Numerical Algorithms for Solving Shallow Water Hydro-Sediment-Morphodynamic Equations

<table>
<thead>
<tr>
<th>Journal</th>
<th>Engineering Computations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>EC-01-2016-0026.R2</td>
</tr>
<tr>
<td>Manuscript Type</td>
<td>Research Article</td>
</tr>
<tr>
<td>Keywords</td>
<td>Shallow water hydro-sediment-morphodynamic equations, Finite volume method, Well-balanced scheme, Coupled modelling, Fluvial processes</td>
</tr>
</tbody>
</table>
Numerical Algorithms for Solving Shallow Water Hydro-Sediment-Morphodynamic Equations

Authors’ info deleted for review
ABSTRACT

Purpose - The purpose of this paper is to present a fully conservative numerical algorithm for solving the coupled shallow water hydro-sediment-morphodynamic equations governing fluvial processes, and also to clarify the performance of a conventional algorithm, which redistributes the variable water-sediment mixture density to the source terms of the governing equations and accordingly the hyperbolic operator is rendered similar to that of the conventional shallow water equations for clear water flows.

Design/methodology/approach - The coupled shallow water hydro-sediment-morphodynamic equations governing fluvial processes are arranged in full conservation form, and solved by a well-balanced weighted surface depth gradient method along with a slope-limited centred scheme. The present algorithm is verified for a spectrum of test cases, which involve complex flows with shock waves and sediment transport processes with contact discontinuities over irregular topographies. The computational results of the conventional algorithm are compared with those of the present algorithm and evaluated by available referenced data.

Findings - The fully conservative numerical algorithm performs satisfactorily over the spectrum of test cases, and the conventional algorithm is confirmed to work similarly well.

Originality/value – A fully conservative numerical algorithm, without redistributing the water-sediment mixture density, is proposed for solving the coupled shallow water hydro-sediment-morphodynamic equations. It is clarified that the conventional algorithm, involving redistribution of the water-sediment mixture density, performs similarly well. Both algorithms are equally applicable to problems encountered in computational river modelling.

Keywords Shallow water hydro-sediment-morphodynamic equations, Finite volume method, Well-balanced scheme, Coupled modelling, Fluvial processes

Paper type Research paper
1. Introduction

The interactive processes of water flow, sediment transport and morphological evolution, as influenced by both human activities and extreme natural events, constitute a hierarchy of physical problems of significant interest in the fields of fluvial hydraulics and geomorphology. Great efforts have been made to establish refined numerical models and to test the models over a range of scales in laboratory and field experiments (Bellos et al. 1992, Fraccarollo and Toro 1995, Capart and Young 1998, Fraccarollo and Capart 2002, Leal et al. 2006, Spinewine and Zech 2007).

The last several decades have witnessed rapid development and widespread applications of the complete shallow water hydro-sediment-morphodynamic (SHSM) equations, which explicitly accommodate the interactions between flow, sediment transport and bed evolution in a coupled manner and adopt a non-capacity sediment transport approach based on physical perspectives (Cao et al. 2004, 2016, 2017, Wu and Wang 2007). An increasing number of computational studies in hydraulic engineering and geomorphological studies are based on the SHSM equations, for example, dam-break floods over erodible bed (Cao et al. 2004, Wu and Wang 2007, Xia et al. 2010, Huang et al. 2012, 2014, 2015), coastal processes (Xiao et al. 2010, Kim 2015, Zhu and Dodd 2015; Incelli et al. 2016; Briganti et al., 2016), watershed erosion processes (Kim et al. 2013), and turbidity currents (Hu et al. 2012, Cao et al. 2015), as well as rainfall-runoff processes (Li and Duffy 2011).

The finite volume method (FVM) is one of the most promising methods for solving the SHSM equations. Pivotal to this method is the determination of the numerical flux in cases where the dependent variables may be steep-fronted or have discontinuous gradients. A series of numerical schemes are available in this regard, such as the Harten-Lax-van Leer (HLL) scheme (Harten et al. 1983, Simpson and Castelltort 2006, Wu et al. 2012), the Harten-Lax-van Leer contact wave (HLLC) scheme (Toro et al. 1994, Cao et al. 2004, Zhang and Duan 2011, Yue et al. 2015), the Roe scheme (Roe 1981, Leighton et al. 2010, Xia et al. 2010, Li and Duffy 2011), and the slope
limited centred (SLIC) scheme (Toro 1999, Hu and Cao 2009, Qian et al. 2015, 2017). In recent years, well-balanced schemes (Qian et al. 2015, 2017, Liang 2010, Liang and Marche 2009, Aureli et al. 2008, Zhou et al. 2001) have been developed to improve the handling of source terms in numerical models and extend their applications to irregular topographies.

In practice, it is usual to manipulate the original SHSM equations into a form that eliminates the variable water-sediment mixture density on the left-hand-side (LHS) of the governing equations leading to the conventional numerical algorithm (CNA), which is an extension of existing numerical schemes for shallow water equations of clear water flows in both 1D (Cao et al. 2004, Wu and Wang 2008, Zhang and Duan 2011, Hu et al. 2014, Qian et al. 2015) and 2D modelling (Simpson and Castelltort 2006, Xia et al. 2010, Yue et al. 2015, Huang et al. 2012, 2014, 2015, Guan et al. 2014, 2015, 2016, Qian et al. 2017). However, it has so far remained poorly understood whether the equation manipulation could incur conservation errors due to the splitting of certain product derivatives by the chain rule and the reassignment of the split forms to flux gradient and source terms.

A fully conservative numerical algorithm (FCNA) is proposed herewith to directly solve the original SHSM equations, in which the mixture density is maintained on the LHS. Numerical fluxes and the bed slope source terms are estimated by the well balanced, weighted surface depth gradient method (WSDGM) version of the SLIC scheme (Aureli et al. 2008). The remainder of the paper is organized as follows. First, the governing equations are presented in the CNA and FCNA forms. Second, the numerical methods used to determine the numerical fluxes and source terms are outlined. Third, the CNA and FCNA are examined to show their capability of preserving quiescent flow, and then the FCNA is verified for several test cases, which involve complex flows with shock waves and also sediment transport processes with contact discontinuities over irregular topographies. The computational results of the CNA are also compared with those of the FCNA and evaluated using available observed data, analytical and
numerical solutions. Moreover, the relative run time and relative mass conservation errors of the two algorithms were discussed. Finally, conclusions are drawn from the present work.

2. Mathematical Model

2.1 Governing equations

The governing equations of SHSM models can be derived by directly applying the Reynolds Transport Theorem in fluid dynamics (Batchelor 1967, Xie 1990), or by integrating and averaging the three-dimensional mass and momentum conservation equations (Wu 2007). For ease of description, consider longitudinally one-dimensional flow over a mobile and mild-sloped bed composed of uniform (single-sized) and non-cohesive sediment. The governing equations comprise the mass and momentum conservation equations for the water-sediment mixture flow and the mass conservation equations, respectively, for sediment and bed material. These constitute a system of four equations and four physical variables (flow depth, depth-averaged velocity, sediment concentration and bed elevation), which can be written as

\[
\frac{\partial (\rho h)}{\partial t} + \frac{\partial (\rho hu)}{\partial x} = -\rho_0 \frac{\partial z}{\partial t} \tag{1}
\]

\[
\frac{\partial (\rho hu)}{\partial t} + \frac{\partial}{\partial x}\left(\rho hu^2 + \frac{1}{2} \rho gh^2\right) = \rho gh\left(-\frac{\partial z}{\partial x} + S_f\right) \tag{2}
\]

\[
\frac{\partial (hc)}{\partial t} + \frac{\partial (huc)}{\partial x} = E - D \tag{3}
\]

\[
\frac{\partial z}{\partial t} = \frac{E - D}{1 - p} \tag{4}
\]

where \(t = \) time; \(x = \) streamwise coordinate; \(h = \) flow depth; \(u = \) depth-averaged flow velocity in \(x \) direction; \(z = \) bed elevation; \(c = \) flux-averaged volumetric sediment concentration; \(g = \) gravitational acceleration; \(S_f = n^2 u^2 / h^{4/3} \) = friction slope, and \(n = \) Manning roughness; \(p = \) bed
sediment porosity; \(E, D \) = sediment entrainment and deposition fluxes across the bottom boundary of flow, representing the sediment exchange between the water column and bed, which need to be quantified separately according to the specific test cases; \(\rho = \rho_w(1-c) + \rho_s c = \) density of water-sediment mixture; \(\rho_0 = \rho_w p + \rho_s (1-p) = \) density of saturated bed; and \(\rho_w, \rho_s \) = densities of water and sediment. Shape factors arising from depth-averaging manipulation in the preceding equations have been presumed to be equal to unity.

It is noted that the present model is physically coupled as the interactions between flow, sediment transport and bed evolution are explicitly accommodated. Equally importantly, the full set of the governing equations is numerically solved synchronously, which ensures numerical coupling. Meanwhile, the present model is based on a non-capacity approach (Cao et al. 2012, 2016, 2017), which determines sediment transport by incorporating the contributions of advection due to mean flow velocity and of the mass exchange with the bed. In contrast, capacity models (Canestrelli et al., 2010; Rosatti and Fraccarollo, 2006; Postacchini et al. 2012, 2014) presume the sediment concentration to be always equal to the transport capacity determined exclusively by the local flow and bed conditions, which are only conditionally applicable if sediment adaptation to capacity regime is fulfilled sufficiently rapidly and within an adequately short distance.

