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Abstract. High-resolution modelling of a large ocean do-
main requires significant computational resources. The main
purpose of this study is to develop an efficient tool for
downscaling the lower-resolution data such as those avail-
able from Copernicus Marine Environment Monitoring Ser-
vice (CMEMS). Common methods of downscaling CMEMS
ocean models utilise their lower-resolution output as bound-
ary conditions for local, higher-resolution hydrodynamic
ocean models. Such methods reveal greater details of spatial
distribution of ocean variables; however, they increase the
cost of computations and often reduce the model skill due to
the so called “double penalty” effect. This effect is a common
problem for many high-resolution models where predicted
features are displaced in space or time. This paper presents a
stochastic–deterministic downscaling (SDD) method, which
is an efficient tool for downscaling of ocean models based on
the combination of deterministic and stochastic approaches.
The ability of the SDD method is first demonstrated in
an idealised case when the true solution is known a pri-
ori. Then the method is applied to create an operational
Stochastic Model of the Red Sea (SMORS), with the par-
ent model being the Mercator Global Ocean Analysis and
Forecast System at 1/12◦ resolution. The stochastic compo-
nent of the model is data-driven rather than equation-driven,
and it is applied to the areas smaller than the Rossby ra-
dius, within which distributions of ocean variables are more
coherent than over a larger distance. The method, based
on objective analysis, is similar to what is used for data
assimilation in ocean models and stems from the philoso-
phy of 2-D turbulence. SMORS produces finer-resolution
(1/24◦ latitude mesh) oceanographic data using the output

from a coarser-resolution (1/12◦ mesh) parent model avail-
able from CMEMS. The values on the fine-resolution mesh
are computed under conditions of minimisation of the cost
function, which represents the error between the model and
true solution. SMORS has been validated against sea sur-
face temperature and ARGO float observations. Comparisons
show that the model and observations are in good agreement
and SMORS is not subject to the “double penalty” effect.
SMORS is very fast to run on a typical desktop PC and can
be relocated to another area of the ocean.

1 Introduction

The main aim of this paper is to present an alternative,
computationally efficient method of downscaling of ocean
models, i.e. create finer-resolution outputs using a stochas-
tic method while the coarser-resolution fields are obtained
by traditional deterministic numerical ocean modelling. In
order to reflect the dual nature of the algorithm, the term
“stochastic–deterministic” is used. The suggested method
may do best in going from eddy-permitting resolution where
the desired features are “already” there embryonically and
guided by assimilation, e.g. as in CMEMS (2020), to some-
what finer resolution so that the embryonic features can be
properly represented. As usual, the method has its limitations
which are discussed later. A deterministic approach in ocean
modelling based on solving differential equations is capa-
ble of producing high-quality forecasts and hindcasts, both
for research and operational needs, and is currently main-
stream in numerical modelling of the ocean. Ocean models
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have matured through multiple improvements including bet-
ter numerical schemes, spatial discretisation, parameterisa-
tions, and data assimilation. Modern ocean models do not
solve the full Navier–Stokes or Reynolds equations, instead
they tend to make the traditional and hydrostatic Boussinesq
approximations and various parameterisations of unresolved
processes (Miller, 2007; Fox-Kemper et al., 2019; Lindsay,
2017; Ezer and Mellor, 2004; Bruciaferri et al., 2019).

However, the enhancement of model resolution using such
an approach involves a significant increase in the computa-
tional cost. For example, doubling the horizontal resolution
in both directions requires approximately 10 times more cal-
culations, taking into account the necessity of reducing the
time step and increasing the overhead due to data exchange
between the nodes of a high-performance computer (HPC).
There is also an increased conceptual difficulty to determinis-
tically resolve very small-scale processes due to the turbulent
and chaotic nature of motion at a small scale.

In contrast to early ocean models which were applied to
highly idealised cases and did not require any observational
data (e.g. Bryan, 1963) modern models use real-world data in
addition to the universal laws of physics. The data are used
for model initialisation, tuning the numerical parameters
such as diffusion and viscosity coefficients, validation, and
data assimilation. Data assimilation improves the description
of ocean state used as the initial condition for the forecasting
step. There are many different forms of data assimilation in-
cluding optimal interpolation (OI), Kalman filtering and vari-
ational methods; see for example Lorenc (1986) and refer-
ences therein. One of the most efficient methods is optimal
interpolation (Gandin, 1959, 1965; Fletcher, 2017), which
uses statistical properties of real-world data rather than equa-
tions of motion or prescribed spatial dependences.

The term “optimal interpolation” may be confusing as it is
of a very different nature than the usual deterministic inter-
polation methods (linear, polynomial, spline, inverse distance
etc.) where the weighting coefficients are determined by the
location of points, not by the data themselves. In contrast, the
OI method calculates the weights based on statistical prop-
erties of the data and could be called “objective analysis”.
However, the term “objective analysis” has already been oc-
cupied in the original publication by Cressman (1959) for
his deterministic interpolation method. Therefore this paper
follows the terminology from the original literature and uses
the term “optimal interpolation” even though it is not strictly
interpolation, but a minimum variance estimator that is algo-
rithmically similar to Kalman filtering.

The philosophy of combining deterministic and stochas-
tic (random) behaviour of fluids has a long history. For ex-
ample the Reynolds equations and their modern versions
are used in ocean modelling, based on simple decomposi-
tion of an actual instantaneous quantity into time-averaged
and fluctuating quantities and taking the averages of non-
linear terms (see for example Tennekes and Lumley, 1992).
More advanced methods of describing the chaotic move-

ments at smaller scales have been developed in the statisti-
cal theory of turbulence (see for example Kolmogorov, 1941;
Monin and Yaglom, 1971; Frisch, 1995). The OI method fur-
ther extends ideas originated in the theory of statistical turbu-
lence and was the method of choice for operational numerical
weather prediction centres in the 1980s and early 1990s. As
shown by Lorenc (1986), more modern variational methods
are closely linked to the original OI and they can be described
using a common Bayesian analysis framework.

The basis of OI is the minimisation of a cost function
which represents a measure of the difference between the es-
timated and true values. The OI considers the data fields as
realisations of random processes, and it studies the statisti-
cal links represented by either structure functions or covari-
ances between data points in a way similar to the theory of
fully developed turbulence (Gandin and Kagan, 1976). An
important feature of the method is that, in order to calculate
the interpolating coefficients, it only requires the knowledge
of statistical moments of the second order. It does not use
any a priori hypothesis about the dependence of the weights
on the distance from the interpolation points as it is used in
alternative methods of objective analysis (Cressman, 1959;
Vasquez, 2003). In those alternative methods the weighting
coefficients are calculated as a prescribed analytical function
of distance and hence do not require the knowledge of the
statistical properties of the actual field of interest.

In this paper we have tested a hypothesis that a similar
technique, hereafter called stochastic–deterministic down-
scaling, or SDD, based on the statistical properties of ocean
parameters such as temperature, salinity and velocity, can
be used to achieve a finer resolution in ocean modelling by
downscaling the results of a parent deterministic model. Ba-
sically, the data are treated as having two components: a low-
resolution, slowly varying component which is computed
using deterministic equations and a high-resolution quickly
varying component where the data are treated as random pro-
cesses. As in the theory of turbulence, the statistical proper-
ties of the smaller-scale processes are often much more sta-
ble than the data themselves (see for example Monin and Ya-
glom, 1971, and Tennekes and Lumley, 1992).

