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Abstract: Biomarkers to detect Alzheimer’s disease (AD) would enable patients to gain access to
appropriate services and may facilitate the development of new therapies. Given the large numbers
of people affected by AD, there is a need for a low-cost, easy to use method to detect AD patients.
Potentially, the electroencephalogram (EEG) can play a valuable role in this, but at present no single
EEG biomarker is robust enough for use in practice. This study aims to provide a methodological
framework for the development of robust EEG biomarkers to detect AD with a clinically acceptable
performance by exploiting the combined strengths of key biomarkers. A large number of existing and
novel EEG biomarkers associated with slowing of EEG, reduction in EEG complexity and decrease
in EEG connectivity were investigated. Support vector machine and linear discriminate analysis
methods were used to find the best combination of the EEG biomarkers to detect AD with significant
performance. A total of 325,567 EEG biomarkers were investigated, and a panel of six biomarkers
was identified and used to create a diagnostic model with high performance (≥85% for sensitivity
and 100% for specificity).

Keywords: robust EEG based biomarkers; detection of Alzheimer’s disease; slowing of the EEG;
reduction in EEG connectivity; reduction in EEG complexity

1. Introduction

Alzheimer’s disease is a neurodegenerative, progressive, irreversible, and fatal disease
of the brain cells [1,2]. It is characterised by gradual cognitive impairments accompanied
by abnormal behaviour, loss of memory, and personality changes [1,3,4]. The two main
neuropathologic hallmarks of AD are extracellular amyloid beta (Aβ) plaques and intra-
cellular neurofibrillary tangles (NFTs). The production of Aβ, which represents a vital
stage in AD pathogenesis, is the result of an aberrant cleavage of the amyloid peptide
precursor protein (APP) which is overexpressed in AD [5–7]. In histopathological terms,
AD is characterised by the accumulation of senile plaques and neurofibrillary tangles [8].
The senile plaques consist mainly of β-amyloid peptides, while the fibrillary tangles consist
of abnormal hyperphosphorylated insoluble forms of the TAU-protein [9,10]. AD is the
most common form of dementia (others include vascular, Lewy body, or frontotemporal
dementia) and accounts for between 60% to 80% of all dementias worldwide [2,11,12]. Age
is the main risk factor for AD [9]. Loss of recent memory is one of the first symptoms of AD
(early stage), followed by mild cognitive impairment (MCI), and then severe AD, which
is the advanced stage [1]. MCI describes a transitional cognitive state between normal
ageing and dementia [9,13] and has been proposed as a disease describing elderly people
with mild cognitive impairment but not dementia [13,14]. However, only 80% of MCI
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cases go on to develop dementia [9,15], although this is sufficient to identify people at high
risk of dementia [13]. At the macroscopic level, severe atrophy of the brain is the most
common characteristic of AD patients, leading to enlargement of the ventricular system and
shrinkage of cortical sulci [16]. In the preclinical stages of AD, the atrophy primarily affects
medial temporal parts of the brain, including hippocampal formation [16]. Hippocampal
atrophy is associated with more severe memory impairment in AD [17]. Such atrophy
could therefore be used as a marker of disease development in clinical trials [11].

AD is the main cause of disability among older people [18]. At present, there are over
46.8 million individuals with dementia worldwide with an annual cost of care estimated
at US $818 billion [19,20]. This is projected to reach 74.7 million by 2030 with an annual
cost of US $2 trillion [21] due to the ageing population and represents a major challenge to
health and social care services worldwide [22,23]. It is widely accepted that AD diagnosis
in its early stages makes it possible for patients to gain access to appropriate health care
services and would facilitate the development of new therapies [24–27]. However, up to
50% of those living with AD may not have received a formal diagnosis [28,29].

The neurodegeneration due to AD pathology starts many years before the onset of
clinical symptoms [14,23,30–32]. A biomarker that can detect the changes due to AD
would be useful in diagnosing AD in the early stages. Different types of AD biomarkers
exist, such as those based on neuroimaging, cerebrospinal fluid (CSF) and blood [14,33,34].
However, neuroimaging (e.g., using PET) is expensive and only available at specialist
centres [35,36] and CSF involves lumbar puncture which is invasive [3,37,38]. Blood-based
biomarkers have shown promise, but they are still under development and are not in
routine use [36,39].

The detection of AD at the early stages implies screening large numbers of people.
Therefore, there is a need for a common, non-invasive and low-cost, easy to use, and robust
“gatekeeper” biomarker for preliminary selection of people at risk of AD pathology before
referring them to specialized clinics [23,34,40]. Furthermore, biomarkers such as PET, CSF
and MRI may not be suitable for routine serial recordings over time for AD diagnosis and
monitoring [41] because of cost or invasiveness.

Potentially, EEG can play a valuable role in fulfilling this need (e.g., as a first-line
decision-support tool in AD diagnosis [30]). AD affects numerous subcortical pathways in
the brain [42] that lead to changes in the information-processing activity of the brain and
these changes are thought to be reflected in the information content of the EEG [43–45].
Thus, EEG provides valuable information about changes in electrophysiological brain
dynamics due to AD [43,46–49]. EEG is non-invasive, low-cost, common, and has high sen-
sitivity in discriminating between AD patients and normal elderly (Nold) subjects [50–53].
The potential utility of EEG to detect brain signal changes even in the early stage of the
disease has been demonstrated [54].

Promising EEG based biomarkers can be divided into three main categories, namely
those based on the slowing of the EEG signal, reduction in EEG complexity, and a decrease
in functional connectivity of EEG among cortical regions [47,48,54–60]. The slowing of the
EEG signal [30,48,58,61] is one of the consistent features in AD and this can be quantified
as biomarkers [30,58,62]. Several methods are being developed to quantify the slowing of
EEG, such as the analysis of changes in the EEG amplitude (∆EEGA), zero-crossing intervals
(ZCI) [30], and changes in the power spectrum (∆PS) of EEG signals [30,47,56,58,59,63–70].

EEG coherence is used to measure functional connectivity in the brain [71,72]. AD
causes changes in the cortical activity of the brain [73] which impacts the connectivity
among cortical regions of the brain [58] and this is reflected in the EEG coherence. [74].
EEG coherence is a sensitive method for assessing the integrity of structural connections
between brain areas in AD patients [74].

Complexity is a measure of the extent to which the dynamic behavior of a given
sequence resembles a random one [75] and is emerging as an important way to detect AD.
The cortical areas of the brain fire spontaneously and this dynamic behavior of the brain is
complex [76,77]. AD causes a reduction in neuronal activity of the brain [78] resulting in a



Brain Sci. 2021, 11, 1026 3 of 31

decrease in the ability of the brain to process information [79–81] which may be reflected
in the EEG signals [78]. EEG complexity is potentially a promising biomarker [58] as AD
patients have a significantly reduced EEG complexity [55,57–59,78,82,83]. The reduction in
EEG complexity due to AD can be measured using many emerging approaches such as
Tsallis entropy (TsEn) [48,61,84], Higuchi Fractal Dimension (HFD) [85–87], Approximation
Entropy (ApEn) [88–91], and Lempel Ziv Complexity (LZC). The TsEn, LZC and HFD-
based biomarkers are of particular interest. TsEn is one of the most promising information
theoretic methods for quantifying EEG complexity [48,61,84,92,93]. Its fast computation
may serve as the basis for real-time decision support tools for diagnosing AD [48,84,92,
94,95]. HFD is a fast nonlinear computational method for obtaining the fractal dimension
of time series signals [96–98] and yields biomarkers which are significantly lower in AD
patients than in normal subjects [85–87]. LZC is a nonparametric and nonlinear method
that provides a way to quantify the complexity of the EEG [99,100] and has been used to
analyse the EEG complexity in AD [101–103].

Although there are a large number of existing and new EEG-based biomarkers for
AD, no single biomarker is robust enough for use in clinical practice or provides a clear-cut
detection of AD in the early stages [3,36,104–106]. Robust biomarkers of AD should be
consistent and have high detection performance (e.g., in terms of sensitivity and speci-
ficity) [3,4,107]. Potentially, a combination of biomarkers could provide the required level
of robustness necessary for clinical use [3,23,34,40,108,109]. Few studies have investi-
gated how to combine different EEG biomarkers to exploit their strengths. Hamadicharef
et al. [92] developed a logistic regression model to combine AD biomarkers, but the study
considered only a small number of specific EEG biomarkers and did not investigate all the
possible set of biomarkers. Poil et al. [110] developed a composite EEG based biomarker
to predict the conversion of subjects with mild cognitive impairment (MCI) to AD by
combining multiple biomarkers. This has a sensitivity of 88% and specificity of 82% and is
based mainly on spectral and temporal biomarkers.

The EEG is a complex signal with a significant amount of information about brain
dynamics embedded within it. This, together with a large number of analytical techniques
that are used to analyse the EEG and a large number of possible EEG biomarkers has led
to uncertainty about how to determine EEG biomarkers to capture AD related processes
accurately [111]. To address this, we have developed a methodological framework for the
development of robust EEG biomarkers.

