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Contribution of murine IgG Fc regions to antibody binding to the capsule

of Burkholderia pseudomallei

Michael J. Dillon?, Rachael A. Loban?® Dana E. Reed?, Peter Thorkildson?, Kathryn J. Pflughoeft®, Sujata G. Pandit?,

Paul J. Brett®, Mary N. Burtnick®, and David P. AuCoin®

Department of Microbiology and Immunology, University of Nevada School of Medicine, Reno, NV, USA; *Department of Microbiology and

Immunology, University of South Alabama, Mobile, AL, USA

ABSTRACT

Immunoglobulin G3 (IgG3) is the predominant IgG subclass elicited in response to polysaccharide
antigens in mice. This specific subclass has been shown to crosslink its fragment crystallizable (Fc)
regions following binding to multivalent polysaccharides. Crosslinking leads to increased affinity
through avidity, which theoretically should lead to more effective protection against bacteria and
yeast displaying capsular polysaccharides on their surface. To investigate this further we have
analyzed the binding characteristics of 2 IgG monoclonal antibody (mAb) subclass families that bind
to the capsular polysaccharide (CPS) of Burkholderia pseudomallei. The first subclass family
originated from an IgG3 hybridoma cell line (3C5); the second family was generated from an IgG1
cell line (2A5). When the Fc region of the 3C5 IgG3 is removed by proteolytic cleavage, the resulting
F(ab’), fragments exhibit decreased affinity compared to the full-length mAb. Similarly, when the
parent IgG3 mADb is subclass-switched to IgG1, IgG2b, and IgG2a, all of these subclasses exhibit
decreased affinity. This decrease in affinity is not seen when the 2A5 IgG1 mAb is switched to an
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IgG2b or IgG2a, strongly suggesting the drop in affinity is related to the IgG3 Fc region.

Introduction

Burkholderia pseudomallei is a soil-dwelling bacillus that
causes melioidosis, a severe disease common to South-
east Asia and northern Australia. Melioidosis cases in
northeast Thailand are particularly severe; from 1997-
2007 the mortality rate was nearly 43%."* In addition,
Limmathurotsakul and colleagues estimated there to be
165,000 melioidosis cases globally per year resulting in
89,000 deaths.” The high mortality rate is in part due to
the difficulty in diagnosing melioidosis and the inherent
resistance of B. pseudomallei to commonly prescribed
antibiotics.’

B. pseudomallei produces a number of virulence fac-
tors that enhance pathogenesis, chief among them being
the capsular polysaccharide (CPS).>* Polysaccharide
capsules are found on many pathogenic bacteria and
fungi, and contribute to virulence by inhibiting comple-
ment activation and preventing phagocytosis.*® They
are high molecular weight antigens with repeating epito-
pes that are displayed on bacterial and fungal cell surfa-
ces.” "> The B. pseudomallei CPS is comprised of an
unbranched homopolymer of 1,3-linked 2-O-acetyl-6-
deoxy-B-D-mannoheptopyranose residues.'> CPS has

been shown to inhibit phagocytosis by reducing the
amount of complement factor C3b that is deposited on
the bacterial cell surface.* Mutation of specific genes
comprising the B. pseudomallei CPS operon results in
the production of mutant strains attenuated for patho-
genesis in animal models.'* '

Anti-capsular antibodies are an important mechanism
for host defense, thus capsules are appealing vaccine can-
didates; however, polysaccharide antigens do not illicit a
robust humoral immune response by themselves. Nor-
mally, humoral immunity is induced in a T-cell depen-
dent manner,"” however, polysaccharides utilize a T-cell
independent pathway and stimulate B-cells by cross-
linking multiple cell surface antigen receptors. T-cell
independent responses produce a short-lived and weak
humoral immune response.'® To circumvent this weak
response polysaccharides can be conjugated to immuno-
genic proteins or toxoids."”' For example, the Haemo-
philus influenzae capsule elicits a much stronger
immune response when it is conjugated to tetanus
toxoid."”

