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Abstract Diverse layers of defence play an important role in the design of
defence-in-depth architectures. The use of Intrusion Detection Systems (IDSs)
are ubiquitous in this design. But the selection of the ”right” IDSs in various
configurations is an important decision that the security architects need to
make. Additionally, the ability of these IDSs to adapt to the evolving threat-
landscape also needs to be investigated. To help with these decisions, we need
rigorous quantitative analysis. In this paper, we present a diversity analysis of
open-source IDSs, Snort and Suricata, to help security architects tune/deploy
these IDSs. We analyse two types of diversities in these IDSs; configurational
diversity and functional diversity. In the configurational diversity analysis, we
investigate the diversity in the sets of rules and the Blacklisted IP Addresses
(BIPAs) these IDSs use in their configurations. The functional diversity anal-
ysis investigates the differences in alerting behaviours of these IDSs when they
analyse real network traffic, and how these differences evolve. The configura-
tional diversity experiment utilises snapshots of the rules and BIPAs collected
over a period of 5 months, from May to October 2017. The snapshots have
been collected for three different off-the-shelf default configurations of the
Snort IDS and the Emerging Threats (ET) configuration of the Suricata IDS.
The functional diversity investigates the alerting behaviour of these two IDSs
for a sample of the real network traffic collected in the same time window.
Analysing the differences in these systems allows us to get insights into where
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the diversity in the behaviour of these systems comes from, how does it evolve
and whether this has any effect on the alerting behaviour of these IDSs. This
analysis gives insight to security architects on how they can combine and layer
these systems in a defence-in-depth deployment.

Keywords Security - Diversity of Security Tools - Evolution of Diversity -
Intrusion Detection Systems

1 Introduction

An important paradigm in security design is defence-in-depth: “layering” de-
fences to reduce the probability of successful attacks. Guidance documents
now advocate defence-in-depth as an obvious need, but their qualitative guid-
ance ignores the decision problems|[1]. Crucially, these problems concern the
effectiveness of diversity: defences should be diverse in their weaknesses. Any
attack that happens to defeat one defence should with a high probability be
stopped or detected by another one. Ultimately, diversity and defence in depth
are two facets of the same defensive design approach. The important questions
are not about defence in depth being “a good idea”, but about whether a set of
specific defences would improve security more than another set; and about—if
possible—quantifying the security gains.

Network Intrusion Detection Systems (NIDSs) are some of the most widely
used security defence tools. Some of these NIDSs are available open-source,
and the most widely used open-source NIDSs are Snort [2], Suricata [3] and
Zeek [4] (Previously known as Bro). While Snort and Suricata are signature-
based and rely on rules to identify malicious activity, Zeek uses customised
scripts to detect anomalies/violations-of-policies in the traffic. An open-source
Host-based IDS (HIDS), Wazhu [5], is both signature and anomaly based. In
this paper, we focus on the rule-based NIDSs, namely Snort and Suricata,
since they are the most widely used NIDSs and follow similar architecture,
making the diversity analysis more suitable. The rules identify malicious ac-
tivity based on content, protocols, ports etc., as well as on the origin of the
activity /traffic—in this latter case, the suspicious IP addresses are “black-
listed” and traffic originating from these IPs are alerted. Depending on the
configuration of the IDS, the traffic can be alerted but allowed or alerted and
dropped—the latter happens when the IDS is running in Intrusion Prevention
System (IPS) mode.

While from the software engineering point of view there are many differ-
ences between Snort and Suricata that could potentially affect their alerting
behaviours, it is the differences and variation in the signature rules and Black-
listed TP Addresses (BIPAs) that would be expected to be mainly responsible
for the diversity in their detection capabilities. While other performance met-
rics may also be used to compare these IDSs, such as packet-processing speed,
drop-rates etc, their contribution towards diversity would be relatively small
compared to the contribution from rules and BIPAs. Rules and BIPAs are
added, modified or deleted regularly. In a previous work [6], we analysed the
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evolution of the rulesets and BIPAs of Snort and Suricata IDSs over 5-months
from May to October 2017. Analysing the differences, and how these evolve,
allows us to get insights into where the diversity in the behaviour of these sys-
tems comes from. The new work presented here is an extension of that paper
with new results about the evolution of diversity in the alerting behaviour.
While we reuse the results of our previous work for the configurational di-
versity analysis, the functional diversity is something completely novel in this
paper. Besides, additional sections and text have been added to explain the
experiment in more detail.

In this paper, we present an empirical study to investigate the configu-
rational and functional diversities in the Snort and Suricata IDSs. The con-
figurational diversity deals with identifying the differences, if there are any,
between the Snort and Suricata rules and BIPAs. Note that we perform this
comparison by considering three Snort rulesets, namely ”community”, ”reg-
istered” and ”subscribed”; we also use "ET ruleset” for Suricata. There are
no seperate rulesets for BIPAs per NIDS: the diversity analysis is performed
on two sets of BIPAs associated respectively with Snort and Suricata. The
functional diversity deals with the alerting behaviour of these IDSs against
real-world traffic. Specifically, we investigate whether these two IDSs are dif-
ferent in their alerting behaviour when subjected to the same network traffic.
Essentially, these two types of analysis are complementary. If rulesets and
BIPAs are different (e.g. having different regular expressions as signatures,
analyse different types of payloads in the traffic etc.), then that should be
reflected in the alerting behaviour of these IDSs as well. The functional diver-
sity analysis is thus a testing of the configurational diversity using real-world
network data. This analysis is not only static but dynamic in time: we do not
only compare sets of data of a particular time-window, e.g., 24 hours, but of
a moving time window over several months. The dynamic analysis allows us
to see the way rules are modified, added or discarded, as well as the changes
in the set of BIPAs. Similarly, analysing the network traffic, of a particular
time window, by the rules/BIPAs of the corresponding time window as well
as by those collected in the past and future time windows, we gain insights
on the evolution of the alerting behaviour of these IDSs. The configurational
diversity analysis makes use of the rules and BIPAs data over a 5-month pe-
riod, and collected between May and October 2017. The functional diversity
analysis presents alerts data of these two IDSs by sniffing out a representative
sample network traffic from City, University of London DMZ network. These
analyses allow us to get answers to questions such as, for the same traffic,
does a later configuration of Snort/Suricata generate more alerts compared to
an earlier Snort/Suricata configuration? Do we see deterministic behaviour in
the alerting behaviour (i.e., does the same rule on the same traffic always raise
an alert?) How long does it take for traffic that was not alerted by an earlier
configuration of Snort/Suricata to be alerted by a later configuration? Do we
observe any alerts that have been alerted by both Snort/Suricata? etc. In this
paper, we provide answers to some of these questions, which will help security
architects and other researchers to gain more insight on how these products
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evolve, what diversity exists between them, and what effect does this evolution
of IDSs have on alerting behaviour when analysing real network traffic. To the
best of our knowledge, a similar study has not been reported elsewhere.

The rest of the paper is organised as follows: Section 2 gives a background of
the NIDSs; this is followed by a description of our data collection Infrastructure
in section 3. In sections 4 we discuss the configurational diversity analysis
between Snort and Suricata IDSs. Section 5 discusses the functional diversity
analysis. Section 6 presents a discussion and limitations of the results. Section
7 presents our proposed IDSs deployment strategies, followed by the related
work in section 8. Section 9 concludes the paper.

