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1. Introduction
Residual (net) sediment transport patterns influence the transport and fate of continental shelf sediments, 
influencing sediment distributions and morphological evolution (Harris & Collins, 1991; King et al., 2019; 
Leonardi & Plater, 2017; Pingree & Griffiths, 1979; Pingree & Le Cann, 1989; Stride, 1963; van der Mo-
len, 2002; Xu et al., 2016; Zhang et al., 2016). Waves and tidal currents result in resuspension and transport 
of shelf sediments (Carter & Heath, 1975; Pattiaratchi & Collins, 1988; Thompson et al., 2019), influencing 

Abstract Waves and tidal currents resuspend and transport shelf sediments, influencing sediment 
distributions and bedform morphology with implications for various disciplines including benthic 
habitats, marine operations, and marine spatial planning. Shelf-scale assessments of wave-tide-dominance 
of sand transport tend not to fully include wave-tide interactions, which nonlinearly enhance bed shear 
stress and apparent roughness, change the current profile, modulate wave forcing, and can dominate net 
sand transport. Assessment of the contribution of wave-tide interactions to net sand transport requires 
computationally/labor intensive coupled numerical modeling, making comparison between regions or 
climate conditions challenging. Using the Northwest European Shelf, we show the dominant forcing 
mode and potential magnitude of net sand transport is predictable from readily available, uncoupled 
wave, tide, and morphological data in a computationally efficient manner using a k-Nearest Neighbor 
algorithm. Shelf areas exhibit different dominant forcing modes for similar wave exceedance conditions, 
related to differences in depth, grain size, tide range, and wave exposure. Wave-tide interactions dominate 
across most areas in energetic combined conditions. Meso-macrotidal areas exhibit tide-dominance while 
shallow, fine-grained, microtidal regions show wave-dominance over a statistically representative year, 
with wave-tide interactions dominating extensively >30 m depth. Sediment transport mode strongly 
affects seabed morphology. Sand wave geometry varies significantly between predicted dominance classes 
with increased wave length and asymmetry, and decreased height, for increasing wave-dominance. This 
approach efficiently indicates where simple noninteractive wave and tide processes may be sufficient for 
modeling sediment transport, and enables efficient interregional comparisons and sensitivity testing to 
changing climate conditions with applications globally.

Plain Language Summary The transport of sand across the marine environment is 
important to understand, as it influences the fate of sediments, pollutants, and can affect seabed habitats. 
In marine settings, sand transport results primarily from the forces exerted by the tide and waves, and 
these forces interact in a nonlinear way. Numerical models can be used to calculate sand transport rates, 
however to understand what processes are driving sand transport under different conditions and across 
large areas requires complex modeling which takes time and resources. Here, we show we can predict the 
magnitude and dominant forcing using a machine learning algorithm trained with readily available data 
for the Northwest European Shelf. Different forces drive net sand transport depending on water depth, 
sand grain size, tide range, and wave exposure. Areas with the largest tides are dominated by tidal forces 
over a year, while shallow areas with fine sand which are exposed to energetic waves are dominated by 
wave forces. We show that sand waves on the seabed increase in length, become more asymmetrical, and 
decrease in height when waves dominate sand transport during storms.
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sand wave morphology (Damen et al., 2018a, 2018b; Wang et al., 2019) with implications for marine spatial 
planning of pipelines and cables for windfarms and offshore renewable energy (Cheng et al., 2020; Németh 
et al., 2003; Roetert et al., 2017), mobilization and dispersal of sediments and contaminants (e.g., due to 
dredge disposal and bottom trawling; Cieślikiewicz et al., 2018; Mengual et al., 2019; Uncles et al., 2020), 
and the fate of shoreface nourishments (Luijendijk et al., 2017). Shear stresses and sand transport driven 
by tides and waves influence benthic communities through disturbance, while also acting as a vector for 
recolonization (Aldridge et al., 2015; Bricheno et al., 2015; Dernie et al., 2003; Hall, 1994; Harris, 2014; 
Levin, 1995; Reiss et al., 2010). The relative impact of wave and tidal forcing influences sand wave morphol-
ogy and migration rates (Campmans et al., 2018a, 2018b; Damen et al., 2018a, 2018b; Van Dijk & Klein-
hans, 2005), causing potential disturbance and affecting the distribution of benthic communities (Dam-
veld et al., 2018, 2020; Harris, 2014). Predictive habitat suitability modeling requires an understanding of 
physical disturbance regimes and knowledge of the dominant drivers of sand transport at the shelf scale is 
important (Harris, 2014).

Assessments of the relative impact of waves and tidal currents on the bed across sandy continental shelves 
have been conducted. Bricheno et al. (2015) mapped the relative impact of tides and storm events at the bed 
across the NW European Shelf over a 10-year period. South West exposed coasts and shallow water areas 
were found to be most at risk from large waves and thus most likely to show wave-dominated transport, and 
modeling suggests the maximum benthic force is wave dominated (Bricheno et al., 2015). The detailed dis-
tribution of physical disturbance shows a complex relationship between depth, tidal stress, wave fetch, and 
grain size, with large uncertainty (Aldridge et al., 2015). Porter-Smith et al. (2004) classify the Australian 
continental shelf based on sediment threshold of motion exceedance from tidal currents and swell waves 
with classes ranging through waves-only, wave-dominated, mixed, tide-dominated, and tide-only. van der 
Molen (2002) considers the relative impact of waves, winds, and tides on sand transport in the Southern 
North Sea. However, at present, shelf-scale analyses of dominant forcing modes for sand transport do not 
consider wave-tide interactions. Wave-tide interactions (WTI) nonlinearly enhance bed shear stress and 
apparent roughness due to interaction between wave and tidal bottom boundary layers, influence the ver-
tical current profile, and modulate wave forcing through tidal elevation changes (Fredsøe, 1984; Grant & 
Madsen, 1979, 1986; Hopkins et al., 2015; Kemp & Simmons, 1982, 1983; Klopman, 1994; Nielsen, 1992; 
Olabarrieta et al., 2010; Tambroni et al., 2015; Umeyama, 2005).

Boundary layer processes dominated by WTI are fundamentally different from those dominated by either 
waves or tides, and WTI can dominate net sand transport across large areas of the shelf over a tidal cycle 
(King et al., 2019). Analyses excluding WTI may underestimate net sand transport under combined wave 
and tide conditions where WTI can dominate. A classification scheme was proposed by King et al. (2019) 
for net sand transport per tidal cycle to account for contributions of waves, tides, and WTI (accounting 
for radiation stresses, Stoke's drift, enhanced bottom-friction and bed shear stress, refraction, current-in-
duced Doppler shift, tidal modulation of wave heights and wave blocking); however, this currently requires 
computationally expensive coupled numerical modeling to assess. A computationally efficient method to 
assess the dominant sand transport mode and magnitude will enable efficient inter-regional comparison of 
the role of waves, tides, and WTI on sand transport at scale and under varied or changing climate forcing. 
This enables efficient assessment of where simple noninteractive wave and tide processes may be sufficient 
to model sand transport, particularly relevant where application of a model or parameterization is predi-
cated on dominance of waves (e.g., parameterizations of headland bypassing; King et al., Under Review; 
McCarroll et al., 2021), or tides (e.g., models of sand wave morphological evolution in tide-dominated en-
vironments; Besio et al., 2008). It also enables efficient assessment of the role of combined wave and tidal 
processes on seafloor morphology, such as by comparing dominant processes with observed sand wave 
geometries (e.g., Damen et al., 2018a, 2018b). It is therefore beneficial to develop a means to quickly assess 
the dominant sand transport mode on sandy continental shelves without the need for computationally 
expensive numerical modeling. This study will consider a homogeneous sand bed, and its implications in 
relation to mixed sediments, including the influence of graded sediment transport, hiding-exposure effects, 
and bio-stabilization (McCarron et al.,  2019; Thompson et al.,  2019; Van Oyen & Blondeaux, 2009), are 
explored in Section 4.2.
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This study aims to apply a data-driven method to predict the dominant sand transport drivers and sand 
transport magnitude on sandy continental shelves using the classification scheme of King et al.,  (2019). 
This will allow assessment of the importance of WTI to sand transport on sandy continental shelves with 
a computationally efficient method versus fully coupled hydrodynamic modeling. Machine learning al-
gorithms are being increasingly used for data-driven applications in the geosciences to take advantage of 
increased availability of large, complex, and multivariate data sets over variable spatial resolutions and cov-
erages, enabling efficient and repeatable analyses to be conducted (Lary et al., 2016; Kanevski et al., 2009). 
The k-Nearest Neighbor (kNN) algorithm has been employed for prediction of seafloor properties in the ge-
osciences including seafloor total organic carbon (Lee et al., 2019), isochore thickness (Lee et al., 2020), and 
sediment accumulation rates (Restreppo et al., 2020). Other applications of machine learning algorithms 
in the geosciences include predictions of seafloor sediment porosity (Martin et al., 2015) and seafloor fluid 
expulsion anomalies (Phrampus et al., 2020). The kNN algorithm is one of the simplest machine learning 
algorithms, and can be used in geospatial classification prediction (Kanevski et al., 2009).

To achieve the aim of this study, we will pursue the following objectives: (a) determine a list of readily avail-
able environmental and morphological variables with predictive capacity for the dominant sand transport 
mode and order of magnitude; (b) use results of sand transport rates obtained through a validated numer-
ical model to train a kNN classifier for dominant sand transport class and order of magnitude; (c) collate 
environmental and morphological predictors across a sandy continental shelf with highly varied environ-
mental conditions; and (d) use the trained kNN classifier to assess the dominant transport mode and sand 
transport magnitude across the shelf.

2. Methods
2.1. Study Region

The Northwest European continental shelf (Figure 1) was selected for this study due to a combination of 
ready availability of environmental and morphological variables covering the entire continental shelf area, 
herein referred to as “shelf scale” data (Graham et al., 2018; O’Dea et al., 2012; Tonani et al., 2019; Tonani 
& Saulter, 2020; Wilson et al., 2018), a highly varied tidal regime ranging from macrotidal to microtidal 
(Pingree & Griffiths, 1979), a varied wave climate ranging from regions exposed to a potential 7000 km fetch 
dominated by long-period swell waves (e.g., Celtic Shelf; Collins, 1987; Draper, 1967; Scott et al., 2016) to 
regions sheltered from the Atlantic swell and dominated by wind-waves (e.g., Netherlands Shelf; van der 
Molen, 2002). This continental shelf has a predominantly sand bed with median sand fraction grain size 
ranging from fine to coarse sand (Figures 1b and 1c; Wilson et al., 2018). Broadly separated into sand, mud 
and gravel, sand comprises 82.1% of the shelf area, mud 6.4%, and gravel 11.4%, based on Folk (1954) using 
the data of Wilson et al. (2018). More detailed sediment classification maps of the region can be found in 
Mitchell et al. (2019). The shelf area has a wealth of literature examining environmental drivers of benthic 
disturbance (Aldridge et al.,  2015; Bricheno et al.,  2015; Thompson et al.,  2019), sand transport (Harris 
& Coleman, 1998; King et al., 2019; Leonardi & Plater, 2017; Pingree & Griffiths, 1979; Uncles, 2010; van 
der Molen, 2002) and bedform morphodynamics (Cheng et al., 2020; Damen et al., 2018a, 2018b; Ward 
et al., 2015). These factors make this an ideal region to examine the performance of a method for predicting 
the dominant driver of sand transport at the shelf scale.

