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Stationary wave groups exist in a range of nonlinear dispersive media, including optics, Bose-
Einstein condensates, plasma, and hydrodynamics. We report experimental observations of non-
linear surface gravity X-waves, i.e., X-shaped wave envelopes that propagate over long distances
with constant form. These can be described by the 2D+1 nonlinear Schrödinger equation, which
predicts a balance between dispersion and diffraction when the envelope (the arms of the X) travel
at ±arctan(1/

√
2) ≈ ±35.26◦ to the carrier wave. Our findings may help improve understanding

the lifetime of extremes in directional seas and motivate further studies in other nonlinear dispersive
media.

Stationary or nondispersive wave groups can occur in
a range of nonlinear dispersive media, including in optics
[1–3], Bose-Einstein condensates [4], plasma [5] and hy-
drodynamics. In optics, the free-space scalar wave equa-
tion has traditionally been used to investigate linear, lo-
calized waves (LWs), and a number of families of linear
LW solutions have been found [6–8]. One such family
is the so-called “X-wave” characterized by an X-shaped
packet structure with a sharp, high amplitude centroid.
Linear X-waves have been observed and confirmed to be
nondispersive in optical fibres [9]. Optical LWs play a
role in free space communications [10], optical lithogra-
phy [11], and optical rogue waves [12].

When the scales of group velocity dispersion (GVD)
and nonlinear amplitude effects are comparable, non-
linearity must be considered. Whereas GVD can be
described using a dispersion relationship, amplitude-
dependent nonlinear effects are typically modelled
through the universal nonlinear Schrödinger equation
(NLSE) [13], which applies in nonlinear dispersive media
[14, 15], and can be extended to two spatial dimensions to
allow multi-dimensional, nonlinear LW group solutions.
Indeed, in optics, “light bullet” nonlinear X-waves have
been predicted and created experimentally [1, 2], and ex-
treme LW events or ‘rogue waves’ have been detected in
optical telecommunication fibres [16]. Due to the disper-
sive and nonlinear character of water waves, an analogy
between water waves, optics, Bose-Einstein condensates
and plasma can be naturally drawn [3, 17–20].

Both the coupled NLSE (CNLSE) (whereby two non-
linear wave systems interact) and the 2D+1 NLSE
(whereby one wave system exists with a crossing an-
gle θ between the carrier and envelope) can describe
the evolution of crossing, weakly nonlinear wave sys-
tems. Using the 2D+1 NLSE, a critical crossing angle
of θc = ± arctan 1/

√
2 can be derived, beyond which lin-

ear focusing becomes defocusing, and the system achieves
stability to sideband perturbations [21]. In the CNLSE,

a similar stabilization of the coupled system is observed
at the same critical angle [22]. For hydrodynamics and
at low interaction angles, numerical simulations of the
potential-flow Euler equations and experimentation have
confirmed these predictions, observing an increase in the
kurtosis of crossing seas up to approximately ±25◦ that
reduces rapidly as the angle increased towards θc [23].
These results have been confirmed using phase-resolving
numerical simulations for realistic broadbanded crossing
sea states, showing that the maximum value of the kur-
tosis is small at the critical angle, with the minimum
occurring at slightly larger angles [24].

In hydrodynamics, wave groups propagating at the
critical crossing angle predicted by the 2D+1 NLSE oc-
cur naturally at the fringes of the Kelvin ship wake [25].
Furthermore, an isolated spectral energy peak tends to
spread outwards at this angle [26]. Extreme wave heights
in crossing seas are enhanced by second-order bound
waves causing wave-averaged set-up [27]. Through the
elimination of dispersion at the critical angle, it may be
possible to extend dramatically the lifetime of groups
containing extreme events. Indeed, previous numerical
studies on the three-dimensional evolution of long-crested
waves perturbed using random phases have shown nat-
ural formation of slanted coherent structures [28] that
interact to produce long-lived rogue waves [29, 30].