The IgG subclass produced in response to T-cell inde-
pendent polysaccharide antigens in mice is restricted to
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IgG3.>>>* This begs the question of whether this subclass
restriction is helpful when the immune system encoun-
ters an encapsulated pathogen. To address this question
we produced subclass switch families of polysaccharide-
specific mouse monoclonal antibodies and analyzed their
immunochemical interactions. These subclass families
possess identical variable regions (Fv), but different
heavy chain constant regions. Subclass switching of
hybridoma clones occurs infrequently in vitro,>>>°
although different clones secreting different subclasses
can be isolated and expanded, allowing for efficient study
of subclass-switch mADb families.

Two subclass-switch mAb families that bind to B.
pseudomallei CPS were isolated and used in this study.
The first family was derived from an IgG3 hybridoma
cell line (3C5) that was isolated following immunization
with heat-killed B. pseudomallei’” The additional IgG
3C5 subclass cell lines were isolated from the parental
IgG3 cell line (IgG3—IgGl—IgG2b—IgG2a). Our
group previously determined that mAb 3C5 is a rela-
tively high affinity murine IgG3 that provides passive
protection in a murine model of pulmonary melioido-
sis.”” The second family was derived from an IgG1 cell
line (2A5) and includes 3 IgG  subclasses
(IgG1—IgG2b—1gG2a). IgG1 mAb 2A5 has a similar
affinity to mAb 3C5, but was generated with a CPS
glycoconjugate.

Our study supports previous findings that murine
IgG3 Fc regions have the ability to enhance affinity
through Fc-Fc interactions when binding to antigens
that contain repeating epitopes, such as polysacchar-
ides.”®*° Our experimental design includes binding and
affinity studies of 2 subclass switch families of B. pseudo-
mallei capsule-specific IgG mAbs via ELISA, Western
blot and surface plasmon resonance (SPR). More specifi-
cally, we show that IgG3 Fc regions contribute to anti-
body binding to B. pseudomallei CPS, resulting in
increased affinity.

Materials and methods
Immunization of mice and production of mAbs

Generation of mAb 3C5 IgG3 has been described.”
Briefly, B. pseudomallei strain 1026b was incubated over-
night under BSL-3 containment at 37°C in brain heart
infusion (BHI) broth. Bacteria were heat-inactivated at
80°C for 2.5 h and confirmed killed by establishing no-
growth in BHI broth and back-plating on BHI agar
(each for 3 days). BALB/c mice were immunized via
intraperitoneal (i.p.) injections with 2 x 10® heat-inacti-
vated bacteria every 2 weeks for 8 weeks total. An ELISA
was used to assess antibody titers to B. pseudomallei. A

final boost was administered 3 d prior to splenectomy.
Hybridoma cells were produced as previously
described.’® Western blot analysis was performed to
identify hybridoma cell lines that were producing mAbs
reactive with purified CPS.

Purified CPS was conjugated to cationized bovine
serum albumin (cBSA;Pierce) as previously described.?! In
brief, B. pseudomallei LPS O-antigen mutant strain
RR2683 was grown at 37°C in Luria Bertani-Lennox
(LBL) broth and the CPS extracted via hot aqueous-phe-
nol. CPS and rough LPS were separated on a Sephadex
$G-50 column and the purified CPS activated with sodium
meta-periodate (NalO,; Pierce). cBSA was added, fol-
lowed by sodium cyanoborohydride (NaBH;CN). Ali-
quots were incubated at room temperature for 4 d.
Sodium borohydride (NaBH,) was added and the conju-
gate was lyophilized for later use.

This conjugate was used to immunize BALB/c mice
and produce mAb 2A5 IgGl. Mice were immunized via
i.p. injections with 5 ug of CPS-BSA every 2 weeks, for
6 weeks total. Antibody titers were measured by ELISA
(see below) and hybridoma cell lines were generated as
previously described.”’

