx 

in 
B O V 

o l . d x 

l o a p ] , a l 

R e s t o r e T h e S e r e e n : 

R e s t o r e L o o p : 

n o v 

CDV 

o u t 

i n c 

[ P l a n e ] , 0 

d x . S C _ l W ) E X 

a l ,MAP_KASK 

d j t . a l 

dx 

c l . [ P l a n e l 

s h l 

a l , l 

a l . c l 

o u t d x . a l 

mov a h , 3 ( h 

n o v b x , [ H a n d l e ) 

n o v cx.O1SPLAYE0_SCR£EN_5IZE 

s u b d x . d x 

p u s h d s 

cm 5 i ,£VCA_SCREEH_SEM£MT 

mov d s . s i 

i n t 2 1 h 

p o p d s 

j c R e a d E r r o r 

CDp a x . O I SPL*TEO_SCRE£HJ IZE 

j z R e s t o r e L o o p e o i t o r a 

R e a d E r r o r : 

mov 

i n t 

i m p 

a h . 9 

d x , o f f s e t E r r K s g S 

21h 

s h o r t D o C l o s e 

R e s t o r e L o o p B o t t a a : 

n o v 

s h l 

i n c 

n o v 

i b e 

a t . t P l a n e J 

flX.l 

ax 

{ P l a n e } , a l 

fll.5 
R e s t o r e L o o p 

O o C l o s e : 

fnt 

a h . 3 e h 

b x . ( H a n d l e ) 

21h 

n o v 

mov 

o u t 

i n c 

d x . S C . I H D E X 

at ,HAP_KASK 

d x , a l 

dx 

a l . O f h 



p o p es 

pop d s 

p o p d i 

p o p s i 

p o p bp 

r e t 

; _ L o a d S c r e e n e n d p 

L o a d S c r e e n e n d p 

; L o e d S c r e e n _ 0 e n d p 

; s i e c k s e g segment p a r a s t a c k 'STACK' 

d b 5 1 2 d u p ( ? ) 

; s t o c k s e g e n d s 

O a t a segment w o r d ' 0 * T A ' 

f i l e n a m e d b ' S c r c e n l . s c r ' , 0 

E r r M s g l d b c o u l * i " t o p e n S c r e e n l . s c r " ' , O d h , 0 a h , ' t ' 

E r r M s g J d b ' • • • e r r o r r e a d i n g S c r e e n l . s c r ' , O d h , O a h , ' t ' 

H a n d l e dw > 

P I ane d b > 

map d b ? 

d a t a 
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;ReadEEC.asra : t o r e a d i n a n EEC d a t a f i l e . 

; i n p u t : 

; o u t p u t : 

f a r p o i n t e r t o t h e s t a r t o f t h e a l l o c a t e d c w m o r y . 

AX=0 f o r c o r r r e c t t e m i n a t i o n t l s e e r r o r c o d e . 

ReadEEC_TEXI S E G M E H I b y t e p u b l i c 'CCCE' 

d a t g r p CROJP d a t a . b s s 

ASSUME c s : R e a d E £ G T E X T , d s i d a t g r p 

CR 

FILE SIZE 

e q u ODh 

c q u OAh 

e q u 65502 

s t a c k f r o m e 

I n p u t D a t a P a m o 
f a r r e t u r n a d d r e s s 

b p 

mjF_OFF dw 

8UF SEC d u 

i r « > j t d a t a b u f f e r o f f s e t a d d r e s s 

i n p u t d a t a b u f f e r s e g m e n t a d d r e s s 

I n p u t O a t a P a n n s 

PUBLIC _ [ n p j t D a t j 

PUBLIC I n p u t O a t a 

; _ I n p u l D a t a p r o c f a r 

I n p u t O a t a p r o c f a r 

p u s h b p 

mov b p . s p 

p u s h s i 

p u s h d i 

p u s h d s 

mov a x , d a t a 

mov d s , a H 

Open : mov e h , J * ; d o s i n t e r u p t - o p e n f i l e 

mov a l . O 

mov d x , o f f s e t F i l i 

i n t Z l h 

j c N o F i l e 

mov [ H a n d l e ] , a * 

I n p u t : mov flh,3fh ; d o s i n t e r r t 4 ) t - r e 8 d f i l e 



mov b x . ( H a n d l e ! 

tnov c x . F I L e _ S I Z E . - n u r b e r o f b y t e s 

p u s h d s 

mov d s , l bp*BUF_SEC) . -segment a d d r e s s o f p o i n t e r 

n o v d x , (bp*BUF_0FF1 . - o f f s e t o d d r e s s o f p o i n t e r 

i n t 2 l h 

p o p d s 

j c R e a d E r r 

mov 

mov 

i n t 

a h . 3 E h 

b x . [ H a n d l e ) 

2 1 h 

r d o s ) n t e r r i 4 ) f c l o s e f i l e 

a x . O . - r e t u r n c o r r e c t t e r m i n a t i o n c o d e 

j m p I n p u t O a t a E n d 

W o F i l e : mov d x . o f f s e t E r r H s g l 

mov a h , 9 

i n t 21h 

mov a x . 1 

j c p I n p u t O a t a E n d 

. - f i l e d o e s n o t e x i s t 

; r e t u r n e r r o r c o d e 

mov 

mov 

i n t 

d x . o f f s e t E r r H s s 2 

a h . 9 

a x . 2 

2 1 h 

• f i l e r e a d e r r o r . 

. - r e t u r n e r r o r c o d e 

I n p u t O a t a E n d : 

p o p d s 

p o p d i 

p o p s i 

p o p b p 

r e t 

r e s t o r e r e g s . 

; _ I n p u t 0 8 t a 

I n p u t O a t a 

EHOP 

ENDP 

ReacEEG TEXT ENDS 

d a t a 

F i l l 

H a n d l e d u 

E r r t s g l 

E r r t ( s g 2 

SEGMENT b y t e PUBLIC ' d a t a ' 

d b ' d l 1 6 . d a t ' . 0 

0 

d b C R . L F . ' I r p u t O a t a : f i l e n o t f o i * i d ' . C R . L F , ' t ' 

d b C R . L F . ' I n p u t O a t a : f i l e r e a d e r r o r ' . C R . L F . ' t ' 

d a t a 

b s s 

b s s 

ENDS 

s e g m e n t « o r d p u b l i c ' b s s ' 

EMDS . 

END 



BeadKBO.asm: t o r e a d a n y c h a r a c t e r f ro ra t h e k e y t » a r d . 

i n p u t n o n e . 

o u t p u t a l c o n t a i n s t h e k e y p r e s s e d . 

ReadlCBO_TEXT SECMEHT b y t e p u b l i c 'CODE' 

d a t g r p Ctt(XJP d a t a . b s s 

ASSUME cs :ReadXBO T E X T , d s : d a t g r p 

e q u 

e q u 

OOh 

OAh 

PUBLIC _ ( l e e c K e y 

PUBLIC ReedKey 

; BeacKey p r o c f a r 

ReadKey p r o c f a r 

p u s h b p 

mov b p . s p 

p u s h s i 

p u s h d i 

p u s h d s 

, s a v e r e g i s t e r s 

mov a x , d a t a 

mov d s , a x 

i p o i n t t o new d a t a segmen t 

mov a h , 8 

i n t 2 1 h 

; c h a r a c t e r i n p u t w i t h o u t e c h o 

c r c o l , 0 . - e x t e n d e d k e y ? 

j n z R e a d K e y t n d ; n o • o u t p u t c h a r a c t e r i n a l 

mov 

mov 

i n t 

mov 

i n t 

a h , 9 

d x , o f f s e t Msg ] 

2 1 h 

a h , 8 

2 1 h 

; y e s - r e p e a t c a l l t o g e t e x t e n d e d c o d e 

R e a t X e y t n d : 

s u b a h , ah 

p o p 

p o p 

p o p 

p o p 

r e t 

b p 

,-re8tore r e g s . 

/ 0 7 



; _ R e o d K e y ETOP 

ReodKey EKOP 

ReadKBO TEXI 

d a t a SEGMENT b y t e PUBLIC ' d a t a ' 

Msg) d b C f l . L F . ' e x t e n d e d ' , 

d a t a EKDS 

b s s seg inent w o r d p u b l i c ' b s s ' 

b s s EKDS 

END 



F I L E : scror ig .esm. This procedure controls horizontal and v e r t i c a l 
pixel panning on the VGA monitor. The procedure is ca l led frore C 
e s : -

ScreerOr ig in ( in t « , in t y ) ; / * x and y are the coordinates 
of the screen or ig in • / 

INPUT STATUS 1 e<iu 

equ 3C0h ;ot t r ibute coni ro l ler index register 
:SOAh ;colour mode address of the 

;input status I reg is te r . 

scrorig_IEXT SEGHENT byte publ ic 'CODE' 

ASSUME CS:scror ig TEXT 

PUBLIC _ScreefTOrigin 
PUBLIC ScreerOrigin 

; ScreenOrigin PROC far 
ScreerOrigin PROC far 

push bp 
mov bp.sp 

mov ax,40h 
mov es.ax 

mov 
mov 
c l i 
out 
jirp 

inc 
mov 
out 
s t i 

dx.es: [63h] 
al ,13h 

dx.a l 
»-2 

dx 
ol.SOh 
dx.a l 

seti4> for p ixe l x-coordinate 

mov 
mov 
c l i 
out 

dx.3C&h 
al ,1 

dx.a l 
%*2 

inc 
i n 
s t i 
and 
mov 
sub 

dx 
a l .dx 

B l . l 

c l . 9 
c l . a l 

c l , 8 



nov 
d i v 

ax, I b p ^ J 
c l 

c l . S 
L01 

dec 
ins 
aov 

ah 
L01 
ah.8 

LOl: rov 
nov 

c l . a h 

bh.bh 

; set i4i p i x e l y -coord ina te 

nov 
oov 

ax,&Oh 
es.ax 

nov 
nov 
c l i 
out 

d x , e s : [ 6 3 h ] 

B l , 9 

push bx 
push dx 

inc 
i n 
s t i 

dx 
a l . d x 

and 
inc 
mov 

a x . l f h 
ax 
bx.ax 

d i v 

dx .dx 
ax, (bp^SI 
bx 

oov 
nov 

c h . d l 
bx.ax 

pop 
push 
oov 
c l i 
out 
itip 

dx 
dx 
a l , 1 3 h 

dx ,a t 

%*2 

inc 
i n 
s t i 

xor 

dx 

a l . d x 

ah,ah 

s u l 
sh l 

bx 
a x . l 

pop 

pop 



odd b ^ . B K 

odd d l , 6 

update CTBC s t a r t address r e g i s t e r s 

L02: 
tes t 

al ,d;i 
a l , 8 
L02 

L03 a l . d x 
tes t 
i m 

a t , 8 
L03 

c l i 
s u b d l . 6 

mov 

out 

ah.bh 
al ,Och 
dx.ax 

inov 

inc 
out 

St i 

« h , b l 
al 
d*, ax 

; update CRIC preset row scan and 
l a t t r i b u t e c o n t r o l l e r h o r i i o n t a l pel pan r eg i s t e r s 

add d l , 6 
i n a l . d j i 

t e s t a l , 8 
j n i L04 

; i n s e r t f o r EGA 
; i n s e r t f o r EGA 
; i n s e r t f o r EGA 

L05; a l . d x 
tes t 
j n i 

a l , 8 
LOS 

c l i 
s u b 

mov 

rov 

out 

d l , 6 
ah.ch 
a l , 8 
dx.ax 

inov 

mov 

dl.OCOh 
a l ,13h OR 20h 

mov 

out 

s t t 

a l . c l 
d x . a l 

mov 
pop 
r e t 

sp.bp 

bp 

;_ScreenOrfgin EKDP 
Screc rOr ig in ENDP 



PUBLIC _SotU(dth 
PUBLIC Se tUld th 

;_SetUidth 
SetUidth 

PSOC f a r 
PROC f a r 

push bp 
nov bp .sp 

nov 
cnv 

ax,&Oh 
es.ax 

oov 
nov 
c U 
out 

d x . e s : [ 6 3 h ) 
o l , 1 3 h 

d x . a l 
%*2 

out 
s t i 

dx 
a l , < 0 
d x . a l 

nov 

pop 

r e t 

sp .bp 

bp 

;_SetUidth 
SetUldth 

EKDP 
EKDP 

PUBLIC _ S p l i t S c r « n 
PUBLIC S p l i t S c r e e n 

;_SpHtScreen proc 
Sp t i tScreen proc 

f a r 
f a r 

push 
nov 

bp 
bp . sp 

OIOV 

nov 

mov 

ax,40h 
es .ax 
d x . e s : ( 6 3 h ] 

;wait f o r v e r t i c a l r e t r a c e 

HM: 
add 

t e s t 
j f U 

d l . 6 
a l . d x 
a l . a 
H I l 

HI2: { n 
t e s t 
i z 
sub 

a l . d x 
a i . e 
H12 
d l , 6 

; i K o l a t e b i t s 0-7 . b i t 8 and b i t 9 of the l i n e compare va lue 

mov 
mov 

a x . t b p * 4 ] 
U i . a h 



mov b l . bh 

ond bJt,0201h 

(DOV c l , 4 
,shl b « , c l 

shl W i . l 

;i4xJate the CRTC r e g i s t e r s 

mov an .a l 

nov « l , 1 8 h 

out d J i . a i 

TOv a l , 7 

c l t 

out t lJ i .a t 

irtc d« 

i n a l . d x 

s t i 

dec d« 

mov ah,a I 
BixJ a h . i n o u n b 

or ah .bl 
mov a l , 7 

out <lx,ax 

mov a ( , 9 

c l i 

out d x . a l 

inc d i 

i n a I , dx 

s t i 

dec d* 

nov ah ,8 l 

end a h . l O U i n i b 

o r a h . W 
mov a 1,9 

out dx,«A 

;set b i t 5 of the a t t r i b u t e c o n t r o l l e r mod« con t ro l r eg i s t e r 

mov ax,1007b 
Rov b t . l O h 

i n t lOh 
or bh.ZOh 

mov a« ,1000h 

mov b l . l O h 

f n t IQh 

mov sp.bp 

pop bp 

;_SpUtScreen EKOP 

Spt i [Screen EKDP 

PUBLIC _BlankScreen 

PUBLIC BlankScreen 



;_BlankScreen proc f a r 
aiankScreen proc f a r 

push bp 
bp, sp 

dx,lKPUT_STAIUS_l 
a l . d x ; r e s e t p o r t 3c0h t o index 

nov 

sub 

out 

a l , a t ; se t b i t 5 to ze ro 
d x , a l .-blank the screen 

nov 

pop 

sp .bp 

bp 

;_BlankScreen EHDP 
BlankScrecn ENDP 

PUBLIC _ShowScreen 
PUBLIC ShOMScreen 

;_ShowScreen proc f a r 
ShowScreen proc f a r 

push bp 

mov bp , sp 

mov dx,IKPU7_STAIUS_l 
i n a l . d x ; r e s e t por t 3cOh to index 

mov dx.AC_IMOEX 
mov al .ZOH ; s e t b i t 5 to one 
out d x . a l ; b l a n k the screen 

mov 

pop 

sp ,bp 

bp 

;_ShowScreen EHDP 
ShowScreen ENDP 

scrcr--? TEXT ENDS 

END 



v i*ode .a s in to set the graphics v ideo rnode 

c a l l e d as S e t v i ( J e o « o d e ( O K ? ? ) ; • ( c ) where ?? is the he« mode nurtocr 

input in t node, 

output none. 

Vi*ode_TE)<T SEGMENT byte p u b l i c 'CODE' 

ASSUME cs:Vic#iode TEXI 

' S t a c k f r a n e 

VideoModeParms 

KOOE 
VideoModeParrs 

St rue 
<Su ? 
du ? 
dw ? 

dw ? 
ends 

f a r r e t u r n address 

bp 

Video node 

PUBLIC _SetVideo#lode 
PUBLIC 5e tVideo«ode 

;_Setvidec*iod< proc f a r 
SetVideoMode proc f a r 

push bo 
mov b p , s p 

;save r eg i s t e r s 

mov a«,[bp*K0O£] 

i n t lOh s e t v i d e o mode 

pop 

re t 

bp 

,-_Setvidec*ode EKDP 

SetVideoMode ENDP 

V i * o d e TEXT ENDS 

END 



APPENDIX M 

This appendix contains a sample of the initial rule set obtained from 
the data represented in appendix D using the knowledge elicitation 
techniques given In appendix I and acquired from the DAS (appendix B). The 
rule set is written in english to allow verification by the expert and 
elicitaion of expert rule confidence values. These rules are transcribed in 
to a logic representation and PROLOG encoded to operate In the lOARS. 



' ' 6 

5 -

5 

5 

Rule I : segment contains no significant activity 
i f the EEC is flat 

Rule 2: segment contains no slow waves 
if no delta band waves exist 

Rule 3: segment contains artefact only 
i f the largest waves appear in a frontal channel 

and f p l - f A and f p l - f 3 are symmetrical 
and fp2- f8 and f p l - f 7 are symmetrical 
and delta activity only appears in frontal channels 

Rule 4: segment contains artefact only 
i f the largest waves appear in a frontal channel 

and f p 2 - f 4 and f p l - f 3 are symmetrical 
and delta activity only appears in frontal channels 

Rule 5: segment contains artefact only C-V 
i f the largest waves appear in a frontal channel ^ 

and f p 2 - f 4 and f p l - f 3 are symmetrical 
and f p 2 - f 8 and f p l - f 7 are symmetrical 
and delta activity only appears in (he anterior half of the scalp 
and no delta waves are present in the EEG that are not present in the EOG ^ 
and f p 2 - f 4 or f p l - f 3 contains isolated non repetitive waveforms 
and f p 2 - f 4 or f p l - f 3 contains waveforms wiih sharp elements 

Rule 6: segment contains artefact only 
i f the largest waves appear in a frontal channel 

and f p 2 - f 4 and f p l - f 3 are symmetrical 
and f p 2 - f 8 and f p l - f 7 are symmetrical 
and delta activity only appears in the anterior half of the scalp 

and no delta waves are present in the EEG (hat are not present in the EOG ^ 

Rule 7: segment contains artefact only ^"^ i f the largest waves appears in a frontal channel 
and f p 2 - f 4 and f p l - f 3 are symmetrical 
and delta activity only appears in the anterior half of the scalp 
and no delta waves are present in the EEG that are not present in the EOG 
and f p 2 - f 4 or f p l - f 3 contains isolated non repetitive waveforms 
and f p 2 - f 4 or f p l - f 3 contains waveforms with sharp elements 

Rule 8: segment contains artefact only -n 
i f (he largest waves appear in a frontal channel 

and f p 2 - f 4 and f p l - f 3 are symmetrical 
and delta activity only appears in the anterior half of (he scalp 
and no delta waves are present in (he EEG that are not present in the EOG 

Rule 9: segment contains artefact only 
i f the largest waves appear in a frontal channel 

and f p 2 - f 4 and f p l - f 3 are symmetrical 
and f p 2 - f 8 and f p l - f 7 are symmetrical 
and delta activity does not appear in occipital channels 
and no delta waves are present in the EEG that are not present in the EOG 
and f p 2 - f 4 or f p l - f 3 contains isolated non repetitive waveforms 
and f p 2 - f 4 or f p l - f 3 contains waveforms with sharp elements 

M l 



Rule 10: segment contains artefact only 
i f the largest waves appear in a frontal channel 

and f p 2 - f 4 and f p l - f 3 are symmetrical ^ 
and delta activity does not appear in occipital channels 
and no delta waves are present in the EEC that are not present in the HOC 
and f p 2 - f 4 or f p l - f 3 contains isolated non repetitive waveforms 
and f p 2 - f 4 or f p l - f 3 contains waveforms with sharp elements 

Rule 11: segment contains artefact only 
i f the largest wave appear in a frontal channel y 

and delta activity does not.appear in occipital channels 
and no delta waves are present in the EEC that are not present in the EOG 
and f p 2 - f 4 or f p l - f 3 contains isolated hon repetitive waveforins 
and f p 2 - f 4 or f p l - f 3 contains waveforms with sharp elements 

Rule 12: segment contains artefact only ^ 
i f the largest waves appear in a frontal channel 

and the largest wave is below 1/2 Hz in frequency 
and no delta waves are present in the EEC that are not present in the EOG 

Rule 13: segment contains both artefact and pathological slow waves 
i f the largest waves appear in a frontal channel 

and f p 2 - f 4 and f p l - f 3 are symmetrical 
and delta activity does appear in occipital channels 
and no delta peaks are present in the EEC that are not present in the EOG 
and f p 2 - f 4 or f p l - f 3 contains waveforms with sharp elements 

Rule 14: segment contains both artefact and pathological slow waves 
i f the largest waves appear in a frontal channel 

and f p 2 - f 4 and f p l - f 3 are.symmetrical 
and f p 2 - f 4 or f p l - f 3 contains waveforms with sharp elements 
and f p 2 - f 4 or f p l - f 3 do not contain isolated non repetitive waveforms 
and no delta waves are present in the EEG that are not present in the EOG 

Rule IS: segment contains both artefact and pathological slow waves 
i f the largest waves appear in a frontal channel 

and f p 2 - f 4 and f p l - f 3 are symmetrical 
and delta waves are present in the EEC that are not present in the EOG 

Rule 16: segment contains both artefact and pathological slow waves 
i f f p 2 - f 4 and f p l - f 3 are symmetrical 

and f p 2 - f 4 or f p l - f 3 contains waveforms with sharp elements 
and f p 2 - f 4 or f p l - f 3 do not contain isolated non repetitive waveforms 
and no delta waves are present in the EEG that are not present in'the EOG 

Rule 17: segment contains both-artefact and pathological slow waves 
i f f p 2 - f 4 and f p l - f 3 are symmetrical 

and delta activity does appear in occipital channels 
and f p 2 - f 4 or f p l - f 3 contains waveforms with sharp elements 

Rule 18: segment contains pathological slow waves only 
i f any of the above are not satisfied 

M 2 



Rule 19: anefact only contains eye movements 
if the wave is attributable to more than one electrode 

and the wave is more than 1/2 hz in frequency 

Rule 20: artefact only contains non EM artefact 
if the above is not true 

Rule 21; eye movements contains vem 
if the largest waves appear in channels f p 2 - f 4 or f p l - f 3 

and the waveform in channels f p 2 - f 4 or f p l - f 3 is slow 
and the waveform in channels f p 2 - f 8 and f8- t4 are synchronous 
and the waveform in channels f p l - f 7 and f7- t3 are synchronous 

Rule 22: eye movements contains blink 
i f ihe Jargesi waves appear in channels f p 2 - f 4 or f p l - f 3 

and the waveform in channels f p 2 - f 4 or f p l - f 3 is fast 
and the waveform in channels f p 2 - f 8 and f8 - i 4 are synchronous 
and the waveform in channels f p l - f 7 and f7- t3 are synchronous 

Rule 23: eye movements contains hem 
if the largest waves appear in channels f p 2 - f 8 , f p l - f 7 , f8-t4 or f7-(3 

and the waveform in channels f p 2 - f 4 or f p l - f 3 is slow 
and the waveform in channels f p 2 - f 8 and f8 - i4 are not synchronous 
and the waveform in channels f p l - f 7 and f7 - i3 are not synchronous 

Rule 24: eye movements contains complex eye movements 
if the above are not satisfied 

M 3 . 



APPENDIX N 
This appendix contains the PROLOG encoded transcribed rules given in 

appendix M. The knowledge base consistes of the following sections: 

textual rules - provide rule explanation facilities and contain the 
list of conditions for rule satisfaction. 

. textual conditions - provides the condition explanation facilities. 
numerical conditions - provide the feature extraction macro routines 

to interrogate the dynamic feature knowledge, 
feature deamons - provide the low level feature interrogation 

routines. 
contextual facts - provide the environmental information for E E C 

analysis. 



ruled.0.5,•*cgmenll-.-segmcnaM631) 
rulc(2.0.*segmemr.*Kgmem3*.19991) 

t u l c (3 ,0 .6 ,*«gmcnC,*M:gmcn i5" , (6 I ) ) 
rulc<J,O.S.'segmefH2'.'segmcnt5*.(57)) 
rule<5.0.4, ' tcgmcna*. '6Cgmeni3*,[591) 
rulc(6.0.1.*s<gmena"."tegmcnl5*.(69|) 

rulc(7.0.* wgmeni2 ' , 'wgmcnL3M999|) 

(ulc(8.0,4. • segmeni3 *, *s«gmenLi •, (61 J) 
rulc(9,0.3.*segincnO'.*segincnl5",(571) 
rulc(l0.0.5."scgmcnl3' . 'scgmem4M59|) 
ruic(l l .0 .4 , -£cgmeni3 ' ."*cgmcnl4- . (57J) 

rulcf 12.1 ,*scgmcnO','no lignincajii B c i i v l t y ' , [ 2 ) ) 
rulc(13,0.8,*segmcnO*,'only very i low arte fact*. (391) 

r u l c { | 4 . 1 ."segmcnO'. 'no lignficani delta wave*',(4]) 
fule(15.0.93.*ficg[ncni3'.*ftnefact on IyM5.7 .9 , l IJ) 

rulc(16,0.67.-6Cgmenl3*.*iinefftct onlyM5.7.11.731) 
fulc(17,0.67.•fccgmcnO'.•artefact only•.(3.9.111) 
fulc(18,0.86,^scgmcnG^.'ftficf4ct only * ,[5.7.9.13,16.17,191) 

rulc{l9,0.5.*ficgment3*.'anefiict only'.[5.7.9.13,161) 
rulc(20.0.67.^segmcni3-.•artefact only• .(5.7,13.16.17.19)) 

fule(2I.O,5,-iegmcnl3-.^anefact only •.[5.7.13.16)) 
f i i : . '" ' ' .0.5.'scgmenO*.'artefact only".[5.7,9.16.17.19.21 ]) 
ru , , 0 . 4 . - i e g m e n L } ' . • a r t e f a c t Only".[5.16.17,19.211) 

r u l c ( 2 4 , 0 . 4 . •segment3*, "artefact only * .[5.16,13)) 

rulc(25.0."segmcnt3'.*scgmcm4*.|999]) 
rule(:6.0 ,9 ,**egmcnt4'.^lK)th artefact and abnormaJ i!ow uavc*^.(5,7.16.19.22|) 
rulc(27,0.8.•segmcm4*.'both artefact and abnormal Uow wave*'.(5,7.16.19,181) 
rulc(28.0.7.^segmcni4*.^both artefact and abnormal i low wave»^,[ 17.22.53J) 
rulc(29.0.9.*scgment4",*both artefact and abnormal i low wavei*.[5.7,151) 
tulc(30.0.7.^segmcnt4^.*both artefact and abnorraaJ i low wavc«^.[7.16,17.19)) 
riile(31.0.8,*segmcm4'.'both artefact and abnormal slow W B V M ' , ( 7 . 1 9 . 2 2 | ) 
ru le (32 .0 .8 ,*«egment4* . 'bo ih artefact and abnormal i low wave*',[6.7.15.23 j) 
rulc(33.0.5.^segmcni4*.*both artefact and abnormal (low wavcs*.( 16.53)) 
rule(34,O.S.*scgmcn[4',*both artefact and abnormal tlow wavc«*.[5.16.18|) 
f u l c ( 3 5 . 0 . * i c g m e n t 4 ' , ^ « g m e n t 5 ' , | 9 9 9 j ) 

rulc(36.0.7. 'both artefact and abnormal slow waves'. 'mainly OA with litUe abnormal blow waves*.[5.9.17|) 

rulc(37.0.6. 'both artefact and abnormal slow wBve3*.*mainly_0A v^ih litilc abnormal slow wave**.[5.7.i7|) 

rule(38.0.5,*both anefact and abnormal slow waves*. 'mainly_0A with litllc abnormal slow wavca*.(5,18.66)) 

rulc(39,0.7, 'bolh artefact and abnormal slow wave*'.^deteciable_OA in abnormal slow wavej ' , [ 18,56]) 
rulc(40.0.9.^boih ancfaci and abnormal slow wave*',•mainly_abnormaJ slow waves with iniigniricani O A ' , { 18)) 

rul- " • 0.8,'segmeni5'. 'abnormal slow wavcj only' .(3.25.42I) 

rn'. ,.0.6.'segmeni5'. 'abnormal slow wavei only*.[3,42,75)) 

rule(43.0.5.*scgmcni5*.'abnormal slow wavea onJy*.[3,18,71)) 

fule(J4.0,J,*segmenl5*.^ttboorm4j slow wavci only*.(3, J 7,71.750 

rulc(45.0.7,*artefftci only^.^cye movemenu*,(67J) 

rulc(46.0.8.'artefact only'.•eye movemenU*,[9,25,531) 
rulc(47.0.6.*artcfaci only',"eye movemenu*.(7.16,25,411) 
tulc(48.0.4.'artefact only ".'eye movemcnU'.|9.16,25.41)) 

fule(49.0.3, 'artefact only',*eye movcmcnU'.(53.25|) 

rulc(50.0.9.*only very slow artefact ' . 'rem artefact only *,151,151) 

rulc(51.0.8.*only very slow artefact'. 'clecuode ancfaci*,(52|) 

rule(52.0.9."cyB movemeou'. 'vem artefact ' .(29,3l.33,35|) 

fule(53.0.9, 'eye movcmcnu*.'blink artefact'.(29.32.33.3J|) 

rulc(54.0.9,*eye movemenU*.*hem anefaa*.[30.31.34.36)) 

rule(55,0.7.''eye movemenu*."blink artefact*,(32,33.35)) 

rulc<36.0.6.'cye movemcnu*,*weak cm artefact*,(53]) 
rulc(57,0.6.'eyc movcmenti*."complex eye movemcnu',[5.13)) 