2.2. Classification Scheme

Previous modeling work by King et al. (2019) simulated net sand transport per tidal cycle across a mac-
ro-mesotidal section of the Celtic Shelf (Figure 1a) using Delft3D (Booij et al., 1999; Lesser et al., 2004) 
in a depth-averaged mode using the sand transport formulation of Van Rijn (2007a, 2007b). Delft3D in a 
depth-averaged mode has previously been used successfully to simulate sand transport processes including 
the impact of WTI on the inner shelf (Hansen et al., 2013; Hopkins et al., 2015; King et al., 2019; Luijendijk 
et al., 2017; McCarroll et al., 2018; Ridderinkhof et al., 2016). Simulations were performed for spring and 
neap tides and median and extreme (1% exceedance) waves from two modal directions with waves and tides 
simulated together and in isolation, to allow calculation of individual wave, tide, and WTI components of 
net sand transport.
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Figure 1. Maps of (a) depth, (b) median sand fraction grain size, and (c) sand as a percentage of available sediment for the Northwest European Continental 
Shelf. Depths are taken from the FOAM-AMM7 model (O’Dea et al., 2012), while sediment characteristics are taken from Wilson et al. (2018). Selected shelf 
areas for later comparison are indicated and named in (a). The colorbar of (a) is clipped at 300 m to better illustrate the shelf. Below 300 m, contours are shown 
(light gray lines). The extent of the model domain of King et al. (2019), used to train the kNN model, is indicated as “Delft3D Domain”.
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King et al. (2019) derived a classification scheme to categorize sand transport between wave-dominated, 
tide-dominated, and nonlinear-dominated, where nonlinear refers to the added nonlinear effects on sand 
transport due to WTI (Figure 2). Classes are determined by two ratios:

R Q Q QT W N1   : (1)

R Q QW N2  : (2)

Q Q Q QN ALL T W   (3)

where R1 represents the ratio of the tide-only net sand transport magnitude (QT) to the combined wave-only 
net transport magnitude (QW) and the component attributed to nonlinear WTI (QN). This determines the 
relative influence of waves (including nonlinear interactions) versus tides, determined by subtracting the 
tidal component from the coupled wave +  tide net transport magnitude (QALL). Ratio R2 represents the 
relative contribution of nonlinear interactions (QN) versus waves alone (QW). This allows the contribution 
of tides, waves, and the added nonlinear effects due to wave-tide interactions to be quantified, visualized, 
and compared. This classification scheme considers net sand transport per tidal cycle, and the class can 
change under different combinations of wave and tidal forcing. Classification changes under different con-
ditions qualitatively matched modeled shifts in sand transport direction (King et al., 2019; Pattiaratchi & 
Collins, 1988), supporting the predicted shift in the dominant mode of net sand transport.

This classification scheme results in three dominant modes of net sand transport (wave-dominated, W, 
tide-dominated, T, and nonlinear-dominated, N), where the respective forcing is responsible for at least 
75% of the net sand transport magnitude. When the dominant class is responsible for >50% of net sand 
transport, but <75%, a subdominant class is defined (noted using lowercase letters between brackets behind 
the dominant class). At present, this scheme requires results from coupled and uncoupled numerical simu-
lations of net sand transport to calculate. Using the simulations of King et al. (2019), it is possible to extract 
the sand transport dominance class, the net sand transport magnitude, and the corresponding environ-
mental variables for use in a predictive model. The following section will examine kNN as a classification 
prediction method, based on defined predictor variables, which we will apply to this classification scheme 
(Section 2.3).

2.3. K-Nearest Neighbor (kNN)

The kNN algorithm works on the principle that areas with similar conditions are likely to share the same 
class. The kNN algorithm requires a predictand (the variable or class we want to predict) and a set of defined 
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Figure 2. Classification scheme for sand transport dominant forcing proposed by King et al. (2019).
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predictors (variables we have measured or estimated). The algorithm is trained on the predictor data associ-
ated with known values of the predictand. The algorithm is then used to predict unseen data where the pre-
dictand is unknown by calculating the distance to the “k” nearest neighbors in parameter space to the new 
data, where “k” is the number of nearest points the algorithm uses for its calculation. The implementation 
used in this study is included in the MATLAB Statistics and Machine Learning Toolbox (MathWorks, 2020). 
The predicted class is the class with the minimum estimated cost, determined as a function of the probabili-
ty that the new data come from a particular class and the expected cost of misclassification for each observa-
tion. Numerous search methods exist for determining the nearest neighbors for use in the algorithm. In this 
study, a Kd-tree is used to perform the nearest neighbor search, saving computation time as only a subset of 
the distances to points need to be calculated. Data were standardized and distances calculated using a city-
block distance metric (sum of absolute distances) using all available predictors with k = 7, as this provided 
optimal accuracy while minimizing the value of k to avoid smoothing the data (see Table S1).

Model performance was determined using five-fold cross-validation of the training data set. This entails 
splitting the data set into five equal parts, and iteratively training the model on four of five parts, while 
validating using the fifth part by calculating the percentage of observations which was classified correctly, 
changing the validation to fifth each time. The final model accuracy is an average of the five cross-validation 
scores. This method mitigates the likelihood of overfitting (Kanevski et al., 2009; Lee et al., 2019).

The choice of predictors is motivated by data availability, physical relevance to the prediction of the net sand 
transport forcing mode and magnitude, spatio-temporal resolution, as well as predictive value of each po-
tential predictor. To assess the value of individual predictors, each predictor was tested in isolation to predict 
the class and order of magnitude of the net sand transport. The accuracy of each predictor was then com-
pared with the predictive accuracy of an array of random numbers, to test whether predictors had greater 
predictive value than random noise. This was achieved by training a kNN classifier on each predictor in iso-
lation, and comparing the accuracy of this classifier with a classifier trained on uniformly distributed ran-
dom noise. The selection of predictors, including their predictive accuracy, is described below (Section 2.4).

2.4. Environmental Predictors

Environmental predictors across the NW European Shelf used in this study are shown in Table 1a, includ-
ing their sources and resolution (spatial, temporal) where applicable. With these data sources defined, the 
model scenarios conducted to generate training data are included in Table 1b, including the range of the 
parameters used. Modeled scenarios were conducted as described in King et al. (2019), calculating net sand 
transport for wave-only, tide-only, and wave + tide forcing over springs and neaps at 1 km resolution for an 
approx. 350 × 240 km region of the Celtic shelf with variable wave exposure and meso-megatidal regime. 
A full model description and validation is also presented therein. Additional scenarios were conducted in 
addition to those described in King et al. (2019) to include more intermediate wave conditions and a range 
of grain sizes. Mixed size fractions (e.g., sand-gravel mixtures) were not considered, and this is discussed 
in Section 4.2. Dominant transport classes were calculated as in Figure 2, and order of magnitude of net 
sand transport was determined from the coupled wave  +  tide simulations. Predictors for training were 
determined from the uncoupled simulations to ensure WTI were not included in the predictor variables, 
replicating the uncoupled nature of the shelf-scale models.

An example of the relationship between tidal range TR, maximum tidal current speed Umax, relative wave 
height Hs/h and the sand transport dominance classes of King et  al.  (2019) is shown in Figure  3. The 
modeled TR and Umax are shown as a function of Hs/h with class indicated by color (Figures 3a and 3b). 
Tide-dominated areas exhibit low relative wave heights and stronger tidal currents, while wave-dominated 
areas are the inverse. Nonlinear-dominated areas occupy the mixed energy section of the parameter space. 
A three-predictor kNN classifier is shown in Figure 3c, indicating the classification boundaries for relative 
to the three predictors: new data falling within this parameter space will be classified accordingly. This is 
a simplified classifier for 3D visualization, whereas the final classifier has eight dimensions (see Table 2).

Each of the eight predictors in Table 1 was tested in isolation and compared with classifications predicted by 
an array of random numbers to determine its predictive value. For a predictor to be accepted, it is required 
to have an accuracy greater than that of the random array, as in Lee et al. (2019). The predictive accuracy of 
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(a) Environmental predictors across the NW European Shelf

Predictor Name Symbol Units Source
Spatial 

resolution
Temporal 

Resolution Interpolation Processing

Significant wave height Hs m Tonani and Saulter (2020) 1.5 km 1 h Interpolated to 7 km 
grid

Mean Hs per tidal cycle

Peak period Tp s As Hs 1.5 km 1 h Interpolated to 7 km 
grid

Mean Tp per tidal cycle

Wave Power P W As Hs 1.5 km 1 h Interpolated to 7 km 
grid

Mean P per tidal cycle

Deptha h m O’Dea et al. (2012) 7 km - Converted to MSL2000 -

Relative wave height Hs/h - As Hs and h 7km 1 h - Mean Hs/h per tidal cycle

Tide range TR m Graham et al. (2018); 
O’Dea et al. (2012)

7 km 1 h - Determined per tidal cycle

Max tidal current Umax ms−1 As TR 7 km 1 h - Determined per tidal cycle

Angle between waves 
and currents

θ Deg As Hs and TR 7 km 1 h - Mean wave direction and max 
tidal current direction

Median grain size D50 μm Wilson et al. (2018) 0.125° - Interpolated to 7 km 
grid

-

(b) Modeled scenarios for training

Scenario Hs∩Tp joint exceedance 
probability

Hs min, median, 
max (m)

Tp min, median, 
max (s)

Tide condition TR min, median, 
max (m)

Umax min, median, 
max (ms−1)

D50 (μm) N° data

1 1% 0.2, 7.1, 8.5 5.9, 17.6, 19.0 Springs 1.8, 3.0, 7.8 0.03, 0.7, 3.6 125 44,861

2b 1% 0.2, 7.1, 8.5 5.9, 17.6, 19.0 Springs 1.8, 3.0, 7.8 0.03, 0.7, 3.6 330 44,683

3 1% 0.2, 7.1, 8.5 5.9, 17.6, 19.0 Springs 1.8, 3.0, 7.8 0.03, 0.7, 3.6 750 43,582

4 1% 0.2, 7.1, 8.5 5.9, 17.6, 19.0 Neaps 0.6, 1.2, 4.2 0.02, 0.3, 1.5 125 44,566

5b 1% 0.2, 7.1, 8.5 5.9, 17.6, 19.0 Neaps 0.6, 1.2, 4.2 0.02, 0.3, 1.5 330 43,652

6 1% 0.2, 7.1, 8.5 5.9, 17.6, 19.0 Neaps 0.6, 1.2, 4.2 0.02, 0.3, 1.5 750 39,972

7 10% 0.1, 4.1, 4.8 5.0, 14.9, 15.4 Springs 1.8, 3.0, 7.8 0.03, 0.7, 3.6 125 44,577