2 Signature based IDS Background

An IDS is a system that can potentially differentiate between malicious and
benign network traffic. It can be deployed on an individual host as HIDS
or at a choke point in a network monitoring the network traffic as NIDS. A
signature-based IDS uses a database of traffic signatures, such as IP address,
port numbers, protocol and payload patterns, and generates alerts if it encoun-
ters the same signatures. On the other hand, an anomaly-based IDS works by
looking for anomalies in the network traffic using predictive models that are
trained using normal and malicious traffic [7]. An IDS can be deployed as a
passive sensor—where it can analyse the traffic in a promiscuous mode, and
as an active sensor in the In-Line mode—where it stops/allows traffic and is
called an Intrusion Prevention System (IPS). An IDS software system consists
of several sub-systems as shown in Figure 1 for Snort IDS (other signature-
based IDSs may have other sub-systems/plugins, but essentially follow the
same structure). The sensor part of the IDS consists of several libraries and
software systems. The network traffic is captured using Packet-Capture (Pcap)
libraries, such as LibPcap for Linux and WinPcap for Windows. The packet
decoder converts the traffic into the relevant data structures and strips out the
TCP, UDP and ICMP protocols. The headers of different packets are checked
for any inconsistencies. The correct packets are further processed by the pre-
processor block so that they are in the format to be used by the detection en-
gine. Pre-processors are also used to detect any malicious ports. The detection
engine is the main software sub-systems detecting malicious traffic using rules.
The rules for both Snort and Suricata follow the same structure and have vari-
ous fields—actions, protocols, source/destination IP, source/destination ports,
message to be stored/displayed, regular expressions for payload etc. Rules
are written targeting traffic at different Open System Interconnection (OST)
layers—mnetwork (IP), Transport (ports), and the application layer payloads.
The Snort IDS comes with three different default rule configurations available
from the Snort web pages (Community rules, Registered rules, and Subscribed
rules). The difference between these rules is explained on the Snort website
[8]. In summary, the website states the following for these different rules: the
Subscribed (paid) rules are the ones that are available to users in real-time
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as they are released; the Registered rules are available to registered users 30
days after the Subscribed users; the Community rules are a small subset of
the subscribed/registered rulesets and are freely available to all users. The
Suricata IDS uses the Emerging Threats(ET) ruleset [9]. There are rules in-
tended for the BIPAs and while the Suricata IDS have these BIPAs embedded
in the rule file, Snort has rules pointing to a directory having files with BIPAs
[10]. These rules and BIPAs can be automatically updated using tools such as
Pulledpork [11], and Suricata update [12]. Alerts generated by the sensor are
sent for storage or to an analyzer. The analyzer can also access the storage
for further analysis of the alerts so that actions are taken accordingly. Both
Snort and Suricata offer various ways of customized logs that can be saved
or sent to various logs-plugins [13][14]. The information in the logs/outputs
can be from TCP packets or only the malicious alerts, depending on the mode
of an IDS. These logs have dozens of fields showing information about the
IP address, ports, protocols, time stamps, session details, rules information,
payload signatures, CVE information etc.

3 DESCRIPTION OF THE DATA COLLECTION
INFRASTRUCTURE

3.1 The Architecture

A representative block diagram of our data collection and the experimental
setup is depicted in Figure 2. Except for the DMZ network and the firewalls,
the rest of the network is virtual. We have used multiple virtual machines
(VMs) to collect and process the data. The Packet Capture (pcap) data of
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the City, University of London have been collected in the server at the DMZ
network, whereas the Snort and Suricata rules and BIPAs have been collected
in our localised virtual environment. The virtual environment is based on
VMware VSphere data center using the HPE ProLiant BL460c Gen9 blade
servers. This data collection setup has 10 data hosts each having 150 TB
storage capacity, 200 GB RAM of 2400MHZ effective speed, 32x2.3GHz Intel
Xeon E5-2650V4 CPUs, and network speed of 10Gb. There are 2 hosts for
Suricata, 7 are for Snort, and 1 host serves as our centralized data processing
machine based on Windows operating system. Suricata, being capable of multi-
threading, could analyse multiple files in parallel with the help of only two
hosts. On the other hand, we ran 7 Snort instances on 7 separate hosts to
catch up with the speed of processing the same number of files, as Snort did
not support multithreading at the time. The live traffic was saved in pcap
format in the DMZ network. Snort and Suricata then analysed the saved pcap
data. At the start of the experiment, we installed the latest versions of these
IDSs on the Ubuntu operating system: Snort 2.9.9.0 and Suricata 3.2.1. Note
that these were the versions of these IDSs during the time of the experiment,
and since then, there have been updates to both Snort and Suricata with Snort
3.0 now being able to support multi-threading. However, at the time of this
experiment, Snort 3.0 was still in its beta state, and we wanted to use a more
stable version of 2.9.9.0.

3.2 The Experimental Data

There are two types of data that we use for this experiment—the configura-
tional diversity utilises the rules and BIPAs—the functional diversity uses the
pcap data along with rules and BIPAs. Using automated bash scripts, we saved
snapshots of both rules and BIPAs for 5 months: from 20th May 2017 to 31st
October 2017. We used the pulledpork tool to retrieve the rules from the cor-
responding web pages of Snort and Suricata [11]. The strategy was to save the
two data sets of rules and BIPAs, for both Snort and Suricata, at a sufficiently
high frequency to enable us to analyse the evolution of these tools. The snap-
shots were only taken when there was an update since the last saved snapshot.
Therefore, for Snort, we have a total of 15,812 blacklisted files (28 less that if
there had been an update every 15 minutes of the 165 days of the experiment).
Contrary to Snort, where rules using the BIPAs have to use a path to a file
having these IP addresses, Suricata uses BIPAs within its rule file. Similar
to Snort, we used pulledpork and took snapshots of these rules files every 15
minutes. However, the rate of update of these Suricata rule/blacklisted files is
rather on the daily basis. To do the BIPAs comparisons, we extracted these
from the rule files for Suricata IDS. For the completeness of the experiment,
we saved snapshots of all three rule types for Snort for the entire duration of
the experiment. We used only the freely available ET ruleset for Suricata.
With the help of the University’s IT team, we saved copies of the network
traffic in the pcap format for retrospective analysis of attacks and incidents.
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We saved the pcap data for the entire duration of the experiment. However,
mainly due to logistical reasons of handling a large number of alerts data, we
restricted the functional diversity analysis based on a sample of that data. To
put things in perspective, for a week pcap data, we needed to use 7 sets of
rules and BIPAs. This resulted in 49 data sets of alerts logs in the order of
tens of GBs. Similarly, there needed to be 49 instances of Snort/Suricata to
perform these experiments (7 pcap sets X 7 rules/BIPAs). The post-processing
of the alerts and the management of a large number of sets of data was another
reason that we restricted the functional diversity analysis to two weeks of pcap
data. Essentially, we analysed the pcap traffic collected for 14 days (1st, 3rd,
8th, 9th, 10th, 15th, 17th, 23rd, 24th, 29th, 31st of August; 6th, 9th and 12th
of September 2017) using the rules and BIPAs of the corresponding dates.
The selection of these dates was not random. It was based on our observation
that, for these dates, there had been updates in both the Snort subscribed and
Suricata ET rules (hence enabling a fair comparison of these two IDSs). We
believe that this is a reasonably large representative sample of the pcap data
that covers around 1/3 of the time duration of our experiment. Besides, the
selection of dates, for which there had been updates, is to make sure that we
use the most up-to-date rules and BIPAs for the pcap data of those dates. This
was also because, though we were analysing the traffic retrospectively, we made
sure that it was as close to the real scenario as possible. The 14 days of pcap
data were analysed in two separate experiments; each experiment analysed 7
days of pcap data with 7 days of rules/blacklisted IPs. For each experiment,
we sent the pcap data, of each day, to a Snort and Suricata configuration
as they were on each of these dates. So, we have 7 (days of pcap data) x
7 (configurations of IDSs) x 2 (Snort and Suricata) = 98 result sets for each
experiment. In total, we have 98x2 = 196 results for both experiments. A point
worth noting is that the pcap data of 10th and 15th of August was not saved for
the entire 24 hours duration, that is why, in the results presented in section III,
we observe a smaller number of alerts for these dates. Also, for the functional
diversity experiment, we used the subscribed rules for Snort. This is after
we observed in the configurational diversity experiment that the subscribed
ruleset is a superset of the other two Snort rulesets (and get most frequently
updated). We used, however, the Suricata ET ruleset in the functional diversity
experiment as well.

