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Exploring and Exploiting Models of the Fitness 
Landscape: a Case Against Evolutionary 
Optimization 

Jonathan Paul Moore 

Abstract 

In recent years, the theories of natural selection and biological evolution have proved 
popular metaphors for understanding and solving optimization problems in engineering 
design. This thesis identifies some fundamental problems associated with this use of 
such metaphors. Key objections are the failure of evolutionary optimization techniques 
to represent explicitly the goal of the optimization process, and poor use of knowledge 
developed during the process. It is also suggested that convergent behaviour of an 
optimization algorithm is an undesirable quality if the algorithm is to be applied to 
multimodal problems. 

An alternative approach to optimization is suggested, based on the explicit use of 
knowledge and/or assumptions about the nature of the optimization problem to con
struct Bayesian probabilistic models of the surface being optimized and the goal of 
the optimization. Distinct exploratory and exploitative strategies are identified for 
carrying out optimization based on such models—exploration based on attempting to 
reduce maximally an entropy-based measure of the total uncertainty concerning the 
satisfaction of the optimization goal over the space, exploitation based on evalutation 
of the point judged most likely to achieve the goal—together with a composite strategy 
which combines exploration and exploitation in a principled manner. The behaviour 
of these strategies is empirically investigated on a number of test problems. 

Results suggest that the approach taken may well provide effective optimization in 
a way which addresses the criticisms made of the evolutionary metaphor, subject to 
issues of the computational cost of the approach being satisfactorily addressed. 



To Lois 

Take thou the writing: thine it is. For who 
Burnished the sword, blew on the drowsy coal, 
Held still the target higher, chary of praise 
And prodigal of counsel—who but thou? 
So now. in the end, if this the least be good, 
If any deed be done, if any fire 
Burn in the imperfect page, the praise be thine. 

—R.L.Stevenson 
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Chapter 1 

Introduction 

1.1 Introduction 

This thesis addresses the topic of computer-based optimization of engineering designs. 

Along with many other domains, in recent years this area has seen increasing interest 

in the adoption of problem-solving techniques inspired by complex biological systems, 

in particular the adoption of an evolutionary metaphor for design optimization. 

It is argued in this thesis that the evolutionary metaphor is not a suitable framework 

with which to understand and conduct optimization processes. It is proposed that an 

alternative framework should be adopted, which considers as central the nature of the 

optimization problem and the knowledge available to apply to its solution. 

The thesis is structured as follows: 

Chapter 1 outlines a number of criticisms of the use of an evolutionary metaphor for 

design optimization. 

Chapter 2 proposes an alternative framework based on the use of available knowledge 



to construct models of beliefs about the nature of the optimization problem. 

Exploitative and exploratory strategies for conducting optimization based on such 

models are proposed. 

Chapter 3 provides a mathematical formulation of the conceptual model presented 

in chapter 2, using Bayesian belief revision to construct probabilistic models of 

the goal and performances surfaces for the optimization. Mathematical forms are 

suggested for the exploitative and exploratory strategies. 

Chapter 4 describes an implementation of the exploratory and exploitative optimiza

tion strategies for a simple class of problem. 

Chapter 5 reports experimentation carried out to investigate the behaviour and prop

erties of the strategies implemented in chapter 4. 

Chapter 6 discusses the findings of the experimentation in terms of the criticisms of 

the evolutionary metaphor presented in chapter 1, and indicates possible direc

tions for future research. 

1.2 Engineering Design Optimization 

1.2.1 T h e Knowledge Principle and Optimization 

Krottmaier [66] describes design optimization as the middle stage of a 3-stage process 

of engineering design: 

1. System development. 

2. Parameter optimization. 



3. Determination of tolerances. 

The first of these stages corresponds approximately to the conceptual and embodiment 

design stages in canonical models of the design process, where high-level engineering 

knowledge and experience are applied to identify the form of one or more systems 

which will meet the design requirements. This is a very broad and interesting area of 

research, but not one addressed in this thesis. 

In the second stage the variable parameters of the design are optimized against some 

set of criteria, typically including performance and cost measures. One or more opti

mized designs are anal̂ 'sed in the final stage to determine the required manufactur

ing tolerances for the optimized parameter values, to ensure that the product can be 

manufacutured to a sufficiently consistent quality. It is the second stage—parameter 

optimization—which is the concern of this thesis. 

Consider a design process within an engineering business which consists, broadly, of 

the following stages: 

1. A request is made by a customer to submit a design to fulfil a particular specifica

tion. The specification develops through discussion with the customer to clarify 

requirements and flesh out details more thoroughly. 

2. Initial design choices are made by the designer: for example, deciding which of two 

product ranges will best satisfy the requirements of the specification. Refinement 

of the space of possible designs proceeds through a number of design stages until 

the design (or, more likely, specific subsystems of it) is sufficiently well defined 

for: 

3. Computer-based optimization of the design parameters. 



At each of these stages, knowledge is being applied in a way which will shape the final 

form of design proposed: 

1. The customer requires knowledge of the need which the designed artifact is to 

satisfy, along with knowledge of companies which are likely to be able to produce 

artifacts with the necessary qualities. In selecting one or more companies to sub

mit designs, the customer is effectively using this knowledge to restrict the space 

of artifacts considered to those which may be designed and constructed by the 

companies approached. The subsequent refinement of the specification through 

discussion is brought about by the integration into the process of the more spe

cific domain knowledge of the designers—for example, adjusting expectations of 

what is actually possible, or highlighting problems or advances in the domain 

with which the customer was unfamiliar. 

2. The designer has a space of possible designs to choose from consisting of all arti

facts which might conceivably be built by the company. The process of refining 

this space into a form sufficiently well-defined for optimization is another appli

cation of knowledge—each design choice made represents, at least, an assertion 

that, given all the previous choices made, the space of designs retained for con

sideration is believed more likely to contain a satisfactory solution than the space 

rejected. 

3. Finally, the selection of an optimization technique (and any necessary parameters) 

requires knowledge on the part of the designer of the relative merits of different 

techniques when applied within the design domain of interest. 

The knowledge employed by the designer in stages 2 and 3 above may be of many 

different forms, for example: 



• Mathematical knowledge of the design domain which enables choices to be made 

based on precise (or acceptably so) analyses of the options. 

• Knowledge gained by experience of ptist designs, either as heuristics describing 

the behaviour of the domain or as specific examples used in a case-based fashion. 

• Knowledge compiled by others and made available in, for example, reference 

books or computer software. 

It is important to appreciate that the knowledge used need not be accurate and 

factual—it may be heuristic, uncertain, or actually incorrect. The certainty, complete

ness, and correctness of the knowledge used in the design process is clearly capable of 

affecting both the quality of the final design obtained and the efficiency of the design 

process. If, for example, the designer is not familiar with important recent techno

logical advances in the domain, we may expect the quality of the design developed 

to suffer: if he mistakenly believes that the best method of optimization to use is a 

random search, we may expect the efficiency of the parameter optimization stage of 

the design process to be adversely affected, regardless of the quality of the solution 

which is finally reached. It may happen, especially in the design of novel systems, that 

a stage is reached where existing knowledge is not sufficient to continue the design, and 

additional knowledge must be sought. Such additional knowledge might be obtained 

by eliciting it from others, by research into existing knowledge of the domain, or by 

experimentation with the class of system (or models thereof) being designed. 

This characterization of the design process illustrates the knowledge principle from 

artificial intelligence: that problem-solving power derives primarily from the problem-

specific knowledge which can be applied to the problem (see. for example. [69]). It 

is the correctness, specificity, and appropriateness of the design knowledge which can 



be brought to bear at each stage of the design process which determines the degree of 

success and efficiency with which a solution to the design problem is reached. 

This thesis is based on the premise that inasmuch as the knowledge principle applies 

to the other stages of design, so it applies also the the parameter optimization stage: 

as a problem-solving activity, it is the degree to which specific knowledge of the nature 

of the problem can be brought to bear which will determine optimization success. 

The view of optimization taken in this thesis is as a sequential decision process: at 

each stage in the optimization, a decision must be taken as to which possible design 

(or point in the design space) should be evaluated next. The decision made may 

be based on a priori knowledge of the design domain, coupled with the knowledge 

developed during the optimization: the latter contained in the set of design points so 

far evaluated, and their evaluations. In this respect, optimization may be viewed as a 

process of experimentation and refinement of knowledge, based on the availability of 

an executable model for assessing the expected performance of different designs. The 

desired end of an optimization process is an increase in the knowledge of the designer 

about the specific aspects of the nature of the design space: the key to successful 

attainment of this end is the appropriate deployment of existing knowledge in order to 

guide a process of experimentation and knowledge refinement. 

1,2,2 Optimization Aims and Efficiency 

Keane and Brown [64] point out that the prevalent view of optimization as an attempt 

to locate the global optimum is unrealistic in the face of most practical engineering 

optimization problems, where the size of the space of possible design and the expense of 

evaluating each mean that only a tiny fraction of the space can be investigated during 



optimization. In engineering contexts, a number of different types of aim may exist for 

optimization processes undertaken, including: 

• Satisficing or constrained design problems, where some (or all) of the design 

requirements take the form of performance thresholds which must be met, but 

performance need not be optimized beyond that threshold. 

• Global optimization, where the very best possible design from the space of all 

possible designs is sought. 

• Improvement on existing systems, where a significant advance in performance is 

sought, but not necessarily the global optimum. 

• Low sensitivity to design parameter or environment perturbation. Krottmaier [66] 

sees adjustment for manufacturing tolerances as a separate design stage, but oth

ers (e.g. [84]) see low sensitivity as a valid constraint for inclusion in optimization. 

• A range of different high-quality alternative designs. In practice, an optimization 

problem is unlikely to be sufficiently well specified to allow the determination 

of the single best design—there will be trade-offs to be made once the range of 

feasible high-quality designs is established. For this purpose, it is better that an 

optimizer provide a range of distinct options, rather than a single "optimum" 

design. 

Any individual optimization problem may have overall aims made up of a composition 

of any or all of the above types (and possibly others). In this thesis, the broader view of 

"optimization" as encompassing all the above possibilities is taken, although practical 

investigation will be restricted to satisficing problems. 



What is sought when an optimization technique is applied to a practical problem is 

efficient optimization. Al l research into the applicability of particular optimization 

techniques in particular domains is essentially addressing the question of which opti

mization method is the most efficient for particular problems. Haataja [48] states that 

in practical situations, a good solution now is often better than the promise of a perfect 

one in the future, and that the time needed to provide the solution is an important 

factor, to be traded off against the final quality of solution. 

From a practical point of view, the efficiency of an optimization algorithm must be 

traded off against the effort needed to adapt the algorithm to the problem in hand: for 

a single problem, it is not worth spending da^s refining the algorithm if the effort only 

results in a few hours of saved computer time. Hence the search for robust algorithms, 

w^hich can be applied to a wide range of problems with reasonable success—i.e. an 

acceptable level of efficiency in finding a solution. 

1.3 Genetic Algorithms 

"The concept that evolution, starting from not much more than a chem

ical "mess", generated the (unfortunately vanishing) bio-diversity we see 

around us today is a powerful, if not awe-inspiring, paradigm for solving 

any complex problem." David A Coley, [16 

Genetic Algorithms (GAs) are techniques based on mirroring in artificial systems (usu

ally computer software) the mechanisms of biological evolution and natural selection. 

From foundational experimental work such as that by Rechenberg [95] and theoret

ical analysis by Holland [58], interest in the application of G A s to a wide range of 

problem-solving activities has grown enormously in recent years. 
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Interest in G A s forms part of a general trend towards the interchange of ideas between 

biology and engineering and computer science, exemplified by the book by Paton [85 . 

Such a "cross-over" area is bound to attract researchers from a wide range of disciplines, 

and with an even wider range of agendas. At one end of a spectrum are researchers in 

"Artificial Life", broadly interested in using computer simulations of natural systems 

to further understanding of those systems. The term "artificial evolution" is often 

used to describe such simulations (see, for example, [17]). Researchers at the other 

end of this spectrum are attracted more by the possibilities of applying biologically-

inspired problem-solving techniques to technical and engineering problems. Somewhere 

in between lie those attempting to create novel forms of artificial systems with desirable 

properties which have to date only been exhibited by natural systems. In addressing 

optimization of engineering designs, this thesis takes a position firmly at the applied 

engineering end of the spectrum. 

One common use of G A s is for optimization. In his introduction to the area for scientists 

and engineers, Coley (see the quote above) essentially classifies the genetic algorithm 

as an optimization technique, and Haupt and Haupt [54] approach the topic from 

much the same point of view. The title of Paton's book "Computing with Biological 

Metaphors" [85] characterizes the use of G A s in engineering well: the processes of 

natural selection and evolution are seen as a metaphor for a style of approach to 

problem-solving which may be applied in engineering domains. 

An essential question to ask before adopting such a metaphor is whether or not it is 

appropriate to the domain and problem in question: Does the metaphor truly reflect 

the nature of the system we are using it to reason about? It is my contention that a 

number of the characteristics of evolutionary systems make them less likely to be well-

suited for use to solve parametric design optimization problems in engineering domains 



than is commonly supposed, despite the wide range of research in which just such use 

is made. 

In pursuit of this argument, several aspects are discussed below in which G A s differ 

from more traditional optimization and search procedures: 

1. G A s work with a coding of the parameter set, not the parameters themselves. 

2. G.As search from a population of points, not a single point. 

3. G A s use payoff (objective function) information, not derivatives or other auxiliary 

knowledge. 

4. G A s are stochastic: they use probabilistic transition rules, not deterministic rules. 

These differences are those identified by Goldberg [37] as being differences between 

G A s and traditional optimization methods. (Although Goldberg does not explicitly 

call these "advantages" of G A s , as he is a keen proselytizer for the technique—see, 

for example, [39], [40]—that implication is there.) It will be suggested below, how

ever, that each of the above characteristics has distinct potential disadvantages, which 

are especially visible when the subject is approached from the knowledge-use-centred 

viewpoint adopted above. 

To the above list, I shall add for discussion three additional characteristics of GAs; 

1. G A s have complex adaptive dynamics, mirroring the natural system on which 

they are based. 

2. G A s are evolutionary in nature. (By "evolutionary" here. I intend the broadest 

meaning of the word, not any specific biological interpretation: see 1.3.7 below 

for details.) 
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3. G A s achieve their results by competition between individuals within the popula

tion, leading to an overall pressure towards improved individuals. 

Each of the above characteristics will be addressed individually below. However, I shall 

begin with a note on the teleology of genetic algorithms. 

1.3,1 Teleology 

"Biologists often speak, in a kind of verbal shorthand, as though useful 

traits were evolved purposefully, using statements such as: Fish evolved 

complex motor systems to coordinate their quick swimming movements. 

What they really mean, though, is that the fish that by chance happened 

to have a few more neurons in the motor parts of their brains did a little 

better. They survived in greater numbers and had more offspring than 

those that happened to have fewer neurons or less effectively organized 

ones." Bruce Bridgeman, [10]. p 10. 

As the above quote illustrates, the ascription of purpose to natural evolution is by 

no means unknown in scientific literature: phrases such as "designed by evolution" 

are not uncommon. However, such phrases are figures of speech only: there are few 

biologists who would truly support the proposition that underlying natural evolution 

was a directing purpose such as those which direct "...courses of action aimed at 

changing existing situations into new ones."—Simon's view of the nature of design [107 

(but my italics). 

On the contrary, the theory of natural selection proposes a process by which par

ticular characteristics—already distributed over a population, and possibly hitherto 

unimportant—have an effect in deciding the survival and breeding success or otherwise 

11 



of individuals. As such characteristics are passed from successful parents to their off

spring, they become more common in the population, leading to a "selection pressure" 

for particular combinations of characteristics. Evolution extends this theory with the 

capacity for the chance development of novel characteristics, which may be propagated 

by natural selection if they prove beneficial. 

Harvey [53] emphasizes the difference between such incremental refinement and a typi

cal optimization problem, which he characterizes as a single problem, in a well-defined 

search space. By contrast, "The Sussex approach" to evolutionary robotics [52] is an 

application of an evolutionary algorithm in a situation much more analogous to the 

biological context of natural selection: one of adaptive incremental improvement in the 

light of many consecutive short-term goals, and working with a genetically conv^erged 

population. 

Despite his influential early work on function optimization by G A s , De Jong [25] points 

out that Holland's [58] original proposal for G A s was as methods of maximizing cumu

lative payoff by adapting a system to a changing environment. He contrasts this with 

the typical optimization problem, which seeks a single solution to a static problem, 

and where the quality of other solutions tried along the way is irrelevant, so long as 

the ultimate answer is high-quality. Grefenstette [47] cites as a reason for trying to 

incorporate heuristic knowledge into G A s that the quality of individual solutions is not 

the focus of a G A , but rather the overall quality of the population. 

Natural genetic processes are not goal-driven—this is one of Simon's [107] fundamental 

distinctions between the "natural" and the "artificial". The fact that complex systems 

appear to develop in response to natural processes does not mean that the development 

of those systems can be regarded as having been the goal of the processes. Hence it 

is not necessarily safe to assume that we can adopt similar mechanisms in order to 

12 



develop a specific type of complex system, where the required behaviour of the system 

is specified as a goal beforehand. The equating of design and optimization with natural 

selection and evolution, which appears so common ([6], [33], [78], for example) requires 

more justification than the simple animism which appears usually to underlie it. 

In advancing this argument, 1 echo Culberson's [19] sentiment: . . there is no global 

requirement on life other than it survive. Evolution was not necessarily looking for the 

human genome." except that there is not even a requirement that life survive: natural 

selection and evolution do not know about "requirements", and 99.9% of species to 

date have not survived [79 . 

There is thus reason to question whether the evolutionary metaphor forms a sound basis 

for attempting to solve optimization problems, since the natural process mirrored has 

different fundamental characteristics from the problem. Other characteristics of the 

metaphor must be appealed to if its use for optimization is to be justified. However, 

discussion below will suggest that the other characteristics of evolutionary systems are 

equally inappropriate for optimization. 

1,3.2 Parameter Set Coding 

As Goldberg [37] states, most genetic algorithms work with a coding of the parameter 

set to be optimized, not with the parameters themselves. This GA-encoded form of the 

parameter set is often referred to as the "genotype" of the solution, the predominating 

representation used w îthin G A research literature for encoding genotypes being some 

form of binary coding (although an increasing trend towards real-valued representations 

for real-valued problems seems apparent in recent years). 

In fact, engineering optimization problems will already be posed in some form of en-
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coding, one which encapsulates models of physical systems in a number of parameters. 

A set of values for each parameter describes a design sufficiently well for the properties 

of the physical system it represents to be determined to tolerable accuracy. In G A 

literature, this domain-specific encoded form is often referred to as the "phenotype" 

for a solution. 

A typical real-valued engineering optimization process has a parameter set determined 

by an engineer with experience in the engineering domain relevant to the problem. 

The phenotype representation used is thus one which the engineer understands, and in 

which he is able to think and reason: one in which the relationships between different 

designs can be expressed, and where similar designs are expected to exhibit similar 

performance. Mathematical techniques such as dimensional analysis (see [106]) have 

been developed to enable the engineer to work with representations which capture even 

more strongly the relationships between designs, by the introduction of concepts such 

as the Reynolds' immber used to characterize situations in fluid dynamics. 

If the knowledge to be applied to the solution of a problem is, as suggested here, the 

critical determiner of the success or failure of the solution process, then the represen

tation used to encode candidate designs during optimization must be one amenable to 

the expression of the knowledge to be used. The representation used by engineers in the 

domain will be such a one: possibly developed over many years, and embodying consid

erable experience. Are we to believe that to take such a representation and re-encode 

it into a binary form in which domain knowledge cannot be so effectively expressed—in 

which designs judged similar by the engineer may have wildly differing representations, 

and very different designs may have very similar representations—will enable an op

timization algorithm to make more effective use of the available domain knowledge? 

Peck and Dhawan [86] claim that in using a binary coding for a naturally real-valued 
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problem, G A practitioners " . . . rely upon the fortuitous existence of exploitable similar

ities" between the binary and real representations, and Salomon's (102) report that G A 

performance on some test functions degrades significantly under a simple rotation of 

the axes would seem to identify just such a fortuitous similarity. Others ([91], [3]) have 

shown that a transformation to a binary coding can significantly change the nature of 

the landscape being optimized. 

Considered from the point of view of trying to make maximum use of applicable domain 

knowledge, the binary representation seems unlikely to be appropriate for real-valued 

optimization problems. Small wonder, then, that Davis [22] reports never having used 

the "standard" binary encoding in a practical application of genetic algorithms. Davis 

takes a similar view to Michalewicz [76]; that domain-specific knowledge is more likely 

to be exploitable if the "native" problem representation is used. Other researchers 

have investigated real-coded variants of genetic algorithms for addressing real-valued 

problems, from both practical and theoretical perspectives, and found the real-coding 

superior ([4], [23], [31], [34], [54], [50]). 

Approaching optimization problems from the perspective of their capacity to make 

maximum use of available knowledge about the problem seems inevitably to suggest 

that the encoding used by the algorithm should be the one with which engineers in the 

domain prefer to work. 

1.3.3 Populations 

G A s typically work from a population of candidate solutions. In this respect, the 

knowledge-using properties of G A s would appear to be an advance on typical classi

cal optimization algorithms, which typically work from only a very small number of 
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points. By contrast. G.^s retain a larger number of points from which to work towards 

a solution. However, it is sobering to reflect that when a G A has been running for 1000 

generations, typically 99.9% of the potential solutions which have so far been generated 

and evaluated have also been discarded. The only way in which the knowledge rep

resented by these evaluations is available for use in the optimization is by its indirect 

effect on the structure of the current population. 

It is not readily apparent why a computer-bcised optimization algorithm should discard 

any evaluations at all. The biological situation is clear; there is a limited supply of 

physical material from which creatures can be composed: it must be recycled. There 

may also be arguments that species with long lifespans are unable to adapt, as a 

species, to a rapidly-changing environment, and that therefore the "discarding" of 

previous "solutions"—i.e. the dying out of older individuals to be replaced by their 

offspring—is necessary for the long-term survival of the species as a whole. Such 

arguments serve only to throw into relief the differences between natural selection and 

evolution and processes of design: Evolution and natural selection are not design or 

optimization processes, and don't need to retain records of past "candidate solutions" 

against the possibility that the knowledge they represent will be needed in the future. 

