Australian Plate Subduction is Responsible for Northward Motion of the IndiaAsia Collision Zone and 1,000km Lateral Migration of the Indian Slab

Parsons, Andrew

http://hdl.handle.net/10026.1/18119

10.1029/2021gl094904
Geophysical Research Letters
American Geophysical Union (AGU)

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Australian plate subduction is responsible for northward motion of the India-Asia collision zone and ~1000 km lateral migration of the Indian slab

Parsons AJ¹, Sigloch K¹,², Hosseini K¹,³

Author affiliations:
2. Université Côte d’Azur, CNRS UMR 7329, Géoazur, Sophia Antipolis, France
3. Alan Turing Institute, London, UK

Key Points
- Subduction of Australian oceanic lithosphere drove northward motion of coupled India-Australia plate since onset of collision at 45-40 Ma
- Buoyant Indian continent stalled subduction of Indian slab whilst Australian slab subduction drove motion of coupled India-Australia plate
- ~1000 km north lateral migration of Indian slab occurred to maintain compatibility with plate kinematics of coupled India-Australia plate

Plain Language Summary
To understand the links between plate tectonics and mantle processes, researchers must determine how tectonic plates have moved with respect to the evolving mantle through geological time. To overcome this problem, recent studies use the locations of subducted slabs in the deep mantle to reconstruct plate motions, based on the hypothesis that slabs sink vertically through the mantle, and therefore mark the surface locations of past subduction zones. Here, we test slab sinking hypotheses, and their use in plate reconstruction modelling, by investigating the sinking kinematics of the subducting Indian and Australian slabs during the India-Asia collision. Our analysis indicates that since onset of collision at ~45-40 Ma, the Indian slab migrated laterally, ~1000 km northwards through the mantle, driven by subduction of the neighbouring Australian slab. We arrive at this new interpretation because we interpret Indian and Australian slab kinematics collectively, and with respect to India-Australia plate motions. Our study shows that the sinking behaviour of one slab can influence that of another slab in the same network. Slab-based plate reconstructions should therefore interpret slabs of the same network collectively, and with respect to plate motions, in order to constrain non-vertical slab motions and avoid potentially significant plate reconstruction errors.
Abstract

Distributions of slabs within Earth’s mantle are increasingly used to reconstruct past subduction zones, based on first-order assumptions that slabs sink vertically after slab break-off, and thus delineate paleo-trench locations. Non-vertical slab motions, which occur prior to break-off, represent a potentially significant source of error for slab-based plate reconstructions, but are poorly understood. We constrain lateral migration of the Indian slab and overlying India-Asia collision zone by comparing tomographically-imaged mantle structure with plate-kinematic constraints. Following coupling of the Indian and Australian plates at the onset of collision, ~1000 km lateral migration of the Indian slab was driven by vertical subduction of the Australian slab. The sinking behaviours of individual slabs do not evolve in isolation, but instead influence, or are influenced by, other slabs in the same plate network. Hence, lateral slab migrations may be determined by interpreting the sinking behaviour of slabs collectively, and with respect to plate kinematics.

The ultimate goal of tectonic plate reconstruction modelling is to constrain absolute motions of Earth’s continents and oceans, with respect to the mantle, through geological time (Torsvik et al., 2008, van der Meer et al., 2010, Doubrovine et al., 2012). This is crucial to our understanding of how surface processes, plate tectonics, and mantle dynamics link at a planetary scale (Steinberger et al., 2012, Domeier et al., 2016), and essential for the ability to test working hypotheses against bedrock and mantle records (Wu et al., 2016, Sigloch and Mihalynuk, 2017, van de Lagemaat et al., 2018, Clennett et al., 2020, Fuston and Wu, 2020, Parsons et al., 2020). Absolute plate motions are constrained using a mantle reference frame, based primarily on the tracking of oceanic plates across mantle hot-spots (Torsvik et al., 2008, Doubrovine et al., 2012). However, hot-spot tracks do not extend beyond ~130 Ma, which increases the uncertainty of absolute reconstructions of earlier times (Doubrovine et al., 2012, Domeier et al., 2016). Development of a mantle reference frame that uses subducted slabs as fixed reference points is a highly desirable solution to this problem, because the widespread distribution and longer-term residency of slabs in the lower mantle should allow us to reconstruct absolute plate motions with greater accuracy, back to at least 200-300 Ma (van der Meer et al., 2010, Steinberger et al., 2012, Domeier et al., 2016, van der Meer et al., 2018).