The assimilation of observational data is widely used in
operational ocean modelling (see for example Dobricic et
al., 2007; Dobricic and Pinardi, 2008; Korotaev et al., 2011;
Mirouze et al., 2016). However, the application of a similar
approach for fine-resolution model downscaling should be
considered as experimental at this stage. The SDD method,
in common with other data assimilation techniques, can be
used in both the attached and detached modes. In the at-
tached mode the downscaling is carried out on the same com-
puter which solves the equations of ocean dynamics at the
same time as the forecast advances. Programmatically, in the
attached mode the SDD is contained within the same exe-
cutable module as all other elements of the model and is ap-
plied regularly as the model advances in time. On the other
hand, in the detached mode, the SDD is applied after the
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forecast has been completed by the parent model. This mode
was used in SMORS. In this case the SDD (or any data as-
similation) can be considered as post-processing. The treat-
ment of data assimilation as post-processing can be found in
Delle Monache et al. (2011) and Dazhi (2019 and references
therein). Due to its experimental nature, the SDD method is
first tested and assessed by application to an idealised case of
a region filled with multiple mesoscale eddies where the true
solution is known.

While the proposed SDD method has a generic nature, the
focus of this paper is on its application to the Red Sea. We use
the Red Sea as a “difficult” case for the SDD method as the
sea has a complicated coastline, multiple islands and a com-
plex mesoscale-circulation structure; see for example Zhan
et al. (2016) and Hoteit et al. (2021 and references therein).
The main section of the paper describes the development and
properties of an operational eddy-resolving stochastic model
for the Red Sea (SMORS) at 1/24◦ resolution based on a par-
ent eddy-permitting model at 1/12◦ resolution, the outputs
of which are accessible via Copernicus Marine Environment
Monitoring Service (CMEMS, 2020).

The paper is organised as follows. Section 2 describes ma-
terials and methods, including a detailed description of the
algorithm used in SDD, application of the method for an ide-
alised case, the treatment of noisy data, and a description of
the operational Red Sea model (SMORS). Section 3 presents
the results of SMORS validation, analyses of eddy and mean
kinetic energy as well as analyses of vorticity and enstrophy
produced by the parent and SDD models. Section 4 present
the discussion of the results and Sect. 5 concludes the paper.

2 Materials and methods

2.1 The algorithm

The stochastic–deterministic downscaling (SDD) uses the
methodology developed for the original version of the op-
timal interpolation technique (Gandin, 1959, 1963, 1965;
Gandin and Kagan, 1976; Barth et al., 2008). The philosophy
behind this technique is similar to what is used in assimila-
tion of observational data to improve the quality of numer-
ical models. The main differences are that instead of obser-
vational data, the SDD assimilates the data from a medium-
resolution model, and the effect is the enhancement of model
resolution rather than improvement of model skill. The SDD
method considers all oceanographic fields as consisting of
two components: (i) a relatively slowly varying part which
can be described using a dynamic method (i.e. by solving
deterministic equations) and (ii) a stochastic, turbulent part
which can be described via its statistical properties. Then the
statistical properties are linked to the properties of a slowly
varying field similar to how a turbulent viscosity coefficient
is estimated in ocean modelling via the knowledge of de-

terministically assessed larger-scale flows; see for example
Smagorinsky (1963).

We treat the data from the parent model as “observations”
and assimilate these onto a fine-resolution mesh of SMORS.
Generally speaking, the OI method requires, among other
parameters, the knowledge of the root mean square error
(RMSE) of “observations” at each location to calculate the
interpolating weights. As the errors of the parent models
at each grid point are often not known, we assume that
the medium-resolution forecast provides the values f1 =

f (r1), . . .,fn = f (rn) for a certain oceanographic parame-
ter f at all points r1, . . .,rn on the parent mesh with perfect
accuracy (later, in Sect. 2.3 we shall see that this require-
ment can be relaxed). We are interested in finding the value
of the parameter f at another location f0 = f (r0), where r0
is any point on a fine-resolution mesh. The SDD method is
applied to the deviations f ′i = f ′(r i)= f (r i)−〈f (r i)〉 of
the parameter from its statistical mean, or “norm”, desig-
nated here as 〈f 〉, rather than to the parameter f itself, in
line with the approach used in Gandin (1965). We further
assume that the field of deviations f ′ is statistically homoge-
nous and isotropic. This assumption has been shown to be
more applicable to the deviations than to the meteorological
and oceanographic parameters themselves (Gandin and Ka-
gan, 1976; Fletcher, 2017; Barth et al., 2008). Bretherton et
al. (1976) have also recommended that for oceanographic ap-
plications an estimated mean should be subtracted from each
observation at the outset and added back to the estimate of in-
terpolated values. Climatic studies have also shown that fluc-
tuations (a.k.a. anomalies) have better statistical properties
than the data itself, and hence it is the statistics of fluctuations
rather than full data that are usually used on oceanographic
research; see for example Boyer et al. (2005).

The calculation of statistically mean values requires aver-
aging over a statistical ensemble, which, as usual, was not
available. The estimate of the statistical mean of a parame-
ter 〈f 〉 was calculated by computing the spatial average in-
side the Red Sea of the values of the parameter in the daily
analysis data corresponding to one year (2016). Deviations
from climatology would be a satisfactory alternative as well.
These daily spatial averages were averaged in time to obtain
monthly averages. This means that 〈f 〉 is independent of the
location but has a dependency on time since each month has
a different norm.

According to Gandin (1965), an approximate estimate f̃ ′0
of the true deviation f ′0 = f ′ (r0) at a location r0 can be
found as a linear combination of deviations at other points
as follows:

f̃ ′0 =
∑n

i=1
pif
′

i , (1)

where pi denotes the weighting factors that must be deter-
mined. This is done by minimising the variance of the dif-
ference between the true and estimated values of deviations,
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also known as a cost function:

E =

〈(
f ′0− f̃ ′0

)2
〉
=
〈
f ′0−6n

i=1pif
′

i

〉
(2)

The cost function given by Eq. (2) can be rewritten in terms
of the autocorrelation matrix

Rij =

〈
f ′i

〉 〈
f ′j

〉
〈
(f ′0)

2
〉 , (3)

also known as a background error correlation matrix as fol-
lows:

E =
〈(

f ′0
)2〉(1− 2RT

0 p+pT Rp
)
, (4)

where p is the column vector composed of the unknown
weighting coefficients pi , i = 1. . .n and R0 is the column
vector of correlations R0i given by Eq. (3). The optimal val-
ues of weights pi which minimise the cost function E given
by Eq. (4) can be found by taking partial derivatives of E

with respect to all the pi and equalling them to zero, result-
ing in the following system of linear equations:

Rp =R0. (5)

These equations can be solved for the weights pi if we know
the background correlation matrix R. Background correla-
tion describes the statistical structure of deviations f ′ in
space and can be found as described below.