8 10% 0.1, 4.1, 4.8 5.0, 14.9, 15.4 Springs 1.8, 3.0, 7.8 0.03, 0.7, 3.6 330 44,272

9 10% 0.1, 4.1, 4.8 5.0, 14.9, 15.4 Springs 1.8, 3.0, 7.8 0.03, 0.7, 3.6 750 41,709

10 10% 0.1, 4.1, 4.8 5.0, 14.9, 15.4 Neaps 0.6, 1.2, 4.2 0.02, 0.3, 1.5 125 41,885

11 10% 0.1, 4.1, 4.8 5.0, 14.9, 15.4 Neaps 0.6, 1.2, 4.2 0.02, 0.3, 1.5 330 39,175

12 10% 0.1, 4.1, 4.8 5.0, 14.9, 15.4 Neaps 0.6, 1.2, 4.2 0.02, 0.3, 1.5 750 16,637

13 50% 0.1, 1.9, 2.1 3.4,10.5,10.8 Springs 1.8, 3.0, 7.8 0.03, 0.7, 3.6 125 43,380

14b 50% 0.1, 1.9, 2.1 3.4,10.5,10.8 Springs 1.8, 3.0, 7.8 0.03, 0.7, 3.6 330 41,224

15 50% 0.1, 1.9, 2.1 3.4,10.5,10.8 Springs 1.8, 3.0, 7.8 0.03, 0.7, 3.6 750 30,842

16 50% 0.1, 1.9, 2.1 3.4,10.5,10.8 Neaps 0.6, 1.2, 4.2 0.02, 0.3, 1.5 125 13,415

17b 50% 0.1, 1.9, 2.1 3.4,10.5,10.8 Neaps 0.6, 1.2, 4.2 0.02, 0.3, 1.5 330 10,274

18 50% 0.1, 1.9, 2.1 3.4,10.5,10.8 Neaps 0.6, 1.2, 4.2 0.02, 0.3, 1.5 750 5,265

Summary: 1% – 50% 0.1–8.5 3.4–19.0 Springs 
– Neaps

0.6–7.8 0.02–3.6 125–750 633,972

aDepth used as a predictor combined in Hs/h 
bScenarios described in King et al. (2019)

Table 1 
(a) Environmental Predictors Across the NW European Shelf; (b) Environmental Predictors and Scenarios Used in Delft3D Simulations to Generate Training Data



Journal of Geophysical Research: Oceans

KING ET AL.

10.1029/2021JC017200

8 of 24

Figure 3.



Journal of Geophysical Research: Oceans

each predictor is shown in Table 2 for the dominance class and order of magnitude. The only variable with a 
lower predictive value than random noise in isolation was median grain size D50 (test 9). To further test D50, 
accuracy of the k-NN prediction was tested alongside the other predictors with and without D50 (tests 10 and 
12) and also with and without the random array (tests 10 and 11). It was found that in conjunction with the 
other predictors, D50 provided a greater improvement in accuracy (class: 21.1%; magnitude: 46.3%) than the 
random array (class: 12.3%; magnitude: 9.1%), and was vital for an accurate prediction of the dominant class 
and order of magnitude (Table 2), therefore D50 was included as a predictor. Final predictive accuracy was 
81.9% for class and 90.8% for magnitude, and most misclassified data were only out by one class. Further 
sensitivity analyses of classification accuracy to the volume of training data available, the available varia-
bles (e.g., exclusion of wave data), and sensitivity to training using only data from shallow/deep waters is 
presented in the Supporting Information (Tables S2–S4; Text S1).

Tidal predictors (tide range TR, maximum current speed Umax) are shown across the NW European shelf in 
Figures 4a–4d for springs and neaps. A distribution of TR over a statistically representative year is shown 
in Figures 4e and 4f at two locations marked with triangles in subplots a–b. The distribution of TR was 
calculated across each node of the NW European shelf area over 1 year. Areas below the shelf break were 
excluded from analysis as they were below the maximum depth in the training data. Similarly, wave pre-
dictors are shown in Figures 5a–5d. These predictors are shown for 1% and 50% joint exceedance of Hs and 
Tp, as determined from a fitted joint probability gumbel copula distribution (Genest & Favre, 2007) at each 
node across the domain over 1 year, using generalized extreme value and gamma marginal distributions for 
Hs and Tp respectively. Wave direction was taken as the mean wave direction over the year. Wave heights are 
in agreement with wave conditions for similar exceedances modeled by Bricheno et al. (2015). Depth was 
taken from the AMM7 model for calculation of Hs/h, while grain size was determined from the synthetic 
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Figure 3. For illustrative purposes only - relation of classes to predictor variables in a simplified 3-dimensional kNN classifier: (a and b) Modeled tide range TR 
and maximum tidal current speed Umax as a function of significant wave height relative to water depth Hs/h, data are colored as per their associated dominance 
class (King et al., 2019), contours are shown to indicate point density for each class. Only data in the three primary classes are shown for simplicity (tide-
dominated, wave-dominate and nonlinear-dominated); (c) Example of classification boundaries for a simple 3D k-NN classifier using tide range, maximum 
current speed, and relative wave height. New data falling within the 3D parameter space are classified accordingly. The actual classifier has 8 dimensions, and 
this should be viewed as a simplified example only.

Test 
number Variable(s) Symbol

Accuracy: Dominant 
class (King et al., 2019) % 

Correct

Accuracy: Order of 
magnitude (OOM) % 

Correct

Difference relative 
to random array for 

class %

Difference relative 
to random array 

for OOM %

1 Random array Rnd 30.2 27.2 - -

2 Significant wave height Hs 58.3 42.3 +28.1 +15.1

3 Peak period Tp 49.2 27.4 +19.0 +0.2

4 Wave Power P 58.5 42.3 +28.3 +15.1

5 Relative wave height Hs/h 58.2 42.1 +28.0 +14.9

6 Tide range TR 49.1 28.7 +18.9 +1.5

7 Max tidal current Umax 49.0 28.7 +18.8 +1.5

8 Angle between waves and currents θ 43.0 35.1 +12.8 +7.9

9 Median grain size D50 9.4 24.5 −20.8 −2.7

10 All from tests 2 to 8 - 60.8 44.5 +30.6 +17.3

11 As 10 + Rnd - 73.1 53.6 +42.9 (+12.3)b +26.4 (+9.1)b

12a As 10 + D50 - 81.9 90.8 +51.7 (+21.1)b +63.6 (+46.3)b

Note. Accuracy is determined from five-fold cross-validation of the training data set, and is calculated for a random number array (test 1), individual predictors 
(tests 2–9), and the combined predictors to further test D50 (tests 10–12). The accuracy of the final kNN prediction with all predictors is shown (test 12).
aDifference relative to test number 10. 
bTest 12 represents the accuracy of the final kNN model used.

Table 2 
Predictive Accuracy of kNN Models Trained on the Environmental Predictors Compared With Calculated Dominance Classes and Order of Magnitudes From 
Model Data
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Figure 4. Maps of representative tide conditions across the NW European Shelf. Histograms show distributions of tide range (TR) normalised by the maximum 
tide range over 1 year for two locations indicated by white triangles in subplots (a) and (b) for their respective columns. Fitted probability distribution functions 
are shown (red curves).
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Figure 5. Maps of representative wave statistics. (a and b) Significant wave height Hs for 1% exceedance and 50% exceedance probability. (c and d) Peak period 
Tp for 1% exceedance and 50% exceedance probability. (e and f) Joint probability distribution function (blue) and cumulative distribution function (red dashed) 
contours for two locations over 1 year. Selected Hs and Tp for the 1% and 50% exceedance probability are indicated by a + and x respectively, taken at the point 
on the CDF contour with the maximum probability density interpolated from the PDF. The locations used for subplots (e and f) are indicated by white triangles 
in subplots (a and b) respectively.
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map created by Wilson et al. (2018; Figure 1). All variables were resampled where necessary to the AMM7 
model grid at 7 km resolution. The fitted distributions of the tide range (e.g., Figures 4e and 4f) and joint 
Hs and Tp (e.g., Figures 5e and 5f) enable the generation of tide and wave forcing data for a statistically 
representative year, assuming wave and tide condition are independent, keeping water depth and grain size 
constant, and using the mean wave direction and maximum tidal current direction as an indicator of the 
direction difference between waves and the tidal major axis.

3. Results
In this section, we present the results of the kNN classification across the NW European shelf for different 
environmental conditions, and examine the influence of different conditions on the shelf areas presented 
in Figure 1a. We go on to present the determination of the dominant sand transport class and order of mag-
nitude over a statistically representative year.

3.1. Environmental Forcing Controls on Sand Transport Across the Shelf

Results from the kNN prediction for different environmental forcing conditions are presented as maps in 
Figure 6. The dominant class, indicating the dominant driver of sand transport, and the potential order of 
magnitude of net sand transport are presented for spring (Figure 6a, 6b, 6e and 6f) and neap (Figure 6c, 6d, 
6g and 6h) tides under median (50% exceedance; Figures 6a–6d) and extreme (1% exceedance; Figures 6e–
6h) wave forcing as characterized for each node on the shelf area (see Figures 4 and 5). Regions greater than 
140 meters in depth are excluded to avoid extrapolation, as these exceed the largest depth in the training 
model and are deep enough that wave impacts are likely to be minimal.

Coastal areas around the UK are generally tide-dominated at spring tides and median wave forcing, with the 
second largest predicted order of magnitude of potential net sand transport (Figures 6a and 6b), exceeded 
only by the extreme waves at spring tide conditions (Figures 6e and 6f). This includes large areas of the me-
so-macrotidal Celtic shelf, UK East Coast and the Irish Sea. Under median waves, the influence of nonlinear 
wave-tide interactions was most prevalent in microtidal shelf areas below 30 m depth, with net transport up 
to several orders of magnitude lower than shallower or meso-macrotidal regions. Only microtidal, shallow, 
wave-exposed areas such as Dogger Bank and the DE-DK Shelf show wave-dominance in median wave 
conditions. The lowest magnitudes across the shelf are found for median waves at neaps, where only the 
shallow, exposed areas of the NL and DE-DK Shelves show elevated net sand transport driven by waves 
(Figures 6c and 6d). Sand transport is effectively switched off in areas other than the NL and DE-DK shelves 
under these low energy conditions.

In the highest energy conditions with extreme waves at springs, macro-meso tidal areas show dominance 
of WTI, while waves dominate sand transport in the Eastern North Sea where tidal currents are weaker 
(Figures 6e and 6f). Sand transport is dominated by waves across this shelf area during extreme waves at 
neaps, with the greatest magnitudes in finer grained, shallow, and wave exposed areas of the NL and DE-DK 
Shelves in the Eastern North Sea (Figures 6g and 6h). This wave-dominance is despite these areas having 
lower wave energy at this exceedance than more swell exposed regions (e.g., Celtic Shelf), indicating the im-
portance of grain-size and water depth as controls. The next section explores the influence of environmental 
forcing conditions in more detail for the different shelf areas.