Tomographically constrained, slab-based plate reconstructions are typically founded on an assumption that after slab break-off, detached slabs sink vertically, such that the top of a detached slab constrains the surface location of its subduction zone trench, at point of break-off (Hafkenscheid et al., 2006, van der Meer et al., 2010, Steinberger et al., 2012, Replumaz et al., 2014, Domeier et al., 2016, Wu et al., 2016, Parsons et al., 2020). Prior to slab break-off, the potential for horizontal slab motions during subduction is poorly constrained, but has been shown to produce significant errors in slab-based reconstructions if overlooked (Schellart, 2005, van de Lagemaat et al., 2018).
Lateral slab migration (LSM) refers to a horizontal component of motion of part of, or all of, a slab, which occurs during subduction, prior to slab break-off, and with respect to the surrounding mantle. Numerical and analogue modelling suggest that LSM can occur in the upper mantle, where the viscosity of a slab may force it to migrate perpendicular to the trench, towards or away from the direction of subduction, as the slab bends and steepens (Schellart, 2005, Schellart et al., 2008, Capitanio and Morra, 2012, Čížková and Bina, 2013, Holt et al., 2018). Such migrations are predicted on the order of a few hundreds of kilometres and are typically accompanied by trench migration (Schellart, 2005, Schellart et al., 2008, Holt et al., 2018). Within the lower mantle, modelling suggests that slabs sink vertically (Steinberger et al., 2012, Čížková and Bina, 2013) with minor LSM on the order of ~100-200 km per 100 Myrs (Steinberger et al., 2012).

LSMs inferred from observations of subducted slabs are uncommon (Le Dain et al., 1984, Giardini and Woodhouse, 1986, Liu et al., 2008, Spakman et al., 2018, van de Lagemaat et al., 2018), and in some cases disputed (Liu et al., 2008, Sigloch and Mihalynuk, 2017). Most notably, van de Lagemaat et al. (2018) demonstrate ~1200 km of trench-parallel LSM of the Pacific slab beneath the Kermadec arc since ~30 Ma, which was previously unaccounted for by plate reconstructions. Importantly, magnitudes and directions of LSM inferred from natural examples have been shown to correspond to absolute plate motion of the subducting plate (Spakman et al., 2018, van de Lagemaat et al., 2018). This implies that within a single plate network, slab sinking (prior to break-off) and absolute plate motions are related to each other. If this is correct, it should be possible to constrain components of LSM from multiple slabs of the same network, by interpreting their sinking kinematics collectively, and as connected parts that maintain compatibility with plate kinematics during subduction. To test this hypothesis, we investigate the subduction kinematics of the India-Asia collision (Fig. 1), where LSM has been proposed previously, but not constrained (Le Dain et al., 1984, Parsons et al., 2020). We integrate seismic tomography (Fig. 2) with bedrock and plate-kinematic constraints to constrain the kinematics of the Australian and Indian slabs during the India-Asia collision (Fig. 3). By interpreting the size, distribution and morphology of these slabs collectively, we propose that subduction of the Australian slab provided the driving force for ~1000 km northward LSM of the Indian slab (Fig. 4).