Following Gandin (1963), only those correlations which
relate to the data located at the same depth level are taken
into account, and the distribution of deviations f ′ is assumed
to be statistically uniform and isotropic locally (i.e. within
the search radius; see Eq. 8 below) in the horizontal plane.
Therefore, the autocorrelation R matrix can be represented
in the form

Rij = C
(∥∥r i − rj

∥∥ ,z
)
, (6)

where r i , rj are horizontal coordinates of the parent grid
points,

∥∥r i − rj

∥∥ is the distance between points r i and rj

independently of the direction, and z is a vertical coordi-
nate (depth). For three-dimensional fields, Fu et al. (2004)
suggested approximating the correlation function defined by
Eq. (6) using a Gaussian formula which can be written in a
horizontally isotropic case as follows:

Rij

(∥∥r i − rj

∥∥ ,z
)
= exp

(
−

(
r i − rj

)2
L(z)2

)
, (7)

where L(z) is the e-folding correlation radius, representing
the scale which reflects the extent of spatial correlation, and
z is the depth level where correlation is calculated. The use
of a Gaussian function for the autocorrelation and associated
difficulties has been discussed by Daley (1991). The down-
scaling process described by Eqs. (1)–(7) is repeated for ev-
ery ocean parameter on every grid point of the fine-resolution

mesh, to provide a fine-resolution output for deviations f ′i .
The fine-resolution output of the actual values is calculated
by adding the deviations to the “norms”.

To reduce the computational cost while solving multiple
systems of Eq. (5), only those nodes which are relatively
close to the point of interpolation r0 are taken into account,
so that the corresponding matrix elements are larger than a
certain threshold. We use a correlation threshold Rcut sug-
gested by Grigoriev et al (1996) for using the optimal inter-
polation technique in the analysis of ocean observations in
the Black Sea. Our tests confirmed that this method provides
accurate results in the downscaling of model outputs while
avoiding numerical and computational problems. In order to
further optimise the computational algorithm, the correlation
threshold Rcut was converted into a maximum distance rmax,
which is computed just once for each depth:

rmax = L(z)
√
−ln(Rcut). (8)

For computation of the correlation matrix Rij using the ex-
pression in Eq. (5), it is only necessary to include the nodes
in the medium mesh located at a distance smaller than rmax
to the fine-resolution node being computed. It is worth not-
ing that the SDD method honours the data on the coarse grid;
i.e. it reproduces the coarse field data exactly (to within trun-
cation errors) at those fine grid nodes which coincide with
the parent grid points. If the fine grid contains the coarse
model grid points then the values at this points are exactly
the same (to within truncation errors) as in the parent model.
Therefore, the spatial structure is anchored onto the coarse
grid and no additional double penalty effect compared to the
parent model is generated.

2.2 Idealised case

The SDD technique can be illustrated using an idealised case.
Let us consider a rectangular domain, which is significantly
larger than a typical size of a mesoscale eddy. In this nu-
merical example we use an area of 1000 km× 1000 km. The
parent model is assumed to produce no errors, with its only
limitation being an insufficient resolution. Let the parent grid
have a spatial resolution of 1xp =1yp = 10 km and the true
2-D field of variable F consist of a number of anisotropic
vortices which are modelled by the following formula:

F (x,y)= sin
(x

a

)
sin
(y

b

)
, (9)

as shown in Fig. 1. The statistical norm of F is zero and
hence the Eqs. (1)–(7) can be applied to the parameter F

itself.
For this exercise we selected parameters a and b in Eq. (9)

so that the parent model can only be considered as eddy-
permitting but not eddy-resolving, and hence a significant
distortion of the true field is expected. The fine-resolution
mesh for the SDD model has spatial resolution in each direc-
tion twice as high as the parent model, namely 1xd =1yd =

Ocean Sci., 17, 891–907, 2021 https://doi.org/10.5194/os-17-891-2021



G. I. Shapiro et al.: High-resolution downscaling for ocean models 895

Figure 1. Model domain with a zoomed-in sub-map of idealised spatial distribution of parameter F according to Eq. (9) with a = 4.1 km,
which corresponds to the eddy size of 13 km in the x direction, and b = 33.3 km, which corresponds to the eddy size of 105 km in the
y direction.

5 km. The correlation matrix is calculated using Eq. (7) with
L= 24 km for each grid node on the fine mesh. As with many
data assimilation methods, e.g. Hollingsworth and Lönnberg
(1986), this approach does not require the knowledge of the
true solution. The value of L was obtained using a trial and
error method within a range used in OI of observational
data (Belokopytov, 2018). Then the linear algebraic system
of Eq. (5) is solved for each fine mesh node, and the fi-
nal stochastic downscaling is carried out using Eq. (1). In
this simple example, the correlation matrices are relatively
well-conditioned, with a condition number of the order of
CN= 104–105 (see Sect. 2.3 for a more detailed discussion
on condition numbers.)

For any point on the fine mesh, the stochastic downscal-
ing uses statistical properties of the data within the surround-
ing area of influence with size defined by Eq. (8). In this
idealised example the surrounding area contains up to 89
points. One could consider an alternative method of enhanc-
ing the resolution of the model output by interpolation of
the coarse grid using a linear or polynomial interpolation,
which only uses information from a small number of sur-
rounding grid nodes, in a way suggested by Gilchrist and
Cressman (1954). Another simple alternative would be the
use of a prescribed analytical formula for weighting coef-
ficients in Eq. (1) as a function of distance, a method which
was widely used in early versions of objective analysis of me-
teorological fields (Cressman, 1959). However, it was shown
(e.g. Gandin and Kagan, 1976) that the downscaling method
based on Eqs. (1)–(5) minimises the error between the es-
timated and the true values of the variable and hence bet-
ter recovers the values in between the nodes of the coarser
eddy-permitting model than the polynomial or similar inter-
polation methods.

Figure 2. A zonal transect (see “detail transect” location in Fig. 1)
showing the value of parameter F produced by three models: SDD
model (dashed red line) and the coarse model bi-linearly interpo-
lated (blue line) and bi-cubically interpolated (dotted green line) in
comparison to the true solution (dashed black line) on the fine grid.
Since SDD produces results almost identical to the true solution an
inset with a zoomed region has been included to make the differ-
ences more clear.

This example gives a quantitative estimate of how much
improvement can be achieved by using the SDD method in-
stead of interpolation based on an analytical formula. Fig-
ure 2 shows the results produced by the SDD model in com-
parison with the true solution and two polynomial interpo-
lating models (bi-linear and bi-cubic) along a zonal transect
located as shown in Fig. 1. The maps of differences between
the true solution, SDD and the bi-cubic model are shown
in Fig. 3. All data are sampled on the fine-resolution grid.
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Figure 3. Comparison of skill between SDD and bi-cubic interpo-
lation: (a) map of differences of parameter F values between SDD
model and the true solution. (b) Map of differences of parameter
F values between bi-cubic interpolation and the true solution. The
colour bar limits are chosen to be between −0.2 and 0.2 so the dif-
ferences for SDD are visible; however, the maximum differences
for the bi-cubic model are in fact between −0.4 and 0.4.

The SDD model is able to (i) recover the extremes missed
in the parent, linear interpolating and bi-cubic interpolating
models and (ii) generate a solution that is much closer to
the exact one. The root-mean-square error produced by the
SDD model is only 0.005 while the error produced by the bi-
cubic interpolating model is approximately 35 times higher
at 0.177. The SDD method is computationally efficient; it
takes only a few seconds to run the fine-resolution model on
a small laptop for a 1000 km× 1000 km domain in this ide-
alised setting.