4 CONFIGURATIONAL DIVERSITY ANALYSIS

In this section, we present the empirical study we carried out, analysing the
configurational diversity of the Snort and Suricata IDSs. The study has two
parts: first we show results of our finding about the differences and similarities
in the BIPAs sets; we later present diversity analysis of the rulesets.
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Fig. 3: Count of Blacklisted IPs in Snort and Suricata in our collection period.

4.1 DIVERSITY IN THE BIPAs OF SNORT AND SURICATA
4.1.1 Analysis of Individual IDSs

This section presents the analysis of the BIPAs for individual IDSs. The data
we use for this analysis was collected, from May 20 to October 31, 2017, at
a sampling rate of every 15 minutes. We observed, however, that the rate of
change of the blacklisted IP files was, in some cases, less frequent than every
15 minutes for Snort, and was even further less for Suricata IDS (which tended
to be every 24 hours). Figure 3 depicts the time-series data of the BIPAs for
Snort and Suricata, in the left and right plots respectively. The y-axis shows
the total count of the blacklisted IPs and the x-axis shows the data collection
points. Comparing the two plots in Figure 3, we can clearly see the difference
in the dynamics of the counts of the two sets. The left plot of Snort shows more
fluctuations than those in the right plot of Suricata. It is worth noting, that
around 21 June 2017, a large number of IP addresses were removed from the
BIPAs set, for both Snort and Suricata. However, afterwards, the trends for
the two sets remained very different, throughout the rest of the experiment.
While the Snort BIPAs count still showed considerable fluctuations, the count
of the Suricata BIPAs remained relatively smooth. Besides, we observe that
there were two types of BIPAs in both the sets—those remained blacklisted
for the entire duration of the experiment (or change their states only once,
e.g., they are removed from the black-lists) are termed as “continuous”, and
those that changed state twice or more (e.g., blacklisted, removed, blacklisted
etc.) are called “discrete”. The general statistics of these BIPAs are given
in Table 1. Here, the second column shows counts of the total number of files
containing BIPAs for the whole experiment period; the third column shows the
total number of distinct IP addresses; the fourth and fifth columns show the
counts of the “continuous” and “discrete” IP addresses respectively. We have
also considered the amount of time IP addresses remained black-listed during
the experiment, since this may be an important feature in the quantification of
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Table 1: General Statistics of BIPAs, BIP:=Blacklist IP, IPA:=IP Addresses

Source #Files #IPA #IP(“continuous”) #IP(“discrete”)
BIP

Snort 15,812 46,701 5,383 41,318

Suricata 129 135,791 28,883 106,908
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Fig. 5: Diversity in BIPAs as collected from Snort and Suricata sources.

diversity between the Snort and Suricata IDSs. Figure 4 depicts this analysis as
the total time an IP remained blacklisted (x-axis) against the proportion of IP
addresses (y-axis). We observe that on average, IP addresses stayed blacklisted
longer in Snort than in Suricata.

4.1.2 Diversity Analysis of the BIPAs

This section presents a comparative analysis of the sets of BIPAs used by Snort
and Suricata during the experiment. To this end, we use the sets of BIPAs
that were collected at the same date/time points (to the nearest second). In
total, out of 15,812 Snort files, and 129 Suricata files, 128 files had a common
date/time overlap. We use these overlapping files for this analysis. Figure 5
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Table 2: Statistics of the data points observed in Snort and Suricata overlapping periods,01:=
Observed in Snort Only, 10:= Observed in Suricata only, 11:= Observed in both

No. of BIPAs in 128 files of Snort 46,187
No. of BIPAs in 128 files of Suricata 135,308
No. of BIPAs in either Snort or Suricata 177,504
No. of BIPAs in both Snort and Suricata 3,991
. . (01) 1,129,180
No. of (IP/date pairs) observed in Snort and 10) 2.219.330
Suricata overlapping periods ( ,219,
(11) 113,152

Table 3: Break-down of different BIPAs States,01:= Observed in Snort Only, 10:= Observed
in Suricata only, 11:= Observed in both

Single states # IPs Multiple states # IPs Observed first in: # 1IPs
(01) 42,196 (01,10) 79 01 35
10 44
(10) 131,317 (01,11) 2,834 (01 1,257
(11 1,577
(11) 588 (10,11) 250 01 84
11 166
(01,10,11) 240 01 102
10 82
11 56

depicts this analysis as the overlapping date/time slots (in the x-axis) vs the
counts of different categories of BIPAs (y-axis). We have three main categories
of interest: BIPAs which were blacklisted in Snort only, BIPAs which were
blacklisted in Suricata only, and BIPAs which were blacklisted in both Snort
and Suricata. We have also shown the total BIPAs in both sets. Likewise, we
observe that the overlap between the two BIPAs sets is relatively small and
the total number of IPs that appear in blacklists of both Snort and Suricata
is relatively constant for the duration of our experiments.

Table 2 shows the breakdown of the overlapping BIPAs. We have a total of
177,504 distinct BIPAs observed in either Snort or Suricata in the 128 overlap-
ping files. Of these, 3,991 have been observed in both Snort and Suricata. We
can think of each data-point in our data set consisting of an IP/date pair, and
for each of these data points the value is either “observed in Snort-only” (la-
belled as 01), “observed in Suricata only” (labelled 10), or “observed in both
Snort and Suricata at the same time” (labelled 11). The statistics for these
data points are given in the last three rows of Table 2. It is worth noting,
that the BIPAs which appeared either in Snort or Suricata can be of sev-
eral types—those having state 01,10,11 or a combination of these states. The
breakdown of these single and hybrid states is given in Table 3, giving a more
detailed split of the 177,504 BIPAs observed in Snort and Suricata. The first
two columns show the counts of those BIPAs appeared in the “single states”
of either (01), (10), or (11). The third and fourth columns show the counts
of BIPAs appeared in multiple states. For instance, the third row shows that
there are 79 BIPAs, though appeared in both Snort and Suricata files, but at
a different time. Similarly, some BIPAs appeared either in Snort or Suricata
and later in both sets at the same time. These are labelled as (01,11), (10,11)
and (01,10,11). We show a further breakdown of the BIPAs that appeared in
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Table 4: General Statistics of Different rulesets, R:=Rules, #F:=No. of Files, #R:=No. of
Rules, #RNVC:=No. of rules with no version change, #RVC:=No. of rules with version
change

Rules #F #R #RNVC #RVC
SnortRe, 52 10,675 2,259 8,416
SnortSu 51 10,736 21399 8,337
SnortCom 166 9053 472 431
SuricataET 106 19,584 523 19,061

multiple states—for example, for the 79 BIPAs appeared in multiple states of
(01,10), 35 appeared first in the Snort and 44 in the Suricata sets respectively.
To visualise the dynamic behaviour of those BIPAs appeared in multiple states
(i.e., those of columns three and four from Table 3), Figure 6 shows color maps
of their time-varying observations in various sets. The x-axis shows the num-
ber of date/time points and the y-axis the enumeration of these BIPAs. These
color maps shed light on the diversity of the Snort and Suricata BIPAs. Sub-
plot 6a shows that several BIPAs appeared earlier in Suricata (Green points)
than in the Snort BIPAs set (Black Points) and vice versa. The rest of the
three subplots, 6b, 6¢, and 6d, depict an interesting behaviour of many
BIPAs—From time to time, it appears many IP addresses were removed from
either Snort or Suricata before being reinstated again (we can see blocks of
red (Snort and Suricata) becoming green (Suricata only), and then red again).
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Fig. 7: Snort and Suricata rule counts over the duration of the experiment.

