

Brain Microglial Activation Increased in Glucocerebrosidase (GBA) Mutation Carriers without Parkinson’s disease

Stephen Mullin, MRCP, PhD,1,2† Morten Gersel Stokholm, MD, PhD,3† Derralyn Hughes, FRCP, PhD,4 Atul Mehta, FRCP, PhD,4 Peter Parbo, MD, PhD,3† Rainer Hinz, PhD,5

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

*Correspondence to: Prof. Anthony HV Schapira, UCL, Institute of Neurology, Royal Free Campus, Rowland Hill Street, Hampstead, London NW3 2PF, UK; E-mail: a.schapira@ucl.ac.uk

†Joint first authorship.

‡Joint last authorship.

Relevant conflicts of interest/financial disclosures: There were no conflicts of interest. S.M. is a National Institute for Health Research–supported clinical lecturer.

Funding agencies: This research was funded by the Medical Research Council (MR/J009660/1 COEN 1), MRC Experimental Medicine (MR/M006646/1), and Joint Programme Neurodegenerative Disease Research (MR/N028651/1) and was supported by the National Institute for Health Research University College London Hospitals Biomedical Research Centre. S.M. is a National Institute for Health Research supported clinical lecturer. Independent Research Fund Denmark, Lundbeck Foundation, Kattan Trust (285), and Joint Programme Neurodegenerative Disease Research (MR/N028651/1). Funders had no role in data analysis and did not have access to the data set.

Received: 15 July 2020; **Revised:** 11 October 2020; **Accepted:** 19 October 2020

Published online 5 December 2020 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/mds.28375

Nicola Pavese, MD, PhD,3,6‡ David J. Brooks, FRCP, DSc, FMedSci,3,6† and Anthony H.V. Schapira, FRCP, FMedSci1,7‡

1Department of Clinical and Movement Neurosciences, Institute of Neurology, UCL, London, UK; 2Institute of Health and Care Research, University of Plymouth Peninsula School of Medicine, Plymouth, UK; 3Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark; 4Department of Haematology, Institute of Immunity and Transplantation, UCL, London, UK; 5Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK; 6Institute of Translational and Clinical Research, Newcastle University, Newcastle, UK

Key Words: Parkinson’s disease; microglia; substantia nigra; glucocerebrosidase; positron emission tomography

ABSTRACT: Background: Glucocerebrosidase gene mutations are a common genetic risk factor for Parkinson’s disease. They exhibit incomplete penetrance. The objective of the present study was to measure microglial activation and dopamine integrity in glucocerebrosidase gene mutation carriers without Parkinson’s disease compared to controls.

Methods: We performed PET scans on 9 glucocerebrosidase gene mutation carriers without Parkinson’s disease and 29 age-matched controls. We measured microglial activation as 11C-(R)-PK11195 binding potentials, and dopamine terminal integrity with 18F-dopa influx constants.

Results: The 11C-(R)-PK11195 binding potential was increased in the substantia nigra of glucocerebrosidase gene carriers compared with controls (Student t test; right, t = −4.45, P = 0.0001). Statistical parametric mapping also localized significantly increased 11C-(R)-PK11195 binding potential in the occipital and temporal lobes, cerebellum, hippocampus, and mesencephalon. The degree of hyposmia correlated with nigral 11C-(R)-PK11195 regional binding potentials (Spearman’s rank, P = 0.0066). Mean striatal 18F-dopa uptake was similar to healthy controls.

Conclusions: In vivo 11C-(R)-PK11195 PET imaging detects neuroinflammation in brain regions susceptible to Lewy pathology in glucocerebrosidase gene mutation carriers without Parkinson’s. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society

The glucocerebrosidase gene (GBA) encodes the lysosomal hydrolase glucocerebrosidase. In the biallelic (homozygous or compound heterozygous) state, GBA mutations may cause Gaucher disease (GD) which leads
to glucosylceramide accumulation in visceral organs and, in a minority of cases, the central nervous system (neuronopathic GD). GBA mutations are the most significant genetic risk factor for Parkinson’s disease (PD) and dementia with Lewy bodies (DLB)\(^1\); however, penetrance is only 10%–30%.\(^4\)\(^6\) PD patients carrying a GBA mutation have an earlier disease onset and a higher risk of dementia.\(^7\)