This allows a comprehensive and systematic study of existing and emerging EEG
biomarkers associated with AD to reveal the most promising ones, and how to integrate
and develop them further to create robust biomarkers. This approach has made it possible
to achieve high performance (close to 100% for sensitivity and specificity) and should
facilitate acceptance of EEG biomarkers. No such comprehensive EEG biomarker study for
AD has hitherto been carried out. The EEG biomarkers which show promising results in AD
detection were investigated. A total of 325,567 biomarkers were investigated. Biomarkers
associated with EEG features, such as slowing of EEG, reduction in EEG complexity,
and a decrease in functional connectivity of EEG among cortical regions, eight analysis
methods (i.e., ∆PS, ∆EEGA, ZCI, TsEn, HFD, ApEn, LZC, and EEG coherence), and five
EEG bands (delta, theta, alpha, beta, and gamma) were selected to construct all the possible
combinations of biomarkers. We thought combining multiple biomarkers of different
techniques could provide better performance than using each biomarker separately and
could reveal hidden separation boundaries. Different studies investigated this hypothesis,
but there was no existing study that investigated all possible biomarkers in one study.
For example, Poil et al. [110] integrated six EEG biomarkers into a diagnostic index using
logistic regression. They concluded that combining different biomarkers could improve
the accuracy of predicting conversion from MCI to AD compared with the best individual
biomarker in this index. Rossini et al. [109] suggested it could be useful in combination
with other markers including EEG connectivity. The proposed study provides a novel
framework for constructing robust biomarkers that can be used to detect AD with high
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performance in terms of sensitivity and specificity by exploiting the combined strengths of
different biomarkers.

The paper is arranged as follows. In Section 2, the methodology is described. The
results are presented in Section 3 and discussed in Section 4. The paper is concluded in
Section 5.

2. Materials and Methods
2.1. Materials

The data used in this study was collected from 112 volunteers from previous studies
conducted at Derriford Hospital, Plymouth, UK, and at La Sapienza, University of Rome,
Italy [30]. The Plymouth data was used to develop the methodological framework and
the resulting biomarkers and diagnostic models to detect AD. The independent data from
Rome was used to optimize and validate the models. The Plymouth data was collected
from 52 volunteers (20 AD patients and 32 Nold subjects) referred to the EEG department
in the hospital from a specialist memory clinic. It is the clinical practice at the memory
clinic that all patients undergo a battery of psychometric tests (including, MMSE [28], Rey
Auditory Verbal Learning Test [29], Benton Visual Retention Test [30], and memory recall
tests [31]) before referral. The results from the psychometric tests are scored and interpreted
by a specialist psychologist and all clinical and psychometric findings are discussed at
a multidisciplinary team meeting following the clinic. Each patient is then referred to
the hospital for EEG assessment by the memory clinic with a working diagnosis (e.g.,
probable AD, depending on the outcome of the clinical and psychometric assessments).
All controls were healthy volunteers and had normal EEGs (confirmed by a Consultant
Clinical Neurophysiologist). The classification of subjects with dementia is based on the
working diagnosis provided by the specialist memory clinic and EEG findings. Magnetic
resonance imaging (MRI) data was not recorded because this facility was not available at
the hospital at the time. The EEG data was obtained using a strict protocol from Derriford
Hospital, Plymouth, U.K., and had been collected using normal hospital practices. The
entire collection of recordings includes a variety of states e.g., hyperventilation, awake,
drowsy and alert, with periods of eyes closed and open. For storage reasons, the sampling
rate was reduced from 256 Hz to 128 Hz by averaging two consecutive samples. The
duration of each EEG signal is 4 minutes. Data from a fixed interval (61 s to 240 s) was
used to avoid electrical artefact, which regularly occurs at the beginning of records [30],
leaving a standard three-minute data to analyse. The Plymouth data consists of two
datasets, datasets A and B. Dataset A includes 11 age-matched subjects over 65 years
old (3 AD and 8 healthy controls). It was recorded using the traditional 10–20 system in
a common reference montage by using the average of all channels as a reference. The
EEG signals were converted to common average and bipolar montages using software.
Dataset B includes 41 subjects that were not perfectly age-matched with 24 Nold and 17
were probable AD patients. It was recorded using the modified Maudsley system. The
conventional 10–20 system has a similar setting to the Maudsley electrode positioning
system [112].

In this study, the methodological framework and the resulting biomarkers and models
were based on the Plymouth data where neuro-imaging studies were not carried out and
for which access to the neuro-psychological scores was not possible because the patients
were from a different district, although full cognitive tests were carried out. To optimise
and evaluate the method, we have used independent datasets from another centre in Rome
(Assessment Datasets C and D), which had available all clinical data including MMSE
scores for both AD and healthy controls and the subjects had undergone neuro-imaging
studies.

The Rome data consists of 60 volunteers (30 AD patients and 30 Nold subjects). The
sampling rate was 128 Hz. The duration of each EEG signal was 1 minute. The EEGs
were obtained using the 10–20 system. The Rome data consists of two datasets, dataset C
and D. Dataset C includes 20 subjects collected from 10 probable AD patients and 10 age-
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matched Nold subjects. Dataset D includes 40 subjects collected from 20 age-matched
Nold subjects and 20 Probable AD patients. Probable AD was diagnosed according to
NINCDS-ADRDA [32] and DSM IV criteria. The patients underwent general medical,
neurological and psychiatric assessments. They were also rated with a number of stan-
dardized diagnostic and severity instruments that included MMSE [33], Clinical Dementia
Rating Scale (CDRS) [34], Geriatric Depression Scale (GDS) [35], Hachinski Ischemic Scale
(HIS) [36], and Instrumental Activities of Daily Living scale (IADL) [37]. Neuroimaging
diagnostic procedures (computed tomography or MRI) and complete laboratory analyses
were carried out to exclude other causes of progressive or reversible dementias, to have
a homogenous mild AD patient sample. Exclusion criteria included, in particular, any
evidence of (1) frontotemporal dementia, (2) VaD (i.e., VaD was also diagnosed according
to NINDS-AIREN criteria; [38], (3) extra-pyramidal syndromes, (4) reversible dementias
(including pseudodementia of depression), and (5) fluctuations in cognitive performance
(suggestive of a possible Lewy body dementia). The normal control subjects were recruited
mainly among patients’ spouses. All Nold subjects underwent physical and neurological
examinations as well as cognitive screening (including MMSE). Subjects affected by chronic
systemic illnesses (i.e., diabetes mellitus or organ failure) were excluded, as were subjects
receiving psychoactive drugs. Subjects with a history of present or previous neurological
or psychiatric disease were also excluded. All Nold subjects had a GDS score lower than
14. Table 1 Summarises the EEG datasets that were used in this study.

Table 1. Description of the EEG dataset that were used in this study.

Dataset N (AD/Nold)

Age Male/Female MMSE

AD [SD]
(Years)

Nold [SD]
(Years) Nold AD Nold AD

A 11(3/8) >65 years >65 years - - - -

B 41(17/24) 77.6 ± 10.0 69.4 ± 11.5 10/14 9/8 - -

C 20(10/10) 78.3 ± 4.03 78.0 ± 4.24 5/5 5/5 29.19 ± 0.61 22.81 ± 2.37

D 40(20/20) 77.8 ± 5.50 75.75 ± 3.85 10/10 10/10 28.35 ± 1.00 21.21 ± 3.13

Figure 1 shows the electrode locations using the 10–20 system. The letters F, P, O, and
T refer to cerebral cortex lobes (F: frontal, P: parietal, O: occipital, and T: temporal), C for
the central region, Fp (frontopolar), and A refers to ear channel [113].
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2.2. Methodological Framework

Figure 2 provides an overview of the methodological framework for the development
of robust EEG biomarkers to detect AD with clinically acceptable performance by exploiting
the combined strengths of different EEG based biomarkers.
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It supports the investigation, development, integration, and assessment of the perfor-
mance of new and promising biomarkers based on the three main characteristics of the
dementia EEG (slowing of the EEG, reduction in EEG complexity and reduction in EEG
coherence). The emphasis is on finding the best possible combination of EEG biomarkers to
detect AD accurately. The development of robust and composite EEG biomarkers requires
the identification of EEG features which have a significant association with AD.
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The main EEG features are those associated with the slowing of the EEG (e.g., shifts
in the EEG power to the lower frequencies), reduction in EEG complexity (reduction in
complexity measures) and reduction in EEG coherence. The features were extracted from
the five traditional EEG bands (i.e., delta 0–4 Hz, theta 4–8 Hz, alpha 8–12 Hz, beta 12–
30 Hz, and gamma 30–45 Hz) and then quantified as biomarkers. Previous studies have
shown that biomarkers derived from the EEG frequency bands (instead of the entire EEG)
have enhanced performance [55]. The biomarkers are computed based on the slowing
of EEG (i.e., ∆PS, ∆EEGA, and ZCI), reduction in EEG complexity (i.e., TsEn, HFD, LZC,
and ApEn) and reduction in coherence for each of the five EEG frequency bands and
for each EEG channel. The biomarkers include those which have shown promise in AD
detection with high performance [30,47,48,54–70]. The best performing biomarkers are
then found using Support Vector Machine (SVM). SVM was used because of its robustness
with high-dimensional data and because it has been shown to perform well in previous AD
studies compared to other machine learning methods [114–117]. A Linear Discriminant
Analysis (LDA) was then used to combine the selected biomarkers to create the diagnostic
model to detect AD.