What engineering firm would discard all records of previous projects because they are 

dissimilar to the project currently in-hand? 

Thus, it is not clear why (apart from a fixation on replicating a natural system) poten

tially useful knowledge developed during an optimization process should be discarded. 

Of course, if such knowledge is not to be discarded, then steps must be taken to make 

use of it. How we might approach doing this is a separate question: the principle 

that we should attempt to retain all possible knowledge for use still stands. The loss 

of potentially useful knowledge in this way is a recognized problem with evolutionary 
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Figure 1.1: An illustration of the difficulties inherent in discarding in
formation during optimization. An hypothetical population during the 
later stages of a population-based optimization process is shown. Cur
rent data suggests two possible '"peaks" of fitness, but is unenlighlening 
about the shaded area of the space. 

approaches: it is the reason for the adoption of "elitism" in G A s . the motivation for 

the use of "niching" methods (of which, more below), and the drive behind attempts 

to retain genetic diversity in the G A population. 

An illustration of the difficulties inherent in discarding information during optimiza

tion is shown in figure 1.1, which shows an hypothetical population during the later 

stages of an optimization. Two "fitness peaks"—A and B—are visible, but there is no 

information in the current population about the shaded area of the design space, C . 

Has area C been investigated, and found to contain only very poor solutions? Or have 

no points in the area actually been evaluated? Which of these alternatives is actually 

the case is important for deciding whether or not we should noŵ  investigate the region. 

In a design optimization task, the necessary information is typically in storage, but the 

genetic algorithm is not in itself capable of making use of it. 
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1 have stated above that population-based methods appear to be an advance on clas

sical optimizers from the point of view of the knowledge retained for use. On deeper 

reflection, however, it is clear that the knowledge so retained is not all made available 

for use in each decision about what point to evaluate next. New points to evaluate are 

chosen based only on a small number (typically tw'o "parents") of the current popu

lation. Whether or not a G.A. is implemented so as not actually to evaluate repeated 

individuals (as suggested by Haupt & Haupt [54]), the fact that it is capable of gener

ating a candidate solution for evaluation which has not only been evaluated before, but 

which may even still be present in the population, should sound a warning for those 

who equate evolution with "intelligent design". 

As a final comment on populations. I note that generational evaluation—the accu

mulation of a pool of solutions before evaluating them—would not appear to be a 

sensible use of knowledge. Each evaluation affects our knowledge of the space, and 

the additional knowledge so obtatined may then be useful for deciding which point to 

evaluate next. Reeves [96] develops a G A for small populations, based on the obser

vation that for problems with very expensive evaluations, a conventional G A is unable 

to "get into its stride" within the limited number of evaluations which may practically 

be performed—i.e. A large-population G A does not put the knowledge it develops to 

work quickly enough. The logical conclusion is that every candidate design should be 

evaluated immediately upon its selection, and the result of the evaluation made avail

able for use in selecting the next design to be evaluated. This is an approach which is 

sometimes taken with evolution strategies, but rarely with G A s . 
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1.3.4 Payoff Information Only 

The fact that the G A apparently needs only payoff information is an advantage in that 

it makes the technique applicable across a wider range of problems than techniques 

which require a specific form of ancillary information, such as the derivative of the 

fitness surface, which may not be available. 

However, it will be argued in chapter 2 that any non-random optimization algorithm 

must be making use of more knowledge than merely payoff values, but that the knowl

edge used by the G A takes the form of assumptions about the design space which 

are implicit in the algorithm, and correspond in some sense to the use of estimated 

gradients in classical optimization. 

Further discussion is deferred to chapter 2, except to note here that to achieve pow^erful 

optimization it is desirable to incorporate domain- or problem-specific knowledge into 

optimization. The important question for any optimization algorithm which is intended 

to be widely applicable in different domains is not solely "What ancillary information 

does it require?", but also "What forms of ancillary knowledge is it able to make use 

of. should they happen to be available?" 

Incorporation of domain-specific knowledge into G A s tends to take one of two forms: 

• Hybridization with another optimization method, where the other method em

bodies the domain knowledge. 

• Development of heuristic-based G A operators, for domain-specific versions of 

crossover, mutation, selection or initialization. 
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1.3,5 Stochastic Nature 

When can it be rational to make a random choice? Conventional Bayesian decision the

ory mandates a deterministic choice whenever there is even a slight difference between 

the expected utilities or costs of the options available (see [55]). 

A random choice between options can only be justified w^ien there are no means readily 

available by which to discriminate between the utilities of two or more of the options 

available: if one has even a suspicion that one option might be better than the others, 

then that is the option that should be taken. 

It seems unlikely that a problem-solving technique focussed on making maximum use 

of the available knowledge about a problem would make extensive use of random pro

cesses, except in a "tie-break" situation between two or more apparently equivalent 

options. Conversely, it seems unlikely that a technique centred around random pro

cesses would be able to make maximum use of all the relevant knowledge about the 

problem in hand which might be available. 

1.3.6 GA Dynamics 

GAs and other adaptive optimization techniques are designed to mirror complex adai> 

tive systems found in nature. A review of the literature in the area leads to two 

conclusions about such systems: 

• Understanding them is hard. 

• Controlling them is hard. 
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Control of G A behaviour is generally viewed as a problem in selecting appropriate val

ues for a number of parameters which affect the operation of the algorithm. Typically, 

these parameters include population size, mutation rate and crossover rate. Early work 

on control of such parameters focussed on trying to establish a set of values which pro

vided robust performance over a wide range of functions. De Jong [24] carried out 

an empirical investigation into the optimum parameter settings for a range of fitness 

functions. Grefenstette [46] applied a meta-level G A to the parameters themselveSj 

measuring their fitness as optimization performance over a range of different functions, 

while Schaffer et al [104] employed a more exhaustive search of the parameter space. 

Goldberg [38] presented a theoretical analysis for determining population size. 

More recently, with a growing realization that the appropriate parameter settings 

change during the progress of an optimization (e.g. [118],[32]), attention has shifted 

towards the dynamic on-line control of G A parameters. Davis [21], Tuson &; Ross [112], 

and Hinterding et al [56] suggest inclusion of operator parameters within the genome, 

so that they adapt to the problem in-hand alongside the solutions themselves. Research 

in the G A R A G e group (see [116], [117]) uses a separate meta-level G A . operating to 

adjust the parameters of multiple competing "sub-GAs". Other approaches include the 

development of rules for adjusting the parameters during an optimization, based on ob

servations of the optimization's recent behaviour (e.g. [94], [1]). Deb and Agrawal [27 

note the complexity of the interactions between G A parameters, as do Eiben et al [30]. 

Harik et al [49] put the case for trying to eliminate the setting of parameters entirely 

from G A optimization. 

Even given a well-defined and understood static fitness function, analysing the dynam

ics and behaviour of a G A optimizing the function is hard. The diflficulties (and the 

dynamics) are entirely an artifact of the GA—they are not inherent in the problem. 
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Applying the G A to a more realistic, less well understood problem is then to attempt 

to ".. .make a poorly understood system solve a poorly understood problem." [19 . 

One particular behaviour of the G A which is difficult to justify from a knowledge-

centred point of view is the dependence of G A behaviour on the order in which points 

are evaluated. A GA's behaviour is determined only by the constitution of the current 

population, and not by the complete set of evaluations so far performed. Take two 

facts about the design space (two evaluations made during optimization): 

1. F{xi) = fi 

2, F (.X,) = 

Why should the consequences of these facts, and the interactions between them, de

pend on the stage of the optimization at which tliey were discovered? By viewing 

the evaluations so far performed through the "window" of the current population, dy

namic behaviour is introduced which is difficult to justify in terms of the problem being 

addressed. 

It is clear from the literature on OAs that modelling and understanding their dynamic 

behaviour is a difficult task. Is it w-orth it? If the desired end of the research is an 

understanding of such evolutionary systems, then the answer is undoubtedly "yes". 

However, if we are seeking a problem-solving tool, then for such difficulties to be 

acceptable, they must be offset by considerable advantages to be gained by adopting the 

approach. This chapter is currently engaged in outlining several reasons for doubting 

the existence of such advantages. 

22 



1.3.7 "Evolutionary" Algorithms 

Unfortunately, there does not appear to be a satisfactory word other than "evolution

ary" for the concept discussed in this section. It must be stressed, therefore, that the 

word is not used here in its biological sense, but rather with its more general meaning, 

which conveys a process of gradual change from an existing form to some similar other 

form. 

Along with almost every classical and adaptive optimization technique, the genetic 

algorithm is "evolutionar\^" in this sense. Candidate solutions for evaluation are gen

erated by modification to* and possibly combination of. existing solutions. 

This means that the set of solutions which may be proposed as candidates for the next 

evaluation is constrained to those which are reachable from the current set of solutions 

(for stochastic algorithms, we have to talk rather in terms of the set of solutions likely to 

be reached, but the same principle then applies). While this might be an advantageous 

approach to promoting exploitation of existing knowledge about the fitness surface, 

algorithms which work by such evolutionary mechanisms are inherently limited in their 

ability to conduct exploration in a principled fashion. 

Taking figure 1.1 again as an illustrative example, depending on the encoding and op

erators in use, region C may not be readily reachable from the current crop of solutions. 

Yet (depending on the history of the optimization) a strong case might be made that 

the optimization should now proceed by investigating region C—to return to A and B 

at a later stage if the investigation proves unfruitful. Qi and Palmieri [89] character

ize the behaviour of crossover as exploring the solutions space without increasing the 

variance of each individual co-ordinate, suggesting that crossover represents a bounded 

stochastic search scheme. This suggests that situations analogous to figure 1.1 might 
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arise in practice, where an unexplored region is difficult to reach from the current 

population. Evolutionary optimization is then dependent on the chance effects of mu

tation to initiate investigation of such regions: if these regions are not easily reached by 

mutation from the current population, premature convergence seems likely to result. 

1.3.8 Competition 

Competitive selection in the G A leads to predominance of solutions which are better 

than the other solutions so Jar found. Thus the only pressure for change is due to 

differences between the fitnesses of points in the current population. Satisficing design 

problems and optimization in the presence of constraints will therefore pose significant 

problems: if we have an area of the space which violates constraints less than the other 

areas currently known about, it will form a focus for convergence, regardless of whether 

it contains, or seems Hkely to contain a genuinely feasible solution. 

G A optimization can thus converge on a non-satisfactory region of the space because 

there is no pressure to leave that area in search of somewhere better, until such time as 

somewhere more promising is actually found. This is a natural consequence of the GA's 

use of competition between the individuals in the current population to drive change, 

rather than direct comparison against the goal of the optimization. This is a property 

of the biological system mimicked; Haataja [48] points to various biological "designs", 

such as that of the eye, as being sub-optimal, but useful. Since such elements convey 

an advantage to a species, they are selected without "searching" for a "better solution" 

to the "problem". 

There needs to be the capacity for an optimization algorithm to take a decision analo

gous to "Nothing tried so far seems to work. Let's try something completely different." 
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i.e. to move into hitherto unexplored regions of the space when no satisfactory solu

tion seems to be forthcoming from those regions so far investigated. In order to do this 

effectively, the algorithm needs: 

1. To know which areas of the space are hitherto unexplored. (In which population-

based methods will experience difficulty—see section 1.3.3 above). 

2. To have a direct representation of the optimization goal against which to test 

individual solutions, rather than just making a relative comparison between in

dividuals' performances. 

This issue is closely related to that of "evolutionary" methods discussed above: the 

combination of competition between individuals based on their relative fitnesses, rather 

than the overall goal, and the generation of solutions for evaluation by variations on 

existing solutions seems likely to represent a good mechanism for promoting incremen

tal improvement on the current best, but to be inherently limited as far as conducting 

principled exploration of the space is concerned. 

1.4 Some Issues for Adaptive Optimization 

1.4.1 Natural Metaphors and the Obfuscation of Problems 

To use a metaphor as an aid to understanding or solving a problem means drawing 

parallels between aspects of the problem and concepts in the metaphor. In doing 

this, one needs to be careful that the metaphor does indeed provides insight into the 

problem, and does not rather obfuscate it further. Some reasons have been set out 

above for doubting that evolutionary processes are a good metaphor for understanding 
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parametric optimization processes. 

In using the evolutionary metaphor to reason about optimization problems, one is 

obliged to attempt to coerce one's knowledge about the design space and fitness surface 

into a form which matches the terminology^ and concepts of the metaphor. If the 

metaphor, as suggested above, is not really matched to the problem, then we can 

expect it only to further confuse the situation, rather than helping to solve the problem. 

Falkenauer [31] proposes that the G A must be fitted to the problem in-hand, rather 

than the reverse. In this he echoes, from the perspective of "real-world problems", 

the theoretical work of Wolpert and Macready [119] (of which more in chapter 2), 

which concludes that the nature of the problem is central, and ideally an algorithm for 

optimization should be constructed from what is known of the problem. 

The discussion of binary encoding above is a case in point. If we just consider the 

problem of optimization from the point of view of its appropriate use of available 

knowledge, then we conclude strongly that, whatever the optimization technique used, 

it should employ the encoding preferred by engineers in the domain. To adopt a binary 

encoding is then to coerce the problem in hand to fit the metaphor (by analogy with 

the discrete structure represented by the four bases in DNA) . 

Similar mismatches may be seen in other aspects of the application of genetic algorithms 

for engineering optimization: take the use of "niching" techniques, for example. These 

are often equated with "speciation"—the maintenance of multiple different species 

within an ecosystem, each exploiting a particular niche of the system in order to survive. 

Niching techniques are adopted to "keep alive" multiple regions of the space which look 

promising, to prevent premature convergence to a single region, u-hich could overlook 

a better solution which might be reached from another niche. 
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Approaches to niching are many and varied, reflecting the centrality of the problem 

of maintaining sufficient diversity in a population to escape premature convergence. 

De Jong [24] proposed a technique he called crowding, while Goldberg and Richard

son [41] developed the fitness sharing approach. Sareni and Krahenbiihl [103] present 

an "elitist" modification of sharing. Variations and hybridizations of the G A and other 

adaptive techniques in attempts to maintain within the population multiple distinct 

promising sub-populations abound ([9], [28], [43], [72], [80], [82], [100], [HI] ) -

How does an engineer proceed when faced with a situation in which there are multiple 

possible design alternatives to be investigated? A typical response might be: 

1. Prioritize the alternatives: decide which are most likely to be successful, and 

which less so. 

2. Put all but the most promising solution to one side, and investigate that one 

possibility. 

3. Depending on the results of investigation so far, either determine that a satis

factory solution has been found, and investigation can stop, or choose the next 

most promising alternative, and repeat. 

Nowhere does this procedure admit the possibility of completely losing any of the ^ 

alternatives just because it is not currently being actively investigated. In forcing 

the problem to fit the metaphor, irrational behaviour is promoted—potentially useful 

knowledge is thrown away—^just because that is how the metaphorical system behaves. 

As discussed in section 1.3.3 above, there are good reasons why the biological system has 

a limited population size, and cannot retain a complete history of all past "candidate 

solutions", but these reasons do not transfer well into the engineering domain. 
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1.4,2 Exploration and Exploitation 

The conflict between exploration and exploitation of the space was noted by Hol

land [58]. His distinction appears to be: 

E x p l o i t a t i o n . Re-use of a highly-fit, previously-tried solution. 

E x p l o r a t i o n . Use of any solution not previously tried. 

Without exploration, no new knowledge can be gained which may then be exploited, 

and so the system cannot improve its performance, yet in exploring new solutions 

the possiblity of using poor-quality solutions which bring down overall performance is 

admitted. 

The above definitions make sense in the context of "on-line" adaptive systems such as 

Holland considered. They do not transfer directly into the domain of optimization (at 

least of static functions), where on-line performance is not critical, and re-evaluation 

of a previously evaluated solution conveys no benefit. In the context of G A s in design 

and optimization, the terms appear to take on slightly different meanings. Exploitation 

is viewed as the use of known highly-fit points (usually by small variations in a local 

search) to derive even fitter points. Exploration is viewed as an attempt to obtain 

good coverage of the whole space, in the hope of locating promising regions in which 

to exploit. Goldberg and Voessner's [42] distinction between the search for "targets" 

and the search for "basins of attraction" captures the flavour of the two concepts well. 

Exploration and exploitation will be returned to in chapters 2 and 3. It will suffice 

here to make two points: 

First, exploitation is not equivalent to convergence. A rational use of existing knowl

edge might be to abandon the current optimum region once it has been thoroughly 
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investigated, in favour of another region which may have been less well investigated so 

far, and seem reasonably likely to contain highly fit points. Thus, neither is exploita

tion equivalent to local search: exploitatory behaviour may manifest much of the time 

as local search, but large steps in the space, based on global knowledge of the problem, 

may sometimes be the most exploitative action to take. 

Secondly, exploration is not equivalent to random search. There is an aim behind 

exploration—in terms of extending the current state of knowledge in such a way as 

to enable successful future exploitation. Given an appropriate representation of the 

problem and current knowledge of the design space, it should be feasible to locate a 

single point, or set of points, whose evaluation is judged maximally exploratory—likely 

to yield the maximum utility in terms of knowledge useful for later exploitation. 

Thus, if optimization can be approached explicitly in terms of capturing, representing, 

and using as much relevant knowledge as possible, then we may expect both exploration 

and exploitation to be deterministic behaviours. 

1.4.3 Convergence 

Classical optimization techniques tend to converge. Given that most are gradient-

following (whether the gradient be calculated or estimated), and assume a smooth 

unimodal function, this is not surprising. Convergence proofs are important in assessing 

and comparing the efficacy of different classical optimizers. 

Vose [115] points out that for a stochastic optimizer such as the G A . a slightly different 

definition of convergence is required from that usually adopted in classical optimization, 

and presents a definition in terms of the time to locate the search (excluding the noise 

effects of the genetic operators) in a neighbourhood of the design space of a given size. 
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Other research (see [12], [13], [51], [67], [110]) has assessed, and attempted proofs for, 

the convergence properties of G A s . 

One question which does not appear to have been asked is whether convergence is 

actually a desirable property of an optimization algorigthm. Most seem implicitly to 

take the same line as Rudolph [101], who regards convergence to the global optimum 

as time tends to infinity as a minimal requirement for the behaviour of a stochastic 

optimizer. 

Consider, for a moment, the behaviour of a converged optimization process. Either 

no new points in the space are being sampled at all, or the new points being sampled 

are clustered around a well-investigated local optimum, and not generating any sig

nificant new information about the design space. This is reasonable behaviour for an 

optimization algorithm only under the assumption of unimodality of the space. Under 

this assumption, if a stationary point has been identified, and the region around it in

vestigated fully enough to establish that it is an extremum, then optimization may halt 

since the global optimum has been found. Deb [26] cites failure to guarantee to locate 

the global optimum as a disadvantage of classical optimization techniques: but this 

is precisely what such techniques typically do guarantee. However, they are explicit 

about the situations (i.e. the range of optimization problems) to which this guarantee 

applies. 

For complex spaces where no assumption of unimodality can be made, convergence 

is a. positively undesirable behaviour. A converged algorithm may have found a good 

solution, but in a complex space this is not generally certain to be the optimum. There 

are other uninvestigated points throughout the space which still retain the possibility 

of being better than the current optimum: the optimization algorithm should be in

vestigating these, not clustering its efforts around the current best. Even if no better 
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solution is found, an increase in confidence that the global optimum has been located 

should result. Syrjakow and Szczerbicka [109] list the increase in success with every 

stage as a basic requirement for multi-stage optmization processes—why should not 

continuous improvement, whether of the solution itself or our confidence in it, not be 

expected of any adaptive optimizer? It is not premature convergence which is the 

problem for GAs: it is any convergent behaviour at all. 

1.4.4 Constrained Optimization 

Most engineering optimization problems are constrained ([75], [74]). Optimization 

in the presence of constraints is an area of major challenge facing the evolutionary 

computation field. Michalewicz [77] gives an excellent overview of current approaches 

to handling constraints. 

Perhaps the ideal approach is to adopt an encoding and associated genetic operators 

which do not permit the construction of solutions which violate the constraints. How

ever, this approach requires a degree of knowledge about the nature of the constraints 

which seems unlikely' to be available in many practical engineering contexts. Back [5 

advocates the use of repair operators, finding their use an improvement on the use 

of penalty functions, but these are also likely to require a degree of knowledge of the 

nature of the constraints which will often not be available. 

The prevalent constraint-handling method is through the use of penalty functions, a 

technique borrowed from classical optimization ([92], [14],[57], [108]), in which a func

tion of the degree to which an individual solution violates the constraints is used to 

reduce that individual's fitness. The major difficulty with the use of constraints is 

summed up by Pearce 90]: "If the effect of a constraint violation is to increase the 
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fitness to a level that compensates for the incurred penalty, then this [the constraint 

violation] will occur." That is, trade-offs may occur between the objective and the 

constraint penalties which permit the propagation of solutions which violate the con

straints to an unacceptable level. Schoenauer and Xanthakis [105] conclude that there 

is no general solution to the problem of adjusting the relative weights of the objective 

and the various penalties to ensure a successful optimization. 

Richardson et al [98] warn against too sharp penalization, since G A s need to retain the 

use of the partial information represented in those solutions which violate constraints. 

One widely adopted approach to achieving successful constrained optimization is to 

vary the weights given to penalty functions over the course of the optimization. Kim 

and Myung [65] monitor constraint violation during optimization, but only apply penal

ties if the best individual in the population violates the constraints, and then apply 

them gradually, to steer search back into the feasible region of the space. Powell and 

Skolnick [88] separate optimization into two phases: the search for and characterization 

of feasible regions of the space, followed by optimization within the feasible regions— 

the latter being performed by a numerical method, which is claimed to be better at 

following constraint boundaries than the G A used in the first phase. Rasheed and 

Hirsh [93] adopt a heuristic of trying to maintain equality of weight between objective 

function and constraint violation, by adjusting penalty weights such that the overall 

fitnesses of the best individual in the population (regardless of constraint violation) 

and of the individual which least violates constraints are equal. Paredis [81] applies 

co-evolution to constrained optimization, with a population of constraints which evolve 

(by changing the strength with which they are applied, not their actual nature) along

side the population of solutions. Finally, others approach constrained optimization as 

a multiobjective optimization problem, in which the degree of violation of each con

straint is treated as a variable to be optimized alongside the objective function (e.g. [8], 
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[11]= [15], [45], [72]), 

1.5 Conclusion 

1.5.1 Summary 

The foregoing discussion has been harsh on the use of genetic algorithms. It should 

be emphasized that this is not intended as a critique of all uses of GAs: in particular, 

classifier systems, embedded controllers, applications such as the evolutionary robotics 

described by Harvey [53], and design systems in which there is dynamic interaction 

between the engineer and an ongoing evolutionary process (e.g. [83], [44]) do not 

come within the scope of the criticisms made. Such cases are much closer than are 

optimization problems to the on-line adaptive systems originally envisaged by Holland 

as the contexts in which G A s would be useful, and more convincingly analogous to the 

evolutionary metaphor. 