4.2 DIVERSITY IN RULES USED BY SNORT AND SURICATA
4.2.1 Overall Analysis

The signature-based rulesets is another source of configurational diversity in
Snort and Suricata. We present a quantitative analysis of these rules in this
section. This analysis uses rules data collected from 20 May to 31 October 2017.
The types of rules we consider are Community, Registered, and Subscribed for
the Snort IDS, and ET for the Suricata IDS. Similar to BIPAs, these rules
were collected at a sampling rate of 15 minutes. However, the rate at which
the rules were updated was much lower compared with BIPAs—mainly every
24 hours, but sometimes with lags of 5 days with no updates. Snort Community
rules are an exception, where we noticed an update of 4 rules multiple times
a day. We present the analysis by comparing the rulesets across all versions
once every 24 hours. Table 4 shows the counts of different rulesets we use in
the analysis. The two important features worth noting in this table are the
differences in the number of rules and the rules with change in their VNs.
We observe that the number of rules for Suricata is almost double that for
Snort Registered and Snort Subscribed (which are very similar), and that the
count of Snort Community is much smaller. There are rules with change in
their VNs while their SID (Signature ID) remains the same—columns four and
five of Table 4 give these counts. More than 80% of the Snort Registered and
Subscribed rulesets, and 97% of Suricata ET ruleset reported version changes
during the experiment. Figure 7 shows the dynamics of different rulesets. We
notice that the total number of rules in each set remains relatively constant
for the duration of the experiment.

4.2.2 Snort Rules Diversity Analysis

Next, we compare different Snort rulesets. To make this comparison tractable,
we use the SID that, along with the Version Number (VN), can be considered
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Fig. 8: Time Progression of Diversity in Snort Rules.

as a unique identifier for each rule. We use these identifiers (SID+Version
No.) consistently across different rulesets (i.e., the same SID and same VN
in Registered and Subscribed means that the rule is also the same). Figure 8
depicts dynamics of the rule counts for various Snort rule types. The y-axis
shows, in a log scale, the counts of rules in different categories for each day
of the experiment (x-axis). Here, “reg” is the count of rules which are only
in the Snort Registered set, “_reg_com” shows only those rules that are in the
Registered and Community rulesets, etc. We notice that the majority of the
rules are those that exist in both Registered and Subscribed rulesets (brown
dots), followed by those that are common among all three rulesets (pink dots),
and those that exist in the Subscribed ruleset only (orange dots).

We use binary states representation to label different Snort rulesets—01:Snort
Registered, 10:Snort Subscribed, 11:Snort Community, 100:Snort Registered
and Subscribed, 101: Snort Registered and Community, 110: Snort Subscribed
and Community, and 111: All three Snort rulesets. The counts of SIDs and
data points in different permutations of these sets are given in Table 5. A
particular rule can be part of a single or multiple states, similar to what we
discussed for BIPAs. Table 6 shows the counts of various SIDs (rules) being
part of either single state, 2-states, 3-states, or 4-states. It is worth noting,
however, that we have a maximum number of 27 permutations of different
sets, but we only show those cases that have the non-zero count of SIDs (most
of the other combinations have zero counts). Once a rule is established to be
part of multiple states, then it is important to determine which state that
rule was first observed in. That is why, Table 6 also shows, in columns 5, 6,
9, and 10, the breakdown of rule counts in states they were first observed in.
For rules that were observed in a single state, the majority are in the 100’
(The union of Registered and Subscribed rules). The other stand-out feature
in Table 6 is that of the rules observed in multiple states. These rules had al-
ways been first observed in a state where there is the Subscribed ruleset. This
is quite consistent with what we stated earlier about different Snort rulesets.
To capture the time evolution of Snort registered and community rules, with
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Table 5: Statistics of the data points observed in the Snort rulesets overlapping periods,01:=
Snort Reg. Only, 10:= Snort Sub. only, 11:= Snort Com. only, 100:= Snort Reg. and Sub.
only, 101:= Snort Reg. and Com. only, 110:= Snort Sub. and Com. only, 111: All three only

SIDs Snort Su
SIDs Snort Com

%SIDS Snort Reg

distinct SIDs in any

#Data points (SID/date pairs)

12,161

12,257
959

12,267

01 4

10 1,255

11 100

100 469,390

101 0

110 210

111 41,913

Table 6: Statistics of SIDs in different Snort rulesets, S:=States, OFI:=Observed-First-In,
01:= Snort Reg. Only, 10:= Snort Sub. only, 11:= Snort Com. only, 100:= Snort Reg. and
Sub. only, 101:= Snort Reg. and Com. only, 110:= Snort Sub. and Com. only, 111: All three

only
1-8 #SIDs  2-S #SIDs  OFI  #SIDs 3-8 #SIDs  OFI #SIDs
01 0 1 17
4 1
(01) 0 (01,100) 0o 4 (10,110,111) 7 %?‘f g
10 480 11
91 , 480 1
(10) (10,100) 00 o (11,100,111) 199 g
10 3 11
1 10 11 3 1 1 2
(11) (10,110) N s (11,110,111) Ho %
11 0 1
1 , 2
(100) 0,733 (11,111) 76 1 e (100,110,111) ﬁ@ %
(101) 0 (100,111) 24 199 37 4-s #SIDs _ OFI: _ #SIDs
110 7 1 1
(110) 2 (110,111) 7 et o (10,11,110,111) 1 %?0 g
(111) 814 111
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Fig. 9: The time lag for Subscribed rules to appear in the other Snort Rulesets.

respect to the Subscribed rules, we depict, in Figure 9, the time it takes for the
Snort Subscribed rules to appear in other rulesets(i.e., the SIDs in the sets:
(10,100), (10,110), (10,110,111) and (10,11,110,11) from Table 6). The figure
confirms what is stated in the Snort website for these Subscribed rules: most
of these become available to Registered users on average 30 days after they
are available in the Subscribed ruleset.
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4.2.83 Configurational Diversity Analysis of Snort and Suricata Rules

This section quantifies the similarities and differences between Suricata ET
and various types of Snort rules. To this end, we need to have fields in the
rulesets which are comparable. However, contrary to the Snort rules analysis,
where we use SIDs, Suricata ET rules do not share common SIDs with that of
Snort rules. We, instead, use the “content” field in the rules, which are defined
as regular expressions and contain the important “signature” information of
the malicious payload of a packet. It is the “content” field that IDSs utilise to
detect malicious payloads. However, the “content” field is limited to those rules
that are responsible for known signatures in the payload of a TCP/IP traffic.
Rules that check either BIPAs or ports, do not have the content fields. The
analysis in this section considers rules that have the “content” filed (73.4% of
the rules of Snort Registered and Subscribed have this field, 77.8% of Suricata
ET and 97.7% of Snort Community rules have the “content” field).