(ex_cond(l, 'any signincant spectral pcalu exist') 

[cx_cond(2,"noi any signiHcant spectra] peaks exist") 

iex_cond(3."any signincani spccual pcakM exist i n the delta band") 
ict_cond(4. 'noi any lignincani spectral peaks cxisX in the delta b o n d ' ) 

icK cond(5. ' the largest spectral peak appears in a frontal channcr) 

(c^_cond(6.*not the largest spectral peak appears in a fronial channcD 

icx_cond(7. ' fp2-f4 and f p l - f 3 are lymmctrical for all delta peaks') 

a; / 



tcx_cond(8,'noi fp2-f4 and fpl-O are lymmetrical for nil delta peaks') 
lex cond(9.*rp2-r3 and Tpl-r? a r c synimcirical for all dclia pealu*) 
tcx_cond(10,'noi fp2*re and f p l - f J are symmeuical for all delta peaks') 
tcx_«>nd(l 1,'delta aaivity only appears in fronwl channels') 
(ex cond(12.*not delia activity only oppeari in TroRUil channels') 
tcx_cond( 13.'delta activity only appear* to ihc anterior h a l f of the scalp') 
tcji_cood(14.'nol dclifl activity only appears in the anterior half o f ihc scalp') 
t « _ c o n d ( l 5 . ' d e I t a peaks are present ihai are not present i n the EGG') 
tex_cond(16,'aoi delta peaks ore present thai a r c not present in ibe EGG*) 
tex cond(17,'rp2-fS or f p l - f ? contatos isolated non repetitive waveforms') 
lex cood(lS. 'not fpl^fS or f p l - f ? contains isolated non repcttiive u-aveforms') 
tex cond(19.'fp2-r4 or fp l - f l contains waveforms with sharp elements') 
tex_cond(20.'aot fp2-f4 or f p l - H contains waveforms wi th sharp clcmenU') 
tcx_cond(2I .'significant delta activity docs nol appear in occipital channels') 
tex cond(22.*oot tigniricani delta activity does not oppeaj- in occipital channels') 
tex cond(23.'ihe largest spectral peak exisu b the sub^lelta band*) 
tcx cond(24,*oot the largest spectral peak exists in the sub-delta band') 
tex cond(2i. ' the largcsi spectral peak is attributable to more than one electrode') 
tex cond(26.'aot the largest spectra] peak is attributable to more than one electrode') 
tex cond(27.'spectral activity does oot exisU below I H z * ) ' 
tcx coRd(28.*not specuol activity docs not exists below i H z ' ) 
tejr •td(29.'thc largest delta peak appears in channels rp2-f4 or f p l - O * ) 
tex_ . idpo . 'notthe largest delta peak appears in channels fp2-f4 or f p l - D * ) 
tex_cond(31.'lhcv.-aveform in channels fp2-f4 or f p I - O is slow -low delta*) 
tex_cond(32.*noiihe wovcform in channels fp2-f4 or f p l - O is slow -low delta') 
tex_cond(33."lhc waveform in channels Tpl-ti and f8-t4 ore in phase*) 
tcx cand(34.*not the waveform in channels fp2-r8 and f3-t4 are in phase') 
(ex condQS.'theu-aveforni in channels f p l - f ? and f7-t3 arc in phase*) 
tex_cond(36.'ROt the waveform in channels f p l - f ? and r7-c3 arc in phase') 
tcx cond(37.'there is a sigQificant spectral peak recorded atFP2-FPl') 
(cx_cond(3S.*nol there Is a significant spectral peak recorded a iFP2 -FPr) 
(ex_cond(39.'there is only very slow activity present, less than O.SHz*) 
icx_cond(40.'aot there is only very clow aaiviry present, less than O.SHz') 
[cx_cond(41 . ' ihCTC is a significant spectral peak in an EGG channel*) 
tex_coad(42,*QOi there is a significant spectral peak in an EGG channel') 
tcx_cond(43.'the EGG is symetricol') 
tcx_cond(44.*notthe EGG is symetrical') 

tcx_cond(43,'the spectral peak is localised to the temporal regions') 
tex_cond(46.*not the spectral peak is localised to the temporal regions*) 
tcx_cond(47,'correction o f artefacts is required') 
tcx •d(48.'ooi correction of artcfocu Is required*) 
tcx_ ,id(49.'there is L-R symetrical low freq temporal activity*) 
tcx_cond(SO.'not there is L^R symetrical low frcq temporal activity ') 
tcx_cond(5l. 'lhelargest spectral peak appears anteriorly*) 
tcx_cond(52.*oot the largest spectral peak appears anteriorly*) 
tcx_cond(}3.'thelargest spectral peak appears in the EGG*) 
tcx_cond(S4.*not the largest spectral peak appears in the EGG') 
tex_cond(SS.'there is a phase delay in frontal channels') 
iex_cond(S6,*not there is a phase delay m frontal channels') 

iex_cond(57.*the local context is mainly abnormal slow waves with insignificant O A ' ) 
tex_cond(58.*noi the local context is mainly abnormal slow waves with insignificant OA*) 
tex_cond(59.*the local context'is detcctable_GA in abnormal slow waves*) 
tex_cond(60.*ooitbe local context is deiectable_GA in abnormal slow waves*) 
tex_cond(61.'the local cootext is aboorroal slow waves o n l y ' ) 
tex_cond(62.*not the local context is abnormal slow waves on ly ' ) 
tex_cood(63,*thehisU)rical context is abnormal*) 
tcx_cond(64.*noi the historical context is abnormal*) ' 

tex_cond(65.*lhere is a zero lag correlation between frontal and posterior electrodes') 
tex_cond(66.'noi there is a zero lag correlation between frontal and posterior electrodes*) 
tex_cond(67.'delta spectral peaks exist only in the EGG' ) 
tex_cond(6S.*oot delta spectral peaks cx in only in the EGG*) 
tcx_cond(69.*a local context exisu*) 
tcx_cond(70,*noi a tocal context exists') 

tex_cond(7l.'ihcre is a correlation between frontal and posterior electrodes') 



tcA_cond(72.'not there is a corrduion between CroauU &nd posterior electrodes') 
icx_con(J(73,*lhcrc are l/r symaricAj dclu peak*') 
ic.%_cond(74.'no( ihere u e l/r symeirical dc lu peoki ') 
lex cond(7S.*ihcrc i i & repelilivc sign&l') 
ic\_cond(76.'noi there it a rcpaiiivc dgnaj*) 
n u m _ c o n d t l , I ' f _ f 6 a i u r c " . ' _ * , •_ ' , ' _ ' . "_ • . •_ • I) 
numcond(3.rf_ feature*.*_'.*_*.'dclia'. 1) 

num_cond(5.(*mAJi_from'!) ^ 
num_cond(8.rpcak_aa)m*.*fp2-f4*,*fp| .0 ' | ) 
num_cond(10.I*pcak_iuym'.*fp2-re"."rpl-f7*I) 
num_cond{l2 . ( ' n_o_f rom' | ) 
num_cor )d( l4 . (*po«_fea l ' | ) 
num_cond(13,rnon_eog'|) 
num_cond( 18 .| 'rcpeiiiive_eog*l) 
num_cond( 19.( * r ront_fafl_ddia '}) 
num_cond(22.Cocc_fcai'l) . 
num_cond(23.(*vslo*_larg" j) 
num_cond(15.|' > l_elec' |) 

num_cond(28,rf_fcatgrc',*_".'_'.**ub_dcltii",'_*,*_'I) 
num_cond(29,| 'maji_ven'j) 
num_cond(3 I ,( ' from_ilow_dclta*]) 
nui- ^n(J(37.1 •f_re<Uurc',*fp2-fp I I ) 
n u i . _ jnd(40 , | 'n_o_Vt low' ) ) 
num_cond(41 . ( ' s i geog ' ) ) 
ni jm_cond(43. | ' l r_sym eog')) 
num_cond(46.(*noi_loc_temp*|) 
num_cond(49.(*«ym_ir , ' lcmp"|) 
nufn_cond(51 . | 'maj i_ojncr ' | ) 
num_cond(53.|*max_eog'J) 
num_cond(55.('froni_phasc lag ' l ) 
num_cond(57.(*c_fciiture*. "local*.'mainly ^abnormal*)) 
num_cond(59 .Cc_fcAtu rc ' . * loca l* . "dc i«u ib l c_OA' ] ) 
nufn_cond(61 . | 'c_featurc*, ' local ' , 'abnormal 'J) 
num_cond(63.[*c_fcaiiire','historical*.'abnormaJ*]) 
num_cond(65.('front-post 0 corr ' )) 
num_cond(68,|*morc_lhan EOG_dcI:a')) 
ntim_cond(69.['c_fealure' . ' l o c a l ' 1 ) 
num_cond(7l .I ' r ront-poa_corr ' )) 
num_cond(73.|*rcpctitivc_ac'|) 

c I ( ( ' p € a k _ a s y m - . ' A * . - B - l . ( ] , ( ( ' f _ f e a m r e ' . - A ' . ' _ ' . ' d c l t a - . ' M ' . - _ - I . | * a s > m ' . ' B ' . ' M * | . [ ' i m _ p r e d ' . ' n o t _ » y m j ) c a k ' . - M - . • _ ' ) ] ) 
cl(»' ' k _ a s y m \ ' A * / B - l . [ ] . [ ( * f _ f e a i u r c ' . ' B ' . ' _ - . ' d c I i a * . - M ' / _ ' | , [ ' a s y m ' . ' A ' . \ S r i . [ ' i n t j ) r e d \ ' n o t _ e y m j ) c a k ' . - M * . ' _ - I I ^ 
cl(l . / m ' . ' C h f t j i ' . ' M ' | . [ ) . ( [ ' f _ f c a t u f e ' / C h a n ' . ' _ ' . * d c l i a ' / M ' , ' _ * l . | ' i n i j j f e d ' . ' f t « _ i y m j ) c a k ' . ' M - . ' _ ' l . [ ' i n l j r c d ' . ' c u t b f t ^ ^ 
c l ( ( ' a sym ' . 'Chan ' . *M' I .n .(( ' ini_pred' , ' true' , '_*.*_* II) 

c l d - n o f r o n f | . [ ) . ( I * f _ f c a i L r e * . ' C ' . • • . • _ ' . • _ • . ' _ * l . C f r o n u U ' . ' C ' | . l ' i m _ p r c d ' . ' n o t j ) c a k * . * _ * . ' C ' | j ) 
c l ( | ' f rontaJ ' . 'C ' l .n , [ ( ' r fonl ' , 'C ' | . | ' in t_pred*.*assen _pcalc ' . 'peak*.•C' | ,r int_prcd' ."cutback*.*_*. '_ 'H) 
cl( | • ffonlaJ ' . 'C' l . l l . I I ' im_pred*.*true*. • _ ' . • _ • 11) 

cl( | 'posl_fcal ' l ,n.irf_rcaiure*. 'C' . '_- . 'delta- .*_-.-_*!.rpoRerior*. 'C' l l) 
cl( |*occ_feAl'I.tl .I(*f_fcaiure*.*C', '_' .•delta*.•_*.*_*l. | 'occipilal*.*C'11) 
c l ( | * g j _ 2 * l . [ ] . | ( ' f _ f c 4 i u r e * . * A ' . ' _ ' . ' B ' . ' _ ' . ' _ ' l . ( * f _ f c a i u r e * . * C ' . * _ ' . - 0 * . ' _ ' . ' _ ' | . ( * i n t j ) r e d * . * < > • . •A* ,*C - | . r in i_prcd ' , ' = - . - B - . - D ' | l ) 
<^' ( rg j_2j r i , ( l . l l ' f . f ea tu re* . -A* . ' _ ' . 'mb_dc l i a* . ' _ - ,*_ ' l . | ' r_rca iu re ' . -C- . ' _ ' . ' i ub_dc l t a ' . *_* .*_* l . [* im_prcd- . '< > ' . ' A ' . ' C ' H ) 
cl (rnon_eog ' l . I ) ,H'imj j rcd*, 'channel ' . •X ' . ' ceg*l . rr_fcature ' . 'X ' . '_* , 'de l ta* . '_ ' . 'A*l , r ini__pred ' .* < > ' , ' X ' . ' r p 2 - f 4 - H - i n t j j r e d ' . ' < > ' , ' X ' . ' f p l - f j 
c l ( | *any_eog ' . *A ' l . | ] . | l * in t_p fed* . ' cha j inc r . 'Y ' . *cog* l . [ ' f _ fea tu rc * . *Y* .*_* .*de l i a * . '_ ' . 'A* l . I ' i n t _ p r e d ' . * a s » e n _ p c a k ' . ' p e a k ' . ' A * | . J ' i rnj j red ' . 'cutback* 
<: l ( rMy_cog ' , -A* | . | l . [ [* in i_pred ' .* i rue* .*_- .*_ ' | | ) 

cl(I*n o_V( low*l , I I . ( ( • f_ fca iu rc ' . ' _ ' , *_• . 'A* . ' _* .*_ ' l . | *mi_pred* .* < > * . 'A * . ' i u b _ d c l i a * | | ) 
cl( | '(ig_eog* 1.0.(I 'inljired*,'Chan n e r . - X * . ' c o g ' 1 .1 ' f ^ f e a i u r e ' . ' X ' . ' ' . • _ ' . • _ ' . • _ • 11) 
cl(rir_(ym_eog'l .n.irr_fcaiure ' .*rp2.ra*,*_'. 'A ' . 'B' . 'C*l. | ' f_fcaiure ' .-fpI-f7-. '_-.-A*.*B*.*C*Jl) 

c l d ' v t J o w J a r g ' I . l l . n ' i m j ) r e d * . ' r c a d _ l r g ' . ' C ' . ' V " ) , ] • r _ r c j i l u r e ' , ' C ' , ' B ' , ' V * | . | * i m _ p r e d ' . ' = ' . • f i ' . ' s u b de l ta ' t | ) 
c l ( I * m a A _ f r o n t ' l . | | . | | * i m _ p r c d ' . ' a s » _ l f g ' , ' o : ' . ' a ' l , | ' l a r g e s i ' , ' _ ' | . | " i n i _prc<J'.'read J r g ' . ' C ' . * V - ) , C f r o n t ' . ' C | | ) 
c l ( r m a A _ a n l c r ' l . n . | l * i m _ p r e d ' . - a « J r g ' . ' o 2 ' . ' a ' l . r i a r g e s l ' . ' _ - l . l ' i n i _prcd- . ' r cadJ rg ' . 'C ' .* V ' l . l ' a n t e r i o r ' . - C - H ) 
c l ( I 'maj(_vcr t*l . I ) . i r inc_pred*. ' rcadJrg ' . -C ' . 'V- | . | ' fp_ver t* . 'C ' l l ) 
c l ( rmaA_eog* | . ( l . |C in t j ) r ed ' . ' t e j id_! rg ' . *C ' . 'V | .C im_pred ' . ' channer . 'C* .*eog ' l l ) 

c U r > l_elcc'1,11. | |*im_pted'. 'assjrg-.-02'. 'a 'l.rlargest ' .- ' I .C in l j j rwJ* . ' r ead l r g * . ' C - . - V l . l - f f c a i u r e ' . ' C * . ' _ ' . ' B ' . ' V . - - l . l•anoihcr_elcc-.•B' . '_ 
c l{ I ' f tno ihe r_e lec* .*B* . 'R ' | . | l . | r f_fea iu re ' , 'D ' . ' _ - . 'B ' . ' _ - . ' _ ' l . | ' i n (_prcd ' . '< > ' . ' C ' . ' D ' l . C i n l j r c d ' . * n l _ i u l j - . ' C ' . ' D ' l . f ' i n ' _ p r c d - . ' n t a d j ' . ' D ' . ' C ' 1 
cl(['largest*,'Chan* 1.11,11* in i_pred" ,*channd ' . 'X ' . 'Chan '1 ,1 ' f_featufe ' . 'X ' , '_ ' , '_• . 'A*. ' _ ' l . r in t_pfc<J ' . ' readJrg*. 'C*. 'V-] , I - in i_prcd ' . ' > ' . " A ' . ' V ] . ! 

M2> 



c l ( r i a f g c a - . V I . t M l * i o t _ p r « J - . - i n j e - . - _ ' . V l I ) 
c l ( r s y m j r / R e g i o n * ] . [ ] . I ( ' f J e f t i u r e \ ' X \ V . ' 5 « ' » _ * * « ' ^ ' - V ' " _ * l [ ' f * c 8 ' o n V * X M . [ ' i n i j ) r c ^ 
c ! ( ( V f O Q l _ i l o w _ d d t a * | ,n . [ r r r o m " . * X ' | . [ * f _ r c f l i u r c - . " X ' . V . " d e l t a * . * _ ' / I o w _ £ p e e d - ] l ) 
c l ( ( - f rODtJaa_dc l ia ' I ,U . [ [ ' f fon i \ 'X - ] , ( ' f J ca iu reV-X \ - _ \*dc l ia - . - _ - . -h igh_speed 'n ) 
c I ( r r a o r e _ i h a n _ E O G _ d d t a - J . Q . ( ( ' f J c i u u r e \ ' X \ " _ \ ' d c ! t a \ * _ \ ' _ M J M n i j ) r c d \ - c h M o d - . * X * . * e e g ' l I ) 
c l ( [ ' r cp« i i ivc_cog*I .n . lCacJca iu re - . - fp2 - ra - ,V"_ ' ' _* - ' h igh_cyc lcs*II ) 
c l ( [ ' r epe imve_cog ' I ,U , I [ "ac_ fea iu rc \ - fp I . r7" . -_ ' . ' _* . ' _ " . ' h igh_cyc le5*II ) 
cI(rrepaUivc_ftc ' I .D.[r«c_feaiure\•_*. '_• . '_ ' . V ' '* ' 'S '»-^^'"'11> 

c K I T r O Q i j ) h a « e J a g M . U . i r c c _ f c a i u r e \ ' f p 2 - f 4 : f 4 - c 4 \ M a ^ b f l t t \ * h i g h > i n i i I f t f i t y ' , ' _ ' . ' . ' I I ) 
c I ( r f r o n t j ) h f t « J f t g * l , Q . ( ( ' c c _ f c a t u r c \ ' r p l . t 3 : O H : 3 \ M a a j ) h a s e \ * h i g h _ s i m i i f t r i t y \ V / _ ' l ^ 
cI(rrn)Ot-poa_0_corT'],Q,[l"cc_rcaturc".Tp2-r4:p4^2"."none _phase'.'_*,*_*.*_'ll) 
cI(rf roni-poa_0_corT"J .n . (rcc_feaiurc ' , ' fp l - f3:p3-or ."nonc .phase*. 
cl(Cffont-posi_corr*l.D.U 'cc_feaiure*,'fp2-f4:p4-o2'."_'.*_*.*_*.*_*ll) 
cl([*front-poa_corr*J.Q.[('cc_feaiure*."fpI-D:p3-or.*_"."_*.'_*.*_*|l) 
cl(rantcrior*.'fp2-f4*|.(Il . [J) 
ct(('anterior* .•f4-c4 • 1.111 ,D) 
cia-antcriof*.*fpl-0*l . ( lI .U) 
cI(|"anicrtor*.*f3-c3*l.IIl,n) 
c!(ra i i tcTior*.*rp2-re- l , (II .D) 
cl(|*ant«tor*.*f8-i4*I.Ill,n) 
c! ( [*an tc r io r* .*fpI . n*Ml | . 0 ) 
c l ( ' - •erior*.*n-t3-I.Ill.n) 
eld . . c r io r - . ' fpS - fpI ' I . l l I .Q) 
cI([*poacrior ' ."c4-p4*).(I | .{J) 
c l ( [ * p o s i c r i o r ' , - p 4 - o 2 ' | , ( l | , [ | ) 
cl(Cpostcrior*.*c3-p3*I.[lMj) 
c ia*pos ie r io r " . ' p3 -o r i . I l l ,Q) 
cl([*posierior* .•t4^6"l.[ I | .D) 
cl(Cpostcrior*.*l6K>2*I.ni.U) 
cI((*postcrior*.*0-t5"l.[ll.D) 
c l ( C p o s i « i o r " . - i 5 - o r M I I . a ) 
cI ( f frOQi' .*fp2 - f4*] .{ lI .D) 
c i a - f r o n i ' . T p I - O ' j . l U . Q ) 
c l ( r r r o n f . - r p 2 - f B - M l I . a ) 
c I ( r r r o B f . ' f p l - f 7 - | . ( I j . a ) 
c!aTront*.'fp2-fpri .[lI .n) 
cl(Crp_ven*.*fp2-r4*).(ll,a) 
cl( |*fp_vert- .*fpl-f3*l.(l l .n) 
cl([*tctnp*.*(B-i4*I.(l|.n) 
cl(r tcmp*.- t4- t6*I.( lI ,U) 
cIC v * . * f 7 - 0 * U l l , t l ) 
cKi ...np*.*t3-l5*l.m.n) 
c l ( l*occ ip i ta j \ -p4-o2- l .m .0 ) 
cl(roccip.ial-.-p3-ol-I.m.Q) 
c l ( rocc ip i t a l ' . ' i 6K )2 ' l . [ l J .D) 
c l ( r o c c i p i t a l " . * t 5 - o r i . [ 1 1 . 0 ) 
cid'cjcflture* . •clais_totali" I ,(0] . • ) 
c h a n n d u g J ' f p Z - ^ . ' T O g ' r ^ 

channel^lT^ '-flyT-f7 • . "cog • ) 
Chaiinel (0 . ' fp2-f4*.*ecg-) 
chf tnncI(4 ,*fpl -D ' . 'eeg*) 
channe l ( l , ' f4^4* .*ccg ' ) 
channel (2, •c4-p4'.*eeg*) 
channel f3. 'p4-o2". 'ceg") 
channcl(5 .*r3-c3*.*eeg*) 
channcl(6.*c3-p3*.*eeg*) 
channel (7 .*p3 -or,*eeg*) 
channel (9 ;* ra-t4 ' . ' e eg *) 
channel(I0,*t4-t6*.*eeg*) 
channc l ( I l . * t6 -o2* ."eeg ' ) 
channc l ( I3 .T7- t3* ,*ceg*) 
c h a n n c l ( l 4 / G . t 5 * . * e e g * ) 
c h a n n d ( I i . * l 5 ^ l * . * c e g * ) 
c h a n n e i ( 8 . ' fp2-fa*. "cog") 



chiiiincl(12."fpl-n*,*cog*) 

Auiocorr(O) 
ttu(ocorr(4) 

iiuiocorr(8) 
au[ocorr( 12) 

crosscorr(0,l,21) 
cros5CorT(0.2,22) 
croiM:orr(0.3.23) 
c fOiscor r (4 ,3 ,24) 

i :rosicorr(4,6.Z5) 

crosjcofr(4.7,26) 
adjaccm('fp2-f4*, ' f4-c4 ') 
adjacem(*fp2-f4-.-fp2-re-) 

adjaccnl( * fp I - f3 • ." f3-c3 •) 
adjaccm(*fpI-G*,*fp3-r7-) 
adjacemCf4.c4*,*fp2-f4*) 

fldjaccni('f4^4*,*c4-p4') 

adjacemCf3-c3 ' ."fpl-r3 ' ) 

adjaccni(* f3.c3' . 'c3-p3 *) 

adjacemCf8.[4*.*rp2-re') 
ad jac«n iCre - (4 - . - t4 - t6 - ) 
ad i C r 7 . t 3 - , ' f p l - r 7 - ) 

adjt . . . lCr7- i3* .* i J - l i ' ) 

l f_»ym(*fp2- re - . - fp l - r7 ' ) 
l r_symCf8-t4*.T7-t3 ') 

l r_s>mCfp2 . f4 - . - fp I .n - ) 
p c a k ( l . - p k r ) 

pcak(2.-pk2') 

pcak(3.'pk3-) 
peak(4.-pk4-) 

frcq_boundiCtub_dclta ' ,-4.6) 

f rcq_boundi ( -dc l ta - .2 . l8 ) 
f f cq_boundsC(h«a" . 14.34) 
freq_bounds(*alpha'.30.54) 

frcq_boundtCbcta' .50.l02) 

powcr_6ounds(l.2E+09.'vhigh_powcr") 
powcr_bounds(300000000.'med_power') 
power_boundfi( 10000000, * low j>ouer *) 

iifnilar_bounds{ 10000000, ' h igh^ i imi lo r i iy ' ) 

simiIar_bounds(lOOOO,'low_Bimilarity*) 



APPENDIX O 
This appendix contains the full evaluation data set. The data 

illustrated is that of 16-channel 8-second bipolar EEG data. This data is 
divided into 2-second analysis segments that are classified by the EEG 
expert and the lOARS into one of the following four categories: 

. OA present and no abnormal slow waves. 

. Abnormal slow waves present and no OA. 

. Both OA and abnormal slow waves present. 

. normal. 

The data set is included in this appendix to allow analysis of the data 
on which the lOARS has been evaluated as this will effect the significance 
of the results obtained. 
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APPENDIX P 
This appendix contains the full results of the comparison made, with 

a limited feature set, between the lOARS and expert in the classification 
of the the data segments given in appendix 0 . 
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APPENDIX Q 
This appendix contains the full results of the comparison made, with 

a full feature set, between the lOARS and expert in the classification of 
the the data segments given in appendix O. 
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APPENDIX R 
This appendix contains the full pre-clinical evaluation data set. The 

data illustrated is that of 16-channel 8-second bipolar EEG data. This data 
is divided into 2-second analysis segments that are classified by the EEG 
expert and the lOARS into one of the following four categories: 

. OA present and no abnormal slow waves. 

. Abnormal slow waves present and no OA. 

. Both OA and abnormal slow waves present. 

. normal. 