In order to facilitate mathematical manipulation, Eq. (4) is solved separately from Eqs. (1)-(3) as it is in essence an ordinary different equation. Yet all variables are updated at each time step as shown in Section 2.4.1. It is physically justified due to the fact that bed deformation is solely determined by the local entrainment and deposition fluxes.

2.2 Equations in CNA form

In the CNA, Eqs. (1) and (2) are reformulated by eliminating the water-sediment mixture density on the LHS using Eqs. (3) and (4). Therefore, the hyperbolic operator is rendered similar to that of
the conventional shallow water equations for clear water flows. Accordingly, Eqs. (1), (2) and (3) are rewritten as

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F}}{\partial x} = \mathbf{S}_b + \mathbf{S}_f$$

(5)

where \mathbf{S}_b = vector of bed slope source term components; \mathbf{S}_f = vector of other source terms; \mathbf{U} and \mathbf{F} = vectors as follows,

$$\mathbf{U} = \begin{bmatrix} h \\ hu \\ hc \end{bmatrix} \quad \mathbf{F} = \begin{bmatrix} hu \\ hu^2 + \frac{1}{2} gh^2 \\ huc \end{bmatrix}$$

(6a, b)

$$\mathbf{S}_b = \begin{bmatrix} 0 \\ -gh \frac{\partial z}{\partial x} \\ 0 \end{bmatrix} \quad \mathbf{S}_f = \begin{bmatrix} \frac{(E-D)/\rho}{(1-p)} \\ \frac{(\rho_s - \rho)gh^2c}{2\rho} \frac{\partial c}{\partial x} - \frac{(\rho_s - \rho)(E-D)u}{\rho(1-p)} \end{bmatrix}$$

(6c, d)

It is noted that this treatment was first proposed and implemented by Cao et al. (2004) and has been widely used in computational river modelling (Simpson and Castelltort 2006, Wu and Wang 2007, Yue et al. 2008, Hu and Cao 2009, Xia et al. 2010, Huang et al. 2012, 2014, 2015, Li et al. 2014, Cao et al. 2015). More broadly, the idea behind this numerical strategy has also been applied to solve shallow water equations including an effective porosity parameter to represent the effect of small-scale impervious obstructions on reducing the available storage volume and effective cross section of shallow water flows (Cea and Vázquez-Cendón 2010).

2.3 Equations in FCNA form

In the FCNA, Eqs. (1)-(4) are solved directly, without first redistributing the water-sediment mixture density as in the CNA. If ρh and c/ρ are regarded as independent variables
respectively, Eqs. (1)-(3) can be written in the conservative form of Eq. (5), with vectors expressed in terms of variables $[\rho h \quad u \quad c / \rho]^T$, as follows,

$$\mathbf{U} = \begin{bmatrix} \rho h \\ \rho hu \\ \rho h c / \rho \end{bmatrix}, \quad \mathbf{F} = \begin{bmatrix} \rho hu \\ \rho hu^2 + \frac{g}{2\rho} (\rho h)^2 \\ \rho hu c / \rho \end{bmatrix} \quad (7a,b)$$

$$\mathbf{S}_i = \begin{bmatrix} 0 \\ -\rho gh \frac{\partial z}{\partial x} \\ 0 \end{bmatrix}, \quad \mathbf{S}_f = \begin{bmatrix} \rho_b (E - D) / (1 - p) \\ -\rho gh S_f \end{bmatrix} \quad (7c,d)$$

2.4 Numerical scheme

2.4.1 Finite volume discretization

Implementing the finite volume discretization along with the operator-splitting method for Eq. (5), one obtains (Aureli et al. 2008, Hu et al. 2012, Hu et al. 2015, Qian et al. 2015)

$$U_i^n = U_i^n - \Delta t \left(\frac{\Delta t}{\Delta x} \left(F_{i+1/2}^n - F_{i-1/2}^n \right) \right) + \Delta t S_i \quad (8)$$

where $\Delta t = $ time step; $\Delta x = $ spatial step; $i = $ spatial node index; $n = $ time node index; $F_{i+1/2} = $ inter-cell numerical flux at $x = x_{i+1/2}$; and $U_i^* = $ the predicted conserved variables. The ordinary differential equations constituted by the source terms are solved using the second-order Runge–Kutta (RK) method (Gottlieb and Shu 1998)

$$U_i^{[i]} = U_i^* + \Delta t S_i \left(U_i^* \right) \quad (9a)$$

$$U_i^{[i]} = \frac{1}{2} U_i^* + \frac{1}{2} U_i^{[i]} + \frac{1}{2} \Delta t S_i \left(U_i^{[i]} \right) \quad (9b)$$

The bed deformation is updated by the discretization of Eq. (4) in the same way as Eq. (9)
\[z_i^{(t)} = z_i^n + \Delta t \frac{(D - E)^*}{(1 - p)} \]

(10a)

\[z_i^{n+1} = \frac{1}{2} z_i^n + \frac{1}{2} z_i^{(t)} + \frac{1}{2} \Delta t \frac{(D - E)^{(t)}}{(1 - p)} \]

(10b)

For numerical stability, the time step satisfies the Courant–Friedrichs–Lewy (CFL) condition

\[\Delta t = \frac{C_r}{\lambda_{\text{max}} / \Delta x} \]

(11)

where \(C_r \) is the Courant number and \(C_r < 1 \); and \(\lambda_{\text{max}} \) is the maximum celerity computed from the Jacobian matrix \(\partial F / \partial U \).

2.4.2 Well-balanced version of the SLIC scheme

Unlike certain well-balanced numerical schemes which directly adopt the water surface elevation as a flow variable in their rearranged SHSM equations (Rogers et al. 2003, Liang and Borthwick 2009, Liang and Marche 2009, Huang et al. 2012, 2014, Qian et al. 2015, 2016), the present model maintains the original equations, with the water depth variable evaluated from a weighted average of the slope limited water depth and water surface elevation (Zhou et al. 2001, Aureli et al. 2008, Hu et al. 2012) in the framework of the SLIC scheme that results from replacing the Godunov flux by the FORCE flux in the MUSCL-Hancock scheme (Toro 2001). The original SLIC scheme (Toro 2001, Aureli et al. 2004) is termed a depth-gradient method (DGM) version because it uses the spatial gradient of the water depth for the interpolation, and is robust and stable for cases involving high gradient in water level provided the bathymetry has small gradient. The scheme is also capable of tracking the motion of wetting and drying fronts above a threshold flow depth \(h_{\text{min}} \) as discussed in Section 2.4.3. However, when the bed topography is irregular and has large spatial gradient, the DGM version may not reproduce the exact solution for stationary flows (i.e., it does not satisfy the exact \(C \)-property [Bermudez and Vazquez 1994]) because of the imbalance between the bed slope source term and flux gradient. The \(C \)-property can be instead...
satisfied by the surface gradient method (SGM) proposed by Zhou et al. (2001), which is preferable for cases when small gradient in water level occurs alongside high gradient in water depth. However this method still has certain limitations in the treatment of the wetting and drying fronts that may lead to unphysical results (Aureli et al. 2008). To exploit the advantages of both DGM and SGM, following Aureli et al. (2008), the well-balanced WSDGM version of the SLIC scheme (Figure 1) is employed herein to estimate the numerical fluxes as well as the bed slope source term in Eq. (8). This method is similar to Hu et al. 2015, but it is necessary to note that their model is decoupled and capacity based, which is in contrast to the present model that explicitly accommodates the interactions between flow, sediment transport and bed evolution in a coupled manner and adopts a non-capacity sediment transport approach.

Step 1: Data reconstruction

For ease of description, a new vector of variables \mathbf{Q} is introduced, with

$$\mathbf{Q}_{CNA} = \begin{bmatrix} h & hu & hc & \eta & z \end{bmatrix}^T$$

and

$$\mathbf{Q}_{FCNA} = \begin{bmatrix} \rho h & \rho hu & \rho h \frac{c}{\rho} & \rho \eta & \rho z \end{bmatrix}^T$$

indicating the conventional and fully conservative algorithms respectively, where $\eta = h + z$ is the water surface elevation. The first four boundary extrapolated variables $\mathbf{Q}_{L}^{i+1/2}$ and $\mathbf{Q}_{R}^{i+1/2}$ are evaluated at the left and right sides of interface $x = x_{i+1/2}$ to achieve second-order accuracy in space.

$$\mathbf{Q}_{L}^{i+1/2} = \mathbf{Q}_i + \phi^{i+1/2}_{L} \frac{\mathbf{Q}_i^n - \mathbf{Q}_{i+1}^n}{2} \quad (12a)$$

$$\mathbf{Q}_{R}^{i+1/2} = \mathbf{Q}_{i+1}^n - \phi^{i+1/2}_{R} \frac{\mathbf{Q}_{i+1}^n - \mathbf{Q}_{i+2}^n}{2} \quad (12b)$$

where ϕ = slope limiter, which is a function of the ratios $r^{L,R}$ of variables \mathbf{Q}. Here the Minmod limiter is used, which reads

$$\phi(r) = \begin{cases}
\min(r,1) & \text{if } r > 0 \\
0 & \text{if } r \leq 0
\end{cases} \quad (13)$$
with

\[
\begin{align*}
\rho_i^{L, j+1/2} &= \frac{Q_i^{n+1} - Q_i^j}{Q_i^j - Q_i^{j-1}} & \rho_i^{R, j+3/2} &= \frac{Q_i^{n+1} - Q_i^j}{Q_i^{j+2} - Q_i^{j+1}} \tag{14a, b}
\end{align*}
\]