Figure 10 shows the configurational diversity of Snort and Suricata rulesets
based on the content field. Here, the x-axis shows the days and the y-axis
the number of SIDs with content fields, in log scale. This figure depicts the
evolution of the counts of the “content” fields not only for the individual
rulesets but that of the intersection of various rulesets as well. The shorthand
notation is the same as previous (e.g., “_ET” represents the SIDs with content
fields observed only in the Suricata ET ruleset etc.) The largest overlap, among
the intersection of rulesets, is that in the intersection set of Suricata ET, Snort
Registered and Snort Subscribed rulesets (the magenta dotted line that hovers
around the 100 marks in the y-axis). Table 7 gives the counts of SIDs with
a content field in different rulesets. It also gives the number of data points
observed in different sets. Note that, Table 7 gives additional rulesets and has
used binary state representations, 1000...1111, to label them. Table 8 gives a
further analysis of SIDs (with content field) that appeared in either single or
multiple states. These two tables confirm that there is relatively little overlap
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Table 7: Data points in Snort and Suricata rules with the contents field, S:= State, D-P:=
Data Points, 01:= Snort Reg. Only, 10:= Snort Sub. only, 11:= Snort Com. only, 100:=
Snort Reg. and Sub. only, 101:= Snort Reg. and Com. only, 110:= Snort Sub. and Com.
only, 111:= All three only, 1000:= ET only, 1001:= ET and Reg only, 1010:= ET and Sub.
only, 1011:= ET and Com. only, 1100:= ET and Reg. and Sub. only, 1101:= ET and Reg.
and Com. only, 1110:= ET and Sub. and Com. only, 1111:= All four only

#SIDs Snort Reg with content field 7,840
#SIDs Snort Sub with content field 7,901
#SIDs Snort Com. with content field 883
#SIDs in Sur.ET with the contents field 15,239
#Distinct SIDs with content field in any of above 23,014

S #D-P S #D-P

1000 644,159

01 1 1001 0
#(SID-content,date) pairs in Snort and Suricata. 10 2,443 101 8

11 74 1011 0]

100 278,911 1100 4,236

101 0 1101 0

110 177 1110 0

111 34,409 1111 748

Table 8: Statistics of SIDs with content field in Snort and Suricata rulesets, S:=States,
OFI:= Observed-First-In, For other labels, see caption of Table 7

1-s #SIDs  2-S #SIDs  OFI  #SIDs  3-S #SIDs  OFI #SIDs

10 57 (01,100) 1 O 9 (10,110,111) 18 1% 38
111 0

100 6,548 (10,100) 315 }80 ?14 (11,110,111) 2 Ho 9
111 0

110 2 (10,110) 2 o2 (1000,1010,1100) 1 1096 6

1 0 1100 0]

111 760 (11,111) 72 %

1000 15,113 (100,111) 3 o8

1100 96 110,111) 7

1111 17 ( ) 111 o

between Suricata ET and Snort rules, as evident from the counts of SIDs in
the intersection sets, 1001...1111.

5 FUNCTIONAL DIVERSITY ANALYSIS OF SNORT AND
SURICATA

In this section, we analyse how the configurational diversity manifests itself
in the alerting behaviour of Snort and Suricata IDSs. We analyse the alerting
behaviour of each IDS by investigating the City, University of London network
traffic, saved as pcap files. The analysis is not only static, but dynamic in time
as well. It is worth noting, we use only the Subscribed ruleset for Snort in this
analysis, as this being the superset of all other Snort rules.

5.1 Description of the Data used in Functional Diversity Analysis

Essentially, we analyse whether a ruleset, saved at a later date, generates
more/fewer alerts for the traffic captured at an earlier date and vice versa. We
evaluate this evolution, in the behaviour of IDSs, individually, as well as for
the cross-platform comparison between Snort and Suricata. To this end, we
analyse 14 days of pcap data collected in August and September 2017. There
is no specific reason for selecting these 14 days, except that both the Snort



Title Suppressed Due to Excessive Length 17

Network Traffic Connection Types

70

"

c 60

o

-‘350

o 40

c

£ a0

o

3 20

= 10

0
P~ P~ P~ P P~ P~ P P P~ P P P P~ P P P~ P P P P P P
R -EE IR R - - -~ - - I R R I R R R R ]
0 O QO Q QO QO Q O QO 0 Qo o 0 Qo Qo O o o o o o
B e e o e o e S A g ]
@ 00 00 00 o o 0 o o0 00 o 0 0 W o 0 o o o o o &
S 8 8 80 8 8 8 0 0 0 0 0 0 0 0 0 0 0 8 8 B2
==~ — A A~~~ — A~~~
—m.ﬁ&g-—m.’thm—m.ﬁhm-—r\aaxam
o o o o ™ e o o e NN NN N MmO ==

Date
—e—TCP (%) —e—UDP(%) ICMP

Fig. 11: Pcap Traffic Connections type breakdown.

and Suricata rulesets showed updates on these days. We divide the functional
diversity analysis experiment into two sub-experiments; each analyzing 7 days
of pcap data using the corresponding 7 days of rules. We do this for each IDS
separately, which means we have 7x7 of alerts data per IDS, and hence a
total of Tx7x2 data sets. Figure 11 depicts the proportions of various types
of connections that we have in the pcap data. This shows that the majority
of the traffic, on all days, is of UDP and TCP types (ICMP traffic to the
DMZ network is blocked by the University’s firewall). We use the subscribed
ruleset, being the superset of other Snort rules, and the ET ruleset for Snort
and Suricata IDs respectively. This also makes the analysis more scalable. As
described previously, we selected 14 days of rulesets and BIPAs for Snort and
Suricata on the same dates as those shown in Figure 11.

To analyse the effects of configurational changes (rules and BIPAs) on the
alerting behaviour of IDSs, we need to know the day-to-day changes that took
place in the Snort and Suricata rules/BIPAs during the 14 days of our exper-
iment. The description of the evolution of the rules/BIPAs between adjacent
days is shown in Table 9 and Table 10, for Snort and Suricata respectively.
These tables show the comparison between two sets of rules/BIPAs next to
each other in the order of days on which they were collected. For example, we
compare the ruleset (and BIPAs) of 1 August with that of 3 August, and that
of 3 August with 8 of August, and so on. The comparison of rules is given in
columns 2-5 and that of BIPAs is in columns 6-8 of Table 9 and Table 10. The
columns named ’i-1 & not i’ and ’i & not -1’ show the number of rules that
were found in the set, saved at an earlier day, and not in the current day, and
vice versa respectively. Similarly, the columns named 'BIPAs in i-1 & not 4’
and 'BIPAs in ¢ & not -1’ show the number of BIPAs found at an earlier day
and not in the current day and vice versa respectively. We have also shown
that how many rules have been changed between the adjacent days due only
to VN change in the rules. This is shown by the column named ’changes of
VN b/w i & i+1’. The third and fourth columns of both Tables 9, 10 show
that there have been changes, however small, from day to day in both Snort
and Suricata rulesets. Similarly, column 5 of both these tables shows that



18 Hafizul Asad*, Ilir Gashi

Table 9: Summary of the Snort Subscribed Rules Evolution, i:=Current-Date,i-1=Previous-
Date, VN:= Version Number

Rules in i Rules in - -
s L : changes of VN s BIPAs ini & BIPAs in i-
Dates #Rules & mot in i1 &mot £ 1 #BIPAs 0t im i1 1 & not in i
o1/8 10,228 0 32 2,603 1,088
03/8 10,258 30 0 8 1,614 99 177
o8/8 10,266 8 0 0 6,296 4,859 34
09/8 10,268 2 0 3 6,905 643 44
10/8 10,277 9 2 8 7,837 976 148
15/8 10,314 39 0 4 10,592 2,903 81
17/8 10,330 16 11,459 948
23/8 10,340 0 14 9,783 1,099
24/8 10,345 5 3 17 10,053 829 968
29/8 10,354 12 6 17 7,425 3,596 70
31/8 10,360 12 2 16 6,577 918 1,940
06/9 10,368 10 436 448 5,644 2,873 1,386
08/9 10,374 442 4 18 5,958 1,072 126
12/9 10,394 24 5,049 1,035

Table 10: Summary of the Suricata ET Rules Evolution, i:=Current-Date,i-1=Previous-
Date, VN:= Version Number

