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Highlights 

 High CO2 conditions profoundly affected biofilm community composition 

 Species turnover explained differences in community composition  

 Biofilm communities were more homogeneous under high CO2 conditions 

 Toxin producing and turf-forming algae were enriched under high CO2 conditions  
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Abstract 

Biofilms harbour a wealth of microbial diversity and fulfil key functions in coastal marine 

ecosystems. Elevated carbon dioxide (CO2) conditions affect the structure and function of 

biofilm communities, yet the ecological patterns that underpin these effects remain unknown. 

We used high-throughput sequencing of the 16S and 18S rRNA genes to investigate the 

effect of elevated CO2 on the early successional stages of prokaryotic and eukaryotic biofilms 

at a CO2 seep system off Shikine Island, Japan. Elevated CO2 profoundly affected biofilm 

community composition throughout the early stages of succession, leading to greater 

compositional homogeneity between replicates and the proliferation of the potentially 

harmful algae Prymnesium sp. and Biddulphia biddulphiana. Species turnover was the main 

driver of differences between communities in reference and high CO2 conditions, rather than 

differences in richness or evenness. Our study indicates that species turnover is the primary 

ecological pattern that underpins the effect of elevated CO2 on both prokaryotic and 

eukaryotic components of biofilm communities, indicating that elevated CO2 conditions 

represent a distinct niche selecting for a distinct cohort of organisms without the loss of 

species richness.   

                  



1 | Introduction 

Biofilms are complex aggregates of microbes on solid surfaces in aquatic environments 

(Costerton et al. 1995). They are the dominant mode of microbial life on Earth by cell 

abundance (Flemming and Wuertz 2019), and harbour a wealth of prokaryotic and eukaryotic 

diversity (Sanli et al. 2015; Flemming et al. 2016). Biofilm microbes live within a matrix of 

extracellular polymeric substances (EPS) which facilitate bioadhesion (Flemming and 

Wingender 2010), and act as a platform for the extracellular breakdown of organic 

compounds (Pohlon, Marxsen and Küsel 2010), intercellular communication (De Kievit 

2009), and the storage of excess carbon as polysaccharides (Flemming and Wingender 2010). 

Biofilms are basal components of coastal marine ecosystems, where they are a food-source 

for benthic grazers (Thompson, Norton and Hawkins 2004) and the primary settlement 

substratum for many ecosystem engineers, including scleractinian corals (Tran and Hadfield 

2011; Espinel-Velasco et al. 2018).  

Ocean acidification, due to rising atmospheric carbon dioxide (CO2) concentrations, 

has decreased mean surface ocean pH by 0.1 units since the pre-industrial era, and is 

projected to drive a further decrease of 0.3 pH units by the end of the century under the 

Intergovernmental Panel on Climate Change ‘business-as-usual’ emissions scenario (RCP 

8.5) (Hoegh-Guldberg et al. 2014). Increased CO2 concentrations can enhance microalgal 

growth rates by reducing the energetic cost of photosynthesis, but can also impact other 

physiological processes including intracellular pH homeostasis and calcification (Mackey et 

al. 2015). By acting as both a stressor and a resource, ocean acidification can alter 

competitive interactions and the community composition of marine organisms, leading to 

substantial reshaping of ecosystems (Connell et al. 2018).  

Laboratory studies indicate that ocean acidification has both direct and indirect effects 

on biofilm communities. For example, laboratory experiments in flow-through aquaria 

                  



demonstrate that high CO2 conditions alter biofilm community composition when biofilms 

are isolated from the wider ecological community (i.e. grazers and other benthic organisms; 

Witt et al. 2011a; Nelson et al. 2020; Espinel-Velasco et al. 2021), while laboratory 

experiments including grazing gastropods indicate that high CO2 conditions can indirectly 

affect biofilm communities by reducing grazing rates (Russell et al. 2013). Since biofilms 

play a critical role in benthic ecosystems, studies in natural environmental settings are needed 

to gain a holistic understanding of how biofilm ecology will be impacted by future conditions 

(Russell et al. 2013). At volcanic seeps, CO2 percolates through the seafloor and dissolves in 

seawater creating areas of localised acidification comparable to conditions projected by the 

end of the century (Hall-Spencer et al. 2008; Agostini et al. 2015). These systems facilitate 

investigations into the ecosystem-level effects of ocean acidification in a setting of chronic 

exposure and natural realism (Hall-Spencer et al. 2008; Andersson et al. 2015).  

Studies at CO2 seeps have demonstrated that ocean acidification can significantly alter 

the composition of prokaryotic biofilm communities on natural and artificial substrata 

(Lidbury et al. 2012; Kerfahi et al. 2014; Taylor et al. 2014). Studies of eukaryotic biofilm 

communities at CO2 seeps have reported altered community composition, increased diatom 

abundance, and higher relative abundance of large chain-forming diatom species (Lidbury et 

al. 2012; Johnson et al. 2013, 2015). While these studies demonstrate that ocean acidification 

can affect the structure of biofilm communities, ecological patterns underpinning biofilm 

community responses to ocean acidification are currently unknown.  

Differences in community composition through space or time can emerge from two 

fundamental patterns called ‘turnover’ and ‘nestedness’, these two patterns are not mutually 

exclusive (Baselga 2010). ‘Turnover’ is the replacement of species in one community with 

different species in another community. ‘Nestedness’ is when species occurring in one 

community are a subset of species occurring in another community (Fig. S1). In the context 

                  



of this study, turnover as the dominant ecological pattern would suggest that conditions at 

reference and high CO2 sites represent distinct niches, selecting for distinct cohorts of 

organisms while maintaining richness. In contrast nestedness as the dominant ecological 

pattern would suggest that the cohort of organisms under high CO2 conditions consisted of a 

CO2-tolerant subcomposition of organisms present under reference conditions. Unravelling 

these distinct patterns provides deeper insights into the nature of differences between 

communities (Baselga 2010; Baselga and Orme 2012). 

Here, we investigated the effects of ocean acidification on the composition, diversity, 

and early successional dynamics of biofilm communities over 21 days at a CO2 seep system 

off Shikine Island, Japan. We used high-throughput amplicon sequencing of the 16S rRNA 

gene (Caporaso et al. 2011; Apprill et al. 2015) and 18S rRNA gene (Stoeck et al. 2010; 

Massana et al. 2015) to characterise prokaryotic and eukaryotic components of biofilm 

communities, respectively. We hypothesised that elevated CO2 conditions would lead to 

distinct eukaryotic and prokaryotic biofilm community composition driven primarily by 

turnover, due to the duality of CO2 as both a stressor and a resource. These data provide the 

most detailed assessment of biofilm community composition at CO2 seeps to date, and shed 

new light on the ecological patterns that underpin the responses of biofilms to near-future 

ocean acidification.  

 

2 | Materials and methods 

2.1 | Study site and sampling 

Shikine Island (34.325 ºN, 139.210 ºE) is a volcanic island approximately 50 km south east 

of Shimoda, Japan. It is at a temperate latitude but is influenced by the warm Kuroshio 

current and so the coastal waters of this island host a diverse range of tropical and temperate 

organisms including scleractinian corals and canopy-forming macroalgae (Agostini et al. 

                  



2018). The island has a well described CO2 seep system in Mikawa Bay where ~98% CO2 

gas percolates through the seafloor creating areas of localised acidification (Agostini et al. 

2015; Harvey et al. 2018), and an adjacent bay used as a reference site that is unaffected by 

the CO2 seep system (Fig. 1). The two sites used in this study had very similar temperature, 

salinity, total alkalinity, nutrients, depth, currents, and dissolved oxygen conditions (Agostini 

et al. 2015, 2018; Harvey et al. 2019) (Fig. S2). Benthic communities significantly differ 

between reference and high CO2 sites (Agostini et al. 2018), while planktonic bacterial 

communities do not significantly differ between sites (Kerfahi et al. 2020). 

The carbonate chemistry of the two sites was previously published in Harvey et al. 