The following steps outline the procedure for deriving the EEG biomarkers

1. Filter the EEG signals into five frequency bands (i.e., delta, theta, alpha, beta, and
gamma). For this step, a low computational infinite impulse response (IIR) Chebyshev-
II bandpass filters were used for computational efficiency in extracting the biomark-
ers [118].

2. Compute the biomarkers based on the slowing of EEG (i.e., ∆PS, ∆EEGA, and ZCI),
reduction in EEG complexity (i.e., TsEn, HFD, LZC, and ApEn) and reduction in EEG
coherence.

3. Select EEG biomarkers that have a significant association with AD (in terms of the
p-values). The EEG biomarkers with p-values ≤ 0.001 between AD and normal were
selected.

4. Construct panels of biomarkers from the selected biomarkers to enhance performance.
5. For each panel of biomarkers, develop a machine learning model to detect AD. In

this step, we used an SVM method and a 10 fold-cross validation strategy to assess
performance.

6. Select EEG biomarker panels with sensitivity and specificity values above a specified
threshold (80% in this case).

7. Develop diagnostic models by combining the biomarker panels selected in Step 6
using the LDA classifier.

8. Evaluate the diagnostic models using an unseen dataset. The performance of each
model was used as a criterion for the evaluation.

9. Optimise the diagnostic model to use the least possible number of biomarkers and
still maintain high performance.

10. Validate the optimised model.

In the framework in Figure 2, two supervised machine learning classification methods
were used, the SVM and LDA. LDA is commonly used in classification and provides
optimal separation in classification [119–121]. It uses the global characteristics of the
data instead of local characteristics used in SVM [122]. SVM was used (Step 5) to com-
bine biomarker panels for the same method of biomarker computation e.g., [TsEn(delta),
TsEn(theta), TsEn(alpha)] because it uses the local characteristics of the data. LDA was
used (Step 7) to combine the EEG biomarkers across different methods (e.g., [LZC(delta),
TsEn(theta), HFD(alpha), ∆EEGA (beta), ApEn (gamma)]) [123] because it uses the global
characteristics of the data.

Following the previous approach [16], the complete recordings of the EEG including
artefacts were used without a prior selection of data elements for analyses. This enabled us
to have an idea about the robustness and usefulness of the methods in practice. Powerful
analysis methods in the study such as ∆EEGA, ∆PS, ZCI, TsEn, HFD, ApEn, LZC are
relatively insensitive to the effects of artefacts. Furthermore, frequency band filtering of
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the EEG signals also reduces the effects of some artefacts, such as muscle artefacts and eye
movements [124,125]. The performance of the biomarkers for AD detection is assessed in
terms of sensitivity (Sen), specificity (Spec), accuracy (ACC), F-measure, positive predictive
value (PPV), and negative predictive value (NPV). Matthew’s correlation coefficient (MCC)
was used to measure the quality of the classification (AD and Nold) between the actual
and predicted results [126,127].

2.2.1. Biomarkers Based on EEG Slowing, Reduction in EEG Complexity and Coherence

The EEG signals are first filtered into the five EEG frequency bands using a low
computational IIR filter to emphasize the main features. The main EEG features in dementia
are those associated with the slowing of the EEG (e.g., shifts in the EEG power to the
lower frequencies), reduction in EEG complexity (reduction in complexity measures) and
reduction in EEG coherence. These features are quantified as biomarkers in each of the five
EEG frequency bands. Biomarkers based on ∆PS, ∆EEGA, and ZCI are computed for EEG
slowing; for the reduction in EEG complexity, the computed biomarkers are based on TsEn,
HFD, LZC, and ApEn; for connectivity, they are based on the coherence values between
the channels.

Changes in the power spectrum (∆PS): ∆PS [128,129] biomarker computation is based
on the magnitude square of the Fast Fourier transform (FFT) of an N-sample EEG data
sequence x(1), x(2), . . . , x(N). The power spectrum shows the coefficients for each frequency
measured by the FFT.

∆PSX(N) = [|FFT(X(N))|]2 (1)

Changes in the EEG amplitude (∆EEGA): ∆EEGA [23] is used as a measure of the EEG
slowing. ∆EEGA is the sum of the differences between adjacent amplitudes of EEG values
over the duration of the signal in a second. ∆EEGA of an N-sample data sequence x(1), x(2),
. . . , x(N) is calculated as;

1. Partition the signal X into K partitions, where K = N/Fs.
2. Calculate the ∆EEGA for each partition as;

∆EEGAk =
∑ ∆x
∑ ∆t

(2)

where k is the partition number of signal X, and A is the channel number, ∆x represents
the difference between adjacent amplitudes of the EEG in one second and ∆t denotes
the time interval:

∆x = xi+1 − xi (3)

∆t = ti+1 − ti (4)

where xi and xi+1 are the current and next EEG amplitude values, respectively, and ti
and ti+1 represent the corresponding times i.

3. The ∆EEGA of each EEG channel is then computed as,

∆EEGA =
∑K

i=1 ∆EEGAk

K
(5)

∆EEGA is the mean value for one EEG channel.
Zero-crossing intervals (ZCI): ZCI [30,85,130,131] is defined, in this context, as the

time interval between a positive to negative voltage transition to the next positive to
negative voltage transition (x-axis and y-axis were used for time and voltage representation,
respectively). It is based on finding a set of instances when the waveform intersects with
the time axis. The ZCI calculation for the N-sample EEG signal is obtained as,

T = { ti f xt > 0 and xt+1 < 0} (6)
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where xt and xt+1 are the times that EEG amplitude changed from positive to a negative
value, respectively, and T is the vector that contains the time instances when the amplitude
changed from positive to negative value (for example, T = {t1, t2, t3, . . . ., tN}).

ZCI =
K−1

∑
i=1

∆t (7)

∆t = ti+1 − ti (8)

ZCI is the zero-crossing interval value, K is the indicator for the number of instances,
and ti and ti+1 represent the predecessor and successor corresponding to the instances.

Tsallis entropy (TsEn): The computation of TsEn [132] of an N-sample EEG data se-
quence, x(1), x(2), . . . , x(N), is based on the generalised measure of entropy due to Tsallis:

TsEng =

(
K

∑
i=1

Pi − Pq
i

)
/(q− 1) (9)

where TsEng is the Tsallis entropy value, k is the number of states that the amplitudes of
the EEG are quantized into, Pi is a probability associated with the ith state, and q is Tsallis
parameter (k = 2200, and q = 0.5).

Higuchi fractal dimension (HFD): Higushi algorithm may be used to calculate the fractal
dimension, Df, and complexity of time series such as the EEG [133]. The algorithm is based
on a measure of the length of a curve, L(k), which represents the time series:

L(k)~K−D
f (10)

Df may be calculated by log-log curve fitting.
To compute the HFD biomarker [86,96,98,134] of an N-sample EEG data sequence x(1),

x(2), . . . , x(N), the data is first divided into a k-length sub-data set as,

Xm
k : x(m), x(m + k), x(m + 2k), . . . , x

(
m +

[
N −m

k

]
·k
)

, (11)

where [] is Gauss’ notation, k is constant, and m = 1, 2, . . . , k. The length Lm(k) for each
sub-data set is then computed as,

Lm(k) =


[ N−m

k ]

∑
i=1
|x(m + ik)− x(m + (i− 1)∆k|

 N − 1[
N−m

k

]
·k

/k (12)

The mean of Lm(k) is then computed to find the HFD for the data as,

HFD =
1
K

K

∑
M=1

Lm(k) (13)

Lempel-Ziv complexity (LZC): To compute the LZC [75,99–101,103] biomarker of an
N-sample EEG data sequence x(1), x(2), . . . , x(N), the EEG signal is first converted into a
binary string as,

x(i) =
{

0 i f EEG(i) < M
1 i f EEG(i) ≥ M

(14)

where x(i) is the equivalent binary value of EEG(i), i is the index of all values in the EEG
signal, and M is the median value of each EEG channel. The median value is used to
manage the outliers. The binary string is then scanned from left to right until the end
to produce new substrings. A complexity counter c(N) is the number of new substrings.
The upper bound of c(N) is used to normalise c(N) to get an independent value from the
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sequence of length N. The upper bound of c(N) is N/log2(N). c(N) is then normalised by
b(N) as,

C(N) =
c(N)

b(N)
(15)

where C(N) is the normalised value of the LZC, and b(N) is the upper bound of the c(N).
Approximation entropy (ApEn): ApEn [88,134–136] calculation of an N-samples EEG

signal, two input constants (m, and r) must be identified to calculate ApEn that referred as
ApEn (m, r, N), where m is the run length and r is the tolerance window. To calculate the
ApEn, initialise the vector sequences y1, y2, . . . , y(N-m+1), where yi = [xi, xi+1, . . . . , xi+m−1],
I = 1, . . . , N − m + 1. These vectors represent m successive x values beginning with the ith
point. Then, the distance is defined between yi and yj as the maximum differences between
successive scalar values. For the yi, the Nm(i) refers the number of j (j = 1, . . . , N − m + 1,
j 6= i) therefore, d[xi,xj] ≤ r. Therefore, for i = 1, . . . , N − m + 1:

Cm
r (i) =

Nm(i)
N −m + 1

(16)

where Cm
r values compute the regularity within a tolerance r to the specified window m.

