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"De tudo,ficaram tres coisas: 

A certeza de que estamos sempre comegando... 

A certeza de que epreciso continuar... 

A certeza de que seremos interrompidos antes de terminar. 

Portanto devemos: 

Fazer da interrupgdo um caminho novo... 

Da queda um passo de danga... 

Do medo, uma escada... 

Do sonho, uma ponte... 

Daprocura... Um encontro... " 

Fernando Pessoa 



Appraisal and validation of rapid, integrated chemical and biological assays 
of environmental quality 

Gilberto Fillmann 

Abstract 

To assess the significance of pollutants released into the environment it is necessary 

to determine both the extent of contamination and the biological effects they give rise 

to. This research is based on a tiered system, which commences with conventional 

analytical chemistry (gas chromatography), followed by the development, evaluation 

and application of rapid and simple immunochemical techniques and, finally, the 

integration of chemical and biological markers to assess pollution. 

GC-ECD/FID/MS have been used to investigate the status of chemical contamination 

o f the Black Sea by organochlorine residues, hydrocarbons and faecal sterols. Useful 

infonnation is provided and problems with e.g. HCHs and sewage contamination are 

highlighted. Contamination by DDTs, PCBs, ' total" hydrocarbons and PAHs is also 

reported. Next, these techniques are used to develop rapid screening methods. 

Four distinct applications of immunochemical techniques are presented. Initially, the 

BTEX RaPDD Assay® ELISA is evaluated to detect semi-volatile hydrocarbons in 

contaminated groundwater. Although overestimating concentrations when compared to 

GC-FID/PID, results are well correlated. Secondly, the effectiveness o f the BTEX and 

c-PAH RaPID Assay® to detect hydrocarbons in sediments is tested. Once again, good 

agreement with GC-FID/MS confirms the ELISA to be a useful screening protocol to 

focus more expensive high-resolution analytical techniques. The adaptability and 

applicability of an ELISA (PCB RaPE) Assay®) method in measuring *1otal" PCB 

levels in mussel tissue is demonstrated. An underestimation of concentrations, despite 

of covariability between ELISA and cGC-ECD, is discussed. Next, ELISA (RaPID 

Assay®) and fluorometry were successfully applied to quantify PAH metabolites in crab 

urine as a measure of exposure. HPLC analyses indicated that conjugate PAH 

metabolites were dominant in urine of crabs exposed to pyrene. Differences could also 

be identified between crabs taken from clean and contaminated sites. 

Finally, an integration of chemical and biological techniques is used to investigate 

contamination and effects in mussels within a pollution gradient. Results indicate a 

correlation between micronucleus formation, heart rate and PCB and PAH level. 
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Chapter 1 

1 Strategies to assess the extent and impact of contamination 

1.1 Why monitor environmental contaminants? 

L l . l Environmental Science 

Environmental science is devoted to the study of the quality of the environment and 

to the technology of its conservation. Therefore, it relates to the chemical, physical, and 

biological changes in the environment produced through contamination or modification. 

It also relates to the ecosystem functioning, within all environmental compartments and 

their interactions, and how they can become affected by man's agricultural, industrial, 

and social activities. It includes the application of science and technology to control and 

improve environmental quality (Connell and Miller, 1984). 

The deterioration of environmental quality, which began when man first collected 

into villages and utilised fire, has existed as a serious problem under the ever-increasing 

impacts of an exponentially increasing population and industrialisation. Environmental 

contamination of air, water, soil/sediment and food threatens plant and animal 

communities of the ecosystem, including man. 

I f we are to preserve the earth for future generations, we need to address 

deteriorating standards of urban public health, and environmental science and 

technology must quickly come to play a dominant role in designing our social and 

industrial structure for tomorrow. Scientifically rigorous criteria of environmental 

quality must be developed. Based in part on these criteria, realistic standards must be 

established and our technological progress must be tailored to meet them. Man wi l l 

continue to require increasing amounts of fuel, transportation, industrial chemicals, 

fertilizers, pesticides, and countless other products; and he/she will continue to produce 

waste products of all descriptions. What is needed is an approach focused on the 

development of order and equilibrium in the presently disparate segments of the human 

environment (Connell and Miller, 1984). Most of the skills and tools that are needed 

already exist, and ironically the same technology that has created environmental 

problems is also capable of solving them. 



Our apparently limitless habitat has long been taken for granted with its supposedly 

vast capability to absorb wastes. In recent years it has become apparent that our 

environment does have limitations to the waste it can sustain or dilute to insignificance. 

Atmospheric wastes aggregate around our urban centres while domestic, agricultural 

and industrial wastes contaminate our waters, sediments/soils and biota. The response to 

this situation has been a massive research effort and many waste control measures have 

been introduced in recent years. Nevertheless, many social-economic and political 

factors need to be addressed, as well as scientific and engineering matters, to arrive at 

an effective solution to pollution problems. 

Pollution occurs when substances resulting from human activities are added to the 

environment, causing a detrimental alteration to its physical, chemical, biological, or 

aesthetic characteristics. It is important to note, however, that the occurrence of 

pollution requires a subjective judgement as to whether a detrimental effect has resulted 

or not. In fact, there can be conflicting opinions on this. Environmental management 

agencies are now concerned with the protection of water quality for the conservation of 

natural ecosystems. This requires a detailed understanding of the long-term effects and 

this is limited at the present time. 

Conventional methods for monitoring environmental pollution are problematic 

because they are mainly based on chemical observations and analysis. This approach is 

expensive and is applicable to only a small proportion of the toxic chemicals in the 

environment. It provides little biologically meaningful information, and overiooks the 

complexity of the systems under surveillance (Butterworth, 1995). Modem approaches 

are more comprehensive, including chemical and geochemical analysis, biodegradation 

and toxicity testing, biochemical, physiological and behavioural biomarkers, 

biomonitoring procedures and ecological survey procedures for detennining the 

bioavailability and effects of contaminants. Again, there may be serious limitations to 

these approaches in terms of costs and capabilities (Wells et a/., 2001). 

Recently, there has been increasing interest in the effects of pollutants at different 

levels of the ecological organisation (from a biochemical/molecular level up to 

ecosystems) (Fig 1.1). This has led to the development o f the relatively new field of 

ecotoxicology, which is a combination of three disciplines: toxicology, ecology and 

environmental chemistry (Gerhardt, 2000). Consequently, an integrated environmental 



monitoring regime should logically focus on the combination of chemical, toxicological 

and ecological field approaches. 

1*2 Assessment of Aquatic Pollution 

1.2.1 RAMP Programme 

A diverse array of procedures exists for detecting the impacts of pollutants in marine 

and estuarine environments (Depledge and Hopkin, 1995; Linthurst et al, 1995). These 

include ecological surveys to identify changes in the abundance and diversity of species 

comprising communities, chemical and biomonitoring procedures for assessing the 

concentrations and bioavailability of anthropogenic contaminants, and biochemical, 

physiological and behavioural biomarkers which signal exposure to, and in some cases, 

adverse effects of pollution (Fig. 1.1) (Depledge, 2000). 

When these procedures are combined in well-designed survey programmes, they can 

provide an insight into which pollutants are responsible for, and the extent of, 

environmental degradation. However, they also have a number of practical drawbacks. 

They are expensive to perform, they must be carried out by highly-trained personnel 

and, in the case of analytical environmental chemistry and biomarker analyses, they 

usually require the use of technologically-advanced equipment. 

In developing countries, the availability of highly trained personnel and sophisticated 

analytical facilities is extremely limited. In contrast, in developed countries, competing 

diverse demands for limited public ftmds severely constrain the resources available for 

use in environmental protection and legislation, and may hinder efforts directed towards 

detecting pollution threats. These restrictions point to the need to develop more 

pragmatic environmental assessment procedures which can provide the basis for 

prioritising among study sites, so that resources can be expended efficiently and 

effectively. 

To address this problem, a project entitled Rapid Assessment of Marine Pollution 

(RAMP) has recently been adopted as a pilot project of the Health of the Ocean 

(HOTO) Panel of the Global Ocean Observing System (GOOS) within the Global 

Investigation of Pollution in the Marine Environment programme (GIPME/UNEP) 

(IOC, 1996; Knap, 2000). A RAMP pilot project has been taking place in Brazil for 

over 3 years (Depledge, 2000; Wells et a/., 2001). The development of the HOTO Panel 



of GOOS specifically addresses the means and ways of developing integrated 

mechanisms for observing and forecasting the effects of anthropogenic activities on the 

marine environment. One of its tasks is to provide sensitive rapid assessment of 

contamination caused by discharges of sewage and chemical pollutants. 
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Figure 1.1. Diagrammatic illustration of the impact of pollutants on components of the 
ecosystem and levels of ecological organisation. 

The scientific rationale underlying RAMP is based on the premise that to assess the 

significance of pollutants released into the environment, it is necessary to determine 

both the concentrations of chemicals accumulating in biota and the biological effects 

they give rise to. It is intended to test and provide simple and easy to perform, robust 

and inexpensive techniques to measure chemical and biological markers needed to 

assess environmental impacts, thereby providing a basis for prioritising the need for 



action among sites. Specific measurements include the use of immunoassay techniques 

to detect and quantify levels of contaminants and simple measures of biological effects 

(biomarkers) (Fig. 1.1). This approach is currently being evaluated by comparing it with 

comprehensive analytical chemical analysis and standard toxicity test procedures to 

confirm the reliability of new procedures. In the context of the HOTO Module, the 

validation of the combined chemical and biological markers represents an important 

step. These techniques potentially provide cost-effective screening alternatives to the 

more complex procedures currently used. The limited resources available can, therefore, 

be better expended improving environmental management. This is important since 

environmental managers, although faced with the task of evaluating the extent o f 

contamination and the degree of ecological damage in coastal regions, are usually 

handicapped by the lack of resources for conducting field work and to perform state-of-

the-art chemical and biological assays, especially in developing countries. 

1.2.2 Analytical Chemistry 

Chemical analyses lies at the heart of almost all environmental investigations 

whether they are devoted to monitoring the distribution of a xenobiotic, evaluating its 

persistence and toxicity, or determining its partitioning between environmental matrices 

(Neilson, 1994). Monitoring environmental contaminants traditionally involves 

analytical chemistry. In order to assess the potential harm that environmental pollutants 

pose, we need to know the identity of the chemicals concerned. Environmental 

concentrations of those chemicals are important in determining their toxic potential. It is 

well established that we need to know exactly which and how much of a chemical is 

present before we can assess its likely deleterious effects upon organisms with which it 

might come into contact. In addition, chemical monitoring helps to determine how the 

use of such chemicals causes their concentrations to rise and when we should attempt to 

restrict (or even ban) their use for fear of harm to the environment resulting fi-om their 

increased concentrations (Shaw and Chadwick, 1999). 

In order to analyse environmental samples, the single or group of contaminants 

(analyte) must first be extracted fix»m the sample (matrix) so that it can be concentrated 

and subjected to an appropriate analytical method. Having extracted the analyte from 

the environmental sample, the extract needs to be purified to remove as many 

interfering molecules as possible. There are numerous techniques to quantify pollutants 

and they are generally based on chromatography. This is by far the most commonly 



applied analytical method to identify and quantify environmental organic contaminants. 

Compared to the very simple separation o f inks and plant extracts using absorbent paper 

that first gave the name to this technique, nowadays chromatographic techniques can be 

sophisticated and are conunonly used in environmental analysis. 

Capillary gas chromatographs (cGC) equipped with either a flame ionisation detector 

(FID) or an electron capture detector (ECD) and high performance liquid 

chromatographs (HPLC) equipped with a light absorption detector (spectrophotometer), 

a diode array detector (DAD) or a fluorescence detector are common quantification 

techniques. Most of these techniques rely heavily on the specific retention time of each 

compound for identification. This is by no means a definitive identification of a peak in 

a chromatogram of an environmental extract. Spectroscopic techniques can give 

information about the molecule itself, which helps to identify the unknown substance. 

The most useful spectroscopic techniques are those which can be interfaced with the 

chromatographic procedures mentioned above. This is important because it allows the 

resolving capacity o f the chromatography to be linked with spectroscopic identification. 

Mass spectrometry (MS), which can be interfaced with both GC and HPLC, is by far the 

most commonly applied procedure for the identification of unknown environmental 

contaminants. 

The MS detector works by bombarding a vaporised molecule within a vacuum with 

either electrons (most commonly) or ions which results in Segmentation of the 

molecule. The molecular fragments are charged and their mass to charge ratio {m/z) 

determines their mass separation as they move through four rods with an electric field 

between them. As the ions enter the field, they interact with it in such a way that only 

ions of a specific mass/charge ratio wi l l pass through to the detector. The above 

describes a quadrupole mass spectrometer. The detection is performed almost 

exclusively using an electron multiplier. The molecular fiegmentation pattern is 

characteristic of each molecule, which enables a positive identification. 