In this experimental study, we create for the first time a
nondispersive hydrodynamic X-wave; we do so in a direc-
tional and circular water-wave facility using the critical
crossing angle. We measure the spatio-temporal free sur-
face elevation of the X-wave, compare it with a numerical
solution of the 2D+1 NLSE, and alter the crossing angle
in order to quantify its effect on dispersion.
Theoretical background - We consider the two-

dimensional nonlinear Schrödinger equation (2D+1
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NLSE) for deep-water surface gravity waves [31]:
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where x and y are the horizontal coordinates, t is time,
and A(x, y, t) the envelope of a carrier wave of frequency
ω0 and wavenumber k0 = (k0, 0) propagating in the x-
direction. The coefficients of the 2D-NLSE are given by,

cg =
∂ω

∂kx

∣∣∣
k=k0

=
ω0

2k0
, α =

1

2

∂2ω

∂k2x

∣∣∣
k=k0

=
ω0

8k20
, β =

ω0k
2
0

2
.

(2a,b,c)
While the second derivative in the x-coordinate is re-
sponsible for the dispersion of the envelope, the second
derivative in the y-coordinate implies diffraction. The
leading-order identity ∂A/∂t ' −cg∂A/∂x can be used
to transform the 2D+1 NLSE to a form that is a more
suitable framework for laboratory experiments [32, 33],
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We look for solutions that correspond to envelopes trav-
eling at an angle θ with respect to the carrier wave,
which can be introduced through the transformation
T ≡ t cos θ + y sin θ/cg, giving from (3),
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i.e., the integrable 1D+1 NLSE with a new coefficient in
front of the dispersive term, α′ ≡ α(1−3 sin2 θ)/c3g. It can

be seen that at θ = ±θc = ±arctan(1/
√

2) ≈ ±35.26◦,
the dispersive term becomes zero, then switches sign be-
coming defocusing [26, 34]. This is the critical crossing
angle examined experimentally in this paper.

For small-amplitude waves, the nonlinear term in
(4) can be neglected, and we have a dispersive linear
Schrödinger equation. If θ = ±θc, the system also be-
comes nondispersive (α′ = 0), and the solution can be
written as the superposition of two solutions, A+ =
A(x, T ; θ+c ) and A− = A(x, T ; θ−c ) with θ+c = +θc and
θ−c = −θc,
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where A0 is the theoretical linear focused amplitude of
each arm, σ∗ ≡ σ/ cos(θc) is the width of the group
in the time domain, and we have chosen Gaussian en-
velopes. Equation (5) forms the characteristic linear non-
dispersive X-shape pattern illustrated in fig. 1. In the
wavenumber spectrum of (5), all non-zero components
are confined to the lines ky = ±(kx − k0) tan θc. The

FIG. 1. Theoretical X-wave envelope solution formed by two
Gaussian envelopes, as parameterized in (5).

critical angle also corresponds to the stability boundary
of a uniform wave train [34, 35]. Single crossed-wave
groups travelling at the critical angle can therefore be
expected to travel without changing shape, as they are
both unaffected by GVD and spectral sideband instabil-
ities (see Supplementary Material, hereafter S.M.). Due
to energy transfer from their highly centralized energy
peak, double-crossed wave groups may experience non-
stationary behaviour, as there are enough components
to take part in four-wave interactions [26, 36]. Experi-
mental methodology - In order to examine the effects of
crossing at large angles, we carried out experiments in the
circular FloWave Ocean Energy Research Facility at the
University of Edinburgh (see S.M., fig. S3). This multi-
directional wave basin has a 25 m diameter, is 2 m deep
and is encircled by 168 actively absorbing wavemakers,
enabling creation of waves in all directions. We adopt
a Cartesian coordinate system with origin at the centre
of the tank. In all experiments, the x-axis is in the di-
rection of the phase velocity of the carrier waves. Wave
gauges were spaced evenly along the x-axis, mounted to
a gantry capable of moving in the y-axis (see S.M. fig.
S3). Experiments were sufficiently short that reflections
did not interfere with incident measurements.