Isolation of subclass-specific hybridoma cell lines

A modified protocol based on the method of Spira et al.*>

was used to isolate subclass-switch mAb families.*®
Switching from one subclass to another follows the
germline order of heavy chain exons (IgG3, IgG1, IgG2b,
IgG2a). The procedure was done in a sequential manner
to obtain hybridoma clones that secrete each subclass.
Briefly, the hybridoma cell line secreting the parent mAb
(e.g. IgG3 mADb 3C5) was plated at 1000 cells/well in a
96-well tissue culture plate. The supernatant from these
wells was added to an ELISA plate that contained goat
anti-mouse IgG1 in the solid phase. A horseradish perox-
idase (HRP)-labeled goat anti-mouse secondary antibody
was used to identify the wells that contained IgG1 anti-
body. Selected high-positive hybridoma wells were then
diluted to 100 cells/well and the ELISA was repeated.
The dilutions were continued to 10 followed by 1 cell/
well at which time multiple IgG1 clones were isolated.
An IgGl cell line was grown in culture and the cells were
plated as previously described at 1000 cells/well to isolate
an IgG2b secreting cell line. This protocol was repeated
for isolation of each subclass. Cell lines were grown in
Integra CL 1000 culture flasks (Integra Biosciences) with
RPMI media containing 4.5 g glucose, 4 mM L-gluta-
mine, 50 ©M 2-mercaptoethanol, 20 mM HEPES, 1 mM
sodium pyruvate, and 15% low IgG fetal bovine serum.
Antibodies were purified by affinity chromatography
over a protein-A column.



F(ab’), fragments

Full-length mAb 3C5 IgG3 was digested with pepsin
from porcine gastric mucosa (Sigma) to obtain F(ab’),
fragments. Briefly, mAbs (5 mg/mL) were incubated
with shaking at 37°C for 30 min with pepsin at a final
concentration of 0.2 pg/mL in 20 mM NaOAc, pH 4.4.
Next, 10% (v/v) of Tris (2M) was used to stop the reac-
tion. F(ab’), fragments were purified over a Superose 12
(GE Healthcare) molecular sieve column. Eluted frac-
tions were assessed by non-denaturing sodium dodecyl
sulfate polyacrylamide (12%) gel electrophoresis (SDS-
PAGE) with Coomassie blue staining. Fractions that con-
tained F(ab’), fragments (showing typical reduction in
molecular weight vs. full length antibody) were
combined.

Variable region sequencing of mAbs

Heavy and light chain variable regions were sequenced as
previously described.”® Briefly, total mRNA was isolated
from each hybridoma cell line with an RNeasy Mini Kit
(QIAGEN). ¢cDNA was synthesized using a First Strand
cDNA Synthesis Kit (Thermo Scientific) and amplified
with a Mouse Ig-Primer Set (Novagen). PCR products
were TA cloned into the pGem-T vector (Promega), and
sequenced. Two independent clones were sequenced for
each subclass switch cell line.