Rules in i Rules in

: : changes of VN BIPAs ini & BIPAs in i-
Dates ~ #Rules & mot in il &mot g £ 41 #BIPAs  otin il 1 & not in i
01/8 18,842 2 1,200 16,137 1,184
03/8 18,860 20 17 1,240 16,339 1,377 1,884
08/8 18,860 17 2 1,198 16,194 1,758 701
09/8 18,872 14 8 1,203 16,281 786 840
10/8 18,867 3 0 1,237 16,203 761 2,234
15/8 18,900 33 7 1,216 16,334 2,355 1,303
17/8 18,945 52 16,254 1,213
23/8 18,940 13 1,195 16,185 1,364
24/8 18,939 12 7 1,228 16,122 1,309 3,462
29/8 18,945 13 3 1,095 16,068 3,426 712
31/8 18,973 31 4 1,229 16,051 695 2,919
06/9 19,025 56 25 1,219 16,348 3,202 1,761
08/9 19,031 31 137 1,125 16,198 1,598 2,303
12/9 18,912 18 15,744 1,822

there have been changes in VNs of many rules from one day to the next. This
change, however, is relatively large for Suricata rules (more than a thousand)
as compared to that of Snort rules (less than 20 for most days). There have
also been changes of BIPAs sets from day to day for both Snort and Suricata,
as given in columns 6-8.

5.2 Evolution in the Alerting behaviour of Snort and Suricata

After having had the 14 days of pcap data analysed by both the Snort and
Suricata IDSs, we investigate the evolution in the alerting behaviour of the
individual IDS. To this end, we perform relative analysis by comparing alerts
generated, for the pcap data on a particular date, by all the rulesets on 7 days
of an experiment(s). We do this by finding the difference of alerts by the rules
on all days from that on the current day—where the pcap and rules have the
same date. Besides, we divide the alerts into two categories—those generated
by BIPAs and other types of rules. Figure 12 and Figure 13 depict the evolution
of alerting behaviours for Snort and Suricata respectively. Here, the x and y
axes enumerate the dates of the rulesets and the pcap data, respectively. The
cells show the normalized change of the alerts with respect to the current
date—cells on the diagonal show the current dates. Cells to the left and right
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Fig. 12: Evolution of the Snort Alerting Behaviour
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Fig. 13: Evolution of the Suricata Alerting Behaviour

of the diagonals show results of the analysis of a pcap data by the past and
future rules, respectively. The results have been normalized by the maximum
of the absolute values in the grid. For example, the top left Figure 12 has
been normalized with the value of 145. This gives us uniform ranges of values
between -1 and 1 (negative values mean that the number of alerts is smaller
in a given resultset range than the reference for that row, which is given by
the diagonal cell). Results of experiment-2 for the “other” rules have been left
un-normalised due to outliers in the number of alerts in the 23rd and 24th of
August (we observe this in the bottom right plot of both Figure 13 and 14).
We give the absolute values for these graphs to make them easier to follow.
The top left/right heat maps of Figure 12 and 13 demonstrate that there
are changes in the number of alerts, for the same pcap data, and by the BIPAs
rulesets collected on different days. For example, in the top left of Figure 12,
we see an increase (from yellow/white to red on the opposite sides of the
diagonal) in the number of alerts by most of the blacklist rulesets and for
every pcap data set. These changes in the alerting behaviour due to BIPAs
are consistent with the changes in the Subscribed and ET BIPAs, as shown
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in Table 9 and 10. Similarly, the evolution of the alerting behaviour due to
all other rules can be seen from the bottom left/right plots of Figure 12 and
Figure 13, for Snort and Suricata respectively. These maps underline the fact
that there is an evolution of alerting behaviour, in both Snort and Suricata.
However, the behavioural changes are more random and cannot be generalized.
For instance, the bottom-right plot of Figure 12 shows a big increase in the
difference of alerts from August 24 to 29, for the pcap data collected on 24
August. However, there is a substantial reduction in the difference of alerts,
between the same dates, but for the pcap data of 23 August. This is supported
by the differences in the rules between 24 and 29 of August, as shown in the
third and fourth column of Table 9. However, the changes with respect to the
current date are rather small on other days, as shown in the bottom left/right
heat maps of Figure 12. For Suricata, we observe a similar decrease in the
alerts by rules of 24 August and for the pcap data of 23 August shown in
the bottom right heat map of Figure 13. This may be explained by a large
number of version changes of rules between August 23 and 24 (fifth column of
Table 10).

5.3 Diversity in Time between Snort and Suricata

To further investigate the evolution of alerting behaviour of the IDSs, we look
more closely at the count of connections alerted, for each day of pcap data,
and by each version of an IDS ruleset. We use the convention of 0 (no alert)
or 1 (alert) for each connection. Since in each experiment, every connection
was inspected by 7 different versions of Snort and Suricata rules, we use a
concatenation of the labels for the 7 days to make the comparison easier. For
instance, in the first experiment, the label 0000001 means that a connection
was alerted only by a ruleset of 17 August (i.e., the 7th and last one in our
data set of the first experiment). Similarly, 1000000 means a connection alerted
only by the 1 August ruleset (i.e., the 1st ruleset version in our data set),
etc. The same principle applies to the second experiment as well. Most of the
connections in our experiment have never been alerted (i.e., they are 0000000),
followed by connections that were alerted by all the rulesets (i.e., 1111111).
Of particular interest to us are the connections where we observe an order
(non-alerts followed by alerts, e.g., 0000111; or alerts followed by non alerts
1100000). Those connections, where we have a non-alert (by an earlier ruleset)
followed by an alert (by a latter ruleset), may be considered suspicious that
were missed by an earlier ruleset. Those connections, where we have an alert
(by an earlier ruleset) followed by a non-alert (by a latter ruleset), may be
considered to be false positives and have been eradicated by the more recent
rulesets. We have an exhaustive list of all the patterns we observed for Snort
and Suricata, but due to space constraints, we cannot show those tables here.
Instead, we show, in Figure 14, the frequency of more frequent alert combina-
tions as Pareto plots. Note that, these alerts combinations are the ones caused
only by the BIPAs rules, other rules, and in some cases a combination of these
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Fig. 14: Diversity in Time, Snort: Top row, Suricata: Lower row.

two. Figure 14 shows that the standout alert combination for Snort has been
‘0011111, in both experiments. Upon investigating, we notice that these alerts
were predominantly due to BIPAs. This fact is also substantiated by the col-
umn ‘BIPAs in i & not i-1” in Table 9; we see a big increase in the number of
BIPAs and rules added after 3 and 24 of August. Similarly, for Suricata, the
prominent rule combinations which appeared more frequent are ‘0000001, in
the first experiment, and ‘1000000’ in both the first and second experiments.
Contrary to Snort, these were the ‘other type’ of rules that contributed to
these combinations being dominant. This is also supported by the columns, ‘i
& not i-1’ and ‘i-1 & not i’ in Table 10.

For connections, where we observe non-continuous patterns (e.g., 1010101),
we investigate them further for clues about the non-existence of a particular
rule on the days of no-alerts. We observe that there are several cases of Suri-
cata alerts where the rule exists but was not triggered by a connection. There
is no such observation for Snort, however. This is why, we contacted the devel-
opers of Suricata and Snort, and we got the advice to run Suricata in a mode
using the flag ‘““runmode=single’. This mode works fine for a small pcap file
and resulted in no non-determinism in the alerting behaviour. However, even
with this mode, in our full-scale experiments, we observe several instances of
alerts that were alerted in a non-continuous (non-deterministic) manner by
the rulesets. However small these instances are, practitioners should be aware
of it and should use the flag ‘“rTunmode=single’ while running Suricata.