The data set is included in this appendix to allow analysis of the data 
on which the lOARS has been evaluated as this will effect the significance 
of the results obtained. 
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APPENDIX S 
This appendix contains the logged expert responses for the 

pre-clinical evaluation of the lOARS. The log presents the following 
information for each analysis segment: 

. date 

. time 

. segment identification number 

. list of extracted features: 
. contextual domain features 
. time domain features 
. frequency domain features 

. list of successful conditions 

. system classification 

. classification measure of belief 
, experts verifying judgement. 
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( • f _ r M i u r c ' . - f p 2 - r e ' . " p k J * . * d c l t a - , - m c d j ) o w c r ' . ' m c d _ s p e « l - l I 

( • f _ f c a i u r e * , ' r p 2 - f 8 * , ' p k 4 * , * < J c I i a * . " l o w _ p a w c r ' . ' h i g h _ s p c e < l ' I I 

i ' r _ f c a i u f e " . ' r p l - n * . " p l c l ' . ' » u b _ d c I i a * , * v h i g h _ p o w c r ' . * m e d _ i p e « d * l I 

[ ' f _ f c a t u r c * . * f p I - r 7 " . * p k 2 ' . ' d e l t a ' . ' l o w _ p o w c r ' . " m c d speed") I 

I ' f _ f c « i u r e ' , ' f p l - r 7 * , ' p k 3 * , ' d e l t a * . " l o w j j o w e r ' . ' h i g h speed*I 0 .75 

no( i h c h iuo r i ca J con tex t is a b n o r m a l 1 

not i h c locaJ con tex t i s abnormaJ &low waves o n l y I 

not the loc&J con tex t is m a i n l y a b n o r m a l l i o u i waves w i t h i n s i g n i n c a n i O A I 

not the loca l con tex t is d c i e c t a b l e _ O A i n a b n o r m a l s low w a v e s I 

any s i g n i f i c a n t t p e c u a l peaks ex is t I 

not there it o n l y ve ry s l ow a c t i v i t y p r e » e n i . less than O.SHz I 

any s i g n i f i c a n t cpecira l pcaJcs exis t in ihc del ta ba / i d I 

the largest cpcc t f a i peak appears in a f r o n t a l channe l 0 . 2 3 

not f p 2 - f 4 and rp l -O are s y m m e t r i c a l f o r a l l del ta peaks I 

not f p 2 - f 8 and f p l - H a/c s y m m e t r i c a l f o r a l l del ta peaks I 

not del ta peaks are present tha i are not present in the E O G 0 .75 

not f p 2 - f B or r p l - f 7 c o n i a i n i i sola ted n o n r epe t i t i ve w a v e f o r m s 0 , 0 5 2 9 1 5 7 6 6 7 

de l t a a c t i v i t y o n l y appears i n the a n t e r i o r h a l f o f (he scalp 0 . 7 5 

not del ta spectral peaks e x i n o n l y i n the E O C 0 .7S 

ihc l a r g e r spectral peak appea/s in the E O C 1 

the largest spectral peak is a t t r i bu tab le to more Ihan one e lec t rode 0 .25 

not largest del ta peak appears in channels fp2- f -* or f p l I 

no w a v e f o r m in channels f p 2 - f 4 or f p l - f ^ i l s l o w - l o w delta I 

the w a v e f o r m in channels fp2-r8 and ra-t4 are in phase 0 

the w a v e f o r m in channels f p l - H and r7-i3 arc in phase 0 

segment was c l a s s i f i ed as c o n t a i n i n g 

b l i n k ar tefact w i t h a ce r t a in ty o f 0 . 1 6 7 5 . 

T h e users response was n 

12-3-1991 17:30 

D A T A 7 S E C 4 
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f e a t u r e ' . ' c l a s s i o i a l s ' l I 

f e a t u r e * . ' c l a s s _ t o t a l s ' ) 0 

' " < t u r e ' . ' c l a s s _ t o t a l s ' | 0 

. u r e ' . ' c l a s s t o t a l s ' l 0 

f e a t u r e ' . ' c ! a s s _ t o t a l s ' I 0 

f c a t u r c " . ' c I a s s _ t o t a l s * | 0 

fea iu rc* . ' c l a s s_ tOta l s* | 0 

f e a t u r e * . * c I a i » _ t o i a l s * | 0 

_fea ture ' .*c la3s_ to ia l s* l 0 

f e a t u r e * . ' f p 2 - f S * . ' p k l " , ' d e l t a ' 

fea ture*. * f p 2 - f 5 * , * p k 2 ' , ' d e l t a * 

fea ture* ." f p I • r ? * p k r , "del ta* 

f 6 a t u r c " . " f p l - r 7 ' , * p k 2 ' . * d e l t a * . ' m e d j > o w e r " . ' h i g h _ s p c e d " | I 

.•high_power*.'mcd_spe<d"| I 

/highj)Ower'.*high_speed*| 1 

/high_powcr'. 'med_ipeed*| I 

feature 

feature 

feature 

feature 

• p k l " 

• p k 2 ' 

• p k l " 

• p k 2 " 

" d e l t a ' 

"de l ta" 

" d e l t a ' 

•de l t a" 

" d e l t a ' 

' d e l t a ' , ' v h i g h _ p o w e r " 

" d e l t a " , * m c d _ p o w e f ' . 

' d e l t a ' . " m e d _ p o w c r * , 

" d e l t a ' . * v h i g h _ p o w c r " 

"dc( ia* . ' m c d _ p o w e r * , 

the h i s to r i ca l con tex t is abr to tmal i 

(he local con tex t is a b n o r m a l s low waves o n l y 1 

the loca l con tex t is m a i n l y a b n o r m a l s l ow w a v e s v . i t h i n s i g n i f i c a n t O A I 

f e a t u r e ' . * f p 2 - f 4 • . * p k ^ 

f e a ^ u r e " . " f p 2 - f 4 " . " p k 2 • 

f p l - O ' 

f p i - n -

f p 2 - f B -

f p 2 re-

feaiur e". * f p 2 - r e ' . ' p k J " 

f e a t u r e ' , * f p l - n ' . " p k r 

f e a t u r e ' . * f p l - f 7 ' , " p k 2 " 

f e a t u r e ' . * f p l - f 7 ' . ' p k 3 * 

'vhigh_powcr',"mc<J_spccd"! 1 

•medj>ower"."high_spccd'| 1 

'vhigh_power",'med_speed'l I 

"med j>ower*,'high_speed') 1 

' vh igh j>ower ' . "med_spc«d") I 

.•mcd_speed"l I 

•high_specd"| I 

'med_speed"| 1 

. 'med speed'I I 

'high speed'I I 

51 



n o t t h e locaJ c o m c i i i« d e t e c u b l c _ O A i n a h n o r m u l s l ow w « v c i I 

(my s i ^ i f i c a n i ^caial p e a l u cxia I 

n o t i h e r e is o n l y ve iy s l o w a c t i v i t y present , less than 0 . 5 H z I 

any ( i g n i n c a n t spC£UaJ peaks e * i s i i n the d c l u band I 

t h e l a rges t spec t ra l peak appears i n a Trontal channel I 

rp2-r4 a n d f p l > 0 arc s y m m e t r i c a l Tor a l l de l ta pealcs 1 

rp2-f8 a n d f p l - f ? are s y m m e t r i c a l f o r a l l de l t a p c a l u I 

d e l t a a c t i v i t y o n l y appears i n f r o n t a l channels I 

n o t d e l t a spectraJ peaks e x i n o n l y i n Uic E O C I 

t h e l a rges t spcaial peak is a i t r i b u t a b l e to m o r e than one e lec t rode I 

t h e l a rges t spec t ra l peak appears i n the E O G I 

n o t the l a rges t del ta peak appears i n channe l s rp2-f4 o r f p l - O 1 

n o t the w a v e f o r m in channels fp2-f4 o r f p 1 - D is s l o w . l o w de l t a 1 

t h e w a v e f o r m i n channels rp2-r8 and (5 - i4 arc in phase I 

t h e w a v e f o r m i n channels f p l - f 7 e n d r7-G are in phase I 

s egmen t was c lBSsified as c o n t a i n i n g 

b l i n k a r t e f a c t w i t h a c e r t a in ty o f 0 . 9 9 5 8 . 

T h e users response was y 

l 2 - ^ - ' 9 9 1 17:33 
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L i s t o f e x t r a c t e d feature* 

' c _ f e a t u r c * , ' c I a s s _ t o t a l s * J 2 

• c _ f c a l u r e ' , ' c l a s 5 _ t o t a J s * l 0 

• c _ r 6 n t u r e ' . ' c l B s s _ t o t a l 8 ' I 0 

*c_fca tu re" . ' c Ia$5_ to ta lB*l 0 

• f _ f e a : u r e ' . ' f p 2 - r 8 * . * p k r . ' s u b _ d e l i a ' . * l o w _ p o w e r * . ' h i g h _ s p e e d ' J 0 . 5 

• f _ f e a t u r e ' . T p 2 - f 8 ' . ' p k r . ' d e l t a \ * I o w _ p o w e r ' . ' l o w _ i p e e d * I 0 . 5 

* f _ f e a t u r e ' . * f p 2 - f 8 * . * p k 2 * , ' d e l t a * . • m c d _ p o w e r * . * m c d _ s p e e d * | I 

• f _ f c a t u r e ' . ' f p l - f 7 * . ' p k I * . ' d e l t a " / m e d _ p o u - e r ' . * m c d _ i p e e d * | 1 

* f _ f e a i u r e ' . * f p l - f 7 ' . * p k 2 ' . * d c l t a * . * l o w j > o w e r * . * m e d _ i p e e d " | I 

• f _ f c « t u r e ' . * f p 2 - f 4 ' , * p k l * . ' d c l i a " . " m e d j » w e r ' , ' m e d _ s p c e d " l 1 

• f _ f e a t i i r e * . T p l - f 3 ' . * p k l ' d e l t a * . " m e d j ) o w e r ' . ' m e d _ s p e e d " t 1 

* f _ f e a t u r e * . * f p l - f 3 * . * p k 2 * . * d e l i a * . * l o w j w w e r * . ' h i g h _ t p e w l " I 0.5 

* f ' • — t u r e * . * f 4 - c 4 * . * p k l * . ' d e l t a * . ' v h i g h j w w e r ' . ' m c d ^ s p e c d ' ) I 

* ( _ ure*.*c4.p4*,*pkl*, 'de l ta*.*raed _ p o w c r * . * m c d _ i p c e d * l 1 

* f _ f 6 a t u r e * . * D - c 3 ' . * p k l * . " d e l t a * . * v h i g h _ p o w e f ' . ' m e d _ q ) e e d * l 1 

* f _ f c a t u r e * . * c 3 - p 3 * . * p k r , ' d e l t a * . * m c d j ) o w c r * . * m c d _ s p e e d * l I 

* f _ f c a t u r e * . ' p 3 - o r , ' p k r . ' d e l t a * . ' l o w _ p o w e r ' . * m e d _ ( p e e d ' | 1 

* f _ f e a t u r e * , " f 8 - t 4 * . " p k r , " d e l t a * . * m e d _ p o w e r * . * m e d _ i p c e d ' | I 

* f _ f e a t u r e * , ' t 4 - ( 6 ' . * p k r . * s u b _ d e l t a * , * l o w _ p o w e r * . * h i g h _ s p e e d * I 0 .75 

* f _ f e a t u r e * , * t 4 - t 6 * . * p k r . * d c l t a * . * l o w j ) o w e r ' . ' l o w _ s p e e d * ! 0-25 

* f _ f e a i u r e ' . * t 4 - t 6 ' . * p k 2 ' . * d c l t a * . ' m c d j » w e r ' . * m c d _ s p e e d * l I 

• f _ f e a i u r e * . * i 6 - o 2 * . * p k I ' / d e l t a * . * l o w _ p o w e r ' . * m c d _ s p e « d " I I 

' f _ f e a i u r e ' . ' f 7 * t 3 ' . * p k l ' , ' d e l t a ' . * m e d _ p o w e r * . ' m c d _ s p e e d " | I 

* f _ f e a i u r e * . * t 3 - l 5 ' . * p k l * , ' d e l t a * . • m e d _ p o w e r * . * m e d _ s p e e d ' I I 

' f _ f e t t t u r c * . * l i - o r , * p k r . ' d e l t a * . ' l o w j } o w e r ' . * m e d _ i p e e d ' I I 

* f _ f e a t u r e * . * f p 2 - r e * . " p k r . * s u b _ d e l i a ' , ' l o w j w w c r ' . " h i g h _ i p e e d ' 1 0 . 5 

* f _ f e a t u r e * . ' f p 2 - r e * . ' p k l ' , * d e l t a * , * l o w _ p o w c r ' . * l o w _ t p c c d ' | 0 . 5 

* f _ f e a t u r e * . * f p 2 - f 8 * . ' p k 2 * . * d c l t a * , * m e d _ p o w e f * . * m c d _ s p e e d * ) I 

* f _ f e a l u r e * . ' f p l - n * . ' p k r . * d c l ( a * . * m e d _ p o w c r * . ' r a c d _ 5 p c e d ' | 1 

* f _ f e « l u r e * . ' f p l - f 7 * . " p k 2 ' , ' d e l t a * . ' l o w j w w - e r ' . ' m e d ^ s p e e d ' ) I 

n o t I h c h i s t o r i c a l context is a b n o r m a l I 

n o t the l o c a l con tex t is a b n o r m a l s l o w waves on ly I 

no t the l o c a l con tex t is m a i n l y a b n o r m a l s l o w waves w i t h ins ign i r i can t O A t 

no t the l o c a l c o m e x i is detectable O A i n abnorma l s l ow u a v c s I 

a n y B i g n i f i c a n i spectral peaks ex i s t 0 . 5 

n o t t he r e is o n l y very s l o w a c t i v i t y present , less than 0 . 5 H z 0 .5 



an> s ign i f t can t spcciral peaks exist in the de l t a band 0 .5 

not the largest spectral peak appears i n a f f o o i a J c h a n n e l 0 . 2 3 

not I p 2 - l 3 or f p l - f ? contains isolated non r epe t i t i ve w a v e f o r m s 0 . 0 5 2 9 1 5 7 6 6 7 

not f p 2 f 4 a f l d f p l O a/e l y m r o a r i c a l f o r a l l de l ta peaks 0 ,5 

not delta peaks arc present that arc not p f c i c n t in the EOG 0 .23 

not Ihc largest spectral peak appears in the EOC 1 

the largest spectral peak i i au r ibu iab le to m o r e than one e l c c u o d e 0 .25 

there is a t i g n i f i c a n i spectral peak in an E O G channel 0 .5 

there i t a c o r r e l a i i o n t>ciwecn f r o n t a l and pos t e r io r e lec t rodes I 

segment was c l a s s i f i ed as con t a in ing 

abnormal s low waves on ly w i t h a c c n a i n t y o f 0 . 0 2 6 4 5 7 8 8 3 4 . 

The users response was > 
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\ \ . u r e " . " l o c a l * . " a b n o r m a l " ! 0 . 0 2 6 4 3 7 8 8 3 4 

[ ' c f c a i u i e * . " h i s t o f i c a l " . ' a b n o t m a i ' I 0 . 0 0 7 0 5 5 4 3 5 6 

( ' c _ f e a l u r c ' . " c l a i s _ t O i a J » ' | 3 

("f f e a t u r e " . ' f p 2 - f B * . " p k r . " d e l t a " . " m e d _ p o w c r * . " m e d _ i p e c d * | I 

| " f _ f e a i u r e " . * f p 2 - r e ' . " p k 2 ' . ' d e l t a ' . ' I o w _ p o w e r " . * m e < l _ i p e e d " l I 

| " f_ f tAiu rc* .* fp l - f7* . ' pk r . "dc l t a" . "mcd__powcr* . "med_spc<d"! I 

| * f _ f c a i u ( e ' . " f p 2 - f 4 ' , ' p k r . * d e l l a ' . ' l o w _ p o w e r ' . * m e d _ « p e e d ' | I 

( " f _ f e a t u r e ' , ' f p l - f 3 ' . * p k r . " d e l t a " , " l o w j > o w e r " . * m c d _ s p e c d " l I 

( • f _ f c a t u r e " . " f 4 - c 4 * , ' p k r . ' d e l t a " , " l o w _ p o w c r * . * m c d _ i p c c d * | 1 

r f _ f e a i u r c " , * c 4 . p 4 " . * p k r . * d c l t « ' , ' l o w _ p o w c r ' . * m c d _ s p e e d * I 1 

( * f _ f e a i u r e ' . " f 3 - c 3 " . ' p k r . " d e l t a " . " m e d _ p o w c r " . " m e d _ t p e * d " l 1 

( " f _ f c a i u r e * . * c 3 - p 3 * . * p k r . ' d c l t a " . " l o w _ p o w e r " . " m c d _ s p e e d " | I 

[ " r _ f c a i u r e " . * p 3 - o r . * p k l " . " d c l i a ' , * l o w _ p o w c r " . * m e d _ i p e < d " l I 

( " f _ f c a i u r e " . " f 8 - t 4 * , * p k r . * d c l t a ' , ' I o w _ p o w e T * . * m e d _ s p e c d * J I 

| ' f _ f c a i u ( e " . " t 4 . t 6 ' . ' p k r . " d c l t d " . * I o w _ p o w c r " . " m c d _ s p c < d " l 1 

( • f _ f e a t u r e " . " r 7 . i 3 * . * p k l " . ' d e l t a " . " l o w _ p o w c i " . " m e d speed" | I 

( " f feature".*t3-L5*."pk I " . ' d e l t a ' . ' I o w _ p o w e i * ,*med s p c c d ' l I 

[ ' f f e a t u r e ' . ' i 3 - t 3 * . ' p k 2 * , ' d e l t a ' , ' l o w j w w e r ' . ' m e ^ l ^ s p c e d ' l 1 

I ' f ' " i u r c ' . * l 5 - o r . ' p k r . * d c l u ' . " l o w _ p o w e r * . * m e d _ s p e « d * l I 

| ' l _ u r c " . * f p 2 - f ? ' . * p k l * . * d e l [ a * . * l o w _ p o w c r * , * m e d _ i p e e d * l 1 

I " f _ f c a t u t e * . * f p l - f 7 ' . ' p k l * . * d c I t a " , * m c d _ p o w c r " . * m e d _ » p c c d * l 1 

the h i s to r i ca l con tex t is abnormal 0 .0070S543S6 

the local con tex t is abnormaJ s low waves o n l y 0 .026457S834 

any s i g n i f i c a n t spectiaJ peaks e j t i u i n the del ta band 1 

the (argcsi spectral peak ( i a t l r i b u u b l e (o m o r e t h a n one e l ec t rode I 

there is a l i g n i f i c a n i spectral peak in an EOG channel I 

not f p 2 - f ? or f p l - f 7 conta ins isolated non r e p e t i t i v e w a v e f o r m s 0 . 0 5 2 9 1 3 7 6 6 7 

there is a co r r e l a t i on between f r o n t a l and pos te r io r e lectrodes I 

segment was claAsif ied as con t a in ing 

abnormaJ s l ow waves on ly w i t h a cer ta in ty o f 0 . 0 4 5 2 9 2 4 6 3 6 . 

T h e users response woa y 
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I ' c f e a t u r e " , " l o c a l * , " a b n o r m a l " I 0 .CM32924636 

^6 



( • c _ f e a t u r c ' , ' h i s t o r i c a l ' . " a b n o r m a l ' I 0 . 0 2 5 0 4 4 5 9 7 8 

( ' e _ f c a i u r e ' . ' c l a s s _ t o t a l s ' I 4 

( * f _ f e a i u r e ' . ' f p 2 - f S ' . ' p k l * . ' d e l i a ' , * l o w _ p o w e i * , ' m e d _ s p e e d ' I 1 

the h i s t o r i c a l con tex t is a b n o r m a l 0 . 0 2 5 0 4 4 5 9 7 8 

the l o c a l c o n t e x t a a b n o r m a l s l o w waves o n l y 0 . 0 4 5 2 9 2 4 6 3 6 

any s i g n i f i c a n t specua l pea l c j ex i s t i n the de l t a bond t 

not the la rges t spectral peak U o i u i b u t a b l e t o m o r e t h a n o n e d c c u o d e I 

there is a s i g D i f i c a n t spect ra l peak i n an E O G channe l I 

not f p 2 - r e o r f p l - H con t a in s i so la ted n o n r e p e t i t i v e w a v e f o r m s 0 . 0 5 2 9 1 5 7 6 6 7 

there is a c o r r e l a t i o n bcr*-ccQ f r o n t a l and pos t e r io r e l ec t rodes 1 

scgmeni w u classiHed as c o n i a i n i o g 

a b n o r m a l s l o w waves o n l y w i t h a c e r u i n t y o f 0 . 0 6 4 7 7 4 0 4 5 4 . 

T h e users r c ^ n s e u - u y 
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L i s t o f ex t r ac ted fea tures 

r e _ f e a m r e ' . ' l o c a l ' . ' a b n o r m a l ' l 0 . 0 6 4 7 7 4 0 4 5 4 

I*c_fea iure ' .*h is to r iea l - , "abnorTnal ' l 0 . 0 5 5 3 5 7 4 6 4 4 

r e _ f e a i u r e ' . ' c l a s s _ t o i a l ! ' ) 5 

the h i s t o r i c a l con tex t is a b n o r m a l 0 . 0 5 5 3 5 7 4 6 4 4 

the l o c a l c o n t e x t is a b n o r m a l s l o w w a v e s o n l y 0 . 0 6 4 7 7 4 0 4 5 4 

n o t a n y s i g o i f t c o n t qKCcra l p e a k s ' e x t s i i n t h e de l t a b o n d I 

not the l o c a l con tex t is m a i n l y a b o o r m o l s l o w waves w i t h i n s i g n i n e a n l O A I 

not the l o c a l con tex t is deteciAble_OA i n a b n o r m a l s l o w w a v e s I 

a l o c a l c o n t e x t exis ts 0 . 0 6 4 7 7 4 0 4 5 4 

not any s i g n i f t c a n t spectral peaks ex i s t I 

scgmeni was c las s i f i ed as c o n t a i n i n g 

no s i g n i f i e o n i a c t i v i t y w i t h a c e r t a i n t y o f 1. 

T h e users response vas y 
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L i s t o f ex t r ac ted fea tures 

fea ture* 

fea ture* 

f e a t u r e ' 

f e a t u r e ' 

feature* 

f e a t u r e ' . ' f p l - n 

f e a t u r e " . ' f p l - f ? 

f e a t u r e " , ' f p I-f7 

c l a a s _ t o t J i l i ' l 6 

c l a u t o t o l s ' l 0 

' f p 2 - f B ' 

• f p 2 - r e ' 

•fpl-n* 

'pk l ' . ' s ub_dc lu i ' . *vh igh _powcr ' . 'h igb_speed ' I0 .75 

'pk l " . ' dd t a* /vh igh j>ower ' . ' l ow_speed ' ]0 .25 

pk 1 *. • Bub_delta'. 'vbigh j x » w e r ' .'high_€peed* 1 0 .75 

• . • p k l " . ' d d t a " / v h i g h _ p o w e r ' / l o w _ s p c e d ' I 0 . 2 5 

' . ' p k 2 ' . ' d d t a " , ' m e d _ p o w e r ' . * m e d _ s p e « d ' I I 

' . •pk3 ' ,*ddta*. 'med_paweT' . 'h igh_Epeed*) I 

fea ture ' .*fp2-f4", 'pkr . 'Bub_ddta ' . 'vh igh_power*. 'med_speed ' l I 

feature*.*fpI-f3' ."pkr .*sub_ddta'. 'vhigh_power'. 'mcd_speed*I I 

feature*.*fp2-re*.*pkr."sub_ddta*,'vhigh_power*.*high_Bpeed"l 1 

feature'. 'fp2-re*,*pk2".•delta*.*medj>ower*.*mcd_Epeed'I I 

f e a t u r e ' . ' f p I - r 7 ' , " p k l * . ' s u b _ d d L a * . * v h i g h j ) 0 w c r * , * m e d _ j p e e d " l I 

feature*. ' fpl -r7" , 'pk2*. 'del ta ' , •med_powcr ' . 'mcd_speed*| I 

fea ture ' . ' fp l -n ' . ' pk3*,*ddta ' , ' low_powcr* .*high_spced*I I 

the historical context is abnormal I 

the local context is abnormal slow waves o n l y I 

the l o c a l context is mainly abnormal slow waves with insignificant O A I 
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not i h c loca l con tex t is d e i c c U b l c _ O A In abnormal s low M S V C S I 

m y s t g n i f i c a n i spec i ra l peaks enis i 0.75 

not there i i o n l y v e r y s l o w a c t i v i t y present, less than 0.5H?. 0.25 

any s i g n i f i c a n i spect ra l peaks exis t m the delta band 0 l i 

the largest spectral peak appears in a f r o n t a l channel 0.25 

fp2 . f4 and f p l - f l are s y m m e t r i c a l Tor all delta peaks 1 

not fp2-13 and f p l - f 7 are s y m m e t r i c a l for al l delta peaks 0.25 

del ta a c t i v i t y o n l y appears i n f r o n t a l channe l i 0.25 

there arc Ut s y m e u i c a l del ta peaks 0.05291 S7667 

del ta spectral peaks ex is t o n l y in the E O G 0.25 

not the largest de l t a peak appears in channels fp2-f4 or f p l - D | 

the w a v e f o r m i n channe l s rp2-r4 or f p l - f 3 i i s low - l o * del ta 0.25 

the w a v e f o r m i n channe l s fp2-ra and (l-i* arc in phase 0 

the largest specua l peak appears in ihe E O G I 

segment was c l a i s i f i c d AS c o n i a i n i n g 

weak em a i l c f a e i w i t h a cer ta in ty o f 0 .6S1699676. 

T h e users response w a » y 

13-3-1991 11:53 

M S E G l 

Lis t o f ex t rac ted fea tures 

( • c _ f eat u r e *. • c I ass _ i o l a l s ' ) 0 

( • c _ f e a [ u r e ' . ' c l a s i _ t o t a l s ' l 0 

not the h i s to r i ca l c o n t e x t is abnorma l I 

not the loca l c o n t e x t is a b n o r m a l s l ow waves only I 

not I h c loca l c o n t e x t i t m a i n l y abnormaJ s low waves wUh i n s i g n i f i c a n l O A I 

not the l o c a l c o n t e x t is d e i e c u b l e _ O A in abnormal s low waves I 

not any s ign i r i can t spectral peaks exis t I 

segment was c l a s s i f i e d a i c o n i a i n i n g 

no s i g n i f i c a n t a c t i v i t y w i t h a cer ta inty o f I . 

T h e users response wa^ y 

13 ' 0 9 1 11:55 

0 / . S E G 2 

L i s t o f ex t rac ted features 

| * c _ f e a t u r e * , ' l o c a l ' . " n o ' l I 

| " c _ f c a t u r e * . * c l a x s _ t o i a l i ' l 1 

( * f _ f c a i u r e ' . ' f p l - f 7 ' . * p k r . " d e l t a " . " l o w _ p o w e r * . ' m e d speed") 1 

( • f f e a t u r e ' . ' f p 2 - f 4 ' . ' p k r . " s u b d e l t a ' . ' m c d j » w e r " . ' m c d _ s p e e d ' ) I 

( • f _ f e a t u r e ' . ' f p l - n ' . ' p k l ' . " s u b _ d c l i a ' . ' m e d j K ) w e r ' . " h i g h _ $ p e c O ' l I 

[ • f _ f e a l u r e ' , ' f B - l 4 ' , ' p k r . * $ u b _ d c l t a ' . ' m « d _ p o w e r ' . ' h i g h _ s p e c d ' l 1 

[ ' f _ f e a l u r e * . ' r e - l 4 ' . ' p k 2 ' . ' d e l t a " , " l o w j K i w e r ' . ' m e d speed ' ) I 

( • f _ f e a t u r e ' . ' f p l - f 7 ' . * p k l ' , ' s u b _ d e l t a ' . " m c d j > o w e r ' . ' h i g h _ s p e e d " | I 

not the h i s to r i ca l c o n t e x t is a b n o r m a l I 

not the lf>cal c o n t e x t is a b n o r m a l s l ow waves only I 

not the loca l c o n t e x t is m a i n l y abnormaJ slow waves w i t h i n s i g n i f i c a n t O A I 

not the loca l c o n t e x t is de t ec t ab le_OA in abnormal s low waves I 

any s i g n i r i c a n i spectral peaks exist 1 

not there i i o n l y ve ry s l ow a c l i v i i y p r c i c n i . less i h a n 0 . 5 H z I 

any s i g n i r i c a n i spect ra l peaks exist i n the delta band I 

Ihe largest spect ra l peak appears in a f ron ta l channel 1 

f p 2 - f 4 and f p l - f 3 are s y m m e t r i c a l for al l delta peaks I 
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not f p 2 > f B and f p l - f 7 are t y m m e t r i e a l f o r a l l del ta pcalcs I 

no t dc I tA a n i v i t y on ly appears i n f r o n t a l c h a n n e l ! I 

de l t a a c t i v i t y o n l y appears ia the an te r io r h a l f of i h c Bcalp 1 

not de l t a peaks are present tha i are not present in t h e E O C I 

f p 2 - f 8 o r fp\-n c o n u i i u isola ted noa r e p e t i t i v e w a v e f o r m s I 

not f p 2 - f 4 o r f p l - D c o o t a i n i w a v e f o r m s w i t h sha rp c l c m e n u I 

n o t de l t a spectral peaks exis t o n l y i n the E O G I 

the la rges t spectral peak is a n r i b u t a b l e to m o r e thao o n e e l e c t r o d e I 

there is • s i g n i n c a n i spectral peak ia an E O G channe l I 

( o o i t h e l a rges t d e l u peak appears i n channe l s f p 2 - f 4 o r f p l - O I 

^ o t the w a v e f o r m ia channels fp2-r4 o r f p l - n is s l o w - l o w d e l t a I 

the w a v c f o n n i n ehanneis f p 2 - f 8 and re-t4 a r c i n phase 0 

the w a v e f o r r o i n channels f p l - f 7 and Cl-O a re m phase 0 

segment was c lass i f ied as c o n t a i n i n g 

b l i n k a r te fac t w i t h a ce r t a in ty o f 0 . 8 . 