Plate network configurations for the India-Asia collision

Several hypotheses have been proposed for the India-Asia collision, which vary in terms of timing and number of collisions. Single-collision hypotheses propose a single, continuous collision between India and Asia, which initiated at 59 ± 1 Ma (Hu et al., 2016, Ingalls et al., 2016). Double-collision hypotheses argue for distinct collisional events at 59 ± 1 Ma (“First Collision”) and ~45-40 Ma (“Second Collision”) (Patriat and Achache, 1984, Bouilhol et al., 2013, Jagoutz et al., 2015, van Hinsbergen et al., 2019). Double-collision Hypothesis I proposes “First Collision” between India and an equatorial intra-oceanic arc, followed by “Second Collision” between India-plus-arc and Eurasia (Patriat and Achache, 1984, Bouilhol et al., 2013, Jagoutz et al., 2015). Double-collision Hypothesis II proposes “First Collision” between an India-derived microcontinent and Eurasia, followed by “Second Collision” between India and the modified Eurasian margin (van Hinsbergen et al., 2019). Based on the review of Parsons et al. (2020), our study analyses slab kinematics during the India-Asia collision in the context of double-collision hypotheses I and II (Fig. 3) (Patriat and Achache, 1984,
Bouilhol et al., 2013, Jagoutz et al., 2015, van Hinsbergen et al., 2019). Single-collision hypotheses require extreme magnitudes of continental subduction, do not fit restorations of Gondwana, offer no explanation for the plate network reorganization at 45-40 Ma (detailed below), and are not considered further (Parsons et al., 2020).

Between ~120-40 Ma, the Indian plate was bounded by north-south striking transform boundaries to its west and east (Fig. 3); its eastern boundary, defined by the Wharton ridge (Fig. 1), formed a transform-dominated spreading ridge (Jacob et al., 2014, Gibbons et al., 2015). During that period, the adjacent Australian plate remained at a relatively fixed position (Torsvik et al., 2008). Bedrock records along the southern Eurasian margin reflect the contrasting kinematics of the Indian and Australian plates (Fig. 1). West of the Wharton ridge, subduction-related magmatism between southwest Tibet and Thailand occurred throughout the Late Cretaceous to ~50-40 Ma (Morley, 2012, Zhu et al., 2018, Lin et al., 2019). East of the Wharton ridge, northward subduction beneath Java and Sulawesi ceased at ~90-80 Ma (Hall, 2012, Morley, 2012, Breitfeld et al., 2020), and re-initiated beneath Java at 47-44 Ma (Smyth et al., 2008), coincident with onset of northward migration of the Australian plate (Torsvik et al., 2008, Müller et al., 2019).

During the mid-Eocene, a significant plate network reorganization was recorded across the Indian Ocean (Patriat and Achache, 1984, Gibbons et al., 2015) (Fig. 3c). This included: (1) 30-38% reduction in Indian plate velocity between 45-40 Ma (Molnar and Stock, 2009); (2) cessation of Wharton ridge spreading and subsequent coupling between Indian and Australian plates at ~43-36 Ma (Jacob et al., 2014, Gibbons et al., 2015); (3) onset of Australian plate subduction beneath Java at 47-44 Ma (Smyth et al., 2008); (4) onset of northward migration of the Australian plate at ~45-43 Ma (Torsvik et al., 2008, Müller et al., 2019); (5) accelerated spreading between the Australian and Antarctic plates at ~47-45 Ma (Torsvik et al., 2008, Eagles, 2019, Seton et al., 2020); (6) change in rates and azimuths of spreading between India and Africa between 47-41 Ma (Patriat and Achache, 1984, Cande et al., 2010, Seton et al., 2020); (7) southwestward jump of the Central India spreading ridge at ~41 Ma (Torsvik et al., 2013). These well-constrained changes in plate kinematics and subduction make the Indian and Australian plates and associated slabs a good target for testing whether LSMs can be inferred by interpreting the kinematics of multiple slabs collectively, and with respect to plate motions.