Western blot

Isolated subclass switch mAbs were confirmed to bind to
purified CPS via Western blot as previously described.*
Briefly, 1 puL of a 10x concentrated B. pseudomallei
1026b lysate, 1.1 x 10° inactivated whole cells of B. mal-
lei China 7 (BEI Resources), 8 x 10° inactivated whole
cells of B. thailandensis E264 (BEI Resources), or 0.5 g
purified CPS (see above) were incubated with 1 volume
of proteinase K at 3.3 mg/mL for 1 hr at 60°C. Next,
samples were separated by SDS PAGE (BioRad) at 160 V
for 1 hr, followed by transfer to a nitrocellulose mem-
brane (BioRad) via a TransBlot Turbo (BioRad). Mem-
branes were blocked in Tris-buffered saline plus Tween
20 (TBST, 50 mM Tris-HCl, pH 7.6; 150 mM NaCl,
0.1% Tween 20) supplemented with, 5% milk overnight
at 4°C (blocking solution). Membranes were then probed
with mAbs at 0.1 ug/mL diluted in blocking solution for
1 hr while rocking at room temperature. Membranes
were washed 3 times for 15 min with TBST followed by
incubation for 30 min at room temperature with HRP-
conjugated goat anti-mouse kappa chain antibody
(Southern Biotech) diluted 1:10,000 in blocking solution.
Membranes were washed 3 additional times and binding
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was detected with SuperSignal West Femto Chemilumi-
nescent Substrate (Pierce). Binding was visualized with a
Chemidoc imaging system (BioRad). Western blots were
also performed to compare the binding activity of each
mADb subclass. A B. pseudomallei whole cell lysate
(87 ng/gel) was added to a 7.5% SDS PAGE gel that con-
tained one regular sized well for the molecular weight
marker and one large well (well sides cut out) for the B.
pseudomallei whole cell lysate. Electrophoresis and blot-
ting was performed as above. A miniblotter (with sepa-
rate lane chambers for probing) was used so different
concentrations of each subclass mAb could be used to
probe the same blot. The nitrocellulose membranes were
probed with either 1:100 or 1:1000 (stock solution of
1 mg/ml) dilutions of each subclass mAb as above. Mem-
branes were washed, probed with a secondary antibody
and imaged as above.

Surface plasmon resonance

Binding affinity was determined by surface plasmon res-
onance (SPR) with a BIAcore X100 (GE Healthcare).
Purified CPS (see above) was benzoquinone-activated
and conjugated to biotin as previously described,” and
immobilized onto a streptavidin (SA) sensor chip at 30
response units (RU). A second flow cell was unmodified
and used for reference subtractions. Affinity was evalu-
ated with mAbs diluted in HBS-EP+ running buffer
(10 mM HEPES, 150 mM NaCl, 3 mM EDTA, and
0.05% surfactant P20, pH 7.4) at a range of either 0.33-
333 nM or 12-3333 nM. Two-fold serial dilutions of
mAD were injected over the immobilized CPS at 30 uL/
min for 60 s followed by 120 s of passive dissociation.
The sensor chip surface was regenerated between each
concentration with 10 mM HCI, pH 1.5. Each experi-
ment was performed at least twice, except for 3C5 IgG3
F(ab’), and 2A5 IgG2a. In both cases, the availability of
purified reagent limited us to one assessment at several
(6 or 8) different antibody concentrations. Dissociation
constants (Kp) were calculated using BIAevaluation soft-
ware (GE Healthcare). The apparent kinetic constants
were determined using the Bivalent Analyte model in
BIAevaluation software. All evaluations passed the statis-
tical internal quality controls of BIAevaluation software.

ELISA

Subclass-switch mAbs were evaluated via a direct antigen
binding ELISA. Polystyrene plates (Thermo Scientific)
were coated for 90 min at 37°C with 0.005% (w/v) Poly-
L-Lysine (Sigma) diluted in PBS. Plates were washed
with PBS and incubated overnight with 4 pg/mL of puri-
fied CPS.*' Next, plates were washed with PBS+0.05%
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Tween 20 and blocked with PBS4-0.05% Tween 20, 5%
milk (blocking solution) at 37°C for 90 min. A 2-fold
serial dilution of each mAb (starting from 2000 pg/mL)
in blocking solution was added across the 96-well plate
and the plates were incubated at 37°C for 90 min. Fol-
lowing three washes the wells were incubated for 90 min
in HRP-conjugated goat anti-mouse kappa chain anti-
body (Southern Biotech) diluted in blocking solution at
1:10,000. Following a wash step, 100 ul of 3,3',5,5'-tetra-
methylbenzidine substrate (KPL) was added to the wells
for 30 min. The enzymatic reaction was stopped by add-
ing 100 uL of 5% o-phosphoric acid to each well and the
optical density was determined by measuring absorbance
at 450 nm. Each experiment was completed in duplicate.
To calculate the antibody concentration that induces a
response halfway between baseline and maximum (ECs,
value), a 4-parameter logistics curve fit was applied using
Sigma Plot 11.0 (Systat Software Inc.).