3.2. Environmental Forcing Controls on Sand Transport for Shelf Sub-Areas

A sensitivity analysis for different shelf areas was conducted by changing the environmental forcing con-
ditions, including tidal condition, wave exceedance and grain size, and calculating the average class across 
each shelf area. To determine an average class, the kNN-predicted classification for each node within the 
designated region (Figure 1a) was converted to a representative pair of ratios R1 and R2 (Equations 1 and 2; 
Figure 2). Values of R1 and R2 were taken as the center value of each classification bin, while end values 
(e.g., for R1 > 3 in tide-dominated conditions) were assumed to be dominant by a factor 6 in their respective 
direction (e.g., R1 = 6 for tide-dominated transport). The mean R1 and R2 of all nodes within each region 
were calculated, weighted by the predicted net transport magnitude. These results are presented in Figure 7.
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Figure 6. Results from the KNN predictions for different conditions presented as maps, including the dominant 
transport mode classification (left column) and order of magnitude (right column). Colors on the right column are on 
a logarithmic scale. Extreme (1% exceedance; Ex) and median (50% exceedance; Med) wave forcing is shown at springs 
(Spr) and neaps (Neap).
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Figure 7. Sensitivity analysis for different shelf areas under changing environmental forcing conditions (UK – United Kingdom, NL – Netherlands, DE-DK 
– Denmark-German, NO – Norwegian). “Ex” denotes 1% exceedance “Extreme” wave forcing, “Med” denotes 50% exceedance “Median” wave forcing. DQ(N) 
denotes the Nth quantile of the sediment D50 diameter as distributed through the specified region. (b) The influence of grain size on the predicted classification 
for the UK East Coast region. Red and blue symbols indicate the class for the 2.5th and 97.5th centiles D50 in the region, respectively. Other shelf areas show the 
class for the median D50 in these regions. The 2.5th, 50th and 97.5th centile D50 values are indicated on linear scales next to the classification triangle for each 
region.
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The same wave and tidal forcing conditions are presented as shown in Figure 6. Symbols are placed within 
the classification triangle according to the regional mean R1 and R2 for that forcing condition. The influ-
ence of grain size variation is shown in Figure 7b. This is an indication of the variability in the response 
throughout the region arising from the spatial variability of grain size (D50). The dominant class was calcu-
lated for the median, 2.5th and 97.5th centiles of D50 through each region. Sand transport was more tidally 
dominated for finer grain sizes, due to easier resuspension. For clarity, the results for the other regions are 
shown for the median D50 through that region, with an indication of the variability in grain size shown on 
a scale.

Environmental forcing conditions are the primary control on the dominant net sand transport mode, with 
grain size moderating this. Different shelf areas exhibit different responses to changing forcing. Shelf areas 
adjacent to the UK (Irish Sea, Celtic Sea & UK-East Coast) are tidally dominated for median wave forcing at 
spring tides, while the NL Shelf and DE-DK Shelf show a significant tidal influence. Dogger Bank and the mi-
crotidal area of the NO Shelf have relatively low tidal sand transport magnitudes (Qnet ≲ 0.01 m3m−1cycle−1;  
Figure 6b) and are classified as nonlinear-dominated. Under median waves at neaps, tidal sand transport is 
low across the shelf and nonlinear interactions drive the sand transport that does occur. For extreme waves 
at springs, sand transport in most areas is dominated by WTI with the exception of the DE-DK Shelf which 
is wave dominated with a subdominant impact from WTI. Under extreme waves at neaps, most areas shift 
to wave-dominated sand transport. The macrotidal Celtic Sea and the relatively sheltered Irish Sea retain a 
subdominant contribution from WTI in these conditions. The next step is to determine which forces drive 
net sand transport over a statistically representative year, and the order of magnitude of that sand transport, 
taking the full annual distribution of waves and tides into account.

3.3. Dominance and Magnitude of Net Sand Transport Over a Year

Using the fitted tide range distribution (e.g., Figures 4e and 4f), and the fitted copula joint probability dis-
tribution for significant wave height and peak period (e.g., Figures 5e and 5f) for each node across the shelf, 
it was possible to generate tide and wave forcing data for a statistically representative year of semi-diurnal 
tidal cycles. By assuming independence between wave condition and tide condition, keeping water depth 
and grain size constant, and using the mean wave direction and tidal maximum current direction, it was 
possible to tabulate a representative set of predictors over a statistically representative year. These were 
then used to determine a classification and order of magnitude for each tidal cycle. The sum of the order 
of magnitude over the statistically representative year gives a sense of the magnitude of potential net sand 
transport across the shelf over one year, while the classification for each node was determined as the class 
for which the maximum net sand transport occurred over the year. Results are shown in Figure 8.

Net sand transport ranges from approx. 10 m3m−1y−1 in deeper, microtidal areas of the NO Shelf, to up to 
10,000 m3m−1y−1 in more wave exposed areas of the DE-DK Shelf and the macrotidal areas of the south west 
English Channel. Much of the shelf surrounding the UK is tidally dominated, while deeper areas of the 
shelf, including much of the Celtic Sea and NO Shelf, are dominated by the nonlinear effects of WTI. Shal-
low, fine grained areas of Dogger Bank and the DE-DK shelf are dominated by wave-driven sand-transport, 
reflecting the lower tidal velocities across these regions. The NL Shelf is also dominated by the nonlinear 
effects of WTI, reflecting stronger tidal currents and coarser grain size than Dogger Bank and the DE-DK 
Shelf (Figures 1b and 4). This does not consider wind-driven net sand transport, nor the influence of sand-
mud or sand-gravel mixtures. Areas with very low fractions of sand (Figure 1c) are included in these figures, 
and therefore these results should be considered for the potential net sand transport magnitude assuming 
continual availability of sand at the bed. These points are discussed in detail in Section 4.2. In addition, a 
comparison to the observed sand wave morphology is made in the Discussion (Section 4.1).

4. Discussion
The magnitude of net sand transport and relative dominance of waves, tides, and their nonlinear inter-
actions was predicted for the Northwest European Continental Shelf using a kNN approach trained on 
extensive numerical modeling data on the Celtic Shelf area using a coupled hydrodynamic, wave and sand 
transport model (King et al., 2019). This shelf area has a highly varied tidal climate ranging from micro-to 
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mega-tidal, varying degrees of wave exposure and a highly energetic wave climate (Harris & Coleman, 1998). 
These factors result in a varied parameter space with which to test the application of this kNN classification 
approach while generating insights into the dynamics of sand transport across this shelf.
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Figure 8. Dominant net sand transport classification and order of magnitude integrated over a statistically 
representative year using forcing conditions taken from the wave exceedance joint-probability distributions and tidal 
range probability distributions.
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The dominance of waves on the DE-DK Shelf and Dogger Bank, and dominance of tides along the UK East 
Coast predicted here is in agreement with modeling of wave, wind, and tidal sand transport in the North 
Sea (van der Molen, 2002), lending confidence to the predictions of the kNN model. This paper builds upon 
the previous work by considering the influence of WTI, indicating that the nonlinear wave-tide interaction 
dominates along the Dutch Shelf and deeper areas of the Celtic Sea and the Norwegian Shelf. This paper 
also presents a computationally efficient method for estimating the dominant processes influencing net 
sand transport, and its magnitude, for different environmental forcing conditions using readily available 
data. In the next section we examine a potential application of this method to look at the influence of envi-
ronmental forcing parameters on sand wave morphology. We then discuss other applications, limitations, 
and future work that arises from this.

4.1. Comparison With Sand Wave Morphology

Modeling of sand wave dynamics is important for offshore renewable energy industrial activities and 
studies have been conducted to understand their dynamics in the Dutch North Sea and elsewhere (Cheng 
et al., 2020; Damen et al., 2018a, 2018b; Roetert et al., 2017; Van Oyen et al., 2011; van Santen et al., 2011; 
Wang et al., 2019). Tidal sand waves are also habitat to benthic species whose spatial distribution is depend-
ent upon sand wave morphology, with feedback effects on sand wave evolution (Damveld et al., 2018, 2020).

Surface waves affect sand wave growth, wave length, and migration, reducing sand wave height and in-
crease wave length (Campmans et al., 2018a, 2018b). Damen et al. (2018a) examined sand waves on the 
Netherlands Shelf, finding weaker than expected correlation of sand wave height with Hs possibly due to 
the interdependent and opposite acting correlations between Hs, water depth, and sand wave height (Camp-
mans et al., 2018a, 2018b; Houthuys et al., 1994; Van Dijk & Kleinhans, 2005). They find that it is more 
reliable to consider the impact of the waves at the bed, for example, using the Shields parameter.

Tidal currents are known to positively correlate with spatial frequency (Damen et al., 2018a, 2018b; Van 
Santen et  al.,  2011). Damen et  al.  (2018a) find weak correlation between tidal currents and sand wave 
height. It is important to consider the level of suspended sediment transport as a control on sand wave 
length and height (Borsje et al., 2014; Damen et al., 2018a, 2018b). This could be a future application of this 
kNN method, to predict the balance between suspended and bedload sand transport under variable forcing 
conditions.

Here, we use the same trained kNN classifier as presented earlier to predict the dominant transport mode 
across the same region considered by Damen et al. (2018a). Where possible, predictor data used were tak-
en from the data set of Damen et al.  (2018b). These included 1% exceedance Hs, M2 current amplitude 
(instead of the maximum tidal current) and grain size D50. Tide range, current mean direction, and wave 
mean direction were interpolated from the shelf-scale predictors used earlier, and TP was interpolated from 
the 1% exceedance Tp (Figure 5c). The predicted transport class was determined at 1 km resolution at the 
same locations as the data presented in Damen et al. (2018a) and this is presented in Figure 9a. Under these 
conditions we predict the dominance of nonlinear WTI in the southeast of the sand wavefield, moving to 
wave-dominance in the northwest.

The height, wave length, and asymmetry of the sand waves were binned for each classification and compared 
between classes (Figures 9b–9d). This resulted in comparison of 9,161 data points each representing sand 
wave characteristics over a 1-km2 area. Results suggest that sand wave height is lowest in the wave-dom-
inated regions, and larger in regions dominated by nonlinear WTI. Similarly, wave length and asymme-
try appear to increase with an increase in wave-dominance. The statistical dissimilarity of the sand wave 
populations in each class was tested using the Kolmogorov-Smirnov (KS) test. Distributions of sand wave 
characteristics were found to be unique between classes at the 95% confidence level. A second one-sided KS 
test was performed to test the hypotheses that sand wave height decreases moving from nonlinear interac-
tion-dominated to wave-dominated sand transport, and that wave length and asymmetry increase. These 
hypotheses were found to be true at the 95% confidence level, and P-values are included in Figures 9e–9g.

These results are in agreement with previous research into wave and tidal influences on sand wave height, 
wave length, and asymmetry (Campmans et al., 2018a, 2018b; Damen et al., 2018a, 2018b), lending confi-
dence to the results of the kNN prediction and indicating that WTI may play a significant role influencing 
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sand wave morphology, and this classification scheme has a predictive power for sand wave morphology 
on sandy continental shelves. This prediction is based on the most energetic wave and tidal conditions. The 
annual classification determined in Figure 8 indicates that this region is dominated by nonlinear WTI on 
an annual scale, suggesting that the more energetic conditions play a significant role in controlling sand 
wave morphology, with increased wave-dominance under storm conditions limiting sand wave heights. 
While sandwave asymmetry may be indicative of the net sand transport direction, sandwave growth is 
dependent on local residual currents driving sediment to the sandwave crest (Besio et al., 2006; Campmans 
et al., 2018a, 2018b; Hulscher, 1996; van Santen et al., 2011), and gross sand transport may be a stronger 
indicator for this as these local residuals do not depend on the regional net sand transport rate. It is feasible 
to extend and apply this method to the prediction of gross sand transport.