These analytical procedures only correspond to a fraction of those used by the 

environmental chemist. They represent the non-biological or pure analytical chemical 

techniques. Biology, however, still holds a key to analytical specificity and it is for this 

reason that immunoassays are also important in environmental monitoring. 



1.2.3 Immunoassay 

As mentioned above, it is important to know the extent to which contaminants 

accumulate in organisms since this provides some insight into likely causes of 

biological damage. Inmiunoassay-based methods for the analysis of environmental 

contaminants are relatively new on the analytical chemistry scene (Stanker and Beier, 

1996; Dankwardt et al, 1998). These methods are based on the use of a specific 

antibody as a detector for the analyte (or group o f analytes) of interest. Immunoassays 

are rapid, sensitive, and selective, and are generally cost effective for large sample 

loads. They are adaptable to field use and have been applied to diverse chemical 

structures (i.e. triazines (Gascon et a/., 1997), polycyclic aromatic hydrocarbon (Knopp 

et a/., 2000), polychlorinated biphenyls (Franek et a/., 2001), dioxins (Shan et al, 

2001). selected organophosphorous (Oubina et ai, 1997) and organochlorine pesticides 

(Ragab et al, 1997)). They have also been applied to various matrices (i.e. water 

(Barcel6 et a/., 1998), groundwater (Knopp et al., 2000), soil/sediment (Waters et a!., 

1997b), food (Roda et a/., 1999; Jaborek-Hugo et al., 2001), and biota (Zajicek et al, 

2000)). These characteristics make immunochemical analysis a valuable tool to fiilfil 

the aims o f projects like RAMP (Wells et al, 2001) and for use by environmental 

analytical chemists (Aga, 1997). The principles of immunoassay technique have been 

previously described (Kemeny, 1991) (Aga, 1997) (Sherry, 1997). 

In contrast to conventional analytical methods, however, the immunoassay has not 

yet been extensively characterized. At the moment, several agencies in the USA (EPA, 

USDA, AEIC, AOAC) and Europe (German Immunoassay Study Group, UK ESCA) 

are involved in the evaluation of immunoassays and producing guidelines into their use 

(Meulenberg et al, 1995). As for any analytical method, quality control and assessment 

of the stability of materials and equipment are required. In addition, immunoassay 

evaluations involve defining the working range, sensitivity, precision, accuracy, 

linearity, specificity, and matrix effects. Another import step in the evaluation o f an 

immunoassay comprises validation by comparing results with established conventional 

methods. Furthermore, in order to recognize the immunoassay as a reliable analytical 

method, there is a need for interlaboratory tests (Meulenberg et al, 1995). Most of the 

immunoassays developed, however, are retained in their particular laboratory or 

institute. Consequently, comparative experiments and interlaboratory validation are 

comparatively rare. More independent evaluations of commercially available kits 



should, however, enhance the acceptance of this technology (Waters et a/., 1997a; 

Kramer, 1998). In this respect, commercial immunoassay kits offer many advantages 

(Meulenberg etai, 1995). 

A number of different immunoassay formats have been used. Enzyme-linked 

immunosorbent assay (ELISA) is the most common version of environmental 

immunoassay (Stanker and Beier, 1996; Dankwardt et a/., 1998). ELISA is an 

immunoassay method that uses enzyme-labeled antigens or antibodies (enzyme 

conjugates) to detect and quantify target compounds (antigens, otherwise known as the 

analytes of interest) in field samples. The antibody is capable of reacting specifically 

with the antigen to form an antigen/antibody complex (commonly referred to as the 

"lock and key" approach). The analyte portion of the enzyme conjugate can bind with 

the antibody as can the analyte present in the samples. ELISA tests are considered to be 

"competitive" assays because the sample-derived analyte competes with the enzyme 

conjugate analyte (which is kept at a constant concentration) to bind to the finite number 

of antibody sites. The greater the concentration of sample-derived analyte relative to the 

enzyme conjugate analyte, the larger the proportion of antibody sites that are occupied 

by the sample-derived analyte. The enzyme portion of the enzyme conjugate serves as a 

catalyst to change a colourless compound to a measurable coloured product that can be 

detected instrumentally. The amount of colour produced is inversely proportional to the 

amount of sample-derived analyte. More colour equals less sample-derived analyte. 

Less colour equals more sample-derived analyte, because all the antibody sites are 

bound to sample-derived analyte and there is less enzyme conjugate present to catalyse 

the colour reaction. 

Immunoassays can rely on a single antibody (monoclonal) or mixtures of antibodies 

(polyclonal) to specifically bind with the antigen(s). Antibodies are a class of proteins 

known as immunoglobulins, which are produced in animals in response to a foreign 

substance (antigen). The small molecular weight antigen may not cause an immune 

response (a non-immunogenic molecule) in the animal. As a result, for the purpose of 

stimulating an immune response, it must be coupled to a "carrier" molecule (an 

immunogenic substance, e.g. bovine serum albumin), which wil l present the small 

molecule (hapten) to the immune system as a foreign substance. 

An increasing number o f immunoassays for residue analyses can be found on the 

market. Different companies (mainly in the United States and Germany) have developed 
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several environmental immunoassay test kits for contaminants. The Strategic 

Diagnostics Incorporation (SDI, Neward, DE, USA) is one of the biggest companies in 

the development, manufacture and distribution of environmental immunoassay-based 

test kits for industrial, chemical and biological contaminants. Recently (1996/1997), 

SDI has merged with other USA immunoassay manufacture companies (Millipore 

EnviroGard®, Ohmicron Environmental Diagnostics, EnSys R i s ^ . Its EnSys™, 

EnviroGard®, RaPID Assay® (former Ohmicron) and DTech® branded test kits are 

distributed in United Kingdom (and Europe) through SDI Europe (Alton, Hampshire, 

UK), formerly known as EnSys™ Europe. 

Those commercially available test kits are based on competitive, heterogeneous 

ELISA, but they vary in format, application, technology, analysis time and sample 

throughput (Table 1.1). EnSys™ has the antibody immobilised on the bottom of plastic 

tubes. DTech kits uses antibody immobilised to latex particles and RaPID Assay® onto 

magnetic particles. Envirogard® has the antibody coated either to tubes or 96-microwell 

plates. Some kits are designed to run a small number of samples, under field conditions, 

getting qualitative or semi-quantitative results (EnSys™, EnviroGard® (coated tubes), 

and DTech®). Others laboratory-based systems are designed to run many more samples 

in one batch to obtain semi-quantitative/quantitative results (RaPID Assay® and plate 

EnviroGard®) (Table 1.1). 

Table 1.1. Guide of commercially available immunoassay kits manufactured by SDI 
(Data extracted from SDI Product Information). 

IMMUNOASSAY K I T 

RaPID Assay® EnviroGard® EnSys™ DTech® 

Technology magnetic particles coated tube/ 
plate 

coated tube latex particle 

Data fomiat se mi -qua ntitati ve 
& quantitative 

semi -quantitati ve 
& quantitative 

semi-quantitative qualitative & 
semi-quanti tati ve 

San^le throughput 1 - 50 samples/run 1-14 samples/run 
96 samples/ruin 

1-10 samples/run 1*4 samples/run 

Analysis time* 60 minutes/run 30 minutes/run 
60 minutes/run 

30 minutes/run 60 minutes/run 

Application laboratory field/ 
laboratory 

field field 

-based on water sample analysis. 



Inherent to the use of antibodies is a certain degree of cross-reactivity, i.e., the 

binding of structurally related compounds to the antibody. The degree to which a 

particular antibody selectively binds the analyte of choice determines its applicabiUty. A 

low degree of cross-reactivity makes it suitable for single-compound assays. For very 

specific measurements, a monoclonal antibody is best suited. In contrast, a group-

specific assay requires an antibody having a high degree of cross-reactivity. Generally, 

an antiserum consisting of several types of antibodies (polyclonal) shows a broader 

spectrum of cross-reactivity than a monoclonal antibody. Polyclonal antibodies might 

also be employed when analytes of interest are rapidly metabolised, providing that the 

structural part of the analyte being studied is not altered too much during metabolisation 

or degradation (Meulenberg et a/., 1995). For the piupose of projects like RAMP, the 

ideal immunoassay kit should have a broad spectrum of reactivity, being suitable to 

assess contamination by a wide range of chemicals (e.g. aliphatic and aromatic 

hydrocarbons or PCBs). Sensitivity, however, is a critical parameter. 

Examples of popular commercially available immunoassays for hydrocarbon 

analysis are listed on Table 1.2. Suitable for both sediment/soil and water matrices, 

sensitivities differ for each format. RaPID Assay® is the most sensitive, but has 

restrictions regarding field application. The PAH RaPID Assay® can provide a 20-fold 

greater response than the EnviroGard® test (Waters et a/., 1997a). The EnviroGard® 

plate format is, however, quite sensitive but requires a plate reader to be used. Use of 

DTech® has being discouraged by SDI staff primarily because of reproducibility 

problems (SDI, pers. comm.). A magnetic particle ELISA (RaPID Assay®) has been 

shown to have better precision and sensitivity compared to formats where the antibody 

is passively adsorbed to polystyrene tubes (Aga and Thurman, 1993; Lawruk et al., 

1996). 

The RaPID Assay®'s enhanced reproducibility is achieved due to better 

mixtxu-e/homogenisation between antibody, enzyme conjugate and sample. Mixing is 

less thorough when the antibody is coated to the tube/well walls. The small magnetic 

beads also have the benefit of a larger surface area to volume ratio when compared to 

the microliter plate (which uses a plane surface for the immunochemical reaction). 

Hence, the shorter diffusion distances provided by the magnetic beads allow a rapid 

interaction between the antibody and the analyte or hapten-conjugate in each reaction 

mixture. This alleviates the well-to-well variability encountered with microliter plate-

10 



based ELISAs. As a result, the magnetic particle-based ELISA provides slightly better 

precision and shorter analysis time than the microtiler plate-based ELISA. However, the 

assay by the magnetic particle-based ELISA involves more steps than the microtiter 

plate-based ELISA because of repeated incubations and washing steps (Aga and 

Thurman, 1993). 

Table 1.2. Application matrices and detection limits of SDI commercially available 
hydrocarfjon immunoassay kits (data extracted fix)m SDI Product Information) 

Analyte Application 

IMMUNOASSAY K I T 

Analyte Application RaPID Assay® EnviroGard® EnSys DTech® 

BTEX/TPH* Soil/Sediment 0.2 Mgg"' 2 Hg g"' 10 fig g' 2-5 Mgg ' 

Water 20 ugL' 100 ugL * N.A. 600 pg L'* 

PAH Soil/Sediment 0.07 ng g * 10 ng g' 10 ng g" ' 0.6 ng g' 

Water 0.7 Mg L ' 2.0 Hg L ' 15MgL-' 8.0 MgL-' 

Carcinogenic Soil/Sediment 0.004 ̂ g g' N.A.^ N.A.^ N.A.^ 

PAH 
Water 0.04 ng L*' N.A.^ N.A.^ N . A / 

• B T E X - benzene, toluene, ethyl benzene and o-, m-,p-xylene; TPH-"total" petroleum hydrocarbons. 

^ N . A . - not available 

The higher number of "runs per kit" makes the RaPID Assay® more cost effective. 

The better sensitivity and quantitative performance of this format is achieved because of 

the prescribed protocol, which uses a wider range of standard solutions, large solution 

volumes, and controlled conditions achieved under laboratory conditions. The detection 

limit (or sensitivity) of an assay is often critical for the evaluation of the applicability of 

any particular assay. For instance, the European maximum for pesticides in drinking 

water is 0.1 ng L"* (EC Directive for Drinking Water, 1990) for individual compounds. 

Monitoring thus requires a detection limit of at least 0.05 ^g L"' in order to yield a 

suitable method (Meulenberg et ai, 1995). The detection limits of the RaPID Assay® 

ELISA kits are in the low ^ig L"' (BTEX) and ng L"' (PAH and carcinogenic PAH) 

range for water (Table 1.2.), which seems to be adequate. 

The choice of determinands amenable to detection by the rapid chemical analysis 

procedures is broad and is increasing. Thus, the most relevant contaminants can be 

selected for different study regions. PAHs, PCBs, dioxins, organochlorine and 

organophosphorous pesticides, selected herbicides and fungicides are commonly 

monitored environmental contaminants/pollutants and immunoassay kits are available 
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for many of these determinands. Water and sediment samples can provide information 

regarding the distribution and environmental concentrations of contaminants and most 

kits are designed for these matrices. In addition, immunoassays can also be adapted for 

tissue extracts, haemolymph^lood and excreta (e.g. urine) samples. This allows 

concentrations of chemicals to be determined in organisms, which has advantages (see 

Chapter 4). These values can then be related to biological effects. 