Then, compute the average natural logarithm of each Cm
r over i:

φm(r) =
1

N −m + 1

N−m+1

∑
M=1

lnCm
r (i) (17)

The dimension is increased to m + 1 and the previous steps will be repeated to get
Cm+1

r and Cm+1
r .

The final step the ApEn is defined as,

ApEn(m, r, N) = φm(r)− φm+1(r) (18)

The ApEn value was computed for each channel.
EEG Coherence (EEG-Coh): Coherence [73,137] biomarker computation of an N-sample

EEG data sequence x(1), x(2), . . . , x(N), is based on the coherence between two EEG
channels and was calculated as,

Coh(a, b) =

∣∣Pa,b
∣∣2

PSDa ∗ PSDb
(19)

where a, and b are EEG channels, PSDa, and PDSb are the power spectral density for EEG
channels a and b, |Pa,b|2 is the square cross-spectral density of the channels a, and b. The
EEG coherence is a value between 0 and 1 calculated using Welch’s power spectral density.
It represents the functional relationships between two brain regions [73,138,139].

2.2.2. Biomarker Selection and Construction of Panels (Steps 3 and 4)

The methodological framework involves a consideration of all possible biomarkers.
This creates a large number of biomarkers at the biomarker computation stage. Therefore,
it is necessary to select biomarkers with a statistically significant association with AD as
these may be useful in discriminating between AD and Nold subjects. p-values, Bonferroni
corrected for familywise error rate [140], and the probability distribution ratio (see later)
were used for this purpose.

Biomarkers with p-values not greater than 0.001 are selected as having a significant
association with AD [141,142]. Similarly, EEG channels for which the biomarkers have
significant p-values (p-value < = 0.001) were selected as these are considered as having
a significant association with AD. Figure 3 shows the procedure used to select the EEG
biomarkers of AD. All possible combinations of the significant biomarkers are then used to
construct panels of biomarkers.
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As an example, suppose we selected the following three biomarkers as having a
significant association with AD:

TsEn(alpha(T3)), LZC(beta(T5)), and HFD(delta/theta(C4). Then, all the possible
biomarker panels will have one biomarker, two biomarkers, and three biomarkers:

• One biomarker panels: [TsEn(alpha(T3))], [LZC(beta(T5))], and [HFD(delta/theta(C4))]
• Two biomarker panels: [TsEn(alpha(T3)), LZC(beta(T5))], [TsEn(alpha(T3)), HFD(delta/

theta(C4))], and [LZC(beta(T5)), HFD(delta/theta(C4))]
• Three biomarker panels: [TsEn(alpha(T3)), LZC(beta(T5)), HFD(delta/theta(C4))]

In the study, Dataset B was used for biomarker selection and construction of panels.

2.2.3. Diagnostic Model Development and Evaluation (Steps 5–7)

The outcome of biomarker selection is a set of biomarker panels from the different
methods of computing biomarkers. At this stage, we want to determine how well the
biomarker panels perform in detecting AD. The best performing biomarker panels are
then used to develop a diagnostic model. We start by developing an SVM model for each
biomarker panel using a 10-fold cross validation strategy. Dataset B was split into 60% for
training and 40% for testing for this purpose. The models were further assessed in terms of
sensitivity and specificity using the remaining 40% of dataset B.

Biomarker panels of models that obtained sensitivity and specificity of at least 80%
were selected as the best performing panels. The selected biomarker panels are then
combined to produce a diagnostic model using LDA classifier. The resulting model is then
evaluated using dataset A.

2.2.4. Optimisation and Validation of the Diagnostic Model (Steps 9 and 10)

Although the performance of the diagnostic model after Step 8 above is good, the
number of EEG biomarkers involved may still be large. Further investigation is necessary
to identify the smallest possible subset of EEG biomarkers from the panel of biomarkers
that may be used in the diagnostic model to detect AD and still maintain high performance.
At this stage, new and independent EEG datasets (C and D) are used in the investigation
to avoid bias and overfitting. This also helps to assess how the diagnostic model would
perform in different clinical settings. In this study, dataset D was used for training and
cross-validation. Dataset C was used for subsequent testing to validate the optimized
diagnostic model.

The following steps outline the procedure for finding the smallest subset of biomarkers
from the selected panel of biomarkers.

1. As before, biomarkers in the final biomarker panels in Step 6 (see Section 2.2) are first
computed using dataset D.

2. New panels of biomarkers are then created from the biomarkers (i.e., by combining
one or more biomarkers).
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3. For each of the new panel of biomarkers, develop and test a model to detect AD. In
this study, SVM model was used to combine the biomarkers in each panel using a
10-fold cross validation strategy [123].

4. Select panels and hence the subset of biomarkers that meet the diagnostic criteria and
develop a diagnostic model from these.

5. Validate the diagnostic model using unseen datasets (datasets A, B and C).

3. Results
3.1. Biomarker Computations

For each of the seven methods of biomarker computation (i.e., ∆PS, ∆EEGA, ZCI,
TsEn, HFD, ApEn, and LZC) and for each channel, all the 25 possible biomarkers were
computed (five biomarkers for the five EEG frequency bands and 20 biomarkers for the
ratios between bands). Examples of the computed biomarkers are ZCI(alpha), TsEn(delta),
TsEn(alpha/beta), and ∆EEGA(theta/beta). Thus, 475 biomarkers were computed and
analysed for each of the seven methods (25 biomarkers× 19 EEG channels for each method).
Thus, there were a total of 3325 biomarkers were computed for the seven indices (475 × 7).
For the coherence based approach, there were 171 coherence values between pairs of the
19 EEG channels (e.g., Fp1-Fp2, Fp1-F7, . . . , O1-O2) were computed for each frequency
band and 20 ratios. The total number of biomarkers computed for EEG coherence was 4275
(171 coherence values × 25 biomarkers). A total of 7600 (3325 + 4275) single biomarkers
were computed from the eight methods (i.e., ∆PS, ∆EEGA, ZCI, TsEn, HFD, ApEn, LZC,
and EEG coherence).

3.2. Biomarker Selection and Biomarker Panels

The p-values were computed for each of the 7600 biomarkers as they reflect the
significance of the biomarker in AD detection.

As an example, Table 2 shows the p-values and the Bonferroni corrected p-values [140]
for the theta/alpha biomarker for the TsEn method. The critical p-value is 0.00263 (e.g.,
0.05/19). This is found by dividing the familywise error rate (i.e., 0.05) by the number of
tests, i.e., 0.05/N [140].

Table 2. p-value for theta/alpha ratio for TsEn method.

Channel No. EEG
Channel p-Value

Bonferroni-
Corrected
p-Value

Bonferroni-
Corrected

Significance

1 Fp1 0.0264 0.5016 not significant
2 Fp2 0.0394 0.7486 not significant
3 F7 0.4883 1 not significant
4 F3 0.5511 1 not significant
5 FZ 0.3612 1 not significant
6 F4 0.1582 1 not significant
7 F8 0.3105 1 not significant
8 T3 0.1352 1 not significant
9 C3 0.2859 1 not significant
10 CZ 0.8901 1 not significant
11 C4 0.5549 1 not significant
12 T4 0.2418 1 not significant
13 T5 0.0010 0.019 significant
14 P3 0.0048 0.0912 not significant
15 PZ 0.0207 0.3933 not significant
16 P4 0.0036 0.0684 not significant
17 T6 0.0002 0.0038 significant
18 O1 0.0028 0.0532 not significant
19 O2 0.0035 0.0665 not significant
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As can be seen, only two EEG channels (T5 and T6) are significant as they have
Bonferroni corrected p-values of less than the critical p-value (i.e., 0.00263), and they also
satisfy the p-value selection criterion i.e., p-value ≤ 0.001.

To assess the relative effects of the EEG features and EEG channels in the detection of
AD, the probability distribution ratios [143] were computed as,

Pxi =
xi

∑N
i=1 Xi

(20)

where PXi is the probability distribution ratio for an N-sample data sequence xi, xi+1, . . . ,
xN, I = 1 . . . N.

Table 3 summarises the EEG features and the number of EEG channels for which
the p-value criterion was satisfied for each method of biomarker computation (i.e., ∆PS,
∆EEGA, ZCI, TsEn, HFD, ApEn, and LZC). For example, for the HFD method of biomarker
computation in the alpha band, the p-value criterion was satisfied at 4 EEG channels

Table 3. Probability distribution ratio for all 25 EEG features for each method.