4.2. Assumptions, Limitations and Future Work

In this study we show that the magnitude of net sand transport and the relative contribution from waves, 
tides, and nonlinear WTI is amenable to estimation using readily available wave and tidal data utilizing 
a kNN classification prediction approach. The kNN method itself does not account for the physical rela-
tionships between predictors and the resultant classification, relying instead on the associations between 
predictors and classifications in the parameter space. This implies that the trained classifier will only be 
representative of the physical processes represented in the training data. The trained classifier cannot there-
fore be used to extrapolate outside the range and physics represented in the data used to train it, however it 
can be applied in other regions. Classifier accuracy is expected to be poor when used to extrapolate beyond 
the limitations of its training data, therefore care should be taken when applying this method to identify 
potential biases and limits (such as depth limitations) of the training data in order not to extrapolate. This 
may represent a limitation in data-poor regions. A sensitivity analysis to available variables for training the 
classifier, the size of the training data set, and classifier accuracy when trained in exclusively shallow/deep 
waters is presented in the Supporting Information (Tables S2–S4; Text S1). Here, we discuss the processes 
represented in the model used to generate the training data in this study, and the implications of those not 
represented.

Data used to train this kNN predictor were generated by a well validated numerical model of coupled hy-
drodynamics, waves and sand transport (King et al., 2019). The range of each predictor in the training data 
is shown in Table 1. Sand transport rates are determined using the formulation of van Rijn (2007a, 2007b), 
therefore, the predictor is representative of the physics included therein. Importantly, baroclinic and 
wind-driven currents are not included in the training model. This paper considers processes at the shelf 
scale, and due to the resolution of the forcing variables it should be considered to represent an estimate of 
the dominant sand transport processes on the continental shelf, and does not consider processes landward 
of the shoreface (approx. 15 m) (e.g., Hamon-Kerivel et al., 2020; Héquette et al., 2008).

Important wind speed events can interact constructively or destructively with tidal currents to influence 
sand transport rates, depending on the relative angle of wind-driven currents to the tidal current direction 
(Héquette et al., 2008). Wind-driven currents are weak on the Celtic Shelf (Pingree & Le Cann, 1989), and 
wind-driven residual currents across the NW European Shelf are likely to be most significant at neaps when 
tidal currents are weakest (Pingree & Griffiths, 1980), with the strongest wind-driven residuals present in 
the Southern North Sea. van der Molen (2002) discusses wind-driven sand transport relative to tides and 
wind waves in the Southern North Sea, finding wind-driven flows contributing significantly to net sand 
transport where tidal currents are small, alongside wave-driven currents. The areas defined by van der Mo-
len (2002) as storm dominant (winds + waves) qualitatively agree with the wave-dominated areas of the NL 
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Figure 9. Application of classification prediction to sand wave physical characteristics averaged per square kilometer as per Damen et al. (2018a). (a) Sand 
transport dominant class across the Netherlands (NL) Shelf determined with a mix of environmental data from Damen et al. (2018a) and other predictors 
as described earlier, interpolated to each square kilometer (1 pixel = 1 km2). (b–d) Box plots showing sand wave height, wave length, and spatial frequency 
respectively for each dominant class. Plots indicate the median, 25th and 75th percentiles and whiskers indicate 1.5 times the IQR beyond the 75th or 25th 
percentile. (e–g) P-values from a 2-sample, 1-sided Kolmogorov-Smirnov test, testing if the data are significantly lower in magnitude in more wave-dominated 
conditions (height, spatial frequency – e and g), or greater in magnitude in the more wave-dominated condition (wave length – f) at the 95% confidence level.
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Shelf under energetic wave and tidal forcing presented in Figure 9. Their tide dominated area corresponds 
to the nonlinear wave-tide interaction dominated part of the shelf, and it is noted that wave-tide interac-
tion is not fully represented in their modeling. While wind-driven circulations are beyond the scope of this 
study, this kNN method could be extended using a coupled training model to isolate the relative influence 
of wind-driven circulations on net sand transport and incorporate these into the classification.

Baroclinic circulations are not considered in this study either. Van Leeuwen et al. (2015) classify the North 
Sea by stratification regime. The regions of greatest net sand transport predicted here correspond qualita-
tively with areas either permanently mixed or intermittently stratified conditions, with seasonally strati-
fied conditions affecting the deeper, microtidal areas of the North Sea which are predicted to have a lower 
magnitude of net sand transport. In winter, the NW European shelf area considered in this study is well 
mixed while areas such as the UK East Coast, the NL Shelf, the DE-DK Shelf, and English Channel tend 
to remain well mixed or show weak stratification through spring, summer, and autumn (Holt et al., 2010), 
and therefore baroclinic effects are not expected to influence significantly the prediction of this model in 
these regions.

An additional limitation is that this study only considers a pure sand bed, whereas sand-mud and sand-grav-
el mixtures affect sand resuspension (McCarron et al., 2019; Thompson et al., 2019). Graded sediment trans-
port resulting from heterogeneous, bimodal sand distributions may also affect the wave length of sand 
waves (Van Oyen & Blondeaux, 2009). In sand-gravel mixtures, the hiding-exposure effect increases the 
critical shear stress required to mobilize the sand fraction, its effect becoming more significant for mixtures 
of >10% gravel (McCarron et al., 2019). Much of the North Sea sediment is comprised of >90% sand (Fig-
ure 1c), and this effect is most likely to impact predictions on shelf areas with a higher coarse grain size 
fraction such as the Celtic Sea. While we also do not consider biological effects on sediment resuspension, 
Thompson et al. (2019) show physical sediment characteristics to be more significant than biological factors 
in controlling bed stability. The purpose of this kNN classification method is to be applicable with readily 
available hydrodynamic and morphological data, therefore consideration of nonuniform grain size distri-
butions, the effect of mixed sand-mud or sand-gravel substrates, and biological effects would necessarily 
add complexity to the predictive model and therefore limit its use by introducing a data requirement which 
may not be readily available to coastal practitioners. The method could be extended to include the effects of 
mixed grain size fractions in future.

This paper considers net sand transport rates, which depend upon additional variables to those eventually 
used in the trained classifier in this paper, such as tidal asymmetry and mean currents (Leonardi & Plat-
er, 2017; Pingree & Griffiths, 1979; Stride, 1963; Uncles, 1982, 2010; Zimmerman, 1978). It was decided 
not to include these additional variables in order to keep the data requirements of the classification to a 
minimum and ensure the classifier relied on more readily available data. The modeling of King et al. (2019) 
includes these effects in the numerical modeling, and while this classifier does not use tidal asymmetry 
and mean currents as a predictor, it performs well when validated against the calculated net sand transport 
classes and magnitudes of King et al. (2019), with an accuracy of 81.9% and 90.8%, respectively.

The benefit of this method is to enable a rapid assessment of the dominant processes affecting net sand 
transport, and its magnitude, without the need for a computationally expensive numerical model. We show 
that the classification scheme of King et al.  (2019) has a predictive value for sand wave morphology on 
the NL Shelf, as a further application of this method. While this paper considers shelf-scale processes, this 
classification scheme can be applied to other sand transport processes in the nearshore, such as headland 
bypassing (King et al., Under Review). Careful consideration must be taken to examine the validity of the 
assumptions made in the model used for training, and how well these represent net sand transport drivers 
in the area under consideration. This includes consideration of natural processes including wind-driven/
baroclinic circulations (Héquette et al., 2008), anthropogenic processes such as trawling and dredging (Cieś-
likiewicz et al., 2018; Mengual et al., 2019; Uncles et al., 2020), and potential future changes in forcing con-
ditions due to climate change (Meucci et al., 2020; Young & Ribal, 2019). The computational efficiency of 
this method relative to running a coupled wave-tide numerical model enables quick assessment to be made 
of the influence of changing environmental conditions such as upward trends in storminess across central, 
western, and northern Europe (Castelle et al., 2018; Donal et al., 2011) on the magnitude and dominant 
forces driving the net transport of sand on sandy continental shelves, with potential applications globally.
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5. Conclusions
In this paper we apply a data-driven method to predict the dominant sand transport drivers and magnitude 
across a sandy continental shelf. We use k-Nearest Neighbor classification prediction trained with data from 
coupled hydrodynamic, wave and sediment transport modeling on a subdomain of the shelf to predict the 
sand transport magnitude and mode across the entire shelf, using readily available wave, tide, and morpho-
logical data. Key findings of this paper include:

1.  The relative dominance of waves, tides, and nonlinear effects due to wave-tide interactions in the net 
transport of sand over a tidal cycle, as well as net sand transport magnitude, can be predicted with readi-
ly available data. These are: significant wave height, peak period, mean wave direction, wave power, tide 
range, maximum tidal current speed and direction, water depth, and median grain size.

2.  Wave and tidal conditions are primary controls on net sand transport mode and magnitude, while grain 
size is a secondary control.

3.  Different shelf areas exhibit different dominant drivers of net sand transport for similar exceedance con-
ditions, relating to differences in water depth, grain size, tide range, and wave exposure between regions.

4.  Tides are the dominant or sub-dominant forcing for net sand transport across most shelf areas for medi-
an waves at springs. For extreme waves at springs, most areas show dominance of the nonlinear effects of 
wave-tide interactions. At neaps, with median waves, sand transport is very low across the shelf, driven 
by wave-tide interaction where it does occur. Extreme waves at neaps result in wave-dominated sand 
transport in most areas of the shelf, while wave-tide interactions influence sand transport in deeper or 
macrotidal regions.

5.  Sand transport magnitude and dominance was predicted for a statistically representative year based 
on distributions of tide range and Hs-Tp joint-probability calculated across the shelf. Potential net sand 
transport shows tidal dominance in meso-macrotidal waters around the UK, wave-dominance on Dog-
ger Bank and the German/Denmark Shelf, and dominance of wave-tide interactions on the Netherlands 
shelf and in deeper areas of the North Sea and Celtic Sea.

6.  The kNN prediction was applied at higher resolution to the Netherlands shelf area, and classes for ener-
getic (conditions 1% exceedance waves at spring tide) were compared with sand wave morphology across 
the region with data obtained from Damen et al. (2018b). Sand wave height is shown to significantly 
(95% confidence) reduce with greater wave-dominance, while sand wave length and asymmetry sig-
nificantly increase. Sand wave morphologic parameters were significantly different between predicted 
classes at the 95% confidence level.

7.  This paper presents a computationally efficient method to determine an initial estimate of the domi-
nant driving forces and magnitude of net sand transport on sandy continental shelves, enabling efficient 
large-scale comparison between different regions and testing of the influence of changing environmen-
tal forcing on net sand transport with applications globally.