The maximum enhancement produced by SDD compared
to simple interpolation is expected when the parent model
barely resolves the field. If the ocean feature is well resolved
by the parent model, there is no need for further refinement.
For example, if the zonal size of the eddy is increased to
40 km instead of 13 km, it is reasonably well resolved by
the parent model with 1x = 10 km. We calculated RMSE us-
ing the same value of L= 24 km, and the results for SDD at
8.1× 10−3 % and bi-cubical interpolation at 0.3 % are very
small, so downscaling is not actually required, On the other
hand, if the parent model misses the features completely, e.g.
is not eddy-permitting, then the SDD method does not have
enough information to re-create the smaller-scale features.

The spectral analysis was carried out for the data produced
on an 840 km long zonal transect. The Fourier spectrum of
the field produced by SDD is close to the spectrum of the true
field on the coarse grid (i.e. parent model) up to the Nyquist
wavelength of the coarse grid as can be seen in Fig. 4. This
figure shows the spectra of the (i) true field on coarse grid,
(ii) field downscaled with SDD on fine grid and (iii) bi-cubic

Figure 4. Amplitude spectra of parameter F on a zonal transect
at y = 40 km (see map in Fig. 1) based on data from the parent
model on the coarse grid (blue-star line), SDD method (red) and bi-
cubic interpolation (black). For clarity only the central part of the
spectrum showing the peaks is presented.

interpolated field onto the same fine grid. The main peak on
the SDD spectrum is closer to the true peak than that pro-
duced by bi-cubic interpolation. In the spectral region be-
tween the Nyquist wavenumbers of the coarse and fine grids,
there is a parasitic peak that is an artefact caused by distor-
tion of the fields by bi-cubic interpolation as well as by SDD
downscaling. However, this artefact is much smaller in the
case of SDD, which demonstrates its better skill of recover-
ing the true field.

The idealised case where we know the true field gives
us some confidence that the additional powers at high
wavenumbers in the real-world situation are mainly a rep-
resentation of the true field, not artefacts.

2.3 Effect of noise in the input data

Obviously, the data provided by the parent (coarse) model
is not precisely correct; it contains errors originating from
uncertainties in the input data and errors from the model it-
self. An ocean model is likely to be less reliable at the grid
scale. Here we investigate how the noise present in the parent
model propagates into the downscaled fine-resolution data by
three different downscaling methods: (i) SDD, (ii) bi-linear
and (iii) bi-cubic interpolation. We use the same idealised
field F given by Eq. (9) but with added random uncorrelated
Gaussian noise N at each grid point of the coarse grid:

FN = F +N.

We used four amplitudes of noise N : 1 %, 5 % 10 %, and
20 % of the amplitude of the true field. The magnitude of
noise on the fine grid is quantified as the RMSE between the
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Table 1. RMS errors between the true signal on the fine mesh and
the ones obtained by downscaling from the coarse mesh using dif-
ferent methods. The RMSE is computed in the detailed area shown
in Fig. 1.

Noise amplitude RMSE after RMSE after RMSE after
in coarse mesh applying applying applying
(%) SDD (%) bi-cubic (%) bi-linear (%)

0 0.5 18 23
1 1.1 18 23
5 4.8 18 24
10 9.6 19 25
20 19 24 28

downscaled and exact fields for the three downscaled meth-
ods. The data show that the SDD method does not increase
the noise present in the parent model, whilst both bi-linear
and bi-cubic interpolation significantly increase the noise on
the fine grid by introducing their own errors in the downscal-
ing process. For example, at a noise level of 5 %, the SDD
method produces RMSE of 4.8 %, bi-cubic produces 18 %
and bi-linear gives 24 %.

High resolution reveals more intricate granularity and pro-
vides important information of smaller-scale processes, in
particularly those dependent on the gradients of the simulated
variables. It is known that gradients of noisy data can have
greater errors than the variables themselves (see for example
Brekelmans et al., 2003). Hence, the finer-resolution models
should ideally have better absolute accuracy than the coarser-
resolution models for the study of such properties as flow
vorticity or geopotential gradients related to geostrophic cur-
rents. The idealised experiments shown above demonstrate
that the SDD model not only reveals more small-scale fea-
tures, but it also improves the accuracy of simulation, mean-
ing that the SDD model has the ability to forecast greater
granularity, variation and extremes as compared with com-
monly used interpolation schemes, e.g. bi-linear or bi-cubic.

2.4 Stochastic Model of the Red Sea

In this section the SDD method is applied to create a fine-
resolution, eddy-resolving model of the Red Sea (SMORS)
based on the medium-resolution, eddy-permitting parent
model. The parent model used in the study is PSY4V3R1,
which is part of the Mercator Global Ocean Analysis
and Forecast System based on NEMO v 3.1. The parent
model assimilates observational data and has a medium
1/12◦ resolution with 50 depth levels (CMEMS, 2020).
The outputs from this model are freely available as a
Copernicus Marine Environment Monitoring Service product
GLOBAL_ANALYSIS_FORECAST_PHY_001_024 (here-
after called PHY_001_024). This product contains daily 10 d
forecasts of U and V components of current velocities, tem-
perature and salinity in 3-D and hourly outputs of temper-

ature and currents at the surface in 2-D. In addition to the
currents produced by PSY4V3R1, the surface hourly cur-
rents include tidal streams and Stokes drifts. The output data
are interpolated from the native staggered Arakawa C grid
onto an A grid. SMORS uses finer-resolution bathymetry ob-
tained from the 30 arcsec grid (GEBCO, 2014). The coastline
and the land masks at each depth level are obtained from the
bathymetry data.

The SMORS downscaling model has a 1/24◦ horizon-
tal resolution. We have developed two versions of SMORS:
(i) SMORS-3D uses 3-D daily outputs from PHY_001_024
as its input and (ii) SMORS-2D uses surface data from
PHY_001_024 with hourly temporal resolution. SMORS
takes medium-resolution data from PHY_001_024 and uses
the SDD techniques to calculate all variables on a high-
resolution mesh. The computational mesh for both versions
of SMORS have a 1/24◦ resolution and hence they quadru-
ple the number of nodes of the original CMEMS grid in the
horizontal dimensions. The meshes are aligned in such a way
that one out of four nodes in the high-resolution grid is shared
with the medium-resolution one. Both versions of SMORS
can work operationally 24/7 and provide the same tempo-
ral resolution and length of forecast as the parent medium-
resolution model. As SMORS is an operational model, it pe-
riodically polls the Copernicus server using the Copernicus
MOTU library for Python, until the new daily forecasting
data are available. Once new data are found, they are auto-
matically downloaded into the local server.

A flowchart representing the workflow of the operational
SMORS is shown in Fig. 5. The process requires registra-
tion at CMEMS website and a stable Internet connection to
CMEMS servers. All SMORS processing is carried out on a
medium-spec PC under Windows operating system.