EEG Features
Number of EEG Channels That Meet p-Value Criterion for Each Method Total Number

of EEG
Channels

Probability
Distribution

Ratio %

Cumulative
Probability

Distribution Ratio %ApEn LZC HFD TsEn ∆PS ∆EEGA ZCI Coh

Theta/alpha 12 5 9 2 18 12 15 1 74 15.579 15.579
Alpha/theta 12 7 0 2 17 15 15 0 68 14.316 29.895
Alpha/delta 0 0 0 0 18 11 8 0 37 7.789 37.684
Beta/theta 13 0 0 0 2 10 9 1 35 7.368 45.052
Theta/beta 12 0 3 0 4 5 9 0 33 6.947 51.999

Alpha 2 0 4 0 19 3 4 0 32 6.737 58.736
Delta/alpha 1 0 0 0 18 4 7 0 30 6.316 65.052

Delta 0 0 0 0 19 0 0 3 22 4.632 69.684
Theta 0 0 0 0 18 0 0 3 19 4.000 73.684

Theta/delta 0 0 0 0 17 0 0 0 18 3.789 77.473
Delta/theta 8 0 0 1 0 4 4 0 17 3.579 81.052

Gamma/theta 0 0 0 0 16 0 0 0 17 3.579 84.631
Beta/delta 0 0 0 0 2 7 3 2 14 2.947 87.578

Beta 2 0 4 0 1 1 3 2 13 2.737 90.315
Theta/gamma 6 0 0 1 0 0 4 0 11 2.316 92.631

Alpha/beta 0 4 0 0 4 0 0 0 8 1.684 94.315
Gamma/delta 3 0 0 0 1 3 1 0 8 1.684 95.999

Delta/beta 0 0 0 0 2 0 2 0 4 0.842 96.841
Alpha/gamma 0 4 0 0 0 0 0 0 4 0.842 97.683

Gamma 0 2 0 0 1 0 0 2 3 0.632 98.315
Gamma/alpha 0 0 1 0 2 0 0 0 3 0.632 98.947
Gamma/beta 0 1 0 0 1 0 0 0 3 0.632 99.579
Beta/alpha 0 0 0 0 1 0 0 0 2 0.421 100

Delta/gamma 0 0 0 0 0 0 0 0 0 0.000 100
Beta/gamma 0 0 0 0 0 0 0 0 0 0.000 100
Summation

(Sum) 71 23 21 6 181 75 84 14 475 100

To assess the impact of each biomarker feature in AD detection, the total number
of channels at which the p-value criterion is satisfied, and the probability distribution
ratio were computed for each biomarker feature (see last three columns of Table 3) and
used to rank the biomarker features. As shown in Table 3, the theta/alpha ratio has the
highest number of channels that have a p-value which is less than or equal to 0.001. While
delta/gamma and beta/gamma biomarker features have no EEG channels that satisfied
the threshold of the p-value.

The maximum probability distribution ratio was 15.579 for the theta/alpha ratio. This
was computed by dividing the probability distribution ratio of theta/alpha i.e., 74 by the
total probability distribution ratio of all bands i.e., 475, and multiplying the resulted value
by 100.

To determine the EEG biomarker features that have a significant association with AD
biomarker features that have cumulative probability distribution ratio of 80% or more
were selected (i.e., theta/alpha, alpha/theta, alpha/delta, beta/theta, theta/beta, alpha,
delta/alpha, delta, theta, theta/delta, and delta/theta in Table 3). These 11 biomarker
features have the greatest association with AD and are used to construct biomarker panels
e.g., [LZC (alpha(T3)), LZC (delta/theta(P4)].
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To determine the EEG channels that have a significant association with AD, we
selected the channels that met the p-value threshold of less than or equal to 0.001. Then,
the probability distribution ratio was also computed for all the 19 EEG channels to identify
the EEG channels that are most promising in terms of significant association with AD.

Table 4 shows the number of EEG channels for the methods (i.e., PS, ∆EEGA, ZCI,
TsEn, HFD, ApEn, and LZC) that met the p-value threshold and the probability distribution
ratio for each channel. The EEG channels are ranked in terms of probability distribution
ratio and the total number of biomarker features.

Table 4. Probability distribution ratios for all 25 EEG biomarker features and for all 19 EEG channels.

EEG
Channels

Number of Biomarkers Total Number of
EEG Biomarker

Features

Probability
Distribution

Ratio %

Cumulative
Probability

Distribution Ratio %ApEn LZC HFD TsEn ∆PS ∆EEGA ZCI

P4 7 5 4 0 10 10 12 48 10.412 10.412

P3 9 2 4 0 9 8 13 45 9.761 20.173

PZ 8 2 3 2 11 9 10 45 9.761 29.934

T6 3 6 2 2 9 7 7 36 7.809 37.743

T5 2 3 4 2 9 6 7 33 7.158 44.901

C4 6 0 0 0 11 6 4 27 5.857 50.758

T4 4 2 1 0 8 7 3 25 5.423 56.181

T3 4 0 1 0 14 3 2 24 5.206 61.387

C3 4 0 0 0 12 4 4 24 5.206 66.593

CZ 6 0 0 0 9 3 6 24 5.206 71.799

O2 3 3 1 0 10 3 4 24 5.206 77.005

O1 4 0 1 0 8 3 4 20 4.338 81.343

F8 2 0 0 0 12 1 2 17 3.688 85.031

F7 3 0 0 0 9 2 2 16 3.472 88.503

F3 3 0 0 0 9 1 2 15 3.255 91.758

FZ 3 0 0 0 7 2 2 14 3.037 94.795

Fp1 0 0 0 0 9 0 0 9 1.952 96.747

F4 0 0 0 0 9 0 0 9 1.952 98.699

Fp2 0 0 0 0 6 0 0 6 1.302 100.001

Total 71 23 21 6 181 75 84 461 100

As can be seen, channel P4 was the top-ranked channel across the methods and
features, and channels P3 and PZ were the second highest ranked, whilst channel Fp2
is the lowest ranked. Similar findings have been reported in the literature in which AD
is thought to originate from the back of the brain and then spread to other areas of the
brain [85,97,99–101,103]. This is consistent with the spatio-temporal pattern of AD-related
degeneration, where hippocampal atrophy, the earliest sign of the disease, is followed by
a widespread medial temporal lobe volume loss [144], which in turn gradually spreads
through parietal, frontal, and temporal cortices until the whole-brain atrophy is observed at
the latest stages [145]. Furthermore, the distribution of tau pathology in the brain, whereas
recent amyloid-PET studies have shown that amyloid pathology, an “initial insult,” starts
in association cortices and spreads from neocortex to allocortex [146].

Based on the analysis of the results (see Tables 3 and 4), 12 EEG channels (P4, P3, PZ,
T6, T5, C4, T3, C3, CZ, T4, O2, and O1) were selected as having a significant association
with AD. These channels accounted for more than 80% of the cumulative probability
distribution ratio of all EEG channels, as shown in Table 4.

The 12 EEG channels selected have been reported in other studies as having a signifi-
cant role in AD detection [101,147–150].

For each of the 11 EEG biomarkers that were selected, 4082 combinations were in-
vestigated for the 12-EEG channels (all combinations from length 1 to length 10 were
constructed for the 12-EEG channels). For each method, we investigated 44,902 biomarkers
(11-biomarkers × 4082-combinations).



Brain Sci. 2021, 11, 1026 15 of 31

Following a similar analysis for biomarkers based on EEG coherence, 10 pairs of EEG
channels that satisfied the p-value threshold (less than or equal to 0.001) were selected,
Table 5.

Table 5. Probability distribution ratio to EEG coherence for all 25 EEG biomarkers and all 19 EEG
channels.

EEG Channel Pair No. of Biomarkers Probability
Distribution Ratio

Cumulative
Probability

Distribution Ratio %

F4-F8 3 21.429 21.429

Fz-F8 2 14.286 35.714

T3-T4 2 14.286 50.000

Fp2-F4 1 7.143 57.143

F4-T3 1 7.143 64.286

F4-T4 1 7.143 71.429

F8-P4 1 7.143 78.572

T3-P4 1 7.143 85.715

T3-T6 1 7.143 92.857

T4-P3 1 7.143 100.000

Total 14 100.000

Panels of biomarkers with the selected features and EEG channels were created for
each of the seven methods (∆EEGA, ∆PS, ZCI, TsEn, HFD, ApEn, LZC). Similarly, panels
of biomarkers for the coherence method were also created. Altogether, a total of 325,567
biomarker panels were created.

An SVM model for each panel in each method was developed and its performance
assessed using dataset B (dataset B was split into 60% for training and 40% for testing for
this purpose). The best biomarker panels for each method were determined based on their
performance (in terms of sensitivity, specificity, and the number of EEG channels used).
Sensitivity and specificity thresholds of at least 80% in the detection of AD were set for the
biomarkers. Table 6 summaries the features of the best performing biomarker panels. For
example, in Table 6, the third biomarker panel for the ApEn method is Alpha (P3, T6, O1).
This biomarker panel is based on three features—alpha features derived from channels P3,
T6 and O1)
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Table 6. The best performance of EEG biomarkers for the investigated eight indices.