1.2.4 Biomarkers 

Biomarkers are defined as ''biochemical, cellular, physiological or behavioural 

variations that can be measured in tissue or body fluid samples, or at the level of whole 

organisms, to provide evidence of exposure and/or effects from one or more 

contaminants (Depledge, 1994). It is proposed that biomarkers can be used to chart 

changes in fitness of organisms (Depledge, 1994). This greatly enhances the ecological 

significance of biomarker measurements. It is assumed that a healthy individual 

exposed to increasing chemical toxicity undergoes a progressive deterioration in health 

that is, eventually, fatal (Fig. 1.2). Early departures fix)m good health are often not 

apparent as explicit diseases, but are associated with the initiation of biochemical and 

physiological compensatory responses (Fig. 1.2). When these compensatory responses 

are activated, the survival potential of the organism may already have begun to decline 

because the ability of the organism to mount new compensatory responses to natural 

and anthropogenic stressors is compromised. U an organism is exposed to a level of 

toxicity that causes changes which cannot be reversed, then pathological process wil l 

result in the development of the overt disease and finally, death. 

The present perception o f the state of knowledge of effects along the ecological 

spectrum of organisation is summarised in Fig. 1.3. The ability to understand and assign 

causal relationships is best at the lower levels of organisation and becomes increasingly 

poor as the level of organisation increases. The lower level effects are generally more 

sensitive (i.e. manifested at lower toxicant concentrations) and respond more rapidly to 

an exposure than effects at higher levels of organisation. The associated advantage is 

that biochemical or physiological indicators can be used proactively (i.e. before 

irreversible or major ecological harm). By the time an effect is seen at higher levels, the 

degradation has abeady occurred. It is suggested that effects at lower levels tend to be 

more reversible than effects at higher levels of organisation (Chapman, 1991). Al l these 

qualities seem to indicate that effects at lower levels of organisation are superior to 
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higher level effects when they are considered as tools for environmental management. 

However, the probability of falsely assigning an adverse ecotoxicological effect is 

increased when higher level effects are neglected in favour of lower level responses. 

Because our ability to relate lower level responses to ecosystem degradation is severely 

limited, it follows that the ecological relevance of a lower level response is much more 

ambiguous than that of a higher level effect (Newman, 1995). On the other hand, the 

comparatively modest cost of acquiring knowledge at lower levels of organisation, 

combined with the higher abihty to extract this knowledge using less descriptive 

approaches (compared to higher levels), make them a valuable tool for investigating 

potentially contaminated environments. Their limitations, however, must be kept in 

mind. 

Duration of Exposure 

Homeostasis 

Compensation / 
Non-compensation 

J -Reversible / 
Irfeversible 

Death 

Viable 

Non
viable 

Incurable Curable Stressed Healthy 

Health Status 

Figure 1.2. Conceptual plot of fitness versus health status as related to pollutant 
exposure (from Moore et ai, 2000). 

Single biomarkers have been successfully applied to investigate pollution under 

many different circumstances (Lowe ei a!., 1995; Depledge and Lundebye, 1996; Moore 

et al.y 1999). Surprisingly, it is only recently that suites of biomarkers have been 

included in routine environmental management procedures (e.g. The Biological Effects 

of Environmental Pollution in Marine Coastal Ecosystems - Beep Project), despite the 

fact that there is an extensive literature confirming the value o f this approach (Nacci et 

a/., 1996; Burgeot et ai, 1996; Legras et aL, 2000; Sole, 2000). 
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It is stressed that for the purpose of this research biomarkers have been selected 

primarily with regard to their ease of use, low cost and relevance to known 

environmental problems. In some cases, more robust (and often complex) biomarker 

methods are available and might provide more accurate information as to the nature and 

extent of pollution at a particular site. However, they are more expensive, more fime 

consuming, require more highly trained personnel, and higher quality analytical 

facilities than are generally available. They are thus impractical to include in a rapid 

assessment programme. 

Level of 
Organization 

Biochemical 
Molecule 

CeU 

Tissue 
Organ 

Individual 

Population 

Community 

Ecosystem 

Relative Ability Consequence Present Temporal 
Level of to Assign of Error In Ecotoglcai Use of Context 

Uncertainty Causation Interpretation Relevance Knowledge of Effects 

High Low High 

Response 
Senstttvtty 

Rapid 
(seconds 
to days) 

Short 
Term Proactive 

Reactive 
Term 

Slow 
(weeks to 
decades) 

Figure 1.3. Features of ecotoxicological effects based on level of ecological 
organisation (from Newman, 1995). 

1.3 Aim and Objectives 

The approach adopted for this research involves the development, evaluation, 

application, combination and integration of analytical methods and chemical and 

biological markers in order to assess aquatic pollution. 

The main objectives of this research were: 

Conventional Analytical Chemistry 
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- To carry out and evaluate a range of contamination assessments based on 

conventional analytical chemistry analyses; 

Chemical Markers (Immunoassay) 

- To provide an independent evaluation of the performance and suitability of 

conunercially available immunoassay kits; 

- To evaluate and validate commercial ELISAs for screening of contamination in 

water and sediments; 

- To adapt and evaluate the effectiveness of ELISA techniques in measuring 

contaminant levels in the biological tissues/fluids; 

- To develop new applications of ELISA techniques in accordance with 'Tlapid 

Assessment o f Marine Pollution" (RAMP); 

Biomarkers 

- To use a combination of biological markers and chemical assays to provide 

assessments of the relationship between anthropogenic contaminant levels, toxic 

damage and adverse health effects in selected invertebrates fh^m contaminated 

sites. 

1.4 Outline of the Thesis 

The outline of this thesis is summarised in Fig. 1.4. The research is based on a 

sequence of events starting with the application of conventional analytical chemistry 

(gas chromatography), followed by development, evaluation and application of different 

immunochemical techniques and, finally, an environmental application of an approach 

which integrates chemical and biological biomarkers to assess pollution (Fig. 1.4). 

Chapter 2 presents a detailed description of the conventional analytical chemistry, 

immunochemical and biomarkers methodology used in this research. Results 

elucidating the present status of chemical contamination in the Black Sea are presented 

in Chapter 3. Conventional chemical analyses (gas chromatography) are used to 

investigate concentrations of organochlorine residues, hydrocarbons and faecal sterols 

in surface sediments fi-om several areas along its coast. 

Chapter 4 is divided into four sections covering distinct applications o f 

immunochemical techniques. Initially, an evaluation and validation of an ELISA kit to 
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detect semi-volatile hydrocarbons (BTEX) in contaminated groundwater is presented. 

Secondly, the effectiveness of two different immunoassay kits to detect hydrocariDons 

(aliphatics and aromatics) in sediments is tested and is compared with results obtained 

using chromatography. The adaptability and applicability of an ELISA method in 

measuring PCB levels in mussel tissue is also demonstrated. Finally, the effectiveness 

of ELISA for measuring PAH metabolite levels in the urine of aquatic crabs {Carcinus 

maenas) exposed to PAHs is determined. The latter two sections are especially 

interesting since they represent highly novel applications for ELISA. 

Introduction C H A P T E R 1 

Mettiockslogv C H A P T E R 2 

C H A P T H T S ) AnoIytiCQl 
Chennlstry 

Chemical 
C H A P T E R 4 

ivkarkers 

Applicanon of Tradltlonat Gas Chromatography 

Sediment OrBinoehlorines 

Petrolcuin llydrocarbops and PAIIsJ 

Stent ts 

Evaluation, D&/elopment and Application of EUSA 
t 1 
' Water •Tseml-VoIatUe Hydrocarbons 

Sediment- Peiroleum Hydrocarbons and PAIIs 

Biota 

i , 

> j j PCBsIn 

^ PAHs In 

PCBs In Mussel Tbsue 

PAHs In Crab Lrlnel 

Integration 
of 
Biomarkers 
and 
Chemical 
Moricers 

Biota 

En^/lfonmental Application 

fBiochcmlral/Moletulan Cellular ^ 
»* and IndMdual Blomar1(cr^ 
! and : 
I PAHs, PCBs and Metals in 1 
^Mussel Tissue J 

C H A P T E R 6 
Sunnmary 
and 
Conclusions 

Figure 1.4. Outline of the thesis. 

A rapid assessment of marine pollution using multiple biomarkers and chemical 

immunoassays is presented in Chapter 5. A combination of biomarker techniques, 
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covering different levels of ecological organisation (biochemical/molecular, cellular and 

individual), and immuno and analytical chemistry are used to provide an assessment of 

the concentrations and adverse effects in mussels from contaminated sites. 

Chapter 6 provides a summary and conclusions from this research. It includes 

discussions regarding information provided by conventional analytical chemistry, and 

compares this approach with an integrated analytical and biological approach. 

Recommendations for future work are also presented. 
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Chapter 2 

2 Material and Methods 

This chapter focuses on the individual description of the methodology (apparatus, 

instrumentation, supplies, reagents and analytical procedures) of conventional analytical 

chemistry (Chapter 3), immunoassay (Chapter 4) and biomarkers (Chapter 5) used in 

this research. 

2.1 Conventional analytical chemistry (Chapter 3) 

2.1.1 A comprehensive study of contamination in the Black Sea 

2.LL1 Materials 

Certified solutions of PCB congeners (CLB-1) were purchased fi-om NRCC (Halifax, 

Nova Scotia, Canada). Other PCB congeners were acquired fi^om QMx Laboratories Ltd 

(Safi-on Walden, UK). Authentic individual organochlorine pesticide standard solutions 

(-- 100 mg L"' in hexane) and standard mixtures (CLP-2I6/CLP-226B; 5-50 mg L** in 

hexane) were acquired fi^om Ultra Scientific (North Kingstown, RI, USA). A standard 

reference solution of 24 aromatic hydrocarbons (NIST-SRM 1491) was purchased fi-om 

Promochem (Herts, UK). Aliphatic hydrocarbons ( M - C M - C S S , phytane and pristane) 

were purchased fi-om Promochem (Herts, UK). Authentic sterols standard were 

purchased fi-om Sigma-Aldrich Ltd. (Gillingham, UK). Internal standards (PCB29, 

eHCH, 9,10-dihydroanthracene, Ci8:u and 5a-androstan-3P-o)l were obtained from 

QMx Laboratories Ltd (Safi-on Walden, UK). Silica (70-230 mesh), alumina (70-230 

mesh), Florisil® (60-100 mesh) and anhydrous sodium sulphate were purchased fi-om 

BDH Merck LTD (Lutterworth, UK). Solvents of glass distilled grade were bought 

fi-om Rathbums Chemicals Ltd (Walkerbum, UK). Solvents were batch tested for PCB 

and PAH contamination. 

2.1.L2 Sample Collection 

Surface sediment (0-2 cm) samples were collected fi-om the locations shown in Fig. 

2.1 using a stainless-steel grab. Individual sediment samples were well mixed and 

stored frozen (-20°C) in pre-cleaned glass jars until analysis. Samples from Ukraine 
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were collected in September 1995 during a cruise on the research vessel "V. Parshin". 

The Hydrometeorological Institute in Sochi collected samples from the Russian 

Federation in December 1995. Samples from Turkey were collected by the Institute of 

Marine Sciences of the Middle East Technical University (Erdcmli, Turkey) in 

September 1995. In 1993. sediment samples were collected by the Romanian Institute 

of Marine Research in Constanlza (EMIR). These Romanian samples were analysed 

only for organochlorine contaminants. Site descriptions are given in Table 2.1. 

Russian 
Federation 

Azov 

Romania 

B l a c k S e a 

Bulgaria 

Turkey 
300 km 

200 ml 

Figure 2.1. Location of sampling sites 

2.1.1.3 Sediment Extraction 

Sediments were freeze-dried, dry'wet weight ratios determined and then sieved (250 

|im stainless steel). Each sediment sample (10 - 20 g) was spiked with internal 

standards: 2,4,5-trichlorobiphenyI (for PCBs), eHCH (for organochlorine pesticides), 

Cis 1 (for the aliphatic hydrocarbon fraction), 9,10-dihydroanthracene (for the aromatic 

hydrocarbon fraction) and 5a-androstan-3p-oI (for the sterols). These standards were 

used to quantify the overall recovery of the procedures. Samples were So.xhlet extracted 

for 8 hours into hexane (250 mL) followed by re-extraction into dichloromethane (250 

mL) for 8 hours. The dichloromethane and the hexane were then combined and 

concentrated down to a few millilitrcs using rotary evaporation followed by gentle 

nitrogen "blow down". Sulphur was removed by shaking the extracts with mercury. The 
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extracts were then separated into aliquots: 1/3 for hydrocarbons and sterols and 2/3 for 

chlorinated hydrocarbons. Extractable Organic Matter (EOM) was determined by 

evaporating a small measured volume of the extract on the pan of an electrobalance. 

The clean-up and fractionation of hydrocariions and sterols was performed by 

passing the extract through a silica/alumina column (silica and alumina were activated 

at 200°C for 4 hours and then partially deactivated with 5% water). The 

chromatography column was prepared by slurry packing 10 mL of silica, followed by 

10 mL of alumina and finally 1 g of sodium sulphate. Elution was performed using 20 

mL of hexane to yield the first Section (which contains the aliphatic hydrocarbons), 

then 30 mL of hexane/dichloromethane (90:10) followed by 20 mL of 

hexane/dichloromethane (50:50) (which combined contain the polycyclic aromatic 

hydrocarbons (PAHs)). Sterols were then eluted with 40 mL of 

dichloromethane/methanol (90:10). 