The last elements of \(Q_i^{L, j+1/2}\) and \(Q_i^{R, j+3/2}\) are evaluated at the interface \(x = x_{j+1/2}\), such that,

\[
\begin{align*}
Q_i^{L, j+1/2}(5) &= Q_i^{R, j+3/2}(5) = \frac{1}{2} \left(Q_i^n(5) + Q_i^{n+1}(5) \right) \tag{15}
\end{align*}
\]

The first elements of \(Q_i^{L, j+1/2}\) and \(Q_i^{R, j+3/2}\) are updated by a weighted average of boundary extrapolated values derived from MUSCL DGM and SGM extrapolations as follows,

\[
\begin{align*}
Q_i^{L, j+1/2}(1) &= \phi Q_i^{L, j+1/2}(1) + (1 - \phi) \left[Q_i^{L, j+1/2}(4) - Q_i^{j+1/2}(5) \right] \tag{16a} \\
Q_i^{R, j+1/2}(1) &= \phi Q_i^{R, j+1/2}(1) + (1 - \phi) \left[Q_i^{R, j+1/2}(4) - Q_i^{j+1/2}(5) \right] \tag{16b}
\end{align*}
\]

where \(\phi\) = weighting factor between the DGM and SGM with \(0 \leq \phi \leq 1\), which is specified as a function of the Froude number \(Fr\),

\[
\phi = \begin{cases}
0.5 & \left[1 - \cos \left(\frac{\pi Fr}{Fr_{lim}} \right) \right] & 0 \leq Fr \leq Fr_{lim} \\
1 & Fr > Fr_{lim}
\end{cases} \tag{17}
\]

where \(Fr_{lim}\) is an upper limit beyond which a pure DGM reconstruction is performed. In this paper, \(Fr_{lim} = 2.0\) is adopted according to Aureli et al. (2008).

Boundary extrapolated vectors \(Q_i^{L, j+1/2}\) and \(Q_i^{R, j+1/2}\) are used to update the vectors of conserved variables of the governing equations as follows,

\[
\begin{align*}
U_i^{L, j+1/2} &= \begin{bmatrix} Q_i^{L, j+1/2}(1) & Q_i^{L, j+1/2}(2) & Q_i^{L, j+1/2}(3) \end{bmatrix}^T \tag{18a} \\
U_i^{R, j+1/2} &= \begin{bmatrix} Q_i^{R, j+1/2}(1) & Q_i^{R, j+1/2}(2) & Q_i^{R, j+1/2}(3) \end{bmatrix}^T \tag{18b}
\end{align*}
\]

Step 2: Evolution of extrapolated variables
The boundary extrapolated conserved variables are further evolved over $\Delta t / 2$ to achieve second-order accuracy in time. In order to satisfy the C-property when WSDGM is adopted, the contribution due to gravity must be included.

\[
\begin{align*}
\bar{U}_i^{L/2} &= \bar{U}_i^L - \frac{\Delta t}{2a} \left[F(U_{i+1/2}^L) - F(U_{i-1/2}^R) \right] + \frac{\Delta t}{2} S_{bi} \\
\bar{U}_i^{R/2} &= \bar{U}_i^R - \frac{\Delta t}{2a} \left[F(U_{i+1/2}^R) - F(U_{i-1/2}^L) \right] + \frac{\Delta t}{2} S_{bi+1}
\end{align*}
\]

(19a)

(19b)

where S_{bi} in Eqs. (19a) and (19b) are discretized using central-differences with extrapolated variables taken from Step 1 and $z_{i+1/2} = (z_{i+1} + z_i) / 2$.

Step 3: Numerical fluxes and bed slope source term

The numerical fluxes are estimated by the FORCE (first-order centred) approximate Riemann solver, which is an average of the Lax–Friedrichs flux F^{LF} and the two-step Lax–Wendroff flux F^{LW} (Toro 2001)

\[
F_{i+1/2} = \frac{F^{LW}_{i+1/2} + F^{LF}_{i+1/2}}{2}
\]

(21)

\[
F^{LW}_{i+1/2} = F(U^{LW}_{i+1/2})
\]

(22a)

\[
U^{LW}_{i+1/2} = \frac{1}{2} (U^R_{i+1/2} + U^L_{i+1/2}) - \frac{1}{2a} \left(F(U^R_{i+1/2}) - F(U^L_{i+1/2}) \right)
\]

(22b)

\[
F^{LF}_{i+1/2} = \frac{1}{2} (F(U^R_{i+1/2}) + F(U^L_{i+1/2})) - \frac{1}{2a} \left(F(U^R_{i+1/2}) - F(U^L_{i+1/2}) \right)
\]

(23)

Finally, the bed slope source term in Eq. (8) is computed using the evolved variables from Step 2,
\[
S_{by} = -g \left[\bar{U}_{i+1/2}^L (1) + \bar{U}_{i-1/2}^R (1) \right] \frac{z_{i+1/2} - z_{i-1/2}}{(2\Delta x)} \] (24)

In order to validate the well-balanced property of this numerical scheme, a quiescent-flow problem is considered here (i.e. \(u \equiv 0; \eta \equiv \eta_0\)). A fully SGM extrapolation is satisfied as the Froude number \(Fr = 0\) and the weighting factor \(\phi = 0\) according to Eqs. (16) and (17). If the cell \(i\) is wet as well as its adjacent cells \(i-2, i-1, i+1\) and \(i+2\) at the time node \(n\), the values of the inter-cell variables after the reconstruction in Step1 can be obtained as,

\[
U_{i+1/2}^{L,R} (1) = \psi (\eta_0 - z_{i+1/2}) \quad U_{i-1/2}^{L,R} (1) = \psi (\eta_0 - z_{i-1/2}) \] (25a)

\[
U_{i-3/2}^{L,R} (2) = U_{i-1/2}^{L,R} (2) = U_{i+1/2}^{L,R} (2) = 0 \] (25b)

where \(\psi = 1\) for CNA and \(\psi = \rho\) for FCNA.

According to Step 2, the variables at inter-cells \(i-1/2\) and \(i+1/2\) after a time step of \(\Delta t / 2\) evolution can be calculated as,

\[
\bar{U}_{i+1/2}^L (1) = \psi (\eta_0 - z_{i+1/2}) \quad \bar{U}_{i-1/2}^L (1) = \psi (\eta_0 - z_{i-1/2}) \] (26a)

\[
\bar{U}_{i+1/2}^R (2) = -\frac{\Delta t / 2}{\Delta x \psi} \left[\frac{1}{2} g U_{i+1/2}^L (1)^2 - \frac{1}{2} g U_{i-1/2}^R (1)^2 \right] - \frac{\Delta t}{2} g \left[U_{i+1/2}^L (1) + U_{i-1/2}^R (1) \right] \frac{z_{i+1/2} - z_{i-1/2}}{(2\Delta x)} = 0
\]

\[
\bar{U}_{i-1/2}^R (2) = -\frac{\Delta t / 2}{\Delta x \psi} \left[\frac{1}{2} g U_{i-1/2}^L (1)^2 - \frac{1}{2} g U_{i+1/2}^R (1)^2 \right] - \frac{\Delta t}{2} g \left[U_{i-1/2}^L (1) + U_{i+1/2}^R (1) \right] \frac{z_{i-1/2} - z_{i+1/2}}{(2\Delta x)} = 0 \] (26b)

\[
\bar{U}_{i+1/2}^L (2) = -\frac{\Delta t / 2}{\Delta x \psi} \left[\frac{1}{2} g U_{i+1/2}^L (1)^2 - \frac{1}{2} g U_{i-1/2}^R (1)^2 \right] - \frac{\Delta t}{2} g \left[U_{i+1/2}^L (1) + U_{i-1/2}^R (1) \right] \frac{z_{i+1/2} - z_{i-1/2}}{(2\Delta x)} = 0
\]

\[
\bar{U}_{i-1/2}^L (2) = -\frac{\Delta t / 2}{\Delta x \psi} \left[\frac{1}{2} g U_{i-1/2}^L (1)^2 - \frac{1}{2} g U_{i+1/2}^R (1)^2 \right] - \frac{\Delta t}{2} g \left[U_{i+1/2}^L (1) + U_{i-1/2}^R (1) \right] \frac{z_{i+1/2} - z_{i-1/2}}{(2\Delta x)} = 0
\]
Following Step 3, the inter-cell numerical fluxes at $i - 1/2$ and $i + 1/2$ are conducted. Therefore, the variables at the next time can be updated due to Eqs. (8) and (9) as follows, which shows the static flow is maintained.

\[
F_{i+1/2}^n = F_{i+1/2}^{LF} = F_{i+1/2}^{LW} = \begin{pmatrix} 0 \\ \frac{1}{2}g\psi(\eta_0 - z_{i+1/2})^2 \end{pmatrix} \quad (27a)
\]

\[
F_{i-1/2}^n = F_{i-1/2}^{LF} = F_{i-1/2}^{LW} = \begin{pmatrix} 0 \\ \frac{1}{2}g\psi(\eta_0 - z_{i-1/2})^2 \end{pmatrix} \quad (27b)
\]

\[
U_{i+1}^{n+1} = U_i^n + \frac{\Delta t}{\Delta x} \left[\begin{pmatrix} 0 \\ \frac{1}{2}g\psi(\eta_0 - z_{i+1/2})^2 \end{pmatrix} - \begin{pmatrix} 0 \\ \frac{1}{2}g\psi(\eta_0 - z_{i-1/2})^2 \end{pmatrix} \right] + \Delta t \left[-g\left[\psi(\eta_0 - z_{i+1/2}) + \psi(\eta_0 - z_{i-1/2}) \right] (z_{i+1/2} - z_{i-1/2}) / (2\Delta x) \right] = U_i^n
\]

Figure 1. Definition sketch of the WSDGM version of the SLIC scheme

2.4.3 Wet-dry front

First, a special treatment is performed at a wet-dry front in order to satisfy the C-property. If the water surface of the wet cell is lower than the bed elevation of its adjacent dry cell, the bed elevation and water surface of the dry cell are set to be the water level of the wet cell temporarily only when computing the numerical flux. For example, if the cell i is wet while the adjacent cell $i+1$ is dry and $\eta_i < z_{i+1} = \eta_{i+1}$, then the latter is modified so that $z_{i+1} = \eta_{i+1} = \eta_i$, which ensures that the depth in the cell $i+1$ is still zero. After the evolution in Steps 1 and 2, the same inter-cell variables at $i + 1/2$ can be obtained as Eq. (25) and (26) (i.e., $U_{i+1/2}^{L,R}(1) = \psi(\eta_0 - z_{i+1/2})$ and
Then, the inter-cell numerical fluxes at \(i + \frac{1}{2} \) are computed as Eq. (27a) in order to maintain the static state at the cell \(i \).