Results

We previously generated IgG3 mAb 3C5, from BALB/c
mice immunized with heat-inactivated whole B. pseudo-
mallei’” 1gGl mAb 2A5 was generated from BALB/c
mice immunized with purified CPS conjugated to BSA;'"
this glycoconjugate induces high titers of CPS-specific
IgG antibodies in mice.*' Subclass-switch families of
both mAbs were generated with a modified sequential
sib selection protocol where individual hybridoma clones
were screened by ELISA to identify subclass-switch
clones.” To verify that the heavy and light chain variable
regions were identical for all subclasses, total mRNA was
isolated from each hybridoma cell line and used for
cDNA synthesis and PCR amplification followed by
sequencing. Results indicate that the variable region
sequences within each family are identical, and the
sequences between each family (3C5 vs. 2A5) are differ-
ent (data not shown).

Western blot analysis was performed to verify that the
parent mAb 2A5 IgG1 bound to CPS (Fig. 1). Our previ-
ous study confirmed that IgG3 mAb 3C5 is reactive with
CPS from B. pseudomallei and B. mallei.”” The CPS is a
high molecular weight antigen comprised of an
unbranched polymer of -3)-2-O-acetyl-6-deoxy-g-D-
manno-heptopyranose-(1- residues that can be visual-
ized by a characteristic high molecular weight smear via
Western blot.”” The IgG3 subclass of mAb 3C5 and the
IgG1 subclass of mAb 2A5 both bound to the same pro-
teinase K-resistant high molecular weight antigen found
in B. pseudomallei, B. mallei and purified CPS prepara-
tions. Although a small percentage of B. thailandensis
strains do produce CPS, E264 does not and both mAbs
were not reactive to this strain (Fig. 1).3%3°

mAb 3C5 IgG;
Bp Bm CPS Bt Bp

250kD-' l ' H.

mAb 2A5 IgG;
Bm CPS Bt

-

Figure 1. Western blot confirming binding of mAbs to CPS. B.
pseudomallei (Bp) 1026b, B. mallei (Bm) China 7, CPS purified
from Bp RR2683, or B. thailandensis (Bt) E264 were incubated
with proteinase-K, separated by SDS PAGE, and subsequently
transferred to a nitrocellulose membrane. Membranes were
probed with 0.5 ng of mAb and binding was detected with an
HRP-conjugated goat anti-mouse kappa chain antibody. IgGs;
mAb 3C5 and IgG; mAb 2A5 bind to a high molecular weight,
proteinase-K resistant antigen found in B. pseudomallei, B. mallei,
and purified CPS. No mAb binding was visualized against B. thai-
landensis, which lacks CPS.

Binding kinetics of each mAb were measured by
SPR to determine if Fc regions from each IgG sub-
class contribute to mAb affinity. Purified CPS was
conjugated to biotin *> and immobilized on a strepta-
vidin-coated SPR sensor chip. Total immobilization of
CPS was 30 response units (RU). Injection of mAbs
occurred over a 60 second pulse and a titratable
increase in RU was observed (Fig. 2). A steady state
model was applied to each graph to determine the
dissociation constant for each mAb (Fig. 3). The cal-
culated binding affinity of each mAb is in Table 1.
Notably, the subclass-switch variants of mAb 3C5
have a substantially lower affinity for CPS than the
parent IgG3 (8 to 20-fold). To determine if this affin-
ity change was in part due to Fc region variation, F
(ab’), fragments were produced from the 3C5 IgG3.
The F(ab’), fragment affinity is comparable to the
3C5 non-IgG3 mAbs (29-fold reduction compared to
IgG3 mAb 3C5). However, the 2A5 mAb subclasses
show minor affinity variation, meaning the overall
affinity is similar to that of IgG3 mAb 3C5.