2.1.1.4 Hydrocarbons 

The hydrocarbon fractions were analysed by UV-fluorescence spectrophotometry 

(UNEP/IOC/LVEA, 1992) and by gas chromatography (GC) using a Hewlett Packard 

HP5890 series I I with a flame ionisation detector (FID). A SE54 fused silica capillary 

column was used (HP-Ultra 2 crosslinked 5% Ph Me Silicone, 25 m length, 0.32 mm 

i.d., 0.17 ^m film thickness). The temperature was programmed from 60°C to 290''C at 

3°C min * and was then maintained at 290°C for 25 min. Helium was used as a carrier 

gas at a flow rate of 1.2 mL min *. Confirmation o f peak identity was obtained for 

selected extracts using GC with mass spectrometric detection (GC-MS) (Hewlett-

Packard 5889B MS "Engine"). 

2.1.1.5 Faecal Sterols 

Fractions containing the sterols were derivatised just prior to GC analyses. A solution 

of bis-(trimethyIsilyl)-trifluoroacetamide (BSTFA) was used as the silylation reagent 

(Readman et a/., 1986b). 100 ^ L was added to the concentrated sample and the mixture 

maintained warm (40-50°C) for 60 min to react. The sample was then evaporated to 

dryness and toluene added as a solvent for the GC analysis. Gas chromatography (GC) 

was performed with a Hewlett Packard HP5890 series I I equipped with a flame 

ionization detector and split/splitless injector. A DB5 fused silica capillary column was 

used (30 m x 0.25 mm i.d.; film thickness 0.25 ^m). Helium was the carrier gas (1.2 mL 
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min-»). The oven temperature was programmed Grom 60°C (0.5 min hold) to 290°C at 

6°C min ̂  Injector and detector temperatures were, respectively, 270°C and 320''C. 

Stanones and sterols were quantified by comparison with external standards and 

recoveries were corrected using the internal standard (5a-androstan-3p-ol). 

Confirmation of peak identity was obtained for selected extracts using GC with mass 

spectrometric detection (GC-MS) (Hewlett-Packard 5889B MS "Engine"). 

2.7.1.6 Organochlorines 

Clean-up and fractionation of chlorinated compounds was performed by passing the 

extracts through a Florisil® (17 g) column, which had been activated at 130°C for 12 

hours and partially deactivated with 0,5% water. From this column, three fractions were 

collected: a first fraction with 70 mL of hexane; a second Section with 50 mL of 

hexane/dichloromethane (70:30), and a third fi-action with 40 mL o f dichJoromethane. 

Each fraction was concentrated and injected into a GC (Hewlett Packard HP5880) 

equipped with an electron capture detector and split^splitless injector. The capillary 

column used was an SE54 fiised silica (HP-Ultra 2 crosslinked 5% Ph Me Silicone, 25 

m length, 0.2 mm i.d., 0.33 (im film thickness). The oven temperature was progranmied 

from an initial temperature of 70°C (2 min hold) to 260°C at a rate of 3°C min * and was 

then maintained at 260*'C for 20 min. Injector and detector temperatures were 

maintained at 250°C and 300°C, respectively. Helium was used as the carrier (1.5 mL 

min ') and nitrogen as the make-up (60 mL min O gas. Concentrations of individual 

organochlorines were quantified relative to the peak area of the respective external 

standards following calibration with authentic standards. Confirmation of peak identity 

was obtained for selected extracts using GC with mass spectrometry (GC-MS) 

(Hewlett-Packard 5889B MS "Engine"). 

2.1.1.7 Quality Control 

Appropriate blanks and reference material IAEA-357 (sediment) were analysed 

simultaneously with each batch of samples. This sediment has certified concentrations 

of chlorinated compounds and hydrocarbons. Although concentrations of sterols are not 

certified, this sediment has been used as an "in-house" reference material for internal 

quality control. 

The sediment analyses were carried out by the IAEA laboratory during 1996 and 

1997. 
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Table 2.1. Description of the Black Sea stations. 

Country Sample 
code • 

Position Depth 
(m) 

Comments 

Ukraine 26 45*'4l.0O*N-32°00.0O*E 33 Central North-Western area (background) 

39 44°28.00'N-33°35.00*E 76 Sevastopol Region - Balaklava town 

45 44°31.00'N-34**17.08'E 57 Yalta near Crimea waste treatment plant 

53 44'35.00*N - 34<*25.00*E 78 Yalta town 
54 45*H)5.00'N-35**30.00*E 18 Feodosiya town 
55 45**16.00*N-36*28.00*E 6 Kerch near Geleznorudnyi complex 

94a 46'*18.05*N-30'*42.0rE 17 Odessa near port lUichevsk. 

98 46'*30.00'N-30''46.05*E 11 Centre of Odessa bay 

132 45**20.00'N-29°50.00'E 12 Danube delta 
134 45*70.03'N-29°45.08'E 3 Bistrayaarm of Danube delta 

Russian I 43'34.82*N-39'*43.24'E 8 Sochi port 
Federation 3 43'*24.6rN-39"*55.35*E 40 Canyon Adler 

5 43<*29.00'N-39''50.58*E 25 Chosta 
6 43**31.17'N-39<»48.00'E 28 River Matchesta 

8 43**33.64'N-39*'41.72*E 33 River Sochi 

Turkey 9 41'71.29*N-29°04.00'E 80 Bosphorus Turkey 
10 41*73.00*N-29''03.irE 84 Bosphorus 
16 41<»26.20'N-28'»57.25*E 85 Bosphorus 
17 4I*27.18'N-29''01.00'E 88 Bosphorus 
22 41*»36.00'N-28**55.18'E 131 Bosphonis 
30 41'*33.I8*N-29*'01.18'E 107 Bosphorus 
31 41'»31.00'N. 29*^1.18'E 94 Bosphorus 
35 41'^5.18*N-29°13.18*E 95 Bosphorus 
36 4I°29.00*N-29''13.18*E 113 Bosphorus 
44 41°20.00'N-29'*28.18*E 86 Bosphorus 

Romania PI 45m94'N-29'»45.6rE - Sulina arm of Danube delta 
P2 45*'09.80'N-29**43.35'E - Sulina arm of Danube delta 
A4 45*'05.00'N-29*>41.00'E - Between Sulina and Sfmtu Gheorghe arms 
B4 45m00'N-29°41.00'E - Between Sulina and Sflntu Gheorghe arms 
VI 44'»27.00'N-28*'49.00'E - Vadu 
SI 44*»39.00'N-28**59.00*E - Sinoe lagoon 

S3 44'*37.00'N - 28*'57.00T - Sinoe lagoon 

S6 44<*33.00'N-28*'59.00*E - Sinoe lagoon 

S8 44°31.00'N-28°51.00*E - Sinoe lagoon 
C M . 44°15.00'N-28'»4D.00'E - Cazino Mamaia 

Consta. 44*'12.50'N-28°43.00'E - Constantza 

P.C. 44°07.00'N-28'*40.00'E - Port Constantza 

Cost. 43*»57.00*N-28°40.00'E - Costineti 
M. 43°48.00'N-28''37.00'E - Mangalia 
N. 44'»31.00*N-28''47.00'E - Lake Nuntasi 

• Sample code numbers are those recorded as part of the Black Sea Environmental Programme and whilst 
they are not consecutive, original numbers have been retained to avoid confusion and afford identification of 
banked samples by scientists in the region. 
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2.2 Evaluation, development and application of immunoassay 
techniques (Chapter 4) 

2.2.1 Semi-volatile hydrocarbons (BTEX) in groundwater 

2.2.1.1 Chemicals 

A reference standard mixture (benzene, toluene, ethylbenzene, m+p xylene and o-

xylene) was obtained fi-om Restek Corporation (gasoline range organic at 1000 mg L ' \ 

purity greater than 99%). Stock solutions o f 100 mg BTEX L"* prepared in methanol 

were further diluted with methanol to obtain the calibration solutions for GC-PID/FID 

in the range of 1 to 50 ^ig L * in water. Dichloromethane and /i-hexane used for sample 

processing and analyses were ultra resi-analysis grade (J.T. Baker) and the methanol 

was HPLC grade (Vetec). 

2.2.1.2 Sample Collection 

Groundwater samples (depth 1.99-3.25 m) were pumped fi-om 10 monitoring sites in 

a Petrol station fi^m Tijuca, an urban area in Rio de Janeiro (Brazil). Prior to the 

sampling, corrosion of the gasoline storage tanks had led to continued fiiel leakage 

contaminating the soil and groundwater. Soil prospections in the area had indicated 

strong heterogeneousity and differences in permeability. Filtering procedures had been 

applied to water pumped fi-om site 10. Following the sampling, water aliquots were 

separated in 45 mL screw cap glass vials (PTFE-faced silicone septum) containing 50 

pL of HCl (Merck, P.A.) to adjust the pH to < 2 as recommended in EPA Method 502.2 

(USEPA, 1997). Samples were collected by Pontificia Universidade Cat61ica do Rio de 

Janeiro (PUC-RJ, Rio de Janeiro, Brazil). The samples were immediately stored in the 

dark at < 4°C before ftuther processing within a week of sampling. 

2.2.1.3 Sample Processing and Analytical Chemistry 

Samples were sub-divided in aliquots for application of the immunoassay and for 

analytical chemical analysis. 

Quantitative analysis of 5 mL aliquots of groundwater extracts was performed using 

a Hewlett Packard 5890 gas chromatograph fitted with a L D V I injector using a purge 

and trap system for sample introduction and photoionization/flame ionization detectors 

(PID/FID). The quantification analysis was performed with the photoionization 
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detector. A J&W DB-624 capillary column of 75 m x 0.53 mm i.d. with 3.0 | im film 

thickness (cyanopropyl, phenyl methyl polysiloxane) was used. Ultra pure helium 

carrier was maintained at a constant flow rate of 10 mL min'*. The oven temperature 

was programmed for a initial hold at 30°C (1 min), then from 30 to 100°C at 5*'C min * 

and from 100 to 220°C at 8°C min'*. The transfer line operated at 100°C. The purge 

time was 11 minutes for a flow rate of 22 mL min *. Desorption temperature was 180°C 

and desorption time was 4 minutes. 

2.2.7.^ Quality Control 

Throughout the study, a standard solution of 10 ng BTEX L"' was analysed daily to 

check the instrument conditions and the chromatographic behaviour of the standard 

mixture. Analytical performance was assessed by blanks and standard solutions. 

Detection limits derived from replicate procedural blanks were in the order of 0.6 ^g L * 

for all the analytes. The calibration curves were characterised by a correlation 

coefficient of 0.99 (i^). 

2.2.7.5 Enzyme-Linked Immunosorbent Assay (ELISA) 

Water aliquots were left decanting over 4 hours before taking I mL o f the 

supernatant for the immunoassay testing. Since samples were preserved with HCl, they 

were neutralised (NaOH solution) prior to assay. 

A commercial BTEX RaPID Assay® (SDI Europe, Alton, UK) was used to measure 

contamination in groundwater. RaPID Assays® are tube-based immunoassays where the 

polyclonal antibodies are immobilised onto paramagnetic particles. These kits are based 

on the competitive heterogeneous ELISA. The RaPID Assay® was used according to the 

manufacturer's instructions. Briefly, samples were analysed in triplicate together with 

concurrent standard calibrations and blanks. Appropriate amounts of samples or 

standards, antibody-coated microbeads (anti-analyte antibodies immobilised onto 

paramagnetic particles) and enzyme conjugate (analyte-horseradish peroxidase) were 

mixed and incubated to allow competition for binding to the antibody (20 to 30 min). 

After washing twice with kit bufTer (using a magnetic rack to retain the antibodies), 

substrate (hydrogen peroxide) and chromogen (3,3',5,5'-tetramethylbenzidine) were 

added and incubated (30 min). Stop solution (2 M sulphuric acid) was added and 150 

^ L of final solution was transferred to a microplate. The colour produced was measured 

at 450 nm using an Optimax microplate reader (Molecular Devices, Menlo Park, CA). 
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Sample absorbance was compared to a linear regression equation using a log of the 

concentration versus logit B/Bo (Ln [B/Bo/(100-B/Bo)]) standard curve to calculate the 

final concentration (where B/Bo is the absorbance observed for a sample or standard 

divided by the absorbance at the zero standard). 

The BTEX RaPID Assay® was evaluated in a quantitative mode as described in the 

manufacture's instructions. Analytical results were calculated from a standard curve of 

0, 0.54, 2.1 and 18 mg BTEX L * (r^ = -0.993; slope = -0.486; interception = -0.087). 

The BTEX RaPID Assay® was developed using equal proportions of 6 compounds 

(benzene, toluene, ethylbenzene and m-, o- and p-xylene) as the antigen. Hence the 

different compositions within the environmental extracts renders the "semi-quantitative" 

measure and is expressed as BTEX "equivalents". 