The objections raised are to the use of evolution as a metaphor for optimization prob

lems which may be characterized as the solution of a single problem, off-line, and in 

which the design space and the fitness function are static. The fundamental objec

tion which appears to lead to all of the problems described above is that the natural 

system which provides the metaphor for genetic optimization is not a problem-solving 

technique: complex behaviour and inscrutability should not be confused with under

lying purpose. From the adaptation of the characteristics of biological evolution, an 

"optimization" technique results which: 

1. Does not explicitly represent the goal of the optimization. 

2. Is not set up to make maximum use of the available knowledge. 
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If a problem-solver does not represent its goal, how can it be expected to represent 

multiple goals, as required for constrained (or multiobjective) optimization problems? 

How can it be expected to recognize that achieving the goal would be better served 

by abandoning current efforts in favour of a less thoroughly investigated area of the 

search space? How can it be expected to know which areas have not been thoroughly 

investigated if it discards the very information on which such knowledge must be based? 

The use of the evolutionary metaphor for optimization is misguided. In adopting it, 

we place another layer of complexity between ourselves and what is really important: 

the nature of the problem in hand, and the specific knowledge we can bring to bear for 

its solution. 

1.5.2 Aims 

Culberson [19] considers there to be " . . . no reason to believe that a genetic algorithm 

will be of any more general use than any other approach to optimization." I have 

outlined in this chapter some reasons for believing that we might in fact expect it to 

be worse than many other possible approaches. 

The question investigated in this thesis is therefore: Can effective optimization be 

achieved by a purely problem-centred approach, based explicitly on making the maxi

mum possible use of the available knowledge of the domain and the problem, without 

resorting to metaphor? 

In the light of the discussion presented in this chapter, such an approach to optimization 

may be expected: 

1. Explicitly to represent the goal of the optimization. 
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2. Not to discard any information generated during the optimization. 

3. To use its representation of the goal, together with knowledge of the problem and 

the set of evaluations so far performed to select the next point for evaluation. 

4. To perform such selections deterministically, and singly (not according to any 

"generational" scheme). 

5. Not to comprise a dynamical system: to have behaviour dependent on the cur

rent state of knowledge about the problem, but not on the order in which that 

knowledge was obtained. 

1.5.3 Scope and Limitations 

The consideration of optimization in this thesis will be restricted to those in problems 

in which: 

• The evaluation of any design is performed by computer simulation, and no 

tractable mathematical formulation of the evaluation function is available. 

• Design evaluations are computationally expensive. Rasheed and Hirsh [93] note 

that typical engineering problems involve expensive evaluation functions, while 

Rao [92] observes that as available computing power increases, the complexity of 

the models which engineers wish to optimize also increases. It will be assumed 

that the computational expense associated with any optimization technique will 

be dominated by that of the ev^aluation function. 

• The function to be optimized is a real-valued function of real-valued parameters, 

and is static and non-noisy. 
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• The aim of the optimization is to locate one or more points within the design 

space which exhibit specific properties, expressed in terms of the values of the 

evaluation function. Practical investigation will focus on satisficing problems— 

the location of a point with a performance which exceeds a given threshold. 

• The efficiency of an optimization process is judged purely in terms of the number 

of evaluations performed before the aim is achieved. 
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Chapter 2 

A Conceptual Model of 

Optimization 

2.1 Introduction 

In chapter 1, reasons for doubting the applicability of evolutionary metaphors to prob

lems of optimization of engineering designs were advanced. The objections made were 

founded on the adoption of the knowledge principle: that problem-solving power stems 

from bringing to bear on the problem as much problem-specific knowledge as possible. 

Genetic algorithms were criticised as being poor vehicles for the expression and use of 

such knowledge for optimization problems. 

In this chapter, an alternative approach to optimization is set out. The knowledge 

brought to bear on the problem is treated as central, and is hypothesized to be embod

ied in a model of the surface being optimized. I t is proposed that such a model may 

be considered to underlie the operation of every optimization algorithm, being implicit 

in assumptions about the surface which must be met for use of the algorithm to be 
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successful. Consideration is then given to how such a model, if i t were to be made 

explicit, might be used to achieve robust, successful optimization. 

2.1.1 Terminology &: Notation 

The following terminolog>' and notation is used in this and following chapters: 

Design space, A*. The space of possible designs over which optimization is being 

performed. Elements of this space will be referred to interchangeably c\s designs 

or points, and denoted x. 

Performance space, .F. The space in which the measures of design performance 

which are of interest are expressed. Elements of this space are denoted / . 

Performance (Evaluation) function, F. A mapping such that each element of A' 

maps to exactly one element of ^ . This is the function used to determine the 

expected performance of any design, and corresponds to the fitness function in 

genetic algorithms (and, like the fitness function, is not a function in the strict 

sense). Denoted F : JM J^. 

Goal. A boolean property which may be possessed by points in the design space, and 

which is expressed in terms of the absolute or relative values of the performance 

function at points in the design space. 

Goal and performance surfaces. Associated with the representation of the design 

space, A', is some form of measure of the similarity of designs, which lends a 

structure to the space, in that i t allows the determination of how "close" one 

design is to another, and the definition of neighbourhoods of similar designs. For 

a binary-coded space, such a structure might be the binary hypercube, with the 
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Hamming distance betAveen designs as the measure of similarity; for a real-coded 

design space, the structure might be with the Euler norm as the measure of 

similarity. 

The variation of the value of the performance function over this structuring of 

the design space will be termed the performance surface, and the corresponding 

variation of the goal the goal surface. 

Optimization aim. The aim of optimization will be taken to be the location of a 

single design which satisfies a particular goal (or—as discussed below—for which 

there exists a very high level of confidence that it satisfies the goal). 

Optimization efficiency. In line with the approach adopted in section 1.5.3, the 

"efficiency" of an optimization refers to the number of evaluations performed 

before the aim of the optimization is achieved. 

2.2 Assumptions and Models 

2.2.1 Rationale: No Free Lunch 

Wolpert and Macready [119] derive some "no free lunch" theorems for search. The 

basic theorem establishes that the efficiency of any optimization algorithm is identical 

to that of any other, when averaged across all possible performance surfaces relating 

the design and performance spaces in question. As a corollary, the average efficiency of 

any algorithm is identical to that of a random search process. This may at first appear 

a surprising theorem, in the light of two empirical observations: 

1. Optimization algorithms arc successful. In particular domains and on particular 
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problems, specific algorithms are found to be much more efficient than random 

search. 

2. Different algorithms are observed to exhibit very different levels of efficiency when 

applied within the same domain. 

The reason that there is no conflict between the no free lunch theorems and these 

observations is that the theorems are expressed in terms of average efficiency across all 

possible performance surfaces. This permits an algorithm to exhibit high efficiency on 

some of the possible surfaces, as long as a correspondingly low efficiency is displayed 

on others. 

Robust success of an optimization algorithm in a particular domain must therefore 

be indicative of a correlation between the set of surfaces for which the algorithm's 

efficiency is better than average and the set of surfaces which are experienced in practice 

in optimization problems within the domain in question [35 . 

In this thesis, the assumption is made that for any optimization algorithm of practical 

interest there exist systematic, structural characteristics of surfaces, the presence or 

absence of which distinguishes the surfaces on which an algorithm performs efficiently 

from those on which it performs poorly. The exhibition of these structural character

istics may then be viewed as being a prerequisite for surfaces on which the algorithm 

may be successfully and efficiently used. 

2.2.2 Assumptions and Models 

For a typical engineering design optimization problem, the size of the design space 

and lack of a tractable mathematical description of the performance function mean 

that there is not sufficient knowledge available a piiori to determine whether the 
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surface satisfies the structural prerequisites for any particular algorithm. The use of an 

algorithm in the expectation of efficient optimization of a particular surface therefore 

represents the adoption of an assumption that the relevant structural requirements are 

met. 

Therefore, in selecting an optimization algorithm for a specific design task, one is in 

effect stating that one expects the surface to be optimized to be one of the set which 

display the relevant structural properties for that algorithm to be successful—that is, 

one is committing to a model of the performance surface. The term model is not here 

intended to convey a construct which assigns a fixed value for the performance of every 

point in the design space, such as the quadratic surface models used in some classical 

optimization methods. Rather, i t is used in its more abstract mathematical sense—the 

model is an expression of some specific aspects of the system modelled, which allows 

predictions to be made about certain properties and behaviours, while falling short of 

being a complete representation of every detail of the sj'Stem. In the present case, the 

model of the surface is envisaged as specifying the set of surfaces which are regarded 

as possible candidates for the true fitness surface being optimized. 

Consider how such a model may be adjusted during optimization. Before any points 

have been evaluated, the model includes as possibilities all the surfaces relating the 

design and fitness spaces which satisfy the algorithm's basic assumptions. Upon evalu

ation of the first point selected, however, many of these possible surfaces will typically 

be found to conflict with the datum obtained: these must then be discarded as candi

dates for the true surface. As the optimization proceeds, each evaluation has a similar 

eflfect, pruning the set of possible surfaces described by the model. This process is 

illustrated in figure 2.1. 
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performance space 

A single point, lo lî is been e\^luated. 
The model of the performance surface 
permits A,B and C as possibilities for 
the true surface, since they are consistent 
with the datum. D is eliminated from 
consideration, since it conflicts with 
the known datum. 

design 
space 

xi is chosen as the next 
point for evaluation 

t 
performance space 

A and B are retained as possible 
candidates for the performance surface. 
C is discarded as it conflicts with the 
new datum. 

XQ Xi design 
space 

Figure 2.1: An illustration of the effect of successive design evaluations 
in planing the set of surfaces permited by the model of the performance 
surface. Solid lines show surfaces retained as possibilities within the 
model; dotted lines show surfaces which conflict with observed data, and 
are therefore excluded from the model. 
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Figure 2.2: Modelling the relative plausibility of surfaces. Both the sur
faces shown are strictly consistent with the known data points. However, 
experience may lead us to consider one more likely than the other. 

2.2.3 Relative Plausibility Models 

Given the experience-based nature of knowledge about most design domains, one is un

likely to be able to be precise in specifying the assumptions made about a problem—one 

may, for example, expect a surface to be continuous almost everywhere, or consider it 

to be unlikely that any point will be found with a performance which exceeds a par

ticular value. The model.of the performance surface may therefore specify the relative 

plausibilities of the different possible surfaces which are retained as valid possiblities. 

In figure 2.2, for example^ if during previous investigations within the design domain 

only smooth and continuous surfaces have been encountered, surface B may be consid

ered more likely than surface A to be the actual performance surface, although both 

are strictly consistent with the known data, and may be regarded as possible. 
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2.2.4 Implicit Assumptions and Models 

The argument developed above suggests a framework for considering the operation of 

all optimization algorithms. By the selection of an algorithm, the designer commits 

himself to the assumptions about the performance surface which are fundamental to 

that algorithm's efficient operation. These assumptions correspond to a model of the 

possible performance surfaces; a model which is then refined and revised as the opti

mization progresses, by the incorporation of the effect of knowledge of the performances 

of the points evaluated. 

With most classical optimization techniques, the requirements which the objective 

function must satisfy in order for optimization to be successful are explicitly specified. 

These conditions usually include unimodality, and often continuity or smoothness, 

while some techniques make more stringent restrictions such as that contours in the 

space be elliptical. As has been stated above, the lack of knowledge about the nature 

of the performance surfaces in practical engineering optimization problems means that 

such conditions in effect become assumptions about the surface when the algorithm is 

used in such a context. 

With adaptive optimization techniques such as the genetic algorithm, the situation is 

not as clear. I t is not readily apparent what are the structural characteristics of a 

surface which predispose i t to being successfully optimized by any particular variant of 

genetic algorithm. The fact that we are unable to determine or express the assumptions 

or model underlying an algorithm should not, however, be taken as evidence that no 

such assumptions or model exist: in such cases, the assumptions, and the models 

constructed therefrom, are implicit within the mathematical and dynamical structure 

of the algorithm, and may thus be difficult to identify. 
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2.2.5 Explicit Assumptions and Models 

The no free lunch theorem leads us to a view of optimization in which optimization 

algorithms implicitly embody a model of the surfaces to which they are applied. This 

model, being a synthesis of the a priori assumptions made about the surface and the 

data developed during the optimization process, serves as the central repository of 

available knowledge during optimization. 

VVolpert and Macready [119] conclude from their work developing the no free lunch 

theorem that to approach optimization by specifying an algorithm, and then consider

ing the nature of the surfaces to which the algorithm may successfully be applied, is 

to approach from the wrong direction. I t is the nature of the problem in hand—the 

surface being optimized—which is central, and from which the appropriate algorithm 

should ideally be derived. 

In the light of the above discussion, i t would seem that optimization might sensibly be 

approached by first identifying what is known about the nature of the surface to be 

optimized (or what one is prepared to assume to be true), then using this knowledge to 

construct an explicit model of the surface. The mode! so constructed (as the repository 

of all available knowledge about the surface) can then be used as the basis for the 

decision about which point to evaluate next. As successive evaluations are fed back 

into the model, i t is to be hoped that the increasing available knowledge about the 

surface would enable the decisions made to be more effective, leading eventually to the 

satisfaction of the aim of the optimization. 

I t is clear that at the heart of any model to be used for optimization in this way is 

uncertainty. In maintaining multiple surfaces as possible candidates for the true surface 

being optimized, the model captures the uncertainty extant about the true nature of 
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the surface. We may speak of the model as combining the fundamental assumptions 

made about the surface with the data generated so far during the optimization process, 

to express the current beliefs held about the nature of the surface. 

2.3 Goals 

It may not be possible to determine with certainty whether a given point satisfies certain 

classes of goal. In such a situation, the aim of the optimization is better expressed as 

being to reach a state in which a high level of certainty exists that the goal has been 

achieved—the situations where it is possible to satisfy a goal with complete certainty 

are then special cases of this more general formulation. 

A satisficing goal, for example, may be achieved with complete certainty: i f the perfor

mance of a design exceeds the target threshold, then the design achieves the goal. By 

contrast, in the absence of knowledge of the mathematical nature of the performance 

function, the global optimum is unlikely to be locatable with complete certainty, even 

though there may be a high level of confidence—based on extensive investigation of 

the surface—that the optimum has truly been found. 

These examples are two extremes of a spectrum of goals, distinguished by the amount 

of knowledge of the performance surface—beyond simply the performance of the single 

point in question—which is required in order to determine the satisfaction or otherwise 

of the goal by any particular design. The goal of locating a design with low sensitivity 

to perturbation lies somewhere between these extremes: only a finite number of points 

in the region around the design can be evaluated, so in order to conclude that the design 

shows low sensitivity, assumptions must be made about how knowledge of these points' 

performances constrain the possible performance values for the whole region. These 
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assumptions are precisely those captured in the model of the performance surface: so we 

may see that a model of the satisfaction or otherwise of the optimization goal over the 

design space—the goal surface for the problem—may be constructed from the model 

of the performance surface. Like the performance surface model, the model of the goal 

surface captures current beliefs and uncertainty about the satisfaction or otherwise of 

the optimization goal across the design space. 

We may expect both the model of the performance surface and that of the goal surface 

to be useful for optimization. The performance surface model captures the current 

state of belief about the nature of the performance surface, but i t is the goal surface 

model which relates directly to the aim of the current optimization, and which is likely 

to form the main basis for decisions about which point should be evaluated next, in 

order to further this aim. 

2,4 Optimization Strategies 

Assuming performance surface and goal surface models as outlined above to be avail

able, consideration needs to be given to how, in practice, the knowledge they embody 

may be employed for optimization. This will be addressed in chapter 3 for the form 

of probabilistic model developed there: it will suffice here to point out that distinct 

strategies can be identified, corresponding to exploitation and exploration (as discussed 

in section 1.4.2): 

Exploitation. Select points for evaluation to which the model of the goal surface 

attributes a high certainty that they achieve the goal. 

Exploration. Select points for evaluation which are expected to reduce the level of 
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uncertainty in the model of the goal surface, making future exploitation of the 

model easier. 

A minimum requirement for a selection strategy is that i t be rational, in the sense 

of "economic rationality" as described by Lane et al [68]. That is, that the point 

selected for evaluation should be selected on the basis of a calculation of the value of 

the consequences associated with its evaluation. For exploitation, the calculation of 

value would be the level of expectation that the point selected will satisfy the goal: for 

exploration it would be the a measure of the reduction in uncertainty which might be 

expected to result from the evaluation. 

2.5 Discussion 

2.5.1 Summary 

The above analysis has outlined a conceptual model of optimization for use both in 

considering the operation of existing algorithms and for developing new ones. The 

no free lunch theorem has been used to provide theoretical support for the knowledge 

principle espoused in chapter 1: that i t is problem-specific knowledge which is the key 

to solving optimization problems. 

The conceptual model developed distinguishes between a number of key components 

of an optimization process: 

• The aim and corresponding goal of the optimization. 

• The underlying knowledge possessed, or assumptions made about the surface to 

be optimized. 
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• The set of evaluations so far performed on the particular optimization problem 

currently in-hand. 

• The construction of models of current beliefs and uncertainty about the nature 

of the performance and goal surfaces by combining the underlying assumptions 

with the current set of evaluations. 

• The use of the models for optimization, via distinct strategies for selecting points 

for evaluation, which may be applied to achieve either exploitation or exploration. 

The next section revisits some aspects of genetic algorithms in the light of the presented 

model of optimization and this separation of optimization components. 

2.5.2 Genetic Algorithms Revisited 

Problem, not Algorithm 

There appears to be a reluctance in the GA optimization community to consider the 

ful l import of Wolpert and Macready's no free lunch theorem. The first question 

to be asked is not "what are the consequences for evolutionary optimization?" but 

"what are the consequences for the field of optimization as a whole?" As VVolpert and 

Macready point out, the fact that no generally superior optimizer can exist places the 

specific optimization problem, not the generic optimization algorithm, at centre-stage: 

one should attempt to work from the nature of the problem towards an algorithm 

which might solve i t . Investigations into particular forms of algorithm and the kinds of 

problem to which they may be applied are only useful to the extent that they assist with 

the reverse form of reasoning—from the nature of the problem to a suitable algorithm. 

49 



Efficiency or Robustness 

The pursuit of an optimization technique which is robustly efficient across all prob

lem domains is, according to the no free lunch theorem, a wild goose chase. Grefen-

stette's [47] hope that genetic optimizers would turn out to be a "powerful weak 

method" can be seen to be unfounded (with, admittedly, a great deal of hindsight). 

Deb's [26] desire for an algorithm which is generally robust across different classes of 

problem is unlikely to be satisfied—unless significant exploitable commonalities be

tween the structures of the classes of problem in question can be identified. This may 

not be a vain hope (see section 2.5.3 below), but i t is through study of the problems, 

not of any particular optimization algorithms, that such commonalities may be iden

tified and exploited. Horn et al's [59] conclusion that the GA is a robust method is 

questionable: the finding that a GA can solve "longpath" problems which are tough for 

hill-climbers merely begs the question of where the "no free lunch trade-off" occurs— 

which are the unimodal, hill-climber-easy problems which prove tough for GAs? 

The G A cind Problem-Specific Knowledge 

The efficiency with which any given algorithm solves a given problem can be seen 

to be dependent on the problem-specific knowledge which the algorithm enbodies— 

in the form of assumptions made about the nature of the surface being optimized. 

Claims such as that "Blind search strategies do not use information about the problem 

domain." [36] or that ". . .prior information [about the problem] is not essential [for a 

specific optimization algorithm]." [87] do not stand up under the no free lunch theorem. 

Kargupta [62] points out that "in the absence of any analytic information about the 

objective function structure, a BBC [Black Box Optimization] algorithm must guess 
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based on samples it takes from the search space", but also that such guesses are taken 

based only on consideration of "a certain finite set of features that defines the bias of 

the process." That is, in the absence of analytical knowledge to underpin optimization, 

an algorithm must assume that the surface is one of the set towards which i t is "biased", 

and proceed accordingly. 

In this context, i t is best to regard Holland's schema theorem not so much as an 

explanation of how GAs work, but as a requirement which must be satisfied by a 

fitness function before a GA can be satisfactorily employed to optimize it [22]. The 

requirement is that the encoding for the space, together with the fitness function, must 

result in the existence of building blocks with a degree of independence in their efl*ect on 

fitness (in biological terminology, having only low or medium epistasis—see [20]), and 

which can be combined effectively by the crossover operator in use. In this respect, 

the exploitation of schemata in the GA parallels the use of estimated gradients in 

classical optimization: each represents a fundamental assumption about the nature of 

the relationships between the performance of diff"erent designs in the design space. I t 

is the exploitation of these relationships on which successful optimization relies. 

A particular genetic algorithm is located within the space of GAs by the nature of 

its problem representation, operators, and the value of any controlling parameters. 

Establishing the relationships between these features and the types of problem on 

which the GA will be efficient is a recurring theme of research. Ronald [99] advocates 

remapping the encoding in use i f better building blocks or a decrease in epistasis results, 

which corresponds to attempting to restructure the surface being optimized to better 

match the assumptions underlying GA optimization. Back [3] shows that the optimal 

mutation rate to use depends heavily on the simple question of whether the surface is 

unimodal or multimodal. Manderick et al [73] show strong relationships between the 
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correlation coefficients of GA operators on a given fitness landscape and the success of 

a GA in optimizing that landscape. The tuning of GA parameters represents adjusting 

the assumptions implicit in the algorithm better to match the problem or class of 

problems in hand. 