Data Availability Statement
Sand wave data used in this study are available at https://doi.org/10.4121/uuid:0d7e016d-2182-46ea-bc19-
cdfda5c20308 and the authors thank Damen et al. (2018b) for making this valuable data set available. The 
other data on which this paper is based are publicly available from the corresponding author and are made 
available online via the University of Plymouth PEARL open access research repository at http://hdl.han-
dle.net/10026.1/17601.

References
Aldridge, J. N., Parker, E. R., Bricheno, L. M., Green, S. L., & van der Molen, J. (2015). Assessment of the physical disturbance of the 

northern European Continental shelf seabed by waves and currents. Continental Shelf Research, 108, 121–140. https://doi.org/10.1016/j.
csr.2015.03.004

Besio, G., Blondeaux, P., Brocchini, M., Hulscher, S. J. M. H., Idier, D., Knaapen, M. A. F., et al. (2008). The morphodynamics of tidal sand 
waves: A model overview. Coastal Engineering, 55(7–8), 657–670. https://doi.org/10.1016/j.coastaleng.2007.11.004

Besio, G., Blondeaux, P., & Vittori, G. (2006). On the formation of sand waves and sand banks. Journal of Fluid Mechanics, 557, 1–27. 
https://doi.org/10.1017/S0022112006009256

Booij, N., Holthuijsen, L. H., & Ris, R. C. (1999). A third-generation wave model for coastal regions 1. Model description and validation. 
Journal of Geophysical Research, 104(C4), 7649–7666. https://doi.org/10.1029/98JC02622

KING ET AL.

10.1029/2021JC017200

21 of 24

Acknowledgments
The authors acknowledge the UK 
Hydrographic Office for VORF 
corrections. The authors acknowledge 
the MET Office (Andy Saulter) for the 
hydrodynamic, bathymetric, and wave 
forcing data and NOAA for atmospheric 
pressure and wind data, and EMODnet 
bathymetry Consortium for the EMOD-
net Digital Bathymetry (DTM, 2016). 
This research was supported by the 
NERC-funded BLUECoast Project (NE/
N015525/1).

https://doi.org/10.4121/uuid%3A0d7e016d%2D2182-46ea%2Dbc19%2Dcdfda5c20308
https://doi.org/10.4121/uuid%3A0d7e016d%2D2182-46ea%2Dbc19%2Dcdfda5c20308
http://hdl.handle.net/10026.1/17601
http://hdl.handle.net/10026.1/17601
https://doi.org/10.1016/j.csr.2015.03.004
https://doi.org/10.1016/j.csr.2015.03.004
https://doi.org/10.1016/j.coastaleng.2007.11.004
https://doi.org/10.1017/S0022112006009256
https://doi.org/10.1029/98JC02622


Journal of Geophysical Research: Oceans

Borsje, B. W., Kranenburg, W. M., Roos, P. C., Matthieu, J., & Hulscher, S. J. M. H. (2014). The role of suspended load transport in the 
occurrence of tidal sand waves. Journal of Geophysical Research: Earth Surface, 119, 701–716. https://doi.org/10.1002/2013JF002828

Bricheno, L. M., Wolf, J., & Aldridge, J. (2015). Distribution of natural disturbance due to wave and tidal bed currents around the UK. 
Continental Shelf Research, 109, 67–77. https://doi.org/10.1016/j.csr.2015.09.013

Campmans, G. H. P., Roos, P. C., de Vriend, H. J., & Hulscher, S. J. M. H. (2018a). The influence of storms on sand wave evolution: A nonlin-
ear idealized modeling approach. Journal of Geophysical Research: Earth Surface, 123, 2070–2086. https://doi.org/10.1029/2018JF004616

Campmans, G. H. P., Roos, P. C., Schrijen, E. P. W. J., & Hulscher, S. J. M. H. (2018b). Modeling wave and wind climate effects on tidal sand 
wave dynamics: A North Sea case study. Estuarine. Coastal and Shelf Science, 213, 137–147. https://doi.org/10.1016/j.ecss.2018.08.015

Carter, L., & Heath, R. A. (1975). Role of mean circulation, tides, and waves in the transport of bottom sediment on the New Zealand 
continental shelf. New Zealand Journal of Marine & Freshwater Research, 9(4), 423–448. https://doi.org/10.1080/00288330.1975.9515579

Castelle, B., Dodet, G., Masselink, G., & Scott, T. (2018). Increased winter-mean wave height, variability and periodicity in the North-East 
Atlantic over 1949–2017. Geophysical Research Letters, 45, 3586–3596. https://doi.org/10.1002/2017GL076884

Cheng, C. H., Soetaert, K., & Borsje, B. W. (2020). Sediment characteristics over asymmetrical tidal sand waves in the Dutch North Sea. 
Journal of Marine Science and Engineering, 8(6), 409. https://doi.org/10.3390/jmse8060409

Cieślikiewicz, W., Dudkowska, A., Gic-Grusza, G., & Jędrasik, J. (2018). Assessment of the potential for dredged material dispersal from 
dumping sites in the Gulf of Gdańsk. Journal of Soils and Sediments, 18, 3437–3447. https://doi.org/10.1007/s11368-018-2066-4

Collins, M. B. (1987). Sediment transport in the Bristol Channel: A review. Proceedings of the Geologists' Association, 98(4), 367–383. https://
doi.org/10.1016/S0016-7878(87)80076-7

Damen, J. M., van Dijk, T. A. G. P., & Hulscher, S. J. M. H. (2018a). Spatially varying environmental properties controlling observed sand 
wave morphology. Journal of Geophysical Research: Earth Surface, 123(2), 262–280. https://doi.org/10.1002/2017JF004322

Damen, J. M., van Dijk, T. A. G. P., & Hulscher, S. J. M. H. (2018b). Replication data for: Spatially varying environmental properties con-
trolling observed sand wave morphology. 4TU. https://doi.org/10.4121/uuid:0d7e016d-2182-46ea-bc19-cdfda5c20308

Damveld, J. H., Borsje, B. W., Roos, P. C., & Hulscher, S. J. M. H. (2020). Biogeomorphology in the marine landscape: Modelling the feed-
backs between patches of the polychaete worm Lanice conchilega and tidal sand waves. Earth Surface Processes and Landforms, 45(11), 
2572–2587. https://doi.org/10.1002/esp.4914

Damveld, J. H., van der Reijden, K. J., Cheng, C., Koop, L., Haaksma, L. R., Walsh, C. A. J., et al. (2018). Video transects reveal that tidal 
sand waves affect the spatial distribution of benthic organisms and sand ripples. Geophysical Research Letters, 45(11), 846–11. https://
doi.org/10.1029/2018GL079858

Dernie, K. M., Kaiser, M. J., & Warwick, R. M. (2003). Recovery rates of benthic communities following physical disturbance. Journal of 
Animal Ecology, 72(6), 1043–1056. https://doi.org/10.1046/j.1365-2656.2003.00775.x

Donal, M. G., Renggli, D., Wild, S., Alexander, L. V., Leckebusch, G. C., & Ulbrich, U. (2011). Reanalysis suggests long-term upward trends 
in European storminess since 1871. Geophysical Research Letters, 38, L14703. https://doi.org/10.1029/2011GL047995

Draper, L. (1967). Wave activity at the sea bed around northwestern Europe. Marine Geology, 5(2), 133–140. https://doi.
org/10.1016/0025-3227(67)90075-8

Folk, R. L. (1954). The distinction between grain size and mineral composition in sedimentary-rock nomenclature. The Journal of Geology, 
62, 344–359. https://10.1086/626171

Fredsøe, J., (1984). Turbulent boundary layer in wave-current motion. Journal of Hydraulic Engineering, 110(8), 1103–1120. https://doi.
org/10.1061/(ASCE)0733-9429(1984)110:8(1103

Genest, C., & Favre, A. -C. (2007). Everything you always wanted to know about copula modeling but were afraid to ask. Journal of Hydro-
logic Engineering, 12(4), 347–368. https://doi.org/10.1061/(ASCE)1084-0699

Graham, J. A., O'Dea, E., Holt, J., Polton, J., Hewitt, H. T., Furner, R., et al. (2018). AMM15: A new high-resolution NEMO configuration 
for operational simulation of the European north-west shelf. Geoscientific Model Development, 11(2), 681–696. https://doi.org/10.5194/
gmd-11-681-2018

Grant, W. D., & Madsen, O. S. (1979). Combined wave and current interaction with a rough bottom. Journal of Geophysical Research, 
84(C4), 1797–1808. https://doi.org/10.1029/JC084iC04p01797

Grant, W. D., & Madsen, O. S. (1986). The continental-shelf bottom boundary layer. Annual Review of Fluid Mechanics, 18(1), 265–305. 
https://doi.org/10.1146/annurev.fl.18.010186.0014

Hall, S. J. (1994). Physical disturbance and marine benthic communities: Life in unconsolidated sediments. Oceanography and Marine 
Biology, 32, 179–239.

Hamon-Kerivel, K., Cooper, A., Jackson, D., Sedrati, M., & Pintado, E. G. (2020). Shoreface mesoscale morphodynamics: A review. 
Earth-Science Reviews, 209, 103330. https://doi.org/10.1016/j.earscirev.2020.103330

Hansen, J. E., Elias, E., List, J. H., Erikson, L. H., & Barnard, P. L. (2013). Tidally influenced alongshore circulation at an inlet-adjacent 
shoreline. Continental Shelf Research, 56, 26–38. https://doi.org/10.1016/j.csr.2013.01.017

Harris, P. T. (2014). Shelf and deep-sea sedimentary environments and physical benthic disturbance regimes: A review and synthesis. 
Marine Geology, 353, 169–184. https://doi.org/10.1016/j.margeo.2014.03.023

Harris, P. T., & Coleman, R. (1998). Estimating global shelf sediment mobility due to swell waves. Marine Geology, 150, 171–177. https://
doi.org/10.1016/S0025-3227(98)00040-1

Harris, P. T., & Collins, M. B. (1991). Sand transport in the Bristol Channel: Bedload parting zone or mutually evasive transport pathways? 
Marine Geology, 101(1), 209–216. https://doi.org/10.1016/0025-3227(91)90072-C

Héquette, A., Hemdane, Y., & Anthony, E. J. (2008). Sediment transport under wave and current combined flows on a tide-dominated 
shoreface, northern coast of France. Marine Geology, 249, 226–242. https://doi.org/10.1016/j.margeo.2007.12.003

Holt, J., Wakelin, S., Lowe, J., & Tinker, J. (2010). The potential impacts of climate change on the hydrography of the northwest European 
continental shelf. Progress in Oceanography, 86(3–4), 361–379. https://doi.org/10.1016/j.pocean.2010.05.003

Hopkins, J., Elgar, S., & Raubenheimer, B. (2015). Observations and model simulations of wave-current interaction on the inner shelf. 
Journal of Geophysical Research: Oceans, 121, 198–208. https://doi.org/10.1002/2015JC010788

Houthuys, R., Trentesaux, A., & De Wolf, P. (1994). Storm influences on a tidal sandbank's surface (Middelkerke Bank, southern North 
Sea). Marine Geology, 121(1–2), 23–41. https://doi.org/10.1016/0025-3227(94)90154-6

Hulscher, S. J. M. H. (1996). Tidal-induced large-scale regular bed form patterns in a three-dimensional shallow water model. Journal of 
Geophysical Research, 101(C9), 20727–20744. https://doi.org/10.1029/96JC01662

Kanevski, M., Pozdnukhov, A., & Timonin, V. (2009). Machine learning for spatial environmental data: Theory, applications, and software. 
EPFL Press.