(2021) where the experimental period encompassed the present study. Briefly, durafet pH 

sensors (Seafet, Sea-Bird Scientific, Canada) were deployed at 5 m depth at the reference site 

and high CO2 site to record ambient pHtotal and temperature at 15-minute intervals. Salinity 

was measured concurrently using Hobo conductivity loggers (U24-002-C), and discrete 

samples for total alkalinity were collected throughout the study period from 5-6 m depth, 

with total alkalinity measured using an auto-titrator (916 Ti-Touch, Metrohm). Carbonate 

chemistry parameters were calculated using CO2SYS (Pierrot et al. 2006), with pHtotal, total 

alkalinity, temperature, and salinity as input variables (Table 1). 

To survey the early-succession of biofilm communities under reference and high CO2 

conditions, we deployed nine rigs at a depth of 5-7 m within each site between 30
th

 May and 

20
th

 June 2017. Each rig held four 5 cm x 10 cm transparent acrylic slides, 10 cm above the 

benthos, situated with the widest part of the slide facing the surface. Rigs were not designed 

to exclude grazers. One slide was collected from each rig at 5, 10, 15 and 21 days after 

deployment, a total of nine replicates per site and time point. The experimental period of 21 

days was sufficient for visible biofilms to fully colonise the slides (Fig. S7), and aligned with 

                  



previous experimental periods used in ocean acidification studies (e.g. Witt et al. 2011; 

Johnson et al. 2013).  

After collection, a 30 cm
2
 section of biofilm was removed from the upper surface of 

each slide using a sterile razorblade and transferred into a 2 ml cryovial. Cryovials were 

immediately frozen in liquid nitrogen prior to DNA extraction. The remaining 20 cm
2
 section 

of biofilm was removed from the upper surface of each slide using a sterile razorblade and 

transferred to a 2 ml microfuge tube for chlorophyll a analysis. Chlorophyll a was extracted 

from biofilm samples in 1 ml of 96% ethanol over a 24-hour period at -20°C. Following this 

incubation period, each microfuge tube was centrifuged at 5,000 x g for 5 minutes to remove 

particulate matter. The supernatant was used to determine chlorophyll a concentration 

following spectrophotometric methods described in Jeffrey and Humphrey (1975) using a 

UV-1280 UV-VIS Spectrophotometer (Shimadzu Corporation, Kyoto, Japan).  

 

2.2 | Amplicon sequencing 

Genomic DNA was extracted from each biofilm sample using the Qiagen DNEasy Plant Mini 

Kit (Qiagen, Valencia, CA, USA) according to the manufacturer’s instructions. A two-round 

PCR protocol was used to generate paired-end Illumina libraries for 16S and 18S rRNA 

genes, respectively. In the first round, the V4 region of the 16S rRNA gene was amplified 

using the 515F (5’ GTGYCAGCMGCCGCGGTAA) and 806R (5’ 

GGACTACNVGGGTWTCTAAT) primers (Apprill et al. 2015; Parada, Needham and 

Fuhrman 2016), and the V4 region of the 18S rRNA gene was amplified using the 

TAReuk454FWD1 (5’CCAGCASCYGCGGTAATTCC) and TAReukREV3 (5’ 

ACTTTCGTTCTTGATYRA) primers (Stoeck et al. 2010). Both sets of primers were 

modified to allow the downstream attachment of Illumina TruSeq sequencing adapters and 

indexes (Illumina, San Diego, CA, USA; Griffith et al. 2017). Triplicate 25 µl PCR mixtures 

                  



were prepared for each DNA sample using the HiFi Hotstart PCR kit (KAPA Biosystems, 

Boston, MA, USA). The PCR thermocycler program for the 16S rRNA gene had an initial 

denaturation step at 95°C for 120 s, followed by 25 cycles of 98°C for 20 s, 60°C for 30 s, 

and 72°C for 30 s, with a final extension period of 60 s at 72°C. The PCR thermocycler 

program for the 18S rRNA gene was adapted from Massana et al. (2015) and had an initial 

denaturation step at 95°C for 30 s, followed by 10 cycles of 95°C for 30 s, 53°C for 30 s, and 

72°C for 30 s, followed by 15 cycles of 95°C for 30 s, 48 °C for 30 s, and 72°C for 30 s, with 

a final extension period of 300 s at 72°C. Resulting triplicate PCR products from each sample 

were pooled and purified using the Mag-bind TotalPure NGS kit (OMEGA Bio-tek, 

Norcross, GA, USA). The DNA concentration of the purified PCR products was quantified 

using the Qubit dsDNA High Sensitivity Assay (Thermo Fisher Scientific, Waltham, MA, 

USA), and purified PCR products were diluted to 1 ng µl
-1

. 

A second round of PCR was performed to attach Illumina TruSeq sequence adapters 

and indexes. Each PCR mixture was prepared as described above and contained 1 µl of 

diluted first round PCR products. The PCR thermocycler program had an initial denaturation 

step at 95°C for 120 s, followed by 10 cycles of 98°C for 20 s, 60°C for 20 s, and 72°C for 20 

s, with a final extension period of 60 s at 72°C. Second round PCR products were purified, 

quantified, and pooled to generate libraries for the 16S rRNA gene and 18S rRNA gene. 

Pooled libraries were sequenced on the Illumina MiSeq platform (Illumina, San Diego, CA, 

USA) using the V2 (2 x 250 bp) and V3 (2 x 300 bp) reagent kits for the 16S rRNA gene and 

18S rRNA gene, respectively. Sequence data are available through the European Nucleotide 

Archive (accession: PRJEB39326). 

16S rRNA gene and 18S rRNA gene sequences were processed according to the 

Bioconductor workflow for microbiome data analysis (Callahan et al. 2016b). Primers were 

trimmed from forward and reverse reads at positions 20 and 18, respectively, and low-quality 

                  



sequences were truncated from forward and reverse reads at positions 200 and 170, 

respectively for 16S rRNA gene sequences using the filterAndTrim function in the R package 

‘dada2’ (Callahan et al. 2016a). Primers were trimmed from forward and reverse 18S rRNA 

gene sequences at positions 20 and 18, respectively, and low-quality sequences were 

truncated from forward and reverse reads at positions 300 and 275, respectively. For both 16S 

and 18S rRNA gene sequences, a maximum of 2 expected errors (maxEE) were allowed. 

Following trimming, the DADA2 method (Callahan et al. 2016a) was used to infer amplicon 

sequence variants (ASVs) at the single nucleotide resolution. Chimeric sequences were 

removed, and taxonomy was assigned using the RDP Naïve Bayesian classifier (Wang et al. 

2007) against the SILVA release 132 database (Quast et al. 2013) and PR2 version 4.10.0 

database (Guillou et al. 2013) for 16S rRNA gene and 18S rRNA gene ASVs, respectively. 

16S rRNA gene ASVs which were not classified as Bacteria or Archaea, or were classified as 

chloroplasts or mitochondria, were filtered prior to downstream analysis. Similarly, 18S 

rRNA gene ASVs were filtered to remove metazoan sequences, which were not a target of 

this study as the sampling design was not appropriate to representatively sample metazoans, 

and metazoan sequences have the potential to dominate sample read counts. The 20 most 

abundant ASVs in both 16S rRNA gene and 18S rRNA gene datasets were further classified 

through a BLASTn search of the NCBI database excluding uncultured and environmental 

sample sequences (accessed May 2020; Table S1). Resulting ASV tables, taxonomy tables, 

and corresponding environmental metadata were assembled as a phyloseq object (McMurdie 

and Holmes 2013) for 16S rRNA gene and 18S rRNA gene ASVs, respectively. Sequence 

reads were then randomly subsampled to an even depth (16S rRNA gene: 15,893, 18S rRNA 

gene: 11,689 reads), and as a result of this process three 16S rRNA gene samples (high CO2: 

R10D5, R15D5, R15D15) and three 18S rRNA gene samples (reference: R6D21; high CO2: 

R10D5, R15D5) were excluded due to insufficient sequencing depth. Rarefaction curves for 

                  



16S rRNA gene and 18S rRNA gene reads indicate that rarefaction depth was sufficient to 

capture a representative proportion of ASV richness in each sample (Fig. S3).  