Second, a threshold flow depth \(h_{\text{lim}} \) is introduced because the occurrence of very small water depth may lead to instabilities in numerical simulations due to the possible infinite bed resistance, especially at wet–dry front. If the computed water depth is lower than the threshold value, the depth, velocity and sediment concentration are all set to be zero. The threshold flow depth is a model parameter and a value of \(h_{\text{lim}} = 1 \times 10^{-6} \) is adopted in the present work.

3. Test Cases

A series of test cases are presented to verify the performance of the FCNA, accompanied by comparisons with the CNA using the same numerical scheme. The test cases include steady flow at equilibrium conditions over a steep bump (Aureli et al. 2008) (Case 1) to examine satisfaction of the C-property, a density dam break with two initial discontinuities without bed deformation (Leighton et al. 2010) (Cases 2), dam-break over erodible beds at prototype-scale (Cao et al. 2004) (Case 3) and laboratory-scale (Fraccarollo and Capart 2002) (Case 4), and landslide dam failure (Cao et al. 2011a) (Case 5). The spatial step \(\Delta x \) is set specifically for different cases and the time step \(\Delta t \) then obtained according to the CFL stability requirement of Eq. (11), as listed in Table I.

In Case 4, the flow depth temporal and spatial scales are so small that a relatively large frictional source term may lead to numerical instability even if the CFL condition is satisfied. Thus, according to Qian et al. (2015), a number of sub-time steps \(\Delta t_{\sigma} \) are deployed when updating the solutions to the next time step in Eq. (9). Table II summarizes the parameter values for the different test cases.
Table I. Spatial increment and Courant number used in test cases

<table>
<thead>
<tr>
<th>Test case</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spatial step Δx (m)</td>
<td>0.05</td>
<td>0.02</td>
<td>10</td>
<td>0.005</td>
<td>0.04</td>
</tr>
<tr>
<td>Courant number C_r</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
</tr>
</tbody>
</table>

Table II. Summary of test cases

<table>
<thead>
<tr>
<th>Test case</th>
<th>Sediment density ρ_s (kg/m3)</th>
<th>Water density ρ_w (kg/m3)</th>
<th>Gravitational acceleration g (m/s2)</th>
<th>Sediment diameter d (mm)</th>
<th>Manning roughness n</th>
<th>Sediment porosity p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,650</td>
<td>1,000</td>
<td>9.8</td>
<td>N/A</td>
<td>0.0</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>0.5&2.0</td>
<td>1.0</td>
<td>1.0</td>
<td>N/A</td>
<td>0.0</td>
<td>N/A</td>
</tr>
<tr>
<td>3</td>
<td>2,650</td>
<td>1,000</td>
<td>9.8</td>
<td>8.0</td>
<td>0.03</td>
<td>0.4</td>
</tr>
<tr>
<td>4*</td>
<td>1,540</td>
<td>1,000</td>
<td>9.8</td>
<td>3.5</td>
<td>0.025</td>
<td>0.3</td>
</tr>
<tr>
<td>5*</td>
<td>2,650</td>
<td>1,000</td>
<td>9.8</td>
<td>0.8</td>
<td>0.012</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Notes: * Cases using measured data.

To quantify the differences between FCNA and CNA, as well as the discrepancies between the simulations and available referenced data, the non-dimensional discrepancy is defined based on the L^1 norm.

$$L_1 = \frac{\sum \text{abs}(V_{\text{CNA}} - V_{\text{FCNA}})}{\sum \text{abs}(V_{\text{CNA}})} \times 100\%$$ (29)

$$L'_1 = \frac{\sum \text{abs}(V - V_\text{r})}{\sum \text{abs}(V_\text{r})} \times 100\%$$ (30)

where V and V_r = the predicted and referenced variables, i.e., stage η, bed elevation z, velocity u and concentration c, with subscripts FCNA and CNA denoting corresponding algorithms; $L_1(V=\eta, z, u, c)$ is the L^1 norm used to compare the results of FCNA with those of CNA; and
$\mathbf{L^\prime_{\nu=\eta, \ z, \ u, \ c}}$ is the L^1 norm used to compare the predictions by FCNA and CNA with referenced data, i.e., analytical solutions for Case 1, referenced numerical solutions for Cases 2 and 3 and measured data for Cases 4 and 5.

3.1 Case 1: Steady flow at rest over a steep bump

To test whether or not the numerical algorithms satisfy the C-property over irregular topography, a frictionless channel $[-10 \ m \leq x \leq 10 \ m]$ is considered with its bed profile characterized by the presence of a steep bump, described as (Liska and Wendroff 1998)

$$z(x)=\begin{cases}
0.8(1-x^2/4) & -2 \ m \leq x \leq 2 \ m \\
0 & \text{elsewhere}
\end{cases} \quad (31)$$

Initially the flow is static and there is no water or sediment input at the inlet boundary. Two conditions of initial stage are considered. One has a stage of $\eta_0 = 1.0 \ m$ (i.e., fully wet bed) referred to as Case 1a, while the other has a stage of $\eta_0 = 0.5 \ m$ (i.e., with wet-dry interfaces), called Case 1b.

Figures 2 and 3 show the predicted stage and depth-averaged velocity profiles over the subdomain $[-3 \ m \leq x \leq 3 \ m]$ at $t = 1 \ h$ obtained for the two initial conditions, using the FCNA and CNA. The initial steady, static equilibrium state is maintained by both algorithms, demonstrating that they are exactly well-balanced for cases with irregular topography irrespective of whether or not wet-dry interfaces are involved. The C-property can also be illustrated by $L^\prime_{\eta} = 0$ in Table III, indicating the computed stage is exactly the same as the analytical solution $\eta = \eta_0$ for both FCNA and CNA.

Figure 2. Case 1a: equilibrium stage and velocity profiles predicted by FCNA and CNA for initial stage of 1.0 m
Figure 3. Case 1b: equilibrium stage and velocity profiles predicted by FCNA and CNA for initial stage of 0.5 m

Table III. L_η^* for Case 1

<table>
<thead>
<tr>
<th></th>
<th>FCNA</th>
<th>CNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1a</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Case 1b</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

3.2 Case 2: Density dam break with two initial discontinuities

Case 2 considers a density dam break in a channel with fixed horizontal bed, containing a central region of different density to that elsewhere in the channel. The channel is 100 m long and the region of different density is 1.0 m wide separated by two infinitesimally thin dams located at $x = 49.5$ and 50.5 m. Initially, the stage throughout the channel is 1.0 m, and the liquid densities in the central region bounded by the dam walls are $\rho_{in} = 0.5$ (Case 2a) and 2 kg/m3 (Case 2b) with the initial interior concentration set to $c_{in} = 1$. Elsewhere the initial liquid density is set to $\rho_{out} = 1$ kg/m3 with initial concentration $c_{out} = 0$.

Figure 4 shows the good agreement of the stage and velocity profiles computed by Leighton et al. 2010 (referenced numerical solutions) with those by FCNA and CNA at $t = 30$ s. The corresponding concentration profiles predicted by the two algorithms are also displayed. Figures 5 and 6 show the temporal variations in stage, velocity and concentration at $x = 25$, 50 and 75 m (i.e. upstream of the first dam, at the mid-point between the dams, and downstream of the second dam) from FCNA and CNA. The predicted interactions between the denser liquid and less dense
liquid by FCNA and CNA are almost identical: the denser liquid moves inwards towards the centre of the channel, squeezing the less dense region upwards for \(\rho_{in} = 0.5 \text{ kg/m}^3 \), whilst for \(\rho_{in} = 2 \text{ kg/m}^3 \), the denser liquid falls under gravity, driving left and right shock-type bores into the adjacent less dense liquid (Fig. 4). Computed profiles of the temporal variations at selected sections for \(\rho_{in} = 0.5 \) and \(2 \text{ kg/m}^3 \) show opposite behaviour in water surface and velocity (Figs. 5 and 6) because the relative density \(\rho_{in}/\rho_{out} \) is less and greater than 1.0 respectively. Tables IV and V list the values obtained for \(L^*_v \) of stage and velocity at \(t = 30 \text{ s} \) and \(L_v \) for Case 2 at selected instant and sections. Similar simulations between Leighton et al. 2010 and the two algorithms are illustrated by the values of \(L^*_v \), within 5% for stage and 7% for velocity. \(L^*_\eta \) has slight differences and \(L_\eta \) has values close to zero, indicating negligible stage discrepancies between the two algorithms. The \(L_u \) and \(L_c \) values are within 3.5% and 0.05% respectively, limited discrepancies. Case 2 confirms that both FCNA and CNA provide acceptable solutions to the problems of dam break arising from discontinuous density gradients.