T h e users response was y 

1 3 - 3 - I 9 9 I 11:57 

D A T A I S E C 3 

L i : z x i r a c t c d features 

• ( * c _ f e a i u r e * . ' l o c a l ' , ' b l l n k ' l 0 . 8 

( • c_ fea tu r c ' . *c l a s s_ to t a l s* I 2 

( • f _ f e a i u r e ' . * f p 2 - r e ' . ' p k r . * s u b _ d e l i a * . ' m e d _ p o w e r ' . * m c d _ s p c e d * l I 

( • f _ f e a i u r e - . * f p 2 - r a ' . " p i a ' . " d c l [ a \ M o w _ p o w c r ' . ' h i g b _ s p c e d * l I 

I - f _ f e a i t i r c \ ' r p I . n * . ' p k r . ' d e l i a ' , M o w j > o w e r ' / m c d _ s p c e d * ) I 

( • f _ f e a t u r c - . ' f p t - f 7 * . ' p k 2 * . ' d c l t a - , ' l o w j > o w e r ' / h i g h _ i p c e d * l 1 

l * f _ f e a i i ] r e \ * f p 2 - f 4 * . ' p k I ' . ' s u b _ d e ] i a * . ' m c d _ p o w c r " , " m c d _ ( p e e d * I I 

| * f _ f e a t u r e * . T 7 - t 3 * . ' p k l ' . ' s u b _ d e l t a ' . ' m e d j ) o w c r ' , * m e d _ $ p e c d " | I 

r r _ f e a t u r c ' . ' f p 2 - f S ' . " p k I * , ' s u b _ d e ] i a * . ' v h i g h j w w e r * , ' m e d _ s p e c d * l I 

no t the h i s t o r i c a l eo iUcxl is a b n o r m a l 1 

not the l o c a l context is a b n o r m a l s l o w waves o n l y 1 

n o t the l o c a l context i s m a i n l y a b n o r m a l s l o w waves w i t h i n s i g n i f i c a n t O A I 

not the l o c a l context is dc t cc tAbIe_OA i n a b n o r m a l s l o w w a v e s I 

any s i g n i f i c a n t spectral peaks e j i i s l I 

no* '*"'Te is o n l y ve iy s l o w a c t i v i t y present , less than O.SHz 1 

an . l i f i c a n t spectral peaks c x i s l i n the d e l t a b a n d I 

the largest spectral peak appears in a f r o n t a l channe l I 

rp2-f4 and f p l - f l ore s y m m e t r i c a l f o r a l l d e l t a peaks 1 

fp2-re and f p l - f ? are c y m m e t r i c a l f o r a l l d e l t a peaks I 

not de l t a a c t i v i t y only appears i n f r o n t a l channels 1 

de l t a a c t i v i t y o n l y appears i n the an te r io r h a l f o f the scalp 1 

n o t de l t a peaks are present t h a i are not present tn the E O G 1 

not fp2-(3 o r f p l - f 7 c o o u i n s isola ted ooa r e p e t i t i v e w a v e f o r m s I 

de l t a spect ra l peaks c j i t s t o n l y i n the E O G I 

not the largest d c l u p e a k appears i n channels fp2-f4 o r f p l - O I 

no t the w a v e f o r m in channels fp2-f4 o r f p 1 - O is s l o w - l o w d e l t a 1 

the w a v e f o r m ta channels fp2-re and rS-t4 a r c i n phase 0 

the w a v e f o r m ia c h a n n c l i f p l-P and r7-G a r c i n phase 0 

segment was c lass i f ied as c o n t a i n i n g 

b l i n k a r t e f ac t w i t h a ce r t a in ty o f 0 . 8 5 . 

T h e users response wns y 

13-3-1991 11:59 

O A T A l S E G 4 

L i s t o f ex.tracted features 

6 s 



("c f c o i u r e " . - l o c a l " . ' b l i n k ' l 0 . 3 5 

( ' c _ f e a t u r c * , ' c l a x s _ i o i a l s * ] 3 

I " f f e a t u r e ' . ' f p l - f 7 ' . ' p k r . ' d e l t a * . ' I o w _ p o w e r " . " m c d s p e c d ' l I 

not Ihe h i s t o r i c a l c o n t e x t i s a b n o r m a l 1 

not (he loca l con tex t is a b n o r m a l s l o w waves on ly I 

not the local con tex t is m a i n l y a b n o r m a l s l ow w a v e s w i t h i n s i g n i f i c a n t O A I 

not Uic local con tex t is d c i e c i a b l e O A i n a b n o r m a l s low w a v e s 1 

any t i g n i f i c a n t s p e c u a l peaks exis t I 

not there is o n l y v e r y s l o w a c t i v i t y present , less than 0 . 5 H z I 

any s i g n i f i c a n t spec t ra l peaks ex is t i n the del ta band 1 

the largest specua l peak appears in a f r o n ' j i l channe l I 

f p2 - f4 and f p ( - f 3 are symmexricaJ f o r a l l de l ta peaks 1 

not tp2-n and f p l - f 7 ore s y m m e t r i c a l f o r al l de l t a peaks I 

delta a c t i v i i y o n l y appears i n f r o n t a l channels I 

there arc 1/r s y m c u i c a l d e l t a peaks 1 

d c l u spectral peaks ex is t o n l y in the E O G 1 

not the largest d e l t a p e a k appears i n channels f p 2 - f 4 or r p l - f 3 I 

not the w a v e f o r m i n channe l s f p 2 - f 4 o r f p I - D is s l ow - l o w de l t a I 

ihe w a v e f o r m i n channe l s (pZ-d and f 3 - i 4 arc i n phase 0 

ihi e f o r m in channe l s f p i - f l and (1-13 ore in phase 0 

segment was c l a s s i f i e d as c o n t a i n i n g 

b l ink ar tefact w i t h a c e r t a i n t y o f 0 . 9 0 1 . 

T h e users lesponse was y 

13-3.1991 12:1 

D A T A 3 S E G l 

L i n o f ext rac ted fea tu res 

( ' c _ f e a t u r c * . ' c l a i s _ t o i a l t * l 4 

l ' c _ f c a t u r e ' . ' c l a s s _ t o t a l s ' l 0 

I ' f f e a t u r e ' . " f p 2 - r e ' . " p k r . ' s u b _ d e l t a " . * v h i g h _ p o w e r * . ' h i g h speed*) I 

( • f f e a t u r e " . " f p 2 - r e ' . ' p k 2 ' . ' d e l t a " . ' v h i g h j > o w e r ' . ' m e d _ s p e e d ' [ ( 

( " f ' • • ' t u r e ' , " f p 2 - f 8 * , ' p k 3 ' , ' d e l t a ' . ' v h i g h _ p o w e r ' . * m e d _ s p c e d ' l I 

( " I u r e ' . ' f p 2 - r e * . ' p k 4 ' . ' d e l t a ' . ' m e d j > o w e r ' . * h i g h _ 5 p e e d ' ] 0 . 7 5 

( • f f e a t u r e ' . " f p l - r / ' . ' p k l ' . ' s u b d e l t a * . * v h i g h j > o w e r * . * m e d _ s p e e d * | 1 

I ' f f e a t u r e ' . ' f p l - f 7 ' . ' p k 2 ' . ' d e l t a * , * m e d _ p o w e r ' . * m e < l _ s p c e d * ) I 

I ' f f e a t u r e ' . " f p l - f 7 ' . ' p k 3 * . ' d e l t a ' , * I o w _ p o w e r ' , ' h i g h _ s p c e d * ] 0 . 7 5 

( " f f e a t u r e " . * f p 2 - f 4 * . * p k l * . ' s u b _ d c l t a ' . ' v h i g h _ p o w e r * . ' h i g h _ t p e « d * l 1 

| " f f e a t u r e " . • f p 2 - f 4 * . * p k 2 * . ' d e l t a ' . * m e d _ p o w e r ' . * m e d _ s p e e d ' | 1 

( " f f e a t u r e * . " f p 2 - f 4 * , ' p k 3 ' , ' d e l t a ' . ' l o w j > o w e r ' , ' m e d _ s p e e d ' l 1 

[ ' f _ f c a i u t c ' . ' f p l - 0 * . ' p k l ' . * s u b _ d e l l a " , " v h i g h _ p o w e r * . * m e d _ s p c e d ' l 1 

I ' f f e a t u r e ' . ' r p l - f 3 * . * p k 2 ' . ' d e l t a ' , ' l o w j ) o w e r ' . ' m c d _ i p e e d * I I 

( ' f _ f e a t u r e ' . " f 4 - c 4 * , * p k l * . " s u b _ d e l t a ' . ' m e d _ p o w e r * . ' m c d _ s p c o d ' | 1 

| " f _ f e a t u r e ' . ' p 3 - o l * . ' p k l ' . ' s u b _ d e l i a " . " m c d j > o w e r * . ' m e d _ s p c e d ' l I 

I ' f f c a i u r e ' . " f 8 - i 4 ' , ' p k l ' . ' 8 u b d e l t a " . * v h i g h _ p o w e r * . ' m e d ^ s p e e d ' ] 1 

| * f _ r e a t u r e * , * r e - t 4 * , ' p k 2 * . * d e t t a ' . ' m e d _ p o w c r ' . * m e d _ ( p e e d ' ) 1 

( • f _ f e a i u r e ' . ' r 8 - t 4 * . * p k 3 * . ' d e l t a * . * m e d _ p o w e r ' . * m e d _ B p « e d * ) 1 

( " f _ f e a i u r e ' . ' r 7 - 0 * . ' p k l ' . ' s u b _ d e l t a ' , " v h r g h _ p o w c r * . * m « d _ c p c e d ' | t 

( • f _ f e a i u r e ' , ' f 7 - t 3 ' , ' p k 2 * . " s u b _ d e l t a " . ' m c d j > o w e r ' . * h i g h _ t p e c d ' | 0 . 2 5 

( ' f _ f e a t u r e * , ' r 7 - t 3 ' , ' p k 2 ' . ' d e l t a ' . * m e d _ p o w e r ' , ' I o w _ s p « « d * ) 0.75 

( ' f _ f e a t u r e ' . * f 7 - t 3 ' . ' p k 3 ' . " d e l t a ' , ' l o w j ) o w c r * , ' m e d _ s p e e d ' ] I 

( " f _ f c a i u r e ' , * r 7 . t 3 ' . ' p k 4 ' . ' d e l t a ' , ' l o w j ) o w c i ' . ' h i g h _ s p e e d ' ) 0 . 7 5 

| ' f _ f t a t u r c ' , ' i 5 - o r . * p k l * . * s u b _ d e l t a ' . ' m e d j ) o w e r " . ' m e d _ i p c e d * | 1 

I ' r _ f c a i u r e ' . " f p 2 - f 8 ' . " p k r . ' s u b _ d e I i a ' . ' v h i g h _ p o w e r ' . ' h i g h - s p e e d ' I 1 

| " f _ f c a t u r e ' . ' f p 2 - f 8 * . * p k 2 ' , ' d e I l a * . ' v h i g h _ p o w e r * . ' m c d _ s p e < d ' ) I 

| ' f _ f e a l u t c ' . ' f p 2 - f S " . ' p k 3 ' . ' d e l i a ' . ' m c d _ p o w c r * . ' m c d _ s p e e d ' l I 



I * f _ f 6 a t u r e ' . ' f p 2 - f 8 * , ' p k 4 ' . ' d d t a ' . " l o w _ p o w e r ' . ' h i g h _ s p e o d * | 1 

I * r _ f e a t u r c * . ' f p l - f 7 * . ' p k r . ' s u b _ d e l t a ' . * v h i g b _ p o w e r ' . ' m e d _ i p e e d " I I 

( * f J e a t u r e ' . ' f p l * f 7 - . ' p f c 2 ' . ' d e I t a ' . ' l o w _ p o w c r * . ' m e d _ s p c e d * ) I 

r f _ f e a i u / c * , ' r p l - f 7 * . * p k 3 ' . ' d d i a * . * l o w _ p o w e i - * . * b i g h _ s p e e d ' J 0 .75 

not the h i s t o r i c a l con tex t is a b n o r m a l I 

no t the l o c a l c o n t e x t is a b n o r m a l s l o w waves o n l y I 

not the l o c a l con tex t is m a i n l y a b n o r m d s l o w waves w i t h i n s i g n i f i c a n t O A 1 

not the l o c a l con tex t is d o c c t a b l e ^ O A i n a b n o r m a l s l o w w a v e s I 

any s i g n i f i c a n t spectral peaks ex' is i 1 

no t t he re is o n l y ve ry s l o w a c t i v i t y present , l e u than 0 . 5 H i 1 

any s i g n i f i c a n t spectra] peaks ex is t i n the d d t a band I 

the la rges t spec t ra l peak appears i n a f r o n t a l c h a n n d 0 .25 

not f p 2 - f 4 a n d f p l - f 3 are s y m m e t r i c a l f o r d l de l t a pealcs 1 

not f p 2 - r e a n d rpl-f7 a rc t y m m e u i c a l f o r a l l d d t a peaks 1 

not d d t a peaks a re present tha i a r c not present i n the E O G 0 . 7 5 

not f p 2 - f S o r f p l ' f l con ta ins i so la ted n o n repe t i t ive w a v e f o r m s I 

del ta a c t i v i t y o n l y appears i n the an te r io r h a l f o f the scalp 0 . 7 5 

not d d t a s p e c u a l peaks exis t o n l y i n the E O G 0 .75 

the largest spec t ra l peak appears i n the E O C I 

the la rges t c p c c i r a l peak i s a O r i b u t o b l e t o m o r e than o n e d e c t r p d e 0 . 2 5 

not t h e la rges t de l t a peak appears i n c h a n n d s f p 2 - f 4 o r f p l > f 3 I 

not ' h « w a v e f o r m in channels f p 2 > f 4 o r f p l - O is s l o w - l o w d e l t a 1 

ih<. e f o r m i n channels f p 2 - r a a n d f 8 - i 4 are i n phase 0 

the w a v e f o r m i n c h a s n d s f p l - f ? a n d f 7 - i 3 arc in phase 0 

segment w a s c l a s s i f i ed as c o n t a i n i n g 

b l i n k a r t e f ac t w i t h a c c r t a i n t y o f 0 . 1 6 7 5 . 

T h e users response was y 

I 3 - 3 - I 9 9 I 12:6 

D A T A 3 S E C 2 

Via o f e x t r a c t e d features 

* c _ f e a t u r e ' . ' l o c a l ' . ' b r m k ' I 0 . 1 6 7 5 

' c _ f c a i u r e * . * c l a s s _ i o t i i J j " | 5 

' f _ f e a t u r e * . * f p 2 - r 8 * . ' p k r . " s u b _ d e l t a ' . ' v h i g h j > o w e r ' . ' m e d _ ( p e e d ' | I 

*r ' • - l u r e * , * r p 2 - r a " . * p k 2 ' . ' d e l t a * , * m e d j > o w e r " , * m e d _ s p e e d ' l I 

* ( _ . u r e * . * f p l - f 7 ' , * p k r , " s u b _ d e l t a ' . ' v h i g h _ p o w e r " . * m e d _ ( p e e d * | I 

' f _ f e a t u r e * , ' f p l - f 7 ' . * p f c 2 ' , " d d t a * , " m e d j ) o w e r * . " m c d _ s p e « l ' ) I 

• f _ f c a i u r e * . T p 2 - r 4 * , ' p k r . ' s u b _ d c l i a * . ' m c d _ p o w e r ' . * h i g h _ s p e c d ' l 1 

• f _ f c a t u r e ' , ' f p 2 - f 4 * . ' p k 2 * . ' d e l t a ' , * l o w j > o w e T " . * m c d _ ( p e e d ' ) I 

* f _ f e a t u r e ' , ' f p l - f 3 * , ' p k r . ' s u b _ d e l t a ' . * m e d _ p o w e r " . ' h i g h _ q ) e e d " I I 

• f _ f e a i u r e * , ' f p l - f 3 * , ' p k 2 * . ' d d t a ' . ' l o w j > o w e r * . * m e d _ s p c e d " ) I 

• f _ f e a t u r e ' . ' f 4 - c 4 ' . ' p k r . * s u b _ d d t a " . * m e d _ p o w e r * . ' m c d _ s p e e d * l I 

' f _ f e a t u r e ' . * c 4 - p 4 " . ' p k r . ' s u b _ d d t a ' . ' r a e d _ p o w c r ' . ' m e d _ s p e e d * | I 

• f _ f e a t u r e " . ' p 4 - o 2 * . * p k I * . * s u b _ d d t a ' . ' m e d j i o w e r ' . * i n e d _ s p c « J ' I 1 

• f _ f c a t u r e ' . ' D - c 3 ' , ' p k r . ' s u b _ d e l t a " . ' m e d _ p o w e r ' , ' m e d _ s p e e d ' | I 

" f _ f e a i u r e " . ' p 3 - o r . ' p k l * . ' s u b _ d e l t a ' . * m e d j > o w e r * , * m e d _ 5 p e e d ' | 1 

" f _ f e a t u r e ' , ' f a - t 4 ' . ' p k r . * s u b _ d e l t a ' . ' v h i g h j ) o w c r * . " m e d _ s p e e d ' | I 

' f _ r e a t u r e ' , ' r S - t 4 ' , * p k 2 ' . ' d d t a ' . ' l o w j > o w e r ' , ' m e d _ t p e e d * ) I 

' f _ f e a t u r e ' , ' r e - t 4 ' . ' p k 3 " . ' d d t a * . * l o w _ p o w e r ' , ' m e d _ s p e e < J ' I I 

• f _ r 6 a t u r e ' . ' t 4 - t 6 ' , ' p k I ' . * s u b _ d d t a ' . ' m e d _ p o w e r * . * m e d _ £ p e e d " I I 

• f _ f e a i u r e ' . ' t 6 - o 2 ' . * p k l * . * s u b _ d e l t a ' . ' m c d j ) O w e r ' . ' m e d _ s p c e d * I I 

' f _ f e a t u r e " . " n - t 3 ' . ' p k r . ' s u b _ d d t a ' . * v h i g h j > o w e r * . ' m e d _ s p e e d ' I I 

' f _ f e a t u r e * . * a - t 3 * , * p k 2 ' . ' d e l t a * . ' m c d _ p o w e r * , ' m e d _ s p e c d * l 1 

* f _ f c a t u r e * . * l 5 - o l * . * p k l ' , * s u b _ d d i a ' . ' m e d j > o w e r * . ' m e d _ s p e c d ' | I 

' r _ f e a t u r e * . * f p 2 - f 8 * . ' p k l * . ' s u b _ d d i a " . * v h i g h _ p o w e r " . " m e d _ s p e e d " I I 

* f _ f e a t u r c * . ' f p 2 - f B * . ' p k 2 " . ' d d l a ' . ' m e d j X ) w e r ' . ' m e d _ s p e e d * | I 

" f _ f e a t u r c * . " f p l - n * , * p k l " . * s u b _ d d t a " . " v h i g h _ p o w e r " , " m e d _ s p e e d " I 1 

" f _ f e a t u r e ' . " f p I - r 7 " , ' p k 2 * . ' d e l t a " . * m c d j ) O w c r ' . * m e d _ £ p e e d ' I I 
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not the h i s to r i ca l con tex t is a b n o r m a l 1 

not the l o c a l con tex t ii a b n o r m a l s l o w waves o n l y I 

not the loca l con tex t is m a i n l y abnormal s low waves w i t h i n s i g n i f i c a n t O A I 

not the l o c a l con tex t is dc tec iab le O A i n a b n o r m a l s l o w waves I 

any s i g n i f i c a n t specUal peaks exis t 1 

not there is o n l y very s l o w a c t i v i i y present , less t h a n 0 . 5 H z I 

any s i g n i f i c a n t spectral peaks exist in the delta band 1 

(he l o r g c d spect ra l peak appear"! i n a f r o n t a l c h a n n e l ) 

f p 2 - f 4 and f p l - f ? arc sy m m c u i c a l for al l de l ta peaks 1 

fpZ'CS a n d f p l - f ? a/e l y m m w r i c a J f o r a l l delta peaks ) 

not delta a c t i v i t y o n l y appeo/s in f r o n t a l channels ) 

delta a c i i v i i y o n l y appea/s i n the an te r io r h a l f o f t h e scalp 1 

not delta peaks are present tha i are not present in t h e E O G I 

not fp2-rS 01 f p l - f 7 con t a in s i so la ted n o n r e p e t i t i v e w a v e f o r m s 1 

not delta spectral peaks exis t on ly i n the E O G I 

the largest spccuaJ peak ia a t u i b u i a b l e l o m o r e t h a n one e l e c t r o d e I 

the largest spectral peak appears i n the E O G 1 

no i ihc largest de l t a peak appears i n channels f p 2 - r 4 o i f p l - G I 

not the w a v e f o r m i n channels f p 2 - f 4 or f p 1 - f 3 i i s l o w - l o w del ta 1 

the w a v e f o r m i n channe l s f p 2 - r e a n d ra-t4 arc i n phase 0 

the w a v e f o r m in channels f p l - f 7 and f7 i3 ore in phase 0 

sc^ . was c l a s s i f i e d as c o n t a i n i n g 

b l ink a r t c f a c i w i t h a ce r ta in ty o f 0 . 9 . 

The users response w a j n 
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List o f ex t rac ted features 

| "c_ fea iu re* . "c las s l o t a l s ' l 5 

I ' f _ f c a l u r c ' . ' f p 2 - f 8 ' . " p k l ' . • i u b _ d c l t a " . ' v h l g h j K ) w e r * . ' m e d _ s p e c d ' | I 

[ • f _ f c a i u r c " . ' f p 2 - r 3 ' , ' p k 2 " , " s u b _ d e l i a ' , * m e d _ p o w e r * . ' h i g h _ s p e c d * I O , 2 5 

| " f _ f c a t u r e * . * f p 2 - f S * , * p k 2 * . " d c l t a " . " m e d _ p o w e r * . * I o w ^ i p e e d * l 0.75 

( " f _ f c a l u r e * . " f p 2 . f S " . ' p k 3 " , ' d e l t a ' , " m e d _ p o w e r * . * m e d _ ( p e c d * ) 1 

I • f _ f c a t u r c " . " f p l • f 7 ' , ' p k l ' , * i u b d e l t a ' v h i g h _ p o w e r * , * m e d t p e e d ' ] I 

| " f ' ' lu re ' .* fp1-r7" ,"pk2*."sub d e l t a " . " l o w j i o w e r " . " h i g h speed"] 0.25 

I ' I . u r c ' . ' f p I - f7*."pk2 ' , "delta" . * ! o w _ p o w c r " . * l o w _ s p e e d * l 0.75 

( " f f e a t u r e " , ' f p l - f 7 ' , " p k 3 ' . ' d e l t a ' . ' l o w _ p o w c r " , * m e d _ _ s p e e d " I I 

( " f f e a t u r e ' . ' f p l - f 7 ' , ' p f c 4 ' d e l t a ' , ' l o w _ p o » e r ' , " h i g h - s p e e d " ) 0.73 

I " f f ca tu rc* ,* fp2- f4" , ' pk 1","sub d e l t a * , ' m c d _ p o w c r " , " h i g h speed* | 1 

| * f _ f c a l u r c ' , ' f p l - f 3 ' , ' p k r . " s u b d e l t a ' , " v h i g h j w w c r ' . * h i g h s p e c d ' l I 

I ' f f c a t u r c ' . ' p 4 - o 2 ' , ' p k I ' . * s u b d e l t a " . " m c d _ p o w e r " . * m e d speed ' ) I 

| * f _ f c a t u r e ' . * f ) - c 3 ' , ' p k I *,"sub d e l t a " . ' m e d _ p o w e r " . ' m c d speed") I 

( " f _ f c a t u r e * . " p 3 - o l ' , " p k l * , " i u b d e l t a ' . " m e d _ p o w e r " , ' m e d speed") I 

( ' f _ f e a i u t e " . " f ? - t 4 " . - p k r , * i u b d e l t a " . * v h i g h _ p o w c r ' . ' m e d speed") I 

( • f _ f e a t u t e " , " f 3 - i 4 " , - p k 2 * . " d e l t a " . ' l o w _ p o w e i * , * m e d _ t p c c « J ' ( I 

l " f _ f e a t u r e ' . * r e - t 4 " , ' p k J * . * d e H a ' . * I o w _ p o w c r * , * h i g h _ s p « « d * l I 

[ ' f _ f e a i u r e * . * i 6 - o 2 ' , * p k r , * i u b _ d e l t a ' . " m e d _ p o w c r " , " m e d _ s p e e d " | I 

| " f _ f e a t u r e * . ' f 7 - t j " , * p k r . * s u b d e l t a * , " v h i g h j ) o w e r ' . ' m e d speed") I 

( ' f _ f e a t u r « ' . * f J - i J * . * p k 2 * . ' d e l t a ' , ' l o w j > o w e r ' . " m c d _ ^ > e e d ' J I 

I ' f f e a t u r e ' . ' f 7 - i J ' . ' p k 3 ' , ' d e l t a ' , ' l o w j > o w e r ' . ' h i g h _ t p e e d ' ) 0.75 

( ' f _ f e a i u r e ' . ' L 5 - o r . " p k r . * s u b d e l t a ' . " m c d j K i w e r ' . " m c d speed") 1 

( " f_ fea lu ie" .* fp2- f8* .*pk1* . ' sub d e l t a ' . " i . h i g h j > o w c r ' . " m e d _ s p c e d ' ) I 

( ' f _ f e a t u r e ' . ' f p l - n ' , " p k 1 ' . * t u b d e l t a ' . " v h i g h j > o w e r " , ' m c d s p e e d ' ] I 

] ' f _ f c a t u r e ' , * f p l . f 7 ' , ' p k 2 ' . ' d e l t a * . " l o w j w w c r " . ' h i g h speed") I 

not the h i s to r i ca l con tex t is abnorma l t 

not the loca l c o n i c x i is abnormaJ s low waves on ly I 

not the loca l con tex t is m a i n l y abnorma l s l ow waves w i t h i n s i g n i f i c a n t O A I 

nu i the loca l con tex t is de lec table O A m abnorma l s l ow waves 1 
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any s i g n i f i c a n t spectral peaks ex i s t I 

r o t there is o n l y ve ry s l o w a c t i v i t y p resen t , less than O . S H i 0 . 2 5 

any s i g n i f i c a n t ^ c c t r a l peaks cxisJ i n the d e l t a b o n d 0 .7S 

the largest spec t ra l peak appears t n a f r o n t a l channe l 0 .23 

f p 2 - f 4 and f p l - f 3 are s y m m e t r i c a l f o r a l l d e l t a peaks 1 

not f p 2 - f 3 a n d f p l - f 7 a r c s y m m e t r i c a l f o r o i l de l t a peaks 0 . 7 S 

not del ta a c t i v i t y on ly appears in f r o n t a l channe l s 0 . 2 5 

de l t a a c t i v i t y o n l y appears i n the an te r io r h a l f o f the scalp 0 . 7 5 

not del ta peaks are present that are n o i present i n the E O G 0 . 7 5 

not f p 2 - r e o r f p l - f Z c o n t o t i u i so la ted n o n r e p e t i t i v e w a v e f o r m s I 

no t de l t a q K c t r o l pcalcs ex i s t o n l y i n the E O G 0 . 7 5 

the largest spec t ra l peak is a O r i b u l a b l e to m o r e than o n e e l e c t r o d e 0 .25 

there is a s i g n i f i c a n t spect ra l peak i o an E O G channe l I 

not the la rges t de l t a peak appears i n channe l s f p 2 < f 4 o r f p l - f 3 1 

the w a v e f o r m i n channels f p 2 - f 4 o r f p l - O is s l o w - l o w d e l t a 0 .7S 

the w a v e f o r m i n channels f p 2 - f 8 a n d re-t4 a re i n phase 0 

the largest spec t ra l peak appears i a the E O G 1 

segment was c l a s s i f i ed as c o n t a i n i n g 

weak e m a r t e fac t w i t h a c e r t a i n t y o f 0 . 7 0 2 5 . 