At postmortem, α-synuclein aggregations identical to those found in idiopathic PD\(^1\) and DLB\(^8\) are present in GBA-PD subjects. Asymmetrically reduced striatal \(^18\)F-dopa uptake,\(^9\)\(^10\) striatal dopamine transporter binding,\(^11\)\(^12\) and an altered striatal asymmetry index\(^13\) have been reported in PD patients with GBA mutations. Conversely \(^12\)F-isoflupane dopamine transporter uptake has been demonstrated to be upregulated in non-PD GBA carriers compared with controls and is higher in GBA PD compared to idiopathic PD cases.\(^14\)\(^15\) GBA mutation carriers without PD exhibit prodromal PD features,\(^16\)\(^19\) which progress with time.\(^20\)

Glial activation has been demonstrated in postmortem PD brains.\(^21\)\(^22\) Nigral microglial activation along with reduced striatal \(^18\)F-Dopa uptake is present in idiopathic rapid eye movement sleep behavior disorder (RBD).\(^23\) It is also a feature of neuronopathic GD at postmortem\(^8\) and in GD mouse models.\(^24\) No studies have investigated in vivo the presence of brain microglial activation in GBA mutation carriers and related this to the presence of striatal dopaminergic dysfunction. We therefore measured \(^11\)C-(R)-PK11195 regional binding potentials (BP\(_{ND}\)) and \(^18\)F-dopa \(K_i\) in GBA mutation carriers without evidence of Parkinson’s disease.

Methods

Recruitment and Clinical Assessments

Between 2015 and 2016, 9 biallelic (homozygous or compound heterozygous) or heterozygous carriers of GBA mutations were recruited from University College London, UK (see Table 1 for characteristics). All subjects had exons 1–11 of the GBA gene sequenced (Table 1). Biallelic carriers had type 1 GD, whereas heterozygous carriers were drawn from GD kindreds. No subjects met PD (UK Brain Bank) diagnostic criteria, and none were genetically related. Two of 5 GD patients were receiving enzyme replacement therapy (ERT; velaglucerase 800 IU weekly and 4000 IU monthly) and 3 of 5 substrate reduction therapy (SRT; eliglustat 84 IU twice daily in 2 of 3, miglustat 300 mg once daily in 1 of 3). Both SRT and ERT were administered throughout the duration of the study. Ethical approval was obtained from London, UK (10/H0720/21), and Midtjylland, Denmark (M-2014-397-14), research ethics committees.

Each GBA carrier had \(^11\)C-(R)-PK11195 and \(^18\)F-dopa PET, an MRI, and neurological examination. Prodromal PD features were rated with the University of Pennsylvania Smell Identification Test (UPSIT), Montreal cognitive assessment, RBD questionnaire (RBDSQ), PD Non-Motor Symptoms Scale, the Movement Disorder Society Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) parts II and III, and Beck’s Depression Inventory.

PET and MRI

We performed prespecified region-of-interest (ROI) analyses comparing GBA mutation carriers with controls. Selected ROIs were the substantia nigra (SN), putamen, and caudate for \(^11\)C-(R)-PK11195 BP\(_{ND}\) and the putamen and caudate for \(^18\)F-dopa \(K_i\). We performed statistical parametric mapping (SPM) of \(^11\)C-(R)-PK11195 uptake across all brain voxels. Technical details of the PET and MRI scanning and analysis procedures are available in the supplementary materials.

Statistics

For the ROI analyses, statistical calculations and graphs were produced with Stata v14.2 software (StataCorp., College Station, TX). The \(^18\)F-dopa \(K_i\) and \(^11\)C-(R)-PK11195 BP\(_{ND}\) values from specified ROIs were compared in carrier and control groups using the Student \(t\) test \((P < 0.05)\). When there was a significant difference in \(^11\)C-(R)-PK11195 BP\(_{ND}\) between the GBA and control groups, secondary analyses correlating PD prodromal features with \(^11\)C-(R)-PK11195BP\(_{ND}\) were undertaken (Spearman’s rank: all clinical scales were non normally distributed, \(P < 0.05\)). A Bonferroni correction was applied to all significant results.