Figure 4. Case 2: computed stage, velocity and concentration profiles by FCNA and CNA and referenced stage and velocity profiles by Leighton et al. (2010) at \(t = 30 \text{ s} \) for density dam break with two discontinuities for densities (a) \(\rho = 0.5 \text{ kg/m}^3 \) and (b) \(\rho = 2 \text{ kg/m}^3 \).

Figure 5. Case 2a: stage, velocity, and concentration time histories at locations (a) \(x = 25 \text{ m} \), (b) \(x = 50 \text{ m} \), and (c) \(x = 75 \text{ m} \), predicted by FCNA and CNA for density dam break (\(\rho_{in} = 0.5 \text{ kg/m}^3 \)) with two discontinuities.
Figure 6. Case 2b: stage, velocity, and concentration time histories at locations (a) $x = 25$ m, (b) $x = 50$ m, and (c) $x = 75$ m, predicted by FCNA and CNA for density dam break ($\rho_{in} = 2.0$ kg/m3) with two discontinuities.

Table IV. L_v for Case 2 at $t = 30$ s

<table>
<thead>
<tr>
<th>Case</th>
<th>L_v (%)</th>
<th>FCNA</th>
<th>CNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 2a</td>
<td>L_η (%)</td>
<td>4.50</td>
<td>4.50</td>
</tr>
<tr>
<td>$\rho_{in} = 0.5$ kg/m3</td>
<td>L_u (%)</td>
<td>6.67</td>
<td>6.73</td>
</tr>
<tr>
<td>Case 2b</td>
<td>L_η (%)</td>
<td>2.48</td>
<td>2.49</td>
</tr>
<tr>
<td>$\rho_{in} = 2$ kg/m3</td>
<td>L_u (%)</td>
<td>4.44</td>
<td>5.85</td>
</tr>
</tbody>
</table>

Table V. L_v for Case 2 at selected instant and sections

<table>
<thead>
<tr>
<th>Case</th>
<th>L_v</th>
<th>$t = 30$ s</th>
<th>$x = 25$ m</th>
<th>$x = 50$ m</th>
<th>$x = 75$ m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 2a</td>
<td>L_η (%)</td>
<td>0.002</td>
<td>0.0008</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>$\rho_{in} = 0.5$ kg/m3</td>
<td>L_u (%)</td>
<td>1.65</td>
<td>0.26</td>
<td>N/A</td>
<td>0.56</td>
</tr>
<tr>
<td></td>
<td>L_c (%)</td>
<td>0.04</td>
<td>N/A</td>
<td>0.002</td>
<td>N/A</td>
</tr>
<tr>
<td>Case 2b</td>
<td>L_η (%)</td>
<td>0.02</td>
<td>0.016</td>
<td>0.02</td>
<td>0.015</td>
</tr>
<tr>
<td>$\rho_{in} = 2$ kg/m3</td>
<td>L_u (%)</td>
<td>3.25</td>
<td>3.26</td>
<td>N/A</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>L_c (%)</td>
<td>0.016</td>
<td>N/A</td>
<td>0.00</td>
<td>N/A</td>
</tr>
</tbody>
</table>

3.3 Case 3: Dam-break over erodible beds of prototype scale
Case 3 is used to test the relative performance of FCNA and CNA in modelling the mobile bed hydraulics due to the instantaneous, full collapse of a dam. This test case was first proposed by Cao et al. (2004) for a dam break in a long channel at prototype scale, with the simulation being of relatively long duration. The dam is located at the centre of a 50-km-long channel and the mobile bed is composed of uniform and non-cohesive sediment. Initially, the bed is horizontal and the static water depths upstream and downstream of the dam are 40 m and 2 m respectively. The duration of the numerical simulations was such that they were concluded before forward and backward waves reached the downstream and upstream boundaries, so that the boundary conditions could be simply set according to the initial static states. The same empirical relationships are implemented for net sediment exchange flux as used by Cao et al. (2004).

Figures 7 and 8 compare the water surface and bed elevation computed by FCNA and CNA with those predicted by Cao et al. (2004) (i.e., referenced numerical solutions) at two times and two sections respectively. Longitudinal profiles of velocity and concentration at $t = 30$ s and 20 min (Fig. 7) and temporal variations of velocity and concentration at $x = 20$ and 30 km (i.e. 5 km upstream and downstream of the dam) (Fig. 8) from FCNA and CNA are also presented. It can be seen that FCNA and CNA both give very similar predictions of the dam break process as it evolves and the simulations agree well with the referenced stage and bed elevation ((a1) and (b1) in Figs. 7 and 8), with values of L^*_y and L^*_z within 1.5% and 7.5% in Table VI. The location of the hydraulic jump ((a1) and (b1) in Fig. 7) can be properly modelled by the FCNA as well as the abrupt fall in the free surface due to the existence of the contact discontinuity of sediment concentration ((a3) and (b3) in Fig. 7). It should be noted that the sharp concentration gradient at the wave front ((a3) and (b3) in Fig. 7) is modelled by the second term of the second component of Eq. (6d) by the CNA, whereas it is incorporated in the mixture density variation term ρh by the FCNA. The similar L^*_y values of FCNA and CNA and the small L^*_y values (within 1.5%) listed respectively in Tables VI and VII demonstrate that the discrepancies between FCNA and CNA are hardly distinguishable at the selected instants and sections.
Figure 7. Case 3: dam break over an erodible bed at prototype scale: profiles of water surface and bed elevation, velocity, and concentration computed by FCNA and CNA and referenced stage and bed elevation predicted by Cao et al. (2004) at times (a) $t = 30\, s$ and (b) $t = 20\, \text{min}$.

Figure 8. Case 3: dam break over an erodible bed at prototype scale: time histories of water surface and bed elevation, velocity, and concentration computed by FCNA and CNA and referenced stage and bed elevation predicted by Cao et al. (2004) at locations (a) $x = 20\, \text{km}$ and (b) $x = 30\, \text{km}$.

Table VI. L' for Case 3 at selected instants and sections

<table>
<thead>
<tr>
<th>L'</th>
<th>$t = 30, s$</th>
<th>$t = 20, \text{min}$</th>
<th>$x = 20, \text{km}$</th>
<th>$x = 30, \text{km}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>L'_η of FCNA (%)</td>
<td>1.02</td>
<td>1.20</td>
<td>1.64</td>
<td>3.39</td>
</tr>
<tr>
<td>L'_z of FCNA (%)</td>
<td>7.48</td>
<td>4.75</td>
<td>4.18</td>
<td>2.40</td>
</tr>
<tr>
<td>L'_η of CNA (%)</td>
<td>0.90</td>
<td>1.17</td>
<td>1.66</td>
<td>3.41</td>
</tr>
<tr>
<td>L'_z of CNA (%)</td>
<td>7.07</td>
<td>5.11</td>
<td>4.23</td>
<td>2.65</td>
</tr>
</tbody>
</table>

Table VII. L_v for Case 3 at selected instants and sections

<table>
<thead>
<tr>
<th>L_v</th>
<th>$t = 30, s$</th>
<th>$t = 20, \text{min}$</th>
<th>$x = 20, \text{km}$</th>
<th>$x = 30, \text{km}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_η (%)</td>
<td>0.004</td>
<td>0.069</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>L_z (%)</td>
<td>0.63</td>
<td>0.57</td>
<td>0.18</td>
<td>0.48</td>
</tr>
<tr>
<td>L_u (%)</td>
<td>0.50</td>
<td>0.18</td>
<td>0.04</td>
<td>0.21</td>
</tr>
<tr>
<td>L_ζ (%)</td>
<td>1.29</td>
<td>0.72</td>
<td>0.16</td>
<td>0.53</td>
</tr>
</tbody>
</table>

3.4 Case 4: Experimental dam-break over erodible beds
Laboratory experiments of dam break flow over a mobile bed reported in the literature include those of Capart and Young 1998, Fraccarollo and Capart 2002, Spinewine and Zech 2007, and Zech et al. 2008. Case 4, considered here, is that of Fraccarollo and Capart (2002) who conducted small-scale dam break tests in a channel 2.5 m long, 0.1 m wide and 0.35 m deep. The initial static water depths upstream and downstream of the dam were 0.1 m and 0 m respectively. In the numerical models, the boundary conditions are set to be the same as for Case 4. The net sediment exchange flux is determined following Cao et al. (2011b) with modification coefficients $\beta = 9$ and $\varphi = 3$. Tables I and II list the remaining model parameters.