Analysis Method EEG Biomarker EEG Channels

ApEn

Alpha/theta (C4)

Theta/alpha (C4)

Alpha (P3, T6, O1)

LZC

Alpha/theta (T3, T6)

Theta/alpha (T3, T6)

Alpha/delta (CZ, C4, P3, P4), (CZ, T4, P3, P4), and (CZ)

Beta/theta (C4, P3, T6, O1), and (C4, P3, T6, O2)

Alpha (C3, CZ, PZ, T6, O1)

Delta/alpha (CZ, T4, P3, P4), (CZ, T4, P3, T6), and (CZ, T4, P3, O2)

Theta (T3, C3, P3)

HFD

Theta/alpha (T3), (T5)

Alpha/delta (CZ, PZ, O2)

Alpha (T5, PZ), (PZ, T6), (T6, O1) and (T6, O2)

TsEn

Alpha/theta (T3, CZ, P3, T6), and (C3, CZ, O1, O2)

Theta/alpha (T3, CZ, C4, T6, O1), and (T3, CZ, T5, P4, O1)

Alpha/delta (C3, T6)

Delta/alpha (C3, T6)

∆PS

Alpha/theta (T3), (C3), (T4), (P3), (PZ), and (P4)

Theta/alpha (C3), (CZ), (C4), (P4), and (O1)

Alpha/delta (T3, T4, P3, P4, O1)

Beta/theta (C3)

Alpha (T3), (C3), (CZ), (C4), (T4), (T5), (P3), (PZ), (P4), (T6), (O1),
and (O2)

Delta/alpha (T3), (C3), and (CZ)

Theta/beta (C4)

Theta/delta (P3, T6)

Delta (C3), (CZ), (C4), (T4), (T5), (P3), (PZ), (P4), (T6), (O1), and
(O2)

Theta (CZ), (P4), and (O2)

Delta/theta (T3), (T4), (P3), (PZ), (P4), and (T6)

∆EEGA

Alpha/theta (T3)

Theta/alpha (T3), (C3), (T5), (P3), (PZ), and (P4)

Alpha/delta (T6)

Beta/theta (C4), and (P4)

Alpha (T6)

Delta/alpha (P4, T6), (T6, O1), and (T6, O2)

Theta/beta (T3, CZ, T4, O1, O2)

ZCI

Alpha/theta (C3), (P3), (PZ), and (P4)

Theta/alpha (C3), (P3), and (P4)

Alpha/delta (C3, P4, T6, O1)

Alpha (T6, O1), and (T6, O2)

Delta/alpha (C3, P3, O1)

Coherence

Alpha/theta (Fp2-F4, Fz-F8, F4-T4, F8-P4, T3-T4, T3-P4)

Beta/theta (Fp2-F4, F4-F8, F4-T3, F4-T4)

Theta/beta (F4-F8, F4-T3, F4-T4)
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3.3. Diagnostic Model to Detect AD

A key goal in the study is to find the best combination of EEG based biomarkers to
detect AD patients with high sensitivity and specificity. Biomarker panels that satisfied
the threshold for sensitivity and specificity of at least 80% and have the fewest number of
EEG channels were selected for inclusion in the diagnostic model. Table 7 summaries the
best 17 biomarker panels selected on the basis of this. As can be seen from the table, the
17 biomarker panels contain a total of 69 panels of biomarkers (69 out of 325,567 panels of
biomarkers). These 69 panels of EEG biomarkers were then combined in a model using
LDA classifier. The combined biomarker consists of 30 panels of biomarkers from analysis
of the reduction in EEG complexity, 33 panels of biomarkers from analysis of the slowing
of the EEG, and 6 biomarkers panels of from the analysis of the decrease in functional
connectivity of EEG. The biomarkers panels were combined in a one diagnostic model.

Table 7. Panel of robust EEG biomarkers.

Method EEG Biomarker
Feature EEG Channel Sen. % Spec. % Category

ApEn Alpha P3, T6, O1 100 83

EEG
complexity

ApEn Alpha/theta C4 100 100

HFD Alpha T5, PZ, T6, O1, O2 88 100

HFD Theta/alpha T3, T5 100 100

LZC Alpha C3, CZ, PZ, T6, O1 88 100

LZC Alpha/delta CZ, C4, T4, P3, P4,
T6 100 83

TsEn Alpha/delta C3, T6 100 91

TsEn Alpha/theta T3, C3, CZ, P3, T6,
O1 86 90

ZCI Alpha T6, O1, O2 88 100

EEG
slowing

ZCI Alpha/theta C3, P3, PZ, P4 100 100

ZCI Delta/alpha C3, P3, O1 100 91

∆EEGA Alpha/delta T6 100 100

∆EEGA Theta/alpha T3, C3, T5, P3, PZ, P4 100 100

∆PS Alpha T3, C3, P3, P4, T6 100 100

∆PS Alpha/delta T3, T4, P3, P4, O1 100 100

∆PS Alpha/theta T3, C3, T4, P3, PZ, P4 100 100

Coh Alpha/theta Fp2-F4, Fz-F8, F4-T4,
F8-P4, T3-T4, T3-P4 86 90 EEG

connectivity

Combined model 100 100

The training and testing EEG datasets were used in the model development (dataset
B was split into 60% for training and 40% for testing for this purpose). While dataset A
was used to evaluate the model and the performance found to be 100% for sensitivity
and specificity. The performance of the diagnostic models based on the individual panel
biomarkers and the whole 17 panels are summarised in Table 7. As can be seen, the
combined model outperforms the individual panels.

Although the performance of the combined model is good, the model may not be
using the smallest possible subset of EEG biomarkers.

To show the effect of AD on EEG signal. The changes in EEG due to AD can be
shown for the 69 robust EEG biomarkers that may have a more significant association with
AD. Table 8 shows the changes in EEG signal due to AD for the 17 EEG biomarkers (e.g.,
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ApEn(Alpha), ApEn(Alpha/Theta)) that may have a more significant association with AD
for the three key characteristics of dementia EEG (i.e. slowing of the EEG, reduction in
EEG complexity and reduction in EEG connectivity). The shaded boxes in Table 8 referred
to the decrease in EEG biomarkers due to AD, otherwise, it means the increase. Table 8
shows the changes in EEG characteristics due to AD.

Table 8. Changes in EEG signal due to AD for all the 17 robust EEG biomarker panels.

Category Method Biomarker Feature AD Norm

EEG complexity

ApEn Alpha
ApEn Alpha/theta
HFD Alpha
HFD Theta/alpha
LZC Alpha
LZC Alpha/delta
TsEn Alpha/delta
TsEn Alpha/theta

EEG slowing

∆PS Alpha
∆PS Alpha/delta
∆PS Alpha/theta
ZCI Alpha
ZCI Alpha/theta
ZCI Delta/alpha

∆EEGA Alpha/delta
∆EEGA Theta/alpha

EEG connectivity Coh Alpha/theta

Table 7 shows, that EEG coherence provides less performance compared to the com-
plexity and slowing of EEG and may be due to inflation caused by volume conduction [151].
The effects of this may be reduced using Surface Laplacian approach [152].

3.4. Optimisation and Validation of the Diagnostic Model

The selected biomarker panels at Step 6 above contains a total of 69 biomarkers.
Starting with the 69 biomarkers, finding the smallest subset of biomarkers involves creating
new panels of biomarkers by combining the biomarkers. In this study, the maximum
number of biomarkers in a new panel was limited to four because the goal is to find the
smallest subset of biomarkers (i.e., panels with the fewest number of biomarkers) to detect
AD with acceptable performance and the need to avoid the exponential increase in the
number of possible biomarker panels as panel size increases. Limiting the panel size to
four still yielded 919,310 biomarker panels (see Table 9). Dataset D was used to compute
the 919,310 EEG biomarker panels.

Table 9. Number and distribution of panels with one, two, three, and four biomarkers.

No. of Biomarkers in a Panel No. of Panels

1 69

2 2346

3 52,394

4 864,501

Total 919,310

A machine learning model was developed for each biomarker panel in the table
above using a 10-fold cross validation. Single-biomarker panels, two-biomarker panels,
three-biomarker panels, and four-biomarker panels that satisfy the performance threshold
(sensitivity and specificity equal to or greater than 80%) were identified.
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To select the best biomarkers from these biomarker panels, we focused on the smallest
subset of biomarkers that have a high performance in AD detection. Based on this, we
found that the following six biomarker panels have the best performance:

TsEn(alpha/theta(T6)), ZCI(alpha/theta(P3)), ZCI(delta/alpha(P3)), ∆EEGA(alpha/
delta(T6)), ∆EEGA(theta/alpha(T3)), and ∆EEGA(theta/alpha(T5)).

The six biomarkers were then combined using an SVM model. Dataset D using 10-fold
cross-validation was used in the development of the final model.