SMORS uses the correlation function given by Eq. (7)
with the parameters similar to those used in creating the
Black Sea climatology (Belokopytov, 2018) with the hori-
zontal resolution of 10′× 15′, which is similar to the resolu-
tion of the PHY_001_024 model. To perform the downscal-
ing, the SDD method calculates the weighting coefficients pi

for each fine-mesh node using the system of Eq. (5). The cor-
relation matrices Rij are symmetric and positive-definite but
somewhat ill-conditioned, i.e. have condition numbers CN
within a few orders of magnitude or larger than the inverse
of the machine epsilon. Typical CN numbers for matrices R
used in SMORS are in the range of 104–106 depending on
where the point r0 is located, which would be ill-conditioned
for single precision arithmetic (inverse epsilon ∼ 1.6×107).
However, despite having the CN number larger than 1, the
matrices with CN numbers in the range of 104–106 are easily
dealt with by modern computers and hence can be consid-
ered fairly well conditioned for the double precision accuracy
(64 bit) used in the computations (inverse epsilon ∼ 1016).

The numerical difficulties in using ill-conditioned correla-
tion matrices can be reduced by applying advanced numeri-
cal methods, for example the Tikhonov method of variational
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Figure 5. Flowchart showing the workflow of SMORS operational
model.

regularisation (Tikhonov, 1963); see also Reichel and Yu
(2015). The detailed algorithm of regularisation with practi-
cal examples is described in Ryabov et al. (2018). After regu-
larisation, a standard method can be used for solving Eq. (5).
In the case of SMORS, the solution of Eq. (5) does not re-
sult in any significant loss of accuracy if all computations are
performed with 64-bit precision.

Solving Eq. (5) for all pi and for every node in the high-
resolution 3-D grid is a computationally demanding task and
requires the use of efficient algorithms. For solving these
equations, we have tried three methods: Gaussian elimina-
tion, Cholesky decomposition and the conjugate gradient. We
have found that the latter is the best choice in terms of speed
and numerical stability, if a suitable initial guess is provided,
even if no special preconditioner is used. Since R has val-
ues equal to 1 in the diagonal, it can be considered as having
a diagonal preconditioner. For the conjugate gradient solver,
we have used the code provided by the Eigen C++ library
(Guennebaud el al., 2020).

For a regular medium grid, the weighting coefficients only
depend on the geometry of the grid and the correlation func-
tion; therefore they could be computed just once, in advance.
The geometry of the grid around fine-mesh points varies sig-
nificantly in many areas of the Red Sea due to highly variable
bathymetry, multiple small islands, and a convoluted coast-

Figure 6. Distribution of the weights pi against the distance
‖r0− r i‖. They are computed between the node on the fine mesh
r0 and those points on the medium mesh which are used for calcu-
lation of the correlation matrix r i . The plot includes approximately
2.5 million weights calculated for all the fine mesh nodes at the sur-
face of the Red Sea.

line. For the initial guess in the iteration process, we use the
solution found for the previously considered node (cut to size
or padded with zeros if the number of nodes is different). The
previously considered node means the nearest adjacent node
is already solved for. This approach takes advantage of the
fact that both the medium and fine grids are structured and
therefore, in most cases, the weights for the neighbouring
nodes are similar in value. With this approach, Eq. (5) can
be solved for the majority of points on a fine mesh in just a
few iterations. Figure 6 shows the spread of weighting coef-
ficients against distance between points r0 and r i .

After the weighting coefficients pi for each fine-mesh
node have been found, the downscaling calculation for each
fine-mesh node for each parameter at each time point re-
quires a minimum of 2n floating point operations; see Eq. (1),
where n is the number of surrounding medium-mesh points
considered for use in downscaling. However, the most time-
consuming part of calculation is not the calculation of high-
resolution values according to Eq. (1) but the calculation of
weighting coefficients pi from the system of Eq. (5) as de-
scribed above.

3 Results

3.1 Model validation

Many deterministic high-resolution models, both in oceanog-
raphy and meteorology, are prone to errors caused by the
so called “double penalty” issue. The result of this issue
is that higher-resolution models have a larger RMSE than
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lower-resolution models (Gilleland et al. 2009). The follow-
ing quote from Crocker et al. (2020) explains the situation
in more detail. “One of the issues faced when assessing fine-
resolution models against lower-resolution models over the
same domain is that often the coarser model appears to per-
form at least equivalently or better when using typical verifi-
cation metrics such as RMSE or mean error, which is a mea-
sure of the bias. Whereas a higher-resolution model has the
ability and requirement to forecast greater variation, detail
and extremes, a coarser model cannot resolve the detail and
will, by its nature, produce smoother features with less varia-
tion resulting in smaller errors. This can lead to the situation
that despite the higher-resolution model looking more realis-
tic it may verify worse (e.g. Mass et al., 2002; Tonani et al.,
2019). This is particularly the case when assessing forecast
models categorically. This effect is more prevalent in finer-
resolution models due to their ability to, at least, partially re-
solve smaller-scale features of interest.” Therefore the “dou-
ble penalty” is related to the phenomenon where a model
that predicts some spatial feature, but slightly shifted, gets
a worse RMSE than a coarser model that completely fails to
predict that feature. The physics of the double penalty issue
has been studied in detail in Zingerlea and Nurmib (2008),
ECMWF (2020), and Haben et al. (2014). Zingerlea and Nur-
mib state, in relation to meteorological forecasts, that “High-
resolution NWP models commonly produce forecasts with
seemingly realistic small-scale patterns that can be somewhat
misplaced. Traditional point matching verification measures
(e.g. RMSE) would penalise such misplacements very heav-
ily. This penalisation actually occurs twice, first, for not hav-
ing the pattern where it should be, and second, for having a
pattern where there should not be one”. To the contrary, in
the SDD method, the high-resolution output is nudged to the
parent model. The SDD method honours the data on the par-
ent coarse grid and hence the spatial structure is anchored
onto the coarse grid; therefore there is no additional spatial
shift, and hence the “double penalty” error is less likely.

The quality of SMORS has been assessed in two ways.
First, the SMORS output was validated by comparing the
model outputs with in situ observations from ARGO floats
(Coriolis, 2020) and sea-surface temperature from the Oper-
ational Sea Surface Temperature and Sea Ice Analysis (OS-
TIA, 2020). OSTIA uses satellite data from a number of sen-
sors as well as in situ data from drifting and moored buoys.
The validation routine follows the guidance produced by the
GODAE Ocean View consortium (2020).

As an example, Fig. 7 shows the domain-averaged
monthly bias and RMSE of SST between PHY_001_024 and
OSTIA as well as between SMORS_3-D and OSTIA for the
year 2016. Both models show a very similar skill with the
bias between 0.01 and 0.31 ◦C, and the RMSE between 0.37
and 0.68 ◦C depending on the month. The differences in er-
rors produced by SMORS and the parent model are very
small, and their maximum values do not exceed 0.02 ◦C, both

for bias and RMSE. Therefore, no “double penalty” issue is
seen here.

Figure 8 shows comparisons of annual bias (panel a)
and RMSE (panel c) in temperature between PHY_001_024
and ARGO profiles and between SMORS-3D and ARGO.
ARGO floats are constantly moving, for this reason, each
ARGO profile is compared to the closest node in each model,
similar to the method used in Delrosso et al. (2016). We use
the method for model validation as in the EU My Ocean
project (Delrosso et al., 2016) for compatibility reasons.
Since SMORS-3D has 4 times more computational nodes
than PHY_001_024, the closest node to the ARGO float can
be different for each model. Biases and RMSEs are then com-
puted for the discrepancies between the models and all the
ARGO profiles located inside the Red Sea for the year 2016.
At every depth level, only the profiles that include measure-
ments at that depth are included in the calculations.