 

2.3 | Statistical analyses 

Jaccard dissimilarity, a measure of dissimilarity based on the binary presence or absence of 

species between samples, was used to quantify pairwise dissimilarity between biofilm 

communities using rarefied read counts as an input. Jaccard dissimilarity can be decomposed 

to partition dissimilarity between turnover and nestedness components (Baselga and Orme 

2012; Fig. S1). Pairwise dissimilarity matrices of Jaccard dissimilarity, the turnover 

component of Jaccard dissimilarity (hereafter turnover), and the nestedness component of 

Jaccard dissimilarity (hereafter nestedness), were calculated using the beta.pair function in 

the R package ‘betapart’ (Baselga and Orme 2012). These dissimilarity matrices were then 

used as an input for PERMANOVA (Anderson 2001), implemented through the adonis 

function in the R package ‘vegan’ (Oksanen et al. 2016), to test the effect of CO2 condition 

(reference and high CO2), time point (day 5, day 10, day 15, and day 21), and the interaction 

between CO2 condition and time point, on both prokaryotic and eukaryotic community 

composition. Pairwise comparisons were then performed between reference and high CO2 

conditions at each time point, and between each pair of time points at reference and high CO2 

conditions, respectively.  

Homogeneity of multivariate dispersion of prokaryotic and eukaryotic biofilm communities 

between CO2 conditions and time points, based on Jaccard dissimilarity, were obtained and 

tested permutationally using the betadisper function in the R package ‘vegan’ (Anderson, 

Ellingsen and McArdle 2006). Homogeneity of multivariate dispersions are based on 

distance-to-centroid values, which are calculated as the distance of an individual community 

(sample) to the centroid of the group to which the community belongs (e.g. high CO2, day 5) 

                  



and represents a measure of compositional variability. Homogeneity of multivariate 

dispersions is also an important analysis to inform the interpretations of PERMANOVA 

results, as significant differences in community composition identified by PERMANOVA 

can emerge both from differences in centroid position and from differences in homogeneity 

of multivariate dispersion. Pairwise tests were performed between each pair of time points 

under reference and high CO2 conditions, and between reference and high CO2 conditions at 

each time point, respectively.  

Both PERMANOVA and homogeneity of multivariate dispersions analyses were repeated 

using Bray-Curtis dissimilarity, an alternative metric to Jaccard dissimilarity based on 

abundance rather than presence or absence, for comparison. This comparison allows the 

effect of both the presence and absence of different taxa, and changes in relative abundance 

of taxa, in driving trends in beta-diversity to be better understood. 

 The richness and evenness of prokaryotic and eukaryotic biofilm communities were 

quantified using the Chao1 index (Chao 1984) and Pielou’s evenness (Pielou 1966), 

respectively. A two-way ANOVA with Tukey’s HSD was then used to test the effects of CO2 

condition and time point on eukaryotic and prokaryotic biofilm community richness and 

evenness. 

Finally, the effect of CO2 condition and time point on biofilm chlorophyll a 

concentration was compared using a two-way ANOVA with Tukey’s HSD, to investigate 

differences in the standing stock of photosynthetic organisms in total biofilm communities. 

All statistical analyses were performed in the R environment (R Core Team 2013).  

 

3 | Results 

3.1 | Community composition 

                  



Prokaryotic and eukaryotic community composition were significantly affected by 

both CO2 condition and time point, with a significant interaction between these factors (Table 

2; Fig. 2). Pairwise analysis revealed significant differences in prokaryotic and eukaryotic 

community composition between reference and high CO2 conditions at all time points, and 

between each pair of time points under both reference and high CO2 conditions (Table 2). 

Turnover displayed highly similar patterns to Jaccard dissimilarity, as both CO2 condition 

and time point affected turnover with a significant interaction between these factors (Table 2; 

Fig. 2). In contrast, CO2 condition and time point did not affect nestedness (Table 2; Fig. 2).  

Analysis of homogeneity of multivariate dispersions showed that the compositional 

variability of prokaryotic and eukaryotic biofilm communities significantly differed between 

CO2 conditions (Betadisper; prokaryotes: F = 6.26, p < 0.05; eukaryotes: F = 6.83, p < 0.05; 

Fig. 3). In prokaryotic communities, compositional variability was lower under high CO2 

conditions compared with reference conditions at day 5, day 15, and day 21 (all p < 0.01). In 

eukaryotic communities, compositional variability was lower under high CO2 conditions 

compared with reference conditions at day 5 and day 21 (both p < 0.01). While homogeneity 

of multivariate dispersions significantly differed between reference and high CO2 conditions, 

inspection of NMDS ordinations (Fig 2) shows clear differences in centroid position between 

reference and high CO2 conditions indicating that significant PERMANOVA results 

mentioned above do not exclusively results from differences in homogeneity of multivariate 

dispersions. Repeating PERMANOVA and homogeneity of multivariate dispersion analyses 

based on Bray-Curtis dissimilarity, rather than Jaccard dissimilarity, yielded highly similar 

results (Table S1, Fig. S4). 

At the Phylum level (further classified by Class for Proteobacteria), prokaryotic communities 

were dominated by Alphaproteobacteria (reference: 39.7% ± 18.9 (mean ± SD), high CO2: 

40.7% ± 8.7) and Bacteroidetes (reference: 38.7% ± 12.4, high CO2: 36.0% ± 7.7) under both 

                  



reference and high CO2 conditions across all time points during the study (Fig. 4). 

Gammaproteobacteria were a consistent feature of prokaryotic communities under high CO2 

conditions (16.6% ± 4.4) but represented a smaller and more variable component of 

communities under reference conditions (12.6% ± 6.7). Similarly, Verrucomicrobia were a 

variable component of prokaryotic communities under reference conditions (6.1% ± 7.0), but 

were a smaller and less variable component of prokaryotic communities under high CO2 

conditions (3.2% ± 1.8). Profiles of prokaryotic community composition at the Order level 

are included in the supplementary information (Fig. S5). Trends in prokaryotic biofilm 

community composition amongst abundant ASVs were subtle under reference conditions, 

though Loktanella sp. asv_8, Rhodobacteraceae sp. asv_6, and Rubritalea sp. asv_14 

sporadically dominated samples (Fig. 4). In contrast, under high CO2 conditions, prokaryotic 

communities displayed clear structuring through time amongst the most abundant ASVs. 

Under high CO2 conditions, Rhodobacteraceae sp. asv_6 (4.1% ± 1.0), Rhodobacteraceae sp. 

asv_27 (3.6% ± 0.8), Thalassobius aestuarii asv_35 (3.3% ± 0.7), and Rhodobacteraceae sp. 

asv_5 (2.9% ± 0.7) had the greatest relative abundance at day 5. By day 21 Fabivirga 

thermotolerans asv_9 (4.3% ± 2.3), Tateyamaria sp. asv_17 (4.4% ± 0.8), Alteromonas 

macleodii asv_21 (4.1% ± 2.4), and Kordia sp. asv_13 (3.9% ± 1.4) had the greatest relative 

abundance.  

At the Division level, other Stramenopiles, which included Oomycota and 

Labyrinthulea, represented a substantial but highly variable component of eukaryotic 

communities under reference conditions (15.0% ± 15.4; Fig. 5) but not under high CO2 

conditions (4.5% ± 4.3). Similarly, Ciliophora were a greater component of eukaryotic 

communities under reference conditions (6.3% ± 4.9) than under high CO2 conditions (1.8% 

± 1.3). In contrast, Rhodophyta represented a greater proportion of eukaryotic communities 

under the high CO2 conditions (14.1% ± 9.9) compared to under reference conditions (3.6% ± 

                  



3.3). At day 5, Chlorophyta were a substantial component of eukaryotic communities under 

both reference and high CO2 conditions (reference: 13.8% ± 5.7, high CO2: 24.9% ± 5.8), but 

the relative abundance of Chlorophyta was lower at other time points (reference: 2.3% ± 2.0, 

high CO2: 0.9% ± 0.64). From day 10 onwards, Haptophyta had a greater relative abundance 

under high CO2 conditions (34.9% ± 13.5) than under reference conditions (16.0% ± 10.4). 