To define a single crossed-wave group, we chose a
narrow-banded Gaussian amplitude spectrum in fre-
quency space,

Â(ω) =
A0σ

∗
√

2π
exp

(
− (ω − ω0)2σ∗

2

2

)
, (6)

where σ∗ is now more generally the length of the group
in the time domain, and (6) corresponds to the Fourier
transform of a single arm in (5) at x = y = 0. The
spectral bandwidth (1/σ∗) was set as large as possible to
encourage dispersion at non-critical angles while keeping
the group narrow-banded and avoiding distortion of the
signal due to the minimum frequency cut-off ωmin (cor-
responding to kmin; see S.M.).

Table I summarizes all the experiments conducted, dis-
tinguishing two main types: single crossed-wave groups
(expts. 1a-d and 2a-d), consisting of only a positive
arm, and X-wave groups, consisting of both arms (expt.
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3). Both lower-steepness (expts. 1a-d) and higher-
steepness (expts. 2a-d) single crossed-groups were tested,
while X-wave group experiments were always of a higher-
steepness. A (non-dimensional) spatial nonlinear scale,
λN = cg/(λ0β|A0|2) (derived from the nonlinear time
scale) allows the number of wavelengths over which non-
linear effects take place to be estimated for each exper-
iment. For the single crossed-group experiments, the
crossing angle θ was varied while keeping the length of
the group in time σ∗ constant. Each experiment was
repeated four times. See S.M. for further details.

Expt. θ (◦) ω0 (rad s−1) k0d σ∗ (s) εmin εmax λN
1a 0

7.07 10.2 2.29

0.08 0.09 24.9
1b θ+c /2 0.08 0.09 24.9
1c θ+c 0.08 0.09 24.9
1d 40 0.08 0.08 24.9
2a 0

7.07 10.2 2.29

0.17 0.25 5.6
2b θ+c /2 0.17 0.24 5.6
2c θ+c 0.17 0.19 5.6
2d 40 0.17 0.16 5.6
3 θ+c and θ−c 7.07 10.2 2.29 0.18 0.26 5.0

TABLE I. Experimental parameters, with εmin and εmax de-
noting the minimum and the maximum estimated steepness
values (ε ≡ k0|A|max) and λN the estimated non-dimensional
nonlinear spatial scale.

Results - For both single crossed-wave groups and X-
waves, we compare our experimental results with nu-
merical solutions of the 2D+1 NLSE (split-step Fourier
method), using as the boundary condition the complex
wavepacket amplitude at the first gauge (smallest x).
We obtain this from the recorded free surface using
A = (η + iη̃) exp(−i(k0x− ω0t)), where η̃ is the Hilbert-
transform of the free surface elevation η (e.g. [32]). For
single crossed-wave groups, fig. 2 presents time series of
the experimental and numerical packet envelope (see fig.
S5, S.M. for spectra). In many cases, the indicative confi-
dence bands obtained from 4 repeats of each experiment
are not clearly visible due to their proximity to the mean,
indicating very good repeatability of experiments. We
introduce two quantitative measures of dispersion: max-
imum group amplitude and group width, which we define
through the focus time, tf ≡

∑N
i=1 tiAi/

∑N
i=1Ai, in the

form of a standard deviation, as,

tσ ≡

√√√√∑N
i=1 (ti − tf )

2
Ai∑N

i=1Ai
, (7)

where the indicator i corresponds to the discrete sam-
pling points in time. Figure 3 shows the change in the
maximum amplitude and the group width from (7) as a
function of evolution distances for different crossing an-
gles.