It is to be noted that of the eight methods of computing EEG biomarkers, only three
appear in the final model—TsEn, ZCI and ∆EEGA, and that only alpha and theta features
are in the model. ∆EEGA shows promising results in quantifying the slowing of EEG in AD
detection [23]. ZCI is a promising method to quantify changes in the EEG due to AD [30,85].
TsEn is one of the most promising information theoretic methods for quantifying EEG
complexity [48,61,84,92,93]. Its fast computation may serve as the basis for real-time
decision support tools for diagnosing AD [48,84,92].

The resulting model was tested and validated using unseen datasets. In particular,
datasets A, B, and C were used to validate the developed model. The performance of
the final model using dataset C was 100% for sensitivity and specificity, respectively. For
dataset A, it was also 100% for sensitivity and specificity, respectively. For dataset B, it was
85% for sensitivity and 100% for specificity.

3.5. The Effect of Combining Multiple Biomarkers on Performance

To assess the effect of combining multiple biomarkers to produce a robust biomarker,
TsEn method was selected as an example of the eight methods investigated (i.e., ApEn,
LZC, HFD, TsEn, ∆PS, ∆EEGA, ZCI, and coherence). Combining biomarkers was per-
formed in developing the diagnostic models. To demonstrate how the biomarkers were
combined, for example, the six biomarkers [TsEn(alpha/theta(T6)), ZCI(alpha/theta(P3)),
ZCI(delta/alpha(P3)), ∆EEGA(alpha/delta(T6)), ∆EEGA(theta/alpha(T3)), and ∆EEGA
(theta/alpha(T5))] were combined during the training of diagnostic model that contains
the values of these six biomarkers belong to Nold and AD, then test the developed model
using the same biomarkers but for an unseen dataset. Table 10 shows the performance
of the alpha band for TsEn method. The table shows the effect of combining multiple
EEG biomarkers in a diagnostic model to produce a new biomarker that has a higher
performance than its elements.

Table 10. The performance of the alpha band for the TsEn method.

EEG Channel Sen. % Spec. % Acc. % F-Measure % MCC PPV % NPV %

C3 50.00 66.67 58.82 53.33 0.17 57.14 60.00

P3 35.71 33.33 35.29 47.62 −0.24 71.43 10.00

C3, P3 83.33 81.82 82.35 76.92 0.63 71.43 90.00

O2 30.77 25.00 29.41 40.00 −0.38 57.14 10.00

C3, O2 55.56 75.00 64.71 62.50 0.31 71.43 60.00

As shown in Table 10 the performance of [TsEn(alpha(C3)), TsEn(alpha(P3))] was
88.33% and 81.82% for sensitivity and specificity, respectively. The performance of TsEn
(alpha(C3)) was 50% for sensitivity and 66.67% for specificity and the performance of
TsEn(alpha(P3)) was 35.71% for sensitivity and 33.33% for specificity. Also, the performance
of [TsEn(alpha(C3)), TsEn(alpha(O2))] is higher than the performance of TsEn(alpha(C3))
and TsEn(alpha(O2)) separately. This finding is consistent with the results in [3,23,34,40,
108], they illustrate the point that the performance of combining multiple biomarkers to
produce a composite biomarker outperforms single biomarkers alone.

As we have already seen, the final diagnostic model which combines six biomarkers
[TsEn(alpha/theta(T6)), ZCI(alpha/theta(P3)), ZCI(delta/alpha(P3)), ∆EEGA(alpha/delta



Brain Sci. 2021, 11, 1026 20 of 31

(T6)), ∆EEGA(theta/alpha(T3)), and ∆EEGA(theta/alpha(T5))] has a performance of 100%
for sensitivity and specificity for datasets A and C and 85% for sensitivity and 100% for
specificity for dataset B.

Table 11 demonstrates using multiple EEG biomarkers in one diagnostic model. These
biomarker panels include one, two, three, four, five, and six biomarkers. For example, the
panel (e.g., [∆EEGA(alpha/delta(T6))]) means the developed diagnostic model has one
biomarker, the panel (e.g., [ZCI(alpha/theta(P3)), ∆EEGA(theta/alpha(T3))]) means the
developed diagnostic model has two biomarkers. As can be seen in Table 11, combining
multiple biomarkers of different techniques e.g., slowing of EEG and EEG complexity
provides better performance than using each biomarker separately. This finding is consis-
tent with other findings that suggest combining EEG biomarkers could be more sensitive
to disease progression, identify optimal combinations of biomarkers, and could comple-
ment other AD biomarkers e.g., PET, CSF and MRI [34,110]. The combining of multiple
biomarkers can reveal hidden separation boundaries [110].

Table 11. Performance of biomarker panels consisting of one, two, three, four, five, and six biomarkers
for dataset B.

EEG Biomarkers Sen. % Spec. %

[∆EEGA(alpha/delta(T6))] 100 60

[∆EEGA(theta/alpha(T5))] 61.71 100

[∆EEGA(alpha/delta(T6)), ∆EEGA(theta/alpha(T5))] 100 61.54

[ZCI(alpha/theta(P3)), ∆EEGA(theta/alpha(T3))] 54.84 100

[ZCI(alpha/theta(P3)), ZCI(delta/alpha(P3)),
∆EEGA(theta/alpha(T3))] 54.84 100

[ZCI(alpha/theta(P3)), ∆EEGA(theta/alpha(T3)),
∆EEGA(theta/alpha(T5)) 54.84 100

[TsEn(alpha/theta(T6)), ZCI(delta/alpha(P3)),
∆EEGA(alpha/delta(T6)), ∆EEGA(theta/alpha(T5))] 100 68.57

[ZCI(alpha/theta(P3)), ZCI(delta/alpha(P3)),
∆EEGA(theta/alpha(T3)), ∆EEGA(theta/alpha(T5))] 54.84 100

[TsEn(alpha/theta(T6)), ZCI(alpha/theta(P3)),
ZCI(delta/alpha(P3)), ∆EEGA(theta/alpha(T3)),

∆EEGA(theta/alpha(T5))]
54.84 100

[ZCI(alpha/theta(P3)), ZCI(delta/alpha(P3)),
∆EEGA(alpha/delta(T6)), ∆EEGA(theta/alpha(T3)),

∆EEGA(theta/alpha(T5))]
80.95 100

[TsEn(alpha/theta(T6)), ZCI(alpha/theta(P3)),
ZCI(delta/alpha(P3)), ∆EEGA(alpha/delta(T6)),

∆EEGA(theta/alpha(T3)), and EEGA(theta/alpha(T5))]
85 100

4. Discussion

Many EEG-derived biomarkers have been reported as promising in the detection of
AD in the literature [55,58,111,153–155]. Here we tested the hypothesis that by combin-
ing complementary information obtained with different EEG biomarkers across multiple
frequency bands with different analytical techniques the detection performance can be in-
creased. AD affects cognitive memory and brain functions [3,156] and each EEG frequency
band is associated with specific brain functions [104,156]. Thus, a decline in brain functions
may be reflected in the EEG activities and EEG frequency bands [43–45]. Consequently,
deriving EEG biomarkers from frequency bands is thought to provide a better performance
in detecting AD compared to EEG biomarkers derived from the whole EEG record [55].

The development of robust EEG based biomarkers requires a thorough investigation
of all the possible factors that affect AD detection. These factors may include the basis
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for the biomarkers (e.g., EEG slowing, reduction in EEG complexity, decrease in EEG
connectivity), the EEG features used and hence the methods used to derive the biomarkers,
and the EEG channels from which the biomarker is derived. Taking these factors into
account and integrating different biomarkers into one biomarker should lead to robust EEG
based biomarkers. Our methodological framework makes this possible and our results
support this.

There is an ongoing development in the field of EEG biomarkers of neurodegenerative
disorders (i.e., dementia with Lewy bodies, Parkinson’s disease), suggesting that EEG
recordings might support distinguishing between different forms of dementia, even before
the onset of distinctive clinical symptoms [157]. Therefore, the application of a developed
analytical framework to other neurodegenerative conditions might provide a reproducible
and standardized workflow for the development of robust EEG biomarkers with good
discriminating performance.