Profiles of eukaryotic community composition at the Order level are included in the 

supplementary information (Fig. S6). Generally, division-level trends in eukaryotic 

community composition were driven by a small number of highly abundant ASVs (Fig. 5). At 

day 5, reference condition communities were dominated by Ectocarpus sp. asv_3 (22.4% ± 

14.8) and Anisolpidium rosenvingei asv_6 (22.4% ± 20.1). Under high CO2 conditions, 

Phaeophyceaea sp. asv_2 (15.2% ± 5.6) and Phaeophyceaea sp. asv_12 (16.7% ± 4.0) were 

the most abundant taxa, whilst Ectocarpus sp. asv_3 (1.5% ± 0.4) and Anisolpidium 

rosenvingei asv_6 (0.2% ± 0.4) were rare or absent. From day 10 onwards, Prymnesium sp. 

asv_1 (14.3% ± 9.9) and Phaeophyceaea sp. asv_2 (22.0% ± 20.7) had the greatest relative 

abundance under reference conditions, whilst Prymnesium sp. asv_1 (30.8% ± 12.1) 

dominated under high CO2 conditions and Biddulphia biddulphiana asv_11 (3.5% ± 9.2%) 

appeared sporadically, colonising 26 of 34 slides with a maximum relative abundance of 

38.9%.  

 

3.2 | Richness and evenness 

Prokaryotic richness (Chao1 index) was significantly affected by time point (F3,61 = 9.953, p 

< 0.001) but not CO2 condition (F1,61 = 0.027, p > 0.05), with no significant interaction 

between these factors (F3,61 = 0.623, p > 0.05; Fig. S8a). Prokaryotic richness was lower at 

day 5 than at day 10 under reference conditions (p < 0.05), and was higher at day 10 than day 

21 under both reference and high CO2 conditions (p < 0.05) but did not differ between any 

                  



other time points (all p > 0.05). Prokaryotic biofilm community evenness (Pielou’s evenness) 

was significantly affected by CO2 condition (F1,61 = 5.153, p < 0.05) and time point (F3,61 = 

3.995, p > 0.05), with no significant interaction between these factors (F3,61 = 0.058, p > 0.05; 

Fig. S8c). However, pairwise comparisons revealed no significant difference between 

reference and high CO2 conditions at any time point (all p > 0.05; Fig. S8c). 

Eukaryotic richness was significantly affected by time point (F3,61 = 67.460, p < 0.001), but 

not CO2 condition (F1,61 = 1.598, p > 0.05), with a significant interaction present between 

these factors (F3,61 = 4.883, p < 0.05; Fig. S8b). Pairwise comparisons revealed that 

eukaryotic richness under high CO2 conditions was greater at day 5 than day 15 and day 21 

(both p < 0.05), but did not differ between any other time points under either reference or 

high CO2 conditions (all p > 0.05). Eukaryotic evenness was significantly affected by time 

point (F3,61 = 3.894, p < 0.05) but not CO2 condition (F1,61 = 0.079, p > 0.05) with a 

significant interaction between these factors (F3,61 = 3.772, p < 0.05). However, pairwise 

comparisons revealed no significant differences between time points under either reference or 

high CO2 conditions (all p > 0.05; Fig S8d).  

   

3.3 | Chlorophyll a 

Chlorophyll a concentration was significantly affected by time point (F3,64 = 18.67, p < 

0.001), but not CO2 condition (F1,64 = 0.18, p > 0.05), and there was no significant interaction 

between these factors (F3,64 = 0.76, p >0.05). Chlorophyll a concentrations under both the 

reference and high CO2 conditions were greater at day 10, day 15, and day 21, when 

compared with day 5 (all p < 0.001), but did not significantly differ between any other time 

points (Fig. S9).  

 

4 | Discussion 

                  



4.1 | Community composition 

Prokaryotic and eukaryotic community composition under high CO2 conditions differed from 

reference conditions at all time points in this study, in line with findings from Mediterranean 

CO2 seeps on both natural (Lidbury et al. 2012; Johnson et al. 2013) and artificial substrata 

(Kerfahi et al. 2014; Taylor et al. 2014; Johnson et al. 2015). By partitioning Jaccard 

dissimilarity into turnover and nestedness components, we demonstrate that species turnover 

rather than nestedness is the primary driver of differences in community composition 

between reference and high CO2 conditions for both prokaryotes and eukaryotes (Fig. 2). 

These data suggest that environmental conditions at reference and high CO2 sites represent 

distinct niches, which select for distinct cohorts of prokaryotic and eukaryotic microbes. 

Nestedness would be the dominant ecological pattern if biofilm communities developing 

under high CO2 conditions consisted of a CO2-tolerant subset of species present under 

reference conditions. However, this was not the case, in-line with the notion that high CO2 

conditions can act as both a stressor and a resource for photosynthetic organisms in coastal 

marine ecosystems (Connell et al. 2018).  

Similar differences in prokaryotic and eukaryotic community composition between 

reference and high CO2 sites emerged when repeating these analyses based on Bray-Curtis 

dissimilarity, rather than Jaccard dissimilarity. This indicates that differences in the relative 

abundance of organisms, in addition to the presence and absence of organisms, contribute to 

difference in community composition between sites and timepoints (Table S1, Fig. S4). It 

should further be noted that differences in benthic community assemblages at each site 

(including reduced hard coral cover, reduced crustose coralline algae cover, reduced 

calcifying fauna, and increased fleshy algae cover at high CO2 sites; Agostini et al. 2018) 

may result in differences in recruitment pools from which biofilms assemble at each site, and 

                  



consequently this could be a mechanism which contributes to differences in biofilm 

community composition observed in this study.  

Both prokaryotic and eukaryotic communities displayed greater homogeneity under high CO2 

conditions (Fig. 3). Greater homogeneity in community composition under high CO2 

conditions has previously been observed in macroscopic biofouling (Brown, Therriault and 

Harley 2016; Brown et al. 2018; Brown, Bernhardt and Harley 2020) and algal communities 

(Porzio, Buia and Hall-Spencer 2011; Kroeker, Micheli and Gambi 2012). Olden et al. (2004) 

highlight that homogenisation of biotic communities can result in an increased vulnerability 

of ecosystems to environmental changes (e.g. marine heatwaves), decreased resilience to 

disturbance (e.g. severe weather), and altered ecosystem function (e.g. biogeochemical 

cycling) primarily as a result of reduced functional diversity. Consequently, it is pertinent to 

establish whether the increased homogenisation of biofilm, biofouling, and algal communities 

under high CO2 conditions can be generalised broadly to coastal marine ecosystems.  

 

4.2 | Succession 

Prokaryotic and eukaryotic communities differed significantly between each successive time 

point in this study, driven primarily by species turnover (Fig. 2). Kroeker et al. (2012) 

observed that benthic communities colonising settlement tiles under ambient and high CO2 

conditions developed similarly through early successional stages, only diverging after 3.5 

months as fleshy algae outcompeted calcareous taxa. In our study, the composition of both 

prokaryotic and eukaryotic communities was distinct between reference and high CO2 

conditions at day 5, before chlorophyll a concentration had peaked (Fig. S9), indicating that 

community composition differed before slides were completely colonised. These data suggest 

that high CO2 conditions impact biofilm community composition through early stages of 

biofilm development before competition for space becomes a factor.  

                  



 We also note that 18S rRNA gene sequences belonging to the Class Phaeophyceaea 

and Genus Ectocarpus (a member of the Phaeophyceaea) appear to be more prevalent and 

abundant under reference conditions (Fig. 5a, asv_3, asv_2) suggesting that high CO2 

conditions may affect macroalgal recruitment and succession as demonstrated in previous 

studies (Porzio, Buia and Hall-Spencer 2011; Porzio, Garrard and Buia 2013; Harvey et al. 