T h r —era response was n 

I 3 - 3 - I 9 9 I 12:11 
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L i s t o f ex t r ac ted features 

r c _ f c a i u r B ' . ' c l a i s _ t o t a l ! * ) 5 

(*f f e a t u r e ' . • f p 2 - f 8 * . ' p k l * , * f u b _ d e l t a * . ' v h i g h _ p o w e r * . " m c d _ ( p c e d ' | I 

( * f _ f e a t u r c ' . * f p 2 - r e * , * p k 2 ' , * s u b _ d e l t a * . * m e d _ p o w e r * . ' h i g h _ « p c e d ' | 0 .25 

I * f _ f e a i u i e * . ' f p 2 - r e * , ' p k 2 ' , * d e l i a \ ' m c d _ p o w e f * . * l o w _ s p 6 c d ' 1 0 . 7 5 

I * f _ f e a i u r 6 ' . ' f p 2 - ( 8 ' . ' p k 3 * . ' d e ! t a * . * l o w j } o w e r * , * m e d _ s p c e d * l I 

| " f _ f e a i u r e * . ' f p I - f 7 " . " p k r . ' s u b _ d c I i a " . " v h i g h _ p o w e r " . * m c d _ s p e e d ' l I 

l ' f _ f e a t u r e * . * f p l - n ' . * p k 2 * . " d e l t a * , • I o w _ p o w e r ' . * m c d _ q ) c c d ' l 1 

r f _ f e a t u r e * , * r p l - f 7 * . * p k 3 ' . " d e l t a * , • I o w _ p o w e r " . * m e d _ s p c e d ' | 1 

r f _ f e a l u r e * . * f p 2 - f 4 * . " p k r . * s u b _ d c l t a ' . ' v h i g h _ p o w c r * . * h i g h _ s p e e d ' | I 

( * f _ f c a i u r e * . ' f p l - 0 * . ' p k l ' , ' t u b ^ d e l l a * . ' m e d j ) o w e r ' , * h i g h _ s p c e d * I I 

|*f ' • i u r e ' . ' 0 - c 3 ' . ' p k r . * s u b _ d e l t a * . ' m c ( J _ p o w c r ' , * m e d _ s p e e d * | I 

| * l _ * u r e * . * p 3 * o r , * p k l ' . ' 5 u b _ d c l t a * . * m e d j x ) w e r ' . ' m e d _ s p « e d * | I 

|*f f e a t u r e * . * f 8 - t 4 ' , * p k r , * s u b _ d e l t a * , * v h i g h _ p o w c r * . " m e d _ s p e c d ' I I 

r f _ f e a n i r e * . * f 7 - l 3 ' . ' p k r , ' s u b _ d e l t a * . ' v h i g h j > o w c r * , " m e d _ s p e e d ' I I 

r f _ r e a l u r e * . * f 7 - D * . ' p k 2 ' . ' d e l t a * . " l o w _ p o w c r * . * m c d _ ! p e e d * ) 1 

( • f _ f e a i u r c ' . * i 5 - o r , " p k r , ' s u b _ d e I t a ' , " m e d _ p o w c r * , * m e d _ s p e e d * | I 

| * r _ r c a t u r e * . " f p 2 - f 8 * , ' p k l * . ' s u b _ d e I i a * , * v h i g h _ p o w c r * . * m e d _ t p e c d * I I 

( * f _ f e a t u r e ' . ' f p l - r 7 * , " p k r , * s u b _ d e l t a ' , * v h i g h j x ) w e r ' . * m e d _ s p e e d * | I 

not the h i s t o r i c a l con tex t is o b n o r n t o l I 

not the l o c a l con tex t is a b n o r m a l s l o w w a v e s o n l y I 

not the l o c a l c o n t e x t is m a i n l y a b n o r m a l s l o w waves w i t h i a s i g n i f i c a n i O A I 

no t the l o c a l c o n t e x t U d e t e c t a b t e _ O A i n a b n o r m a l s l o w w a v e s I 

any s i g n i f i c a n t spectral peaks e x t a I 

no t there U o n l y ve ry s l o w a c t i v i t y p resen t , l e u than 0 . 5 H z 0 . 2 5 

any s i g n i f i c a n t spectral peaks ex i s t i n the d e l t a band 0 . 7 5 

the largest s p e a t a l peak appears i n a f r o n t a l channe l 0 .25 

f p 2 - f 4 and f p l - f J are l y m m c t r i c a l f o r a l l d e l t a peaks I 

not fp2-f8 a n d rpl-f7 a rc s y m m e t r i c a l f o r a l l de l t a peaks 0 . 7 5 

not de l t a a c t i v i t y on ly appears ia f r o n t a l channe l s 0 . 2 5 

del ta a c t i v i t y o n l y appears i n the a n t e r i o r h a l f o f the scalp 0 . 7 5 

n o t d e l t a p e a k s a r e present t h a t a r c n o t p r e sen t i n t h e E O G 1 

not f p 2 - f B o r f p l - f ? con ta ins i so la ted n o n r e p e t i t i v e w a v e f o r m s t 

not de l t a s p c c u a l peaks ex i s t o n l y i n the E O G 0 . 7 5 

the largest spec t ra l peak is a t t r i b u t a b l e t o m o r e than one e l e c t r o d e 0 .25 
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any t i g n i f i c a n i EpcctraJ peaks ex is t 1 

no i ihcre is on ly ve ry s l o w a c t i v i i y present , less than 0 . 5 M £ 0 .25 

anv t i g n i f i c a n i i p e c t r o l peaks exist i n the d d i s h a n d 0 .75 

the largest s p e c u d peak appears in a f r o n t a l c h a n n d 0 .25 

fp2-f4 and f p I - O are lymmctricaJ for d l d d t a peaks 1 

not fp2-f? and f p l - f 7 ore s y m m e t r i c a l f o r o j l d d i a peaks 0 .75 

not d c l u ac t iv i ty o n l y appears tn f r o n t a l c h o n n d s 0 .25 

dc l la ac t iv i ty on ly appears in the anter ior h d f o f the s c d p 0 .73 

not ddLa p c o l u a rc present t h a i arc not present i n the E O G 0 .7$ 

not rp2-rB or f p l - f ? con ta ins i so lo ied n o n repe t i t ive w a v e f o r m s I 

not delta i p c c t r d peaks ex i s t o n l y i n the E O G 0 . 7 5 

the largest s p c c t r d peak i t a U i i b u t a b l c to more t h a n one e lectrode 0 .25 

there is a t i g n i f t c a n i spec t ra l peak i n a n E O C c b a n n d I 

not the largest del ta peak appears in c h a n n d s f p 2 - f 4 or f p l - f l 1 

(he w a v e f o r m i n channe l s fpl-f* or fpl-O is i f o w - l o w de l t a 0 75 

the w a v e f o r m i n channels f p 2 - r e and f 8 - t 4 are i n phase 0 

i f i f i ( a r g c « spectral peak appears i n the E O G I 

(Cement was c l a s s i f i e d as c o n t a i n i n g 

ueak c m ar tefact w i t h a c e r t a in ty o f 0 . 7 0 2 5 . 

T h f - - c f i response was n 

13-3-1991 12:11 

D A T A 3 SEC4 

L i u o f extracted features 

| ' c _ f c a i u r e " , ' c l a s s _ t o t a J s * l 5 

( ' f _ f e a i u r e " , * f p 2 - f 8 * . * p k l ' . ' s u b _ d e l i a ' . * v h i g h j J O w c r ' , * m c d _ s p c e d " | I 

| " f _ f c a t u r e " . ' f p 2 - r e * . " p k 2 ' . ' s u b d c l i a * . " m e d _ p o w e r * . ' h i g h - s p e e d " | 0 .25 

| ' f _ f c a i u r c * . " r p 2 - f 3 ' . ' p k 2 " . * d d t a ' . * m c d j > o w e r ' . * l o w _ s p e c d " | 0 .75 

( * f _ f e a t u r e " . ' f p 2 - f 8 * . * p k 3 ' . " d d t a ' . ' l o w _ p o w c r ' , " m c d _ s p e « d ' I 1 

( " f _ f c a t u f c * . * f p l - f 7 ' , * p k l • . • s u b _ d e l t a * . * v h t g h _ p o w e r " . ' m e d _ s p e c d " | I 

( " f _ f c a t L T e ' . * f p I - f 7 ' . ' p k 2 * . ' d e l t a * . " l o w j > o w e t * . * m e d _ $ p e e d " l 1 

( • f _ f e a t u r e * . " f p l - r 7 " . * p k 3 ' . ' d d u ' . ' l o w _ p o w e f * . * m c d _ s p c e d ' J I 

( " f _ f e a t u r e " , * f p 2 - f 4 * . " p k I • . • i u b _ d d i a * . " v h i g h j ) O w c r * . * h i g h _ s p e e d " ) 1 

[ • f _ f c a i u r e * . ' f p I - f 3 ' . " p k r . ' s u b _ d d t a ' . * m c d _ p o w e i ' . ' h i g h - s p e e d * 1 I 

I ' f ' M u r e ' , * r 3 - c 3 * . * p k l ' . ' s u b _ d e l l a " . ' m e d _ p o w e r ' . " m e d _ s p e c d ' l I 

. . u f e * . " p 3 - o r , " p k r . ' ( u b d d t a * . * m e d _ p o w c r ' . * m e d _ s p e c d ' I 1 

| " f _ r c a i u r c * , ' r S - t 4 * . * p k l * . ' s u b _ d e I i a * . ' v h i g h j K > w c r ' . " m c d _ t p e e d " l 1 

l ' f _ f c a i u r c ' , ' r 7 - G ' , * p k r . ' s u b _ d e l t a ' . * v h i g h _ p o w e r ' , * m e d _ s p c e d ' l I 

[ " f _ f e a t u r c * , " r 7 - i 3 " . * p k 2 * , * d d i a * . ' l o w j j o u e r * , * m e d _ s p e c d ' | 1 

| " f _ f c a l u f e ' , ' t 5 - o r . " p k l " . " s u b _ d d t a " , " m c d _ p o w e r * . " m c d _ i p c e d * l I 

( ' f _ f e a i u r e * . ' f p 2 - f 8 ' . * p k r . ' s u b _ d c l t a * . * v h i g h _ p o w e r " . " m e d _ s p e e d " I 1 

| * f _ f c a i u r e " . " f p l - f 7 ' , " p k r . " « u b d e l t a * . • v h i g h _ p o w c r ' . ' m e d speed*] 1 

not the histortcoJ c o n t e x t i i a h n o r m a j t 

not the local con tex t is a b n o r m a l s l ow waves o n l y I 

not the t o e d con tex t is m a i n l y a b n o r m a l s low waves w i t h i n s i g n i f i c a n t O A 1 

not the l o c a l c o n t e x t is de tec tab le O A i n a b n o r o u l s l o w waves I 

any s ign i f i can t s p e c t r d peaks exis t I 

not there is orUy v e r y s l o w a c t i v i t y present , less than 0.5Hz 0.25 

any s ign i f i can t s p e c i r d pcalcs ex is t i n the del ta b a n d 0 . 7 5 

the largest s p e c u d peak appears in a f r o n t d c h a n n d 0.25 

rp2-r4 and f p l - r 3 are s y m m e t r i e d f o r d l delta peaks I 

not f p 2 - f B and f p | - f 7 are s y m m e t r i c a l f o r oi l de l t a peaks 0 ,75 

not d d t a ac t iv i ty o n l y appears in f r o n t a l c h a n n d s 0 .25 

delta ac t iv i ty on ly appears i n the an te r io r h d f o f the t c d p 0 .75 

not d c l u peaks ore present that ore not present i n (he E O G 1 

not fp2-f^ or r p l - f 7 con ta ins isola ted n o n repe t i t ive w a v e f o r m s I 

not delta s p c c t i d peaks ex is t o n l y in the E O G 0 - 75 

the largest s p e c i r d peak is a t t r i b u t a b l e to more than one e lectrode 0 . 2 5 

5/S 



L i s t o f e x t r a c t e d feolurea 

(*c_fea iu rc* .*c lass_ to ta l s* I 0 

( * c _ f c a i u r c * . * c l a s s _ t o t a l s ' I 0 

(*f f e a t u r e * . * f p 2 - f 4 ' . ' p k r . * d e l t a * . * l o w _ p o w e r ' . * m e d _ s p e e d * l I 

t*r f e a t u r e ' . * f p l - r j * . * p k r . " d e l t a * . * l o w _ p o w e r ' . " m e d _ s p e c d * l I 

t*r f e a t u r e ' . ' f 4 - c 4 * , " p k l * . ' d e l t a * . ' I o w _ p o w e r * . ' m e d _ s p e e d * | I 

( * r _ f c a t u r c ' . ' p 4 ^ 2 * . ' p k r . ' d e l t a ' , ' l o w _ p o w c r * . * m c d _ s p e e d ' ) 1 

( • f _ f c a m r e ' , ' c 3 - p 3 * . * p k r . ' d e l t a ' . ' I o w _ p o w e r ' . ' m c d _ B p e e d * l I 

("f f e a t u r e * . ' r a - t 4 * . " p k l ' , * d e I t a ' . * l o w _ p o w e r ' . ' m e d _ i p e e d " l I 

('f f e a t u r e * . ' f 7 - t 3 ' , " p k l * . * d c I t a * . * l o w _ p o w e r ' . ' m e d _ t p e e d " I 1 

not the h i s t o r i c a l con tex t is a b n o r m a l I 

no t the l o c a l c o n t e x t is a b n o r m a l s l o w w a v e s o n l y 1 

not t h e l o c a l c o n t e x t is m a i n l y a b n o r m a l s l o w w a v e s w i t h i n s i g n i f i c a n t O A 1 

not the l o c a l c o n t e x t is d e t e c t a b l e _ O A i n a b n o r m a l s l o w w a v e s I 

any s i g n i n c o n t spectral peaks ex is t I 

no t there is o n l y v e r y s l o w a c t i v i t y p resen t , less than 0.5H2 1 

any s i g n i n t i a r u specua l peaks ex is t i n the d e l t a bond I 

the • • ' ces t spec t ra l peak appears i n a f r o n t a l channe l 1 

fp '^ j i d f p h O are s y m m e t r i c a l f o r a l l d e l t a peaks I 

rp2-r8 a n d f p l - H are s y m m e u t c a l f o r a l l de l t a peaks 1 

not de l t a a c t i v i t y o n l y appears i n f r o n t a l channe l s I 

no t d e l t a a a l v i t y o n l y appears i n the an te r io r h a l f o f the s ca lp I 

de l t a peaks a re present tha t a r c n o t present to the E O G I 

fp2-ra o r f p l - r ? con ta ins i so la ted n o n r e p e t i t i v e w a v e f o r m s I 

n o t s i g n i f i c a n t d e l t a a c t i v i t y docs no t appear 'tn o c c i p i t a l channe l s I 

n o t t h e l a r g e a t p e c u a l peak*appears i n the E O G I 

segment w a s c l a s s i f i ed as c o n t a i n i n g 

f n a i n l y _ O A w i t h l i t t l e a b n o r m a l s l o w w a v e s w i t h a c e n a i n t y o f 0 . 9 7 . 

T h e users r esponse was o 

13-3-1991 13:37 

D A T A 6 S E G 2 

L i s t o f e x u a c t c d feamres 

( • c _ f c a t u r e ' , * c I a s s _ t o i a I s ' ) 0 

[ * c _ f c a t u r c ' . * c l a s s _ t o i a I s ' | 0 

I * f _ r c « t u r e * . ' c 4 - p 4 * . ' p k r , ' d e l t f l * . ' l o w _ p o w e r * . * m c d _ s p e e d ' | I 

( • f _ f e a t u r e * . * l 4 - i 6 ' . ' p k r . * d e l t a ' . ' I o w _ p o w e r * . ' m e d _ f p 6 e d * I I 

r r ^ f e a i u r e * . ' 1 4 - 1 6 * . * p k 2 * , ' d c l i a ' , ' l o w _ p o w e r * , ' m e d _ t p e e d " l I 

no t the h i s t o r i c a l c o n t e x t is a b n o r m a l I 

n o t the l o c a l c o n t e x t is a b n o r m a l s l o w w a v e s o n l y I '~ 

n o t t h e l o c a l c o n t e x t i s m a i o l y a b n o r m a l s l o w w a v e s w i t h i n s i g n i f t c a n t O A 

not the l o c a l c o n t e x t is d c i e c t a b l e _ O A i n a b n o r m a l s l o w w a v e s I 

any s i g n i f i c a n t spectral peaks ex i s t I 

n o t t he re is o n l y ve ry s l o w o a i v i t y p resen t , less than O . S H i I 

any s i g n i f i c a n i specua l peaks ex is t i n t h e d e l t a band I 

no t t h e l a rges t specua l peak appears i n a f r o n t a l channe l I 

rp2-re o r f p l - n con ta ins i so l a t ed n o n r e p e t i t i v e w a v e f o r m s 1 

s i g n i f i c o n i d e l t a a c t i v i t y docs no t appear i n o c c i p i t a l channe l s I 

rp2-r4 and f p l - n are s y m m e t r i c a l f o r a l l de l t a peaks^ I 

de l t a peaks a re present that a re not present i n the E O G 1 

not f p 2 - f 4 o r fp l -D con ta ins w a v e f o r m s w i t h sharp e l emen t s I 

no t the l a rges t ^ e c t r a l peak e x i s u i n the sub-de l t a band I 

the I s r g c n spec t ra l peak is aUr ibu tab Ic t o m o r e than one elecirt>de I 

no t there is a s i g n i f i c a n t specua l peak i n an E O G channe l I 

6 / 



segment was c l a s s i f i e d as c o n t a i n i n g 

abnorma l s l ow waves o n l y w i t h a c e r t a i n l y o f O.S. 

T h e users response was n 

13-3 1991 16:55 

D A T A 6 SEC3 

Lis t o f ext rac ted fea tures 

| *c_ fca iu re ' . *c l a s4_ io i a l s ' ] 0 

{"c_fcatu(e ' .*c las8_iota l !*] 0 

[ " f f e a t u r e ' . ' f 4 - c 4 ' . ' p k l * , ' d e l t a * . " l o w j > o w e r • . * m c d _ s p e c d * ) I 

I 3 - 3 - 1 9 9 I 16:58 

D A T A 6 SEG4 

List o f c x u a c t c d fea tures 

| " c _ f e a i u r e * , ' c l a s s _ t o t a l s * I 0 

( • c _ f e « i u r e ' , " c l a s s _ t o i a J s ' l 0 

| " f f e a t u r e " , " t 4 - t 6 * . ' p k l ' . ' d e l t a ' , * l o w _ p o w c r ' . * m e d _ s p e e d " | I 

( • f _ f e a i u r e ' . " f 7 - i 3 ' , * p k r , ' d e l t a * . ' l o w _ p o w e r ' . * h i g h _ s p e e d ' l I 

not the h i s to r i ca l c o n t e x t is a b n o r m a l 1 

not the l o c a l c o n t e x t is a b n o r m a l s l o w waves o n l y J 

not the loca l c o n t e x t is m a i n l y a b n o r m a l s l ow w a v e s w i t h i n s i g n i f i c a n t O A I 

not the l o c a l c o n t e x t is d e t e c t a b l e _ O A in a b n o r m a l s low waves 1 

any s i g n i f i c a n t spcctraJ peaks ex i s t 1 

not there is on ly v e r y s l o w a c t i v i t y p r c A c n i . less t h a n O . S H z I 

any s i g n i f i c a n t spect ra l peaks ex i s t i n the delta band I 

not the largest spect ra l peak appears i n a f r o n t a l channe l I 

f p 2 - r e or f p l - f 7 con ta ins i so la ted n o n repe t i t ive w a v e f o r m s I 

s i g n i f i c a n t delta a c t i v i t y does not appear in o c c i p i t a l channels I 

f p 2 f 4 and f p l - f 3 are s y m m e t r i c a l f o r alt de l ta peaks I 

delta pcaJcs are present that are not p r c s c n i in the E O G 1 

noi f p 2 - f 4 or f p l - f 3 c o n t a i n s w a v e f o r m s w i t h sharp e lements I 

no i largest speciraJ f>eak exis ts i n the sub-del ta band I 

i h i ^cst spectral peak is a t t r i b u t a b l e to more t h a n one e lec t rode I 

noi (here is a s i g n i f i c a n t spect ra l peak i n on E O G channe l 1 

segment was c l a s s i f i e d as c o n t a i n i n g 

abnormal s low w a v e s o n l y w i t h a c e r t a in ty o f 0 . 8 . 

The users response was n 

13-3-1991 17:4 

D A T A 4 S E G I 

List o f ex t rac ted fea tures 

I * c _ f c a t u r e " , ' c l a s s _ l o t a l s ' l 0 

| *c_ fea iu re " .*c l a s s_ to t a l s* I 0 

| " c _ f e a i u r e " . " c l a s s _ t o t a l i ' ) 0 

( " c _ f e « t u r e ' . " c l a s s _ i o t a l s ' J 0 

I ' c f e a t u r e ' . ' c l a s s t o i a } s ' | 0 

( " f f e a t u r e ' . " f 8 - t 4 * , ' p k r . ' s u b d e l t a * . ' m e d _ p a w e r " . " m e d _ s p c e d ' | 1 

( • f _ f e a i u r e " . " f 7 - l 3 ' . ' p k r , ' s u b _ d e t t a ' . * m e d j > o w e r " , ' m e d _ s p e e d ' l 1 

| ' f _ f c B i u r e * . ' f p 2 - r e ' . * p l c r . ' s u b _ d e l t a * . " l o w _ p o w c r " , " m e d _ s p c c d " | 1 

5/f, 



n o t the h i s t o r i c a l cotUCJii is a b n o r m a l I 

no t the l o c a l con tex t is a b n o r m a ] s l o w w a v e s o n l y I 

n o t the l o c a l c o n i c x i is m a i n l y a b n o r m a l s l o w waves w i t h i n s i g n i f i c a n t O A I 

n o t Ihe l o c a l c o n t e j t i is d e i e c t a b l e ^ O A i n a b n o r m a l s l o w w a v e s I 

any s i g n i f t c a n i spectral peaks « i s i I 

t he r e is o n l y v e r y slow a c t i v i t y p r e sen t , less than O.SHz 1 

the l a r g c s i spect ra l peak appears u l t e r i o r l y I 

t h e largest q>cctraJ peak is a n r i b u i a b l e t o m o r e than one e l e c t r o d e I 

segment was c l a s s i f i ed as c o n t a i n i n g 

r e m a r t c f a c l o n l y w i t h a c e r t a i n l y o f 0 . 9 3 , 

T h e users response was y 

I 3 - 3 - 1 9 9 I 17 :6 

D A T A 4 S E C 2 

L i n o f c j U i a c t e d features 

{ ' c , f e a t u r e " . ' l o c a l * . * r c m * | 0 . 9 8 

( ' ( . .ure*.'class_total8*] I 
( " f _ f e a t u r c ' . ' f p 2 - ( B " , " p k r . * d c I i a * . ' t o w j > o w e r * . * m e d _ s p c e d * l I 

( * f _ f e a i u r e ' . ' f p l - f 7 " , " p k r , " d e l t a * . * l o w _ p o w c r " . ' m e d _ 6 p e c d * I I 

( • f _ f c a i u r e ' . ' f B - t 4 ' , " p k r , * d d l a ' . " I o w _ p o w c r ' , " m e d _ t p c c d * I I 

| " f _ f e a l u r e ' . * f 7 - 0 " . * p k r . " d e l l f l * . " l o w _ p o w c r * . * i n e d _ e p e e d * ) 1 

n o i the h i s t o r i c a l con tex t ts a b n o r m a l I 

n o t the l o c a l con te jU tJ a b n o r m a l s l o w w a v e s o n l y I 

n o t the l o c a l con tex t is m a i n l y a b n o r m a l s l o w waves w i t h i n s i g n i f i c a n t O A I 

n o t the l o c a l con tex t is d e i e c t a b l e ^ O A i n a b n o r m a l s l o w w a v e s I 

any s i g n i f i c a n t spectrsl peaks ex i s t 1 

n o t there is o n l y ve ry s l o w a a i v i t y p re sen t , less than O . S H z I 

any s i g n i f i c o n l s p c o r a l peaks ex i s t i n the de l t a band 1 

the la rges t ^ e c i r a l peak appears i n a f r o n t a l channel I 

f p 2 - f 4 a n d rpl-f3 arc s y m m e t r i c a l f o r a l l de l ta peaks I 

f p 2 - f 3 a n d f p l - f ? are s y m m e t r i c a l f o r a l l d e l t a peaks I 

n o t de l t a a c t i v i t y on ly appears i n f r o n t a l channels I 

d e l t a a a i v i i y o n l y appears i n t h e a n t e r i o r h a l f o f the scalp I 

no t de l t a peaks are present t h a i a re n o t present in the E O G I 

rp2-'^ o r rpl-f7 coDiains i so l a t ed n o o r e p e t i t i v e w a v e f o r m s 1 

no. • f4 o r f p l - f j con t a in s w a v e f o r m s w i t h sharp e l e me n t s 1 

n o t d e l t a spectra] peaks ex i s t o n l y i n the E O G 1 

t h e largest ^ e c t r a J peak is a m i b u i a b l e to m o r e than one e l e c t r o d e I 

I h c largest spect ra l peak appears i n t h e E O G I 

no t the la rges t del ta peak a p p c o r i i n channe l s f p 2 - f 4 o r f p l - O I 

n o t the w a v e f o r m tn channe l s f p 2 - f 4 o r f p l - f 3 'is s l o w - l o w d e l t a I 

the w a v e f o r m i n channels f p 2 - r e a n d re-i4 are i n phase 0 

the w a v e f o r m i n channels f p l - f 7 a n d f 7 - t 3 arc i n phase 0 

s egmen t w a s c l a s s i f i ed as c o n t a i n i n g 

b l i n k a r t e f a c t w i t h a c e r t a i n t y o f 0 , 9 . 