Slab kinematics during the India-Asia collision

We focus on two slabs of subducted lithosphere beneath southeast Asia (Anomaly VII) and northern India (Anomaly II; anomaly numbers follow Parsons et al., 2020) (Fig. 2), based on combined observations from six tomography models (Supporting Information and Dataset) (Amaru, 2007, Li et al., 2008a, Simmons et al., 2012, Obayashi et al., 2013, Schaeffer and Lebedev, 2013, Hosseini et al., 2020). Our interpretations of these slabs are supported by the most up-to-date, integrated assessment of bedrock, subsurface and kinematic constraints from Tibet-Himalaya and central Indian Ocean (Parsons et al., 2020). Further constraints are provided by our own integration of bedrock and mantel records between Myanmar and Indonesia, and Australian plate kinematics (see Supporting Information), which were not considered by previous tomographically-constrained interpretations of the study region (Hafkenscheid et al., 2006; Replumaz et al., 2014; Parsons et al., 2020).
Anomaly VII comprises Indian and Australian lithosphere presently subducting between Myanmar and Indonesia and includes the extinct Wharton ridge (Figs. 1-2). Between Sumatra and Indonesia, Anomaly VII forms a near-vertical slab from the trench down to ~800-1000 km depth, where it thickens as it piles up in the mantle transition zone (MTZ) and lower mantle (Figs. 2i, S2j-q). Beneath Myanmar and Thailand, Anomaly VII dips southwards (Fig. 2h). Parts of this western section of Anomaly VII are doubly thickened with respect to its eastern section (Fig. S2i).

Anomaly II is a detached slab imaged in the MTZ and lower mantle beneath Tibet and northern India (Fig. 2). Between ~450–550 km and ~800-1000 km depth, Anomaly IIa forms a NW-SE striking, southwest dipping, linear anomaly (Fig. 2a). Between ~800-1000 km and ~1100-1300 km depth, Anomaly IIb forms a wider, subhorizontal anomaly (Figs. 2b-h, S2e-g).

We integrate our analysis of Anomalies VII and II within a kinematic reconstruction of the Indian, Australian and Eurasian plates at 59 Ma and 43 Ma (Fig. 3), corresponding to “First” and “Second” collision, respectively (Patriat and Achache, 1984, Bouilhol et al., 2013). Our 59 Ma restoration (Fig. 3b) includes alternative plate-boundary configurations for both double-collision hypotheses (Patriat and Achache, 1984, Bouilhol et al., 2013, Jagoutz et al., 2015, van Hinsbergen et al., 2019). Indian and Australian plate motions are constrained by seafloor isochrons in a moving-hotspot reference frame (Müller et al., 2019). The location and kinematics of the southern Eurasian subduction zone are constrained from our tomography analysis (Figs. 2, S2-4), integrated with bedrock and plate-kinematic constraints (Supporting Information).

First, we focus on the kinematics of the Anomaly VII slab (beneath Myanmar to Indonesia). The well-defined morphology of Anomaly VII and its connectivity with the Indian and Australian plates (Figs 2i, S2h-q) make it suitable for restoration to its pre-subduction horizontal length following methods outlined by Hafkenscheid et al. (2006) and Wu et al. (2016) (methods detailed in supporting information).