2021b). However, the sampling period used in this study was not sufficient for the 

investigation of macroalgal community succession. 

 

4.3 | Richness and evenness 

The richness and evenness of prokaryotic communities did not significantly differ 

between reference and high CO2 sites at any time point (Fig. S8a, c). Previous CO2 seep 

studies have reported contrasting effects of ocean acidification on prokaryotic diversity. 

Hassenrück et al. (2017) reported no effect of high CO2 on prokaryotic richness over 13-

months of biofilm development. Kerfahi et al. (2014) showed that prokaryotic diversity in 

epipelic communities was greater under high CO2 conditions. Similarly, Lidbury et al. (2012) 

found that prokaryotic diversity was enhanced under high CO2 conditions, but that these 

effects were modulated by light conditions, and Kerfahi et al. (2020) found that prokaryotic 

diversity was greater under high CO2 conditions in intertidal epilithic biofilms. In contrast, 

Taylor et al. (2014) reported that prokaryotic diversity in epilithic biofilms was lower under 

high CO2 conditions.  

Eukaryotic community richness was significantly enhanced under high CO2 

conditions at day 5, but at no other time point (Fig. S8b). Eukaryotic richness did not differ 

between conditions beyond day 5, aligning with the findings of previous CO2 seep studies of 

eukaryotic biofilm communities (Lidbury et al. 2012) but contrasting with those focussing 

exclusively on photosynthetic eukaryotes (Johnson et al. 2013, 2015). Eukaryotic evenness 

                  



did not significantly differ between reference and high CO2 conditions at any time point (Fig 

S8d), in line with the findings of previous investigations of eukaryotic biofilm communities 

(Lidbury et al. 2012) but contrasting with studies of photosynthetic eukaryotes which show 

the dominance of a smaller cohort of taxa under high CO2 conditions (Johnson et al. 2013, 

2015).  

Our study provides greater taxonomic resolution and depth than previous reports as a 

result of methodological differences, yet it is apparent that the effects of ocean acidification 

on biofilm richness and evenness can differ profoundly between substrates, studies, and 

regions. Moreover, previous reports indicate that factors other than the CO2 can have a 

substantially greater effect on prokaryotic diversity over long time periods, potentially 

masking the comparatively subtle effects of CO2 (Hassenrück et al. 2017). Taken together, 

these data suggest the effects of elevated CO2 on biofilm community richness and evenness 

are dependent on complex interactions with other environmental variables, and defining 

general rules remain elusive.  

 

4.4 | Harmful algae 

From day 10 onwards, eukaryotic communities under high CO2 conditions were 

dominated by Prymnesium sp. (Fig. 5a; Fig. 6a), a genus of mixotrophic golden algae 

responsible for the production of prymnesins and other compounds with toxic and 

allelopathic effects (Manning and La Claire 2010; Seoane, Riobó and Franco 2017). The 

species-level classification of Prymnesium sp. ASVs in this study could not be distinguished 

based on 18S rRNA gene V4 region amplicons. However, toxicity is ubiquitous across all 

strains of the genus examined to date (Seoane, Riobó and Franco 2017). Prymneisum pavrum 

specifically can form harmful blooms resulting in large-scale fish kills with significant 

socioeconomic implications (Roelke et al. 2016). Furthermore, Prymnesium pavrum consume 

                  



microbes affected by their toxins (Roelke et al. 2016), whilst the allelopathic nature of 

prymnesins can reduce grazing pressure and suppress competition from other microalgae 

(Fistarol, Legrand and Granéli 2003; Roelke et al. 2016). These factors simultaneously 

increase the fitness of Prymnesium pavrum and decrease the fitness of competitors (Roelke et 

al. 2016). Prosser et al. (2012) found that low pH conditions suppress bloom formation in 

Prymnesium parvum, but they manipulated pH through sulfuric acid addition rather than CO2 

addition, and consequently their study is not directly comparable. We suggest that 

Prymnesium sp. may be able to capitalise on the increased availability of dissolved inorganic 

carbon under high CO2 conditions, which increases toxin production in other microalgae 

(Hall-Spencer and Allen 2015), allowing them to dominate the eukaryotic component of 

biofilms. Riebesell et al. (2018) have also shown that some toxic microalgae are able to 

capitalise on projected near-future CO2 concentrations at the ecosystem level.  

The large chain-forming diatom Biddulphia biddulphiana sporadically colonised 

slides under high CO2 conditions (Fig. 5a; Fig. 6b). These diatoms can form thick mats of 

turf-like algae that overgrow corals and macroalgae, smothering the benthos (Galland and 

Pennebaker 2012; Harvey et al. 2019). However, little is known about the environmental 

conditions which induce such events (Galland and Pennebaker 2012). Our findings 

demonstrate that these diatoms are able to rapidly colonise available substrate under high 

CO2 conditions, suggesting that the availability of inorganic carbon may be an important 

environmental factor in the formation of Biddulphia biddulphiana blooms. Indeed, under 

high CO2 conditions around Shikine Island, Biddulphia biddulphiana blooms have been 

shown to overgrow benthic habitats driving the simplification of these coastal ecosystems 

(Harvey et al. 2019, 2021a, 2021b). Biddulphia biddulphiana blooms were present near the 

high CO2 site during the experimental period, but not where slides were deployed. These data 

                  



add to growing body of evidence indicating that large chain-forming diatom species may 

benefit from high CO2 conditions (Johnson et al. 2013, 2015).   

 

4.5 | Implications for ecosystem shifts 

Differences in the composition of prokaryotic and eukaryotic biofilm communities between 

reference and high CO2 sites may affect the recruitment of invertebrates and habitat-forming 

organisms, which has previously been shown to be impacted by ocean acidification (Cigliano 

et al. 2010; Fabricius et al. 2015; Allen et al. 2016). Espinel-Velasco et al. (2018) highlight 

the importance of biofilm community composition in modulating the effects of ocean 

acidification on invertebrate recruitment. Nelson et al. (2020) showed altered settlement of 

serpulid worms on biofilms established under elevated CO2 conditions, indicating a 

mechanistic role of altered biofilm community composition. Moreover, Fabricius et al. (2017) 

found that scleractinian coral recruitment was more severely affected by pCO2-associated 

shifts in substratum composition than by the direct effects of seawater chemistry. Our 

findings demonstrate clear shifts in biofilm community composition under high CO2 

conditions, which may have consequences spanning multiple trophic levels.  

 Harvey et al. (2021b) investigated benthic community assembly over a 12-month 

period at the same reference and high CO2 sites used in this study. They found reduced 

recruitment of macrophyte algae, and increased recruitment of microalgae and turf-forming 

algae at under high CO2 conditions. Reciprocal transplants of communities preestablished 

under high CO2 conditions to the reference site were indicative of a high degree of resilience 

in benthic community composition, as transplanted communities became indistinguishable 

from those established under reference CO2 conditions over a 6-month period following 

transplantation. This suggests that while biofilm community composition may play an 

important role in the early stages of benthic community development, they are unlikely to be 

                  



responsible for the fixation (or ‘locking in’) of simplified turf algal communities 

characteristic of high CO2 sites (Harvey et al. 2021a). Nonetheless, shifts in biofilm 

community composition and consequent effects on the recruitment of invertebrates and 

habitat-forming organisms may contribute to the restructuring of coastal marine environments 

and associated impacts on ecosystem services observed under high CO2 conditions at CO2 

seeps globally (Hall-Spencer et al. 2008; Fabricius et al. 2011; Agostini et al. 2018; Hall-

Spencer and Harvey 2019). 

 

4.6 | Summary 

Naturally elevated seawater CO2 concentrations altered the composition of prokaryotic and 

eukaryotic biofilm communities through early successional stages, whilst the richness and 

evenness of these communities were unaffected. Prokaryotic and eukaryotic communities 

were more homogeneous under high CO2 conditions, adding to a growing body of literature 

reporting increased homogeneity in community composition under high CO2 conditions. 