5.4 Functional Diversity Analysis between Snort and Suricata

In this section, we investigate the cross-platform functional diversity between
Snort and Suricata. This analysis is the testing of the configurational diversity
we discussed in section 4 of this paper. To this end, we compare the pcap
connections that have been alerted by Snort and Suricata. Table 11 shows
different statistics of this comparison for the 14 days of two experiments. This
table substantiates the earlier observation of large configurational diversity
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Table 11: Summary of alerted Connections Diversity in Snort and Suricata; Su: Suricata,
Sn: Snort

g . Diff o Start- Start- Start-
- el ame-in 1fferent-in i i i
Date Sn&—Su  Su&-Sn  Sn&Su Same-in  Differe in in in
Aug-01 1,012,895 777,204 53 42 11 3 0 8
Aug-03 000,073 829,656 53 43 10 2 0 8
Aug-08 956,331 859,790 53 26 7 2 0 5
Aug-09 971,220 837,406 38 25 13 6 1 6
Aug-10 451,611 461,047 18 12 6 2 0 4
Aug-15 667,868 544,822 41 38 3 1 0 2
Aug-17 1,043,366 958,51 77 65 12 4 0 8
23-Aug 869,585 761,936 27 21 6 0 0 6
24-Aug 869,737 78191 8 3 3 0 0
29-Aug 878227 666,433 35 0 0 0 0
31-Aug 1,081,173 892,611 248 246 2 0 0 2
06-Sep 952,582 1,315,178 45 8 2 0 6
08-Sep 811,995 1,247,364 44 35 9 0 2 7
12-Sep 931,712 887,809 44 34 10 0 1 9
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Fig. 15: Distribution of connection alerted by both in different patterns. Green: Snort;
Pink: Suricata Patterns, experiment 1.

between the two IDSs resulting in large functional diversity. We notice, from
columns 2 and 3 of Table 11, that the two IDSs are functionally very diverse
and that there is minimal overlap of connections that have been alerted by
both. Note that, the column “Sn&—-Su” denotes the number of connections
alerted by Snort but not Suricata, and the “Su&—Sn” column shows the num-
ber of connections alerted by Suricata but not Snort. There are only a handful
of connections that have been alerted by both Snort and Suricata, as given in
the “Sné&Su” column. There are two possible alerting behaviours for the con-
nections jointly alerted by the two IDSs; they may have been alerted by the
same rule patterns in both (e.g., 1100111; this is given by the column “Same-in
Sn&Su”), or differently (e.g., 1111001 Snort, and 0011101 in Suricata; this is
given by the column “Different-in Sn&Su”). For the latter case, the last three
columns show which IDS alerted these connections ahead of the other or at
the same time. Figure 15 shows the visualisation of the connection alerted in
varying patterns of the Snort and Suricata rules in experiment 1 (It is similar
for experiment 2). Here, we show two cases; connections that were alerted by
Snort (green) ahead of Suricata (Pink), and those that were alerted by Snort
and Suricata at the same time. Suricata has only one connection alerted ahead
of Snort. In Figure 15, a connection is represented by two lines, green and pink,
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Fig. 16: Analysis of Connections Alerted by Both Snort and Suricata

one for Snort and one for Suricata respectively. This figure also confirms, that
even for the jointly alerted connections, the patterns of alerts are quite diverse,
for the Snort and Suricata IDSs. Besides, we analyse the types of rules respon-
sible for alerting the common connections. Figure 16 depicts the breakdown of
these connections into BIPAs and other types of rules. It shows two plots, one
each for the connections alerted by the same and different patterns of rules.
We observe from Figure 16, that there are similarities, however small, in the
alerting behaviours of Snort and Suricata. This is evident from the exactly
same break-down of connections per rule type, in both the Snort (dotted blue
circle in both plots) and Suricata (dotted red circle in both plots) IDSs.

6 Discussion and Limitations

The results are intriguing, and they show that there is a large amount of
diversity in the rules and BIPAs of Snort and Suricata. This configurational
diversity does manifest itself in the alerting behaviours of these IDSs. Whether
this diversity is helpful or harmful for a given deployment depends on the
context. The rules and blacklists alert for potentially harmful behaviour that
has been observed somewhere in the world by users of these products. In a
different deployment, the alerts from some of these rules may not cause harm.
For example, a service or port for which a rule alerts may not exist in that
environment. Hence, even if the alerts are for malicious traffic, it is likely
that this attack will not cause any harm in the systems of that deployment.
The data set we used in Section 5, real pcap traffic that the University’s
IT team gave us access to, is unfortunately not labelled, so we cannot do
a conventional analysis of sensitivity and specificity of these IDSs and their
diverse combinations. Secondly, though we were given pcap data of almost 5
months duration, we used only 14 days of this due to the large amount of alert
data that we could not handle in our infrastructure. While we did observe
the evolution of rules in terms of alerts for a pcap data, we cannot generalize
the results for the complete set of data that we used in the experiment. We
observe that though there are overlaps in the Snort and Suricata rulesets,
there is huge diversity in their alerting behaviour. It shows that in their default
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configurations, these two IDSs are tuned for a different set of malicious attacks.
Also, we observed a non-deterministic behaviour in the Suricata IDS when it
was used to analyse large traffic. For small traffic, though, the non-determinism
can be avoided using a particular mode.

We shared the findings with the University’s IT team, who found the results
interesting. Currently, they use a smaller subset of Suricata ruleset for analysis.
Interestingly, they mentioned that even if the alerts are for services that they
do not run (hence would be harmless in their environment) they would like to
know about them as it provides insight on security exposure for services that
users may request in the future, and because they can use the alerts to check
if they are precursors for attacks on other services that they value.

How can individual user organizations decide whether diversity is a suitable
option for them, with their specific requirements and usage profiles? The cost is
reasonably easy to assess: costs of the software products, the required middle-
ware (if any), added complexity of management, hardware costs, run-time
costs and possibly more complex diagnosis and more laborious alert sifting.
The gains in improved security (from protection to attacks and exploits) are
difficult to predict except empirically. This uncertainty will be compounded,
for many user organizations, by the lack of trustworthy estimates of their
baseline security. We note that, for some users, the evidence we have presented
would already indicate that diversity to be a reasonable and relatively cheap
precautionary choice, even without predictions of its effects. These are users
who have serious concerns about security (e.g., high costs for interruptions of
service or undetected exploits), and sufficient extra personnel to deal with a
larger number of alerts.

7 IDSs deployment Strategies based on our Analysis

Based on the analysis of this paper, including the configurational and func-
tional diversity analysis, we propose various IDS deployment strategies for the
security architects. These are shown in Figure 17. It is worth noting, however,
the security architects may want to consider other performance metrics, such
as packet-processing speed, drop-rates etc, in their design strategies as well.
The following are our recommendations:

— If there is a constraint of using single IDS, either Snort and Suricata, it
is recommended to combine the rulesets and the BIPAs of both and use
them in a single IDS. The rulesets and BIPAs can be used interchangeably
by either of these IDSs. However, to avoid a high false alarm rate, both
the rulesets should be properly tuned by an IT administrator based on the
organization’s security policy.

— The two IDSs can be deployed in parallel with the help of an adjudicating
scheme. While this strategy may be more efficient in reducing the false
alarm rate, this may, however, increase the overhead delays in the network.

— The two IDSs can be deployed in series, with an adjudicating system at
the end of the series link. We cannot prescribe which IDS to be deployed
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Fig. 17: IDS Deployment Strategies

first in this strategy. This is because our analysis is limited in terms of
the ’actual’” attack analysis and that which IDS perform better in terms of
various detection metrics.