Figure 3a shows our maximum and minimum restored lengths of the Anomaly VII slab determined from cross sections H to Q. Between cross sections J to Q, the length of lithosphere restored from Anomaly VII (distance between yellow dots and grey-white dashed lines) is equivalent to the total plate motion of the Australian plate, since ~43 Ma (Torsvik et al., 2008, Müller et al., 2019) (distance between yellow and red dots). This equivalency between Anomaly VII slab volume and Australian plate motion since ~43 Ma implies that Anomaly VII is not voluminous enough to account for subduction beneath the southeast Eurasian margin prior to ~43 Ma. This geometry-based inference is independent of, but consistent with (1) Late Cretaceous-Middle Eocene hiatus of subduction beneath southeast Eurasia (Hall, 2012, Morley, 2012) during a period of relative immobility of the Australian plate (Torsvik et al., 2008, Müller et al., 2019); followed by (2) onset of subduction beneath Java (Smyth et al., 2008) and northward migration of the Australian plate (Torsvik et al., 2008, Müller et al., 2019) at 47-43 Ma (Fig. 3c). Integrating these events with our restoration of Anomaly VII suggests that the Eurasian margin between sections J to Q has been stationary since ~90-80 Ma (Fig. 3a). This is consistent with the vertical morphology of Anomaly VII between sections J to Q (Fig. 2i), which is most simply explained by subduction beneath a stationary trench with negligible LSM. We therefore carry over our 43 Ma restoration of the Eurasian margin between sections J to Q into our 59 Ma restoration (Fig. 3b).
On cross sections H and I, we interpret the southwards dip (Fig. 2h) and thickened geometry (Fig. S2i) of Anomaly VII as a record of slab overturning (e.g. Schellart, 2005, Capitanio et al., 2015), caused by northwards trench migration, during subduction. Assuming that the slab sank vertically as it overturned, the southern basal edge of the slab marks the approximate location of the overlying trench at the onset of subduction. From this, we estimate that since ~43 Ma, the Sunda-Andaman trench has migrated ~800 km and ~300 km northeast along sections H (Fig. 2h) and I (Fig. S2i), respectively. Incorporating our estimates of trench migration into our restoration demonstrates an equivalency between Indian plate motion since ~43 Ma (distance between yellow and red dots) and the combined length of [restored Anomaly VII slab] + [trench migration] from sections H and I (distance between yellow dots and light blue-white dashed lines). Thus, at 43 Ma, we restore the Sunda-Andaman trench overlying sections H and I, 800 km and 300 km southeast of its present day location (orange dots, Fig 3a), along strike from the restored Eurasian margin between sections J to Q.

Crucially, the restored 43 Ma Eurasian margin between sections H and I (orange dots, Fig. 3a) coincides spatially with the reconstructed northern edge of Greater India (Fig. 3a) (constrained by Parsons et al., 2020), and temporally with the 30-38% reduction in Indian plate velocity between ~45-40 Ma (Molnar and Stock, 2009) (Fig. 3c). Hence, our restoration supports previous arguments (Patriat and Achache, 1984, Bouilhol et al., 2013, Gibbons et al., 2015, Jagoutz et al., 2015) that collision between India and Eurasia occurred at ~45-40 Ma (Fig. 3c). We therefore propose that at 43 Ma, the northern edge of Greater India was in contact with the Eurasian margin, and so we extend our Eurasian margin restoration (red barbed line, Fig. 3a) westward from section H, coincident with the edge of Greater India. Our restoration implies that since collision at ~43 Ma, the India-Eurasia plate boundary west of section H has migrated ~1000-2000 km northeast to its present-day location, defined by the Indus suture zone (ISZ, Fig. 3a). This is consistent with paleomagnetic constraints which place southern Tibet at 20°N ± 4° at ~52 Ma (Huang et al., 2015). A shapefile of our Eurasian margin restoration is included in supplementary files.

We attribute differences in trench kinematics and slab morphology between sections H to I, and J to Q, to the Wharton ridge, which we restore coincident with section J at 43 Ma and 59 Ma (Fig. 3a-b). The Eurasian margin at sections H and I formed part of the longer lived subduction zone between Myanmar-Thailand and southern Tibet that was responsible for subduction of the Indian ± Neotethys plate(s) from ~110 Ma to ~40 Ma (Zhu et al., 2018, Lin et al., 2019) (Fig. 3b). The corresponding slab(s) associated with that subduction began subducting ~70 Myr earlier than the Anomaly VII slab (Fig 3b), and hence should now be located deeper than Anomaly VII. We therefore assign the Indian plate slab to Anomaly II (Fig. 3b), imaged beneath north India from ~450-550 km to ~1000-1300 km depth (Fig. 2a-c,g-h). We are confident in this interpretation because it is the simplest explanation for the whereabouts of the Indian plate slab, and because there are no other oceanic basins that Anomaly II can be related to (Parsons et al., 2020).