Species turnover, rather than nestedness, was the primary driver differences in prokaryotic 

and eukaryotic community composition between reference and high CO2 conditions. The 

dominance of the toxin-producing golden algae genus Prymnesium and the emergence of the 

large chain-forming diatom Biddulphia biddulphiana under high CO2 conditions add to 

concerns that ocean acidification may systematically favour harmful algae (Hall-Spencer and 

Allen 2015; Riebesell et al. 2018). This study reveals the ecological patterns that underpin the 

effect of elevated CO2 on biofilm communities, which are critical to understanding how these 

fundamental marine features may respond to near-future conditions.  
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Figure 1. (a) Map of Mikawa Bay, at Shikine Island. Reference and high CO2 sites are 

indicated by blue and red points, respectively. (b) Map of Japan with a black bounding-box 

around Shikine Island. (c) Map of Shikine Island, with a black bounding-box around the 

Mikawa Bay region. (d, e) Photographic insets showing representative seascapes at the 

reference and high CO2 sites, taken during sampling for this study. 

  

                  



 
Figure 2. nMDS ordinations of prokaryotic (16S rRNA gene) and eukaryotic (18S rRNA 

gene) biofilm community composition under reference (open circles) and high CO2 (filled 

circles) conditions at each time point, based on Jaccard dissimilarity, the turnover component 

of Jaccard dissimilarity, and the nestedness component of Jaccard dissimilarity, respectively. 

Stress values are indicated in the upper right corner of each plot.  

                  



 

Figure 3. Distance to centroid (compositional variability) based on Jaccard dissimilarity in 

(a) prokaryotic and (b) eukaryotic biofilm communities under reference (n = 9) and high CO2 

(n = 9) conditions at each time point. Points represent the mean value, error bars represent the 

standard deviation. Asterisks denote time points where distance to centroid differs 

significantly between sites (p < 0.05).  

                  



 

Figure 4. (a) Heatmap of the 20 most abundant ASVs in prokaryotic biofilms under reference 

and high CO2 conditions. Taxonomic classification of ASVs represents the best match within 

the NCBI database (Table S1). ASVs are ordered according to the neatmap algorithm 

(Rajaram and Oono 2010). Colour bar indicates the proportion of reads in each sample 

attributed to a particular ASV (relative abundance). White asterisk indicates relative 

abundance which exceeds the range of the colour scale. (b) Phylum level composition of 

prokaryotic biofilm communities under reference and high CO2 conditions.   

                  



 

Figure 5. (a) Heatmap of the 20 most abundant eukaryotic ASVs in biofilms under reference 

and high CO2 conditions. Taxonomic classification of ASVs represents the best match within 

the NCBI database (Table S1). ASVs are ordered according to the neatmap algorithm 

(Rajaram and Oono 2010). Colour bar indicates the proportion of reads in each sample 

attributed to a particular ASV (relative abundance). (b) Division level composition of 

eukaryotic biofilm communities under reference and high CO2 conditions. 

  

                  



 

Figure 6. Bar plot of the relative abundance of summed (a) Prymnesium sp. reads and (b) 

Biddulphia biddulphiana reads under reference and high CO2 conditions at each time point, 

based on 18S rRNA gene sequences.  

  

                  



Tables 

Table 1. Carbonate chemistry under reference and high CO2 conditions at Shikine Island, 

Japan. The pHT (Reference, n = 1964; High CO2, n = 10818), salinity (Reference, n = 1964; 

High CO2, n = 10818), and total alkalinity (Reference, n = 56; High CO2, n = 47) are 

measured parameters. All measurements were taken at 5-6 m depth. All other values were 

calculated from measured values using CO2SYS (Pierrot et al. 2006). Values shown are 

mean ± standard deviation. Table reproduced from Harvey et al. (2021b). 

 Reference   High CO2  

pH total 8.137 ± 0.056  7.788 ± 0.106 

Salinity (psu) 34.504 ± 0.427  34.351 ± 0.484 

AT (mol kg-1) 2264.29 ± 15.34  2268.33 ± 19.45 

pCO2 (atm) 316.057 ± 47.466  841.148 ± 291.762 

DIC (mol kg-1) 1962.694 ± 34.376  2125.785 ± 39.381 

HCO3
- (mol kg-1) 1740.629 ± 55.084  1984.889 ± 52.510 

CO3
2- (mol kg-1) 211.979 ± 22.221  115.150 ± 21.308 

 calcite 5.087 ± 0.534  2.771 ± 0.512 

 aragonite 3.301 ± 0.348  1.805 ± 0.336 

 

  

                  



Table 2. Global and pairwise PERMANOVA comparisons of prokaryotic and eukaryotic 

biofilm community composition between sites and time points based on Jaccard dissimilarity, 

the turnover component of Jaccard dissimilarity, and nestedness component of Jaccard 

dissimilarity, respectively.  

  Jaccard Dissimilarity Turnover Nestedness 

  Pseudo-F R2 p Pseudo-F R2 p Pseudo-F R2 p 

Prokaryotes          

Condition 16.48 0.16 0.001 30.242 0.24 0.001 -16.607 -0.035 1 

Time 6.07 0.17 0.001 7.598 0.181 0.001 1.042 0.066 0.434 

Condition x Time 2.87 0.08 0.001 3.959 0.094 0.001 0.003 0 0.87 

          

Reference-High CO2 (Day 5) 4.156 0.229 0.001 6.453 0.316 0.002 -1.877 -0.155 1 

Reference-High CO2 (Day 10) 9.037 0.361 0.001 14.768 0.48 0.001 -5.396 -0.509 1 

Reference-High CO2 (Day 15) 5.953 0.284 0.001 10.949 0.42 0.001 -4.966 -0.495 1 

Reference-High CO2 (Day 21) 6.402 0.286 0.001 10.461 0.395 0.001 -5.338 -0.501 1 

          

Day 5-Day 10 (Reference) 3.532 0.181 0.002 4.684 0.226 0.001 1.533 0.087 0.261 

Day 10-Day 15 (Reference) 2.506 0.135 0.003 2.656 0.142 0.003 3.866 0.195 0.059 

Day 15-Day 21 (Reference) 1.781 0.1 0.026 2.01 0.116 0.015 1.482 0.085 0.243 

Day 5-Day 10 (High CO2) 5.813 0.293 0.001 6.84 0.328 0.001 -2.702 -0.239 0.998 

Day 10-Day 15 (High CO2) 3.26 0.179 0.002 2.244 0.13 0.017 3.729 0.199 0.082 

Day 15-Day 21 (High CO2) 3.096 0.171 0.001 4.247 0.221 0.001 -0.38 -0.026 0.937 

          

Eukaryotes          

Condition 12.66 0.14 0.001 17.5 0.178 0.001 -22.75 -0.553 1 

Time 3.81 0.12 0.001 4.36 0.133 0.001 -0.38 -0.028 0.889 

Condition x Time 2.24 0.07 0.001 2.25 0.068 0.001 1.351 0.098 0.356 

          

Reference-High CO2 (Day 5) 3.032 0.178 0.001 2.998 0.176 0.001 3.783 0.213 0.06 

Reference-High CO2 (Day 10) 5.928 0.27 0.001 8.224 0.34 0.001 -6.481 -0.681 1 

Reference-High CO2 (Day 15) 5.626 0.26 0.001 7.054 0.306 0.001 -6.789 -0.737 1 

Reference-High CO2 (Day 21) 5.016 0.251 0.001 6.641 0.307 0.001 -5.186 -0.528 1 

          

Day 5-Day 10 (Reference) 3.393 0.175 0.001 4.413 0.216 0.001 -3.624 -0.293 1 

Day 10-Day 15 (Reference) 2.053 0.114 0.002 1.752 0.099 0.002 3.522 0.18 0.077 

Day 15-Day 21 (Reference) 1.422 0.066 0.036 1.584 0.096 0.034 0.44 0.029 0.611 

Day 5-Day 10 (High CO2) 3.89 0.217 0.001 4.273 0.234 0.001 -1.333 -0.105 0.991 

Day 10-Day 15 (High CO2) 1.909 0.107 0.001 1.639 0.093 0.005 7.44 0.317 0.02 

Day 15-Day 21 (High CO2) 1.657 0.094 0.001 1.727 0.097 0.002 1.852 0.104 0.212 

 

                  



Supplementary Material 
 

Table S1. Global and pairwise PERMANOVA comparisons of prokaryotic and eukaryotic 

biofilm community composition between sites and time points based on Bray-Curtis 

dissimilarity.  