T h e users respot ise was n 

1 3 - 3 - 1 9 9 1 17:7 

D A T A 4 S E C 3 

L i s t o f e x t r a c t e d features 

( " c_ fea iu r e " .*c l a s s_ to i a l s " ) I 

( " f _ f e a t u r e * . * f p 2 - r B * . ' p k r , " s u b _ d e I i a " . * m e d _ p o w e r * . * h i g h _ s p e e d * | 0 . 7 5 



I'f r e f t i u f e ' . " f p 2 - r e * . ' p w r . " d c t i a " , ' m « j j x > w c r ' . * l o w _ s p « d * | 0 . 2 5 

l'f_fcAtutc'.'(p2-n'.'pk2'.'delta'.'mca_powcr'.'mcd_speed'l I 

( • f _ f c a i u r e " . ' f p l - f 7 * . " p l c l * . * s u b _ d c l L f t ' , ' m c d j w w c r ' , ' h i g h _ s p c « l ' | 0 .75 

( * f _ f c a i u r c " . * f p l - r 7 ' , ' p l c r , * d t t i j » ' . * m e d _ p o w t f " . ' l o w i p e c d ' | 0 .25 

( • f _ f M i u r c * . * f p l - r 7 ' . ' p k 2 ' . * d c J u ' . ' m e < J _ p o w c r " . ' m c d _ i p c © d - | I 

(* f_ rca iu rc" .* re - i4 ' . *p lc r , ' sub_de lLa* . ' vh igh j>ower* . ' h igh_ ipM<J" l 0 . 7 5 

l ' f _ f c A i u r c * , * f 8 - t 4 ' , ' p k l * . * d c l i A ' , ' v h i g h _ p o w c r ' , ' I o w _ i p e e d * ] 0 .25 

r f _ f t a t u f e * , * r 7 - t 3 ' . ' p k l • . ' * u b _ d e l i a * . ' m e d j ) 0 * c f * . * h i g h _ s p c c d ' | 0 .75 

( ' f _ f e A i u r e * . T 7 - t 3 * . * p k I " , * d e l u ' . ' m « d j > o u « f * . * l o w _ ( p c c d " J 0 . 2 5 

( ' f _ f c a i u t c * , ' f p 2 - f 8 * , " p k r , * i u b d e I i a * . * m c d _ p o w c r ' . ' h i g h s p c e d ' l 0 .75 

i ' f _ f t « i u r e " , ' f p 2 - r e * , * p l c l * . ' d d [ a * . ' m c d j > o w e i ' . * l o w s p e e d ' | 0 .25 

[ ' f _ f c a t u r c * , " f p l - f 7 ' . * p k r . ' i u b _ d c l l a * . ' m e d _ p o w « * . ' h i g h _ i p e e d * l 0 . 7 5 

( • f _ f c f t L L r e * . ' f p l - f 7 ' . * p l c r . * d c l L a * . * m c d j > o w c j " , * l o w _ i p c < d " l 0 .25 

13 .3-1991 17:9 

D A T A * S E G 4 

L i u o f ex t rac ted f c A i u r u 

| " c _ f c « i u r e ' , ' c l f t « _ t o t a l i " ) I 

I ' f r e A i u f c * , ' r p 2 - r e " . * p l c l * , * d c t i a * . * l o w _ p o w e r ' , " m e d _ i p c e d ' I I 

| " l u r e * . ' f S - l 4 ' , " p k 1 * . * i u b d e l t a * , * m e d _ j > o w e r ' . ' m t d _ i p e « d ' I I 

I ' f f e a t u r e * . ' r e - t 4 ' . ' p k 2 * , ' d d i a ' , ' l o w _ p o w c r ' . * m c d _ t p e e d ' ) 1 

I ' f f e a t u r e ' , * f 8 - l 4 * . ' p l t 3 " . ' d e l t a * . " I o w j ) o w e r " . ' m c d _ s p e e d ' | I 

I ' f f e a tu re* . " f7 - i3 ' , 'pkr ,*sub d e l t a * . ' m c d _ p o w e r ' . ' h i g h _ s p e e d ' | I 

| ' f _ f c « i u r e * . ' f 7 - t 3 ' , ' p k 2 * . * d c l i a ' , * l o w _ p o w c r * . * m c d _ s p e c < J * I 1 

I ' f _ f e a i u r c * . * n - O ' . ' p k 3 ' . ' d c l i a ' . ' l o w _ p o w e r ' . ' m e d _ i p c « d ' ] I 

r f _ f e a t u r e * . * f p 2 - f S * . * p k r , * i u b _ d « l t a * . * m e d _ p o w e r * , ' m c d _ * p e e d ' | 1 

| ' f _ f c a t u r c ' . ' f p 2 - f ^ * . * p i a * . * d e l i a * . * l o w _ p o w e r * . * m c d _ s p e e d ' | I 

I'f f e a i u r e * , ' f p 2 - f 8 * . * p l t 3 * , ' d e l t a * . ' l o ' * _ p o w c r * . ' m c d _ t p e « * l * | 1 

I ' f ^ f e a i u r e * , ' f p l - n ' , ' p k l ' . * « u b d e l t a ' . * m e d j > o w c r * / h i g h _ * p e c ^ ' | 1 

I ' f _ f e a t u r e ' . * f p l - f 7 * . ' p k 2 * . * d e l t a * . * l o w _ p o w e r ' . ' m e 4 j _ s p c e d ' | I 

no i ihe h i n o r i c a l conie^i t ts a b n o r m a l 1 

not the loca l c o n t c w i i a b n o r m n j tiov wave* o n l y I 

not the l o c a l con t ' c j t i i i m a i n l y a b n o r m a l » l o w wavea w t i h i o j i g n i f l c a n t O A I 

not \hc l o c a l contcJi t i t d c t e c i a b l e _ O A in a b n o r m a l t l o w wave* 1 

any l i g n i f i c a n i s p c c u a l pcatcs ex is t 1 

not there i * o n l y v e r y t l o w a c t i v i t y p rc*en l . l e u than 0 . 5 H i I 

any l i g n i f i c a n t spccirsi peaks c x i a i n the de l t a b a n d J 

the ' " l i c i t t p e c u a ] peak a p p e a r i in a f r o n t a l channel I 

fp ' . Jid f p l - f 3 a/c l y m m e t r i c a l f o r al l de l ta peaks 1 

f p 2 - n t and f p l - f 7 a/e t y m m c u i c a ] f o r a l l delta pcaka I 

no t d e l t a a c t i v i t y o n l y appears i n f r o n t a l channe l s 1 

del ta a c t i v i t y o n l y appears in the a n U r i o r h a l f o f the t c a l p 1 

not del ta peak* are p re scn i tha i are no t present i o the E O C I 

f p 2 - r ? or f p l - f ? c o n t a i n s i so la ted n o n repe t i t ive w a v e f o r m s I 

not f p 2 - f 4 or f p l - O con t a in s w a v e f o r m s w i t h sharp e lement t I 

not del ta spect ra l peaks c x i o o n l y i n the £ O G I 

the largest spect ra l peak is a t l r i bu t ab l e (0 more than one electrode I 

the l a r g c A spectraJ peak appears i n the E O C I 

not the largest d e l t a peak appears i n channels (p2-I* o r (pl-O I 

not the w a v e f o r m i n channe l s rp2-f4 or f p l - D is s low - l o w delta 1 

the w a v e f o r m i n channe l s f p 2 - r S and n- t4 are i n phase 0 

the w a v e f o r m i n channe l s f p l - f ? and f7 - l3 are i n phase 0 

segment was claasiTied as c o n t a i n i n g 

b l i n k a r te fac t w i t h a c e r t a in ty o f 0 . 9 . 

T h e users response was n 

I 3 - 3 - I 9 9 I 17:12 

D A T A ? S E C I 
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any l i g n i n c a n i spectraJ pcA)cs c » i a i n i h e d c l l a b u n d I 

the l&rgcst spectral peak s p p c a r i i o a f r o n i a J c h a n n d 1 

(p2'{A and T p l - O arc Eymmctr icaJ Tor a j l d e l t a peaks I 

(p2-ri and T p l - H arc c y m m e i r i c a J Tor a l l dc<La peaks 1 

dcJia a c t i v i t y only appears i n f t o n i a J c h a n n e l s I 

not del ta spec t ra l peaks ex is t o n l y i n the E O G 1 

the l a r g c A spect ra l peak i i a n r t b u u b l e t o m o r e than o n e e l e c t r o d e I 

the largest spect ra l peak appears i n t h e E O G I 

not the lo rges i de l t a peak appears i n channe l s f p 2 - f 4 o r f p I - f J I 

not the w a v e r o n n i n channels rp2-f4 o r f p l - n is s l o w - l o w d e l t a I 

the w a v e r o r m i n chaooc ls rp2-f9 a n d ra-(4 a re i n phisc 0 

the M ' a v e f b r m i n chaoncf s f p \ - n a n d r 7 - 0 o r e t n phase 0 

segmeni w a j c l ass i r i cd as c o n t a i n i n g 

b l i n k a r t e f a c t w i t h a c e r t a i n t y o f 0 . 9 3 6 . 

T h e users response was y 

13-3-1991 I 7 ; 1 9 

D A T A 2 S E G l 

L i s t o f ex t r ac t ed rca iurcs 

(•c_feaiure'.*cla4s_totalB 'J 3 

r c _ f e a i u r e " . * c l a i s _ i o t a l i * I 0 

I ' f f e a t u r e " . ' r p 2 - r a ' . * p k r . ' s u b _ d d i a * . * m c d _ p o w e r " . * m e d _ s p e c d * J I 

[*f f e a t u r e * . * r p 2 - f 8 * , " p k 2 * . * s u b _ d c l i a " , " m c d _ p o w e r ' . ' h i g h _ i p e e d ' | 0.25 

l * f _ f e a i u r e * . * f p 2 - f ? ' , * p k 2 * . * d e l i a ' , ' m e d _ p o w e r * . ' l o w _ s p e e d * ! 0.7J 

( • f _ f e a t u r e ' . * f p 2 - r e * . ' p i c a * . ' d e l t a * . • m e d j } o w c r * . * m c d _ s p e e d ' I I 

( • f_fcaiure*.*rp2 - fa*.*pk4*.*det ta*.*low_powcr*.*high_Epced ' I0 .S 

I ' f _ f e a i u r e " . ' f p l - r 7 * . * p k r . * s u b _ d c l t a * . ' m c d _ p o w e r ' . * m c d _ ( p e e d * | I 

l ' f _ f e a t u r c ' . ' f p l - f 7 * . * p l c 2 * . * d e l t a " , " l o w _ p o w e r * , ' m c d _ ^ e « l ' | I 

[ * f _ f e a i u r e ' . * f p l - f 7 * . * p k 3 * . * d c l l a ' . * t n e d j > o w e r * , ' m e d _ s p e e d ' ) I 

I * f _ f e a i u r E ' . T p l - r 7 * . * p k 4 ' . * d c l i a * . ' m c d _ p o w e r " . ' h i g h _ « p c e d * ) 0 . 7 5 

( ' f _ f e a i u r c * . ' f p 2 - f 4 ' . * p k r , * s u b _ d e l t a * . * m e d j > o w e r * , ' h i g h _ s p e c d * I 0.25 

I " f _ f c a i u r e * , ' f p 2 - f 4 * . * p k r . * d e l i a * . ' m c d _ p o w e r * . ' l o w _ s p e e d * 1 0 . 7 5 

| " f _ f e a t u r e * . * r p 2 - f 4 * . * p k 2 * , * d c I t f l * . ' m c d _ p o w e r * . * m e d _ t p « d * I I 

I * f _ f e a i u r e * . ' r p 2 - f 4 - . * p k 3 * / d e l l a * . ' m c d j ) o u r e r ' . * h i g h _ 6 p c c d * 1 0 . 7 5 

(*f f e a t u r e * . • f p I - r J ' . * p l c 1 * . * s u b _ d c I i a ' . * m e d _ p o w « r ' . ' h i g h _ t p c c d * | 0.25 

I " I u r e * , * f p l - f 3 * . * p I c l * , * d c l t B * , ' m e d _ p o w e r ' . ' I o w _ s p e e d ' | 0.75 

( * f _ f e a i u r e * , * f p l - r > * ! " p k 2 * . * d e l i a ' . ' m e d _ p o w e r " . * m e d _ s p c e d ' | I 

[ * f _ f c a t u r c * . * f p l - f 3 * . " p k 3 * . ' d e l t a * . ' I o w _ p o w e r * , * h i g h _ s p e e d * I 0.75 

[ ' f _ f e a i u r e * . * f S - t 4 * , * p k r . * j u b d e l t a * . * v h i g h _ p o w e r * , * m e d _ s p e e d * ] I 

I ' f _ f e a i u r c * . * r 3 - t 4 ' , * p k 2 * , * i u b d e l t a * . * m c d _ p o w e r * , * h i g h _ s p e e d ' I 0.25 

( • f _ f e a i u r e ' . * f 8 - t 4 ' . * p k 2 * . * d e l l a " , * m e d j > o w e r ' . ' l o w _ $ p c e d * | 0 . 7 5 

( * f _ f e a i u r c ' . ' f B - t 4 ' / p k 3 * . * d e l [ a * . ' m c d _ p o w e r * . * m e d _ s p e c d * | I 

r f _ f ea tu re* . • r e - t 4 * . * p k 4 ' . * d e l i a * . * I o w _ p o w c r * . ' h i g h _ i p e e d * l 0.75 

r f _ f e a t u r e * . * r 7 - i 3 * . * p k r . * s u b _ d c l L B * . * w h i g h _ p o w c r ' . * m e < l _ s p e e d " | I 

I * f _ f e a t u r e * , * r ? - i 3 ' . * p k 2 ' . * s u b _ d e I t a * , * i o w _ p o w e r * . * h i g h _ s p e « d ' I 0.25 

r f _ f e a i u r e * . * f 7 - l 3 * . * p k 2 * . ' d e l t a * . * l o w j > o w e r ' . * l o w _ t p e e d * I 0.75 

I * f _ f c a i u r e " . * r 7 - i 3 ' , * p l c 3 * . ' d e l t a * . * l o w j > o w e r * . * f n e d _ ( p c c d * l I 

( • f _ f e a i u r e ' . * f p 2 - f B * . * p k l * , * s u b _ d e l t a ' . * v h i g h j » o w e r ' . * f n e d _ s p e e d * | I 

( * f _ f c a i u r c ' . ' f p 2 - f B * . * p k 2 * . * i u b _ d e I l a * . * m c d _ p o w c r * . ' h i g h _ s p c e d ' | 0.23 

( ' f _ f e a i u r e * . T p 2 - r e ' . * p k 2 ' . * d e I i a * , * m e d j > o w e r ' . ' l o w _ s p c c d * | 0 . 7 5 

( ' f_ fea tu re* . • rp2- fS* .*pk3* .*de l t a* .*mtd_power* .*med_ ipeed*I I 

r f _ f c a t u r e ' , * f p 2 - r e * . ' p l c 4 * . ' d e l t a ' . ' l o w _ p o w e r * ; * h i g h _ 8 p c e d * J 0 . 5 

( * f _ f c a i u r e * . * f p l - r 7 * . * p k I ' . ' s u b _ d e l l a * . * v h i g h j ) o w e f ' , * m e d _ s p e c d " I 1 

( * f _ f e a t u r c ' . * r p I - f 7 * . * p k 2 * , ' d e l t a ' . * l o w _ p o w e r " . * m e d _ s p e c d * I I 

r f _ f c a t u r c * . * r p l - f 7 ' . ' p k 3 ' , * d e l i a * . * m e d _ p o w e r " . ' m c d _ s p c e d ' | 1 

( * f _ f e a t u r c " , " f p l - n * . ' p k 4 * , ' d e l t a * , ' l Q w _ p o w « * . ' h i g h _ s p c c d " 1 0 . 7 5 

not the h i s t o r i c a l con tex t is a b n o r m a l I 

not the l o c a l con tex t i s a b n o r m a l s l o w w a v e s o n l y I 
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n o i the loca l con tex t i« m a i n l y a b n o r m a l i l o w waves w i t h i n s i g n i H c a n i O A I 

not the loca l context is d e t c c u b 1 e _ O A in abnormal s low w a v u I 

any a i g n i f i c a n t tpcc i ra J peak* e s i « 1 

not there is o n l y ve ry s l ow a c t i v i t y p t c u n i . k u than O.SHz 0 .25 

any s ign i r i can t spectral peaks e x i s i in the delta b o n d 0.75 

the largest tpccutl peak appca/s in a f ron i a} channel 0 .25 

not rp2-r4 and f p l - H arc s y m m e t r i c a l f o r al l delta peaks 0 .75 

rp2-re and f p l - r 7 are s y m m e t r i c a ] for al l delta peaks 0.5 

not de l t a a c t i v i t y o n l y appeaj^s i n f r o n t a l c h u i n c t t 0 . 2 5 

not de l t a peaks arc present tha i are not present in the E O G 0.5 

not f p 2 - n t or f p l - f 7 conta ins isola ted non repe t i t ive u ' a v c f o r m * 0.6O82231OS2 

del ta a c t i v i t y on ly appears in the anter ior half o f t h e scalp 0 .5 

not d e l t a t p e c l r a l peaks e x i n o n l y i n the E O G 0.5 

the largest cpccua l peak is ao r ibu tab te to more than one e lectrode 0 . 2 5 

the l a jges t speci/aJ peak appears in the E O G I 

no t i h e la rges t d e J u peak appea /s i n channels f p 2 - r 4 or f p l - O J 

the w a v e f o r m in channels f p 2 - f 4 or f p I - f l i i s low - l o w delta 0 .15 

the w a v e f o r m in channels f p 2 - f ? and (?- i4 are in phase 0 

segment was c lass iHed as c o n t a i n i n g 

weak c m ar tefac t w i t h a ce r t a in ty o f 0 . 7 1 2 . 

T h rs response was n 

I3-3-I99I 17:21 
DATA2 SEC2 

Lis t o f ex t rac ted features 

c _ f c a t u r c ' , ' c l a s s _ l o i a l s * l 3 

cofeature*.*class_lotals*l 0 

f f e a t u r e " , • f p 2 - f B * . * p k l ' , * s u b _ d e l l a ' , ' m e d _ p o w c r * . " m e d _ s p e e d * | I 

f f e a t u r e ' . * f p 2 - f 8 * . * p k 2 ' . ' s u b _ d e l t a * , " m c d _ p o w c r ' . ' h i g h _ t p e e d * I 0.25 

f _ f c a t u r e * . * f p 2 - r e * . * p k 2 ' . ' d e l t a ' . " m e d j j o w c r * . ' l o w speed*) 0 . 7 5 

f f e a t u r e " , ' f p 2 - f 8 * , * p k 3 * . ' d e l t a ' . ' m c d _ p o w c r ' , * m e d _ s p e e d * | I 

f f e a t u r e " . * f p 2 - r e ' . * p k 4 " . ' d e l t a ' , ' l o w _ p o w c t ' , ' h i g h _ t p e e d * I 0 .5 

f f e a t u r e * , • r p l - f 7 * , * p k r , ' s u b _ d e l i a * . * m e d _ p o w e r " , ' m e d _ s p c e d * ) I 

f f e a t u r e ' . ' f p l - f 7 * , * p k 2 ' . * d e l t a * . ' l o w _ p o i * e r ' , ' m c d _ s p c e d * l I 

f f - a t u r e ' , ' f p l - f 7 ' . ' p k 3 ' , * d e l t a * , ' m e d _ p o w c r ' . * m e d _ s p e < d ' l I 

I u r c ' . ' f p l - f 7 ' . * p k 4 * . * d e l t a * . ' m c d _ p o w e r ' . * h i g h _ ( p e e d * l 0 . 7 5 

f f e a t u r e ' . ' f p 2 - f 4 * , ' p k I • . • s u b _ d e l t a ' . ' m e d _ p o w c r ' . ' h i g h _ s p c e d ' l 0 . 2 5 

f f e a t u r e ' . ' r p 2 - f 4 ' , ' p k r , ' d e l t a * , ' m e d j j o u - e r ' . ' l o w s p c e d ' l 0 . 7 5 

f f e a t u r e ' , ' f p 2 - f 4 * . ' p ( c 2 ' , ' d e l t a ' . * m e d _ p o w c r * . ' m e d _ t p e e < l ' l I 

f f e a t u r e " , ' f p 2 - f 4 " , ' p k 3 * . ' d e l t a ' , * m e d _ p o w - c r ' , ' h i g h _ s p e e d ' l 0 . 7 5 

f f e a t u r e " , " f p I - f 3 * , * p k r , " s u b _ d c l t a ' . * m e d _ p o w e r ' . ' h i g h _ s p c e d * ) 0.25 

f f e a t u r e ' , ' f p l - f 3 ' , * p k I * , ' d e l t a " . * m e d _ p o w e r * . ' l o w _ s p e e d ' 1 0 .75 

f f e a t u r e * . ' f p l - f 3 ' , * p k 2 * , " d e l t a " . ' m e d _ p o ' * c f * , * m e d _ s p e e d ' t I 

f f e a t u r e * . ' f p l - f 3 " . " p k 3 * . " d e l t a " . " l o w j x i w e r * . " h i g h _ i p e e d ' I 0 .75 

r f e a t u r e " , " f ? - l 4 * . " p k l ' . " s u b _ d e I t a " . " v h i g h _ p o w e r ' . " m e d _ s p e e d * | I 

f f e a t u r e * . * f S - i 4 * . ' p k 2 * . * s u b _ d d t a " . * m e d j > o w c r * , * h i g h ^ s p e e d " I 0 . 2 5 

f _ f c a l u r e * . * f 3 - t 4 * . * p k 2 * . * ( J c l u " . * m c d j > o w e r " . " l o w _ i p c e d " ) 0 .75 

f _ f c a t u t e * . " f S - t 4 * . * p k 3 * . * d e l L 8 * , ' m e d _ p o w e r " , " m c d _ t p c e d * | I 

f _ f e a i u r e * , " f 8 - t 4 ' . * p k 4 * . * d e l i a * . * l o w _ p o w c r ' . ' h i g h _ s p c e d " I 0 .75 

f _ f c a i u r e " . " f 7 - t 3 * , * p k r . * s u b _ d c l t a " . " v h i g h j > o w e r ' . ' m e d _ s p e e d * I I 

f _ f e a i u r e ' , ' r 7 - t 3 * , * p k 2 * , * s u b _ d e l i a ' , * l o w j ) o w c r ' . " h t g h _ t p e e d * l 0 . 2 5 

f _ f e A t u r e ' . ' f 7 - t 3 * , ' p k 2 * , ' d e l t a * , ' l o w _ p o w c r " . ' l o w _ j p e c d ' | 0 .75 

f f e a t u r e ' . * r 7 - i 3 * , * p k 3 * , ' d e l t a * , ' I o w _ p o w e r ' , ' m e d _ s p e e d " | I 

f f e B i u t c ' , ' f p 2 - r a * . * p k r . * s u b _ d c l i a ' . ' v h i g h _ p o w e r ' , ' m c d _ s p c « J ' | I 

f f e a t u r e * . ' f p 2 - r 8 * , ' p k 2 * , * s u b _ d c l i a ' . ' m e d _ p o w c r ' . ' h i g h _ s p e « d ' I 0 . 2 5 

f f c a i u i e * . ' f p 2 - r a ' . ' p k 2 * , ' d e l t a " , ' m c d _ p o w e r * . ' l o w _ i p c < d * ) 0 . 7 5 

f f e a t u r e * . ' f p 2 - f ^ ' . ' p k 3 * , * d e l L a ' , ' m e d j ) o w e r * , ' m c d _ s p e e d * | I 

f f e a t u r e ' . ' f p 2 - f ^ * . * p k 4 * . ' d e l t a ' . ' l o w _ p o w e r ' . ' h i g h _ s p e e d * I 0 .5 
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( • r _ f c t t i u r c ' . ' f p I - r 7 * . ' p k r . ' s u b _ d c J l f l * , * v h i g h _ p o w e r * , ' m c d _ s p c e d ' t 1 

( • f _ f e « t u r e * . ' f p l - f 7 ' . * p k 2 * . * d e l i a * , * l o w _ p o w t r ' . " m e 4 _ speed*! 1 

l * f _ r c a i u r c * , * f p l - n ' , ' p k 3 * . ' d e l t a ' . * r a e d _ p o » c r * . * m e d _ s p e e d * I 1 

[ * f _ f c a l u r c ' . ' f p l - f 7 " . ' p k 4 ' . * d c l l a ' , * l o w _ p o w c r ' . ' h i g h _ s p e e d ' | 0 . 7 S 

not I h c h i n o r i c a l c o n t c x i i i a b n o r m a l I 

n o t the locaJ con tex t is a b n o r m a l s l o w waves only I 

n o t the l o c a l c o n i e x l is m a i n l y a b n o r m a l s l o w waves w i t h i o s ign i r i can t O A 1 

not the l o c a l contcJtl is d c i e c t a b l e _ O A in abnormaJ s l o w u-avcs I 

any s i g n i r i c a n i spccu-al peaks CAist 1 

not t he r e is o n l y very s l o w a c t i v i t y p resen t , leas than 0 . 5 H z 0 . 3 5 

any s i g n i n c a n l spectral peaks ex.Ia i n the de l t a band 0.7S 

the la rges t c p e c u a l peak appears to a f r o n t a l channel 0.25 

not rp2-f4 a n d (pl'O a re s y m m e t r i c a l Tor a l l delta peaks 0 . 7 5 

f p 2 - r e a n d tpl-Cl aie s y m m e t r i c a l f o r a l l de l t a peaks 0 .5 

n o t delta a c t i v i t y only appears i n Trontal c b a i t n c l i 0 . 2 J 

not d c l u peaks are present that a rc no t present i n the E O C 0 . 5 

not rp2-I3or T p l - H c o n i a i n s i so la ted n o n r epe t i t i ve w a v e f o r m s 0 .60322510S2 

d e l t a a c t i v i t y o n l y appears i n the a n t e r i o r h a l f o f the scalp 0 . 5 

not d e l t a spec t ra l peaks ex is t o n l y i n the E O G 0 .5 

the l a rges t spect ra l peak is a u r i b u i a b l e t o m o r e than one e lec t rode 0 .25 

the l a rges t spect ra l peak appears i n the E O G I 

not thr . l a rges t del ta peak appears in channe l s f p 2 - f 4 o r f p l - f 3 I 

t h t e f o n n i n channels f p 2 - f 4 o r f p l - D is s l ow - l o w del ta 0 .75 

the w a v e f o r m i n channels f p 2 - f 8 a n d iZ-iA arc i n phase 0 

segmen t w a s c las s i f i ed as c o n t a i n i n g 

u-cak e m a r t e f a c t w i t h a c e r t a i n t y o f 0 . 7 1 2 . 

T h e users response u-as 

1 3 - 3 - 1 9 9 1 17:22 

D A T A 2 S E C 2 

L i s t o f e x t r a c t e d features 

( ' c _ f 6 a t u r c ' . " c l a s s _ t o t a l s ' | 3 

l ' c _ f 6 a t u r e * , * c l a s s _ t o t a ] i ' I 0 

( • f _ r e a t u f e * . * r p 2 - r e ' , " p k r . ' i u b _ d e l t a ' , ' m e d _ p o w e r ' , " m c d _ s p e e d * | I 

| ' f _ f c a t u r e ' . ' f p 2 - r e ' . " p k 2 ' , ' ( L b _ d c l i a ' / m e d _ p o w c r * . " h i g h _ s p c c d * 1 0 . 2 5 

• f p 2 - ( B * . • p k 2 ' . ' d e l t a ' . ' m e d _ p o w e i * . ' l o w _ i p e e d ' 1 0 . 7 5 

' f p 2 - ( B ' . ' p k 3 ' . ' d e l t a ' . ' m c d _ p o w c r * . ' m e d _ s p e o d ' | I 

' f p Z - f S ' . • p k 4 ' . ' d e l t a ' . ' l o w j w w e r ' . - h i g h . s p c e d * 1 0 . 5 

• fp l - f7* . "pk I ' . *5ub_dc l t a ' . 'mcd_power ' /med_Bpced ' | I 

' f p l - f 7 ' . ' p k 2 ' . ' d e l t a * . ' l o w _ p o w e r * . ' m e d _ i p e e d ' I 1 

I ' f _ f e a i u r e ' . " r p l - r 7 * . ' p k 3 ' . ' d e l t a * . ' m c d _ p o w e r ' . ' m e d _ i p e e d ' } 1 

I * f _ r c a t u r e * . ' f p l - n * . " p k 4 * . ' d e l t a * . • r a e d _ p o w t r * , * h i g h _ i p c e d * ) 0 . 7 5 

[ ' f _ r e a i u r e * . ' f p 2 - f 4 ' , ' p k r . ' s u b _ d e l t a * , * m e d j > o w e r ' . ' h i g h _ t p c e d ' | 0 . 2 5 

• f p 2 - f 4 ' . " p k l " d e l t a * . • m c d _ p o w e r ' . ' l o w _ s p e e d * I 0 .75 

• f p 2 - f 4 ' ; " p k 2 ' , ' d e l t a * . * m e d j i o w e r ' . ' m e d i s p c e d * | I 

' f p 2 - f « ' . ' p k 3 ' . ' d e l l a ' . ' m e d _ p o w e r * . ' h i g h ^ i p c e d ' 1 0 . 7 5 

r f _ f e a t L r c ' , ' f p l - f J ' . ' p k r . ' s u b _ d e l t a ' , * m e d j > o w e r ' . * h i g h _ i p e « d ' 1 0 . 2 5 

( ' f _ f e a t u r c ' . ' f p l - f 3 ' . ' p k l ' . " d e l t a ' . ' m e d _ p o w c r * . * i o w _ s p e e d ' l 0 .75 

( • f _ f e a i u r c ' . ' f p l - f 3 * . * p k 2 " , * d e l t a * . * m c d _ p o w e r " . " m e d _ t p c e d * l I 

( * f _ f 6 a i u r e ' . ' f p I - D * . * p k 3 ' . ' d e l t a * . ' l o w j>owef*.'high_ipccd*| 0 .75 

| ' f _ r e 8 l u r e ' . ' f 8 - t 4 ' . ' p k r , * s u b _ d e l t a " , ' v h i g h j ) o w e r ' , " m e d _ s p e e d * I 1 

( • f _ f e a i u r e ' . * f B - i 4 * . ' p f c 2 * , * s u b _ d e I t a * . * m e d _ p o w c r ' . ' h i g h _ s p e e d ' 1 0 . 2 5 

l * r _ f e a i U f c * . ' r e . i 4 ' . ' p k 2 ' . ' d e l i A * . ' m e d j > o w c r * . * l o w _ i p c e d ' | 0 . 7 S 

I ' f _ r e o l u r c " . ' r e - t 4 * . ' p k 3 " , " d e l t a ' . ' m c d _ p o w e r * . * m e d _ t p e c d ' l 1 

r f f e a l u r e * . * f 8 - t 4 * , ' p k 4 " , ' d e l t a " , ' l o w j K j w c r ' . ' h i g h t p e c d " I 0 .75 

( • f _ f e a i u r e ' / f 7 - l 3 ' . ' p k r , * s u b _ d e l l a ' . ' v h i g h _ p o w e r ' . " m e d _ i p e e d * I I 

r r _ r e a t u r e ' . ' r 7 - 0 * . * p k 2 ' . ' s i i b _ d e ] u * . * I o w _ p o w e r * . * h i g h _ s p « e d * | 0 . 2 5 

( * f _ f e a t u r e * . * r 7 - t 3 * . * p k 2 ' , ' d e l t a ' . ' l o w _ p o w e r " . ' l o w _ s p e e d " I 0.75 

r f _ f e a t u r e ' . ' f 7 - t 3 * , " p k 3 ' . * d e l i a ' . ' l o w _ p o w e r * . " m c d _ s p e c d " | I 

I ' f f - n t u r e ' . 