The SPR data indicated that the non-IgG3 3C5
antibodies had lower affinity, while the 2A5 subclass
mAbs had comparable affinity. As further support we
performed a Western blot experiment to compare
binding of the 3C5 and 2A5 subclass switch mAbs. A
miniblotter (with separate lane chambers for probing)
was used so different concentrations of each subclass
mAb could be used to probe the same blot containing
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Figure 2. Binding specificity of subclass-switch family mAbs and 3C5 IgGs F(ab’), fragments given as a function of response units (RU)
generated over time. Data are shown from a representative experiment. A BlAcore X100 instrument was used to determine the affinity
of each mAb for CPS. CPS purified from Bp RR2683 was conjugated to biotin and immobilized on a SA sensor chip. Binding was analyzed
by injecting 8 samples diluted 2-fold (dilutions; 0.33-333 or 12-3,333 nM) for 60 s, followed by 120 s of passive dissociation.
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Figure 3. Binding affinity of subclass-switch family mAbs and 3C5 IgGs; F(ab’), fragments given as a function of RUs generated by con-
centration. Data are shown from a representative experiment. The steady-state model from BlAevaluation software was applied to each
graph in Fig. 2 to determine the dissociation constant (Kp) of each mAb. A smaller Ky corresponds to a higher affinity. Note the higher
mAb concentrations needed for calculation of affinity for the 3C5 non-IgG3 mAbs.



Table 1. Summary of antibodies generated for this study.
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mAb IgG Subclass VH Family VL Family ky x 107 3(uM~ sy kg x 1073(s7T)P Ko (nM)© ECso (129/mlL)
3C5 19Gs Vhé IgK V19/28 280 + 2.0 1.1 +£0.05 73+ 6.0 0.9 £+ 0.03
19G; Vhé IgK V19/28 16 + 0.3 24+ 0.14 1460 + 81 1817
19Gyp Vhé IgK V19/28 27 £03 2.4 £+ 0.09 790 4+ 120 12+ 0.8
19G,a, Vhé Igk v19/28 43 +£0.7 414+01 550 + 120 124+1.0
F(ab’)zd — — 38 4+20 59+ 0.29 2100 £ 610 383 + 130
2A5 l9G, Vhé gk v21 1800 4+ 120 24+ 16 43 +£6.0 0.37 +0.02
19Gap Vhé IgK V21 1100 £ 50 12 £ 0.51 36 43 0.36 £ 0.03
19G,, Vhé IgK'v21 720 + 30 9.3+ 0.35 58 £+ 8.1 0.76 £ 0.08

Association rate constant
bDissociation rate constant
¢Dissociation constant
91gG; F(ab'),

a B. pseudomallei lysate. As shown in Fig. 4A at equal
mAb probing concentrations the most CPS reactivity
was seen with mAb 3C5 IgG3 with far less intense
reactivity for the non-IgG3 subclasses. Subclass-
switching mAb 2A5 generated mAbs that bound to
CPS at similar signal levels as the parent IgGl
(Fig. 4B). The exposure time for Western blots in
panel A and B were different to prove this point.