In the lower-steepness case, both experimental and

numerical unidirectional packets show clear focusing
(fig. 2a) across approximately 10λ0 of evolution, includ-
ing a decrease in group width as the group undergoes
dispersive focusing (fig. 3b). At half the critical angle,
the packet shows behaviour very similar to unidirectional
(figs. 2b,3b), as expected based on the linear dispersion
relationship (see fig. S1b, S.M.). At the critical cross-
ing angle, the wave group amplitude only increases min-
imally (fig. 2c), and the width stays constant across the
evolution distance (fig. 3b). Beyond the critical angle, at
40◦, changes in the packet amplitude are still within one
standard deviation (fig. 2d), and the width stays constant
with minimal changes also predicted by linear theory (see
fig. S1b, S.M.). For all angles, behaviour is well predicted
by the 2D+1 NLSE and predominantly linear, as can be
confirmed by the absence of significant spectral changes
across the evolution distance (see fig. S5a-d, S.M.).

In the higher-steepness cases, the unidirectional
(fig. 2e) and θ = θ+c /2 (fig. 2f) experiments show much
more substantial focusing than their lower-steepness
counterparts. Nonlinear changes are very likely to have
occurred, as is evident from the significant spectral
changes (fig. S5e,f, S.M.), including a drop in peak
spectral amplitude and significant spectral widening as
a classical signature of modulational instability. The
2D+1 NLSE (black lines) with its restrictions on steep-
ness and bandwidth captures the main features but not
all aspects of the observed behaviour for these higher-
steepness, close-to-unidirectional cases.

The time domain behaviour of the higher-steepness
critical angle experiment (fig. 2g) appears to show some
changes in the packet shape, with larger waves moving
to the front of the group creating a double-peak, but the
maximum amplitude of the packet remains largely un-
changed (fig. 3c). The nullification of the dispersive term
in the 2D+1 NLSE at the critical angle has removed lin-
ear focusing and stabilized the wave group, as predicted
by linear stability analysis (cf. (S2) and fig. S2, S.M.).
Beyond the critical angle, at 40◦ (fig. 2h), we observe very
similar behaviour. The numerical solution of the 2D+1
NLSE shows these effects clearly with a completely sta-
tionary wave group in the group frame for the critical
angle (fig. 2g).

Summarizing, it is clear from fig. 3c,d that, as with the
lower-steepness experiments, the behaviour of the 35.26◦

and the 40◦ cases are least dispersive, as well predicted
by the 2D+1 NLSE, and that most of the strong non-
linearity observed for small and zero angles is quelled
for these larger crossing angles. For the higher-steepness
experiments, spectral changes occur that are somewhat
greater than predicted by the 2D+1 NLSE or small but
non-zero where zero changes are predicted by the 2D+1
NLSE (fig. S5e-h, S.M.).

Turning from the single-crossed to the double-crossed
or X-waves (expt. 3), we reconstruct surfaces of mea-
sured packet amplitude A(y, t) at different gauge loca-
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FIG. 2. Envelope time series (normalized by the carrier period, T0) for the single crossed-wave lower-steepness experiments 1a-d
(a-d) and the higher-steepness experiments 2a-d (e-h). Blue, red and black lines denote experiments at the initial (x/λ0 = −6.67)
gauge, and experiments and numerical solutions at the final (x/λ0 = 3.60) gauge, respectively. The dark and light lines show
the mean and the confidence bands (± one standard deviation). Confidence bands may be difficult to distinguish in some
panels due to strong repeatability.

FIG. 3. Relative change of the maximum packet amplitude ∆|A|max = |A|max−|A|max (a,c) and the group width ∆tσ = tσ− tσ
(b,d) in space for different crossing angles, where |A|max and tσ denote averages across the gauges, and tσ is defined by (7).
Panel a,b shows experiments 1a-d (lower-steepness), and panel c,d experiments 2a-d (higher-steepness). The continuous and
dashed lines denote the mean across repeat experiments with error bars (± one standard deviation) and numerical solutions,
respectively.

tions and compare with numerical solutions and corre-
sponding spectra Â(ω, ky), as shown in fig. 4. At the
beginning of its evolution (top rows), the experimental
X-wave structure is clearly visible with distinct arms ly-
ing on the±θc lines and a centroid of amplitude 2A0. The
X-structure maintains its global shape as it propagates
across the tank, although the finite number of straight
wave paddles and potential reflections makes perfect gen-
eration by constructive super-positioning away from the
centre and near the boundaries of the tank challenging
(cf. large-time behaviour in fig. 4).