The method detection limit (MDL), as estimated at 90% B/Bo for the BTEX 

calibration dilutions, was 0.06 mg L *. The 50% B/Bo (concentration required to inhibit 

one-half of the colour produced by the negative control) was 4.86 mg L'V 

ELISA kits were stored at 4°C, but temperature and time are important parameters 

that must be controlled for ELISA to work properly. In all cases, solutions of 

immunoassay and samples were allowed to equilibrate to room temperature before 

using, and reaction times were consistent throughout the experiment. 

2.2.2 Petroleum hydrocarbons and PAHs in sediment 

2.2.2.1 Materials 

A certified standard reference solution of 24 aromatic hydrocarbons (NIST-SRM 

1491) and authentic standards of aliphatic hydrocarbon (/J-C12-C35, phytane and 

pristane) were purchased from Promochem (Herts, UK). Internal standards (Ci8:i and 

9,10-dihydroanthracene) were acquired from QMx Laboratories Ltd (Safron Walden, 

UK), Solvents of glass distilled grade were obtained from Rathbums Chemicals Ltd 

(Walkerbum, UK). Solvents were batch tested for PCB and PAH contamination. Silica 

(70-230 mesh), alumina (70-230 mesh) and anhydrous sodium sulphate were purchased 

from BDH Merck LTD (Lutterworth, UK). 
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2.2.2.2 Sample Preparation 

Fortified sediments, standard reference sediments and environmental sediment 

samples were analysed in order to assess the performance of the methods. Soxhlet 

extracted dry sediments (10 g) were fortified with either PAH (SRM 1491) or /1-C12-C35 

standard mixture solutions prepared in hexane to yield sediment concentrations from 41 

to 1650 ng g'' or 14 to 112 ^ig g ' \ respectively. Spiked sediments were left stabilising 

overnight prior to analysis. 

Five different standard reference sediments were selected including the HS-4B and 

HS-5 (National Research Council of Canada), the IAEA 383 (International Atomic 

Energy Agency - Marine Environment Laboratory, Monaco), and the QPH 16MS and 

QPH 17MS (Quasimeme Laboratory Performance - Studies Round 12, UK). 

The environmental samples used included 16 sediments collected fiT»m the Patos 

Lagoon estuary (southern Brazil). Samples were collected in December 1999 and then 

keep fi-ozen until analysis. 

2.2,2. J Analytical Chemistry. 

Aliphatic and aromatic hydrocarbons were analysed using a sample preparation 

method modified from UNEP (1992). Oven dried (50°C) sediment samples (-25 grams) 

were spiked with intemal standards: Cigri for the aliphatic hydrocarijon flection, and 

9,10-dihydroanthracene for the aromatic hydrocarbon fi-action. Samples were Soxhlet 

extracted for 16 hours into 100 mL o f dichloromethane/hexane (50:50). The extracts 

were then concentrated down to few mL using rotary evaporation followed by pure 

nitrogen "blow down". Sulphur was removed by shaking the solution with activated 

copper. Clean-up and fi^ctionation was performed by using a silica (3g)/alumina (1.5g) 

column. Silica and alumina were both activated at 200°C for 4 hours and partially 

deactivated with 5% water prior to use. Elution was performed using 10 mL of hexane 

to yield the first firaction (containing the aliphatic hydrocarbons), followed by 10 mL of 

hexane/dichloromethane (70:30) to yield the second flection (containing the aromatic 

hydrocarbons (PAHs)). 

The hydrocarbon fractions were analysed by gas chromatography using a Hewlett 

Packard HP5890 series U with a flame ionisation detector (FID) (Palo Alto, CA). A 

SE54 fused silica capillary column was used (HP-Ultra 2 crosslinked 5% Ph Me 

Silicone, 25 m length, 0.32 mm i.d., 0.17 ^m fibn thickness). The oven temperature was 
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programmed from 40'*C to 60°C at the rate of 40**C min''; from Gff'C the temperature 

was increased at 5°C rain'* to 290*'C where it was held for 10 min. Injector and detector 

temperatures were maintained at 280°C and 325**C, respectively. Helium was used as a 

carrier gas at a flow rate of 1.2 mL min *. Confirmation of peak identity was obtained 

for selected extracts using GC with mass spectrometric detection (GC-MS) (V.G. 

Masslab - Fisons TRIO 1000). 

Concentrations of individual aliphatic {n-Cl2 to /i-C35, pristine and phytane) and 

aromatic hydrocarbons (24 compounds) were quantified relative to the peak area of the 

respective external standards following calibration with authentic compounds and 

against the correspondent internal standard. The measure of total aliphatic hydrocarbons 

includes all resolved peaks and the area covered by the unresolved complex mixture 

(UCM). UCM is quantified against the internal standards and assumes a response factor 

of 1. 'Total" PAH quantified using GC-FED is the sum of naphthalene; 1-methyl 

naphthalene; 2-methyl naphthalene; biphenyl; 2,6-dimethyl naphthalene; 

acenaphthylene; acenaphthene; 2,3,5-trimethyl naphthalene; fluorene; phenanthrene; 

anthracene; 1-methyl phenanthrene; fluoranthene; pyrene; benz(a)anthracene; chrysene; 

benzo(b)fluoranthene; benzo(k)fluoranthene; benzo(e)pyrene; benzo(a)pyrene; 

perylene; indeno(l,2,3-cd)pyrene; dibenz(a,h)anthracene; benzo(g,h,i)perylene. 

Recoveries ranged from 68 ± 6% to 106 ± 10%, and averaged 92% (n = 3) for 

aliphatic hydrocarbons and 72 ± 5% to 108 + 7%. and averaged 95% (n = 4) for PAHs. 

Detection limits (blank + 3RSD) (UNEP/IOC/L\EA, 1992) ranged from 0.6 to 2.1 ng g" 

* (dry wt) for /i-alkanes and 0.8 to 13.2 ng g * (dry wt) for individual PAHs. Appropriate 

blanks were analysed and, in addition, reference material IAEA-357 was analysed 

simultaneously. Results for all hydrocarbons quantified in the reference material were 

within 93 ± 15% (n = 3) of the certified values. 

2.2.2.4 Sediment Extraction 

A simple extraction was performed prior to analysis using the SDI extraction kit for 

PAHs (SDI Europe, Alton, UK) (Hottenstein et a/., 1995; Lawruk et a/., 1996). Ten 

grams (10 g) of sediment and 20 mL of 100% methanol were added to an extraction jar 

(with 3 SS bearing per jar) and capped. The extraction jar was shaken vigorously for 5 

min and allowed to settle for 15 min. Approximately 1 mL of the extract supernatant 
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was filtered using a filtration plunger with a fibre glass filter. Then, filtered extracts 

were immediately analysed using RaPID Assay® ELISAs. 

2.2.2.5 Enzyme-Linked Immunosorbent Assay (ELISA) 

Two commercially available ELISAs were tested: BTEX RaPID Assay® and 

carcinogenic PAH (c-PAH) RaPID Assay® (SDI Europe, Alton, UK). 

Sediment extracts were diluted 1:10 for BTEX RaPID Assay® and 1:50-500 for c-

PAH RaPID Assay® with 50% v/v methanol^uffered aqueous solution (containing 

stabilisers and preservatives) (SDI diluent). This dilution is necessary to minimise 

matrix and solvent effect. Extracts were then analysed in triplicate together with 4 

calibration standards for each RaPID Assay®. The BTEX and c-PAH RaPID Assay® 

were used according to the manufacturer's recommendation, as described in Section 

2.2.1.5. 

The RaPID Assays® were evaluated in a quantitative mode as described in the 

manufacture's instructions. Analytical results were calculated from a standard curve of 

0, 0.54, 2.1 and 18 mg BTEX L"* (r^ = -0.999; slope = -0.532; interception = -0.342) for 

the BTEX RaPID Assays® or a standard curve of 0, 0.1, 1 and 5 ng benzo(a)pyrene mL' 

* (r^ = -0.997; slope = -0.580; interception = -0.550) for the c-PAH RaPID Assay®. The 

BTEX RaPID Assay® and c-PAH RaPID Assay® were developed using equal 

proportions of 6 compounds (benzene, toluene, ethylbenzene and m-, o- and p-xylene) 

and benzo(a)pyrene as the antigen, respectively. Hence the different composition within 

the environmental extracts render the "quantitative" measure a comparative on BTEX 

"equivalents" value or benzo(a)pyrene "equivalents" value, respectively. Sample 

concentrations were calculated by multiplying results by the appropriate dilution factor. 

2.2.3 PCBs in mussel tissue 

2.2.3.1 Materials 

Certified solutions of PCB congeners (CLB-1) were purchased from the NRCC 

(Halifax, Nova Scotia, Canada). Other authentic standard PCB congeners were 

purchased from QMx Laboratories Ltd (Safron Walden, UK). Fifty-five congeners were 

selected for quantification based on their resolution under the selected GC conditions. 

Numbering of the PCB congeners followed the lUPAC system. Aroclor® solutions (~ 
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100 mg L * in hexane) of selected PCB mixtures (Aroclor® 1242, 1248, 1254 and 1260) 

were purchased from Ultra Scientific (North Kingstown, RI, USA). Working solutions 

of individual Aroclors® were prepared in hexane for GC calibration, and in methanol for 

ELISA calibration and cross-reactivity determinations. Internal standard (PCB 29) was 

purchased from QMx Laboratories Ltd (Safron Walden, UK). Standard Reference 

Material® (NIST-SRM 2977 - freeze-dried mussel tissue) was obtained fix)m the 

National Institute of Standards & Technology (NIST, Gaithersburg, USA). Solvents of 

glass distilled grade were obtained from Rathbums Chemicals Ltd (Walkerbum, UK). 

Solvents were batch tested for PCB contamination. 

2.2.3.2 Environmental Mussel Samples 

Mussel samples were taken from four sites in New Bedford Harbour (Massachusetts, 

USA) (Geukensia demissa, L.) and from one site in Whitsand Bay (Cornwall, UK) 

{Mytilus edulis, L.). Locations were selected to afford diverse levels of contamination 

and thus provide a robust test of the ELISA procedure. Further details about sampling 

sites at New Bedford Harbour (Sites 1 to 4) are given in Section 2.3.1.2 and Fig. 2.2, 

and elsewhere (Galloway et a/.. Submitted). 

2.2.3.3 Extraction of Mussel Tissue 

PCBs were analysed using a sample preparation method modified from Kannan et al. 

(1995) and Nakata et al. (1995). Briefly, freeze-dried mussel tissue samples (-1 g), 

fortified samples, standard reference material and procedural blanks were spiked with 

an intemal standard (PCB 29). Samples were Soxhiet extracted into 200 mL o f 

hexane/dichloromethane (1:1) for 16 hours. The extracts were then concentrated down 

to a few mL using rotary evaporation followed by pure nitrogen "blow down". The 

extracts were transferred to glass columns (26 cm x 15 mm i.d.) packed with 20 g of 

Florisil® and then dried using a gentle flow of nitrogen. PCBs were eluted with a 

mixture of 120 mL acetonitrile and 30 mL hexane-washed water. The eluants were 

collected in a separatory fimnel containing 100 mL of hexane and 600 mL of hexane-

washed water. After shaking and phase separation, the hexane layer was concentrated to 

exactly 4 mL. The sample extracts were split (volumetrically) for analysis of PCBs by 

immunoassay (25%) and chromatography (75%). Extracts for ELISA were solvent 

exchanged into methanol (as described by Zajicek et al., 1996). Samples for 

chromatography were treated with concentrated sulphuric acid and then cleaned-up and 
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fi^ctionated using 12g of Florisil® (activated at 130°C for 12 hours). Elution was 

performed using 105 ml of hexane to yield the first Section (containing the PCBs), 

followed by 150 ml of hexane/dichloromethane (80:20) (the 2"** fi-action containing 

organochlorine pesticides). 

2.2.3.4 Quantification using GC-ECD 

Analyses of extracts were carried out using a gas chromatograph (Hewlett Packard 

5890 series II) with a * ^ i electron capture detector (ECD), fitted with a 60m x 0.25mm 

i.d. (0.25 ^m thickness) HP-5MS silica fused capillary column (Hewlett-Packard, 

USA). The oven temperature was programmed fi-om an initial temperature of 40°C to 

160°C (held for 5 min) at the rate of 20°C min'*; the temperature was then programmed 

to 260°C at the rate of 2°C min '; bom 26(fC the temperature was increased at 10°C 

min"^ to 290°C where it was held for 10 min. One \\L sample volumes were 

automatically injected into a cold "on-column" injector. The detector temperature was 

maintained at 300°C. Hydrogen ("High purity" grade) was the carrier gas at a flow rate 

of 1.5 mL min * at 40°C. Nitrogen ("ECD grade") was used as make-up gas at a flow 

rate of 60 mL min' ' . Both H2 and N2 gases were fiirther purified by moisture, 

hydrocarbon, and oxygen filters before use. Data were acquired and processed using 

Hewlett-Packard ChemStation® software. Recoveries of PCBs (examined in triplicate 

by spiking 4.0 ^g of PCB standard (55 congeners) into Soxhlet extracted mussel tissue) 

ranged from 60 ± 9% to 104 ± 12%, and averaged 91%. Detection limits ranged from 

0.1 to 2.0 ng g'* (dry wt). Appropriate blanks were analysed and, in addition, reference 

material NIST-SRM 2977 was analysed simultaneously. Results for all congeners 

quantified in the reference material were within 94 ± 12% (n = 3) of the mean certified 

values. 