Figure 9 shows measured and predicted stage and bed elevation profiles along a 2.5 m reach of the channel at times $t = 0.505$ and 1.01 s after the dam break. Figure 10 displays the corresponding velocity and concentration profiles. The agreement between the FCNA and CNA simulations and the experimental measurements is fairly good; the initial bore and rarefaction waves match well, though there is some slight discrepancy between the measured and predicted reflected wave that seems trapped as a hydraulic jump at the location of the original dam break. This wave reflects from the bed as it is eroded, and its magnitude is underestimated by the FCNA and CNA numerical models (both of which give almost identical results). The velocity and concentration profiles are both characterized by an abrupt fall in velocity and a sharp spike in concentration at the initial bore front as it propagates downstream. Figure 11 compares the FCNA and CNA predicted stage, bed elevation, velocity, and concentration time series at $x = 0.05$ m (0.05 m upstream and downstream of the initial dam respectively). The close agreement between the FCNA and CNA results is corroborated quantitatively in Table VIII by the values of L_η that are all within 2.5 %. Meanwhile, the FCNA and CNA results both display similar differences to the measured stage (as mentioned above) leading to values of L_η' of 7.43% for FCNA and 7.41% for CNA at $t = 0.505$ s and 8.79% and 8.84% at $t = 1.01$ s, respectively. It is noted that the test case of Fraccarollo and Capart (2002) was also reproduced by Postacchini et al. (2012, 2014). Despite the similar results with those illustrated in Figure 9, their models were
essentially physically decoupled and a numerical coupling method was adopted in order to weakly
couple hydrodynamics and morphodynamics. Moreover, based on the capacity assumption, they
neglected the temporal and spatial variability of sediment transport. The discrepancies, however,
between the results of Postacchini et al. (2012, 2014) and the present models are rather limited,
which may be ascribed to the small temporal and spatial scales in this particular case. A more
intensive investigation into the effects of the capacity assumption for sediment transport as
compared against non-capacity modelling can be seen by Cao et al. (2011c), (2012), (2016) and
Pelosi and Parker (2014). Overall, the results from Case 3 (involving large temporal and spatial
scales) and Case 4 (involving experimental data at laboratory scale) help provide confidence in
the FCNA as a model for highly unsteady shallow flows with shock waves and sediment transport.

Figure 9. Case 4: computed (FCNA and CNA) and measured (Fraccarollo and Capart, 2002)
water surface and bed elevation profiles at (a) \(t = 0.505 \) s and (b) \(t = 1.01 \) s for a dam break over
an erodible bed.

Figure 10. Case 4: computed (FCNA and CNA) velocity and concentration profiles at (a) \(t =
0.505 \) s and (b) \(t = 1.01 \) s for a dam break over an erodible bed.

Figure 11. Case 4: computed (FCNA and CNA) water surface, bed elevation, velocity, and
concentration time series at (a) \(x = -0.05 \) m and (b) \(x = 0.05 \) m for a dam break over an erodible bed.

Table VIII. \(L'_V \) and \(L_V \) for Case 4 at selected instants and sections

<table>
<thead>
<tr>
<th>(L'_V) or (L_V)</th>
<th>(t = 0.505) s</th>
<th>(t = 1.01) s</th>
<th>(x = -0.05) m</th>
<th>(x = 0.05) m</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L'_V) of FCNA (%)</td>
<td>7.43</td>
<td>8.79</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>(L'_V) of CNA (%)</td>
<td>7.41</td>
<td>8.84</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>L_η (%)</td>
<td>0.09</td>
<td>0.20</td>
<td>1.90</td>
<td>1.90</td>
</tr>
<tr>
<td>-------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>L_z (%)</td>
<td>1.36</td>
<td>1.25</td>
<td>1.92</td>
<td>1.66</td>
</tr>
<tr>
<td>L_u (%)</td>
<td>0.36</td>
<td>0.44</td>
<td>0.89</td>
<td>0.94</td>
</tr>
<tr>
<td>L_c (%)</td>
<td>1.35</td>
<td>2.21</td>
<td>1.45</td>
<td>1.77</td>
</tr>
</tbody>
</table>

3.5 Case 5: Flood flow due to landslide dam failure

Landslide dam failures involve wet-dry fronts propagating over irregular bed topography, and so constitute prime test cases by which to evaluate and compare the FCNA and CNA models in terms of their well-balanced properties and their treatment of wet-dry interfaces, in addition to shock capturing. Cao et al. (2011a) document results from a series of flume experiments on landslide dam breaches and subsequent flood wave propagation in a large-scale flume of dimensions 80 m \times 1.2 m \times 0.8 m and a fixed bed slope of 0.001. The experiments were implemented for different types of dams (i.e. with and without an initial breach) and dam material compositions in order to provide a unique, systematic set of measured data for validating numerical models of dam breaches and the resulting floods.

To demonstrate the performance of the FCNA, a uniform sediment case with no initial breach, i.e., F-case 15 (Cao et al. 2011a), is revisited here as Case 5. In this case, the dam was located at 41 m from the flume inlet, was 0.4 m high and had a crest width of 0.2 m. The initial upstream and downstream slopes of the dam were 1:4 and 1:5, respectively. The initial static water depths immediately upstream and downstream of the dam were 0.054 m and 0.048 m respectively. The inlet flow discharge was 0.025 m3/s$^{-1}$, and no sediment was present. A 0.15 m high weir was situated at the outlet of the laboratory flume, and so a transmissive condition was imposed at the downstream boundary of the numerical models. Following Cao et al. (2011b), the net sediment exchange flux is determined with modification coefficients $\beta = 9$ and $\varphi = 3$ for both FCNA and CNA.
Figure 12 shows the predicted and measured stage hydrographs at selected cross sections. For F-case 15, cross-sections CS1 and CS5 are 22 m and 1 m upstream of the dam, whilst cross-sections CS8 and CS12 are 13 m and 32.5 m downstream of the dam. The stage hydrographs computed by FCNA and CNA are both in good agreement with the measured data from Cao et al. (2011a). Figure 13 presents the predicted water surface and bed profiles along with the measured stage at times $t = 670$, 730 (shortly after the erosion of the dam) and 900 s (nearly final state of the dam failure). It is hard to say which algorithm better reproduces the processes of the dam failure as both the simulations of FCNA and CNA match the measured data very well and the differences between the results of the two algorithms are too subtle to distinguish. Echoing Figures 12 and 13, the values of the L^*_{η} and L_{η} in Table IX provide further insight into the relative performances of FCNA and CNA in comparison with the measured data. The values of L^*_{η} are around 1.2% at the selected sections but increase to around 8.5% at selected instants, which may be ascribed to the density of scattered measured data. However, the small values of L_{η} and close values of L^*_{η} in Table IX also demonstrate the stage is predicted by FCNA and CNA to almost the same accuracy, which further confirms that both algorithms can successfully deal with the complex flow and sediment transport processes associated with contact discontinuities as they propagate over irregular topographies.

Figure 12. Case 5: predicted (FCNA and CNA) and measured (Cao et al. 2011a) stage hydrographs at four cross-sections for a channel flow induced by a landslide dam failure at laboratory-scale.
Figure 13. Case 5: predicted (FCNA and CNA) water surface and bed profiles, and measured
stage profiles (Cao et al. 2011a), at times (a) $t = 670$ s, (b) $t = 730$ s and (c) $t = 900$ s for
channel flow induced by a landslide dam failure at laboratory-scale.

Table IX. L^*_η and L_η for Case 5 at selected instants and sections

<table>
<thead>
<tr>
<th></th>
<th>$t = 670$ s</th>
<th>$t = 730$ s</th>
<th>$t = 900$ s</th>
<th>CS 1</th>
<th>CS 5</th>
<th>CS 8</th>
<th>CS 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>L^*_η of FCNA (%)</td>
<td>7.08</td>
<td>9.05</td>
<td>9.46</td>
<td>1.33</td>
<td>1.08</td>
<td>1.29</td>
<td>1.32</td>
</tr>
<tr>
<td>L^*_η of CNA (%)</td>
<td>7.26</td>
<td>8.62</td>
<td>9.59</td>
<td>1.15</td>
<td>0.74</td>
<td>1.00</td>
<td>1.03</td>
</tr>
<tr>
<td>L_η (%)</td>
<td>0.54</td>
<td>2.34</td>
<td>0.28</td>
<td>0.62</td>
<td>0.61</td>
<td>0.72</td>
<td>0.73</td>
</tr>
</tbody>
</table>

3.7 Discussion

The run time of the FCNA relative to its counterpart of the CNA for the test cases is listed in Table X. Although the run time of FCNA is relatively longer than that of the CNA, the differences between the two algorithms are within 10%. In connection to the issue of improving the computational efficiency, the technique of adaptive mesh refining can be incorporated, which has recently been found to be able to save the computational time significantly in computational river modelling (Huang et al. 2015).

In order to evaluate the possible conservation errors due to the equation manipulation in the CNA, the relative error of mass conservation R in the computational domain is deployed, which is defined as

$$R = \frac{\text{abs} \left[M_t - (M_0 + M_{in} - M_{out} + M_r) \right]}{M_t}$$

(32)

where M_0, M_t = the mass of the water-sediment mixture flow at the initial state ($t = 0$) and at time $t > 0$; M_{in}, M_{out} = the mass of the inflow and outflow at the up- and downstream boundaries;
and \(M_e \) = the mass of bed erosion. The performance of the CNA in preserving mass conservation as well as the comparison with the FCNA is shown in the Table XI, with the values of \(R \) within \(5 \times 10^{-4} \) for Cases 1 to 4 and \(5 \times 10^{-2} \) for Cases 5. It is justified that mass conservation may not be perfectly satisfied as numerical errors are inevitable in practical numerical modelling, especially when wet–dry interfaces are involved. Although the FCNA generally gives a better performance than the CNA in preserving mass conservation over the range of test cases considered, the differences are limited. Therefore, the concern over conservation errors due to the equation manipulation of the CNA is no longer necessary.