KING ET AL.

10.1029/2021JC017200

22 of 24

https://doi.org/10.1002/2013JF002828
https://doi.org/10.1016/j.csr.2015.09.013
https://doi.org/10.1029/2018JF004616
https://doi.org/10.1016/j.ecss.2018.08.015
https://doi.org/10.1080/00288330.1975.9515579
https://doi.org/10.1002/2017GL076884
https://doi.org/10.3390/jmse8060409
https://doi.org/10.1007/s11368-018-2066-4
https://doi.org/10.1016/S0016-7878%2887%2980076-7
https://doi.org/10.1016/S0016-7878%2887%2980076-7
https://doi.org/10.1002/2017JF004322
https://doi.org/10.4121/uuid%3A0d7e016d%2D2182-46ea%2Dbc19%2Dcdfda5c20308
https://doi.org/10.1002/esp.4914
https://doi.org/10.1029/2018GL079858
https://doi.org/10.1029/2018GL079858
https://doi.org/10.1046/j.1365-2656.2003.00775.x
https://doi.org/10.1029/2011GL047995
https://doi.org/10.1016/0025-3227%2867%2990075-8
https://doi.org/10.1016/0025-3227%2867%2990075-8
https://10.1086/626171
https://doi.org/10.1061/%28ASCE%290733-9429%281984%29110%3A8%281103
https://doi.org/10.1061/%28ASCE%290733-9429%281984%29110%3A8%281103
https://doi.org/10.1061/%28ASCE%291084-0699
https://doi.org/10.5194/gmd%2D11-681-2018
https://doi.org/10.5194/gmd%2D11-681-2018
https://doi.org/10.1029/JC084iC04p01797
https://doi.org/10.1146/annurev.fl.18.010186.0014
https://doi.org/10.1016/j.earscirev.2020.103330
https://doi.org/10.1016/j.csr.2013.01.017
https://doi.org/10.1016/j.margeo.2014.03.023
https://doi.org/10.1016/S0025-3227%2898%2900040-1
https://doi.org/10.1016/S0025-3227%2898%2900040-1
https://doi.org/10.1016/0025-3227%2891%2990072%2DC
https://doi.org/10.1016/j.margeo.2007.12.003
https://doi.org/10.1016/j.pocean.2010.05.003
https://doi.org/10.1002/2015JC010788
https://doi.org/10.1016/0025-3227%2894%2990154-6
https://doi.org/10.1029/96JC01662


Journal of Geophysical Research: Oceans

Kemp, P. H., & Simmons, R. R. (1982). The interaction between waves and a turbulent current: Waves propagating with the current. Jour-
nal of Fluid Mechanics, 116, 227–250. https://doi.org/10.1017/S0022112082000445

Kemp, P. H., & Simmons, R. R. (1983). The interaction of waves and a turbulent current: Waves propagating against the current. Journal of 
Fluid Mechanics, 130(1), 73–89. https://doi.org/10.1017/S0022112083000981

King, E. V., Conley, D. C., Masselink, G., Leonardi, N., McCarroll, R. J., & Scott, T. (2019). The impact of waves and tides on residual sand 
transport on a sediment-poor, energetic, and macrotidal continental shelf. Journal of Geophysical Research: Oceans, 124, 4974–5002. 
https://doi.org/10.1029/2018JC014861

King, E. V., Conley, D. C., Masselink, G., Leonardi, N., McCarroll, R. J., Scott, T., & Valiente, N. G. Wave, tide and topographical controls on 
headland sand bypassing. Journal of Geophysical Research: Oceans. https://doi.org/10.1002/essoar.10505252.1

Klopman, G. (1994). Vertical structure of the flow due to waves and currentsProgress report H840.30, Part II. Hydraulics.
Lary, D. J., Alavi, A. H., Gandomi, A. H., & Walker, A. L. (2016). Machine learning in geosciences and remote sensing. Geoscience Frontiers, 

7(1), 3–10. https://doi.org/10.1016/j.gsf.2015.07.003
Lee, T. R., Phrampus, B. J., Obelcz, J., Wood, W. T., & Skarke, A. (2020). Global marine isochore estimates using machine learning. Geophys-

ical Research Letters, 47, e2020GL088726. https://doi.org/10.1029/2020GL088726
Lee, T. R., Wood, W. T., & Phrampus, B. J. (2019). A machine learning (kNN) approach to predicting global seafloor total organic carbon. 

Global Biogeochemical Cycles, 33, 37–46. https://doi.org/10.1029/2018GB005992
Leonardi, N., & Plater, A. J. (2017). Residual flow patterns and morphological changes along a macro- and meso-tidal coastline. Advances 

in Water Resources, 109, 290–301. https://doi.org/10.1016/j.advwatres.2017.09.013
Lesser, G. R., Roelvink, J. A., Van Kester, J. A. T. M., & Stelling, G. S. (2004). Development and validation of a three-dimensional morpho-

logical model. Coastal Engineering, 51(8), 883–915. https://doi.org/10.1016/j.coastaleng.2004.07.014
Levin, L. A., & DiBacco, C. (1995). Influence of sediment transport on short-term recolonization by seamount infauna. Marine Ecology 

Progress Series, 123, 163–175. https://doi.org/10.3354/meps123163
Luijendijk, A. P., Ranasinghe, R., de Schipper, M. A., Huisman, B. A., Swinkels, C. M., Walstra, D. J. R., & Stive, M. J. F. (2017). The initial 

morphological response of the Sand Engine: A process-based modelling study. Coastal Engineering, 119, 1–14. https://doi.org/10.1016/j.
coastaleng.2016.09.005

Martin, K. M., Wood, W. T., & Becker, J. J. (2015). A global prediction of seafloor sediment porosity using machine learning. Geophysical 
Research Letters, 42, 646–10. https://doi.org/10.1002/2015GL065279

MathWorks (2020). Statistics and machine learning Toolbox™ user's guide. September, 2020. The MathWorks, Inc. https://uk.mathworks.
com/help/pdf_doc/stats/stats.pdf

McCarroll, R. J., Masselink, G., Valiente, N. G., KingScott, E. V. T., Stokes, C., & Wiggins, M. A general expression for wave-induced sedi-
ment bypassing of an isolated headland. Coastal engineering. https://osf.io/preprints/eartharxiv/67rhx/download

McCarroll, R. J., Masselink, G., Valiente, N. G., Scott, T., King, E. V., & Conley, D. (2018). Wave and tidal controls on embayment circulation 
and headland bypassing for an exposed, macrotidal site. Journal of Marine Science and Engineering, 6(3), 94. https://doi.org/10.3390/
jmse6030094

McCarron, C. J., Van Landeghem, K. J. J., Baas, J. H., Amoudry, L. O., & Malarkey, J. (2019). The hiding-exposure effect revisited: A meth-
od to calculate the mobility of bimodal sediment mixtures. Marine Geology, 410, 22–31. https://doi.org/10.1016/j.margeo.2018.12.001

Mengual, B., Le Hir, P., Cayocca, F., & Garlan, T. (2019). Bottom trawling contribution to the spatio-temporal variability of sediment fluxes 
on the continental shelf of the Bay of Biscay (France). Marine Geology, 414, 77–91. https://doi.org/10.1016/j.margeo.2019.05.009

Meucci, A., Young, I. R., Hemer, M., Kirezci, E., & Ranasinghe, R. (2020). Projected 21st century changes in extreme wind-wave events. 
Science Advances, 6(24), eaaz7295. https://doi.org/10.1126/sciadv.aaz7295

Mitchell, P. J., Aldridge, J., & Diesing, M. (2019). Legacy data: How decades of seabed sampling can produce robust predictions and versa-
tile products. Geosciences, 9(4), 182. https://doi.org/10.3390/geosciences9040182

Németh, A. A., Hulscher, S. J. M. H., & de Vriend, H. J. (2003). Offshore sand wave dynamics, engineering problems and future solutions. 
Pipeline and Gas Journal, 230(4), 67.

Nielsen, P. (1992). Coastal bottom boundary layers and sediment transport. World Scientific Publishing Co. Pte. Ltd. https://doi.
org/10.1142/1269

O’Dea, E. J., Arnold, A. K., Edwards, K. P., Furner, R., Hyder, P., Martin, M. J., et al. (2012). An operational ocean forecast system incorpo-
rating NEMO and SST data assimilation for the tidally driven European North-West shelf. Journal of Operational Oceanography, 5(1), 
3–17. https://doi.org/10.1080/1755876X.2012.11020128

Olabarrieta, M., Medina, R., & Castenedo, S. (2010). Effects of wave–current interaction on the current profile. Coastal Engineering, 57(7), 
643–655. https://doi.org/10.1016/j.coastaleng.2010.02.00

Pattiaratchi, C., & Collins, M. C. (1988). Wave influence on coastal sand transport paths in a tidally dominated environment. Ocean and 
Shoreline Management, 11(6), 449–465. https://doi.org/10.1016/0951-8312(88)90025-2

Phrampus, B. J., Lee, T. R., & Wood, W. T. (2020). A global probabilistic prediction of cold seeps and associated SEAfloor FLuid Expulsion 
Anomalies (SEAFLEAs). Geochemistry, Geophysics, Geosystems, 21, e2019GC008747. https://doi.org/10.1029/2019GC008747

Pingree, R. D., & Griffiths, D. K. (1979). Sand transport paths around the British Isles resulting from M2 and M4 tidal interactions. Journal 
of the Marine Biological Association of the United Kingdom, 59(2), 497–513. https://doi.org/10.1017/S0025315400042806

Pingree, R. D., & Griffiths, D. K. (1980). Currents driven by a steady uniform wind stress on the shelf areas around the British Isles. Ocean-
ologica Acta, 3, 227–236.

Pingree, R. D., & Le Cann, B. (1989). Celtic and Amorican slope and shelf residual currents. Progress in Oceanography, 23(4), 303–338. 
https://doi.org/10.1016/0079-6611(89)90003-7

Porter-Smith, R., Harris, P. T., Andersen, O. B., Coleman, R., Greenslade, D., & Jenkins, C. J. (2004). Classification of the Australian conti-
nental shelf based on predicted sediment threshold exceedance from tidal currents and swell waves. Marine Geology, 211, 1–20. https://
doi.org/10.1016/j.margeo.2004.05.031

Reiss, H., Degraer, S., Duineveld, G. C. A., Kröncke, I., Aldridge, J., Craeymeersch, J., et al. (2010). Spatial patterns of infauna, epifauna, 
and demersal fish communities in the North Sea. ICES Journal of Marine Science, 67, 278–293. https://doi.org/10.1093/icesjms/fsp253

Restreppo, G. A., Wood, W. T., & Phrampus, B. J. (2020). Oceanic sediment accumulation rates predicted via machine learning algorithm: 
Towards sediment characterization on a global scale. Geo-Marine Letters, 40, 755–763. https://doi.org/10.1007/s00367-020-00669-1

Ridderinkhof, W., Swart, H. E., Vegt, M., & Hoekstra, P. (2016). Modeling the growth and migration of sandy shoals on ebb-tidal deltas. 
Journal of Geophysical Research: Earth Surface, 121, 1351–1372. https://doi.org/10.1002/2016JF003823

Roetert, T., Raaijmakers, T., & Borsje, B. (2017). Cable route optimization for offshore wind farms in Morphodynamic areas. Paper presented 
at the 27th. International Ocean and Polar Engineering Conference.