Again, PHY_001_024 and SMORS-3D show a very sim-
ilar skill. The discrepancies in temperature between the
models and observations are practically the same for both
SMORS and PHY_001_024, the biases range between−0.01
and 0.71 ◦C, and the RMSEs are between 0.01 and 0.75 ◦C,
depending on the depth. Figure 8b shows zoomed-in dif-
ferences in biases between the two models, which are be-
tween −0.011 and +0.014 ◦C, while the differences in RM-
SEs shown in Fig. 8d are between −0.01 and +0.02 ◦C.

The second test was to assess if the SDD method pro-
duces noise at high frequencies (in the spatial domain). The-
oretically, the downscaling onto any existing “observational”
point (in this case a point on the PHY_001_024 mesh) must
give exactly the same value as the original data set (Gandin,
1963, 1965). Any deviation from this rule is due to com-
putational errors. These errors were assessed as follows.
The output surface data for u and v velocity components
from SMORS were subsampled onto the PHY_001_024
mesh, and comparison was made by calculating the stan-
dard deviation of differences (std_DIF_u, and std_DIF_v).
The downscaling was carried out based on daily outputs from
PHY_001_024 for each day of the year 2017. Both values,
std_DIF_u and std_DIF_v, were very small, of the order
10−8 m/s, while the typical velocities in the Red Sea were
of the order of 0.1–0.2 m/s. Therefore, the potential “double
penalty” error does not occur in the downscaling of profiles.

3.2 Eddy and mean kinetic energy

In this section, the results produced by the eddy-resolving
SMORS-3D model for the year 2017 at the surface are
analysed and compared with the eddy-permitting product
PHY_001_024 (3-D output). The focus of this section is on
dynamic properties depending on the currents rather than
temperature and salinity, as it is the dynamics where the most
significant improvement from downscaling is identified. The
Red Sea is known for its mesoscale activity leading to the
formation of eddies and filaments; see for example Zhai and
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Figure 7. Monthly RMSE and bias comparisons: monthly RMSE (a) and monthly bias (b) between PHY_001_024 and OSTIA (red line)
and between SMORS and OSTIA (black line).

Figure 8. Annually averaged biases (a) and RMSEs (c) of temperature for the two models: PHY_001_024 – ARGO (dashed line) and
SMORS-3D – ARGO (solid line). Panels (b) and (d) show the zoomed-in differences between the lines in (a) and (c) respectively.

Bower (2013). In order to analyse mesoscale activity, the hor-
izontal velocity U , V is split into slowly varying components
〈U〉, 〈V 〉 representing mean currents and fluctuation compo-
nents u, v representing mesoscale activity:

U = 〈U〉+ u, V = 〈V 〉+ v, (10)

where the angle brackets designate statistical mean. As usual,
we apply the assumptions of ergodicity and statistical homo-
geneity of horizontal turbulence generated by mesoscale mo-
tions, and for practical purposes we estimate the statistical
mean by time averaging for each grid node. The slowly vary-
ing components are calculated using a low-pass Savitzky–
Golay filter of the second order. The cut-off period is taken
to be W = 73 d as it provides a good separation of fast and
slow motion. For each geographical location we calculate the
eddy kinetic energy, EKE, and the mean kinetic energy, MKE

per unit mass of water as follows:

MKE=
1
2

[
〈U〉2+〈V 〉2

]
,EKE=

1
2

[〈
u2
〉
+

〈
v2
〉]

, (11)

where slow and fast velocities are defined by Eq. (10). In
order to assess the degree of separation between slow and
fast motions, and the validity of the ergodic assumption, we
assess the cross-correlation term 〈Uu〉+ 〈V v〉. Ideally, this
term should be zero, as part of the so called Reynolds con-
ditions (Monin and Yaglom, 1971), and hence the following
condition must be satisfied:

〈FKE〉 =MKE+EKE, (12)

where

〈FKE〉 =
1
2

[
〈U〉2+〈V 〉2

]
is the time-smoothed full kinetic energy, and MKE and EKE
are defined by Eq. (11). Figure 9 shows the time series of
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Figure 9. Temporal variability of area-averaged, time-smoothed full
kinetic energy (blue) and the sum of eddy and mean kinetic energy
(orange) in the surface layer of the Red Sea during 2017.

area-averaged 〈FKE〉 and the sum of EKE and MKE. The
difference between the curves is small, which confirms the
efficient separation between slow and fast motions.

The time series of EKE and MKE averaged over the entire
Red Sea show a relatively small difference between eddy-
permitting (PHY_001_024) and eddy-resolving (SMORS)
models. The maximum difference in EKE is only 4.5 % of
its root-mean-square value for the year 2017; however, this
ratio is slightly larger at 10.8 % for MKE. These differences
are discussed in Sect. 4.

3.3 Analysis of vorticity and enstrophy

Another important dynamic characteristic of the ocean cir-
culation is vorticity (Rossby, 1936). Analysis of vorticity has
been the basis of much of classical wind-driven ocean cir-
culation theory (Marshall, 1984). The time series of relative
vorticity averaged over the whole Red Sea and calculated
from the outputs of the parent model (PHY_001_024) and
SMORS is shown in Fig. 10. Values of vorticity calculated at
individual grid points from the fine-resolution model are typ-
ically higher than from the medium-resolution model. Higher
values of vorticity are a result of better representation of hor-
izontal gradients in velocity by the finer-resolution SMORS.
This effect is seen in both slowly and quickly varying com-
ponents of vorticity. The difference in the area-averaged vor-
ticity is a result of differences in the shape of the coastline
and a number of islands represented in the coarse and fine
grids.

The difference in vorticity sampled on the coarser
PHY_001_024 grid is shown in Fig. 11. The root mean
square of the difference (RMS-DV) in vorticity calculated
over the entire Red Sea is smaller but comparable with RMS-
V of the vorticity itself. In the example shown in Fig. 11, the

Figure 10. Area-averaged vorticity as a function of time calculated
from PHY_001_024 (black) and SMORS (red).

Figure 11. Snapshot of a difference in the surface current vortic-
ity (s−1) calculated from SMORS and PHY_001_024 models for 1
April 2017.

percentage ratio of the two is as high as 17 %. The difference
is larger in the areas of intensive mesoscale activity in the
central and northern parts of the Red Sea where the coarser
PHY_001_024 model shows weaker and smoother velocity
gradients.

An important dynamic characteristic of the mesoscale ac-
tivity is the local enstrophy defined as the square of relative
vorticity at a location and the total enstrophy defined as an
integral of local enstrophy over the horizontal dimensions of
a domain

Enstr(t)=
∫

Red Sea

‖∇ ×U(x,y, t)‖2dA. (13)
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Figure 12. Seasonal variability of area-averaged enstrophy assessed
from medium-resolution PHY_001_024 (black) and fine-resolution
SMORS (red) models.