Importantly, Anomaly II is presently located ~1000 km north of our 43 Ma restoration of the Eurasian margin (Figs. 2g, 3a). Applying an assumption of vertical sinking with no LSM to Anomaly II would contradict our restorations of the Eurasian and Indian margins, and from a kinematic perspective, would delay contact between India and Eurasia by ~10-20 Myrs. We therefore propose that since “Second Collision” at ~45-40 Ma, the Anomaly II slab has laterally migrated ~1000 km
northwards through the surrounding mantle (Figs 2g, 4). The south dipping morphology of Anomaly II is consistent with slab-overturning during LSM (Figs. 2g, S2e-g).

Previous studies that did not consider the sinking kinematics of Anomaly VII in their investigations of Anomaly II, did not detect LSM (Hafkenscheid et al., 2006, Replumaz et al., 2014). Instead, those studies either located the ~60-45 Ma collision zone above present-day Anomaly II (Hafkenscheid et al., 2006), which is inconsistent with the location of the northern Indian margin at that time (Fig. 3a-b), or interpreted Anomaly II as subducted Indian and Asian continental lithosphere (Replumaz et al., 2014), which is not robustly demonstrated by bedrock and geophysical observations (Parsons et al. 2020). Interpreting the Indian slab (Anomaly II) with respect to the Australian slab (Anomaly VII) and the surrounding plate network, as we do, leads us to our new interpretation, which is supported by a greater set of constraints.

Lastly, we note that our Eurasian margin restoration (red barbed line, Fig. 3a-b) is coincident with Anomaly III (grey-dashed line, Fig. 3a), which forms a vertical slab-wall from ~800-950 km to ~1700-1800 km depth (Fig. 2). We therefore propose that the southern Eurasian plate boundary formed a subduction zone above Anomaly III, tens of millions of years prior to 59 Ma (Fig. 3b).

Plate tectonic explanation for LSMs

Our analysis suggests that east of the Wharton ridge, the Eurasian margin and Anomaly VII slab remained at a relatively fixed location since ~43 Ma. At the same time, west of the Wharton ridge, the Anomaly II slab laterally displaced by ~1000 km, and the Anomaly VII slab overturned as the overlying India-Asia collision zone migrated ~1000-2000 km northwards (Fig. 4).

Our interpretation is consistent with numerical models, which propose northward migration of the India-Asia collision zone was driven by Australian plate subduction (e.g. Capitanio et al., 2015). Consistent with those models, we propose that following Second Collision at ~45-40 Ma (Fig. 4a), wholesale motion of the newly coupled India-Australia plate was driven by slab-pull of the subducting Australian oceanic lithosphere (Anomaly VII-Aus, Fig. 4) (e.g. Li et al., 2008b, Capitanio et al., 2015), whilst to the west, buoyancy of the Indian continent stalled Indian-plate subduction (Fig. 4a-c). To maintain compatibility between slab kinematics and plate kinematics, the Indian continent was forced northwards, dragging the Indian oceanic slab with it (Anomaly II, Fig. 4b-c). Within the mantle, the laterally migrating Indian slab (Anomaly II) separated from the vertically sinking Australian oceanic slab (Anomaly VII-Aus, Fig.4b-c) along the subducted portion of the Wharton ridge (Fig. 4b-c).

During northward migration of the Anomaly II slab and the India-Asia collision zone, Indian oceanic lithosphere between India and the Wharton ridge overturned during subduction (Anomaly VII-Ind, Figs. 2i, 4b-c), whilst the overlying subduction zone between Myanmar and Sumatra rotated clockwise (around a vertical axis) and lengthened via NW-SE transform faulting (Fig. 4a-c). We interpret the present-day location of Anomaly II as the location of complete Indian slab break-off from the Indian continent, corresponding to a restoration age of ~30-25 Ma (Fig. 4b-c).