Results

Participants

Participant characteristics are listed in Table 1. Nine GBA mutation carriers (5 biallelic and 4 heterozygous) were selected on the basis of their genotype and the absence of PD features. Two age-matched control groups (20 for \(^{11}\)C-(R)-PK11195 BP\(_{ND}\) PET and 9 for \(^{18}\)F-dopa PET) were included in the final GBA analysis. Some GD patients had musculoskeletal problems typical of GD reflected in raised MDS UPDRS III scores, but these were not specific for PD. This reflects the limitations of the MDS UPDRS when used in the context of non-PD
Substantia Nigra 11C-(R)-PK11195 BPND Is Increased in GBA+ Individuals Compared With Controls

ROI analysis localized a significant increase in mean nigral 11C-(R)-PK11195 BPND of the GBA carriers compared with controls (Student t test, $t = -4.45$, $P = 0.0001$; Tables S1 and S2). Statistical significance was retained after correction for multiple comparisons (Table S2). For the GBA mutation carriers, mean SN 11C-(R)-PK11195 BPND was 0.15 ± 0.08 compared with −0.01 ± 0.09 for the control group (Table S1 and Fig. 1A). Interestingly, heterozygous carriers had disproportionately higher BPND than biallelic (GD) patients (Table S1 and Fig. 1A).

11C-(R)-PK11195 BPND Correlates With Olfactory Deficit in GBA+ Individuals

There was a negative correlation between nigral 11C-(R)-PK11195 BPND and UPSIT scores in GBA mutation carriers (Spearman’s rank, $P = 0.0066$; Table S2 and Fig. 1D), which did not survive correction for multiple comparisons (Table S2).

Upregulated Cortical, Hippocampal, and Mesencephalon 11C-(R)-PK11195 BPND in GBA+ Group

SPM-localized clusters of voxels with significantly increased 11C-(R)-PK11195 BPND in GBA carriers...
bilaterally in the occipital and temporal cortices, cerebellum, left hippocampus, and central and anterior mesencephalon (Table S3 and Fig. 1B,C). No brain regions showed reduced 11C-(R)-PK11195 BPND compared with controls.

No Difference in Mean 18F-Dopa K_i Between GBA+ and Control Participants

The GBA carriers showed no significant decreases in mean 18F-dopa K_i across striatal ROIs compared with controls (Tables S1 and S2, Fig. S1). Two participants had putamen and/or caudate 18F-dopa K_i more than 2 SDs below the control mean (Table S4). Greater variance in 18F-dopa K_i (see Table S1) was seen in the GBA group (SD of 0.002 in the putamen and caudate compared with SD of 0.001 in controls). Post hoc analysis (Student t test) comparing the anterior, medial, and posterior putamen did not show any significant mean differences between GBA mutation carriers and controls.

No Correlation Between Nigral 11C-(R)-PK11195 BPND and 18F-Dopa K_i in GBA+ Group

There was no association between the SN 11C-(R)-PK11195 BPND and putamen or caudate (Table S2) 18F-dopa K_i in the GBA group.

Discussion

Our data indicate that both heterozygous and biallelic GBA mutation carriers can have increased 11C-(R)-PK11195 BPND in brain regions susceptible to Lewy body formation.26 It is unclear whether this is a cytotoxic or neuroprotective process. Only 10%–30% of GBA mutation carriers will develop PD. It is therefore unlikely that all the participants in this study will convert. Which GBA carriers are likely to progress to PD and the mechanisms underlying this conversion are of particular interest.

11C-(R)-PK11195 BPND values in the SN correlated with UPSIT scores, suggesting that those GBA carriers who have reduced olfactory function have higher nigral inflammation. Correlation of striatal 11C-(R)-PK11195