In the inviscid flow, enstrophy is conserved in a closed
system, and hence variation of area-averaged (or area-
integrated) enstrophy gives an indication of the role
of ocean–atmosphere interaction and viscous dissipation
(Lesieur, 2008). The value of enstrophy is also indicative of
the rate of dissipation of kinetic energy, and hence a correct
estimate of enstrophy provides a better insight into the under-
lying processes of transformation of energy in the basin. The
time series of area-averaged enstrophy, i.e. integral enstro-
phy defined by Eq. (13) divided by the area of the domain, is
represented in Fig. 12. Enstrophy is minimal in the summer
period when mesoscale activity is reduced.

The spatial distribution of enstrophy produced by SMORS
at the end of the eddy-intensive summer period is shown
in Fig. 13. There are two strong eddies in the central part
of the sea, which have been shown to influence the overall
mesoscale dynamics of the sea (Zhai and Bower, 2013).

4 Discussion

This paper presents an efficient method for fine-resolution
ocean modelling based on downscaling from a medium- to
fine-resolution mesh. In contrast to common downscaling
methods that rely on solving dynamic equations in a smaller
sub-region, the new method uses a combination of the de-
terministic and stochastic approaches. The philosophy be-
hind the new method, named stochastic–deterministic down-
scaling, or SDD, is that at smaller scales, not resolved by
the parent model, the chaotic, turbulent nature of water mo-
tion can be well represented by its statistical properties. The
method utilises mathematical tools similar to those devel-
oped for optimal interpolation of observations and data as-

Figure 13. Distribution of local enstrophy of surface currents (s−2)
in the Red Sea on 1 April 2017 estimated from SMORS output.

similation in ocean modelling. The main difference is that
instead of assimilating a relatively small number of obser-
vations, the SDD method assimilates all the data produced
by a parent model. The novelty of the SDD method in this
respect is that the methodology originally developed for as-
similating a limited number of observational data is modified
and applied to assimilating coarse model data into the fine
model. In contrast to common data assimilation methods, the
new information comes from the computation of many mil-
lions of downscaling factors (see Eq. 5 and Fig. 6), which in
turn use the correlation matrices. Therefore, the SDD method
should be treated as experimental at this stage. The SDD ap-
proach is first applied to and tested in an idealised case and
then applied to create an operational Stochastic Model of the
Red Sea, or SMORS, based on data available via the Coper-
nicus Marine Environment Monitoring Service. SMORS has
a 1/24◦ resolution, compares favourably with observations
and allows a greater granularity of the dynamical features of
the Red Sea to be revealed, in particular those dependent on
the shear of ocean currents.

The statistical links used by the SDD method can be in-
terpreted in a way similar to the theory of fully developed
turbulence. According to Kolmogorov’s law the statistically
uniform and isotropic (in 3-D) turbulence can be described
by a universal power density spectrum (the law of 5/3) which
is equivalent to the law of 2/3 for the structure functions
(Gandin and Kagan, 1976). The studies of velocity fluctu-
ation in the upper air showed that the correlation function
for geopotential heights has a universal shape for distances
large enough to consider the processes to be two-dimensional
(in the horizontal) but smaller than the Rossby radius of
deformation (Yudin, 1961). Previous studies confirmed that
the small-scale velocity fluctuations in well-developed turbu-
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lence exhibit universal scaling properties independent of the
large-scale flow structures (Nelkin, 1994).

The correct identification of the correlation function and,
in particular, its digital representation in the form of the cor-
relation matrix R given by Eq. (6) is critical for the success of
the SDD method. Theoretically, matrix R should be symmet-
ric and positive-definite, however this is not always the case
when the matrix is derived from observations (Tabeart et al.,
2020). There are a number of ways to estimate the numerical
values of elements in the correlation matrix Eq. (6); see for
example Park and Xu (2018) and Fu et al. (2004). For the pur-
pose of downscaling, an optimal design of matrix R would
ideally reflect the structures at a short range, comparable with
the resolution of the parent model. It has been shown that
the dependence of the autocorrelation matrix on the horizon-
tal distance

∥∥r i − rj

∥∥ is universal at small separations and
is close to universal at separation comparable to the Rossby
radius of deformation (Yudin, 1961; Gandin, 1963). This is
consistent with a general view that the Rossby radius is a pre-
dominant scale for coherent structures in the ocean such as
mesoscale eddies, which are typically 2–3 times larger than
the first baroclinic Rossby radius; see for example Baren-
blatt (1992), Beron-Vera et al. (2019) and Badin et al. (2009).

Whilst the elements of the correlation matrix Rij depend
only on the distance between the contributing points as speci-
fied by Eq. (7), the weighting coefficients pi are not a unique
function of the distance between the points r0 and r i . This
means that standard interpolation methods such as bi-linear,
polynomial, inverse distance etc. based on a fixed depen-
dence of weights on distance cannot be used as an adequate
substitution to the method described above, as this method
minimises the error between the true and estimated values
on the fine mesh (Gandin, 1965), and hence it gives the best
possible estimates of ocean parameters. The distribution of
weights is generally different for different points r0 on the
fine mesh; however, it may be the same for a subset of points
away from the coastlines due to the regular structure of the
medium mesh.

In theory, in order to solve the Nfine systems of Eq. (5) for
each node on the fine mesh, the matrix Rij has to involve
all the nodes of the medium mesh in the domain, because
Eq. (7) gives values of Rij different from zero, no matter
what the distance is between nodes. In practice, this is unde-
sirable. Firstly, large systems of equations require vast com-
putational resources to be solved. Secondly, large correlation
matrices are known to have large condition numbers (Tabeart
et al., 2020), and this problem gets worse as the matrix size
increases. Thirdly, the data from nodes which are away by
more than a few Rossby radii are not physically correlated to
small-scale variations within a single grid cell of the medium
mesh.

The reason for matrix R to be ill-conditioned is that whilst
its largest elements (equal to 1) are on its diagonal, there are
many non-diagonal elements which have similar but slightly
smaller values. This is because the grid cell on the medium

Figure 14. Spatial distribution of differences in surface enstrophy
(s−2) between the fine-resolution and medium-resolution models
on 1 April of 2017.

mesh is smaller than a typical size of mesoscale features (2–3
times the Rossby radius). The Rossby radius determines the
scale of coherency of ocean parameters; therefore the cor-
relations between neighbouring points on the medium mesh
are close to 1. The baroclinic Rossby radius in the Red Sea
is about 10–30 km (Manasrah, 2006; Zhai and Bower, 2013).
In principle, the matrix R could have been made more diag-
onally dominant, and its condition number would have de-
creased if using a coarser mesh. However, this would have
led to the loss of statistical information at smaller scales and
hence would introduce larger errors in the downscaling pro-
cess.

SMORS is a computationally efficient way to generate a
finer-resolution 3-D oceanographic forecast for the Red Sea.
With all considerations listed above, the whole process of
downloading the file from the Copernicus server; finding the
weighting coefficients, downscaling the fields of U , V , T and
S; and saving the output NetCDF file takes about 3 h on a sin-
gle core of a typical desktop PC. The efficiency of SMORS
is seen from the following comparison. The time required
for both SMORS-3D and SMORS-2D to run on a desktop
PC with a single core is comparable to the time required for
a purely deterministic model (such as NEMO) with the same
resolution to run on a HPC cluster with 96 computing cores.
If faster speeds for the SDD method are needed, the algo-
rithm is parallelisable on a modern desktop PC or, of course,
on an HPC cluster. The running of the model can be further
optimised by applying the SDD method only to a selection
of depth levels used by the parent model, either horizontal or
curved.