 

  Bray-Curtis Dissimilarity 

  Pseudo-F R2 p 

Prokaryotes    

Condition 24.01 0.18 0.001 

Time 11.23 0.26 0.001 

Condition x Time 4.31 0.10 0.001 

    

Reference-High CO2 (Day 5) 9.718 0.410 0.001 

Reference-High CO2 (Day 10) 12.549 0.440 0.001 

Reference-High CO2 (Day 15) 7.695 0.339 0.001 

Reference-High CO2 (Day 21) 8.453 0.346 0.001 

    

Day 5-Day 10 (Reference) 7.211 0.311 0.001 

Day 10-Day 15 (Reference) 2.578 0.139 0.007 

Day 15-Day 21 (Reference) 1.532 0.087 0.123 

Day 5-Day 10 (High CO2) 15.009 0.517 0.001 

Day 10-Day 15 (High CO2) 5.696 0.275 0.001 

Day 15-Day 21 (High CO2) 6.788 0.312 0.001 

    

Eukaryotes    

Condition 24.15 0.18 0.001 

Time 11.20 0.15 0.001 

Condition x Time 4.70 0.10 0.001 

    

Reference-High CO2 (Day 5) 11.649 0.454 0.001 

Reference-High CO2 (Day 10) 8.7893 0.355 0.001 

Reference-High CO2 (Day 15) 9.367 0.369 0.001 

Reference-High CO2 (Day 21) 8.007 0.348 0.002 

    

Day 5-Day 10 (Reference) 10.752 0.402 0.001 

Day 10-Day 15 (Reference) 2.176 0.120 0.045 

Day 15-Day 21 (Reference) 2.053 0.120 0.084 

Day 5-Day 10 (High CO2) 12.602 0.474 0.001 

Day 10-Day 15 (High CO2) 2.252 0.123 0.041 

Day 15-Day 21 (High CO2) 2.527 0.136 0.023 

 

                  



Table S2. Taxonomic classification of top 20 prokaryotic and eukaryotic ASVs according to the NCBI database (BLASTn; accessed May 2020). 

Top hit based on E-value is displayed. Where multiple sequences returned maximal E-values, up to three sequences are listed.  

 
ASV ID NCBI Match ID Max Score Total Score Query Cover E value Per. Ident Accession 

Prokaryotes 
       

Rhodobacteraceae sp. asv_25 Thalassobacter sp. AI_3  459 459 1 4E-125 0.9921 LC543481.1 

 
Octadecabacter sp. strain CP135  459 459 1 4E-125 0.9921 MH061224.1 

 
Pseudooctadecabacter sp. strain JL3664  459 459 1 4E-125 0.9921 KX989201.1 

Loktanella sp. asv_8 Loktanella sp. SW2211  470 470 1 2E-128 1 LR722710.1 

 
Loktanella tamlensis isolate ZB_2_224 470 470 1 2E-128 1 LR722708.1 

 
Loktanella sediminilitoris isolate HaHa_3_185 470 470 1 2E-128 1 LR722707.1 

Rhodobacteraceae sp. asv_26 Tateyamaria omphalii strain CM_D10_26  470 470 1 2E-128 1 MT452294.1 

 
Pseudooceanicola nitratireducens strain CM_D10_24  470 470 1 2E-128 1 MT452292.1 

 
Tateyamaria omphalii strain CM_D1_26  470 470 1 2E-128 1 MT449067.1 

Rubritalea sp. asv_14 Rubritalea sp. shu-10-MA45-1  425 425 1 4E-115 0.9685 AB543682.1 

Litorimonas taeanensis asv_11 Litorimonas sp. strain WHOIMSCC53216RPlateR77272E08  470 470 1 2E-128 1 MF599746.1 

 
Litorimonas taeanensis strain G5  470 470 1 2E-128 1 NR_116589.1 

Tateyamaria sp. asv_17 Tateyamaria sp. KMU-156  464 464 1 8E-127 0.9961 LC464518.1 

 
Tateyamaria omphalii strain 3 HE 3A  464 464 1 8E-127 0.9961 MK224714.1 

 
Tateyamaria sp. strain Alg231-49  464 464 1 8E-127 0.9961 KY363630.1 

Kordia sp. asv_13 Kordia ulvae strain SC2  470 470 1 2E-128 1 NR_149793.1 

 
Kordia algicida  470 470 1 2E-128 1 FJ015036.1 

Alteromonas macleoidii asv_21 Alteromonas macleodii  425 425 1 4E-115 0.9685 FN811296.1 

 
Alteromonas macleodii  425 425 1 4E-115 0.9685 AF173965.1 

Fabivirga thermotolerans asv_9 Fabivirga thermotolerans strain A-4  364 364 1 9E-97 0.9252 NR_148597.1 

Corceitalea litorea asv_16 Croceitalea litorea strain CBA3205  470 470 1 2E-128 1 NR_145873.1 

Hyphomonas sp. asv_36 Hyphomonas sp. Mor2  448 448 1 9E-122 0.9843 CP017718.1 

Verrucomicrobia sp. asv_12 Verrucomicrobia bacterium P1_50_6AA2  425 425 1 4E-115 0.9685 KT906996.1 

 
Verrucomicrobia bacterium P1_50_6AA1  425 425 1 4.00E-115 0.9685 KT906995.1 

 
Verrucomicrobia bacterium IMCC11022  425 425 1 4E-115 0.9685 KJ411775.1 

Mesoflavibacter zeaxanthinifaciens asv_19 Mesoflavibacter zeaxanthinifaciens isolate 32-C4 436 436 1 2E-118 0.9764 LK022170.1 

 
Mesoflavibacter zeaxanthinifaciens isolate 31-C4 436 436 1 2E-118 0.9764 LK022169.1 

Winogradskyella sp. asv_28 Winogradskyella sp. PC-19  470 940 1 2E-128 1 CP019332.1 

Thalassobius aestuarii asv_35 Thalassobius aestuarii strain F84013  459 459 1 4E-125 0.9921 HQ908719.1 

Hyphomonadaceae sp. asv_15 Hyphomonadaceae bacterium strain H05Y-209  459 459 1 4E-125 0.9921 MK493580.1 

 
Hyphomonas sp. DG1513  459 459 1 4E-125 0.9921 KC295391.1 

 
Hyphomonas sp. DG1448  459 459 1 4E-125 0.9921 KC295358.1 

                  



Rhodobacteraceae sp. asv_27 Pseudopelagicola sp. strain LW3-34  453 453 1 2E-123 0.9882 MG818318.1 

 
Aliiroseovarius sp. strain PrR0016  453 453 1 2E-123 0.9882 MF948946.1 

 
Oceanicola sp. LZD010  453 453 1 2E-123 0.9882 KP639146.1 

Rhodobacteraceae sp. asv_5 Jannaschia sp. UDC482  470 470 1 2E-128 1 HM032013.1 

 
Thalassobius sp. UST061013-004  470 470 1 2E-128 1 EF587951.1 

Sulfitobacter sp. asv_24 Sulfitobacter porphyrae strain ZFX1  470 470 1 2E-128 1 MT012050.1 