FIG. 1. (A) Top left, box and dot plots of 11C-PK11195 binding potential (BPND) in the substantia nigra of GBA+ heterozygous carriers (white circles), biallelic GBA+ carriers (black circles), and controls (hollow black diamonds). Please note data points are offset across x axis for ease of interpretation. Middle line is median, box is interquartile range. (B) Top right, 11C-PK11195 binding potential (BPND) in GBA carriers > controls. Colored areas depicted on the single-subject brain template illustrate clusters of voxels of 11C-PK11195 binding potential (BPND) surviving P < 0.05 with family-wise error rate (FWE) correction in the brain stem region of GBA+ carriers compared with control subjects. Non–brain stem clusters are masked. GBA, n = 9; controls, n = 20. (C) Bottom left, 11C-PK11195 binding potential (BPND) in GBA carriers > controls. Red areas depicted on the brain surface template illustrate clusters of voxels of 11C-PK11195 BPND surviving P < 0.05 with FWE correction in cortical regions of GBA+ carriers compared with control subjects. GBA+, n = 9; controls, n = 20. (D) Bottom right, scatterplots of 11C-PK11195 BPND in the substantia nigra of GBA+ carriers against University of Pennsylvania Smell Identification Test (UPSIT) score. GBA+ heterozygous carriers (white), biallelic GBA+ carriers (black). [Color figure can be viewed at wileyonlinelibrary.com]
BP_{ND} with age and MDS UPDRS III score has also been shown in early PD cases.27

Despite mean nigral ¹¹C-(R)-PK11195 BP_{ND} being increased in the GBA group, no significant reduction in mean putamen ¹⁸F-dopa uptake was seen. It is known that ¹⁸F-dopa lacks the sensitivity to detect early dopaminergic dysfunction because of compensatory upregulation of dopa decarboxylase in the remaining terminals. Early reductions may be better detected with dopamine transporter markers.28,29 Our finding of normal striatal F-dopa uptake in GBA carriers may not necessarily equate to normal dopamine terminal function, although no GBA carrier exhibited clinical features of PD.

Interestingly, ¹⁸F-dopa Ki was more variable in the GBA group compared with controls. Recently, 184 non-manifesting GBA carriers were reported to have increased dopamine transporter binding across striatal regions.15 This is in line with an increase in striatal ¹⁸F-dopa K_i found in a portion of our GBA+ cases. It has been reported that ¹¹C-(R)-PK11195 binding to microglia “burns out” as amyloidosis in early Alzheimer’s disease advances30 but increases again as tau tangles form.31,32 A biphasic trajectory could explain the lack of correlation between ¹⁸F-dopa K_i and ¹¹C-(R)-PK11195 BP_{ND} in our data set.

Limitations

The relatively small sample size, its cross-sectional design, and the unknown future disease status of GBA mutation carriers are limitations. We acknowledge that GBA mutations exhibit a variable penetrance and phenotype, in terms of both PD and GD. Reproducing these results in larger (ideally prospective) and more genotypically and phenotypically homogenous cohorts is needed. Nevertheless, we believe these are important and highly relevant pilot data that will inform the design of future studies.

The ¹¹C-PK11195 BP_{ND} has high nonspecific binding, which provides a lower specific-to-background PET signal ratio than newer markers of activated microglia; therefore, our results may underestimate glial activation. This study used ¹¹C-(R)-PK11195 BP_{ND} as a marker of the translocator protein (TSPO) expressed by the mitochondria of activated microglia, and, in contrast to newer TSPO tracers available, the binding is not influenced by the polymorphism of the TSPO expressed by individuals. The limitations of supervised cluster analysis in conditions with possible widespread microglial activation should also be acknowledged, as it could lead to an underestimation of ¹¹C-(R)-PK11195 BP_{ND}, particularly in small ROIs.

Three of 5 and 2 of 5 subjects were taking substrate reduction therapy or enzyme replacement therapy (ERT), respectively. The former is under evaluation as a PD neuroprotective agent (clinicaltrials.gov, NCT02906020), ERT is not thought to cross the blood–brain barrier, although 1 report suggests a portion may.33 We cannot exclude the possibility that the reduced nigral and putamen ¹¹C-(R)-PK11195 BP_{ND} in biallelic compared with heterozygous cases could represent suppression of glial activation by these drugs.

Conclusions

Our findings indicate that GBA mutations are associated with microglial activation in Lewy-susceptible brain regions in subjects without either a prodromal or clinical diagnosis of PD. Further studies are required to assess whether ¹¹C-(R)-PK11195 BP_{ND}, PET, (with or without additional biomarkers) can predict GBA carrier conversion to PD and striatal dopamine loss. ■

Acknowledgments: We thank the staff members of the lysosomal storage unit of the Royal Free Hospital for their help and assistance in patient recruitment.

Data and Materials Availability

Study data are available on reasonable request. ■

References

Supporting Data

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site.