Quantification of the individual 55 congeners was through external calibration using 

CLB-1. For the calculation of "total" PCBs (sum of 128 congeners), congeners for 

which authentic standards were not available were identified fi^om RRTs (relative 

retention times) provided in the literature (Mullin et a/., 1984; Frame et a/., 1996; 

Erickson, 1997) and response factors (RFs) (according to Erickson, 1997), were used in 

quantification. Congeners with similar retention times but different chlorine 

substitutions were investigated by GC/MS (Hewlett-Packard Model 5890 H Plus GC 
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and a 5972 mass selective detector (MSD) (Palo Alto, CA)). 'Total" PCBs, quantified 

using GC-ECD, were used for comparison with the immunoassay results. 

2.2.3.5 Enzyme-Linked Immunosorbent Assay (ELISA) 

Individual sample extracts in methanol (20-200 ^ L aliquots) were diluted (1:1000-

2000) using 50% v/v methanol/buffer solution (containing stabilisers and preservatives) 

as required by the method. They were then analysed in triplicate for *total" PCBs 

together with 4 calibration standards of Aroclor® 1254 (0, 0.25, 1.0 and 5.0 ng mL'*) (r^ 

= -1.000; slope = -0.663; interception = 0.569). 

Conmiercial PCB RaPID Assays® (SDI Europe, Alton, UK) were assayed as 

described in Section 2.2.1.5. Sample concentrations, expressed as *total PCBs" 

(Aroclor® 1254 "equivalents"), were calculated by multiplying results by the 

appropriate dilution factor. 

2.2.3.6 Statistical Analyses 

A standard Student's t-test was used to examine differences between both techniques 

across sampling sites. Principal component analysis (PCA) and similarity analysis were 

performed with Primer® for Windows® (Version 5; Primer-E Ltd, Plymouth, UK). 

2.2.4 PAH/PAU metabolites in crab urine 

2.2.4.1 Chemicals 

Pyrene (98%), 1-hydroxypyrene (98%), phenanthrene (98%) and 9-

hydroxyphenanthrene (Tech.) were obtained fi^om Sigma-AIdrich Co. Ltd. (Gillingham, 

UK). Pyrene-i/io and phenanthrene-^/io were acquired from Promochem (Welwyn 

Garden, UK). Ethanol (99% v/v) and L-ascorbic acid (99.7%) was purchased fix)m BDH 

(Poole, UK). Ethyl acetate of glass distilled grade was obtained fix)m Rathbums 

Chemicals Ltd (Walkerbum, UK). Cig cartridges were purchased from Jones 

Chromatography (Hengoed, UK). Acetonitrile (>99.8%) was purchased from J. T. 

Baker (Deventer, The Netherlands). Tris hydrochloride (buffer, pH = 9.0), acetic acid 

(>99,8%) and ammonium acetate (>97%) were purchased from Fluka Chemica (Buchs, 

Switzerland). Solvents were batch tested for PAH contamination. 
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2.2.4.2 Collection of experimental crabs and laboratory conditions 

Green, male, intermoult crabs {carapace width 50-72nun) o f the species Carcinus 

maenas were collected on incoming tides from Jenkins Quay on the Avon estuary at 

Bantham (South Devon, UK) on three separate occasions between April and July, 2000. 

On return to the laboratory, they were kept in holding tanks containing aerated seawater 

(34 PSU, 15±PC), under a 12hr light/12hr dark regime for a period of one week in 

order to depurate and acclimatise. During this period, crabs were fed twice a week with 

irradiated cockle and their water was changed within 12hrs of feeding. 

To test the techniques on environmentally exposed crabs, samples were collected 

from Bantham (South Devon, UK) and Sutton Harbour (Plymouth, UK). Bantham is a 

clean control site while Sutton Harbour is an oil-contaminated site. On return to the 

laboratory, urine was immediately sampled (see details below) and stored in liquid 

nitrogen. 

2.2.4.3 Dose-response exposure experiment 

The exposure experiment consisted of a static toxicity test (Rand, 1995). Parent PAH 

(either pyrene or phenanthrene) was added to the pre-filtered seawater (34 PSU) to 

produce six nominal concentrations (200, 100, 50, 25, 10 and 0 (control) ng mL"*). 

Phenanthrene and pyrene were administered to the water in an acetone "carrier" (at a 

ratio of 1:1, w:v PAH/acetone) to increase their solubility. The experiment was kept 

under 12hr light/12hr dark regime at 151PC. Crabs were not fed during the exposure 

period. After the experiment, they were transferred to clean seawater to depurate (for 3 

weeks) before being returned to the environment. The experiment was run in triplicate 

for each parent PAH. 

2.2.4.4 GC/MS analyses of water samples 

Concentrations of parent PAHs in the tanks were monitored using GC/MS analyses 

(Hewlett-Packard Model 5890 H Plus GC and a 5972 mass selective detector (MSD) 

(Palo Alto, CA)). Measured concentrations confirmed that the nominal (spiked) values 

were within ± 12%. Briefly, internal standard (pyrene-^fio and phenanthrene-i/io) spiked 

water samples (100-500 mL) were concentrated using Cis cartridges (IST, Hengoed, 

UK), which were subsequently eluted (3 times) using 3 ml of ethyl acetate. The eluent 
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was then concentrated down to 1 ml before analyses by GC/MS. Recoveries were 95 ± 

3% (n = 18) for pyrene and 93 ± 5% (n = 18) for phenanthrene. 

2.2.4.5 Urine sampling 

Urine samples were taken from each crab after 48hrs of exposure using the technique 

described by Bamber and Naylor (1997). Briefly, crabs were removed from their 

aquaria and placed in a bucket containing clean seawater. After being drained, the third 

maxillipeds were moved aside and kept apart. Under a dissecting microscope (xlO), the 

operculum of each antennal gland bladder was lifted and urine (20-400 per crab) 

was collected. Samples were stored at -80**C in siliconised microcentrifijge tubes until 

analysis. Crabs were returned to their respective aquaria immediately after sampling. 

2.2.4.6 Fluorescence analyses 

Fluorescence analyses were performed using a Hitachi F-4500 fluorescence 

spectrophotometer following an adapted method of Ariese et al. (1993) and Aas et al. 

(2000). Standards (pyrene, 1-OH-pyrene, phenanthrene, and 9-OH-phenanthrene), 

blanks and urine samples were diluted (20- to 100-fold) with 50% v/v ethanol/Milli-Q 

water. Fixed excitation wavelength fluorescence (FF) and synchronous 

excitation/emission fluorescence spectrometry (SFS) measurements were carried out 

with excitation and emission slit widths of 2.5 nm (pyrene) and 5.0 run (phenanthrene). 

The assigned wavelength pairs were Xcx/em = 345/382 (FF) for pyrene and X«x/cm = 

252/357 (FF) for phenanlhrene. A AX of 42nm (pyrene) and 54nm (phenanthrene) were 

selected for the SFS analyses. Samples were quantified against 1 -OH-pyrene and 9-OH-

phenanthrene standards (200, 100, 75, 50, 25, 10, 5 ng mL"'). Results are reported in 

terms of 1-OH-pyrene or 9-OH-phenanthrene "equivalents". Further details are 

provided in Watson et al. {In Preparation). 

2.2.4.7 Immunoassay procedure 

Urine samples (50 aliquots) were diluted with 50% v/v methanol/buffered 

solution (SDI diluent) (20- to 40-fold). Analyses were undertaken in triplicate with 

concurrent standard calibrations and blanks. The PAH RaPID Assay® (SDI Europe, 

Alton, UK) was used according to the manufacturer's recommendations, as described in 

Section 2.2.1.5. 
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The PAH RaPID Assays® were calibrated using 5 standards of l-OH-pyrene (0, 10, 

50, 200, 2000 ng mL"^) or 9-OH-phenanthrene (0, 10, 50, 200, 2000 ng mL**), for the 

samples of crabs exposed to pyrene or phenanthrene, respectively. Standards of pyrene 

(1.0. 10, 50. 250 ng mL"*) or phenanthrene (2.0, 10, 50 ng mL'^). respectively, were 

analysed at the same time. Sample concentrations were then corrected for dilution 

factors. Results are reported in terms of l-OH-pyrene "equivalents" or 9-OH-

phenanthrene "equivalents", respectively. 

2.2.4M HPLC/Fluorescence 

High-performance liquid chromatography was performed using an ion pair elution 

system under acidic conditions on a reversed phase Cis analytical column (Vydac 

201TP54 column (250 x 4.6 mm), Hesperia, CA, USA). The column temperature was 

maintained at WC in a column oven. A gradient elution of acetonitrile (CH3CN) and 

aqueous buffer (10 mM anmionium acetate, adjusted to ^pH5 with acetic acid / L 

buffer) was used at a flow rate of 0.5 mL min'^ (t = 0 min, 5% CH3CN; t = 40 min, 90% 

CH3CN; isocratic at 90% CH3CN for 10 min). The instrument used consisted of two 

Spectroflow 400 pumps (Applied Biosystems), a Spark-Holland PROMIS I I 

autosampler (20^L injection loop), a GT-103 in-line degasser (Separations, The 

Netherlands) and a Jasco FP-1520 fluorescence detector (Jasco, Tokyo, Japan). 

Fluorescence detection was carried out at ^x/cm = 346/384 nm for pyrene metabolites 

(slit widths X«x/em = 18/40 nm) (from Stroomberg et a/., 1999). 

Samples were diluted 30-fold with ethanol (modified with 5 mg mL * ascorbic acid) 

and stored at -20°C. Further dilutions were made when necessary. Peaks were identified 

according to their retention times, based on the work by Stroomberg et al. (1999), and 

confirmed for the system used in this study (Howsam, personal communication). 

Quantification of l-OH-pyrene was performed using a dilution series of l-OH-pyrene 

external standard, while the conjugates were quantified using their relative fluorescence 

efficiencies compared to l-OH-pyrene; pyrene-1-glucoside = 2.0 ± 0.31, pyrene-1-

sulfate = 1.23 ± 0.09, pyrene-1-'conjugate* = 1.75 ± 0.18 (Stroomberg et ai. 

Submitted). A l l conjugates are expressed as 1-hydroxy-pyrene "equivalents". The 

identity of the pyrene-l-'conjugate* is still unknown, but it is not a glucuronide 

conjugate nor (derived fi^m) a glutathione conjugate (Stroomberg et al. Submitted). 
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2.3 Rapid assessment of marine pollution using multiple biomarkers 
and chemical immunoassay (Chapter 5) 

2.3.1 New Bedford Harbour Case Study 

2.3.1.1 Materials 

Certified solutions of PCB congeners (CLB-1) were purchased fi-om NRCC (Halifax, 

Nova Scotia, Canada). Other PCB congeners were from QMx Laboratories Ltd (Safi^n 

Walden. UK). Aroclor® 1254 ( - ICQ mg L"' in hexane) was fi-om Ultra Scientific (North 

Kingstown, RI, USA). Working solutions of Aroclor® were prepared in hexane for GC 

calibration and in methanol for ELISA calibration. A standard reference solution of 24 

aromatic hydrocarbons (SRM 1491) was purchased from Promochem (Herts, UK). 

Internal standards (PCB 29 and 9,10-dihydroanthracene) were from QMx Laboratories 

Ltd (Safron Walden, UK). Solvents of glass distilled grade were fix)m Rathbums 

Chemicals Ltd (Walkerbum, UK). Solvents were batch tested for PCB and PAH 

contamination. 