In recommending that any black box optimizer (BBO) should "quantify its bias", Kar-

gupta and Goldberg [63] are effectively stating that the assumptions underlying the 

operation of any algorithm—and hence the set of surfaces on which i t can be used— 

should be made explicit, as is the Ccise for classical optimizers. The difficulty for the 

GA is that these assumptions are obfuscated by the very structure of the algorithm, 

and distributed across all of the operators involved, plus the problem representation 

used. Every crossover, mutation and selection operator, along with each of the various 

representations which may be used, has its specific bias: the bias of the overall algo

ri thm is determined by the interaction of all these individual biases. This is perhaps 

the reason why most research into the practical application of GAs has an empirical 

flavour—different variations being tried, and reasons behind their relative success or 

failure then being sought. 

The success of many such variations can be understood by asking the simple question 

"does the variation allow the use of more problem-specific knowledge than was pre

viously the case (or better use of that which the algorithm already employs)?" I t is 

argued in section 1.3.2, for example, that the use of a real coding allows better use of 

problem-specific knowledge in a real-valued space. Michalewicz's [76] approach of vary

ing the mutation rate of diflferent bits on the genome during GA optimization makes use 

of knowledge not previously available to the GA: that the genome consists of distinct 

sections, each representing a single parameter, and where each parameter comprises 

bits with varying significance. Paredis's [81] approach of co-evolving constraints makes 
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use of the knowledge that there are constraints, which are distinct from the fitness 

function—knowledge not available to an algorithm which just receives fitness values 

which are already penalized for constraint violation. Rasheed and Hirsh [93] construct 

genetic operators for real-valued spaces which are clearly based on assumptions of con

tinuity and on the exploitation of local gradients. Many other variants are explicitly 

based on the use of existing heuristics within a particular domain, or for a particular 

class of problem (e.g. [2]). 

E x p l o i t a t i o n a n d E x p l o r a t i o n 

In the same way that the assumptions about the fitness surface underlying G A op

eration are distributed across the operators and representation used, so too is the 

distinction between exploitative and exploratory behaviour. The model of optimiza

tion presented in this chapter promises to separate the two behaviours into distinct 

strategies, which seems likely to make balancing between them more straightforward. 

Crossover may exhibit both exploratory and exploitatory behaviour, depending on the 

similarities between the parents selected to breed and the sites on the genome chosen 

for crossover—both typically stochastic choices. A mutation of a binary chromosome 

may have either an exploitative or an exploratory effect, depending on the degree 

of disruption to the phenotype represented by the allele mutated—again, a stochastic 

choice. The adjustment of G A parameters such as the mutation and crossover rate give 

only a very indirect level of control over which behaviour is promoted. Furthermore, 

such control tends to be exercised on a fairly coarse-grained level—typically setting 

parameters to trj' to exploit either exploration or exploitation for an entire population 

breeding cycle, rather than choosing the most appropriate behaviour for each individual 

selection decision. 
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In neither crossover nor mutation is exploitative or exploratory behaviour rational, 

with respect to the overall state of knowledge of the problem. Either operator may 

generate a point for evaluation which not only has been evaluated before, but is still 

present in the current population. Selection of such a point for evaluation has no value 

for either exploitation or exploration. 

A s s u m p t i o n s a n d D e c e p t i o n 

Deb et al [29] describe how to construct surfaces which are "maximally deceptive" to 

genetic algorithms. These surfaces exhibit local features which tend to divert genetic 

search away from the true global optimum. Kallel and Naudts [61] describe how to 

construct a longpath problem for a G A : a problem which uses a series of "landmarks'* 

to lead the search astray, resulting in extremely inefficient performance in reaching the 

global optimum. 

That such problems will exist is an inevitable consequence of the no free lunch theorem. 

Deceptive surfaces will exist for any algorithm; the real question is whether they are 

likely to appear in practice within the domain in which the algorithm is applied. 

As Venturini [113],[114] and Liepins and Vose [70] make clear, the genetic algorithm 

can readily be modified so that deceptive surfaces of the type identified by Deb et al 

no longer prove deceptive. However, to adopt such an approach has two important 

consequences: 

1. Efficiency in optimizing non-deceptive functions will be reduced (even if only 

marginally), since evaluations must be expended in order to check that the surface 

is not deceptive. 

2. A different set of surfaces are now deceptive. As Venturini discovered, checking 
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for maximally deceptive surfaces does not help to eliminate more mildly deceptive 

ones. 

The efficiency of optimization on deceptive surfaces may thus be increased, but only 

at the expense of reducing the efficiency on previously non-deceptive ones. Under the 

constraints identified by the no free lunch theorem, the average performance over all 

functions must remain constant. 

So one must return to the nature of the optimization problem in hand: which fitness 

surfaces are regarded as likely to be encountered, and which as less likely? If one 

believes that some of the surfaces one will wish to optimize in a domain may be G A -

deceptive. then one must either modify the G A to be used to take account of this, or 

employ another optimization method. Kallel and Naudts [61] hit the naii on the head 

by questioning whether any real-world problems might exhibit longpath structure. 

From this discussion, we may draw a more general conclusion: the assumptions made 

about a surface cannot be checked as part of the optimization process. To attempt to 

do so involves checking for specific kinds of deviation from the assumptions, which is 

equivalent to saying that there is a class of non-conforming surfaces which we deem 

more likely to arise in practice than other such classes: we are changing our assumptions 

about the nature of the surface, rather than checking the existing ones. 

2.5.3 Concluding Remarks 

Saved by the R e a l W o r l d ? 

The consequences of the no free lunch theorem paint a bleak picture for the development 

of a widely applicable, generally robust optimizer. One hope, however, still remains: 



that classes of optimization problem encountered in practice in the real world may, 

in fact, share significant properties which may predispose them towards successful 

optimization by a specific type of optimization algorithm. 

Underpinning all optimization efforts is a single assumption: that relationships exist 

between the performances exhibited by different points in the design space. Without 

such relationships, any optimization would degenerate to random search. With such 

relationships, knowledge of the performances of a limited set of designs allows predic

tions to be made about the performances expected of other designs. By expanding 

the set of designs whose performances are known in a principled way. such knowledge 

may be investigated and refined in pursuit of the aim of an optimization task. Reeves 

and Wright [97] capture this fundamental property of optimization by considering the 

process as one of experiment design, in which hypotheses are made about the nature 

of the surface, and experiments (evaluation of points) performed in order to test these 

hypotheses. 

In fact, this fundamental assumption is even stronger: it is that similar designs are more 

likely to exhibit similar performances than dissimilar designs (Rana and Whitley [91], 

for example, claim that "optima are often surrounded by relatively good points"). 

This assumption is the basis of gradient-based methods, as well as fundamental to the 

applicability of the schema theorem, although each typically uses a different measure 

of "similarity". The power of the relationships in the space which such a similarity 

measure allows to be expressed is the factor underlying the differing efficiencies of opti

mizations using different representations. Jones and Forrest [60] point to the centrality 

of the concept of "distance" in the consideration of genetic landscapes, in which the 

genetic operators employed define the "neighbourhood" of any design. The whole con

cept of searching for "fit regions" or "feasible regions" of a space is predicated on the 
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assumption tliat similar points (i.e. those within a particular neighbourhood) tend to 

have similar performances. 

For real-valued engineering design spaces defined by parameters which represent phys

ical quantities, we might go further: such spaces tend to be continuous. If a design 

calls for a 5Q resistor, or a 30mm diameter piston, in order to achieve a given perfor

mance, then the performance from using a 5.01O resistor, or a 29.9mm diameter piston 

is likely to be close to that desired (whether it is acceptably close is a different matter). 

There may, of course, be discontinuities (in an analogue-digital converter, a particular 

resistance value might mark the point at which a given voltage switches from being 

classified as 01 to 10; for some value of diameter, the piston w îll no longer enter the 

bore for which it is intended), but such discontinuities are likely to be local, and not 

characteristic of the majority of the design space. 

Whether such continuity is an inherent characteristic of physical systems, or merely of 

the subset with which engineers have chosen to w ôrk over the years is a moot point. 

However, it may tentatively be suggested that an optimization algorithm based on the 

assumption that most of the design space is continuous, while allowing for occasional 

discontinuities, might be generally successful in optimizing such "physical system" 

design spaces. 

C o n c l u s i o n 

The key to successful design optimization is the application of appropriate knowledge 

of the problem. This chapter has proposed that such knowledge underlies the operation 

of every optimization algorithm, but that it is not always explicit, nor its nature neces

sarily readily identifiable. In applying any algorithm to a given problem, the knowledge 

used by that algorithm for successful optimization becomes assumptions made about 
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the nature of the problem. 

It has been suggested that optimization may be approached by identifying explicitly 

the assumptions one is prepared to make about the nature of the optimization problem 

in hand, and using those assumptions, together with the data generated by evaluations 

performed during the optimization process, to build models of the performance and 

goal surfaces for the problem. Such models may then be used by exploitative and 

exploratory strategies to achieve effective optimization. 
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Chapter 3 

ProbabiUty-Based Optimization 

Chapter 2 presented a conceptual model of optimization in which assumptions about 

the nature of the problem are combined with the current set of available evaluations to 

generate models of the current state of belief about the natures of the performance and 

goal surfaces. These models then form the basis for successive decisions about which 

point in the design space to evaluate next. Thi s chapter proceeds to cast the model 

of chapter 2 in more formal terms, using probabilistic models of the surfaces under a 

Bayesian view of probability. 

Section 3.1 introduces the necessary concepts of Bayesian probability theory. Sec

tion 3.2 indicates how those concepts may be equated to elements of the model of op

timization presented in the previous chapter, and addresses the construction of proba

bilistic models of the optimization goal over the design space, while Section 3.3 discusses 

some possible strategies which may employ such models for optimization. Finally, sec

tion 3.4 discusses the expected properties of such an optimization process, in the light 

of the discussion in chapters 1 and 2. 
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3.1 Bayesian Probability 

3.1.1 The Nature of Probability 

Classical probability theory defines probability as the limiting relative frequency of an 

event as the number of independent identical trials of that event tends towards infinity. 

The theory is therefore concerned with the long-term aggregate behaviour of random 

variables, and may not validly be used to make predictions about the results of any 

individual trial. 

By contrast, probabilities in a Bayesian context are treated as measures of the relative 

plausibility of hypotheses. For an hypothesis U, the probability, P{U), of the hypoth

esis is a measure of belief concerning the truth or falsehood of U. It is central to this 

view of probability that U is certainly either true or false, but there is insufficient in

formation available to determine with certainty which value is correct; although there 

may exist evidence which affects one's judgement of the plausibility of U. Since in 

the Bayesian view probabilities are treated as measures of the relative plausibility of 

hypotheses, not as descriptions of limiting frequencies of particular types of event, it is 

valid to use Bayesian probabilities as an aid for considering single events in a way which 

is not acceptable under the classical view of probability (see [18] for a discussion). 

One consequence of the view of probability taken in Bayesian probability theory is 

that all probabilities are conditional. The conditioning hypotheses express the nature 

of the system with which the probability is concerned, and may include constraints im

posed by nature, by assumptions made about the system, or by the methods used for 

sampling the system to obtain observational data. This approach is directly analogous 

to the standard approach to logical inference—any logical deductions can only be as

serted dependent upon their tixioms, and are unable to give any information about the 
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truth or falsehood of those axioms. Thus there is always a "given" clause to Bayesian 

probabilities, expressing the "axiomatic" assumptions upon which the assessment of 

probability is based. 

3.1.2 Bayes' Theorem 

The fundamental theorem of Bayesian probability is Bayes' Theorem: 

P{U \ DA) = P{U \ A ) ^ ^ ^ ^ (3.1) 

Where: 

• A is the background information defining the nature of the system of interest, 

and any assumptions w^hich may be made or methods used to gather data. 

• D \s some observation of characteristics of the system (an hypothesis known to 

be true). 

• U is an hypothesis about some aspect of the system. 

• P{Q I R) is the conditional probability of some hypothesis, Q, given some hy

potheses asserted by R. 

Individual terms in Bayes' theorem are conventionally given specific names: 

P r i o r probabi l i ty P{U \ A). This is the assessed probability of the hypothesis U be

ing true before any data is observ-ed. Its value will depend upon the nature of the 

system and one's assumptions about the system, and it is therefore conditioned 

upon .4. 
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G l o b a l l ike l ihood P{D \ A), This is the probability, given only the information ex

pressed in A, that the data actually observed would occur. It does not depend 

on the hypothesis U. 

L i k e l i h o o d funct ion P(D \ UA). This is the probability that the data observed would 

occur if the hypotheses asserted by both A and U were true. The term likeli

hood function is used when the quantity is considered as a function of U] when 

considered as a function of D , this quantity is known as the sampling distribution. 

Pos ter ior probabi l i ty P{U \ DA). This is the probability of the hypothesis U after 

taking into account both the hypotheses asserted in .4 and the data D which was 

actually observed. 

The canonical use of Bayes' theorem is the assessment of the posterior probability of an 

hypothesis, given both the observed data and the background information expressed 

in A. 

3.1.3 Sequential Belief Revision 

A major application of Bayes' theorem in the field of machine learning is in the sequen

tial revision of beliefs, in the light of successive items of evidence becoming available. 

In this application, current beliefs about the plausibility of some hypothesis, C/, are 

expressed by the assessed probability of the truth oft / , P(U). Before any data become 

available, one may already have beliefs or opinions about U, which are expressed in 

the selection of the prior probability P {U \ A) (again, A represents any assumptions 

which may be made about the nature of the system in question). 

As data items, D\,...Dt, become available, which affect one's beliefs about U, the 

probabilistic representation of those beliefs may be updated by repeated application of 
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Bayes' Theorem to take into account the new evidence: 

Where represents the conjunction of the data D i , . . . Di. 

One difficulty in applying this technique lies in the specification of the conditioned 

likelihoods, P ( A I UD^~^A). Bernardo [7] (which may be consulted for an in-depth 

treatment of Bayesian modelling and inference) notes that in practice, and especially if 

t becomes large, it becomes necessary to adopt simplifying assumptions if belief revision 

by this method is to be tractable: simplifying assumptions such as, for example, the 

conditional independence of Di, D2. • • . A , given U. 

3.1.4 The Maximum Entropy Principle 

An important issue in the use of Bayes' theorem is the generation of prior probability 

distributions. Specifically: if the hypotheses in A are not expressed in such a form 

as to determine a unique prior probability distribution for the hypothesis f/, how is a 

suitable prior distribution to be generated? 

This question has in the past posed a considerable problem for the Bayesian approach, 

since the same problem could be approached using a range of different priors, leading 

to different solutions. However, the principle of maximum entropy is now widely rec

ognized as a method which may be used in a consistent way to generate priors for any 

combination of testable information in A. 

The principle of maximum entropy mandates the use of a prior distribution which 

conforms to the testable information in A, while maximising (over the space of all such 
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conforming distributions) the Shannon entropy of the distribution, which is defined by 

H = -Y.Pi\og^Pi (3.3) 
i= l 

for a finite distribution over exclusive, exhaustive alternatives, and by: 

/ / - - / p{e)\ogMO)de (3.4) 
Je 

for a continuous probability density p over the parameter 0 G Q. 

The Shannon entropy is used in this application as a measure of the uncertainty asso

ciated with the probability distribution, so that by maximising entropy, the resulting 

distribution is left maximally non-committal with respect to all characteristics except 

those constrained by A. 

The priors generated by the maximum entropy principle are often referred to as unin-

fonnative priors, or (more accurately) least informative priors. 

3-2 Probabilistic Optimization 

The concepts of Bayesian probability theory described above map in a pleasing way 

onto the conceptual model of optimization presented in chapter 2. 

First, Bayesian probability theory requires explicit consideration of underlying assump

tions about the nature of the system in question, and that such assumptions be taken 

into account when calculating probabilities. This parallels the proposal that the un

derlying assumptions made about a surface in order to optimize it should be made 
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explicit. 

Secondly, the Bayesian approach treats probability distributions as encapsulations of 

beliefs about hypotheses, given the underlying assumptions made, plus some relevant 

data. This mirrors the suggested construction of models of beliefs about the nature of 

the surface being optimized, based on the a priori assumptions made about the space, 

plus currently available data (the latter in the form of the set of evaluations performed 

so far). 

Furthermore, every point in the design space being optimized hiis a single fitness value, 

and either achieves the optimization goal or does not. The reason for optimizing is 

that one is uncertain about which points do. and which do not. meet the goal. The 

concept of "repeated identical trials" simply does not make sense in this context: for 

any point, the first "trial" determines its value with certainty. This echoes the Bayesian 

view of probability as being a measure of belief about some parameter which is fixed, 

but about the true value of which one is uncertain, as opposed to the classical view of 

probability' as a limiting relative frequency of a random variable. 

For these reasons. Bayesian probability provides an appropriate representation in which 

to express models of beliefs about fitness surfaces, for use in optimization as outlined 

in chapter 2. The concepts of chapter 2 arc expressed below in the terms of Bayesian 

probability. 

O p t i m i z a t i o n G o a l 

The aim of optimization as addressed in this thesis is to locate one or more points 

within a design space which satisfy a particular goal. U {x) represents the hypothesis 

that point x e ^ satisfies the optimization goal, where X is the space of possible 
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designs to be optimized, and U is expressed in terms of the v^alues assumed by the 

performance surface relating X and T (the space of performance values). 

A s s u m p t i o n s 

The assumptions made about the space in order to be able to optimize it correspond 

to the Bayesian "background information", A. 

E v i d e n c e 

The points evaluated so far during the optimization process are used as the successive 

items of evidence Di in Bayesian belief revision (see equation 3.2). t represents the 

number of evaluations performed so far, so that at time i , ŵ e have evidence consisting 

of £>! . . . where Di represents the fact that F {xj) = x; being the 2th point chosen 

for evaluation. 

G o a l Sur face M o d e l F o r m 

The model of the goal surface takes the form of a function, over the design space A', 

which yields the probability that a point x ^ AL satisfies the optimization goal (i.e. 

that the hypothesis U (x) is true). The model after £ evaluations have occurred, Mt, 

is generated based on the set of a priori assumptions, / I , which have been adopted 

about the space, and the conjunction of all additional data which have so far become 

available during the optimization, D^: 

Mt{x) = P(U{x)\D'A) (3.5) 
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M o d e l G e n e r a t i o n 

In order to generate the model Mt, the data provided by successive evaluations. D\ ... Dt 

may be used as items of evidence in a process of Bayesian belief revision, updating the 

beliefs about the goal surface as encapsulated in the model. 

Bayes' theorem (equation 3.1) then gives: 

where MQ (X) = P {U (X) \ A) is the prior probability for the hypothesis U at x. 

(3.6) 

Po in t Se lect ion 

During optimization, the choice of the next point to evaluate is made by a selection 

procedure. 5 , on the basis of the current model of the goal, Mt, over the space A!: 

, =S(Mt„A:) (3.7) 

The strategies which might be adopted to implement such a selection procedure are 

the topic of the following section. 

3.3 Rational Optimization 

This section considers possible optimization strategies which might be used to deter

mine the form of the procedure, 5, for selecting the next point for evaluation based on 

the current goal surface model. Mi. It is assumed that the basic requirement for any 
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such strategy is that it be rational in the sense discussed in section 2.4. Since the model 

Ml is the repository in which the assumptions and currently available knowledge about 

the space are embodied, the question becomes: given a probabilistic model of the form 

proposed above, how should we set about using that model rationally for optimization 

of the space? 

A simple but appealing strategy will initially be proposed below. Subsequent discussion 

will identify a number of conceptual problems with that strategy, however, from which 

a proposal for an alternative strategy will then be developed. These strategies will 

be identified as corresponding, respectively, to exploitative and exploratory behaviour. 

Finally, in section 3.4, a composite strategy for rational balancing of exploitation and 

exploration will be suggested. 

3.3.1 The M c t x i m u m Likelihood Strategy 

T h e S tra tegy 

Consider first a somewhat reduced optimization problem: given a probabilistic model 

of the goal surface such as that described above, and the opportunity to evaluate only 

a single point, how should the point to evaluate be chosen so as to have the best chance 

of achieving the goal with that evaluation? 

This is a straightforward problem (in that the basis for the selection of the point is 

clear; actually performing such a selection may not be so straightforward) in which the 

optimum decision rule [55] is selection by maximum likelihood—choose the point which 

has currently the highest assessed probability of achieving the goal. 

This strategy might be employed for all point selections in a longer optimization pro-
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cess; that is, at every time t we select a point Xt^i for evaluation such that: 

M ( x , + , ) > Afax),Va-6A^ (3.8) 

This strategy, which will be termed the maximum likelihood strategy, is both simple 

and intuitively appealing. The consideration of its likely behaviour below also suggests 

other desirable characteristics. 

E x p e c t e d B e h a v i o u r 

Consider a situation in which a single region of the performance surface is found to 

exhibit solutions which are close to achieving the goal, but where other regions of the 

space are largely unexplored. Under the maximum likelihood strategy, we would expect 

to observe that a scries of points within the high-performance region are evaluated. If 

none of these points are found to achieve the goal, how will the optimization proceed? 

Note that the successive evaluation of points within the high-performance region pro

vides an increasing amount of information about the region. This is likely to result in 

a reduction over time of the probability of achieving the goal given by the model of 

the goal surface for all points within the region. This takes place in a context in which 

there are other regions of the surface about which little is known, and which have a 

correspondingly high level of uncertainty. It would seem likely that there will come a 

time when the probability that the goal is satisfied at some point within these more 

lightly constrained regions will exceed the probability for all points within the high-

performance region. When this occurs, the maximum likelihood strategy will cause the 

optimization to shift from the initially promising (but thus far unrewarding) region into 

another region—one which was initially less promising, but which now looks somewhat 
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more attractive by comparison. 

This strategy is purely exploitative: every point for evaluation is chosen because, based 

on current knowledge, it is the most likely to achieve the goal. No consideration is given 

to the information which may result from the evaluation. 

C r i t i c i s m 

The discussion above overlooks at least two criticisms which may validly be made of 

tlie maximum likelihood strategy. 