An ELISA was performed to compare the relative anti-
gen binding characteristics of the 3C5 and 2A5 subclass
families (Fig. 5). Purified CPS was incubated in the solid
phase at 4 ug/mL and 2-fold serial dilutions of mAbs
were added in the fluid phase starting at 2,000 pg/mL.
Each line on the plot represents a different mAb subclass.
These plots were used to calculate the half-maximal effec-
tive concentration value (ECsp), which is the antibody

A. 3C5 IgG3 IgG1 IgG2b lgG2a
kDa -
250 = &3 - .
180 = -
140 =
95 m— - = et b A REP A
Ty 7 Ty % Ty %z Ty %z
% % %, % %, % %, %
B. 2asig61 IgG2b lgG2a
= -
kDa
50— .
180—
140=—
95 —
b Z, 7., z, 7,
000 00 000 00 000 00

Figure 4. Comparison of binding activity within each mAb subclass by Western blot. B. pseudomallei Bp82 total cell lysate (87 11g) was
separated by SDS-PAGE and transferred onto nitrocellulose membrane. The membranes were probed with mAb 3C5 family (panel A)
and 2A5 family (panel B) using a miniblotter. 3C5 IgG3 shows substantially higher reactivity to CPS compared to the other subclasses.
The reactivity between different subclasses of mAb 2A5 and CPS was comparable. 2A5 and 3C5 antibody concentration was prepared
from Tmg/ml stock. Exposure time for Western blots in panel A and B were different.
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Figure 5. Direct antigen binding ELISA comparing 3C5 IgGs and 2A5 IgG; binding with subclass with switch family mAbs. CPS purified
from Bp RR2683 was immobilized in the solid phase at 4 wg/mL. Two-fold serial dilutions of mAb or F(ab’), were added in the fluid
phase starting at 2,000 ;tg/mL and mAb binding was detected with an HRP-conjugated goat anti-mouse kappa chain antibody. All trials

were completed in duplicate.

concentration that generates a response halfway between
the baseline and maximum (Table 1). The calculated ECs,
value for the parent 3C5 IgG3 mAb is 0.9 pg/mL, whereas
the calculated ECsy values for the 3C5 subclass-switch
mAbs are higher, by roughly 10 to 20-fold. In addition, F
(ab’), fragments were generated from 3C5 IgG3 and the
ECs, values of these fragments were substantially higher
than IgG3 mADb 3C5. Finally, the ECs, values of the 2A5
subclass-switch mAbs were comparable. The calculated
ECso values of the 2A5 subclasses ranged from 0.36-
0.76 wg/mL, which is similar to 3C5 IgG3.

Discussion

Many pathogenic microorganisms produce capsular
structures, including Haemophilus influenzae,*® Neisseria
meningitidis,”” Bacillus anthracis, and Cryptococcus neo-
formans.”® These capsules are comprised of polysacchar-
ides or, in the case of B. anthracis, a polypeptide.39
Capsules are antiphagocytic and are generally required
for virulence.** Antibodies that target capsules are
opsonic and protective in many cases.*® As such, capsu-
les are ideal vaccine targets, however, most capsular pol-
ysaccharides do not elicit a strong immune response,
especially in infants and young children.* Capsular pol-
ysaccharides are high molecular weight antigens com-
prised of identical repeating units, making them T-cell
independent type 2 antigens (TI-2).*> They can activate
B-cells by multivalent cross-linking of B-cell receptors,
which produces a very specific antibody response.'® Mice
generally produce IgG3 in response to capsular polysac-
charides;>** humans generally produce IgG2.** As such,
it is important to study the immunochemistry between
antibodies and microbial capsules to develop effective
vaccines and immunotherapeutics that elicit the appro-
priate humoral response against encapsulated pathogenic
microbes.