KING ET AL.

10.1029/2021JC017200

23 of 24

https://doi.org/10.1017/S0022112082000445
https://doi.org/10.1017/S0022112083000981
https://doi.org/10.1029/2018JC014861
https://doi.org/10.1002/essoar.10505252.1
https://doi.org/10.1016/j.gsf.2015.07.003
https://doi.org/10.1029/2020GL088726
https://doi.org/10.1029/2018GB005992
https://doi.org/10.1016/j.advwatres.2017.09.013
https://doi.org/10.1016/j.coastaleng.2004.07.014
https://doi.org/10.3354/meps123163
https://doi.org/10.1016/j.coastaleng.2016.09.005
https://doi.org/10.1016/j.coastaleng.2016.09.005
https://doi.org/10.1002/2015GL065279
https://uk.mathworks.com/help/pdf%5Fdoc/stats/stats.pdf
https://uk.mathworks.com/help/pdf%5Fdoc/stats/stats.pdf
https://osf.io/preprints/eartharxiv/67rhx/download
https://doi.org/10.3390/jmse6030094
https://doi.org/10.3390/jmse6030094
https://doi.org/10.1016/j.margeo.2018.12.001
https://doi.org/10.1016/j.margeo.2019.05.009
https://doi.org/10.1126/sciadv.aaz7295
https://doi.org/10.3390/geosciences9040182
https://doi.org/10.1142/1269
https://doi.org/10.1142/1269
https://doi.org/10.1080/1755876X.2012.11020128
https://doi.org/10.1016/j.coastaleng.2010.02.00
https://doi.org/10.1016/0951-8312%2888%2990025-2
https://doi.org/10.1029/2019GC008747
https://doi.org/10.1017/S0025315400042806
https://doi.org/10.1016/0079-6611%2889%2990003-7
https://doi.org/10.1016/j.margeo.2004.05.031
https://doi.org/10.1016/j.margeo.2004.05.031
https://doi.org/10.1093/icesjms/fsp253
https://doi.org/10.1007/s00367-020-00669-1
https://doi.org/10.1002/2016JF003823


Journal of Geophysical Research: Oceans

Scott, T., Masselink, G., O’Hare, T., Saulter, A., Poate, T., Russell, P., et al. (2016). The extreme 2013/2014 winter storms: Beach recovery 
along the southwest coast of England. Marine Geology, 382, 224–241. https://doi.org/10.1016/j.margeo.2016.10.011

Stride, A. H. (1963). Current-swept sea floors near the southern half of Great Britain. Quarterly Journal of the Geological Society, 119, 
175–197. https://doi.org/10.1144/gsjgs.119.1.0175

Tambroni, N., Blondeaux, P., & Giovanna, V. (2015). A simple model of wave-current interaction. Journal of Fluid Mechanics, 775, 328–348. 
https://doi.org/10.1017/jfm.2015.308

Thompson, C. E. L., Williams, M. E., Amoudry, L., Hull, T., Reynolds, S., Panton, A., & Fones, G. R. (2019). Benthic controls of resus-
pension in UK shelf seas: Implications for resuspension frequency. Continental Shelf Research, 185, 3–15. https://doi.org/10.1016/j.
csr.2017.12.005

Tonani, M., & Saulter, A. (2020). For NWS ocean waves reanalysis product NWSHELF_REANALYSIS_WAV_004_015. Product user manual. 
Issue 1.0. Copernicus Marine Environment Monitoring Service.

Tonani, M., Sykes, P., King, R. R., McConnell, N., Péquignet, A.-C., O’Dea, E., et al. (2019). The impact of a new high-resolution ocean 
model on the Met Office North-West European Shelf forecasting system. Ocean Science, 15, 1133–1158. https://doi.org/10.5194/
os-15-1133-2019

Umeyama, M., (2005). Reynolds stresses and velocity distributions in a wave–current coexisting environment. Journal of Waterway, Port, 
Coastal and Ocean Engineering, 131, 203–212.

Uncles, R. J. (1982). Computed and observed residual currents in the Bristol Channel. Oceanologica Acta, 5(1), 11–20. http://archimer.
ifremer.fr/doc/00120/23148/

Uncles, R. J. (2010). Physical properties and processes in the Bristol Channel and Severn Estuary. Marine Pollution Bulletin, 61(1-3), 5–20. 
https://doi.org/10.1016/j.marpolbul.2009.12.010

Uncles, R. J., Clark, J. R., Bedington, M., & Torres, R. (2020). Chapter 31 - On sediment dispersal in the Whitsand Bay marine conservation 
zone: Neighbour to a closed dredge-spoil disposal site. In J. Humphreys, & R. W. E. Clark (Eds.), Marine protected areas (pp. 599–629). 
Elsevier. https://doi.org/10.1016/B978-0-08-102698-4.00031-9

van der Molen, J. (2002). The influence of tides, wind and waves on the net sand transport in the North Sea. Continental Shelf Research, 
22(18-19), 2739–2762. https://doi.org/10.1016/S0278-4343(02)00124-3

van Dijk, T. A. G. P., & Kleinhans, M. G. (2005). Processes controlling the dynamics of compound sand waves in the North Sea, Nether-
lands. Journal of Geophysical Research, 110, F04S10. https://doi.org/10.1029/2004JF000173

van Leeuwen, S., Tett, P., Mills, D., & van der Molen, J. (2015). Stratified and nonstratified areas in the North Sea: Long-term variability 
and biological and policy implications. Journal of Geophysical Research: Oceans, 120, 4670–4686. https://doi.org/10.1002/2014JC010485

van Rijn, L. C., (2007a). Unified view of sediment transport by currents and waves. I: Initiation of motion, bed roughness, and bed-load 
transport. Journal of Hydraulic Engineering. 133(6), 649–667. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:6(649)

van Rijn, L. C., (2007b). Unified view of sediment transport by currents and waves. II: Suspended transport. Journal of Hydraulic Engineer-
ing, 133(6), 668–689. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:6(668)

Van Oyen, T., & Blondeaux, P. (2009). Tidal sand wave formation: Influence of graded suspended sediment transport. Journal of Geophys-
ical Research, 114, C07004. https://doi.org/10.1029/2008JC005136

Van Oyen, T., de Swart, H., & Blondeaux, P. (2011). Formation of rhythmic sorted bed forms on the continental shelf: An idealised model. 
Journal of Fluid Mechanics, 684, 475–508. https://doi.org/10.1017/jfm.2011.312

van Santen, R. B., de Swart, H. E., & Van Dijk, T. A. G. P. (2011). Sensitivity of tidal sand wave characteristics to environmental parameters: 
A combined data analysis and modelling approach. Continental Shelf Research, 31(9), 966–978. https://doi.org/10.1016/j.csr.2011.03.003

Wang, Z., Liang, B., Wu, G., & Borsje, B. W. (2019). Modeling the formation and migration of sand waves: The role of tidal forcing, sediment 
size and bed slope effects. Continetal Shelf Research, 190, 103986. https://doi.org/10.1016/j.csr.2019.103986

Ward, S. L., Neill, S. P., Van Landeghem, K. J. J., & Scourse, J. D. (2015). Classifying seabed sediment type using simulated tidal-induced 
bed shear stress. Marine Geology, 367, 94–104. https://doi.org/10.1016/j.margeo.2015.05.010

Wilson, R. J., Spiers, D. C., Sabatino, A., & Heath, M. R. (2018). A synthetic map of the north-west European Shelf sedimentary environ-
ment for applications in marine science. Earth System Science Data, 10(1), 109–130. https://doi.org/10.5194/essd-10-109-2018

Xu, K., Mickey, R. C., Chen, Q., Harris, C. K., Hetland, R. D., Hu, K., & Wang, J. (2016). Shelf sediment transport during hurricanes Katrina 
and Rita. Computers & Geosciences, 90(B), 24–39. https://doi.org/10.1016/j.cageo.2015.10.009

Young, I. R., & Ribal, A. (2019). Multiplatform evaluation of global trends in wind speed and wave height. Science, 364(6440), 548–552. 
https://doi.org/10.1126/science.aav9527

Zhang, W., Cui, Y., Santos, A. I., & Hanebuth, T. J. J. (2016). Storm-driven bottom sediment transport on a high-energy narrow 
shelf (NW Iberia) and development of mud depocenters. Journal of Geophysical Research: Oceans, 121, 5751–5772. https://doi.
org/10.1002/2015JC011526

Zimmerman, J. T. F. (1978). Topographic generation of residual circulation by oscillatory (tidal) currents. Geophysical & Astrophysical 
Fluid Dynamics, 11, 35–47. https://doi.org/10.1080/03091927808242650

KING ET AL.

10.1029/2021JC017200

24 of 24

https://doi.org/10.1016/j.margeo.2016.10.011
https://doi.org/10.1144/gsjgs.119.1.0175
https://doi.org/10.1017/jfm.2015.308
https://doi.org/10.1016/j.csr.2017.12.005
https://doi.org/10.1016/j.csr.2017.12.005
https://doi.org/10.5194/os%2D15-1133-2019
https://doi.org/10.5194/os%2D15-1133-2019
http://archimer.ifremer.fr/doc/00120/23148/
http://archimer.ifremer.fr/doc/00120/23148/
https://doi.org/10.1016/j.marpolbul.2009.12.010
https://doi.org/10.1016/B978-0%2D08-102698-4.00031-9
https://doi.org/10.1016/S0278-4343%2802%2900124-3
https://doi.org/10.1029/2004JF000173
https://doi.org/10.1002/2014JC010485
https://doi.org/10.1061/%28ASCE%290733-9429%282007%29133%3A6%28649%29
https://doi.org/10.1061/%28ASCE%290733-9429%282007%29133%3A6%28668%29
https://doi.org/10.1029/2008JC005136
https://doi.org/10.1017/jfm.2011.312
https://doi.org/10.1016/j.csr.2011.03.003
https://doi.org/10.1016/j.csr.2019.103986
https://doi.org/10.1016/j.margeo.2015.05.010
https://doi.org/10.5194/essd%2D10-109-2018
https://doi.org/10.1016/j.cageo.2015.10.009
https://doi.org/10.1126/science.aav9527
https://doi.org/10.1002/2015JC011526
https://doi.org/10.1002/2015JC011526
https://doi.org/10.1080/03091927808242650