First, consider an optimization the aim of which is to locate the global optimum of the 

surface. It may be that the point to which the model of the goal surface assigns the 

highest probability of being the optimum has already been evaluated, but that there 

remain regions of the surface containing points with a small probability of having bet

ter performances than the optimum so far found. At this point, optimization using the 

maximum likelihood strategy halts, since a point which has already been evaluated is 

repeatedly selected. In such a situation, it would be preferable to continue with investi

gation of other regions: there would still be a chance on improving the solution found, 

if only by increasing the level of confidence that it is the true optimum. In halting, the 

maximum likelihood strategy is exhibiting convergence as deprecated in section 1.4.3: 

it is ceasing to return useful information, when there is still useful information which 

might be obtained from the surface. 

The second criticism of maximum likelihood selection stems from the knowledge-

centred view of optimization adopted in this thesis. When conducting an optimization, 

the aim is that the optimization goal should be satisfied the at the end of the optimiza

tion process. This is not necessarily equivalent to saying that the algorithm should 
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attempt to satisfy the goal at every individual stage in the process. Consider, for 

example, trying to climb a flight of stairs by continually trying to place one's foot 

on the topmost tread. Consideraton of such an analogy suggests a possible principle: 

only the last point evaluated should be selected using the maximum likelihood strat

egy to attempt to achieve the goal of the optimization; every previous point should 

be selected by some diff'erent strategy, which aims to maximize the chances that the 

final evaluation will, in fact, achieve the goal. Such a strategy is suggested in the next 

section. 

3.3.2 The Ignorance Minimizing Strategy 

The previous section has presented a rationale for treating the initial stages of optimiza

tion as a process of developing knowledge about the goal surface for the optimization, 

with a view to the actual satisfaction of the optimization goal only with the final eval

uation of the optimization. To phrase the problem slightly differently: the early stages 

of optimization should concentrate on reducing as far as possible the uncertainty about 

the goal surface, so that it is then easier to locate a point which achieves the goal at 

the end of the optimization. 

The use of the Shannon entropy of a probability distribution as a measure of the 

uncertainty of that distribution, has already been encountered in section 3.1.4. Since 

the model of the goal surface which underpins the optimization is a probabilistic one, 

entropy calculated from the model may be used to quantify uncertainty about whether 

points in the design space meet the goal or not. 
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The entropy (see equation 3.3) at x for the probabilistic model Mt (after t evaluations) 

is given by: 

H, (x) = -M, (x) log2 {Mt (x)) - (1 - A'h (x)) log2 (1 - M , (x)) (3.9) 

I further define the ignorance about the goal surface at time t as: 

/ , = / Ht{x)dx (3.10) 

This quantity expresses a measure of the total uncertainty, over the whole surface, 

about the satisfaction or otherwise of the optimization goal. In order to reduce uncer

tainty about the location of points which satisfy the optimization goal, an optimization 

strategy should therefore attempt to select a point Xi+\ for evaluation so as to minimize 

the ignorance /f+i-

The exact effect which the evaluation of any given point will have on the model of 

the goal surface, Mi, and hence on the ignorance about the surface depends on the 

performance value which is actually obtained from the evaluation, and hence cannot 

with certainty be predicted prior to the evaluation's being performed. However, if a 

model of the probability distribution for the performance of each point is available, then 

the expected ignorance, EIi^x after the evalution of any point X j + i can be determined. 

The strategy' proposed, which will be termed the ignorance minimizing strategy is 

therefore to select for evaluation a point Z t + i for which the expected ignorance of the 

goal surface following the point's evaluation. Eh^i is minimized. 
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E x p e c t e d B e h a v i o u r 

Where the maximum hkelihood strateg>^ is purely exploitative, the ignorance minimiz

ing strategy' is purely exploratory. A point is not chosen for evaluation because it is 

expected to achieve the goal, but rather for the information it is likely to yield about 

the locations of other points that will. Regions with very low probability of achieving 

the goal will tend to be avoided, as will regions with very high probability, in favour 

of regions with probabilities approaching 0.5. In the case of a satisficing goal, or con

straint, for example, the strategy can be expected to focus more evaluations around 

the boundaries of feasible regions than in the interior or exterior. 

For static performance functions, no reduction in uncertainty can ever result from the 

re-evaluation of a point the performance of which is already known, so we may expect 

the ignorance minimizing strategy not to exhibit the convergent behaviour described 

above for the maximum likelihood strategy. Similarly, as more evaluations are placed 

within a given region of the space, the uncertainty associated with all points in that 

region is expected to decrease, and the ignorance minimizing strategy to move to other 

regions of the space which have been less thoroughly investigated. 

3.4 Discussion 

3.4.1 Overview 

The problem of optimization has been approached above from the perspective of the ob

jections raised to the evolutionary metaphor in chapter 1 and the alternative approach 

outlined in chapter 2. 
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The optimization method which results from this analysis consists of two distinct com

ponents: 

1. The use of the Bayesian belief revision method to construct probabilistic mod

els of the satisfaction or otherwise of the optimization goal and the value of the 

performance function over the design space, based on the set of evaluations per

formed so far and the a priori assumptions about the space which one is prepared 

to adopt. 

2. The application of an optimization strategy to use the models so constructed to 

select the next point for evaluation at each stage. 

Two strategies have been identified as rational approaches to the second of these com

ponents: 

1. The maximum likelihood strategy, in which the point selected for evaluation is 

the one believed most likely to achieve the goal. 

2. The ignorance minimizing strategy, in which the point selected for evaluation 

is the one which is expected maximally to reduce the current total uncertainty 

(ignorance) concerning the satisfaction of the goal over the design space. 

3.4.2 The Composite Strategy 

Criticisms of the maximum likelihood strategy have been discussed above. At least 

one valid criticism of the ignorance minimizing strategy may also be made, as follows. 

In situations where the goal may be achieved with complete certainty, the ignorance 

minimizing strategy will studiously avoid regions of the space containing points with 
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very high probabilities of achieving the goal. Evaluation of one of these points is 

very likely to achieve the goal, and the optimization could then stop: the ignorance 

minimizing strategy would not seem likely, then, to lead to efficient optimization. 

The crucial point here is that the two strategies identified are not suggested as being 

appropriate for use on their own. Rather, an overall composite strategy is proposed, in 

which the ignorance minimizing strategy is applied first, in order to develop information 

about the goal surface which can then be used by the maximum likelihood strategy in 

an attempt to satisfy the goal. The arguments by which the different strategies were 

developed above in fact suggested that alt but the last point for evaluation should be 

chosen using the ignorance minimizing strategy, with only the final evaluation selected 

by the maximum likelihood strategy. 

The composite strategy having been developed in response to the objections to the 

evolutionary metaphor for optimization advanced in chapter 1, the remainder of this 

chapter discusses its expected behaviour in terms of those objections. 

T r a n s p a r e n c y , T u n i n g , D e t e r m i n i s m a n d D y n a m i c s 

There is no metaphor being used to understand the optimization process. The problem 

in hand is addressed directly, in terms of the knowledge available to be applied to its 

solution, and how this knowledge may be used rationally to achieve the aim of the 

optimization. This has three important consequences, discussed below. 

First, there is no tuning of the optimization mechanism necessary. Indeed, such tuning 

is not even possible: there are no parameters relating to either the maximum likeli

hood strategy or the ignorance minimizing strategy by adjusting which the behaviour 

of the optimization process can be altered. Rather, as suggested by the discussion 
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in section 2.5.2 tuning has been relocated to where it belongs: in the expression of 

knowledge or assumptions about the space. 

Secondly, the optimization method is deterministic. It was suggested in chapter 1 that 

an optimization method which made full use of available knowledge about the space 

would be fundamentally deterministic, since there would be few cases in which the 

available knowledge would be perfectly equivocal about the most advantageous point 

to evaluate next. This has been achieved: there is no random process at the heart of the 

optimization method proposed. Clear criteria in each case are available to determine 

the a unique point for evaluation. There is scope for stochastic decision-making only 

if there are multiple points with the same probability of achieving the goal (for the 

maximum likelihood strategy), or the same expected effect on the total ignorance of 

the space (for the ignorance minimizing strategy). 

Finally, neither strategy leads to a dynamical system. The construction of the models 

of the goal and the fitness surface from the set of points so far evaluated is independent 

of the order in which those evaluations were performed. Coupled with the deterministic 

nature discussed above, this means that the behaviour of the system is dependent solely 

on the current state of knowledge about the problem, and not on any artifact of the 

dynamics of the optimization method. 

P o p u l a t i o n , E v o l u t i o n and C o m p e t i t i o n 

There is no concept of a "current population". The results of all evaluations performed 

may be retained, and taken into account in the construction of the models. This 

property is essential to the exploratory nature of the ignorance minimizing strategy', 

since to be able to explore the space rationally it is necessary to retain a record of 

which regions have already been investigated, whether or not they proved to have high 
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performance. 

The selection of the next point for evaluation is not made on the basis of competition 

between the current set of evaluations, based on their relative performances, but rather 

on a comparison in which every unevaluated point in the design space is treated equally, 

and judged against a measure of the value expected to result from its evaluation. 

Because every point in the space is treated as a possible candidate at each stage, the 

optimization is not "evolutionary" in the sense deprecated in section 1.3.7, Because 

the measure of value relates directly to the goal of the optimization, rather than just 

the relative performances of the set of evaluations made so far, the conv^ergence to 

non-satisfactory regions expected to result from the competitive nature of the G A (see 

section 1.3.8) is not expected to occur. 

K n o w l e d g e U s e a n d G o a l R e p r e s e n t a t i o n 

The analysis in this chapter has centred on the use of knowledge of the problem in 

hand iis the fundamental driving power behind the optimization process. The success 

and performance of the strategies presented is likely to depend on the accuracy and 

constraining power of the knowledge applied to the construction of the models used. 

In the analysis above, this knowledge is encapsulated in the background information, 

A, used in Bayesian belief revision. No suggestion has thus far been made of the form 

such knowledge might take, nor any evidence advanced that the forms of knowledge 

typically available for optimization problems will be easily incorporated into the model 

construction procedures. However, use of the Bayesian approach to integrate different 

forms of knowledge into a consistent structure of belief about some system is a recurring 

theme of research in the area. The approach thus seems as promising as any as a 

potential means for combining different kinds of knowledge into a single formalism 
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which can then be employed for optimization. There are two places in the proposed 

model of optimization at which knowledge of the problem may be taken into account: 

• Generation of the prior probability P {U (x) | A). The prior used can take into 

account beliefs relating to a particular area of the space, or the space as a whole. 

For example, a belief that a particular class of designs is unlikely to exceed a 

particular fitness value, or that the design space as a whole will have a given 

mean performance, might potentially be incorporated into the prior. 

• The procedure for generating the successive conditional likelihoods. This incor

porates knowledge about how the performance values of different points in the 

space are likely to relate to each other, which might incorporate observed trends, 

domain heuristics, and mathematical approximations. 

These two options would seem to cover a wide range of possible types of domain 

knowledge. 

E x p l o r a t i o n , E x p l o i t a t i o n a n d C o n v e r g e n c e 

In developing the two optimization strategies described, the distinction between ex

ploitation and exploration has been brought to the fore. Indeed, the two behaviours 

have been entirely separated, and a distinct strategy been identified for each. 

The above analysis suggests strongly that exploration and exploitation are appropriate 

at different stages during the optimization process. Indeed, if exploration is performed 

rationally, it might be used for all selections of points to evaluate except the last, and 

it is only with this last selection that exploitation becomes necessary. The exploitatory 

strategy may on occasion lead to convergence, but the exploratory strategy will not— 

it will tend away from regions of the space which have been thoroughly investigated, 
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in pursuit of regions of higher uncertainty. Since the composite strategy allows the 

exploitatory strategy to be applied only for a single ev^aluation, it w'lW never have the 

opportunity to display convergent behaviour, so the overall composite strategy will be 

non-convergent. 
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Chapter 4 

Optimization Strategy 

Implementation 

4.1 Introduction 

Chapter 3 proposed a framework for optimization based on the construction of Bayesian 

probabilistic models of the performance surface being optimized and of the satisfaction 

of the optimization goal over the design space. Three strategies were proposed by 

which optimization might be approached using such models: the maximum likelihood 

strategy, the ignorance minimizing strategy, and the composite strategy, the last being 

a combination of the first two. 

Chapter 5 reports on experimentation performed to investigate the properties of the 

different optimization strategies proposed. The investigation described in chapter 5 

employs very simple spaces, goals and models. This chapter prepares the ground by 

deriving the models used, and the procedures for selecting points for evaluation using 

those models, for both the ignorance minimizing and maximum likelihood strategies. 

80 



Section 4.2 describes the assumptions made about the nature of the optimization prob

lem. Section 4.3 describes the model of the performance surface derived from those 

assumptions, and section 4.4 the corresponding model of the goal surface. Section 4.5 

describes the implementation of the maximum likelihood and ignorance minimizing 

strategies using the given form of model. 

4-2 Basic Assumptions 

D e s i g n aind P e r f o r m a n c e Spaces . Both the design and performance spaces are one-

dimensional and real-valued. The design space, is a continuous closed section 

of the real axis: [xminz'-^max]- The performance space, is the space of real 

numbers. 

O p t i m i z a t i o n G o a l . The goal of the optimization is to locate a point with a perfor

mance which exceeds a given threshold, / * (a satisficing optimization problem). 

P r i o r K n o w l e d g e . Before the start of the optimization, no knowledge or expectation 

exists about the possible performance values anywhere in the space. 

U n i f o r m Cont inu i ty . The assumption used to build the models of the performance 

and goal surfaces is that the performance surface is uniformly continuous almost 

everywhere. Formally, uniform continuity requires that for every e > 0, there 

exist a J > 0 such that \F(xx) - F{x2)\ < e for all Xx,X2 6 A', \x2 - Xx\ < 8, 

where 6 depends only on e, and not on x\ or X2. (This assumption is slightly 

weakened by allowing it to apply almost everywhere. This retains the possibility 

of local discontinuities in the performance surface, while retaining the overall 

belief that the surface is broadly "well-behaved".) 

"Occ lus ion" . A corollary of uniform continuity in a one-dimensional design space I 
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shall call the assumption of "occlusion". T h a t is, for any three points Xi,X2,X2 € 

A* such that x'l < X2 < x^, F {x\) and F (3:3) are conditionally independent, given 

^ ( 2 : 2 ) . That is, information provided by the evaluation of one point does not 

"pass through" another evaluated point to affect the model of the performance 

of points beyond it. The model of the performance of any point in the space 

is dependent only on the nearest evaluated points above and below the point of 

interest. 

The assumption of no prior knowledge means that the prior probability density function 

for the performance of any point is a uniform distribution over all possible values. This 

distribution has no effect on the Ba^^esian belief revision process, and so the prior 

probability will be omitted from the analyses below. 

The assumption of uniform continuity forms the background information. A, used in 

chapter 3 as the basis for generating the models of the performance and goal surfaces. 

This specific form of background information is employed in the development of the 

models and strategies in this chapter, and is denoted A. 

Some justification for adopting this assumption for optimization of physical systems 

was given in section 2.5.3. 

4.3 The Performance Surface Model 

First, the model of the performance surface resulting from the evaluation of a single 

point is derived. This is then used to derive the model resulting from the combination 

of the effects of the evaluations of multiple points. 
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Figure The desired form of the performance surface model due to 
the evaluation of a single point. We wish to determine the probability 
density for the performance f at x, given the evaluation F(x\) = f\. 

4.3.1 Model from a Single Evaluation 

Refer to figure 4.1. We wish to determine p ( / | DiA), the probability density function 

for the unknown performance value / , at .x, given the known performance f \ at X\ 

(expressed as the item of evidence D\), A represents the underlying assumptions made 

about the nature of the surface—in this case, the assumption of uniform continuity. 

Let A / = / - / i , so that | DxA) is the probability density function for the 

deviation, A / , of the performance at point x from that at 3:1. Under the assumption 

of uniform continuity, p ( A / | DiA) depends only on the distance, di, between the two 

points. 

The case for adopting a normal distribution as the form of | D\A) is argued 

below. Consideration is then given to the nature of the dependence of the parameters 

of that normal distribution on the separation di. 
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T h e F o r m o f p { A f \ DiA) is N o r m a l 

Uniform continuity suggests that as distance from an evaluated point increases, larger 

deviations of the performance surface from the performance of that point become more 

likely, and values close to the performance of the evaluated point become correspond

ingly less likely. VVe may thus characterize p ( A / | DiA) as being of variance which 

increases with dp Having no reason to believe a rise in performance to be either more 

or less likely than a fall, we may also conclude that the distribution is symmetrical, and 

therefore has a mean of zero. If the mean and variance of a distribution be specified, 

then the entropy-maximizing distribution (see section 3.1.4) is the normal distribution 

with the specified mean and variance. For this reason, it seems reasonable to conclude 

that the form of p ( A / | DyA) is normal, with zero mean and variance a monotonically 

increasing function of di. 

This argument closely follows that used [71] in favour of assuming the noise on a 

random variable to be Gaussian if no other information about the nature of the noise 

is available: we might regard the performance of an evaluated point in a continuous 

space as a noisy estimate of the performances of neighbouring points, where we expect 

the level of noise present in that estimate to increase with distance from the evaluated 

point. 

T h e Dependence of p ( A / | DiA) on 

Refer to figure 4.2, which shows an additional point, x\ somewhere between X\ and x. 

The "occlusion" corollary of the uniform continuity assumption dictates the conditional 

independence of / i and / , given / ' . That is. 
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Xi 

Figure ^ . 2 : The dependence on the model of the performance surface 
due to a single evaluation on the distance from the evaluated point. The 
distributions for f and f\ are conditionally independent, given f . 

p ( A / I DyA) = r I D,A)p{/\f I D'A)dAf' 
J-OO 

where D' is the hypotiietical da tum that F{x') = / i — A / ' . Th i s expression represents 

the convolution of two normal distr ibutions, the result of which is a normal d is t r ibut ion 

w i t h variance equal to the sum of the variances of the two convolved distr ibutions. We 

may therefore conclude that the variance of 7; ( A / | DiA) depends linearly on di: 

V a r ( p ( A / | A ^ ) ) = a d , 

for some appropriately specified constant parameter a. 
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T h e P e r f o r m a n c e Surface M o d e l f r o m a Single E v a l u a t i o n 

Given a single evaluation D i , which conveys the fact tha t F ( x i ) = / i , the probabi l i ty 

density func t ion for the performance / of any poin t x e X is given by: 

p{f\D,A) = <l>{fuad,J) (4.1) 

where d\ is the separation in the design space between x and X i , (^ ( / i , a^,2) is the 

normal density funct ion of the parameter w i t h mean fi and variance a^, and a is a 

constant which parameterizes the assumption of un i fo rm continuity. 

4.3.2 Model from Multiple Evaluations 

Refer to figure 4.3. We wish to determine p(f | D*^A), the probabi l i ty density funct ion 

for the unknown performance value / , at x, given a number of evaluations as evidence: 

Di .. .Dt, where Di represents the fact tha t F (xi) = f i . Under the ' 'occlusion" corol

lary to the assumption of uni form continuity, p{f | D^A) depends only on the two 

evaluated points which are nearest to x on either side. W i t h o u t loss of generality, we 

shall label these points Xi and X2. Appl ica t ion of Bayes' Theorem yields: 

p { f \ D ^ A ) = p { f \ D ^ A ) ^ , i f l A ) ^ j ^ 

p { f \ A ) p ( D . I D^fA) p {D, I f A ) 
P ( D , I D^A) p (£>2 I A) 
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X2 

Figure 4'3: The desired fonn of the performance surface model due 
to the evaluation of a multiple points. We wish to determine the 
probability density for the performance f at x, given the evaluations 
F{x,)=fy,F{x2)=f2-

"Occlusion" dictates that p ( D i | A) = p{Di | fA), while under the assumption of 

no prior knowledge p(f \ A) and p {D2 \ A) are equivalent un i fo rm distr ibut ions, so we 

have: 

, , p { D r \ f A ) p { D , \ f A ) 

Each term in this expression is an example of the model clue to a single known point , 

given in equation 4.1, so we have: 
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Figure 4'4' The form of the model of a one-dimensional surface pro
duced by the assumption of uniform continuity . At every point x in the 
space, the probability density function predicted for the perfortnance, f 
is Gaussian: the bold line shows the mean of the distribution, the fainter 
lines show i b l j 2, and 3 standard deviations. Points x\ and X2 have been 
evaluated, yielding performance values of f\ and f i , respectively. 

which simplifies to: 

(4.2) 

The performance surface model thus gives a normal d i s t r ibu t ion as the probabi l i ty 

density funct ion for the performance of any point , w i t h the parameters of the d is t r i 

bution dependent only on the nearest evaluated point on either side. The mean of 

the d is t r ibut ion is linearly interpolated f rom the two known performance values, and 

the variance is given by o:-^^- Figure 4.4 illustrates the fo rm tha t this model of the 

performance surface takes. 
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T h e P e r f o r m a n c e Surface M o d e l f r o m M u l t i p l e E v a l u a t i o n s 

For any point x, as depicted in figure 4.3, the probabi l i ty density for the value of the 

performance surface at x is given by equation 4.2. w i t h x^ and X2 being the evaluated 

points which are nearest to x on either side. In the case where no points have been 

evaluated to one side of x . the probabi l i ty density is given by equation 4 .1 . 

4.4 The Goal Surface Model 

(Refer again to figure 4.3 for the notat ion used.) As discussed in section 3.2, the goal 

surface model provides for every point x a measure of the probabi l i ty (given the current 

state of knowledge about the surface) that the op t imiza t ion goal is achieved at x. Recall 

that the goal being addressed is the location of a point x such tha t F{x) > / * , and we 

denote the hypothesis tha t F{x) > f* as f / ( x ) . For convenience, we also define U{x, r) 

as the hypothesis tha t F{x) = r. 