Subclass-switch families are antibodies with identical
Fv regions but different heavy chain constant regions,
thereby making them invaluable for determining how
the Fc region contributes to affinity and protection.*****
Previous research has shown that subclass-switch anti-
bodies bind to their target with variable specificity and
affinity, despite having identical Fv regions. Seminal
research by Greenspan and colleagues established
the enhanced binding of murine IgG3 to polysaccharides
over that of non-IgG3 subclass-switch mAbs containing
identical variable regions.”*”* Specifically, it was
shown that a partial murine IgG subclass family
(IgG3—IgG1—IgG2b) interacts with the same Group A
streptococcal antigen in very different ways. Murine
IgG3 bound cooperatively and thus possessed a higher
affinity than IgG1 or IgG2b. In addition, IgG3-derived F
(ab’), fragments did not show cooperative binding and
bound with a much lower affinity, similar to that of the
IgG1 and IgG2b.*® Our recent studies in Bacillus anthra-
cis have shown that an IgG3 mAb possessed greater
binding affinity to the capsular polypeptide®® when com-
pared to all 3 other switched subclasses. The reduced
binding affinity of the non-IgG3 subclass mAbs results
from alterations in the CH2 and CH3 domains, which
comprise the Fc region in IgG molecules. When altering
this same murine IgG3 Fc region by engineering human
chimeric antibodies (chAbs), the resulting chAbs have
significantly reduced binding affinities for the capsular
polypeptide.*® Together, these studies strongly support
that changes in the Fc region can alter antibody-antigen
interactions.

There have been multiple studies showing passive
transfer of antibodies can provide protection in animal
models of melioidosis,””*"">* however, there have been
no studies to date comparing different antibody sub-
classes. In the current study, we generated 2 unique sub-
class-switch families that bind to the CPS of B.



pseudomallei. One family originated from a high affinity
IgG3 mAb (3C5), while the other originated from a high
affinity IgG1 mAb (2A5). Removal of the Fc region of
mAD 3C5 by proteolytic cleavage generates IgG3 F(ab’),
fragments with binding ability as shown by SPR and
ELISA. Similarly, subclass-switching mAb 3C5 from an
IgG3 to an IgGI results in a substantial loss in affinity
and a large increase in ECs values. Subclass-switching
initiated from a high affinity IgGl mAb (2A5) to an
IgG2b or IgG2a subclass yields similar binding results.
However, the IgG1 and IgG2b variants showed slightly
improved binding characteristics over the IgG2a. These
small affinity changes between variable region identical
mAbs are not surprising. For example, it is well estab-
lished that variable region structure can be altered by
switching constant regions, resulting in subtle changes in
affinity and fine specificity.”* Taken together, the 3C5
IgG3 Fc region clearly enhances binding affinity to the B.
pseudomallei CPS compared to non-IgG3 Fc regions.

These findings are supported by recent results pub-
lished by our group.”®. In this study, mice were
immunized with 2 subclass-switch families of mAbs
targeting the capsule of B. anthracis. In these studies,
the IgG3 subclasses were protective in a murine
model of pulmonary anthrax and the lower affinity
non-IgG3 mAbs were not protective (26). In addition
to enhanced protection and affinity the IgG3 mAbs
were deposited at the capsular edge and resembled a
rim formation under DIC microscopy. The non-IgG3
mAbs were deposited throughout the capsule and
were described as a pufty pattern. The rim formation
by IgG3 appears to be due to Fc-Fc crosslinking since
the other non-IgG; subclasses were not able to form
the rim. The rim formation may have the protective
benefit of depositing more antibody on the capsular
edge where it can interact efficiently with immune
molecules and effector cells. It is not know whether
the B. pseudomallei CPS mAbs bind in a rim or puffy
pattern. Unfortunately, the capsular binding pattern is
very difficult to visualize with a small bacterium such
as B. pseudomallei under DIC microscopy.

In summary, this study suggests that IgG3 Fc regions
contribute to affinity of IgG3 antibodies binding to the
CPS of B. pseudomallei. Switching the IgG3 Fc subclass
to a non-IgG3 Fc region or removing the IgG3 Fc region
reduces antibody affinity. Therefore, as our current and
previous studies suggest, it may be sensible not to start
with a murine IgG3 variable region when planning to
produce a chimeric or humanized antibody for use as an
immunotherapeutic targeting a microbial capsular struc-
ture. To further support this thought, future studies will
include testing the current subclass mAbs for protection
in a murine model of melioidosis. This should provide
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additional insights into the contributions of subclass and
affinity to protection.
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