2.5.7.2 Study site 

The New Bedford Harbour site drains the Acushnet River into Buzzard's Bay. The 

Acushnet River borders the city of New Bedford to the east and the towns of Acushnet 

and Fairhaven to the west. The site is divided by two sea walls into an inner (upper and 

lower) and outer harbour area (Fig. 2.2). The primary objective o f remedial dredging 

activities instituted during the last decade in New Bedford Harbour has been to reduce 

the public health hazard posed by exposure to contaminated sediments or consumption 

o f contaminated seafood. The area is heavily populated and industrialised, and received 

large quantities of Aroclor® 1242 and 1254 and, possibly, also Aroclor® 1016 during the 

1970's (Pruell et ai, 1990; Lake et a/., 1995). Prior to remedial action, sediment 

concentrations of PCBs as high as 100,000 ng g ' were measurable in the upper harbour 

area (USEPA, 1996). The water flow in the estuary is influenced by the tidal movement 

of Buzzard's Bay and the concentration of contaminants in estuarine sediments 

generally show a gradual decline from both shores towards the centre of the river 

channel (NUS Corporation, 1984). Congener specific PCB measurement by gas 

chromatography, conducted after remedial dredging action by the USEPA (1996), 

revealed a decreasing gradient of total PCB concentrations from the upper to outer 
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harbour (Table 2.2). The distribution of toxic metals in sediments throughout the 

harbour area also showed marked gradients in contaminants loading from the inner 

harbour out into Buzzard's Bay (Shine et al., 1995; USEPA, 1996) (Table 2.2). The 

highest concentrations of metals, in particular cadmium, chromium and copper, 

occiured in the iruier harbour. More recent sediments from the outer harbour were 

characterised by their lead and zinc content consistent with a non-point source 

superimposed on a point source in the inner harbour (Shine et al., 1995). The choice of 

study sites for the present study was made to encompass the decreasing trend o f 

contamination from inner to outer harbour areas and is indicated in Fig. 2.2 and Table 

2.2. The control site (West Island - site 1) was located in Fairhaven, M A , approximately 

15km east of the harbour and has been used as a reference station for Superfund 

monitoring programmes. It is adjacent to marshland and surrounded by woodland. The 

Buzzard's Bay site (site 2) was located outside the harbour breakwater. Sites 3 and 4 

were in the lower and upper inner harbour respectively. Large indigenous populations of 

ribbed mussels were present at all sites. 

2.3.1.3 Sample collection and preparation 

Specimens of Geukensia demissa of shell length 50-80 mm were used for all 

experiments. A total of 60 mussels were sampled from each of the sites, collected by 

hand from the sediment below the high water mark. Water temperature was 12°C and 

salinity between 32-35. Sites 1 and 2 were sampled at low tide on 7*̂  April 2000. Sites 3 

and 4 were sampled at low tide on 10^ April 2000. A l l mussels were returned to the 

laboratory and kept in fully aerated water at 15°C for 24 hours prior to analysis. 

Haemolymph (0.5 - 1.0 mL) was withdrawn by needle aspiration from the posterior 

adductor muscle into an equal volume of physiological saline (0.02M HEPES, pH 7.4, 

0.4M NaCl2, O.IM Mg SO4. O.OIM KCl and O.OIM CaClz) (Smith et al, 1990). The 

whole tissue was excised, weighed and frozen immediately at -80°C prior to further 

analysis. The mussels were collected and biomarkers performed by Dr Tamara S. 

Galloway, Mr Ross C. Sanger and Miss Karen L. Smith (University of Plymouth). 

2.3.1.4 Neutral red retention time 

The neutral red retention assay reflects the efflux of the lysosomal contents into the 

cytosol following damage to the membrane and, possibly, impairment of the H* ion 

pump. Neutral red retention time was measured in haemolymph using the method of 
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Lowe et al. (1995). Briefly, haemolymph (40 ^iL) was dispensed onto a poly-L lysine 

coated microscope slide (26 x 76 mm) and incubated in a humidity chamber consisting 

of a shallow insulated light proof vessel containing water ice (incubation temperature 10 

°C) for 15 min to allow the cells to adhere. The excess solution was then carefiilly 

tipped o f f and 40 of the neutral red working solution (see details below) added to the 

area containing the attached cells. A 22 x 22 mm coverslip was then applied. After 15 

min incubation to allow dye to penetrate the cells in an chamber, the slide was inspected 

under a light microscope (x400 magnification). Following a fiirther 15 min incubation 

the slide was examined again and thereafter at 30 min intervals for 180 min to 

determine the time at which the dye that had been taken up into individual lysosomes 

(turning them red) had leached out into the cytosol. Following each inspection, the slide 

was returned to the incubation chamber. The test was tenninated when dye loss was 

evident in 50% of the small granular haemocytes and the time recorded. 

A stock solution of neutral red was made by dissolving 20 mg of dye in 1 mL of 

DMSO. A working solution was then prepared by diluting 10 ^ L o f the stock solution 

with 5 mL of physiological saline solution (pH 7.36) 

2.3.1.5 Spontaneous cytotoxicity response: immunotoxicity 

Immune fiinction was assessed in microtitre plate format by measuring the ability of 

haemocytes to lyse erythrocyte target cells (Raftos and Hutchinson, 1995). 

Haemolymph samples were centrifliged for 10 min at 1000 x g to separate cellular and 

liquid flections of the haemolymph and stored on ice prior to analysis. Cells were 

resuspended in Tris buffered saline with calcium (TBS-Ca, lOmM Tris, pH 7.4, 150 

mM NaCI, lOmM CaCb), counted and adjusted to a density of 2 x 10® cells mL *. Sheep 

erythrocytes (Tissue Culture Services, UK), diluted by cell pack volume in TBS-Ca 

were incubated with haemocytes in the ratio 1:1 for 1 h at 20°C in round bottomed 

microtitre plates. The cells were pelleted by centrifiigation and the percent lysis 

determined by measuring the release o f haemoglobin into the supernatant by its 

absorbance at 405nm. Spontaneous release of the red blood cells was quantified 

concurrently in the absence of haemocytes. Results were expressed as percent lysis 

relative to the maximum lysis achieved using a solution of 0.2% Triton-X 100 in 

distilled water. 
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Figure 2.2. The location of study sites in the New Bedford Harbour area 

2.3.1.6 Cell viability 

The viability of haemocytes used for the immunotoxicity assay was determined in 

microtitre plate format by measuring the ability of whole (viable) cells to incorporate 

and retain neutral red dye (Babich and Borenfreund, 1990). Neutral red is a weak 

cationic dye that readily penetrates cell membranes by non-ionic diffusion, 

accumulating intracellularly in lysosomes, where it binds with anionic sites in the 

lysosomal matrix. Alterations of the cell surface or the sensitive lysosomal membrane 

lead to lysosomal fragility and other changes that gradually become irreversible. Such 

changes brought about by the action of xenobiotics result in a decreased uptake and 
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binding of neutral red. It is thus possible to distinguish between viable, damaged, or 

dead cells, which is the basis of this assay. Briefly, haemocytes (200 jiL) diluted in 

physiological saline were dispensed into flat-bottomed microtitre plates and allowed to 

adhere for 45 min to form a monolayer. Excess liquid was discarded and replaced with a 

solution of 0.004% neutral red in physiological saline. The cells were incubated for 3h 

at 25°C, the excess solution was discarded and plates washed with a solution of 0.5% 

formaldehyde: 1% calcium chloride to remove residual dye. Damaged or dead cells lose 

their ability to retain NR, which is then removed during this wash/fixation procedure. 

The dye is then extracted from the intact, viable cells with a solution of 1% acetic 

acid:50% ethanol (1:1). The plate is left to stand at room temperature for 10-15 minutes, 

then agitated on a microplate shaker for 30 minutes. The absorbance o f solubilised dye 

is then determined using a spectrophotometer at 540nm. Quantitation of the extracted 

neutral red was expressed as absorbance per mg protein. Total protein was measured 

with Bio-Rad protein assay. 

Table 2.2. Average metal, "total" PCB and "total" PAH concentrations (in ̂ g g** dry 
weight) in the upper, lower and outer harbour sediments and at West Island compiled 

from the literature. PCBs were measured by GC. Metals were measured by ICP-MS o f 
sonicated sediments. Unless indicated otherwise, results are from USEPA, 1996, The 
correspondence of the present study sites to these locations is shown in parenthesis. 

Average 
concentration 
(URg^ drywt) 

West 
Island 
(site 1) 

Buzzard's 
Bay 

(site 2) 

Lower 
Harbour 
(site 3) 

Upper 
Harbour 
(site 4) 

Metal 

As - 3.1 5.3 5.2 

Cd 0.16** 0.28 12 67 

Cr 19 19 190 310 

Cu 19 19 450 630 

Hg 0.04** 0.07 0.40 0.43 

Ni - 5.3 11 34 

Pb 24** 18 130 270 

Se - 0.23 0.42 0.32 

Zn - 42 260 630 

'Total" PCB <0.1** 0.83 8.2 44 

'Total" PAH' - 20' 170' 

" = Pruell et a/., 1990, = Fowler, 1990, compiled from concentrations from surface layers of nearshore 
sediments in the North West Atlantic area. 
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2.3.1.7 Metallothionein analysis 

Metallothionein concentration was determined by a spectroscopic method using 

DTNB (5,5-dithiobis-2-nitrobenzoic acid) (Viarengo et al., 1997). Whole tissue 

previously stored at -80°C was ground to a fine powder in liquid nitrogen and I g (wet 

weight) o f tissue diluted into a solution o f I m M dithiothreitol containing 1 m M 

phenybnethylsulphonylfluoride (PMSF). The solution was ultra centrifuged at 55,000 

rpm at 4°C for 70 min. The metallothionein was purified by extraction with ethanol and 

chloroform at 4°C, and the resulting metallothionein levels determined after addition of 

DTNB by recording the absorbance at 412nm in comparison to a reduced glutathione 

standard. 

2.3. J.8 Heart rate 

Following 24 h acclimation in the aquarium, the heart rate of mussels was monitored 

for at least 24h using the non-invasive computer aided physiological monitoring system 

(CAPMON) developed by Depledge and Anderson (Depledge and Andersen, 1990). In 

brief, a coupled infrared transmitter and detector unit, glued (Loctite 314) directly onto 

the shell of each mussel, beams infrared light onto the surface of the heart. As the 

conformation of the heart changes with each cardiac cycle, the intensity of the light 

reflected back to the detector fluctuates. The detected signal is fed to an analogue to 

digital converter and displayed on a computer screen. Prior to the start of heart rate 

measurement, groups of four mussels were transferred and kept in four litres of ftilly 

aerated seawater collected in situ for the duration of the recording. Sensors were 

connected to the mussels, which were then placed into tanks. Afterl h acclimation, heart 

rate was recorded every minute and stored on the computer for later analysis. 

2.3.1.9 Micron ucleus detection 

The presence of micronucleated haemocytes (Wrisberg and Rhemrev, 1992) was 

determined after adhering 100 ^ L of haemolymph, diluted in physiological saline as 

described above, to glass microscope slides coated with poly-L-lysine solution and 

incubation for 30 min in a humidity chamber to encourage adhesion of the cells to the 

glass. After incubation, the excess cell suspension was drain off. Cells were fixed with 

methanol (for 15 min) and allowed to air dry at room temperature (approximately 45 

min). The slides were then stained with 5% (v/v) Giemsa's stain in Giemsa buffer 

solution for 15-25 min, rinsed with distilled water and air dried. Slides were mounted in 
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DPX (with 22 X 22 mm coverslip) and examined under a light microscope (x400 

magnification). Micronuclei were characterised using the following criteria: well 

preserved cell cytoplasm, micronuclei not touching the main nucleus and of smaller size 

(up to 1/3 diameter) and similar or weaker staining as the main nucleus. Incomplete 

micronuclei in which connection to the main nucleus was still evident, binucleated cells 

and other aberrant nuclear structures were noted separately. 

2.5.1.10 Condition index 

The condition index was determined by comparing the dry weight of tissue (mg) 

from the mussel with its shell length. 

2.3.1.11 Metal analysis 

The mussel samples and shells were pulverised separately by pestle and mortar. 

Aliquots of 0.25g were mixed with 4 mL nitric acid, placed in a microwave digestion 

bomb, capped loosely and lefl overnight to digest at room temperature. The next day, 

the bombs were tightly sealed, placed in a domestic microwave oven and irradiated at 

400W for 1,5 min. After cooling, digests were transferred quantitatively to acid washed 

25mL volumetric flasks with indium as internal standard and analysed by ICP-MS. 

Semi-quantitative analysis of 60 elements was performed and the results, presented as a 

range to reflect the predicted accuracy to a factor of two, in ^g g ^ The fully 

quantitative analysis for the elements Ni , Cu, As, Cd, Hg and Pb were obtained using 

standard operating conditions. Results were validated against the DORM-2 dogfish 

muscle certified reference material. 

2.3.1.12 Mussel Tissue Extracts 

PCBs were analysed as described in Section 2.2.3.3 with exception of the final clean

up and fractionation step. Sample extracts for chromatography were concentrated, 

cleaned-up and fractionated using 12g of Florisil® (activated at 130°C for 12 hours). 

Elution with 105 mL of hexane yielded the first fraction containing PCBs, followed by 

150 ml of hexane/dichloromethane (80:20) to yield a second fraction containing 

organochlorine pesticides and also polycyclic aromatic hydrocarbons (PAHs). The PCB 

fraction was concentrated and further treated with concentrated sulphuric acid. 
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2.3.1. J3 Quantification ofPCBs using GC-ECD 

PCBs were quantified as described in Section 2.2.3.4. 