 
Sulfitobacter pacificus isolate R2A112_6_28 470 470 1 2E-128 1 LR722702.1 

 
Sulfitobacter porphyrae strain S12B-106  470 470 1 2E-128 1 MK493601.1 

Rhodobacteraceae sp. asv_6 Maritimibacter sp. DP07  470 470 1 2E-128 1 MN381951.1 

 
Planktotalea frisia isolate HaHa_3_181 470 470 1 2E-128 1 LR722720.1 

 
Rhodobacteraceae bacterium DN153  470 470 1 2E-128 1 LC193134.1 

        
        

Eukaryotes 
       

Prymnesium sp. asv_20 Prymnesium pienaarii strain Xmm1S4  680 680 1 0 0.9885 KY054990.1 

 
Prymnesium simplex isolate DHmm2W3  680 680 1 0 0.9895 KU561118.1 

 
Prymnesium pienaarii isolate DHmm2W1  680 680 1 0 0.9895 KU561110.1 

Prymnesium sp. asv_1 Prymnesium pienaarii strain Xmm1S4  675 675 1 0 0.9869 KY054990.1 

 
Prymnesium simplex isolate DHmm2W3  675 675 1 0 0.9869 KU561118.1 

 
Prymnesium pienaarii isolate DHmm2W1  675 675 1 0 0.9869 KU561110.1 

Vampyrellida sp.  asv_33 Vampyrellida sp. CAraX  243 243 1 7E-60 0.7864 KC779514.1 

Vampyrellida sp.  asv_7 Vampyrellida sp. CAraX  237 237 1 3E-58 0.7839 KC779514.1 

Halamphora halophila asv_31 Halamphora halophila isolate 9995-AMPH185  656 656 1 0 0.9839 MG027335.1 

Prymnesium sp. asv_40 Prymnesium faveolatum strain ALGO HAP79 704 704 1 0 1 AM491005.2 

 
Prymnesium calathiferum strain CCMP 707 704 704 1 0 1 AM491008.2 

 
Prymnesium annuliferum strain ALGO HAP47 704 704 1 0 1 AM491007.2 

Cylindrotheca closterium asv_42 Cylindrotheca closterium strain UPMC-A0076  704 704 1 0 1 MH166733.1 

 
Cylindrotheca closterium  704 704 1 0 1 KY045848.1 

 
Cylindrotheca sp. isolate UTKSA0079  704 704 1 0 1 KX981848.1 

Labyrinthula sp. asv_5 Labyrinthula sp. OVP-2019a strain  448 448 1 1E-121 0.8877 MN101174.1 

Anisolpidium rosenvingei asv_6 Anisolpidium rosenvingei isolate Roscoff 2014  676 676 1 0 0.9844 KU764783.1 

 
Anisolpidium rosenvingei isolate A_ros_Perharidy_2015-4  676 676 1 0 0.9844 KU752534.1 

Ectocarpus sp. asv_3 Ectocarpus fasciculatus  728 728 1 0 1 KU752533.1 

 
Ectocarpus fasciculatus strain Ec395 728 728 1 0 1 FN564441.1 

 
Ectocarpus siliculosus strain 3477  728 728 1 0 1 AY307398.1 

Pseudulvella consociata asv_23 Pseudulvella consociata culture-collection CCMP:1676  640 640 1 2E-179 0.971 JF680953.1 

Phaeophyceae sp. asv_14 Adenocystis utricularis  662 662 1 0 0.9695 KY987592.1 

 
Halothrix ambigua  662 662 1 0 0.9695 AY232607.1 

 
Myrionema strangulans  662 662 1 0 0.9695 AY232605.1 

                  



Phaeophyceae sp. asv_2 Adenocystis utricularis  706 706 1 0 0.9898 KY987592.1 

 
Halothrix ambigua  706 706 1 0 0.9898 AY232607.1 

 
Myrionema strangulans  706 706 1 0 0.9898 AY232605.1 

Phaeophyceae sp. asv_12 Adenocystis utricularis  721 721 1 0 0.9975 KY987592.1 

 
Halothrix ambigua  721 721 1 0 0.9975 AY232607.1 

 
Myrionema strangulans  721 721 1 0 0.9975 AY232605.1 

Arcrochaete sp. asv_18 Acrochaete sp. RCC2960  701 701 1 0 1 KT860928.1 

 
Ulvella leptochaete strain CCAP 6037/1, isolate 11-1-2/080211-1 701 701 1 0 1 LM653280.1 

 
Acrochaete leptochaete voucher AST2008103001-1  701 701 1 0 1 JN104106.1 

Arcrochaete endozoica asv_36 Acrochaete endozoica  684 684 1 0 0.9921 AY205327.1 

Delisea pulchara asv_10 Delisea pulchra voucher G0370  675 675 1 0 0.9869 AY437645.1 

Heroposiphonia parca asv_15 Herposiphonia parca voucher CH426  710 710 1 0 1 JX828166.1 

Biddulphia biddulphiana asv_11 Biddulphia biddulphiana strain TongYeongLNG Bbidd 710 710 1 0 1 MN917241.1 

Asparagopsis taxiformis asv_16 Asparagopsis taxiformis voucher Florida  712 712 1 0 1 MN547336.1 

 
Asparagopsis taxiformis voucher Fiji  712 712 1 0 1 MN547335.1 

 
Asparagopsis taxiformis voucher Hawaii  712 712 1 0 1 MN547334.1 

        

                  



 

 
 

Figure S1. Adapted from Baselga et al. (2009). Conceptual example of the additive 

decomposition of Jaccard dissimilarity between pairs of communities when beta-diversity is 

underpinned exclusively by turnover (a), exclusively by nestedness (b), or by a combination 

of nestedness and turnover (c). Each coloured circle represents a distinct microbial ASV. The 

Jaccard dissimilarity and its turnover and nestedness components are calculated as follows 

(Baselga and Orme 2012): 
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Where a is the number of species shared between the pair of communities, b is the number of 

species unique to the least speciose community, and c is the number of species unique to the 

most speciose community.  

  

                  



 

Figure S2. Temperature at reference and high CO2 sites recorded at 15-minute intervals from 

boreal Autumn 2015 through boreal Summer 2016.   
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Figure S3. (a) 16S rRNA gene rarefaction curves and (b) 18S rRNA gene rarefaction curves, 

showing cumulative ASV richness with increasing sampling depth. Saturation of ASV 

richness is indicated by plateau in each rarefaction curve. Vertical red line indicates 

rarefaction depth for 16S rRNA gene (15,893) and 18S rRNA gene (11,689), respectively.   

                  



 

Figure S4. nMDS ordinations of prokaryotic (16S rRNA gene) and eukaryotic (18S rRNA 

gene) biofilm community composition under reference (open circles) and high CO2 (filled 

circles) conditions at each time point, based on Bray-Curtis dissimilarity. Stress values are 

indicated in the upper right corner of each plot.  

                  



 

Figure S5. Order level composition of prokaryotic biofilm communities under reference and 

high CO2 conditions. The 11 most abundant Orders by total read count are shown, while less 

abundant orders are grouped into the ‘Other’ category.  

                  



 
Figure S6. Order level composition of prokaryotic biofilm communities under reference and 

high CO2 conditions. The 11 most abundant Orders by total read count are shown, while less 

abundant orders are grouped into the ‘Other’ category.  

  

                  



 

Figure S7. Representative images of colonised slides at day 21 from (a) high CO2 and (b) 

reference sites. Arrows highlight colonies of the large chain-forming diatom Biddulphia 

biddulphiana.  

  

                  



 

Figure S8. Chao1 richness in (a) prokaryotic and (b) eukaryotic biofilm communities, and 

Pielou’s evenness in (c) prokaryotic and (d) eukaryotic biofilm communities under reference 

(n = 9) and high CO2 (n = 9) conditions at each time point. Points represent the mean value, 

error bars represent the standard deviation.  

 

                  



 

Figure S9. Concentrations of chlorophyll a in total biofilms colonising slides under reference 

(n = 9) and high CO2 (n = 9) conditions each time point during the study. Points represent the 

mean value, error bars represent standard deviation.  
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