For this higher-steepness experiment, the peak at the
crossing points of the two arms undergoes consider-
able narrowing in the x-direction (its direction of travel,
shown here as time t) and broadening in the y-direction,
a phenomenon previously observed by Gibbs & Taylor

for directionally spread groups that are not crossing and
described therein as ‘walls of water’ [37]. We observe
this behaviour in both experiments and numerical simu-
lations of the 2D+1 NLSE and note that it arises because
of resonant third-order nonlinearity from the interaction
between four wave components [36]. Accordingly, the
2D+1 NLSE predicts a preferential energy transfer to
higher wavenumbers, as shown in the right column of
fig. 4. Unlike the single crossed-wave groups, where all
the non-zero spectral components are confined to a single
line, the double-crossed or X-wave has sufficient compo-
nents to take part in four-wave interaction (cf. Phillips’s
figure of 8), which for a narrow-banded three-dimensional
wave packet has the largest preferential direction of en-
ergy transfer to higher-wavenumbers at 35.26◦ [26]. An
extended set of numerical solutions for single crossed-
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FIG. 4. Spatio-temporal comparison of the experimental (left) and numerical (centre) X-wave packet (expt. 3) as the packet
evolves in space: ∆x/λ0 = −9.6, −3.2, 1.9, 4.4 (rows, descending). The black dashed lines corresponds to the 35.26◦ angle.

The amplitude spectra Â(ω, ky) of the numerical results are also presented (right): grey lines are grid lines, red crosses indicate

the position of the contour at Â/Â0 = 0.33 with the back dash-dotted lines aligned with the crosses in the top panel. We show
the spatio-temporal signals in the group reference frame as predicted by linear theory.

groups and X-waves confirms that the 2D+1 NLSE pre-
dicts truly stationary behaviour for single-crossed waves
at 35.26◦; the most long-lived X-waves occur at angles
close to 35.26◦ for small-steepness, with the angle of
maximum lifetime increasing up to approximately 45◦

for higher steepness (see figs. S6 and S7, S.M.).
Conclusion - We have experimentally demonstrated

the existence of nondispersive single crossed-wave groups
and long-lived nonlinear hydrodynamic X-wave packets
when a carrier wave is modulated by a wave group cross-
ing it at an angle of approximately ±35.26◦, as predicted
by the 2D+1 NLSE and previously observed experimen-
tally in optics. Our single crossed-wave group exper-
iments showed no linear or nonlinear focusing at the
critical angle, with both amplitude and group width re-
maining constant across the evolution distance regardless
of steepness, as predicted by numerical solutions of the
2D+1 NLSE.

When the two arms travelling at ±35.26◦ are super-
imposed, a nondispersive hydrodynamic X-wave is con-
structed, which we have observed in the laboratory. Such
a structure was observed to be quasi-stationary for a
relatively high steepness, however became subject to
third-order resonant four-wave interactions, which are
known to transfer energy to higher wavenumbers with
a preferred direction of ±35.26◦ [26] and result in the
most long-lived X-wave structures at angles ±35.26◦ for

small steepness, increasing up to approximately ±45◦

for higher steepness. In the real ocean, such bimodal
seas, with energy travelling in two directions, do not oc-
cur infrequently [38], and this preferred growth direction
may lead to the natural generation of X-waves, which
in turn will be long-lived due to their lack of disper-
sion. Although unidirectional groups focused to more
extreme amplitudes, the experimental observation of
crossed groups propagating unchanged over many wave-
lengths confirm the lifetime extension of wave groups con-
taining the potential for extreme events.

Finally, this work may motivate new numerical and
experimental studies to investigate the applicability of
directional coherent structures in different nonlinear dis-
persive physical media known to be described by the
NLSE, where such structures have not yet been ob-
served, such as plasma, Bose-Einstein condensates and
cold gases.
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