Further work would be needed to then analyse the IDS pipeline workloads
to minimize overhead delays of traffic. We would expect that parallel archi-
tectures can be optimised to reduce overheads, depending on the adjudication
scheme chosen. (i.e. whether we always need to wait for all IDSs to respond). In
principle, any of these schemes can also be deployed either fully ”on-premise”
or via a "hybrid” approach (with some on-premise and some on cloud). The
overheads and benefits would be difficult to predict except empirically.

8 Related Work

The security community is well aware of diversity as potentially valuable
[15], [16]. Discussion papers argue the general desirability of diversity among
network elements, like communication media, network protocols, operating
systems etc. Research projects studied distributed systems using diverse off-
the-shelf products for intrusion tolerance (e.g., the U.S. projects Cactus [17],
HACQIT [18] and the EU MAFTIA project [19], but only sparse research
exists on how to choose diverse defenses (some examples in [20], [21] [16]).
The benefits of design diversity for fault-tolerant systems are discussed in [22].

A very extensive survey on the evaluation of intrusion detection sys-
tems is presented in [23]. This survey discusses many research works in the
field. The main features analyzed in the survey are the workloads used to test
the IDSs, the metrics utilised for the evaluation of the collected experimental
data, and the used measurement methodology. The survey demonstrates that
IDS evaluation is a key research topic and can help with guidelines on how to
improve IDS technologies. A similar, yet more comprehensive, survey about
IDSs is given in [24]. The paper details the current state-of-the-art in the de-
sign of IDSs for a diverse set of domains. The authors also discuss the metrics,
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evaluation criteria and the data sets that have been used in recent research
works on IDSs. In [25], the authors show the benefits of using a diverse set of
IDSs in an empirical study. The authors have shown the efficacy of diversity by
deploying the IDSs in different configurations such that to minimize false neg-
atives/positives. To reduce the false-positive rate, in [26], the authors propose
an off-the-shelf diversity architecture such that it masks false-positives.

Performance evaluation of Snort and Suricata has been studied in [27].
The authors have used different performance benchmarks, such as speed, drop-
rates and detection accuracy to compare Snort and Suricata. Our work is
different from this paper in several aspects. While we consider rulesets and
BIPAs worth five months to quantify the configurational diversity, they just
considered one set of the default rules for their experiments. Besides, while
they used an open-source tool to generate synthetic data for the evaluation
of detection accuracies, we use real-world traffic to check the differences in
the alerting behaviours. More importantly, our analysis focuses on the diver-
sity analysis as compared to the work in [27], which empahized more on the
performance comparison of the two IDSs. In [28], Salah et al. analysed the
effects of various operating systems on the performance of Snort IDS. In [29],
Thongkanchorn et al. evaluated the detection accuracies of Snort, Suricata and
Zeek IDSs while considering other performance metrics in parallel. The Snort
and Suricata IDSs have been compared for their speeds, memory requirements
and accuracy in [30]. The authors have demonstrated that Suricata can handle
large volumes of traffic with similar accuracy. In [31], the authors showed that
the speed and packet-loss performance of Suricata exceeded that of Snort with
a reduced accuracy, however. In [32], the authors have used detection accu-
racy as the metric to compare Snort and Suricata in a cloud network. They
have proposed the use of fuzzy logic in conjunction with these two IDS for im-
proved performance. Pihelgas, in [33], compared the Snort, Suricata and Bro
IDSs using various performance metrics of CPU usage, drop out packets and
memory utilisation. It has been shown that Suricata performed better than
the other two IDS for CPU usage and drop out packet, while it was Bro that
outperformed others for memory usage. Ho et al. in [34] provided statistical
analysis of the real-world traffic analysed by an IDS/IPS. They have shown
that it is the IDS/IPS causing most of the false-positive and false-negatives in
a real-world scenario. In [30], the authors have compared Snort and Suricata
using real-world traffic. They have shown Suricata to be more CPU and Mem-
ory intensive, while it performed better when it came to the packet drop rate.
A similar experimental evaluation of signature and anomaly based IDSs have
been performed in [35]. The authors in [35] have compared Snort, Ourmon and
Sambhain for their characteristics of network degradation, CPU/Memory Us-
age and the number of alerts each of these IDSs generate. Snort has shown to
be better from the CPU load and amount of alerts generation, while the other
two IDSs used less memory and degraded the memory bandwidth slightly less
than Snort. There has been research on how to automatically feed-in a NIDS
with signatures and thus to avoid manual work in this regard. To this end
authors in [36] have shown a hybrid anomaly and signature based IDSs using
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the former to feed the new signatures to the latter. A comprehensive list of
tools currently being used for attack detection and signature generation
is given in [37]. Machine learning-based techniques have recently become
quite popular for anomaly based NIDS. A review of different supervised and
un-supervised learning-based intrusion detection algorithms is given in [38].
Similarly, to increase the detection capabilities of NIDSs, reinforcement learn-
ing has been gaining popularity in the research community, e.g., [39][40].

9 Conclusion

In this paper, we have presented an analysis of the configurational and func-
tional diversities between the Snort and Suricata IDSs. Some data used in this
paper is given in a git repository'. In the configurational diversity analysis, we
have investigated the evolution of the BIPAs and rulesets that the Snort and
Suricata IDSs use against the possible known attacks. Besides, we have pre-
sented the cross-platform diversity analysis between the corresponding BIPAs
and rules configurations of these two IDSs. Data worth more than 5-months
of duration has been used for this purpose. We have considered three different
off-the-shelf default configurations of the Snort IDS and the ET configuration
of the Suricata IDS. In the functional diversity analysis, we have investigated
the manifestation of the configurational diversity in the alerting behaviours of
the Snort and Suricata IDSs. We have used real network traffic collected at
City, University of London in this analysis. We have undertaken this study in-
tending to provide insight to security architects on how they can combine and
layer these systems in a defence-in-depth deployment. The main conclusions
from our analysis are:

— There is a significant amount of diversity in the BIPAs of Snort and
Suricata, and this is maintained throughout our observation period. The
amount of overlap between these BIPAs is relatively small. Depending on
the adjudication mechanism that a system architect wishes to deploy, hav-
ing access to a larger pool of BIPAs may be beneficial to increase protec-
tion against a larger pool of malicious sources. However, if a user observes
a large number of false positives from these blacklists at a given time, then
diversity can be a help to keep the false positive rate low (for example by
only raising alarms if an IP appears in multiple blacklists) until the vendors
“clean up” the blacklists;

— We observe the evolution of rule diversity for both Snort and Suricata butto
generalize these results, we need to analyse pcap data of a longer duration.

— We observe a significant amount of diversity in the rules of Snort and
Suricata. When analyzing the rules based on the “content” field, only 1%
of the rules of Snort and Suricata return a match. This indicates that
these systems would alert on potentially very diverse traffic. This is indeed

1 https://github.com/Hasad/D3S_Data
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confirmed from our experiment that we ran with real traffic from City, Uni-
versity of London. There was very little overlap in the alerting behaviour
of these products.

We have underscored that these results are only prima facie evidence for
the usefulness of diversity. What is important is to assess these products in
real deployment on their capability to improve the security of a given sys-
tem. The results presented here will, we hope, provide the security architects
with evidence on the diversity that exists in the design of these products and
whether this diversity remains as these products evolve.

As further work, we plan to investigate the diversity with IDSs and other
defence-in-depth tools in real deployments, with labelled datasets, to assess
the benefits as well as potential harm that diversity may bring due to the
interplay between the risks from false negatives and false positives. Currently,
we are investigating the adjudication mechanisms that can help balance the
risks associated with these failures. Also, we plan to increase the size of the
pcap data while analysing the evolution of rule diversity. Finally, since anomaly
based IDSs and hybrid IDSs (i.e. anomaly+signature IDSs) are regular and
current topics in cybersecurity, we also plan to investigate the diversity of
these existing and emerging IDSs.
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