The findings in this study confirmed that EEG could provide good biomarkers to detect
AD. Tables 6 and 7 show the best biomarkers that can be used to detect AD. These biomarker
features have been reported in previous studies to be important in AD detection [56,
63,154,158–173]. For example, Fahimi et al. [169] and Schmidt et al. [167] found that
theta/alpha and alpha/theta are good biomarkers for AD detection and this is consistent
with the finding in Table 7. The HFD (Theta/alpha (T3, T5)) and ∆EEGA (Theta/alpha (T3,
C3, T5, P3, PZ, P4)) biomarkers provided high performance in AD detection. González-
Castro et al. [170] and Arns et al. [171] used beta/theta ratio to diagnose attention deficit
hyperactivity disorder (ADHD), and Barry et al. [172] reported that theta/beta ratio is a
marker of ADHD. While Zhang et al. [173] indicated that AD patients show increased
ADHD symptoms. Thus, our findings suggest that beta/theta and theta/beta ratios may be
important in AD detection. Reduction in alpha band activity is reported to be an indicator
of MCI and was observed in progressive stages of AD [63,158]. Our finding in Table 6
shows that alpha provided the best performance to detect AD. Using the delta/alpha ratio,
Ladurner et al. [159] found that Ischaemic stroke (IS) disorder is common in dementia.
Besides, Finnigan et al. [160] concluded that the delta/alpha ratio is an optimal QEEG
(Quantitative Electroencephalogram) index for IS patients. Morettiet et al. [161], Hier
et al. [162], and Musaeus et al. [163] found that features in the delta band are a marker to
discriminate between AD patients and Nold subjects. For alpha and theta bands, alpha
band was significantly lower in AD patients [56,154]. Also, Sutter et al. [164] found that the
theta band was associated with brain atrophy [164]. As shown in Table 6, LZC (Alpha (C3,
CZ, PZ, T6, O1)), ApEn (Alpha (P3, T6, O1)), ZCI (Alpha(T6, O1), and ZCI(Alpha(T6, O2))
provided the best performance in AD detection. For theta/delta, Sutter et al. [164] found
that theta/delta of EEG is associated with intracerebral hemorrhages (ICH). Moreover,
Cohen et al. [165] indicated that the more pathogenic form of Aβ1-42 was found to be
highly associated with ICH [165]. Wacker et al. [166] found that VAL allele is associated
with an increased delta/theta ratio of EEG. According to Ventriglia et al [168], there was a
substantial increase in the number of individuals carrying two copies of the Val allele in AD
patients compared to healthy controls. Results in Table 6 show the ∆PS (Theta/delta(P3,
T6)) provided the best performance to detect AD.

We selected EEG biomarkers and channels with a significant association with AD
detection as having high performance in distinguishing between AD patients and Nold
subjects. These biomarkers and EEG channels were then used to find the best combination
of the EEG biomarkers that is robust enough to be used to detect AD. In this study, the
EEG biomarkers have performed well, suggesting that the methodology is realistic for AD
detection.

For clinical acceptance, there is a need for further studies using larger datasets from
different settings to assess the full potential of the model and methodology. Finding the
smallest subset of biomarkers from 69 biomarkers involves examining an excessively large
number of biomarker panels. As a result, the maximum number of biomarkers in a panel
was limited to four and the determination of the smallest subset was based on these. Thus,
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the subset we used to develop the final diagnostic model may not be the optimal subset (in
terms of performance, number and type of biomarkers). In future, it should be possible to
explore other approaches to finding optimum subsets of features.

The selected biomarkers included one biomarker based on the reduction in EEG com-
plexity i.e., TsEn(Alpha/theta(T6)), and five biomarkers based on the slowing of the EEG i.e.,
ZCI(Alpha/theta(P3)), ZCI(Delta/alpha(P3)), ∆EEGA(Alpha/delta(T6)), ∆EEGA(Theta/
alpha(T3)), and ∆EEGA(Theta/alpha(T5)). Furthermore, analysis of the results shows that
the EEG channels in the temporal and parietal lobes (i.e., T6, T3, T5, and P3) gave better
results compared to other channels that relate to other lobes e.g., the frontal lobe.

Results of the present study are consistent with the previous observations of abnor-
mal cortical EEG and magnetoencephalographic (MEG) rhythms in parietooccipital and
temporal channels [58,174–177]. The most consistently reported abnormalities of cortical
rhythms in AD patients are an increase of delta and theta activity and a reduction of
alpha activity [178–184]. In line with these observations, an earlier classification study
has reached the highest discrimination accuracy between Nold and AD participants using
composite markers of source current density in parietal, temporal, and occipital regions
at alpha, theta, and delta frequency bands [185]. Together with previous findings, the
present study supports the important role of temporoparietal sources of EEG activity at
alpha, theta, and delta frequencies in discrimination between patients with AD and Nold
participants.

What is the neurophysiological role of these changes in the spectral composition of
EEG rhythms in AD? In quiet wakefulness, scalp rsEEG rhythms at posterior channels are
dominated by alpha-band oscillations. These oscillations reflect the fluctuating cortical inhi-
bition and the underlying widespread synchronization of cortical pyramidal neurons [186].
Indeed, studies have shown that neural signals synchronized at around 10 Hz subserve
vigilance and attention [45,70,187,188]. The increased theta and delta rhythms, in turn,
have been linked to sleep, fatigue, and decreased alertness (drowsiness) [189,190]. EEG
markers computed at these frequencies have proven as reliable indicators of neural inhibi-
tion and impaired information processing [191]. Thus, computing frequency ratios between
delta/theta and alpha rhythms allow to integrate information embedded into abnormalities
at lower and higher frequencies of the spectral envelope into a single composite biomarker,
indicative of cortical neural synchronization.

Although the performance of the diagnostic model is good, there are a number of
significant limitations of the study. First, the size of the dataset used in the model devel-
opment and testing of the model is small. In the study, 40 cases were used for training
the model (i.e., 20 AD patients and 20 Nold subjects to dataset D), and 72 cases for testing
(i.e., 30 AD patients and 42 Nold subjects to datasets A, B, and C). Although this compares
well with the size of the dataset in other studies (e.g., Amezquita-Sanchez et al. [192] used
74 cases, 37 MCI and 37 AD patients with an accuracy of 90.3%. Chai et al. [193] used
20 cases, 10 AD patients and 10 healthy people with AUC reaching 0.89), the number of
subjects is still quite low and there is a risk of over-fitting.

As mentioned in the Introduction section, progressive neurodegeneration caused
by AD pathology manifests in detrimental and gradual changes in cognition (e.g., cog-
nitive impairment and memory decline), brain structure (e.g., medial-temporal lobe and
hippocampal atrophy) and function (e.g., altered brain metabolism, resting state brain
networks and EEG signals). For the time being, the available treatment options for patients
diagnosed with AD dementia can provide only temporal symptomatic relief. Improved
treatment methods are now under investigation; however, it is a widely accepted opinion,
that to be effective they have to be administrated at the early stages of the disease. To detect
patients who are going to develop AD dementia in future, a large number of cognitively
normal elderly individuals have to undergo preventive screening. This scenario requires
biomarkers that are capable of detecting early pathological changes but also non-invasive
and can be obtained at a low cost.
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Although EEG is not included in the current diagnostic guidelines for AD and not
endorsed for use in clinical trials performed in AD patients [41], EEG is fundamental to
studying the neuronal and synaptic loss caused by the progression of the disease [194].
Whereas the most recently accepted biomarkers of AD predominantly reflect AD-related
molecular and structural brain changes, they give no information about functional deficits
in patients with AD. Given a surge in recent evidence that synaptic loss and dysfunction
play a key role in AD pathogenesis, markers that measure deficits of brain function and
provide insights into brain synaptic activity are of great potential. Here comes the rsEEG
(resting-state electroencephalographic)—a widely available, cost-efficient, and non-invasive
technique able to highlight the functional changes in electrical activity generated by post-
synaptic potentials from cortical neurons. Indeed, studies repeatedly show that abnormal
EEG markers relate to cognitive deficits in AD patients at different disease stages. These
converging findings support the application of the EEG markers as screening biomarker in
population studies and drug discovery [109].

In the last decade, the research definition of AD has moved from a clinical to a more bi-
ological paradigm [195]. In this contexts diagnosis of AD is based on biomarkers sensitive to
amyloidosis (decreased Aβ42 in the CSF and increased retention of amyloid tracers on PET),
tauopathy (increased tau and phospho-tau in CSF) and neurodegeneration (hippocampal
atrophy on MRI, cortical hypo-metabolism on 18FDG-PET). Although these biomarkers
capture relevant aspects of AD pathology, their application on clinical and preclinical
population is still limited [196] due to their high cost and invasiveness (which is especially
true for studies requiring longitudinal monitoring of patients, such as clinical trials) [41].
In this respect, the present EEG procedures may provide information about AD-related
neurophysiological alterations related to oscillatory synchronization/desynchronization
and coupling/decoupling of cortical neuronal activity in agreement with recommendations
of the International Society to Advance Alzheimer’s Research and Treatment (ISTAART)
Electrophysiology Professional Interest Area (EPIA) [111], These procedures may be ex-
ploited in monitoring the development of the disease over years and trace response to
candidate disease modifying drugs in clinical trials.

5. Conclusions

AD-related neurodegeneration causes alterations in synaptic and neural activity. These
alterations might be reflected in the information content of the EEG signals. Thus, EEG
provides valuable information about changes in electrophysiological brain dynamics due
to AD and this may be used to detect AD.

This study provides a novel framework for constructing robust biomarkers that can
be used to detect AD with high performance (sensitivity and specificity closed to 100%) by
exploiting the combined strengths of different biomarkers. The resulting EEG biomarkers
may be used in clinical studies performed in patients with AD in response to the need for a
gatekeeper screening tests of large groups of the aging population.

The main limitation of this study was the size of the cross-sectional dataset of AD pa-
tients and Nold subjects. In addition, specificity and association with established biomark-
ers such as CSF tau or PET amyloid imaging should be investigated. For future work,
we will evaluate our method with larger size longitudinal EEG datasets, from different
settings, that contain normal, MCI and AD subjects.
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