Table X. Relative run time of test cases

<table>
<thead>
<tr>
<th>Test case</th>
<th>1 a</th>
<th>1 b</th>
<th>2 a</th>
<th>2 b</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative run time</td>
<td>1.070</td>
<td>1.072</td>
<td>1.09</td>
<td>1.04</td>
<td>1.08</td>
<td>1.05</td>
<td>1.04</td>
</tr>
</tbody>
</table>

Table XI. Relative mass conservation errors of test cases

<table>
<thead>
<tr>
<th>R (R) of FCNA</th>
<th>1 a</th>
<th>1 b</th>
<th>2 a</th>
<th>2 b</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R) of FCNA</td>
<td>0.0</td>
<td>0.0</td>
<td>(4.1 \times 10^{-5})</td>
<td>(4.6 \times 10^{-4})</td>
<td>(1.0 \times 10^{-15})</td>
<td>(7.4 \times 10^{-6})</td>
<td>(0.99 \times 10^{-2})</td>
</tr>
<tr>
<td>(R) of CNA</td>
<td>0.0</td>
<td>0.0</td>
<td>(4.3 \times 10^{-5})</td>
<td>(4.6 \times 10^{-4})</td>
<td>(4.2 \times 10^{-5})</td>
<td>(1.2 \times 10^{-4})</td>
<td>(1.14 \times 10^{-2})</td>
</tr>
</tbody>
</table>

4. Conclusion

A numerical algorithm, FCNA, has been presented to directly solve the fully coupled SHSM equations with a non-capacity approach, based on an unmodified full conservation form of the equations with mixture density maintained on the LHS of the equation set. When implemented
with the well-balanced WSDGM version of the SLIC scheme, FCNA performed satisfactorily for
the following series of test cases: steady equilibrium flow over a steep hump, density dam breaks
with two discontinuities, dam breaks over erodible beds at prototype and laboratory scale, and a
flood flow due to a landslide dam failure. It was demonstrated that the FCNA algorithm properly
resolved complicated flows with sharp fronts (in stage and velocity), sediment transport processes
with contact discontinuities over irregular topographies, and non-equilibrium bed morphological
change. It was also found that the CNA, based on redistribution of the water-sediment mixture
density term, achieved very similar accuracy to the FCNA over the range of verification and
validation tests considered. Moreover, the relative run time was discussed and relative mass
conservation errors of the two algorithms were compared, revealing the faster run time of the
CNA and better performance of the FCNA in preserving mass conservation, but differences of the
indexes between the two algorithms were subtle. These findings indicate that both the FCNA and
CNA algorithms can be satisfactorily applied in computational river modelling.

Acknowledgements

The work reported in this manuscript is funded by Natural Science Foundation of China
(Grants No. 51279144 and 11432015).

References

flows by finite volume schemes”, Proceedings of the second international conference on

method for the numerical integration of the 2D shallow water equations with topography”,

Xiao, H., Young, Y. L. and Prévost, J. H. (2010), “Hydro- and morphodynamic modeling of
breaking solitary waves over a fine sand beach. Part II: Numerical simulation”, *Marine

Yue, Z., Cao, Z., Li, X. and Che, T. (2008), “Two-dimensional coupled mathematical modeling of
fluvial processes with intense sediment transport and rapid bed evolution”, *Science in China

sediment movement: Experimental approaches and numerical modelling”, *Journal of

method for the treatment of source terms in the shallow-water equations”, *Journal of

Corresponding author

Professor Zhixian Cao can be contacted at: zxcao@whu.edu.cn
Table I. Spatial increment and Courant number used in test cases

<table>
<thead>
<tr>
<th>Test case</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spatial step Δx (m)</td>
<td>0.05</td>
<td>0.02</td>
<td>10</td>
<td>0.005</td>
<td>0.04</td>
</tr>
<tr>
<td>Courant number C_r</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
</tr>
</tbody>
</table>

Table II. Summary of test cases

<table>
<thead>
<tr>
<th>Test case</th>
<th>Sediment density ρ_s (kg/m3)</th>
<th>Water density ρ_w (kg/m3)</th>
<th>Gravitational acceleration g (m/s2)</th>
<th>Sediment diameter d (mm)</th>
<th>Manning roughness n</th>
<th>Sediment porosity p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,650</td>
<td>1,000</td>
<td>9.8</td>
<td>N/A</td>
<td>0.0</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>0.5&2.0</td>
<td>1.0</td>
<td>1.0</td>
<td>N/A</td>
<td>0.0</td>
<td>N/A</td>
</tr>
<tr>
<td>3</td>
<td>2,650</td>
<td>1,000</td>
<td>9.8</td>
<td>8.0</td>
<td>0.03</td>
<td>0.4</td>
</tr>
<tr>
<td>4*</td>
<td>1,540</td>
<td>1,000</td>
<td>9.8</td>
<td>3.5</td>
<td>0.025</td>
<td>0.3</td>
</tr>
<tr>
<td>5*</td>
<td>2,650</td>
<td>1,000</td>
<td>9.8</td>
<td>0.8</td>
<td>0.012</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Notes: * Cases using measured data.

Table III. L_η^* for Case 1

<table>
<thead>
<tr>
<th>L_η^* (%)</th>
<th>FCNA</th>
<th>CNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1a</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Case 1b</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Table IV. \(L'_v \) for Case 2 at \(t = 30 \) s

<table>
<thead>
<tr>
<th>Case</th>
<th>(L'_v) (%)</th>
<th>FCNA</th>
<th>CNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 2a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\rho_w = 0.5) kg/m(^3)</td>
<td>(L'_\eta) (%)</td>
<td>4.50</td>
<td>4.50</td>
</tr>
<tr>
<td></td>
<td>(L'_u) (%)</td>
<td>6.67</td>
<td>6.73</td>
</tr>
<tr>
<td>Case 2b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\rho_w = 2) kg/m(^3)</td>
<td>(L'_\eta) (%)</td>
<td>2.48</td>
<td>2.49</td>
</tr>
<tr>
<td></td>
<td>(L'_u) (%)</td>
<td>4.44</td>
<td>5.85</td>
</tr>
</tbody>
</table>

Table V. \(L_v \) for Case 2 at selected instant and sections

<table>
<thead>
<tr>
<th>Case</th>
<th>(L_v)</th>
<th>(t = 30) s</th>
<th>(x = 25) m</th>
<th>(x = 50) m</th>
<th>(x = 75) m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 2a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\rho_w = 0.5) kg/m(^3)</td>
<td>(L_\eta) (%)</td>
<td>0.002</td>
<td>0.0008</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>(L_u) (%)</td>
<td>1.65</td>
<td>0.26</td>
<td>N/A</td>
<td>0.56</td>
</tr>
<tr>
<td></td>
<td>(L_c) (%)</td>
<td>0.04</td>
<td>N/A</td>
<td>0.002</td>
<td>N/A</td>
</tr>
<tr>
<td>Case 2b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\rho_w = 2) kg/m(^3)</td>
<td>(L_\eta) (%)</td>
<td>0.02</td>
<td>0.016</td>
<td>0.02</td>
<td>0.015</td>
</tr>
<tr>
<td></td>
<td>(L_u) (%)</td>
<td>3.25</td>
<td>3.26</td>
<td>N/A</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>(L_c) (%)</td>
<td>0.016</td>
<td>N/A</td>
<td>0.00</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table VI. \(L'_v \) for Case 3 at selected instants and sections

<table>
<thead>
<tr>
<th>(L'_v)</th>
<th>(t = 30) s</th>
<th>(t = 20) min</th>
<th>(x = 20) km</th>
<th>(x = 30) km</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L'_\eta) of FCNA (%)</td>
<td>1.02</td>
<td>1.20</td>
<td>1.64</td>
<td>3.39</td>
</tr>
<tr>
<td>(L'_c) of FCNA (%)</td>
<td>7.48</td>
<td>4.75</td>
<td>4.18</td>
<td>2.40</td>
</tr>
<tr>
<td>(L'_\eta) of CNA (%)</td>
<td>0.90</td>
<td>1.17</td>
<td>1.66</td>
<td>3.41</td>
</tr>
<tr>
<td>(L'_c) of CNA (%)</td>
<td>7.07</td>
<td>5.11</td>
<td>4.23</td>
<td>2.65</td>
</tr>
</tbody>
</table>
Table VII. L_v for Case 3 at selected instants and sections

<table>
<thead>
<tr>
<th>L_v (%)</th>
<th>$t = 30$ s</th>
<th>$t = 20$ min</th>
<th>$x = 20$ km</th>
<th>$x = 30$ km</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.004</td>
<td>0.069</td>
<td>0.18</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>0.63</td>
<td>0.57</td>
<td>0.18</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>0.50</td>
<td>0.18</td>
<td>0.04</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>1.29</td>
<td>0.72</td>
<td>0.16</td>
<td>0.53</td>
<td></td>
</tr>
</tbody>
</table>

Table VIII. L_v' and L_v for Case 4 at selected instants and sections

<table>
<thead>
<tr>
<th>L_v or L_v'</th>
<th>$t = 0.505$ s</th>
<th>$t = 1.01$ s</th>
<th>$x = -0.05$ m</th>
<th>$x = 0.05$ m</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_v' of FCNA (%)</td>
<td>7.43</td>
<td>8.79</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>L_v' of CNA (%)</td>
<td>7.41</td>
<td>8.84</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>L_v (%)</td>
<td>0.09</td>
<td>0.20</td>
<td>1.90</td>
<td>1.90</td>
</tr>
<tr>
<td>L_z (%)</td>
<td>1.36</td>
<td>1.25</td>
<td>1.92</td>
<td>1.66</td>
</tr>
<tr>
<td>L_u (%)</td>
<td>0.36</td>
<td>0.44</td>
<td>0.89</td>
<td>0.94</td>
</tr>
<tr>
<td>L_c (%)</td>
<td>1.35</td>
<td>2.21</td>
<td>1.45</td>
<td>1.77</td>
</tr>
</tbody>
</table>