Equation 3.6 shows how to derive the overall goal surface model based on the combina

tion of the effects of al l points so far evaluated. As for the derivation o f the performance 

surface model above, the "occlusion" corollary of the assumption of un i form cont inui ty 

means tha t for any x, only the eff'ects of the nearest evaluated po in t on each side of x 

(x i and X 2 ) need be considered. Equation 3.6 then gives the goal surface model as: 
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Since D2 and D\U{x) are condit ionally independent, given U{X,T), this becomes: 

A'A (x) = ^p^j ,^ I ' ^ ^ ^ ^ ^ I W ( x , r ) > l ) p ( Z ^ ( x , r ) | D,U{x)A)dr 

Apply ing Bayes' theorem to the last term in the integral: 

P{U{x) I D,A) /•« p{D2 I t/(x,T).4)p(t^(a:, r ) | A ^ ) p ( t / ( x ) | VI(X,T)D,A) 

P (D2 |DM) ^-00 P{U{x)\D,A) 

Since Z)i and i / ( x ) are condit ional ly independent, given H{X,T): 

, , . . _ P{U(^) I A^) p(D2\li{x.,r)A)p{U{x,r) \ D,A)p{U{x) \ U{x,r)A) 
'''' - P{D2 I DM) /-co P{U(x) I DM) 

I t is clear f rom the definitions of U{x) and U{x,r) tha t P{U{x) \ U{x,r)A) = 0 for 

r < / * , and = 1 for r > which allows its effect on the expression to be absorbed 

into the l imi ts of integration, giving: 

P{U{x) I D^A) r « p ( 0 2 | Z ^ ( x , r M ) p ( ^ ( x , r ) | A . 4 ) , 
' ' ' ' = I D,^) J f . PiUix) I DM) 

"^'^^^''^ = P{D,]D,A) Ir^^^'' I ^ > ^ ) ' ^ ^ 

Each of the probabi l i ty terms in this expression can be determined f rom the equation 

for the performance surface model due to a single evaluation (equation 4.1): 

Mt{x) = ^ f J . . ^ f^ i (t>{r.ccd2j2)(t>U\^(^d,ur)dr 
(p(juO:(di + d2)j2} Jf 

Making use of the properties of the normal d i s t r ibu t ion tha t 

90 



and tha t a ^ . r ) = 0 ( r , a^ ,^) gives 

^^ft{x)= r<t> Mt (x) = I (t>\ — — , a - —, r dr 
di + f/2 di-\-d2 J 

or (subst i tut ing ^2 = f^i,2 — 

^ - /i(rfi.2-di)+/2di \ 
M( (x) = P{U (x ) I D M ) = 1 - * 

V V '''.̂  / 

(4.3) 

where $ (2) is the cumulative normal d i s t r ibu t ion , /^^o ^ (0= 

T h e G o a l Sur face M o d e l 

For any point x , as depicted in figure 4.3. the probabilist ic goal surface model is given 

by equation 4.3, w i t h Xi and X2 being the evaluated points which are nearest to x on 

either side. In the case where no points have been evaluated to one side of .x, so that 

evidence is available only f rom the single evaluation X i , then the goal surface model is 

readily determined f rom equation 4.1 to be: 

4.5 Optimization Strategy Implementations 

Both the maximum likelihood and the ignorance min imiz ing strategies require the 

selection of a point for evaluation based on a calculation of the value of that evaluation 

to the opt imizat ion process. For the max imum likelihood strategy, the measure of 

value of any point is the assessed probabi l i ty that the point achieves the goal; for the 
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ignorance min imiz ing strategy, i t is the expected reduction in the ignorance of the goal 

surface which w i l l result f rom the point 's evaluation. In both cases, the calculation of 

the measure of value can be made entirely f r o m consideration of the interval between 

two adjacent evaluated points which contains the point in Question. 

Both strategies may therefore be approached in the same manner: 

1. Par t i t ion the design space into intervals defined by the current set of evaluations. 

2. For each interval, locate the point w i t h i n the interval which maximizes the mea

sure of value, and calculate the measure of value for that point . 

3. Select for evaluation the point w i t h the highest value located dur ing stage 2. 

considering all intervals. 

The sections below describe how stage 2 above was implemented for each strategy'. 

Recall that the goal addressed is a satisficing one: the location of a point w i t h a 

performance value which equals or exceeds a given target, / * . 

4.5.1 The Maximum Likelihood Strategy 

The max imum likelihood strategy requires the location of the point w i t h i n each interval 

at which the assessed probabil i ty tha t the point exceeds the goal is maximized: that 

is, the value of at which the expression in equation 4.3 is maximized. Equivalently, 

we wish to determine di so as to minimize 

^ f* _ f\{di.2-di)+f2di ^ 

V V J 
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p{F(x)) t 

Figure 4.5: The form of the probability density for the performance 
of a point within an interval such as that illustrated in figure 4-3. The 
density function is normal, tuiih mean ft and standard deviation a as 
shown. The shaded area represents the probability that F(x) > /*. 

the value of which is equal to the area of the shaded region in figure 4.5. To maximize 

this area, we need to mininize the number of standard deviations by which / * exceeds 

the mean of the d is t r ibut ion , ^ r ^ r ^ ^ ^ • ^ locate di so as to 

mnnmize 
r* fi{di,2—di)+f2di 

(where d\-\- d2 = rfi,2 is constant) 

Rearranging this expression gives: 

( r - / 2 ) r f . + ( r - / , ) ( d , , 2 - r f , ) 1 

1,2 

Subst i tut ing for convenience rf] = ^(/ i ,2 , we wish to determine so as to minimize 

( / • - / . ) + ( / . - / 2 ) ^ 1 

^fad 1,2 
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Setting the derivative w i t h respect to ^ of this expression equal to zero yields: 

( ( / i - / 2 ) {^-e)'-l if - / . + M - ho - ey' ( i - 20) ^ = = 0 
2 

M u l t i p l y i n g through by yJoidi^2 — $^): 

2 ( / . - / 2 ) - - ( ( / ' - / > ) + ( / . - / 2 ) 0 (1 - 20 = 0 

Which simplifies to: 

a v ' - h - f 2 ) = r - h 

or: 

^ Of* 2/* - / . - / 2 

Resubsti tut ing for ^ gives a stat ionary point w i t h i n the interval at: 

r - / i 

That this stationary point represents a maximum for the probabi l i ty value in question 

can be seen f rom the form of the model of the interval shown in figure 4.4. 

Note that the location of the max imum likelihood point w i t h i n the interval does not 

depend on the value of a. 
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4.5.2 The Ignorance Minimizing Strategy 

T h e Ignorance of an I n t e r v a l 

Referring again to figure 4.3, let U{x) be the hypothesis tha t F{x) > J \ and rfi,2 = 

d\ H- d2 the to ta l length of the interval . The model of the goal surface is given by the 

probabi l i ty that the performance of a; achieves the goal (see equation 4.3): 

M, [x) = P{U {x) I D^A) = 1 - $ 
f f* _ /i(di.2-di)+/2di \ 

di,2 

V V '̂-2 / 

where >̂ (2) is the cumulative normal d is t r ibu t ion , / f ( 0 , 1 , r ) rfr. 

For convenience, define: 

n (q) = -q log2 q - { l - q ) log^ (1 - q) 

Then the Shannon entropy of the goal surface model at x is given by 

H{x) = n 
( f - _ /i(rfi.2-di)+/2d| \ 

.2-d,) 
) ) 

A n d the to ta l ignorance of the interval [3;i,a;2] by: 

rd\,2 
/ ^ 
JO 

/"y* _ Mdi,2-di)+f2di \ 

ddi 

) ) 
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Denoting the quant i ty ^ as f . rearranging and changing the variable of integration 

yields: 

' = J o ^ i ( T T T H Tir^A - ^ ) ) " ' ) 
Jo \ yQ(r f , ,2 ) ^ a ( r f i , 2 ) 

Defining: 

{a,b)= [ H { ( a + bO {^{l-Or')d^ 

the ignorance of the interval [a;i,X2] is given by: 

/ = ^1,22: I - J = : - 7 — (4.0) 
y/adi^2 yJOCO'1^2/ 

I t can be seen f rom equation 4.5 that the ignorance of an interval may be expressed as 

a funct ion of two quantities characteristic of the interval, , and -A^^, scaled by 

the length of the interval, rfi,2- A tabulat ion of X (a, b) against values of a and b (each 

in the range [-100000,1000000], w i t h logar i thmic detai l : 100 values in [0,1] , 100 in 

0,10], and so on) was generated by numerical integrat ion. This table was then used to 

interpolate estimates of the funct ion I . Figure 4.6 shows the f o r m of the func t ion I . 

T h e E x p e c t e d Ignorance R e d u c t i o n D u e to a n E v a l u a t i o n 

Assume tha t the point x is evaluated, g iv ing a performance value of / . The new 

evaluation splits the interval [a:ij.'C2] into two new intervals, [xi,x] and [3:,X2]. The 

ignorance of these new intervals is then given, respectively, b^ :̂ 
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and 

X(a, 6) 

1 
o.s 
0.6 
0.4 
0.2 

0 

Figure -J.ff; The form of the function X for calctilating the ignorance of 
an interval. 

dyl r - / i h-j 
y/ad\ ' \/ad\ 

dol r - j f~h 
y/ad^ '' y/ad'. 

The total expected ignorance for both new intervals fo l lowing evaluation of x is there

fore: 

d, r p ( / ) I ' d f + d j ° ° p i f ) I { ^ ' ~ ^ , 
J - o o \ \/(xd\ ' y/oidx J J-OQ \ yjocd^ ' sfcid^ / 

and the expected reduction in ignorance result ing f r o m the evaluation: 
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/

oo / 

•oo \ 

For convenience, we adopt performance values normalized w i t h respect to the length 

of the original interval and the value of a, and wi thou t loss of generality adopt / i as 

the origin of the performance measurement: 

A = ^ 

A* 

A, 

r 

f2 

1,2 

Which yields an expression for the total expected ignorance reduction resulting f rom 

the evaluation of x: 

- (1 - 0 r P ( A ) X f dx] (4.6) 

Equation 4.6 gives an expression for calculating the expected reduction in ignorance 
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resulting f rom the evaluation of any point w i t h i n a par t icular interval , in terms of two 

parameters. A* = — and A2 = —^==, which are characteristic o f the interval, and 

the value of ^, which defines the location wi th in the interval of the point evaluated 

(as a f rac t ion of the interval length, f/i,2) measured f r o m the po in t x i ) . The expected 

reduction in ignorance for any interval can be determined by calculating the corre

sponding reduction for the "similar" interval (having the same values of A* and A2) of 

uni t length, and scaling by the actual length of the interval, d\^2' 

Determinat ion of the point of max imum expected ignorance reduction for an interval 

requires the maximizat ion of the expression in equation 4.6 over ^ 6 [0,1]. Tables 

of the maximum expected ignorance reduction attainable, and of the corresponding 

maximiz ing values o f ^, against values of A* and A2 were generated numerically for 

intervals of uni t length (values of A* and A2 tabulated were in the range [—1000,1000], 

w i th logari thmic detail as for the funct ion X ) . Each maximiza t ion was performed by 

simply calculating the expected ignorance reduction at 99 equally-spaced points w i t h i n 

the interval. The resulting tables allowed the interpolat ion of the location of the point 

of max imum expected ignorance reduction and the value of the expected reduction at 

tha t point for the uni t interval "similar" to any given interval . The actual location and 

value for the given interval can then be obtained s imply by scaling the results by the 

length of the interval. 

4.5.3 Implementation Notes 

E x t r e m e s of the Space 

The above analysis has described the implementat ion of methods for locating the point 

of maximum value w i t h i n a given interval, and determining the corresponding measure 
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of value, for both the max imum likelihood and ignorance m i n i m i z i n g strategies. In 

cases where one or both of the extreme points of the design space have not been 

evaluated, then the interval at that end of the space is defined by one point only. 

For the maximum likelihood strategy, in this case the max imum value is at tained at 

the unevaluated extreme of the interval. For the ignorance min imiz ing strategy, an 

identical procedure to that presented above (but simpler, there being only a single 

constraining point) was used to generate a table for est imating the point of max imum 

expected ignorance in such cases. 

I m p l e m e n t a t i o n L o o p 

Given the capacity to determine the o p t i m u m point for each strategy' w i th in any inter

val, implementation of the strategies reduces to the maintainance o f a sorted list of the 

intervals into which the design space is currently divided, and repeating the fol lowing 

stages unt i l the goal of the opt imizat ion is achieved: 

L Select for evaluation the point on the list of intervals w i t h the maximum assessed 

value. Evaluate i t . 

2. Remove f rom the l is t the details of the exist ing interval w i t h i n which the evaluated 

point lies. 

3. Calculate the point of max imum value, and the corresponding value, for bo th the 

new intervals formed by the new evaluation, and add these details to the list . 

T h e M o d e l P a r a m e t e r a 

I n order to implement the ignorance min imiz ing strategy, i t was necessary to parameter

ize the assumption of un i fo rm cont inui ty w i t h the model parameter a. I n determining 
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the rate of change of the variance of the model of the performance surface with distance 

from an evaluated point, a is clearly related to expectations about the magnitudes of 

gradients on the surface. The experimentation in chapter 5 makes some investigation 

into the sensitivity of the ignorance minimizing strategy to the value chosen for a . 

Complexity 

The determination of the point of maximum expected ignorance reduction within an 

interval involves nested integration of analytically intractable expressions. T h e recog

nition that the results for an interval of unit length could be tabulated, and then scaled 

to give the result for any given interval avoided the necessity for expensive numerical 

integration during the optimization process. The tables took approximately 10 days of 

computer time to generate, but could subsequently be used across multiple optimiza

tion processes, enabling the assessment of an interval using the ignorance maximizing 

strategy to be achieved very cheaply. Use of the tables was tested against a specific nu

merical integration for 100 randomly constructed intervals, and found to be acceptably 

accurate. 
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Chapter 5 

A Comparison of Optimization 

Strategies 

5.1 Introduction 

Previous chapters have introduced a viewpoint from which to approach the optimiza

tion of design spaces through the construction of probabihstic models of the goal and 

performance surfaces for tlie problem. Three strategies have been proposed for carrying 

out optimization based on such models: 

1. The maximum likelihood strategy: an exploitative strategy whereby the point in 

the space with the highest assessed probability of achieving the optimization goal 

is aJways selected as the next point for evaluation. 

2. The ignorance minimizing strategy: an exploratory strateg}' where the point 

selected for evaluation is that which is expected ma.ximally to reduce the overall 

level of uncertainty concerning the locations and distribution of goal-satisfying 

points across the design space. 
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3, The composite strategy, whicli consists of applying the ignorance minimizing 

strategy in the early stages of the search, and switching to the maximum likeli

hood strategy only for selection of the final point to evaluate. 

This chapter describes experimentation aimed at investigating the behaviours of, and 

qualitative differences between these strategies. The investigation uses simple one-

dimensional design and performance spaces, a satisficing goal, and adopts the assump

tions, models and optimization strategy implementations developed in chapter 4. 

Section 5.2 describes the aims of the experimentation conducted, and the hypotheses 

investigated, while section 5.3 describes the experiments performed. Results are pre

sented in section 5.4, and discussed in terms of the hypotheses proposed. An overall 

discussion of the findings of the experimentation is presented in section 5.5. 

5.1.1 The Composite Strategy: "Potential" Efficiency 

While the composite strategy' has been proposed as the most appropriate optimization 

strategy to use in practice, no principle has yet been suggested for deciding when to 

switch from the ignorance minimizing strategy to the maximum likelihood strateg}^ 

Consequently, the experimentation in this chapter addresses the potential efficiency of 

optimization using the composite strategy. For every optimization process run using 

the ignorance minimizing strategy, the point which would have been selected at each 

stage by the maximum likelihood strategy was recorded. This enables consideration 

of the potential efficiency (also termed potential time-to-solution below) of the com

posite strateg>': when might a point satisfying the optimization goal have been found, 

assuming that the decision of when to switch between the ignorance minimizing and 

maximum likelihood strategies could have been optimally made? 
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Note that the tinie-to-sokition of the composite strategy has an upper limit determined 

by the operation of the ignorance minimizing strategy: if a point which achieves the 

optimization goal is evaluated, then that point has subsequently a probability of 1 

of achieving the goal, and will therefore be the next point selected by the maximum 

likelihood strategy. The potential efficiency for the composite strategj' cannot therefore 

be worse by more than one evaluation than the efficiency of the ignorance minimizing 

strategy under the same conditions. 

5.2 Aims and Hypotheses 

5.2.1 Aims 

A number of predictions were made in chapter 3 concerning the expected behaviour of 

the optimization strategies identified. The experimentation described in this chapter 

was conducted in order to test these predictions. To this end, a number of hypothe

ses were investigated, relating to aspects of the strategies' possible behaviours. The 

hypotheses investigated are listed below. 

In addition, it was desired to investigate qualitativ^ely any differences which might be 

observed between the operations of the different strategies, and the level of sensitivity 

of the ignorance minimizing strategy to the value of the model parameter, a (defined 

in chapter 4). 
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5.2.2 Hypotheses 

Reliability of Solution 

1. Both the maximum likelihood strategy and the ignorance minimizing strategy 

will reliably find a solution in all cases where a solution is possible. 

Both strategies were characterized in chapter 3 as non-convergent, with the exception 

of the maximum likelihood strategy' in cases where the goal has already been achieved. 

It is therefore expected that until the optimization goal is achieved, both strategies 

will continue to achieve wide coverage of the surface, leading to the reliable location of 

a point which achieves the goal in every case in which such a point exists. 

Efficiency of Solution 

1. The composite strategy' will outperform both of the individual strategies of which 

it is composed, given the same optimization problem. 

Neither of the individual strategies, if used in isolation, has the characteristics re

quired for efficient optimization. The maximum likelihood strategy has no exploratory 

behaviour, and does not set out to develop the information about the goal surface nec

essary for optimization to be efficient. The ignorance minimizing strategy does develop 

information in this way, but does not exploit it actually to achieve the goal: it never 

selects a point for evaluation because that point is likely to achieve the goal, and thus 

if use of the strategy ever does achieve the goal, it does so purely serendipitously. It is 

the combination of these two strategies represented by the composite strategy which 

is expected to be the most effective optimizer. 

105 



Allocation of Trials and Convergence 

In order to investigate the manners in which the different strategies distribute evalu

ations in the design space over time, some of the optimization experiments run were 

given goals which were not actually achievable anywhere within the design space. It was 

felt that these cases would give a better view of the strategies' longer-term behaviour 

in a "difficult" space. For these cases, the hypotheses made were: 

1. Both the maximum likelihood and ignorance minimizing strategies will allocate 

trials to all regions of the surface, with a greater density in those regions which 

most nearly attain the goal. 

2. More difficult goals (i.e. higher performance targets) will lead to a lowering of the 

density of trials allocated within higher-performance regions, and a corresponding 

rise in the density of trials in lower-performing regions. 

3. The ignorance minimizing strategy will not produce convergence. The maximum 

likelihood strategy will converge, but only on an evaluated point which achieves 

the optimization goal, once such a point is found. 

4. All local optima of the multimodal surfaces will be investigated when the goal 

set for the optimization is not actually achievable. 

5.3 Method 

In pursuit of the aims described above, a number of optimization processes were run 

under varying conditions. The factors which were varied were as follows: 

Performance Function. Three different performance functions were used, and are 
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shown in figures 5.1-5.3. The functions used were: 

Fl: A unimodal function: 

F{x) = sin (Y ;̂̂ ) , 0.0 <x< 1.0 (5.1) 

F 2 : A multimodal function with 5 equivalent optima: 

F{x) = sin^ (oTTx), 0.0 < x < 1.0 (5.2) 

F 3 : A multimodal function with a single global optimum and several lower-

performance local optima: 

F{x) = e - ^ ' ° s 2 ( ^ ) ' si„6 (5^^) ^ 0.0 < a: < 1.0 (5.3) 

F2 and F3 are similar to the multimodal functions used by Goldberg and Richard

son [41] to investigate G A niching mechanisms. F3 was used by Bilchev [9] in in

vestigating the optimization of continuous spaces using the ant colony metaphor. 

O p t i m i z a t i o n G o a l . A simple satisficing goal was adopted, taking the form of a 

target performance value, / * . The aim of each optimization process was thus 

to locate a point with a performance equal to or exceeding the given target. A 

range of target values was used, including some which were not in fact attainable. 

These unachievable goals were included to investigate the longer-term behaviour 

of the optimization strategies used in a "difficult" space. These cases were ex

pected to be more revealing about the long-term exploratory, exploitative and 

convergent behaviour of the strategies. Al l the performance functions used have 

global optima with a performance value of 1.0. The same set of target perfor-
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Figure 5.1: The perjonnance function F\: a unirnodal frniction. 

Figure 5.2: The performance function F2: a multimodal function with 
equal optima. 
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Figure 5.3: The performance function F3: a multimodal function with 
unequal optima. 

mance values was used for each function, namely / * = 0.8, 0.9, 0.98, 0.99, 0.999, 

1.001, 1.01, 1.1, 1.2. 

Optimization Strategy. For each optimization, either the maximum likelihood strat

egy or the ignorance minimizing strategy was used. For optimizations conducted 

using the ignorance minimizing strategy, the point which would have been se

lected at each stage by the maximum likelihood strategy was also recorded, al

though not used in the optimization process, to allow investigation of the poten

tial efficiency of the composite strategy, as described above. 

Model Parameter, a . Use of the ignorance minimizing strategy required specifica

tion of the parameter a for the performance model. This parameter encapsulates 

the assumptions made when generating the performance surface model about 
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the relationship between the distance between any two points and the possible 

magnitude of the difference in their performances: that is. a represents the be

liefs captured in the model about the expected magnitudes of gradients on the 

performance surface. For the three surfaces investigated, the maximum gradient 

magnitude is known, and this value therefore represents a sensible upper bound 

for a: for F l , an,ax ^ 10; for F2 and F 3 a ^ o i ~ 25. For each function, the 

values of a investigated were 0.2, 0.4, 0.6, 0.8 and 1.0 times the relevant upper 

bound: that is, for F l , a- = 2, 4, 6, 8, 10, and for F 2 and F 3 , a = 5, 10, 15, 20, 

25. 

For each possible combination of function, goal, strategy, and (where the strategy 

was the ignorance minimizing strategy) a , 10 optimizations were run—in all, 1620 

optimization processes. 

For each run, the first point for evaluation was chosen uniformly randomly from the 

design space. While the random choice of a first point is mandated by the maximum 

likelihood strategy, it can be shown that the ignorance minimizing strategy dictates 

that the first point evaluated in every case should be the mid-point of the design 

space. It was decided that it would be more illuminating to view the behaviour of 

the ignorance minimizing strategy given a range of different starting points. For this 

reason (and also to remove the possibility of a serendipitous high performance of the 

strategy on a particular function, based on the strategy starting always from the same 

point) the first point for evaluation was chosen randomly in every case. 