( " I . u r e * . 

[*r_feaiure*, 

( ' f _ f e a t i i r e ' , 

( * f f e a t u r e * . 

| " f _ f e a i u r e * 

r f _ f e a l u r c * 

[ ' f _ r e a t u r c ' 
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Lis t o f extracted features 

| ' c _ f e a i u r e ' . ' c I a s s _ t o t a l i ' l 0 

l * c _ f e a t u r e * . ' c l a i s j o i a l i ' l 0 

( * f _ f c a t u r c ' , ' f p 2 - r a * . " p k r , " d c l t a * , * m e d _ p o w e r " . " m e d _ s p e c d ' l I 

[ ' { f e a t u r e * , • f p 2 - f B ' . ' p k 2 ' , ' d e I u " , ' l o w _ p o w e r ' . ' m e d _ s p e e d ' I 1 

| ' f _ f c a i u r c ' . ' f p l - r 7 " . * p k r , ' d e l i a ' . ' m e d j p o w e r * . ' m c d _ s p © c d ' l 1 

( * ( _ f e a ( u r e * . ' f p 2 - f 4 ' , ' p l i r , ' d e l t a " . ' l o w ^ p o w e r ' . ' m c d i p e e d ' ) I 

I ' f f e a t u r e ' . * f p l - f 3 ' , ' p k l * , ' d e l t a ' , ' l o w j > o w e r ' . * m c d _ s p c e d ' l I 

( • f _ r c a i u r e " , ' f 4 - c 4 * , ' p k l * . ' d e l t a " . ' l o w _ p o w e r * . " m c d _ s p e « d ' t I 

| ' f _ f c a i u r e ' , ' c 4 - p 4 ' . ' p k l * , ' d e l l a ' . ' l o w _ p o w e r ' , * m e d _ s p e e d * | 1 

I ' f f e a t u r e ' , • f 3 - c 3 ' , * p k r . ' d e l t a * . ' m e d _ p o w e r * . * m e d _ i p c < d * | I 

I ' f f e a t u r e " , • c 3 - p 3 ' . ' p k r . ' d e l t a * . ' l o w _ p o w c r * , ' m e d _ s p c e d * | I 

I " f f e a t u r e * , • p 3 - o l ' , ' p k r . ' d e l u * , ' l o w _ p o w e r * , ' m e d _ s p c e d * l 1 

( * f _ f e « i u r e ' . ' f S - l 4 ' , ' p k r , ' d c i t a * , " l o w _ p o w e r * , " m e d _ s p < o J * ( I 

I ' f i ' - a t u r e " , ' t 4 - i 6 ' . ' p k r . ' d e l t a ' . ' l o w j w w e r ' . ' m e d t p c e d ' l I 

f " l u r e * . ' f 7 - L 3 ' . ' p k r . ' d e l u ' . " l o w _ p o w c r * . * m c d _ i p c c d ' | I 

| * ( f e a t u r e ' , * L 3 - I 5 ' . ' p k l ' , ' d e l t a ' . ' l o w _ p o w e r ' , ' m c d _ s p € e d ' I I 

r f _ f c a i u r e * . ' t 3 - i 5 ' . ' p k 2 ' . ' d e l t a ' . • | o w _ p o w c r * . * m c d _ s p « e d ' l I 

r f f e a i u r e ' , ' 1 5 - 0 r , ' p k r . ' d e l t a ' , " l o w j w w e r ' . ' m e x i s p e c d ' l 1 

| ' f _ f c a t u r e ' . ' f p 2 - f B ' . ' p k r , ' d e l t a ' . * I o w j x ) w e r ' . * m e d _ s p e e d ' l I 

( • f _ f e a i u r e * . ' f p l f 7 ' , ' p k l • , ' d e l t a " , ' m e d _ p o w e r ' . " m c d _ * p e e d " I I 

not the h i s to r i ca l con tex t is abnormal I 

not the l o c a l con tex t is abnormal s low waves o n l y I 

not the local con tex t is main ly abnormal s low waves w i t h i n s i g n i f i c a n t O A I 

not the loca l con tex t i i d e i c c t a b l c ^ O A in a b n o r m a l s low waves 1 

any s ign i f i can t spectral peaks exist 1 

not there is on ly ve ry s low ac t iv i ty p f c s c n t . less than 0 . 5 H z I 

an> s ign i f i can t spectral peaks exist i n the del ta b a n d t 

the largest spectral peak appears in a f r o n t a l channe l I 

f p 2 - f 4 a n d f p l - f? arc symmet r i ca l f o r al l de l ta peaks 1 

not f p 2 - f S and f p l - f J arc symmcu-icol f o r a l l de l t a peaks I 

not delta ac t iv i ty o n l y appears i n f r o n t a l channels 1 

not delta ac t iv i ty o n l y appears in the a n t c f i o r h a l f o f the scalp 1 

not ' • - I t a peaks are present that are not prcaeni i n the E O G 1 

no 1̂  Or f p t - f 7 contains isolated non repe t i t ive w a v e f o r m s I 

not f p 2 - f 4 or f p l ' f 3 conta ins w a v e f o r m s w i t h sharp e l c m e a u I 

the largest tpcc i raJ peak appears i n the EOG I 

there is a zero lag co r r e l a t i on between f r o n t a l and pos ter ior e lectrodes 0 .5 158730159 

not (here is a phase delay in f ron ta l channels 1 

segment was c l a s s i f i ed as c o n f i n i n g 

de i cc i ab l e_OA in abnorma l s low waves w i t h a ce r t a in ty o f 0 . 8 5 . 

The users response was y 

M - 3 1991 13:31 

D A T A 5 S E C 2 

List o f extracted features 

I ' c f e a t u r e " , " l o c a l " . * d e t e c t a b l e _ O A " I 0 . S 5 

rc_fea lufe" ,*c lass_to taJs" l I 

not the h i s tor ica l con tex t is abnormal I 

not the local con tex t is abnormal s low waves o n l y 1 

noi the loca l con tex t is main ly abnormal s l ow waves w i t h i n s i g n i f i c a n t O A I 
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I ' f _ r c a i u r e ' . ' f p 2 - f 8 ' . * p k l ' , * s u b _ d d t a ' , ' v h i g h j > o w c r ' . ' r o e d _ s p c c d ' ) 1 

( * f _ _ f e a i u r c ' . * f p 2 - f 8 ' . " p l c 2 * . * s u b _ d e l t a * , * m e d _ p o w e r * . * h ( g h _ i p c e d * I 0 . 2 5 

I * f _ f e a i u r e * . ' f p 2 - r e * . * p k 2 * . * d c l t a * . ' m e d _ p o w e r * . * l o w _ ( p e e d ' 1 0 . 7 5 

[ ' f j c a i u r e ' . * f p 2 - f 8 * . * p k 3 * . ' d e l t a * . • m e d j x > w e r * . * m c d _ s p e e d * I I 

( * f _ f 6 « i u r e * . * f p 2 - r e ' . ' p k 4 * . * d e I t a * . " l o w j K > w c r ' . ' h i g h _ s p e c d * ) 0 . 5 

( * f _ r 6 a i u r e * . * f p l - f 7 ' . ' p k l ' , ' s u b _ d e l t a * , ' v h i g h _ p o w c r * . * m e < J _ s p e e d ' | 1 

( • f _ r c a i u r e * , ' f p l - f 7 * . ' p k 2 ' . ' d e l t a ' . ' l o w _ p o w e r ' . ' m e d _ s p e e d ' l 1 

( ' f _ r e a l u r e ' . ' r p l - f 7 * . * p k 3 ' . ' d e I t a * . ' m e d _ p o w e r * , * m e d _ s p e c d * I I 

r f _ f c a t u r e * . * f p l - r 7 * . ' p k 4 * . * d c I t a * . * l o w j > o w c r * . * h i g J i _ i p e « J * J 0 .75 

n o t t h e h i s t o r i c a l c o m c x l is a b n o r m a l I 

no t t h e l o c a l c o n t e x t is a b n o r m a l s l o w w a v e s o n l y 1 

no t the l o c a l c o n t e x t is m a i n l y a b n o r m a l s l o w waves w i t h i n s i g n i f i c a n t O A 1 

not the l o c a l c o n t e x t is d e u c t a b l e ^ O A i n a b n o r m a l s l o w wavei i 

any s i g n i n c a n i spectral peaks ex i s t I 

no t there is o n l y ve ry s l o w a c t i v i t y p r e sen t , less than 0 . 5 H z 0 . 2 5 

o n y ^ s i g n i n c a n t specuol peaks ex i s t ia t h e d e l t a band 0 . 7 5 

the l a rges t s p e c u a l peak appears i n a f r o n t a l channe l 0 . 2 5 

n o t f p 2 - f 4 a n d f p l - f 3 arc s y m m c u i c a l f o r a l l de l t a peaks 0 . 7 5 

f p 2 - f S a n d f p l - f ? ore s y m m c i r i c a j f o r a l l d e l t a peaks 0 .5 

n o t de t t a a c t i v i t y o n l y appears i n f r o n t s / channe l s 0 . 2 5 

not d e l t a peaks o r e present t h a i a r c n o t p resen t i n the E O G 0 . 5 ' 

no t rn2-n o r f p l - f ? conta ins i so la ted n o n r epe t i t i ve w a v e f o r m s 0 . 6 0 8 2 2 5 1 0 3 2 

de l t i v i i y o n l y appears i n the a n t e r i o r h a l f o f the scalp 0 . 5 

no t de l t a q ) e a r a l peaks ex i s t o n l y i n t h e E O G 0.5 

the la rges t s p e c t r a l peak is a t t r i b u t a b l e t o m o r e than o n e e l ec t rode 0 .25 

the la rges t s p e c u a l peak appears i n t h e E O G t 

n o t t h e l a r g e s t d e l t a p e a k appears i n c h a n n e l s f p 2 - r 4 o r f p l - f 3 I 

the w a v e f o r m i n channels f p 2 - r 4 o r f p l - O is s l o w - l o w d e l t a 0 . 7 5 

the w a v e f o r m i n channels f p Z - r e a n d f B - t 4 a re in phase 0 

segment w a s c l o s s i n c d as c o n t a i n i n g 

weak e m a r t e f a c t w i t h a c e r t a in ty o f 0 . 7 1 2 . 

T h e users r esponse was D 

13-3-1991 17 :24 

D A T A 2 S E G 3 

L i s t o f e x t r a c t e d features 

( * c _ f e o i u r e * . ' c l a s s _ t o t a l s * l 3 

(*c_ fca lu rc* . "c Ia s s_ io t a l s*J 0 

no t the h i s t o r i c a l c o n t e x t !> a b n o r m a l I 

n o t the l o c a l c o n t e x t is a b n o r m a l s l o w waves o n l y I 

not the lt>eal c o n t e x t is m a i n l y a b n o r m a l s l o w waves w i t h i n s i g n i n c o n i O A 1 

n o t the l o c a l c o n t e x l is d c t e c t a b l e _ O A i n a b n o r m a l s l o w w a v e s 1 

n o t a n y s i g n i H c a n t spectral peaks ex i s t 1 

segment w a s c lass iHed as c o n t a i n i n g 

no s i g n i n c a n t a c t i v i t y w i t h a c e r t a i n t y o f I . 

T h e users r esponse was y 

13 -3 -1991 17 :25 

D A T A 2 S E G 4 

L i s t o f e x t r a c t e d features 

[ * e _ f e a i u r e ' . ' l o c a l * . ' n o ' I 1 

l*c f e a t u r e * . ' c l a s s to ta ls*} 4 
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[ • f _ f c j u u r c ' . ' f p 2 - f 8 ' . * p l c l ' . * i u b _ d e l u * . " m c d _ p o w c f ' .•med_spccd*l 1 

( - f_fca !u rc* .* fp2- re ' . *pk2* . ' iub_deIU ' . "mcd j>owcr - /h igh_spced- | 0 .25 

[ • f f cAiu re* . ' f p2 - f8 ' . ' pk2* .*dc l i a* . 'm«JjK )wer ' . ' l o ' *_spe«d" l 0 75 

[ • f _ f c a i o r e ' . ' f p 2 - f S * . ' p k 3 * . * d e l l a * . * m e d _ p o w c f * . " m « I _ i p c e < l " | I 

( • r _ f c a i u r e ' . ' f p 2 - r e * . * p l c 4 * , - d e l t a * . " l o w j > o w e r * . ' h i g h _ s p e e d " 1 O.S 

i T _ r c j a u r e * . * f p l - r 7 ' , ' p l c l * . * s u b _ d c l t a - . * m e d _ p o w e r - . * m c d _ f i p e e d - | 1 

| ' f _ f e a i u r e ' . * r p l - f 7 * . * p k 2 ' , * d e J t « ' . ' l o w _ p o w c r * . ' m « J _ i p c e d ' | 1 

| * f _ f e a l u r e * . * r p l - r 7 ' . * p k 3 * . ' d e l t a * . * m c d j > o w c r " . ' m w J ipeed*) I 

(*f r c * i u r e * . * f p l - r 7 * , * p k 4 * . ' d e I t a ' . * n i e d j > o w e r * , ' h i g h _ s p c e d " | Q.7S 

( • f _ f e a t u r e - . • f p 2 - f 4 - . ' p k r . * M i b _ d c l i a - . * m e d _ p o w « * , - h i g h _ t p c « l - ) 0 .25 

( • f _ f c a i u r e ' . * f p 2 - f 4 * . * p k l * . ' d e l t a * . ' n > € d _ p o w e r ' . * l o w _ i p « d * I 0 ,75 

| ' f _ f c a i u r c ' . ' f p 2 - f 4 * . ' p k 2 * . ' d e l t a * . ' m e d _ p o w e r ' . ' m e d _ s p c « d " I I 

( • f _ f c A l u r e ' . * f p 2 - f 4 ' . * p k 3 * . * d e l t a ' . ' f n c d _ p o w * . * h i g h _ s p e e < l ' I 0 - 7 5 

r f _ f c a i u r e ' , * f p l - O " . ' p k l * . ' t u b _ d d i a * . ' m e d _ p o » « ' . - h i g h _ s p e « l - | 0 . 2 5 

| - f _ f e a t u r e * . • f p l - f 3 * . * p k l ' , ' d e l t a * . • o j e d _ p o w e r - . * I o w , i p e e d * ) 0 ,75 

( • f _ f e a l u i e * . * f p l - f 3 * . * p k 2 * , * d e l u ' . * m c d j > o w e r ' . * m e d _ « p e e d ' I I 

( • f _ f e a i u r e * . ' r p | . 0 ' . ' p k 3 * , * d « J l a ' . ' I o w j > o w ' . * h i g h _ i p e e d - | 0 .75 

( ' f _ f c a t u r e ' , ' r e - t 4 ' . * p k r . ' n i b _ d e H a ' . ' v h i g h _ p o w e r ' , ' m e d _ K p e e d ' | I 

(• f _ f e a t u r e ' . ' r e * t 4 ' , ' p k 2 * . * i u b _ d e l t a ' . * m e d _ p o w c r ' , - h i g h _ s p e e d ' ( 0 . 2 5 

| - f _ f c a l u r e * . * r e - t 4 * . ' p k 2 ' . ' d e l t a ' . ' m e d _ p o w e r * . * l o w _ i p e e d * l 0 .75 

r f f ea iure* . • re - l4* .*pk3*. 'de l ta* .*modj>owej ' . "med (peed*! ' 

r r f r j u u r e ' , ' f » - t 4 * . * p k 4 * . ' d d i a * . * l o w _ p o w e r " . * h i g h _ f p e e d ' | 0 . 7 5 

1*1 u r e ' . ' f 7 - t 3 * , ' p k r . * » u b d d t a * . ' v h i g h j > o w € r ' , * m e d _ s p e c d ' l 1 

( • f_ fc« iLre* ,* f7 - l3* . ' pk2* ,* iub_dd ia* . ' )ow_power ' . *h igh_speed ' ! 0 . 2 5 

l " f f c A t U T c ' . * r 7 - t 3 * . * p k 2 * , * d d t a * . * l o w j > o w e r * , ' l o w _ i p e e d ' | 0.7S 

( ' f f c a n j f e * . * f 7 - t 3 * . * p k 3 ' . ' d d t a ' . * ( o w _ p o w e r * . " m e d _ i p c e d ' J I 

| * f _ f e a i u r e ' . ' f p 2 - f 8 * , * p k r , * s u b _ d d l a ' , * v h i g h j > o w e / ' , ' m c d _ s p e « d " ! 1 

( • f_fea ture* . • fp2-f8* . 'pk2*.*»ub_ddta* .*med_powcr". 'high_spc€d*I 0,25 

( • f _ f c a t u r e * . * f p 2 - r e * . * p k 2 * . * d d t a ' . ' m c d _ p o w t r * . * I o w _ s p c e d ' ! 0.75 

I ' f f e a t u r e * , • f p 2 - r e ' . * p k 3 * , * d d t a * . ' m M l j > o w e x ' . * m c d _ £ p e e d * l I 

| ' f _ f e f t t u r e ' . ' r p 2 - f B * . * p k 4 ' , ' d d t a * , ' l o w _ p o w c r ' . ' h i g h _ i p e c d ' ! 0.5 

| * f _ f c a i u r e ' . * f p l - r 7 * . * p k r . * s u b _ d e l u ' . * v h i g h j > o u c r * . * m e d _ s p e « d " l 1 

( " f _ f c a t u r e ' , * f p l - f 7 * , * p k 2 * . * d d t a * . ' l o w j > o w c r ' . * m e d _ i p c e d * l 1 

l ' r _ f c A i u r e * . * f p l - f 7 * . * p k 3 ' . ' d d l B ' . " m c d _ p o w c r * . ' m e d _ s p c e d ' ! 1 

| * f _ f e a t u r e * . * f p l - f 7 * , * p k 4 - , * d e l i a * . ' l o w _ p o w e r * . " h i g h _ * p c c d ' | 0 . 7 5 

not the b i s to r i ca l con tex t is a b a o r m d 1 

not the loca l con tex t is a b n o r m d slow waves only I 

not the local context is ma in ly abnormal s low waves w i t h i n s i g n i f i c a n i O A 1 

not the l o c a l con tex t i s d a e c t a b l e _ O A i n a b n o r m a l i l o w waves 1 

any signiTicant i p c c t r a l peaks exis t I 

not ' ^^ re is only very s l o w ac t iv i ty present, less than 0 . 5 H i 0.25 

an) uHcant spectral peaks exis t in the d d i a bond 0 .75 

[he l a r g c a spectral peak appears i n a f r o n t a l channel 0.25 

not rp2-f4 and f p l - f 3 are symmetr ica ] f o r a l l d d l a p e a k i 0.75 

rp2-ni and f p l - H are symmet r i ca l f o r d l delta peaks 0,5 

not del ta ac t iv i ty on ly appears in f ron ta l channels 0.25 

not d d i a peaks are present that are not present in the E O C 0.5 

not f p 2 - r a o r f p l - f 7 con ta ins isola ted non repe t i t ive w a v e f o r m s O . 6 0 3 2 2 5 I O S : 

delta aciiviiy o n l y appears in the anter ior half o f the i c o l p 0 .5 

not delta spectral peaks exist on ly io the E O G 0.5 

the largest c p e c t r d peak is aa r ibu i ab l c to more than one e lec t rode 0 25 

the largest i p c c t r d peak appears in the E O G I 

not the largest d d t a peak appears in c h a n n d s {p2-(* at f p l - G 1 

the w a v e f o r m in c h a n n d s f p 2 - f 4 or f p l - D is slow - l o w delta 0 .75 

the w a v e f o r m io c h a n n d s f p 2 - f 8 and re-t4 arc in phase 0 

segment w u class iHed as con t a in ing 

weak em arte fact w i t h a c c r u i n t y o f 0 . 7 1 2 . 

T h e users response was 

I 3 - 3 - I 9 9 I 17:26 

D A T A 2 SEG4 

L i w o f CAirflcted features 
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cofea tu re" , •c lass_ to ta l s* | 4 

f _ f e a l u r e ' . * f p 2 - r a ' . ' p k r , * s u b _ d c l t a * . ' m e d _ p o w e r * . ' m e d _ $ p e e d " I 1 

f _ f c a i u r e ' . ' f p 2 - f B * . * p k 2 * . ' s u b _ d e l t a ' . ' m e d j M ) w e r * . ' h i g h _ E p e e d * I 0 .23 

f ^ f c a t u r e * . * f p 2 - f B * . * p k 2 * . " d e l t a * . ' m e d _ p o w e r ' . ' l o w _ s p c e d * | 0 .75 

f f e a t u r e * . * f p 2 - f B * . * p k 3 * . ' d e l t a ' . ' m c d _ p o w e r * . * m e d _ s p e e d * I I 

f _ f c a i u r e * , * f p 2 - r 3 * . * p k 4 * . ' d e l u * . ' l o w _ p o w e r " . ' h i g h _ q > c e d " l 0 .5 

f f e a t u r e * . * f p l - n * . * p k l * . ' s u b _ d c l i a ' . * m e d _ p o w e r ' , ' m c d _ s p e e d " l I 

f f e a t u r e ' . • f p l - f 7 * . * p k 2 * . ' d e l t a ' . " l o w j > o w e r ' . " m e d _ « p e c d * l I 

f f e a t u r e ' . ' r p l - f 7 ' . ' p k 3 ' . ' d d i a ' . ' m c d _ p o u - e r * . ' m e d _ t p e » J ' I 1 

f _ f e a i u r e ' . ' f p l - f 7 * . ' p k 4 ' . ' d e I « * . ' m c d _ p o w c r ' . ' h i g h _ ^ i o c d ' J 0 . 7 5 

f f c a i u r e * . ' f p 2 - f 4 ' . * p k l * . ' « u b _ d c I i a ' , ' m e d j » w e r ' . * h i g h _ s p e e d ' | 0 . 2 S 

f _ f e a i u r e ' . ' r p 2 - f 4 * . * p k l * . ' d d t a ' . * m e d j > o w e r ' . ' I o w _ s p e e d ' ) 0 . 7 3 

r f e a t u r e ' . ' f p 2 - f 4 * . ' p k 2 * . ' d d t a ' . ' m e d _ p o w e r * , ' m e d _ t p e e d ' ) I 

f _ f e a t u r e ' . • f p 2 - f 4 * . ' p k 3 ' . * d c l i a ' . ' m e d _ p o w e r ' . ' h i g h _ t p e c d ' ) 0 . 7 5 

f f e a i u r c ' . ' f p l - f 3 * . * p k l * . " 8 u b _ d c I t a ' . ' m c d _ p o w e r ' . ' h i g h _ i p e e d ' I 0 . 2 3 

f f e a t u r e ' . ' f p I - D * . * p k r . ' d e l t a ' . ' m e d j X ) w e r ' . ' I o w _ s p e e d ' l 0 . 7 5 

f f e a t u r e * . ' f p l - 0 * . * p k 2 ' . ' d e l t a * . ' m e d j ) O w e r ' . ' m e d _ s p e e d ' ) 1 

f f e a t u r e * . " f p I - f J ' . ' p k i ' . ' d e l t a ' , ' l o w j > o w e r ' , " h i g h _ s p e c d ' | 0 . 7 5 

f f e a t u r e ' . * f B - t 4 * . * p k I ' . * t u b _ d d t a ' . ' v h i g h j ) O w e r ' , * m e d _ £ p e e d * I i 

I ure ' . * r e - t4* .*pk2* . ' sub_deI t a* .*med_power" . ' h igh_speed*} 0 .23 

f _ f e a t u r e ' . ' r e - i 4 ' . * p k 2 * , * d d t a * . * m e d _ p o w e r * / l o w _ s p e o c l * J 0 . 7 5 

f _ f e a t u r c * , * ( B - t 4 * . ' p k 3 * . ' d d : a * . * m e d _ p G w e r ' , * m e d _ s p e e d ' J I 

f _ f c a l u r e ' . ' f 8 - i 4 ' . * p k 4 * , ' d c l u ' . ' l o w _ p o w e r * . * h i g h _ s p c e d ' | 0 . 7 3 

f _ f c a m r e " , ' r 7 - t 3 ' . * p k l * . ' s u b _ d c I i a * , ' v h i g h j K ) w e r * . * m e d _ s p e e d ' l I 

f _ f c a i u r e * . ' f 7 - O * . * p k 2 * , - s u b _ d e I i a * . ' t o W j > o w e T * . ' h i g h _ s p e e d * 1 0 . 2 5 

f _ f e a t u r e * . * r 7 - i 3 * , * p k 2 * . * d c l l a * . * l o w _ p o w e r * . * l o w _ s p e c d * I 0 . 7 5 

f _ f c a t u r e * . * r 7 - i 3 * , * p k 3 * . * d c t l a * . * l o w _ p o w e r * . * m c d _ s p e e d ' ] I 

r_ f c a t u r e * . * r p 2 - f 8 * , * p k l * . * s u b _ d d l a * . * v h i g h _ p o w c r * , * m c d _ s p e e d * I I 

r _ f c a t u r e ' . ' f p 2 - f 8 ' . * p k 2 * . * s i j b _ d d i a * . * m e d j > o w e r * . * h i g h _ 6 p e e d ' I 0 . 2 3 

r _ f e t t i u r e ' . * f p 2 - f 8 * . * p k 2 ' . ' d e l t a ' . ' m e d _ p o w c r ' , ' l o w _ t p c c d ' l 0 .73 

r _ f c a t u r e ' . * f p 2 - f B * . ' p k 3 * . ' d d i a * . * m c d _ p o w e r * , * m e d _ £ p c e d ' I I 

r _ r e a i u r c * . * f p 2 - f B * . * p k 4 * . * d e l t a * . * l o w _ p o w e r * . * h i g h _ s p e c d * I 0 . 5 

f _ f e a t u r c * . ' f p l - f T * . * p k r . ' s u b _ d e l l a ' . ' v h i g h _ p o w e r ' . ' m c d _ s p e e d * I 1 

f _ f e a t u r e ' . * f p l - f 7 * . * p k 2 * . ' d e l t a ' . ' l o w j ) o w e r ' . ' m e d _ s p e e d ' ) I 

f _ r e a t u r e * , * f p l - f 7 ' . ' p k 3 * . ' d e l t a ' . ' m e d j ) O w c r ' . ' m e d _ s p c c d ' I I 

r _ f c a t u r e * . ' f p | . n ' . * p k 4 ' . ' d d i a ' . ' t o w _ p o w e r ' . ' h i g h _ s p e e d ' | 0 . 7 5 

not I h c h i s t o r i c a l coc t ex i is a b n o r m a l I 

no t (he l o c a l con tex t is a b n o r m a l s l o w waves o n l y I 

n o l o c a l con tex t *is m a i n l y a b n o r m a l s l o w waves w i t h i n s t g n i f i c a n t O A I 

no t the l o c a l con tex t is d e t c c t a b I e _ O A i n a b n o n n a l s l o w w a v e s I 

any s i g n i n c a n t spectral peaks ex i s t I 

not there is o n l y very s l o w a c t i v i t y p resen t . less t h a n 0 . 5 H z 0 . 2 3 

any s t g n i n c a n t spccUal peaks ex is t i n the d d t a band 0 . 7 5 

the la rges t spectral peak appears i n a r r o n t a l channe l 0 . 2 3 

not f p 2 - r 4 a n d f p I - f J are s y m m d r i c a J f o r a l l d d t a peaks 0 . 7 5 

fp2 -rS a n d rpl-r7 arc symmetr icaJ f o r a l l d e l t a peaks 0 .3 

no t de l t a a c t i v i t y only appears i n f roa ta J channels 0 . 2 3 

not d d i a peaks ore present that o re no t present i n the E G G 0 . 3 

not rp2-fB o r f p l - f ? contains i so la ted n o n r c p a i t i v e w a v e f o r m s 0 . 6 0 S 2 2 3 1 0 3 2 

de l t a a a i v i t y o n l y appears i n the a n t e r i o r h a l f o f the scalp 0 . 3 

nof d e l t a spectra] peaks e x i a o n l y i n the E O G 0 .3 

the l a r g c a spect ra l peak is a t l r i b u t a b l e t o m o r e than o n e e l e c t r o d e 0 .25 

the la rges t t p e c t r d peak appears i n (he E O C I 

no t the largest delta peak appears i n channe l s f p 2 - f 4 or f p l - O I 

t h e w a v e f o r m i n channels f p 2 - f 4 o r fpl-O i s s l o w - l o w d d t a 0 . 7 5 

t h e w a v e f o r m i n channels f p 2 - f 3 and f 8 - l 4 a re i n phase 0 

segment was clossirted as c o n t a i n i n g 

w-eak e m ar te fac t w i t h a ce r ta in ty o f 0 . 7 1 2 . 