We build upon the observations of Replumaz et al. (2014), who recognised an overturned slab in the upper mantle beneath India, by kinematically demonstrating that (1) Anomaly II is an oceanic slab, which was dragged ~1000 km northwards during collision; and (2) timing and duration of Anomaly II
LSM coincided with the timing and duration of Australian plate subduction. Our study also demonstrates that onset of subduction of the Australian plate coincided with plate network reorganization in the Indian Ocean (Fig. 3c), including: (1) reorientation of Indian plate-motion azimuth, from 000-020° to 020-040° (Torsvik et al., 2008, Gibbons et al., 2015, Müller et al., 2019); and (2) changes in rates and azimuths of spreading between the Indian and African plates (Patriat and Achache, 1984, Cande et al., 2010, Torsvik et al., 2013, Seton et al., 2020) and between the Australian and Antarctic plates (Torsvik et al., 2008, Eagles, 2019, Seton et al., 2020) (Fig. 3c). Based on an understanding that slab-pull is the dominant force behind plate motions (Forsyth and Uyeda, 1975), we postulate that these kinematic changes occurred in response to the onset of Australian slab subduction.

Conclusions

We believe this is the first kinematically-constrained demonstration of significant LSM reported (1) from a now-detached slab; and (2) in a trench-forward direction. Our findings demonstrate that magnitudes of LSM prior to slab break-off can be large, and will produce errors in slab-based plate reconstructions if overlooked. An assumption of vertical sinking applied to the Indian slab (Anomaly II) would reconstruct the Eurasian margin directly above Anomaly II, which is incompatible with our interpretation of the Australian slab (Anomaly VII), our restoration of the Eurasian and Indian margins, and from a kinematic perspective, would delay collision by ~10-20 Myrs. Instead, we have demonstrated that the Indian slab migrated ~1000 km laterally through the mantle since collision between India and Eurasia at 45-40 Ma.

Previous studies, did not detect LSM because they did not consider the kinematics of Anomaly VII (Australian slab) in their interpretations of Anomaly II (Indian slab). We arrive at our new interpretation because, (1) we interpreted the distribution and geometry of subducted slabs as integrated parts of a larger system (rather than in isolation); and (2) we expanded our region of interest to include the Myanmar-to-Indonesia margin and Australian plate kinematics, to ensure that our interpretations maintained compatibility between slab kinematics and plate kinematics.

Acknowledgements

For the purpose of review, data presented in this study are available in the supporting information. Upon acceptance, data presented in this study will be hosted and made freely available at the Oxford University Research Archive (ORA). We thank editor Lucy Flesch and reviewers Jon Pownall and Fabio Capitanio for constructive reviews that improved our study. We thank Jonny Wu and Richard Palin for helpful discussions regarding slab densities and slab area to plate area conversions. We thank Graeme Eagles and Lucia Perez-Diaz for helpful discussions regarding the plate tectonic evolution of the Indian Ocean. This work was supported by funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement 639003 ”DEEP TIME”).

implications for the evolution of the western gneiss belt, northern Thailand. Journal of Asian Earth Sciences, 37, 82-104.

kyanite- and sillimanite-grade migmatites from the northwestern flank of the eastern

constraints for models of the India-Asia collision and the post-Triassic central Tethys oceans.
Earth-Science Reviews, 103084.

Patriat, P. & Achache, J. 1984. India–Eurasia collision chronology has implications for crustal
shortening and driving mechanism of plates. *Nature*, 311, 615-621.

Schaeffer, A.J. & Lebedev, S. 2013. Global shear speed structure of the upper mantle and transition

Schellart, W.P. 2005. Influence of the subducting plate velocity on the geometry of the slab and

migration induced upper mantle volume fluxes: Constraints to find an Earth reference frame
based on minimizing viscous dissipation. *Earth-Science Reviews*, 88, 118-144.