Each optimization proceeded either until the goal was attained, or until 1000 evalua

tions had been performed. The limit of 1000 evaluations was chosen as being well in 

excess of the expected number of evaluations required by a random search process to 

achieve success on the most difficult combination of performance function and feasi-
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ble goal: F3 and / * = 0.999. F3{x) exceeds this target value within approximately 

the range (0.098839,0.101161). This represents a fraction of 0.101161 - 0.098839 = 

0.002322 of the design space (the range [0,1]). Random search can therefore be ex

pected to take 0.002322"' ^ 430 evaluations before a point in this region is selected for 

evaluation. It was therefore thought reasonable to judge an optimization to have failed 

after 1000 evaluations—somewhat over twice the number expected to be required in 

random search. 

Details of the progress of each optimization were stored in a database, which was then 

queried to generate the tables and graphs in the results presented below. 

5.4 Results 

5.4.1 Reliability of Solution 

Hypothesis 

The hypothesis made concerning the reliability of optimization using the different 

strategies was: 

1. Both the maximum likelihood strategy and the ignorance minimizing strategy 

will reliably find a solution in all cases where a solution is possible. 

Results 

Tables 5.1(a-c) show the results obtained for each performance function on trials with 

achievable goals. It can be seen from these tables that the ignorance-minimizing strat

egy exhibits 100% reliability: in all trials in which a satisfactory solution was possible, 
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0.8 0.9 0.98 0.99 0.999 
a = 2 10 10 10 10 10 
a = 4 10 10 10 10 10 
Of = 6 10 10 10 10 10 
a = 8 10 10 10 10 10 

a = 10 10 10 10 10 10 
likelihood 10 3 3 3 1 

(a) F l 

r 
0.8 0.9 0.98 0.99 0.999 

a = 5 10 10 10 10 10 
a = 10 10 10 10 10 10 
a- = 15 10 10 10 10 10 
a- = 20 10 10 10 10 10 
a = 25 10 10 10 10 10 

likelihood 10 10 9 6 2 

(b) F2 

r 
0.8 0.9 0.98 0.99 0.999 

a = 0 10 10 10 10 10 
a = 10 10 10 10 10 10 
a = 15 10 10 10 10 10 
a = 20 10 10 10 10 10 
o: = 25 10 10 10 10 10 

likelihood 10 9 8 2 1 

(c) F 3 

Table 5.1: Reliability of solution, (a-c) show the results obtained Jar 
each performance function. Each table breaks the results down by per
formance target and optimization strategy, breaking down the ignorance-
minimizing strategy results further by the value of the model parameter, 
a, used. Each cell shows the number of trials, out of a total of 10, in 
which a satisfactory solution was found. Only cases where the fitness 
target was attainable are shown. 
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one was obtained. By contrast, the maximum likelihood strategy can be seen to fail 

to find a solution reliably on all functions, for all but the easiest goals (i.e. the lowest 

target performance values). 

Discussion 

The failure of the maximum likelihood strategy was surprising. In many cases (the 

majority of cases for the more difficult goals), no solution was found within the 1000 

evaluation limit. Further investigation showed that the optimization in each case had 

converged at a point within the optinuim-containing peak, but below-target perfor

mance. That is. the convergence encountered was not even at a local optimum, but 

at a sub-optimal point on the peak containing the true optimum. In fact, succes

sively selected points assymptotically approached (without ever reaching) the target 

performance. Figure 5.4 shows a typical case for Fl. 

Further investigation indicated that as successive selections became closer together 

in the design space, and the performance attained neared the target, the limit of 

representation for floating-point numbers on the computer architecture used for the 

experiments was reached, leading to the selection of the same point for evaluation 

repeatedly. This is a fault of implementation, rather than of the optimization strategy 

itself, and the results therefore do not indicate whether the target performance would 

eventually be attained if the floating-point representation limitations did not apply. 

However, it is clear that even if the target were eventually reached, it would only be 

after some considerable time: the floating-point effect did not start to take hold in 

the case shown in figure 5.4 until approximately 150 evaluations had been performed, 

whereas the maximum number of evaluations taken to reach the goal for the equivalent 

trials using the ignorance minimizing strategy was 13, the mean 7.34. 
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(a) The positions of the points evaluated on 
the performance surface. Note the concentra
tion just to the left of the peak, and the lack of 
ajiy points evaluated on the right-hand slope, 
except for at the extreme, i = 1. 

(b) The positions in the design space of the 
points selected for evaluation (vertical axis) 
over time. 

(c) The performances of the points selected 
for evaluation over time. 

Figure 5.4^ An illustrative example of the failure of the maximum like
lihood strategy to achieve the optimization goal. Results are shown for 
optimization of Fl, using the maximum likelihood strategy and given a 
performance target f* = 0.99. Results for the first 200 evaluations only 
are shown. 
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Each case in which the maximum likelihood strategy failed to achieve the goal was 

found to share the characteristics of the case shown in figure 5.4. Specifically, con

vergence occurred within an interval defined by two neighbouring evaluated points 

which spanned the optimum, where one of the points had low performance while the 

performance of the other was approaching the target. 

Considering the behaviour of the maximum likelihood strategy as defined by equa

tion 4.4, it is clear that as the performance of the better of the two points defining an 

interval approaches the target performance, then the point selected for evaluation ap

proaches the existing evaluated point. Whether this will lead to asymptotic behaviour 

such as that observed will depend on the position and performance of the other point 

defining the interval, and the local gradient of the surface near the better point. How

ever, given the rate of failure experienced even in the experiments for the lower fitness 

targets, it would seem reasonable to expect such convergence to be not uncommon. 

5.4.2 Efficiency of Solution 

Hypothesis 

The hypothesis relating to the efficiencies of the different strategies stated: 

1. The composite strategy will outperform both of the individual strategies of which 

it is composed, given the same optimization problem. 

The failure of the maximum likelihood strategy to find solutions reliably precludes 

it from being considered "efficient" in any sense, so comparison will only be made 

between the ignorance minimizing strategy efficiency and the potential efficiency of the 

composite strategy. 
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In addition to the above concerns, it was desired to examine the sensitivity of the 

efficiency of the ignorance minimizing strategy to the value of the model parameter, a. 

Results 

Tables 5.2 and 5.3 show the mean and ma:timum time-to-solution, respectively, for the 

optimization trials using the ignorance minimizing strategy. Tables 5.4 and 5.5 show 

the same information for the potential time-to-solution for the composite strategy (see 

section 5.1.1 for the meaning of "potential" time-to-solution). 

For each function, figures 5.5-5.7 plot the mean time-to-solution for the maximum ig

norance strategy agains the mean potential time-to-solution for the composite strategy'. 

It is clear from these tables and figures that there is an increase in time-to-solution 

with increasing performance target. This is entirely what would be expected; more 

interesting is the apparent consistency with which the potential efficiency of the com

posite strategy improves upon the efficiency of the ignorance minimizing strategy alone, 

for functions F 2 and F 3 . There is no such consistency visible in the results for F l , 

however. 

There is no apparent effect of the value used for a on the efficiency of either of the 

strategies. 

Discussion 

The reasoning for the hypothesis above was that the composite strategy is the "ratio

nal" strategy for optimization, since it integrates exploration and exploitation, while 

the individual strategies each exhibit only one of these types of behaviour. Any point 

selected for evaluation by the ignorance minimizing strategy which turns out to achieve 
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0.8 0.9 0.98 0.99 0.999 
a = 2 4.1 5.3 6.8 5.9 8.2 
a = 4 2.3 4.4 4.4 7.6 13-4 
Q; = 6 3.7 3.5 6.2 7.8 13.5 
a = S 3 3.9 7.2 6.5 16.9 

a = 10 2.5 3.9 6.3 8.9 14.2 

(a) F l 

r 
0.8 0.9 0.98 0.99 0.999 

a = 5 5.8 7 15.3 22 21.5 
a = 10 6.1 9.6 21.5 19.8 41 
a = 15 5.2 8.6 16.7 33.6 34.9 
a = 20 5.6 9.3 18.4 25 36.7 
a = 25 5.9 9.9 16.7 19.4 40.6 

(b) F2 

0.8 0.9 0.98 0.99 0.999 
a = 5 17.7 20.5 26.2 26 29 

Q = 10 13.1 12.6 20.3 25.9 33.8 
a = 15 10.8 15.7 22.5 27.1 41.7 
a = 20 11.4 14.4 25.5 28.7 45.5 
a = 25 12.7 20.7 24.6 29.1 51.1 

(c) F 3 

Table 5,2: Mean time-to-solution for the ignorance minimizing strategy. 
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0.8 0.9 0.98 0.99 0.999 
a = 2 6 7 9 9 15 
a = 4 4 7 7 10 21 
a = 6 5 6 9 11 21 
a- = 8 6 6 11 12 24 

a = 10 6 6 12 13 28 

(a) F l 

r 
0.8 0.9 0.98 0.99 0.999 

Q ' = 5 18 19 22 33 29 
a = 10 12 23 28 36 52 
a = 15 11 23 31 40 53 
a = 20 16 21 30 33 67 
a = 25 11 22 32 33 52 

(b) F2 

0.8 0.9 0.98 0.99 0.999 
a = 5 25 27 35 34 35 

a = 10 20 23 25 29 43 
a = 15 16 24 31 34 50 
a = 20 24 25 31 37 63 
a = 25 26 31 35 41 66 

(c) F3 

Table 5.3: Maximum lime-to-solution for the ignorance minimizing 
strategy. 

118 



r 
0.8 0.9 0.98 0.99 0.999 

a = 2 2.6 4.3 5.2 5.1 7.9 
a = 4 1.9 4.8 4 6.1 8.1 
a = 6 1.2 2.8 5.5 6.4 9.4 
a = 8 2.7 4.3 4.5 5.9 10.1 

Q = 10 1.8 3.8 4.1 6.8 7.7 

(a) Fl 

r 
0.8 0.9 0.98 0.99 0.999 

a = 5 2.5 4.6 7.1 10.7 18.7 
o = 10 5.7 3.9 10.5 13 27.7 
a = 15 3.7 6 10 18 27.3 
a = 20 2.6 6.5 18.6 15.5 21.9 
a = 25 3.6 7.3 10.4 12.6 33.8 

(b) F2 

0.8 0.9 0.98 0.99 0.999 
a = 5 13.7 16.9 22 14.9 24.8 

a = 10 10.5 9.6 16.4 22.3 21.1 
a = 15 9-6 10.5 13.9 21.2 31.5 
a = 20 6.9 12 16.7 20.8 32.6 
a = 25 7.3 13.1 14.3 16.6 38.7 

(c) F 3 

Table 5.4: Mean potential time-to-solution for the composite strategy. 
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r 
0.8 0.9 0.98 0.99 0.999 

a = 2 6 7 9 7 16 
a: = 4 3 7 6 9 14 
a: = 6 2 5 7 9 15 
a = S 5 6 8 9 17 

a = 10 4 6 7 11 13 

(a) Fl 

r 
0.8 0.9 0.98 0.99 0.999 

o: = 5 4 8 20 22 27 
o: = 10 13 13 27 28 47 
0 . ' = 15 7 15 32 34 41 
a = 20 6 12 31 31 66 
ft = 25 10 11 20 31 51 

(b) F2 

r 
0.8 0.9 0.98 0.99 0.999 

a-= 5 25 25 32 32 31 
ft = 10 13 12 24 29 35 
a = 15 13 12 27 28 42 
ft = 20 14 19 29 31 48 
ft = 25 15 19 26 28 54 

(c) FZ 

Table 5.5: Maximum potential time-to-solution for the composite strat-
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Figure 5.5: A comparison of the efficiency of optimizations of Fl us
ing the ignorance minimizing strategy and the composite strategy. The 
performance target f* is plotted on the horizontal axis, time-to-solution 
on the vertical. Each point plotted represents the mean time-to-solution 
for the 10 optimizations conducted for the given values of f* and a. The 
composite strategy resrdts show the mean potential time-to-solution, 05 
described in section 5.1-1. 
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Figure 5.6: A comparison of the efficiency of optimizations of F2 us
ing the ignorance minimizing strategy and the composite strategy. The 
performance target f* is plotted on the horizontal axis, time-to-solution 
on the vertical. Each point plotted represents the mean time-to-solution 
for the 10 optimizations conducted for the given vahies of f* and a. The 
composite strategy results show the mean potential time-tosolution, as 
described in section 5.1.1. 
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Figure 5.7: A comparison oj the efficiency 0} optimizations of F3 us
ing the ignorance minimizing strategy and the composite strategy. The 
performance target f is plotted on the horizontal axis, time-to-solution 
on the vertical. Each point plotted represents the mean time-to-solution 
for the JO optimizations conducted for the given values of /* and a. The 
composite strategy results show the mean potential tirne-to-soliition. as 
desciibed in section 5. J. J. 
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the goal does so coincidentallVj not by design. We may thus generally expect the model 

of the goal surface to be refined to sufficient degree for the goal to be achieved by a 

point selected by the maximum likelihood strategy before such a point is serendipi-

tously located. 

This expectation is borne out by the results obtained for F2 and F 3 , but not by those 

for F l . However, it is clear that sufficient evaluations need to be performed to build a 

reasonably accurate model before the reasoning behind this hypothesis can apply. The 

numbers of evaluations being performed in optimizations of F l are considerably lower 

than in the cases of the other two functions, so it may well be that a solution is being 

found serendipitously by the ignorance minimizing strategy before the model is refined 

enough for one to be found "rationally". 

The lack of dependence on a is surprising, but gratifying: since accurate specification 

of the correct value of a is unlikely to be possible in practical cases, high sensitivity to 

its value would present a problem. 

5.4.3 Allocation of Trials and Convergence 

Hypotheses 

A number of hypotheses relating to the allocation of trials and convergent behaviour 

of the maximum likelihood and ignorance minimizing strategies were proposed above: 

1. Both the maximum likelihood and ignorance minimizing strategies will allocate 

trials to all regions of the surface, with a greater density in those regions which 

most nearly attain the goal. 

2. More difficult goals (i.e. higher performance targets) will lead to a low^ering of the 
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density of trials allocated within higher-performance regions, and a corresponding 

rise in the density of trials in lower-performing regions. 

3. The ignorance minimizing strategy will not produce convergence. The maximum 

likelihood strategy will converge, but only on an evaluated point which achieves 

the optimization goal, once such a point is found. 

4. All local optima of the multimodal surfaces will be investigated when the goal 

set for the optimization is not actually achievable. 

As discussed above, these hypotheses were investigated using the results for the trials 

in which the goal of the optimization was not achievable anywhere in the design space. 

Results 

Figures 5.8-5.13 show the cumulative distributions of the locations in the design space 

of points evaluated for each set of 10 trials for given a and / ' values . (After the 

standard manner of cumulative distributions, the higher the gradient of the plot, the 

higher the density of points evaluated in that region. This format turns out to be much 

clearer than the corresponding density functions, which need to be excessively filtered 

in order to make the results for different / * values distinguishable from each other.) 

For ease of reference, each figure also shows the performance function in question. 

Several points are readily apparent from these figures: 

1. Very regular and predictable distributions of trials are evident, with the excep

tion of the results for the maximum likelihood strategy when applied to F 2 , 

the distributions for which appear somewhat erratic for tlie lower values of / * 

(figure 5.12). 
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r . i o o i 

ft = 2 a = 4 

a = 6 a = 8 

a = 10 F l 

Figure 5.8: The cumulative distribution of the positions of evaluated 
points within the design space for optimizations of the function Fl us
ing the ignorance minimizing strategy. Location within the design space 
is plotted on the horizontal axis, cumulative relative frequency of evalu
ations on the vertical. Each line represents results for the 10 optimiza
tions carried out for a given combination of fitness target, f* and model 
parameter, a. 
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Figure 5.9: The cumulative distribution of the positions of evaluated 
points within the design space for optimizations of the function F2 us
ing the ignorance minimizing strategy. Location within the design space 
is plotted on the horizontal axis, cumulative relative frequency of evalu
ations on the vertical. Each line represents results for the JO optimiza
tions carried out for a given combination of fitness target, f* and model 
parameter, a. 
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Figure 5.10: The cumulative distribution of the positions of evaluated 
points within the design space for optimizations of the function F2 using 
the ignorance minimizing strategy. Location within the design space is 
plotted on the horizontal axis, cumulative relative fi'equency of evalua
tions on the vertical. Each line represents results for the 10 optimiza
tions caiTied out for a given combination of fitness target, f* and model 
parameter, a. 
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Figure 5.11: The cumtdative distribution of the positions of evaluated 
points within the design space for optimizations of the function Fl us-
ing the maximum likelihood strategy. Location within the design space 
is plotted on the horizontal axis, cumulative relative frequency of evalu
ations on the vertical. Each line represents restdts for the 10 optimiza
tions canned out for a given fitness target, f*. 

r - i . o i 

F 2 

Figure 5.12: The cumulative distribution of the positions of evaluated 
points within the design space for optimizations of the function F2 us
ing the maximum likelihood strategy. Location within the design space 
is plotted on the horizontal axis, cumulative relative frequency of evalu
ations on the vertical. Each line represents results for the 10 optimiza
tions carried out for a given fitness target, /*. 
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Figure 5.13: The cumulative distribution of the positions of evaluated 
points within the design space for optimizations of the function F3 us
ing the maximum likelihood strategy. Location within the design space 
is plotted on the horizontal axis, cumulative relative frequency of evalu
ations on the vertical. Each line represents results for the JO optimiza
tions carried out for a given fitness target, /*. 

2. There is a marked and consistent effect from the performance target set for the 

optimization: the lower the target, the higher the density of points evaluated 

around the global optimum (and consequently the lower the density evaluated in 

other areas of the space). 

3. There does not appear to be a significant effect from the value of a used in the 

ignorance minimizing strategy trials, except that the distribution curves become 

less smooth for smaller a- values, particularly where / * is high. 

4. In all cases, the maximum likelihood strategy places a higher density of points 

close to the global optimum (close to each local optimum, in the case of F 2 ) than 

any of the corresponding cases using the ignorance minimizing strategy. 

Figures 5.8-5.13 demonstrate the average behaviour of each strategy. However, this 
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does not allow convincing conclusions to be drawn about each individual optimization 

process. To this end, figures 5.14-5.19 show some results from single optimization 

trials. In these figures, the position of the points selected for evaluation is plotted on 

the vertical axis, time on the horizontal. (The cases shown were not specially selected— 

they are simply the results for the first run made under each set of conditions. In the 

case of the ignorance minimizing strategy, results for two values of a only are shown. 

The results shown are representative of the results obtained in the other runs.) 
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Figure 5.14- The positions in the design space of points evaluated for 
some individual optimizations of Fl using the ignorance minimizing 
strategy. Position in the design space is shown on the vertical axis, 
time on the horizontal. 
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Figure 5.15: The positions in the design space of points evaluated for 
some individual optimizations of F2 using the ignorance minimizing 
strategy. Position in the design space is shovm on the vertical axis, 
time on the horizontal 
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Figure 5.16: The positions in the design space of points evaluated for 
some individual optimizations of F3 using the ignorance minimizing 
strategy. Position in the design space is shown on the vertical axis, 
time on the horizontal. 
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Figure 5.17: The positions in the design space of points evaluated for 
some individual optimizations of Fl using the maximum likelihood strat
egy. Position in the design space is shown on the vertical axis, time on 
the horizontal. 
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Figure 5,18: The positions in the design space oj points evaluated for 
some individual optimizations of F2 using the maximum likelihood strat
egy. Position in the design space is shown on the vertical axis, time on 
the horizontal. 

136 



J* = 1.001 

/* = 1.01 

r = 1.1 

/ * = 1.2 

' . . . » • 

• ^ws* -tjT •̂ ^p'fc'* -̂'.̂  *\~-r^'^?:'i.'^'4». 

• - f 

Figure 5.19: The positions in the design space of points evaluated for 
some individual optimizations of FZ using the maximum likelihood strat
egy. Position in the design space is shown on the vertical axis, time on 
the horizontal. 
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Discuss ion 

A l l o c a t i o n of T r i a l s The overall behaviour with respect to the distribution of evalu

ations over the surface is exactly as hypothesized (hypotheses 1 and 4). Both strategies 

can be seen to achieve coverage of the entire surface, while concentrating most on the 

region or regions containing the optimum. In the case of the multimodal surfaces, effort 

is divided among the peaks according to their performance: all peaks in F 2 receive a 

similar density of trials, whereas the density for F3 increases according to the perfor

mance of the peak in question. The exception is the irregular results for F2 under the 

maximum likelihood strategy for low performance targets, the reason for which will be 

discussed below. 

Hypothesis 2 also is supported: there is a clear effect of higher performance targets in 

tending to even out the distribution of evaluations across the surface. 

Convergence The results presented in figures 5.143 5.15, and 5.16 show the resis

tance of the ignorance minimizing strategy to convergence. Although evaluations are 

concentrated around local optima (and that to an increasing degree as the performance 

target decreases), yet there is no concentration on any such peak to the exclusion of 

other areas of the space. On the multimodal surfaces, all optima receive attention, and 

on F 3 the more promising peaks receive greater attention than the less promising ones. 

The corresponding results for the maximum likelihood strategy', in figures 5.17, 5.18, 

and 5.19 show the same resistance to convergence, although this is perhaps not so clear 

for all performance targets, and the claim may require some justification. 

Consider first the plots for / * = 1.1 and / ' = 1.2. In the early stages (the first 100 or 

so evaluations), a clear "clustering" effect is visible (except, perhaps, in F3''s results 
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for / * = 1.2), as one region of the space is investigated thoroughly before being dis

carded as attention shifs to another, more promising region. As more and more of the 

space is investigated and proves unforthcoming, effort shifts back to previously inves

tigated regions for an even more dense search. That this is not convergent behaviour 

is shown by the readiness with which the optimization switches from one region to an

other (remembering that there is no random process causing the switch, but a rational 

decision). 

Similar behaviour can be seen in the F2 results for / * = 1.01 (figure 5.18). However, 

since the target in this case is so much closer to the performance values actually at

tainable, each peak takes much longer to eliminate from the search. In the case shown, 

the area around the local optimum at x = 0.3 takes approximately 430 evaluations to 

eliminate, whereupon attention shifts to the peak at .-c = 0.1, which is investigated for 

a very similar period before the optimization moves on again to the next peak. We 

can expect this pattern to continue until around 2200 evaluations, at which point all 5 

peaks will have been investigated to approximately the same extent. Similar behaviour 

can be seen for F 3 with / * = 1.01 (figure 5.19), except that the non-global optima are 

of lower performance, and can be eliminated from consideration much more swiftly, 

with attention then returning to the area around the global optimum. Nevertheless, 

as the area around the global optimum becomes less and less likely to contain a satis

factory solution, the sub-optima must be revisited periodically, as can be seen by the 

significant investigation of the peak containing the local optimum at x = 0.3 which 

occurs at around t = 350. 