The SDD method was tested using an idealised case
where the true solution is known (Sect. 2.2). The SDD
method showed good ability to recover smaller-scale de-
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tails of mesoscale eddies which were missed by the parent
eddy-permitting model, as well as fine-resolution interpo-
lating models based on a prescribed analytical formula for
weighting coefficients. The comparison of the maps and tran-
sects produced by the parent (coarse), analytical interpolat-
ing and SDD-based models (see sub-section “Idealised case”
above) shows the benefits of the SDD method in comparison
with downscaling approaches based on analytical interpola-
tion routines. The SDD method produces data on the fine
mesh which are much closer to the true solution than sim-
ple bi-linear or bi-cubic interpolation. In contrast to the an-
alytical interpolation methods which smooth the gradients,
the SDD is capable of recovering sharp gradients and de-
tails of the ocean fronts. Similar qualities are seen in the real
world application of the SDD to the Red Sea, where SMORS
shows finer granularity of the velocity, vorticity and enstro-
phy fields, than the parent model. The enstrophy field has
larger values on the fine than the coarse grid. This probably
relates to the additional power in the Fourier spectrum caused
by the fact that the derivatives for the fine grid are calculated
using smaller grid spacing than on the coarse grid and hence
have a potential to show sharper gradients.

The high-resolution SMORS not only provides a greater
granularity of the spatial distribution that a coarser parent
model misses, it also gives different estimates for the area-
averaged ocean variables. For example, while the differ-
ences between the full kinetic energy computed with the
parent and fine-mesh models shown in Fig. 9 are relatively
small, they can be attributed to the ability of SMORS to
reveal local extrema in velocity which are not resolved by
PHY_001_024. The seasonal variation of EKE and MKE
produced by SMORS shows less mesoscale activity in sum-
mer and more in winter, similar to the results obtained with
the high-resolution deterministic model MITgcm (Zhan et
al., 2016). Conceivably the statistics are related to those
structures which determine the correlation matrix; however,
there is also a deterministic element in the small-scale as the
SDD honours the data from the parent deterministic model
and in the seasonal variation of the climatic “norms” against
which the fluctuations are calculated.

The knowledge of the structure and evolution of the vortic-
ity field in the ocean provides vital information about ocean
circulation. For example, the effect of mesoscale eddies is to
produce a transport of vorticity from regions of high to re-
gions of low vorticity (Corre et al., 2020). Mesoscale flows
are the primary cause for the ocean transport of heat, car-
bon and nutrients (Robinson, 1983). Furthermore, the sub-
mesoscales (1–10 km) are emerging as an important dynam-
ical regime. Dynamical processes at the mesoscales and sub-
mesoscales are relevant for understanding and modelling in-
teractions near the coasts and the movement of ocean heat
under high-latitude ice shelves that can have important impli-
cations for sea level (GFDL, 2020). The knowledge of vor-
ticity values helps assess the stability of the 2-D flow to 3-D

instabilities (Flor, 2010). Therefore, its accurate calculation
is a desired quality of any ocean circulation model.

Vorticity is closely linked to another important feature of
the flow, its local enstrophy. SMORS reveals high level of
granularity in enstrophy distribution in particular north and
south of the persistent eddies in the central part of the Red
Sea as shown in Fig. 14, which demonstrates the spatial dis-
tribution of differences in enstrophy computed by SMORS
and PHY_001_024. The difference in vorticity and enstrophy
is a result of the fact that the velocity gradients in the fine-
resolution child model are sharper than in the parent model.
This effect is clearly seen in the idealised case, where the true
solution was known (see Sect. 2.2, “Idealised case”). Hence,
the enstrophy is nearly always greater in the fine-resolution
model. The difference between the models can be charac-
terised by the ratio of the root mean square of difference in
enstrophy to the root mean square of enstrophy itself which
is as much as 21 % for the snapshot shown in Fig. 14.

The benefits of the finer-resolution model are better seen
in a zoomed-in area shown in Fig. 15. The fine-resolution
model provides better granularity, and it also better resolves
the maxima in enstrophy which were not resolved by the par-
ent medium-resolution model.

5 Conclusions

We present an efficient method for fine-resolution ocean
modelling which uses downscaling from a medium-
resolution model and is based on the combination of the de-
terministic and stochastic approaches. We call this method
stochastic–deterministic downscaling, or SDD. The philos-
ophy behind SDD is that at smaller scales the chaotic, tur-
bulent nature of water motion can be represented more ef-
ficiently by incorporating methodologies commonly used in
the study of turbulence. The method utilises the same math-
ematical tools which were originally developed for objective
analysis of observational data in meteorology and then for
data assimilation in ocean modelling. The main difference
is that instead of assimilating a relatively small number of
observations, the SDD method assimilates a vast number of
gridded data produced by a parent model. The SDD model
has the same length of forecast, vertical discretisation and
frequency of outputs as the parent model. The method can
be applied to individual depth levels independently. We be-
lieve that the methodology behind the SDD method, i.e. data
assimilation from coarser models rather than from observa-
tions, can be extended for the use of other data assimilation
techniques, such as 3D-Var, Kalman filtering etc. We also
think that a combined data assimilation from observations
and coarser models is also possible.

The validation of SDD in an idealised setting, where the
exact solution is known, demonstrates its ability to recon-
struct finer-scale features which are barely visible in the par-
ent coarser-resolution model. The method is shown to be ef-
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Figure 15. Enstrophy of surface currents in the central part of the Red Sea presented by eddy-permitting PHY_000_024 (a) and eddy-
resolving SMORS (b) model: the white areas represent land and are different as the fine model uses finer-resolution bathymetry and coastline,
which reveals more small islands.

ficient in case, where the parent model is eddy-permitting,
while the downscaled model is eddy-resolving. The SDD
type model named SMORS (Stochastic Model of the Red
Sea) was set up for the Red Sea with a resolution of 1/24◦

using a parent model from the Copernicus Marine Environ-
mental Service with 1/12◦ resolution and ran operationally
for more than a year. Validation against the parent model,
in situ and satellite observations confirmed that SDD is not
prone to generating additional errors due to the “double-
penalty” effect, which is common for purely deterministic
fine-resolution models.

The fact that SDD is well-suited to downscaling of noisy
(stochastic) data makes such a method more attractive than
it would otherwise be. The cost of increased resolution using
a fine-resolution deterministic model is so high that such a
method is worthwhile, providing both increased resolution
in the simulation and low additional noise.

SMORS uses advanced numerical algorithms, is computa-
tionally efficient and can be run on a single core of a desktop
PC operationally. The running of the model can be further
optimised by applying the SDD method only to a selection
of depth levels used by the parent model, either horizontal or
curved. It is likely that the method could be further developed
by incorporating more complex data assimilation schemes.

Code and data availability. The data generated by the parent
model is available via Copernicus Marine Environment Monitoring
Service (CMEMS, 2020), product ID PHY_000_024.
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