2007. Tectonic evolution of the Mogok metamorphic belt, Burma (Myanmar) constrained by

Searle, M.P., Whitehouse, M.J., Robb, L.J., Ghani, A.A., Hutchison, C.S., Sone, M., Ng, S.W.-P.,
Indochina terrane collision zone in Thailand and Malaysia: constraints from new U–Pb zircon

Tectonic and metamorphic evolution of the Mogok Metamorphic and Jade Mines belts and

Timing of Syenite-Charnockite Magmatism and Ruby and Saphire Metamorphism in the

Seton, M., Müller, R.D., Zahirovic, S., Williams, S., Wright, N.M., Cannon, J., Whittaker, J.M.,
Matthews, K.J. & McGirr, R. 2020. A Global Data Set of Present-Day Oceanic Crustal Age and
Seafloor Spreading Parameters. *Geochemistry, Geophysics, Geosystems*, 21,
e2020GC009214.

Sigloch, K. & Mihalynuk, M.G. 2017. Mantle and geological evidence for a Late Jurassic–Cretaceous

Simmons, N.A., Myers, S.C., Johannesson, G. & Matzel, E. 2012. LLNL-G3Dv3: Global P wave

Pb geochronology of hydrothermal veins in Thailand: New constraints on Indosinian and

history of East Java, Indonesia: The stratigraphic record of eruptions on an active continental
margin. *In: Draut, A. E., Clift, P. D. & Scholl, D. W. (eds.) Formation and Applications of the

Figure 1. Tectonic map of the Indian Ocean, showing outlines of Anomalies II, III and VII, and Late Cretaceous-Cenozoic subduction magmatism. Plate boundaries, slab-depth profile, and seafloor isochrons drawn from Bird (2003), Hayes et al. (2018) and Müller et al. (2019).

Figure 2. Select seismic tomography depth slices (a-c) and cross sections (d-f) with outlines of seismic anomalies from P-wave tomography model UU-P07 (Amaru, 2007). (g-i) Outlines of anomalies used for slab restorations (Figs. 3-4), are based on interpretation of six tomography models and Slab2.0 model (see Supporting Information and Supporting Dataset).

Figure 3. (a-b) Reconstruction of two-stage India-Asia collision modified from Müller et al. (2019), including Anomaly VII slab restoration. (c) Plate kinematics (Torsvik et al., 2008, Doubrovine et al., 2012, Müller et al., 2019) highlighting plate network reorganisation events following Second Collision at 45-40 Ma.

Figure 4. Cartoon representations of slab kinematics since Second Collision (45-40 Ma), looking southwest. Anomaly VII divides into Indian (green) and Australian (purple) slabs, either side of the extinct Wharton ridge. Coloured arrows show approximate slab motions. LSM of Anomaly II (blue) occurs between (a) Second Collision and (b) slab break-off. Indian plate Anomaly VII slab (green) is overturned and fragmented during northeast migration of India-Eurasia collision zone.
South Tibet-Myanmar-Thailand subduction magmatism: Continuous through Late Cretaceous to ~50-40 Ma

Sumatra subduction magmatism: Poorly constrained early-Late Cretaceous and Cenozoic episodes, separated by a magmatic lull

Java-Sulawesi subduction magmatism: Before ~90-80 Ma, after 47-44 Ma (Java)

Abbreviations: AT - Andaman trench; ISZ - Indus suture zone; MFT - Main Frontal Thrust
Zone of overturned and fragmented Anomaly VII produced during northward trench migration of India-Asia collision zone.
"Second Collision" of India with Eurasia at ~45-40 Ma is followed by cessation of Wharton ridge (WR), coupling of IND and AUS plates and subduction of AUS plate (Anomaly VII-Aus - purple).

Coloured arrows show approximate slab motions.

NOTE: plate motions (dark grey arrows) are displayed for period immediately prior to coupling of IND and AUS plates.

Subduction of AUS oceanic lithosphere (Anomaly VII-Aus - purple) drives northeast motion of IND-AUS plate and lateral migration of Anomaly II.

Subduction of AUS oceanic lithosphere (Anomaly VII-Aus - purple) drives northeast motion of IND-AUS plate and lateral migration of Anomaly II.

Abbreviations: AUS - Australian plate; IND - Indian plate; Ja - Java; Lh - Lhasa block; Sm - Sumatra; WB - West Burma block; WR - Wharton ridge.