For this reason, we may conclude that the results for / * = 1.001 do not represent 

convergence. Even though the optimization process apparently fixates on a single peak, 

this peak will eventually prove unsatisfactory, and attention will shift to other areas of 
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the space which now appear more likely to contain a solution. However, to eliminate 

each peak when the performance target is so close to the values really attainable would 

appear to require more than 1000 evaluations. 

This observation explains the irregularity of the distributions of trials observed on F2 

using the maximum likelihood strategy, for the lower performance targets (figure 5.12). 

For the relatively low number of runs (10) under each set of conditions, the chance 

effects of which peaks happen to be investigated first in each trial (which will be 

determined by the random point chosen to start the optimization) become visible. 

With more runs, or by making each run longer, these irregularities may be expected 

to be reduced. 

We can therefore conclude that hypothesis 3 is supported, and that neither strategy 

exhibits convergent behaviour in the cases where the goal is not achieveable—despite 

the convergence shown by the maximum likelihood strategy in cases where the goal 

is actually achievable. It would appear that as long as there is a finite separation 

between the target performance and the performance levels actually achievable, then 

the maximum likelihood strategj' will avoid convergence: the separation ensures some 

distance between successive evaluations, which causes the model in the area of the peak 

being investigated to be significantly refined by each evaluation, so that eventually the 

probability for every point on the peak is reduced below that of some point elsewhere 

on the surface. 

5.4.4 Qualitative Differences 

In reviewing the data on individual optimization runs, such as that shown in fig

ures 5.14-5.19, an apparent difference between the means of operation of the ignorance 
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minimizing and maximum likelihood strategies was noted. 

While both strategies, on average, cover the whole space and place more evaluations 

in areas with higher fitness, the maximum likelihood strategy appears to accomplish 

this by dwelling in a particular region for some time, and then moving on to another 

region, while the ignorance minimizing strategy spreads its evaluations more diversely 

over time. 

Since this observation was based on results from only single runs, figures 5.20-5.21 

are included to show that the observation applies generally. These figures plot the 

cumulativ^e frequency of the distance in the design space between successive evaluations 

for the first 200 evaluations, over the 10 trials at the same values of a and / * represented 

by each line. 

It can be seen from these figures that the maximum likelihood strategy has a marked 

tendency to take smaller steps between consecutive evaluations than does the ignorance 

minimizing strategy', which would appear to confirm the tendency observed for the 

maximum likelihood strategy to investigate particular regions one after the other, while 

the ignorance minimizing strategy distributes attention over the space more uniformly. 

5.5 Discussion 

5.5.1 Optimization Strategies 

The failure of the maximum likelihood strategy as a successful optimization strategy in 

its own right was surprising, even though this use has not been advocated. It had been 

expected that the strategy would produce successful, but inefficient optimization if 

used alone. The behaviour of the strategy is still rational according to the assumptions 
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made about the space and the purpose for which it was developed, however, and it 

seems Ukely that if, for example, an assumption of smoothness was made in addition 

to that of continuity, then the effect would be a reduction of the convergent behaviour 

observed. 

The convergence of the maximum likelihood strategy serves to reinforce the importance 

of exploration. When the point judged most likely to achieve the goal fails to do so 

when evaluated, that is indicative of a mismatch between the current model of the goal 

surface and the actual surface. Being purely exploitative, the maximum likelihood 

strategy has no role in the reduction of such a mismatch: that is exploration, and is 

the province of the ignorance minimizing strategy. 

The ignorance minimizing strategy proved successful as an optimization strategy in its 

own right. However, it achieves the optimization goal only by chance when the point 

expected to yield most information about the goal surface happens also to exceed the 

performance target. In the experiments described in this chapter, there was a practical 

upper limit for the probability of any point's achieving the goal of 0.5. (a consequence 

of the form of the assumptions and goal adopted). For other assumptions and other 

goals, this may not be so, and the ignorance minimizing strategy will tend to avoid 

regions with very high probability to the same extent as those with very low probability, 

when a single evaluation selected by the maximum likelihood strategy might complete 

the optimization. 

As previously suggested, therefore, a strategy such as the composite strategy which ap

plies first the ignorance minimizing strategy then the maximum likelihood strategy can 

be expected to outperform either of the strategies used alone. The evidence obtained 

from the experimentation described in this chapter supports this suggestion. However, 

a question which has not been addressed is how to decide, when optimizing using the 
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composite strategy, the right moment to switch from the ignorance minimizing strat

egy to the maximum hkeUhood strategy'. A suggestion for a possible answer to this 

question will be given in chapter 6. 

5.5.2 Effect of the Goal 

One of the main criticisms of the use of genetic algorithms advanced in chapter 1 was 

their inability to represent the goal of the optimization, which was cited as one of 

the contributory causes of convergence. This criticism is supported by the significant 

effect which the difficulty of the goal has been observed to have on the optimization 

process: the further out-of-reach the goal, the less the concentration on the peaks of 

the surface, and thus the more diverse the search. We might think of this effect as a 

"diversity pressure"—the complementary force to the selection pressure in evolutionary 

systems—which pushes search away from regions of the space found unlikely to achieve 

the goal, rather than towards regions with high expected performance. 

The operation of the goal on the behaviour of the optimization can be intuitively un

derstood in terms of human problem-solving: if the requirements of a problem are very 

close to requirements for which a known solution exists, the tendency is to look for 

similar solutions, or adjust the existing one to meet the new requirements (an evolu

tionary process, as defined in section 1.3.7). If, on the other hand, the requirements 

are considerably beyond what is achieved by existing solutions, there will be an in

creased tendency towards trying novel approaches—looking elsewhere in the space of 

possible solutions. It is this latter behaviour—the recognition that even the current 

best solution is unacceptable, and that areas of the solution space which have not been 

investigated should be tried—which is missing from the the evolutionary metaphor. It 

is missing because it requires representation of the goal of the search, not just relative 
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comparisons between candidate solutions (competition), and the propagation of the 

least poor. 

5.5.3 Exploration and Exploitation 

Much of the behaviour of the maximum likelihood strategy resembles local search, in 

that it tends to dwell in a single high-performance region of the surface for some time 

before moving to another region. That exploitativ^e behaviour is not simply equivalent 

to local search, however, can be seen by the readiness of the strategy^ to switch between 

the peaks of the multimodal surfaces, and the much more diverse search exhibited as 

the target performance is increased (see figure 5.17). 

By contrast, the exploratory strategy shows a much greater tendency to move to a new 

region of the design space with each selection of a point to evaluate (see figures 5.14-

5-16). Allocation of trials over the design space is much more uniformly diverse over 

time than for the maximum likelihood strategy. 

This difference in behaviour of the two strategies can be understood in terms of their 

different aims as regards the changes in the model resulting from the evaluation of the 

points they select. Both strategies base their operation on the current model of the 

goal surface for the optimization, but the ignorance minimizing strategy is explicitly 

designed to maximize the changes in the feature of the model with which it is concerned 

(the total uncertainty about the goal). The maximum likelihood strategy, by contrast, 

does not take account of the changes which are expected to result in the goal surface 

model due the evaluation of the points it selects. The model is therefore more likely to 

be little changed after such evaluations, leading to the selection of the next point for 

evaluation being more likely to be close to the last. 
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5.5.4 Conclusion 

The behaviours of the ignorance minimizing, maximum likelihood, and composite 

strategies have been broadly found to be in accordance with the predictions made 

in chapter 3. The exception is that the maximum likelihood strategy has been found 

to exhibit more convergent behaviour than predicted (although this does not affect its 

use as envisaged as part of the composite strategy). 

The importance of representing the goal of the optimization process has been em

phasized, with a very clear effect of the difficulty of the goal on the diversity of the 

optimization process. 
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Chapter 6 

Discussion and Conclusion 

6.1 Overview 

Chapter 1 developed a number of criticisms of the adoption of an evolutionary metaphor 

for the understanding and solution of optimization problems. The criticisms centred 

around the recognition that biological evolution and natural selection are not goal-

driven processes of design, leading to some fundamental failings in attempts to achieve 

design and problem solving behaviour by using an analogy with biological evolution. 

Particular targets for criticism were the failure of evolutionary optimizers explicitly to 

represent the goal of the optimization process, and their poor qualities for representing 

and using domain- and problem-specific knowledge. 

Arguing from the influential no free lunch theorems of VVolpert and Macready [119], 

chapter 2 suggested an alternative, non-metaphorical framework in which to consider 

optimization. The framework centres on the use of available knowledge (or reasonable 

assumptions) about the nature of the problem to construct a model of the performance 

surface being optimized. This, together with a similar model of the goal of the op-
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timization, can then be used for optimization by the apphcation of rational, distinct 

strategies for both exploratory and exploitative behaviour. 

Chapter 3 presented a mathematical formulation of the conceptual model of chapter 2, 

in the form of the use of Bayesian belief revision to construct probabilistic models of 

the goal and performance surfaces for an optimization problem, and further clarified 

the distinction between exploration and exploitation, suggesting a procedure to achieve 

each, in the form of the ignorance minimizing and maximum likelihood optimization 

strategies. The composite strategy was also proposed, being a principled combination 

of exploratory and exploitative behaviour for achieving effective optimization. 

Chapter 4 described an implementation of the ignorance minimizing and maximum 

likelihood strategies for one-dimensional real-valued design and performance spaces, 

based on a simple assumption of uniform continuity of the performance surface. Chap

ter 5 reported on experimentation carried out to investigate the optimization behaviour 

of the ignorance minimizing, maximum likelihood and composite strategies on some 

simple test functions, using the implementation of each strategy' developed for the 

purpose in chapter 4. 

In this chapter, I summarize the key findings of this thesis, identify some valid criti

cisms, and suggest potentially interesting directions for future investigation. 

6.2 Key Findings 

6.2.1 Applicability 

The class of problems addressed in this thesis has been restricted to optimization prob

lems consisting of the pursuit of one or more points in a design space which satisfy 
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some goal with respect to a performance surface defined over the space. The design 

space has been assumed to consist of real-valued continuous parameters, and the per

formance function to be static and non-noisy. The findings presented are not asserted 

to hold outside of the domain of problems of this type. Although some of the arguments 

advanced may be applicable (or adaptable) to other classes of problem, consideration 

has not been given to such application. 

6.2.2 Non-Metaphorical, Knowledge-Centred Optimization 

It has been demonstrated that an effective optimization technique can be constructed 

which addresses the deficiencies of the evolutionary metaphor discussed in chapter 1. 

Specifically, it: 

• Uses no metaphor to obscure the fundamental nature of the optimization problem, 

centring instead on the use of available knowledge (or acceptable assumptions) 

to direct the optimization process, and exhibits no hidden biases or intractable 

dynamics. All knowledge developed during the optimization is retained, and used 

to guide the process. 

• Explicitly represents and pursues the goal of the optimization, allowing the nature 

of the goal to affect the progress of the search This contrasts with the charac

terization of evolutionary processes as "competitive"—based only on the relative 

performances of the current population (see chapter 1). The effect of the nature 

and difficulty of the optimization goal on the diversity of search behaviour was 

seen to be significant in the experiments reported in chapter 5. 

• Achieves coverage of the space in a principled way, allocating search effort to 

a region based both on estimates of the performance values achievable in that 
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region and on the level of certainty associated with those estimates. 

• Investigates all local optima in a principled fashion, until the goal is achieved, 

without the need to maintain a set of concurrent "niches". 

• Does not converge at ail, let alone prematurely. 

6.2.3 Exploration and Exploitation 

Achieving a successful balance of exploitative and exploratory behaviour is widely rec

ognized as important for successful optimization. Under the approach adopted in this 

thesis, exploratory and exploitative behaviour can be separated into distinct strategies, 

and at any point during optimization the next point for evaluation may be selected 

by either one strategy or the other. This is much finer-grained and more transparent 

control than is available through adjusting the parameters of a typical GA. 

Neither strategy is inherently stochastic: if an appropriate form and level of knowledge 

is available, then at any stage during optimization unique points can typically be 

identified which represent the "most exploitative*' and "most exploratory" evaluations 

to perform. Exploitative behaviour is achieved by selecting for evaluation the point 

judged most likely to achieve the goal, exploratory behaviour by selection based on 

the expected reduction in the total uncertainty of the goal surface associated with a 

point's evaluation. 

Both are global strategies, in that the selection of a point to evaluate is made based 

on a comparison of the expected exploratory or exploitative value of all points in the 

design space: there is no operator bias, or effect of the reachability of points from 

a current population. Under the assumptions adopted and on the surfaces investi

gated in chapter 5, exploitation was observed to exhibit greater propensity towards 
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behaviour similar to local search (without being directly equivalent to local search), 

while exploration promoted a more continually diverse search. 

The early stages of optimization are the rightful province of exploration: knowledge 

needs to be developed about the nature of the goal surface for the problem before 

exploitatory behaviour can be expected to be successful. Given a rational, deterministic 

exploratory strategy such as that derived, the role for exploitation in optimization is 

much reduced; indeed, the development of the composite strategy siiggested that only 

a single exploitative evaluation might be necessary in any optimization. Exploitation 

remains essential, however: although exploration alone was shown to be a successful 

strategy on the problems investigated, it seems likely that it would not prove efficient on 

other problems. In particular, in problems where it is possible to achieve probabilities 

of a point's achieving the goal in excess of 0.5, exploration is expected to avoid regions 

with very high probabilities, requiring exploitation in order actually to achieve the 

goal. 

6.2.4 Convergence 

It was suggested in chapter 1 that the pursuit of a convergent optimizer makes sense 

only for problems known (or assumed) to be unimodal. Optimization using the com

posite strateg>^ suggested in chapter 3 was demonstrated in chapter 5 not to converge. 

While the exploitative strategy did exhibit convergence, if it is only applied for a single 

evaluation, as suggested, such convergence will not have opportunity to manifest itself. 

Convergence of an optimization is usually taken as an indication of when to terminate 

the process: when no point has been found for some time which has improved on the 

best-so-far, the conclusion is drawn that the optimum has been reached. But in order 
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for this conclusion to be supportable, the optimization process must have actually been 

looking for better points and failed to locate any, not just repeatedly evaluating the 

current optimum, or points very close to it. 

In a multimodal space, it is not a convergence of trials which is required (i.e. all or most 

evaluations close to the located optimum), but a convergence of belief. Convergence of 

belief occurs when the point believed most likely to be the optimum does not change 

significantly for some time, despite the fact that non-converged, diverse search has 

been attempting to locate a better point in other areas of the space, as well as purely 

locally. Convergence of belief and convergence of trials are identical for gradient-

based methods on unimodal surfaces—when no local improvement can be found, the 

search must have reached the optimum—which fact has led to the confusion of the two 

concepts. The concepts diverge on multimodal problems, however, when convergence 

of trials becomes positively undesirable, since it prevents any significant refinement and 

revision of beliefs about the surface, and the concomitant increase in certainty that the 

true global optimum has been located. 

These considerations lead to a possible answer to a question about the composite strat

egy which has thus far not been addressed in this thesis: When should the optimization 

switch from using the ignorance minimizing strategy to using the maximum likelihood 

strategy? The key to answering this question is the fact that an evaluation made us

ing the maximum likelihood is not expected to have any value of future use to the 

optimization (since it is not intended necessarily to cause significant changes to the 

goal surface model), unless it actually achieves the goal. Therefore there ought to be a 

reasonable level of certainty that the evaluation will successfully achieve the goal before 

selection of a point for evaluation based on the maximum likelihood strategy should 

be attempted. That is, the stimulus for switching to the maximum likelihood strategy 
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should be the observance of some degree of convergence of belief, as expressed in the 

model of the goal surface, concerning the location of a point which achieves the goal. 

How such convergence might be characterized and detected is not clear. 

6.3 Criticisms 

6-3.1 Computational Expense 

The work reported in this thesis was undertaken under the assumption that the compu

tational cost of the simulations of engineering systems comprising typical performance 

functions would remain the dominating component of the cost of any optimization 

method developed. This assumption may well not be valid, since the computational 

cost of applying the method of optimization developed to realistic problems seems likely 

to be very high: 

• Only one-dimensional design spaces have been investigated. It seems likely that 

the complexity of constructing and maintaining surface models of a similar nature 

to those used will be combinatorially explosive as the dimensionality of the design 

space increases. 

• The expense associated with the ignorance minimizing strategy is potentially 

large, with selection of each point for evaluation requiring the maximizing over 

the design space of a function involving nested integrals. This would be further 

exacerbated if the goal of the optimization were to locate the global optimum, 

rather than the simpler satisficing goal investigated. 

• Every selection of a point to evaluate, using either strateg> ,̂ effectively requires an 

optimization process over the design space in order to locate the most exploratory 
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or exploitative point for evaluation. 

No rebuttal of these criticisms is offered: they are valid, and pose serious difficul

ties. Several relevant observations may be made, however, which may go some way to 

suggesting that these problems are not insuperable: 

• The mathematical treatments given in this thesis are not sophisticated (reflect

ing the lack of formal mathematical background of the investigator). A more 

sophisticated mathematical approach might make inroads into such complexity 

issues. 

• It was found that most of the calculations necessary to apply the ignorance 

minimizing strategy to a one-dimensional space could be pre-compiled, enabling 

the ignorance minimizing point for any interval to be determined by scaling a 

value retrieved from a table (the table took 10 days of computer time to generate, 

but thereafter could be re-used for any one-dimensional problem). The overall 

complexity of the strateg>^ was then equivalent to that of maintaining a sorted 

list of the intervals in the space. 

• The complete surface models did not have to be completely regenerated after 

each evaluation, but only those parts which were affected by the evaluation. 

• Heuristics and approximate methods for implementing each strategy might prove 

an acceptable compromise with complexity. 

• In the final analysis, the trade off between the computational expense of the 

optimizer and the difficulty of the problem needs to be addressed individually for 

each problem. 
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Regardless of the expense associated with implementing such an optimizer, the con

ceptual framework in which it has been developed may be useful for considering the 

operation of other optimization algorithms. 

6.3.2 Optimization 

The usual formulation of optimization tasks—the location of the global optimum of a 

surface—has not been addressed. Ideally, such problems would be approached in the 

same way as the satisficing problems addressed in this thesis, but using a different goal 

surface model—one which expressed for every point in the design space the probability 

of that point's being the global optimum. 

However, the construction of such models would probably add significantly to the com

putational expense associated with the optimization. A possible alternative approach 

might be to pursue global optimization via a satisficing optimization in which the tar

get performance is varied to keep it above the performance of the best point found so 

far, maintaining the pressure for continual improvement. Such an approach would fail 

to represent the true goal of the optimization within the algorithm, but might be an 

acceptable compromise with complexity. Given the sensitivity of optimization diversity 

to the target performance value (see chapter 5), careful control of the target would be 

necessary. Such control might be based on a judgement, based on the current model of 

the performance surface, of the level of performance realistically likely to be achievable. 
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6.4 Future Directions 

6.4.1 Practical Application 

The work reported in this thesis has been largely of a conceptual nature, consisting 

of the identification of difficulties with evolutionary approaches to optimization, the 

outlining of an alternative approach, and some investigations into the nature of opti

mization strategies which might be adopted under that approach. The starting point, 

however, was the immensely practical field of engineering design. In order to validate 

the ideas and approach of this work, they need to be applied to practical examples of 

engineering design optimization. Considerable development work will be necessary if 

such application is to become possible, including in particular the addressing of the 

problems of computational expense outlined in section 6.3.1 above. 

Another outstanding question relating to practical application of the work is the nature 

of design knowledge which actually exists in engineering domains, and whether such 

knowledge may be readily expressed in the Bayesian model formalism developed. Some 

justification was presented in section 2.5.3 for the assumption of uniform continuity, 

from the perspective of optimization problems involving physical quantities, and sec

tion 3.4.2 expressed the belief that the Bayesian formalism is as likely as any other to 

form a good basis for the integration of different forms of design knowledge into the 

procedure for constructing models of the performance and goal surfaces. 

6.4.2 Constrained Optimization 

Chapter 1 outlined current evolutionary approaches to problems of constrained op

timization, and suggested that the failure of the evolutionary approach explicitly to 
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represent the goal of the optimization was a hindrance to the effective solution of such 

problems, leading to a tendency to converge in constraint-violation-minimizing, but 

nonetheless infeasible regions. Since the approach taken in this thesis does explicitly 

represent the goal of the optimization, it ought to be capable of being applied to address 

this failing of the evolutionary approach. 

A constrained optimization problem might be addressed by constructing separate per

formance and goal surface models for each constraint, then combining all the separate 

goal surface models into a single model for the overall goal. The overall goal surface 

model would express the probability for each point in the space of its achieving all the 

individual goals. Optimization conducted based on the overall goal surface model can 

then be expected to exhibit the "diversity pressure" noted in section 5.5.2—pressure 

away from a region found unlikely to achieve the overall goal, even though it be the best 

performing region found so far. towards less well investigated regions of the surface. 

6.5 Conclusion 

To question prevailing orthodoxy in any domain is a valuable exercise. The work re

ported in this thesis takes a contrary view to the current popularity of the evolutionary 

metaphor for the understanding and conduct of optimization processes in engineering 

design, and concludes that the metaphor is not only unnecessary, but positively ob

structive. 

By approaching optimization from a viewpoint which considers the knowledge (or as

sumptions) applied to the problem as central, an optimization method may be achiev

able which addresses many of the deficiencies of evolutionary optimizers. 

Of particular interest in this work are the characterizations of exploitative and ex-
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ploratory search behaviour in terms of their use of. and effect on, the current state of 

belief about the nature of the optimzation problem, and the suggestion that any form 

of convergent behaviour is undesirable in an optimization method intended for use on 

potentially multimodal surfaces. 

The experimentation carried out has been of a preliminary, investigatory nature, and 

much further work needs to be done—especially in determining whether the approach is 

applicable in practice to design optimization problems of realistic size and complexity. 
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