T h e users response w u n 
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D A T A 5 S E G l 

L i n o f ext rac ted features 

| ' c _ f c a i u r c * . * c l a s 8 _ t o l a J i * ) 0 

( ' c f e a t u r e " , " c l o s i j o t a l s ' l 0 

(•f f e a t u r e " , ' f p 2 - r e * . ' p k l " , ' d e l t a ' . ' m c d j H J w e r ' . ' m e d specd*) I 

("f f e a t u r e * . ' r p 2 - f S * . ' p k 2 * , " d e l t a * . " l o w j ) o u , c x * . " m e d _ i p e e d ' ) I 

(*f f e a t u r e * . ' f p l - f 7 * , ' p k r . * d c l u ' . * m e d _ p o w e r " . ' m e d _ i p c « d * | 1 

r f _ f c a l u r c * . * f p 2 - r 4 * . * p k l * , * d e l i a * . * l o w j ) a w c r " . * m e d _ s p e e d ' I I 

[ " f _ f c a i u r e * . * f p l - D * . * p k l * , * d e l t a * . * t o w j > o w e r * . * m c d _ s p e e d * ) 1 

r f _ f c a l u r e * . * f 4 - c 4 * , * p k l * , * d c l u * . ' l o w _ p o w c r " , * m « d _ t p e < d * | I 

( T f e a t u r e * , • c 4 - p 4 * , * p k r . ' d e l t a * . * l o w _ p o w c r " . * m e d _ s p e « d * | I 

[*f_feaiurc".*r3 -c3*."pkl*, 'del ta*.*med _ p o w e r * . * m e d _ E p e « d * ) 1 

( • f J c a i u r c " . ' c 3 - p 3 ' , * p k l ' , ' d e l t t t * , ' I o w _ p o w c / * . * m c d _ ( p e e d * I I 

("f f e a t u r e * . ' p S - o r . ' p k l ' . ' d e l t a ' , * l o w _ p o w c r ' , ' m e d _ s p e e d ' | I 

I'f f e a t u r e ' . • r e - t 4 ' , * p k r , ' d e l i a " , * l o w j x > w e r * . ' m c d _ i p e e d " | 1 

|*f ' • ' a i u r e " . ' t 4 - l 6 ' , ' p k l * . ' d e l t a * . • | o w _ p o w e r * . * m e d _ s p e e d * I I 

1*1 u r c * . ' f 7 - t 3 " , * p l c r . * d e l l a " , " l o w _ p c w c r ' . * m e d _ s p e e d * | 1 

("f f e a t u r e * . * i 3 - i 5 * , " p k r , * d c l u * , * l o w _ p o w e r * . * m e d _ s p c e d ' l I 

["f f e a i i i f c ' , ' i 3 - l 5 * , * p k 2 ' . * d c I t a * , ' l o w j > o w e r * , " m e d _ s p e e d * [ I 

("f f c a i u r c " , " 1 5 - 0 1 * , " p k l * . • d e l t a * . " t o w _ p o w e r " . ' m e d _ s p e e d ' I I 

("f f e a t u r e ' . • f p 2 - r e " . * p k r , * d c l u i * . ' l o w _ p o w e r * . * m c d _ s p e e d * | I 

[ * f _ f c a i u f e ' , ' f p l - f 7 " , ' p k l * , ' d e l i a ' , " m e d j ) o w c r ' . " m c d _ t p c c d * J I 

no i the h i s to r i ca l con i e j i t is abnorma l I 

not the loca l con tex t i t a b n o r m a l s l ow waves on ly I 

not (he l o c a l con tex t i t m a i n l y abnormaJ t l o w wAvea w i t h i n i t g n i r i c a n i O A I 

not the loca l context i t detectable O A i n abnorma l s l o w w a v e s I 

any s i g n i f i c a n t spectral peaks exist I 

nQ( (here i t o n l y ve ry i J o w a c t i v i t y present , I C M t h a n O . J H z I 

u i y s i g n i f i c a n t t p c c t / o l peaks exis t i n the delta band I 

the largest t p c c u a l peak o p p c a r i i n a f r o n t a l channel 1 

f p 2 - f 4 a n d f p l - / 3 are l y m m e t / i c a J f o r a l l deJia peaks 1 

not f p 2 - f 8 and f p l - f ? are s y m m e t r i c a l f o r a l l de l ta peaks 1 

not delta a c t i v i t y on ly appears in f r o n t a l channels I 

not del ta a c t i v i t y o n l y appears i n the an te r io r h a l f o f the scalp I 

not f^'liA peaks are present that ore not present in the E O G I 

no or f p l - f 7 conta ins i so lo ied n o n repe t i t ive w o v c f o r m t I 

n o i f p 2 - f 4 o r f p l - f 3 con ta ins w a v e f o r m s w i i h sharp c l e m c n u I 

the largest t p e c u a l peak appears in the E O G 1 

there is a zero lag c o r r e l a t i o n be tween froniaJ and p o s i e r i o r e lec t rodes 0 . 5 1 5 3 7 3 0 1 5 9 

not there is a phase de lay i n f r o n i a j channels 1 

scgmcni was c l a s s i f i ed as c o n t a i n i n g 

dciee iable O A i n a b n o r m a l s l ow waves w i t h o ce r t a in ty o f 0 85 

T h e users response was y 
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D A T A 5 S E G 2 

Lis t o f e » i / a c i e d features 

I"c f e a tu r e* , ' l o ca l* . "de t ecu ib l c O A ' l 0 .85 

("c f e a t u r e ' , * c l a s i _ t o t a l s * I I 

not the h i s to r i ca l con tex t is abnorma l I 

not the loca l content is a b n o r m a l s l o w waves on ly I 

not ihc loca l con tex t is m a i n l y abnorma l s low waves w i t h i n s i g n i f i c a n t O A I 

5 2 5 , 



the l o c a l con tex t is dctectafale_OA in a b n o r m a l s l o w waves 0 . S 5 

not the largest spccual peak appears i n a f r o n t a l channe l I 

no t fp2-f8 o r f p l - f ? contains isola ted n o n r e p e t i t i v e w a v e f o r m s 1 

rp2-f4 and fpl-fS are s y m m e u i c a l f o r a l l d e l t a peaks I 

not d e l t a peaks are present that are no t present i i t the E O G I 

noi rp2-f4 o r f p l - f 3 conta ins w a v e f o r m s w i t h sharp e l e m e n t * I 

no t the largest spectral peak appears i n i h c E O G 1 

not any s i g n i f i c a n t spectral peaks exis t i n the del ta b o n d I 

not any s i g n i f i c a n t specual peaks ex is t I 

segment was c loss incd as c o n t a i n i n g 

no s i g n i f i c a n t ac t iv i ty w i t h a ce r ta in ty o f 1. 

T h e users response uas o 
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D A T A 5 SEG3 

L i s t o f ex t r ac ted features 

I ' c o r c * . * c l a s s _ l o i a l « * l I 

l * f _ f e a l u r c * . * f p 2 - f 8 ' , " p V l * . ' s u b _ i ) c l i a * . " l o w j ) o w e i ' . ' S i g b _ s p e e d * | 0 . S 

( * f f c a l u r c * . ' f p 2 - f S " , " p k l ' . ' d e l t a * , * I o v » ' _ p o w e r ' . ' l o w _ s p e e d " 1 0 . 5 

( * f f e a t u r e * . " f p 2 - f 8 * . ' p k 2 " . ' d e l t a * . * m e d _ p o w e r ' . * m c d _ s p e « l * | I 

( " f f e a t u r e ' , * f p l - f 7 * . ' p k l * . ' d e l t a " . ' m c d _ p o w e r ' . ' m e d _ E p e c d * l I 

| ' f _ f c a t u r e * . * f p l - f 7 * , ' p l t 2 * . * d e I u ' . ' I o w _ p o w c r ' . * m c d _ s p e e d ' | 1 

[ * f _ f c a i u r e ' . ' f p 2 - r 4 * . * p k r . * d e ! t a * , * m e d _ p o w e r ' , ' m c d _ s p e e d " | I 

( ' f _ r c a i u r e * . * r p I - r J ' . ' p k l * . * d e I i a ' . ' i n e d _ p o w e r * , ' m c d _ t p c c d * | I 

( * f _ f e a t u r e * . * f p l - f 3 ' , * p k 2 * . ' d e l t a * . ' l o w j x > w c r ' . ' h i g h _ s p c « l ' j 0 .5 

| " f f e a t u r e * . * f 4 - e 4 " , * p k l ' . ' d e l t a ' . * v h i g h _ p o w e r * , * m e d _ 6 p e e d ' | 1 

( ' f _ f c a t u r e * . * c 4 . p 4 * , ' p k l * . * d e I i « * . * m e d j > o w c r * . ' m c d _ s p c e a 3 ' | 1 

r f _ f e a i u r c ' . * r J - c a * , ' p k l ' . ' d c I t a * . * v h i g h _ p o w e r * , * m c d _ q > e c d * | I 

( • f _ f e a t « r c ' . ' c 3 - p 3 * . ' p k l * . * d e l t a * . ' m e d _ p o w e r * . * m e d _ ^ e c d ' | I 

( ' f _ f e 4 t u r e ' . * p 3 - o V . * p k l * . * d e l i a * , ' l o w _ p o w e r * . * m e d _ s p e c d ' ) I 

l ' ( _ f e a i u t e * , * r e - i 4 ' . ' p l : r . ' d e l t a ' , ' m e d _ p o w e r ' . * m e d _ s p e « J ' l I 

l * f _ f e a t u r e * . * t 4 - i 6 ' , ' p k l ' . * s u b _ d c I t « ' . * l o w _ p o w e r ' . " h i g h _ s p e e d " | 0 .75 

I * f _ f e a t u r e * . * i 4 . t 6 * . * p k r . * d e l i a * . * l o w _ p o w c r " . * l o w _ s p c e d " I 0 .25 

( * f _ f e a t u r e ' . " i 4 . t 6 ' , * p k 2 * . * d c l i a * . ' m e d _ p o w e r * , * m c d ^ s p c e d ' I I 

l * r _ f e a t u r e " , " t 6 - o 2 " , " p k l * . " d e l t a * . " l o w _ p o w e r ' . ' m c d _ s p c e d ' l I 

( " f u r e * , * f 7 - 0 * . * p k l ' / d e I u * . " m e d j > o w e r * , * m c d _ $ p e e d ' I I 

| * f _ r e a i u r e " . * l 3 - l 5 ' . * p k r . ' d e l t a ' . * m c d _ p o w e r * . ' m e d _ s p e e d ' | I 

( ' f _ f e a t u r e * . * i 5 - o i * , ' p k r . * d e J i a ' . ' l o w j i o w e r ' , " m e d _ s p c e d * I I 

I " f _ f c a t u r e * . * f p 2 - f 8 ' . * p k l ' . ' s u b _ d d t a ' . * l o w _ p o w c r * . ' h i g h _ s p « c d * | 0 .5 

r r _ f c a [ u r c * . * f p 2 - r 8 ' . * p k l " , " d e l t a * . * l o w _ p o w e r ' , * l D w _ s p e c i J ' ] O.S 

| * f _ f e a i u t c ' . ' f p 2 - f B * . * p I c 2 ' . ' d e I t a * . ' m e d _ p o w e r * . ' m e d _ s p c e d * l I 

r f _ f e a t u r e ' . * f p l - r 7 " . * p k I * . ' d e t i a ' . ' m e d _ p o w e r * , * m e d _ q ) e e d * | I 

( " r _ f e a t u r e * . " f p l - f 7 ' . ' p l c 2 * . ' d c l l a * . ' l o w j > o w e r ' . ' m e d _ B p e « d * I I 

n o t t h e h i s t o r i c a l con tex t U a b n o r m a l I 

no t I h c l o c a l con tex t i i a b n o r m a l s l o w w a v e s o n l y I 

no t the l o c a l con tex t is m a i n l y a b n o r m a l s l o w waves w i t h i n s i g n i f i c a n t O A I 

no t the l o c a l con tex t u d e t e c t a b l c _ O A i n a b n o r m a l s l o w w a v e s I 

any s i g n i f i c a n i specuaJ peaks exis t 0 . 5 

n o i Ihe re is o n l y very s l o w a c t i v i t y present , less than 0 . 5 H z 0 . 5 

any s i g n i n c a n i spectral peaks exis t i n the d e l t a band O.S 

not the la rges t spectral peak appears i n a f r o n t a l c h a n n e l 0 . 2 5 

not f p 2 - r 8 o r f p l - f 7 c o n U i n s isola ted n o n r e p e t i t i v e w a v e f o r m s I 

n o t f p 2 - f 4 a n d fp l -O arc s y m m e t r i c a l f o r a l l de l t a peaks 0 . 5 

no t de l t a peaks arc present that ore no t present in the E O G 0 - 2 5 

not the largest specuol peak appears i n the E O G I 

the la rges t spectral peak Is a i t r i b u i a b l e t o m o r e than one e l c c u o d e 0 .25 

there is a s i g n i f i c a n t spectral peak i n a n E O G c h a n n e l 0 . 5 

there is a c o r r e l a t i o n be tween f r o n t a l and p o s t e r i o r e l e c t r o d e s 0 . 5 I S 8 7 3 0 I 5 9 

526 



i c g m e n i was d a i s i f i c d o i c o n t a i n i n g 

a b n o r m a l s l o w waves o n l y w i t h a ce r t a in ty o f 0 2 5 . 

T h e u s c n response was y 

M - J - 1 9 9 1 13:34 

D A T A 5 S E G 4 

L i i i o f ex t rac ted fea tures 

I ' c f c a t u r e ' . ' I o c d * . ' a b n o r m a l * ! 0 ,25 

( ' c _ f e « f u r € ' , * h i « i o r i c a l * . * a b n o r m a J * J 0 . 1 

r c _ f e a i u r e ' . " c l a s s _ i o t A l s ' | 2 

| " f f e a t u r e " . * f p 2 - r e * . * p k r . * d c l L a ' . * t o w j ? o w c r ' . * m e d _ s p e e d ' | 1 

the h i s t o r i c a l context is a b n o r m a l 0 . 1 

ihc l o c a l con tex t is a b n o r m d s low waves on ly 0 . 2 5 

any s igniTicant s p c c i r d peaks exis t i n the delta b a n d 1 

not the laj-gest s p c c u d peak is a t t r i bu tab le to m o r e than one e l ec t rode 1 

(here is a l i g n i f i c o n t specua l peak i n an E O G c h a n n d I 

noi rSot f p l - f 7 con ta ins i so la ted non r epe t i t i ve w a v e f o r m s I 

i h c r e ii a c o r r d a t r o o b e t w e e n f r o n t a l and p o u e r i o r e l cc i rodes 0 . 5 1 5 8 7 3 0 1 5 9 

v e g m e n i was c l a s s i f i ed as c o n t a i n i n g 

a b n o r m a l s l ow waves o n l y w i t h a ce r ta in ty o f 0 . 4 0 0 7 8 3 7 3 0 2 . 

T h e users response was y 

M - 3 - 1 9 9 1 13:35 

DAJAiSEGl 

Li&[ o f c:<.iractcd features 

( ' c _ f c a J u r e " , * c l a s s _ t o i a l i * ! 3 

I 'c f e a t u r e ' . ' c l a s s t o i a l s * | 0 

( " r _ f c a i u r e ' , " f p 2 - f 8 * . * p k r . ' s u b _ d c l t a ' . " v h i g h _ p o ^ * e r ' , ' h i g h _ s p e e d * | 0 .75 

| ' f _ f e a i u r e * , " f p 2 - r a * . * p k r . ' d e l t a * . ' v h i g h j > o w e r ' . ' I o w _ t p € e d * ! 0 . 2 5 

["( u r e ' . ' f p i n ' . ' p k l ' . ' i u b d e l t a ' . * v h i g h _ p o w c r * . ' h i g h s p e e d ' ! 0 .75 

r f _ f e a t u r e * . ' f p I - f ? ' . - p k r . "del ta • . " v h i g h _ p o w e r * , ' l o w speed • ( 0 . 2 5 

I ' f f e a t u r e ' . ' f p l - f 7 ' . " p k 2 ' . ' d e l t a * . * m e d _ j > 0 ' * e r " . " m c d _ s p e e d * ! I 

I • f _ f c a i u r e * . * f p l - r 7 " , " p k 3 * . * d d L a * , * m e d j ) O w e r * . " h i g h speed*! 1 

| " f _ f c a [ u r c * , * f p 2 - f 4 * . " p k r . * i u b _ d d L a * . " v h i g h j > o w e r " . " m e d _ s p e e d " } 1 

( • f _ f c a ( u r e * , * f p l - r J ' . * p k l ' . * s u b _ d c l t a * . ' v h i | h _ p o w c r " . " f n e d _ s p e c d " | I 

l ' f _ f c a i u r e * . * f p 2 - r e * . * p k l * . ' * u b _ d c t t a ' , * v h i g h _ p o w c r " , " h i g h _ s p e e d " ! I 

[ " f _ f e n l u r e * . * f p 2 - r 8 * . * p k 2 * . * d e l l a " , ' m e d j 3 0 w e r ' . " m e d _ i p e e d * | 1 

I " f f e a i u r e " . " f p l - r 7 * , " p k 1 * . * i u b d e l t a * . " v h i g h _ p o w e r * . " m e d speed"! ' 

| " f _ f c a ( u r e " , " f p l - f 7 ' . * p k 2 " . ' d e l t a * . * m c d _ p o w e r " . ' m c d _ t p c e d * J I 

( " f _ f e a i u r c * . * r p I - n ' . ' p k J * . ' d e l t a * . * l o w _ p o w e r ' . ' h i g h - s p e e d * ! ' 

not the h i s i o r i c d con tex t is a b n o r m a l 1 

not the l o c d con tex t is abnorma l s l ow waves o n l y I 

not the l o c a l c o n t e x t is m a i n l y a b n o r m a l s l o w w a v e s w i t h i n s i g n i f i c a n i O A I 

not (he l o c a l con tex t is detectable O A i n a b n o r m a l t t o w waves I 

any s i g n i f i c a n t s p e c u d peaks c < i « 0 .75 

not there ii o n l y ve ry s l ow a c t i v i t y present , less than 0 . 5 H £ 0 .25 

any t i g n i f i c a n l s p c c t r d peaks e x i u i n i h c d d i a b a n d 0 . 2 5 

the largest s p c c t r d peak appears i n a f r o n t a l c h a n n d 0 .25 

f p 2 - f 4 and f p l - f ? are symmct r icoJ for al l delta p c a k t I 

not f p 2 - f 8 and f p l - f 7 are l y m m c t r i c d for al l de l t a peaks 0 ,25 

de l t a a c i i v i i y o n l y appears i n f ron i a J channels 0 . 2 5 

i h c / e arc 1/r j> me t r i ca l del ta peaks 1 

^ 1 



de l ta spec t r a l peaks ex i s t o n l y i n the E O G 0 .25 

n o t i h c l a rges t del ta peak appears i n channels fp2-f4 or f p l - f 3 1 

the w a v e f o r m i n channels rp2-f4 or f p l - ( 3 is s l ow - l o w d e l t a 0 .25 

the w a v e f o r m i n channels rp2-fB and n-i* are tn phase 0 

the l a rges t spect ra l peak appears i n the E O G I 

segment w a s c l a s s i f i ed as c o n t a i n i n g 

w e a k e m a r t e f a c t w i t h a ce r ta in ty o f O , 7 2 5 2 7 5 . 

T h e users response was y 

1 4 - 3 - 1 9 9 1 13 :38 
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L i s t o f e x u o c t e d features 

( ' c j e a l u r e ' . ' l o c a l ' . ' w e a k ' l 0 . 7 2 5 2 7 5 

( ' c _ f e a t u r c * , * c l a s s _ t o t a l s * I 4 

[ • f _ f e a t u r e ' , " f p 2 - f 8 ' . " p k r , * s u b _ d e l t a * , ' r a e d j > o w e r * . * m e d _ s p e e d * | 1 

[ ' f _ f e a t u r e ' , • f p 2 - f 8 ' . " p k 2 " . ' d e l t a ' , " l o w j > o w e r ' . * m c d _ ( p e e d * J I 

[ * f u r e ' . ' f p l - f 7 ' , ' p k r . ' s u b _ d e J i a ' . * v h i g h _ p o w e r ' . ' n i e d _ s p e « d ' ) 1 

[ • f _ f e a i u r c ' . ' f p l - f 7 ' . * p i c 2 ' . ' d e l t a ' . ' l o w _ p o w c r ' . * m e d _ £ p e e d * I I 

r f _ f e a t t i r e ' . ' f p 2 - f 4 * . ' p k r . ' s u b _ d e l t a * . * v b i g h _ p o w e r * . * m e d _ s p e e d * | 1 

( ' f j 6 a i u r e ' . ' f p 2 - f 4 ' . ' p k 2 ' . ' d e l t a * . ' l o w _ p o w e r * . ' m e d _ s p c e d * | 1 

[ • f j e a i i i r e ' . ' f p 2 - f 4 * . ' p k 3 - . ' d e l t a * . ' l o w j » w e r * . ' h i g h _ s p e e d * | 0 . 7 5 

[ • f _ f e a t u r e ' . ' f p l - D ' . * p k r . ' « u b _ d c I t a ' . ' v h i g h _ p o w c r * . * ( n e d _ ( p c e d * ) I 

( * f _ f e a t u r e ' . * f p l - D * . " p k 2 " . " d e l i a ' . ' l o w _ p o w e r ' . * m c d _ s p c e d * I 1 

( • f _ f c a i u r e * , ' f p 2 - f 8 ' . * p l £ r . ' « u b _ d e I i a * , ' v h i g h _ p o w c r * . ' m c d _ i p e c d * l 1 

( * f _ f e a i u r e ' , ' f p 2 - r e ' . ' p k 2 ' , * d e I t a ' , ' l o w _ p o w e r ' . ' m c d _ t p c e d ' l I 

[ * f _ f e a t u r e * . ' r p l - r 7 ' . * p k r . ' s u b _ d e I t a ' , ' v h i g h j > o w e r * , " i n e d _ E p e e d * I 1 

( • f _ f e a t u r e " . * f p l - f 7 * . ' p k 2 * . " d e l t a * . * l o w j > o w e r * . * m e d _ s p e e d * I I 

Qoi t h e h i s t o r i c a l c o n t e x t is a b n o r m a l 1 

n o t t h e l o c a l c o n t c x l is a b n o r m a l s l o w w a v e s o n l y I 

no t t h e l o c a l c o n t e x i i s m a i n l y a b n o r m a l s l o w waves w i t h i n s i g n i f i c a n t O A 

n o t the l o c a l con tex t ia de t ec t ab l e_OA i n a b n o r m a l s l ow w a v e s 1 

any s i g n i f i c a n t spect ra l peaks ex i s t 1 

no t t h e r e is o n l y very s l o w a c t i v i t y present , less than 0 . 5 H z 1 

a n y s i g n i f i c a n t spect ra l peaks ex is t i n the d e l t a band I 

the l") '([est spec t ra l peak appears i n a f r o n t a l channel 0 .75 

fpl A d f p l - r 3 are l y m t n c u i c a l f o r a l l de t ta peaks 0 .75 

f p 2 - f 8 a n d f p l - f ? are s y m m e t r i c a l f o r a l l de l t a peaks 1 

d e l t a a c t i v i t y o n l y appears i n f r o n t a l c l u u m c i s 0 .75 

not d e l t a s p e c t r a l peaks ex is t o n l y i n the E O G I 

the l a rges t spec t ra l peak is a t t r i b u t a b l e t o m o r e than one e l ec t rode 0 . 7 5 

the l a rges t spec t ra l peak appears i n the E O G 1 

n o t the l a rges t del ta peak appears m channe l s f p 2 - f 4 o r f p l - f 3 I 

no t the w a v e f o r m i n channe l s f p 2 - f 4 o r fp l - f3 is s l o w . | o w d e l t a I 

the w a v e f o r m i n channels f p 2 ' ( 3 and fB- t4 a re i n phase 0 

the w a v e f o r m i n channels f p l - f 7 and r7-t3 are i n phase 0 

s egmen t w a s c l a s s i f i e d as c o n t a i n i n g 

b l i n k a r t e f a c t w i t h a c c n a l n t y o f 0 . 8 7 9 . 

T h e u s c n response w a s o 

1 4 - 3 - 1 9 9 1 13 :39 
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L i s t o f e x t r a c t e d features 
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I ' c f e a t u r e ' . ' c l a i j _ t o i a l s ' 1 4 

I'f f e a t u r e ' . * f p 2 - f ? ' , ' p k l " . ' d c [ i a ' . ' l o w _ p o w e f ' . • ( n c d _ t p c e d ' | I 

r f _ f e a t u r e * . ' f p 2 - r e * . * p k 2 * . ' d e l t a ' . ' l o w _ p o w c r ' . * m c d _ s p « d * ) I 

I'f f e a i u r e ' . ' f p I - f 7 ' , * p k l ' . ' de l t a* . * l o w _ p o w c r ' , ' m e d _ s p c « d ' j I 

( * f _ f e a i w r e * . ' f p 2 - r a ' , * p k J ' , " d e l t a " , ' l o w j w w c r ' . ' m e d _ i p e « d ' J I 

not the h i s to r i ca l context is abnorma l I 

not the local con tex t is abnorma l s l ow waves on ly I 

n o i the l o c a l con tex t is m a i n l y abnormal s l ow waves w i t h i n s i g n i r i c a n i O A I 

not the loca l con tex t is de i ec t ab l e_OA in a b n o r m a l i l o w waves 1 

any s i g n i f i c a n t spectral peaks exist 1 

not there is o n l y ve ry s low a c t i v i t y present, less than 0 . 5 H z I 

any s i g n i f i c a n t specua l peaks exist in the delta band 1 

the largest spectral peak appears in a f r o n t a l c h a n n d 1 

rp2-r4 and f p l - f 3 arc s y m m e t r i c a l f o r a j l d d i a pcalcs I 

fp2-n and f p l - f 7 are s y m m e t r i c a l for al l d d t a peaks I 

del ta ac t iv i ty o n l y appears i n f ron ta l channels 1 

delta spectral peaks exist on ly in the E O G 1 

not the largest d d t a peak appears in channels f p 2 - f 4 or f p l - H I 

not the w a v e f o r m in channels f p 2 - f 4 o r f p l - H is s l o w - l o w d d t a I 

the w a v e f o r m in channels f p 2 - f ? and re-i4 are in phase 0 

the w a v e f o r m i n channels f p I • f 7 and f 7 - 0 are i n phase 0 

sc^ . was c l a s s i f i ed as c o n t a i n i n g 

b l i n k ar tefac t w i t h a c e r t a in ty o f 0 9 7 9 . 

T h e users response was n 

14-3-1991 13:40 
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Lis t o f extracted fea iurcs 

| ' c _ f c a i u r e ' . ' c l a s s _ ( o i d s " | 4 

not the h i s tor ica l con tex t is abnorma l 1 

not the l o c d con tex t is a b n o r m a l s l ow waves o n l y I 

not the l o c d con tex t is m a i n l y abnorma l s low waves w i t h i n s i g n i f i c a n t O A I 

not the l o c d con tex t is detectable O A in abnorma l s low waves 1 

not any s i g n i f i c a n t spectra] peaks exis t 1 

sê ^ . was c l a s s i f i ed as c o n t a i n i n g 

no s ign i f i can t a c t i v i t y w i t h a cer ta in ty o f I . 

T l i e users response was y 

52^ 



A P P E N D I X T 

This appendix contains the full results of the comparison made, 
during pre-clinical evaluation, between the lOARS and expert in the 
classification of the the data segments given in appendix R. 
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