Table IX. L_v' and L_v for Case 5 at selected instants and sections

<table>
<thead>
<tr>
<th>L_v or L_v'</th>
<th>$t = 670$ s</th>
<th>$t = 730$ s</th>
<th>$t = 900$ s</th>
<th>CS 1</th>
<th>CS 5</th>
<th>CS 8</th>
<th>CS 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_v' of FCNA (%)</td>
<td>7.08</td>
<td>9.05</td>
<td>9.46</td>
<td>1.33</td>
<td>1.08</td>
<td>1.29</td>
<td>1.32</td>
</tr>
<tr>
<td>L_v' of CNA (%)</td>
<td>7.26</td>
<td>8.62</td>
<td>9.59</td>
<td>1.15</td>
<td>0.74</td>
<td>1.00</td>
<td>1.03</td>
</tr>
<tr>
<td>L_v (%)</td>
<td>0.54</td>
<td>2.34</td>
<td>0.28</td>
<td>0.62</td>
<td>0.61</td>
<td>0.72</td>
<td>0.73</td>
</tr>
</tbody>
</table>
Table X. Relative run time of test cases

<table>
<thead>
<tr>
<th>Test case</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1.070</td>
<td>1.072</td>
<td>1.09</td>
<td>1.04</td>
<td>1.08</td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table XI. Relative mass conservation errors of test cases

<table>
<thead>
<tr>
<th>R</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.0</td>
<td>0.0</td>
<td>4.1x10^{-5}</td>
<td>4.6x10^{-4}</td>
<td>1.0x10^{-15}</td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R of FCNA:

| a | 0.0 | 0.0 | 4.3x10^{-5} | 4.6x10^{-4} | 4.2x10^{-5} | 1.2x10^{-4} | 1.14x10^{-2} |
| b | | | | | | | |

R of CNA:

| a | 0.0 | 0.0 | 4.3x10^{-5} | 4.6x10^{-4} | 4.2x10^{-5} | 1.2x10^{-4} | 1.14x10^{-2} |
Figure 1. Definition sketch of the WSDGM version of the SLIC scheme

Figure 2. Case 1a: equilibrium stage and velocity profiles predicted by FCNA and CNA for initial stage of 1.0 m
Figure 3. Case 1b: equilibrium stage and velocity profiles predicted by FCNA and CNA for initial stage of 0.5 m
Figure 4. Case 2: computed stage, velocity and concentration profiles by FCNA and CNA and referenced stage and velocity profiles by Leighton et al. (2010) at $t = 30$ s for density dam break with two discontinuities for densities (a) $\rho = 0.5$ kg/m3 and (b) $\rho = 2$ kg/m3.
Figure 5. Case 2a: stage, velocity, and concentration time histories at locations (a) $x = 25$ m, (b) $x = 50$ m, and (c) $x = 75$ m, predicted by FCNA and CNA for density dam break ($\rho = 0.5$ kg/m3) with two discontinuities at times (a) $t = 30$ s and (b) $t = 20$ min.
Figure 6. Case 2b: stage, velocity, and concentration time histories at locations (a) $x = 25$ m, (b) $x = 50$ m, and (c) $x = 75$ m, predicted by FCNA and CNA for density dam break ($\rho = 2.0$ kg/m3) with two discontinuities.
Figure 7. Case 3: dam break over an erodible bed at prototype scale: profiles of water surface and bed elevation, velocity, and concentration computed by FCNA and CNA and referenced stage and bed elevation predicted by Cao et al. (2004) at times (a) $t = 30$ s and (b) $t = 20$ min.
Figure 8. Case 3: dam break over an erodible bed at prototype scale: time histories of water surface and bed elevation, velocity, and concentration computed by FCNA and CNA and referenced stage and bed elevation predicted by Cao et al. (2004) at locations (a) $x = 20$ km and (b) $x = 30$ km.
Figure 9. Case 4: computed (FCNA and CNA) and measured (Fraccarollo and Capart, 2002) water surface and bed elevation profiles at (a) $t = 0.505$ s and (b) $t = 1.01$ s for a dam break over an erodible bed.
Figure 10. Case 4: computed (FCNA and CNA) velocity and concentration profiles at (a) $t = 0.505$ s and (b) $t = 1.01$ s for a dam break over an erodible bed.
Figure 11. Case 4: computed (FCNA and CNA) water surface, bed elevation, velocity, and concentration time series at (a) $x = -0.05$ m and (b) $x = 0.05$ m for a dam break over an erodible bed.
Figure 12. Case 5: predicted (FCNA and CNA) and measured (Cao et al. 2011a) stage hydrographs at four cross-sections for a channel flow induced by a landslide dam failure at laboratory-scale.
Figure 13. Case 5: predicted (FCNA and CNA) water surface and bed profiles, and measured stage profiles (Cao et al. 2011a), at times (a) $t = 670$ s, (b) $t = 730$ s and (c) $t = 900$ s for channel flow induced by a landslide dam failure at laboratory-scale.
61x33mm (150 x 150 DPI)
152x114mm (150 x 150 DPI)

1. Elevation plots for FCNA and CNA.
2. Velocity plots for FCNA and CNA.

Legend:
- ○ Exact
- Bed
- Water surface
- Velocity
152x114mm (150 x 150 DPI)
(a1) x=20 km (a2) x=20 km (a3) x=20 km
(b1) x=30 km (b2) x=30 km (b3) x=30 km
Elevation (m) Elevation (m) Concentration Concentration
Velocity (m/s) Velocity (m/s)

○ Cao et al. 2004 ——— CNA —— FCNA

152x114mm (150 x 150 DPI)
152x114mm (150 x 150 DPI)
Engineering Computations

(a) CS 1

(b) CS 5

(c) CS 8

(d) CS 12

Stage (cm)

0 200 400 600 800 1000

t (s)

Stage (cm)

0 200 400 600 800 1000

t (s)

M stage → CNA → FCNA

152x114mm (150 x 150 DPI)
Reply to Review Comments

Title: Numerical Algorithms for Solving Shallow Water Hydro-Sediment-Morphodynamic Equations

Authors: Chunchen Xia, Zhixian Cao, Gareth Pender and Alistair G.L. Borthwick

Manuscript ID: EC-01-2016-0026R1

First of all, the authors very much appreciate the reviewer’s comments and suggestions, and have carefully revised the manuscript. The following is written in response to the referees’ comments. To help understand, the Reply is set in blue. In addition, other parts of the manuscript have also been modified, wherever appropriate.

To Referee 1

Comments:

Among the amendments/clarifications required in the first review, the authors were asked to simply underline numerical differences between their technique and that used in previous works (e.g., that of Hu et al., 2015). However, differently from what stated in the reply, I was not surprised at all about similarities with previous numerical models, and I only asked for a clarification. In summary: many words spent in the reply (first paragraph of the reply unnecessary), no trace of clarification in the text (though required). Hence, part of the second paragraph of the authors’ reply must be used in the text to explain what required.

Reply: Thanks for the reviewer's suggestion. The clarification has been added when introducing how to compute the numerical fluxes and bed slope source term (Line193-199 in subsection 2.4.2).
Specific points

• L113-122: since the capacity/non-capacity issue is tackled in this paragraph, the authors should properly cite the works by Cao et al. (2012, 2016), which are referenced, but only cited at L463.

Reply: Yes, the references have been cited as suggested.

• L114: “Equally important”.

Reply: Yes, revised as suggested.

• L270: “then the latter is modified to be equal”.

Reply: Yes, revised as suggested.

Additional Questions:

1. Originality: Does the paper contain new and significant information adequate to justify publication?

Yes, it does.

Reply: Thanks for the positive comment.

2. Relationship to Literature: Does the paper demonstrate an adequate understanding of the relevant literature in the field and cite an appropriate range of literature sources? Is any significant work ignored?

Yes, it does.

Reply: Thanks for the positive comment.
3. Methodology: Is the paper's argument built on an appropriate base of theory, concepts, or other ideas? Has the research or equivalent intellectual work on which the paper is based been well designed? Are the methods employed appropriate?

Yes, it does.

Reply: Thanks for the positive comment.

4. Results: Are results presented clearly and analysed appropriately? Do the conclusions adequately tie together the other elements of the paper?

Yes, it does.

Reply: Thanks for the positive comment.

5. Implications for research, practice and/or society: Does the paper identify clearly any implications for research, practice and/or society? Does the paper bridge the gap between theory and practice? How can the research be used in practice (economic and commercial impact), in teaching, to influence public policy, in research (contributing to the body of knowledge)? What is the impact upon society (influencing public attitudes, affecting quality of life)? Are these implications consistent with the findings and conclusions of the paper?

Yes, it does.

Reply: Thanks for the positive comment.

6. Quality of Communication: Does the paper clearly express its case, measured against the technical language of the field and the expected knowledge of the journal's readership? Has attention been paid to the clarity of expression and readability, such as sentence structure, jargon use, acronyms, etc.

Yes, it does.

Reply: Thanks for the positive comment.