2.3.1.14 PAH Analysis 

The second fi-action containing the PAHs was concentrated and analysed either by 

GC, or aliquots (50-200 nL) were transferred and solvent exchanged to methanol 

(avoiding dryness) for ELISA. GC analyses were carried out with a gas chromatograph 

(Hewlett Packard 5890 series II) equipped with a flame ionization detector using a 30m 

x 0.25mm i.d. (0.25 pm thickness) DB-5MS fiised silica capillary column (J&W 

Scientific, Folsom, CA, USA). The oven temperature was programmed from an initial 

temperature of 40°C to 60°C at the rate of 40°C min"^ fiom 60°C the temperature was 

increased at 5*̂C min ' to 300°C where the temperature was held for 25 min. Samples ( I 

^iL) were injected automatically as for PCBs. Filter purified helium (CP grade) was the 

carrier gas at a flow rate of 2.0 mL min ' at 40°C. Concentrations of individual PAHs 

were quantified relative to the peak area of the respective external standards following 

calibration with authentic compounds. Confirmation of peak identify was obtained for 

selected extracts using GC-MS as for PCBs. Appropriate blanks and reference material 

NIST-SRM 2977 were analysed simultaneously. Recoveries of PAHs were examined by 

spiking 5.0 ^g of PAH standards (24 compounds) into Soxhlet extracted mussel tissue, 

using 9,10-dihydroanthracene as internal standard. The results were typically > 75% ± 

12%. However, losses through volatility or unacceptable chromatographic performance 

precluded quantification o f naphthalene, acenaphthylene, benzo(a)pyrene and perylene. 

Instrument detection limits ranged from 0.02 to 0.1 ng g * (dry wt). 

2.3.1.15 Detection ofPCB and PAH by ELISA 

Sample extracts in methanol were diluted by 1:1000-2000 (PCBs) or 1:100-200 

(PAHs) with 50% v/v methanol^uffered aqueous solution (containing stabilisers and 

preservatives) (SDI diluent). Mussel extracts were then analysed in triplicate together 

with 4 calibration standards. The PAH RaPID Assay® and PCB RaPID Assay® ELISAs 

(SDI Europe, Alton, UK) were used according to the manufacturer's recommendations 

(as described in Section 2.2.1.5). Analytical results were calculated from a standard 

curve of 0, 0.25, 1.0 and 5.0 ng Aroclor® 1254 mU' (r^ = -1.000; slope = -0.663; 

interception = -0.569) for the PCB RaPID Assays® or a standard curve of 0, 2.0, 10, 50 

ng phenanthrene mL"' (r^ = -0.996; slope = -0.650; interception = 2.115) for the PAH 
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RaPID Assay®. Sample concentrations, expressed respectively as *total PCBs" 

(Aroclor® 1254 "equivalents") or *total" PAHs (phenanthrene "equivalents"), were 

calculated by multiplying results by the appropriate dilution factor. 

2.3.I.J6 Statistical analysis 

The statistical package used was Statgraphics™ Plus Version 5 (Statistical Graphics 

Corporation, Rockville, MD, USA). The data for each biomarker and each chemical was 

analysed against the four collection sites using analysis of variance, assuming a normal 

distribution. Micronuclei are rare and independent events thus their distribution may be 

Poissonian, so the results of the micronucleus determination were additionally analysed 

using the chi square test. As multiple simultaneous determinations were being 

evaluated, multivariate statistical analysis was used to clarify correlation structures or 

redundancy of individual parameters. Multifactorial analysis of variance (Manova) was 

used to describe and detect significant differences between sites, with the level of 

statistical significance adjusted to account for the multiple simultaneous determinations 

to p < 0.002. Canonical correlation analysis was used to study the relationship between 

biological and environmental variables (Sparks, 2000). Principal component analysis 

was used to determine the similarity of patterns of individual PCBs in tissue samples 

with known Aroclor® mixtures (see Section 2.2.3.6). For all statistical tests, the 

significance level was set at 0.05. 
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Chapter 3 

3 Conventional analytical chemistry to evaluate 
contamination 

3.1 A comprehensive study of contamination in the Black Sea 

The Black Sea is the world's largest land-locked sea. It has a surface area of 4.2x10^ 

km^ and an average depth of 1240 m. About 25 % of its area is occupied by its north

western continental shelf which is less than 200 m deep. The Black Sea is bordered by 

Bulgaria and Romania to the west, Ukraine to the north, the Russian Federation and 

Georgia to the east and Turkey to the south (Fig. 3.1). Although only these six countries 

surround it, the total catchment area draining into the Black Sea covers a vast area of the 

European Continent, being over five times the size of the sea itself and including parts 

of 21 countries (EEA, 1995). The north-western area is subject to the discharge of large 

rivers (the Danube, Dnieper and Dniester). The River Danube delivers about half of the 

allochthonous material to the Black Sea (Shimkus and Trimonis, 1974), hence the 

western Black Sea receives more terrigenous material than the eastern Black Sea. At 

least 171 million people live in the Black Sea basin, from which about 81 million live in 

the Danube basin alone (Mee, 1992). 

Human activities in the catchment areas have had major effects, not only on the 

rivers, but also on the Black Sea itself, which has been the victim of unmanaged 

fisheries, unrestricted intense shipping activities, mineral exploitation and dumping of 

toxic wastes. The threat to the Black Sea from land-based sources of pollution is 

potentially greater than in any other sea on our planet (Mee, 1992). The consequences of 

pollution, such as reduction of tourism in the region, loss of biodiversity, changes in the 

hydrological balance and reduction or even collapse of fisheries have been reported 

(Tuncerera/., 1998). 

Although some studies have assessed the environmental quality of the Black Sea 

(Wakeham and Beier, 1991; Mee, 1992; Wakeham, 1996; Tanabe et al., 1997b; Tuncer 

et al., 1998; Maldonado et al., 1999), data on chemical contamination are still scarce. 

Hence, comprehensive studies are needed to understand the status of contamination and 

pollution in the Black Sea (Mee, 1992). For elucidating the present status of its 
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chemical contamination, this study focuses on conventional chemical analysis (e.g. gas 

chromatography) of organochlorine residues (Filhnann et a/.. In Press a), hydrocarbons 

(Readman et a/., In Press) and faecal sterols in surface sediments fi-om several areas 

along the Black Sea coast. 

3.2 Persistent Organochlorine Residues 

Synthetic organochlorines such as DDTs, PCBs (polychlorinated biphenyls), HCHs 

(hexachlorocyclohexanes), CHLs (chlordanes), cyclodienes and HCB 

(hexachlorobeiizene) are highly resistant to degradation by biological, photochemical or 

chemical means. They are also liable to bioaccumulate, are toxic, probably hazardous to 

hirnian and/or environmental health, and most are prone to long-range transport (Tanabe 

et al.y 1994; UNEP, 1996). These compounds are also typically characterised as having 

low water solubihty and high lipid solubility. 

Organochlorines have been associated with significant envirormiental impact in a 

wide range of species and at virtually all trophic levels (Tanabe et a/., 1994). Many 

organochlorines have been implicated in a broad range of adverse human health and 

envirorunental effects, including impaired reproduction, endocrine disruption, 

immunosuppression and cancer (UNEP, 1996). Exposure to organochlorines has been 

correlated with population decline in a number of marine mammals (Tanabe et al., 

1994). The primary transport routes into marine and coastal environments include 

atmospheric deposition and surface run-off, the former being by far the greatest albeit 

dispersed over large areas. Because many organochlorines are relatively volatile, their 

remobilization and long-distance redistribution through atmospheric pathways often 

complicates the identification o f specific sources. Nevertheless, those (the majority) 

used in agriculture are also washed of f the land into rivers, thence to the sea, or directly 

into the sea via outfalls or run-off. Many organohalogens follow quite complex 

biogeochemical pathways (UNEP/IOC/FAO, 1992). Whilst there is substantial 

information concerning contamination of many industrialised countries and a number of 

studies have been conducted regarding organochlorine contamination in Eastern Europe 

and Asia (Iwata et ai, 1994b; Vetter et a/.. 1995; Iwata et al, 1995; Nakata et ai, 1997; 

Tanabe et a/,, 1997b), the Black Sea remains to be studied. 

Concentrations of DDTs, HCHs and PCBs in Black Sea fish and mammals are high 

in comparison with those reported for other regional seas (Tanabe et a/., 1997a; Tanabe 
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et al., 1997b). Due to the toxic effects of organochlorines in humans and aquatic 

organisms, the use and/or sale of most organochlorine pesticides has been harmed or 

restricted in countries surrounding the Black Sea and in many other European countries. 

In Turkey and Romania, for example, the use of organochlorine pesticides was 

controlled in the late 1970s, but effective restrictions were not imposed in Turkey until 

the 1980's (Tanabe et al., 1997b). Between 1976 and 1983, the annual use of 

organochlorine insecticides in Tiu^key was 1000-2000 tonnes (Karakaya and Ozlap, 

1987). Despite this restriction, recent studies delected DDT in Turkish rivers, streams, 

and domestic and industrial discharges, which indicates their illegal use (Tuncer et al., 

1998). The use of these chemicals in other Black Sea countries is currently unclear. 

The data of selected chlorinated compounds analysed in sediments from the Black 

Sea are presented in Tables 3.1 and 3.2 and Figs. 3.1, 3.2 and 3.3. On the basis of these 

data, the ranking of concentrations of the various compounds are as follows: DDTs 

>HCHs >PCBs >HCB >cyclodienes. A similar ranking has also been observed in 

organisms fiom Black Sea (Tanabe et ai, 1997b). 

3.2.1 PCBs 

The concentration of PCBs (sirni of 13 congeners) in some sediment from the Black 

Sea (Fig. 3.1) is low in comparison with those reported for other locations (Table 3.3). 

Relatively higher concentrations of 4.8 and 8.8 ng g * dry wt were, however, recorded 

for the Romanian stations A4 and PI respectively. These locations are influenced by 

discharges from the River Danube, whose sediment has been reported to contain 

relatively high levels of PCBs (Equipe Cousteau, 1993). The cyclonic circulation 

pattem in the western basin may also aid in transporting contaminants from the Danube 

River southward (Aibulatov, 1987). The highest concentration of PCBs in sediment 

(24.3 ng g ' dry wt) was found in a sample taken from Port Constantza (P.C.), on the 

Romanian coastline. Sediments of Odessa (stations 94a - near port lUichevsk - and 98 -

centre of Odessa bay) and Sochi (station 1) were also found to contain relatively high 

concentrations (6.8, 5,7 and 4.7 ng g"' dry wt, respectively). In the Bosphorus, the 

highest concentration (4.4 ng g"̂  dry wt) was found at one of the furthest offshore 

stations (station 30). Substantial levels of PCBs have been previously recorded in 

porpoise samples from the Black Sea indicating inputs of contaminants from the 

siUTounding countries (Tanabe et al, 1997a). Some of the Eastern European countries. 
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Table 3.1. Concentrations of chlorinated hydrocarbons (on a dry weight basis) in Black Sea sediments (Ukrain, Russia Federation and Turkey) 

Ukraine Russian Federation Turkey 

Samples codes 26 39 45 53 54 55 94a 98 132 134 I 3 5 6 8 9 10 16 17 22 30 31 35 36 44 

EOM MBS"' 25 29 16 13 37 5 200 390 90 490 290 170 54 100 290 110 76 70 160 33 180 48 42 44 85 
H C B PB B ' 7 10 7 6 19 24 74 57 710 1300 260 29 21 27 79 250 50 69 130 20 120 41 29 16 120 
a-HCH PB B"' 16 48 <6 <6 26 <6 390 1100 1000 460 180 190 100 110 190 100 37 100 110 22 210 85 35 32 160 
P-HCH PB 8'' 20 30 18 6 140 16 680 900 460 470 560 310 160 280 500 62 <6 27 130 42 100 46 82 23 220 
Lindane PS s' 16 26 12 10 23 12 180 250 550 330 73 89 26 26 37 64 44 100 72 92 790 63 32 46 98 
pp' DDE P8 8"' 280 100 54 34 220 74 2900 4300 1200 1500 2700 1800 600 1100 1600 1000 860 2800 1900 41 1600 1400 260 98 710 
pp* DDD P8 8'' 73 290 93 12 310 71 17000 33000 22000 5100 4900 1500 1300 2200 2500 2000 1500 1900 1000 63 2900 3600 220 230 3700 
pp' DDT PBS'' <10 <10 <10 <10 <10 10 11000 20000 ISOOO 940 3700 7600 820 800 2300 1100 3000 570 450 78 960 1500 94 290 890 
DDMU PB B'' 45 59 <10 )5 83 10 1200 3500 620 510 510 160 160 190 260 270 220 500 260 48 230 620 62 31 410 
op DDE P8 8"' <8 <8 <8 <8 <8 <8 58 170 85 42 36 130 14 8 11 22 8 48 16 <8 30 39 <8 <8 21 
op DDD PS S'' 26 93 27 12 58 <10 3900 7500 4600 1600 660 270 250 300 420 330 160 350 190 13 790 640 74 37 620 
op DDT P8 8'' <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 360 1000 270 110 170 11 <10 <10 <10 <10 79 35 <10 <10 40 
Heptachlor P8 8"' <5 <5 <5 <5 <5 <5 <5 32 <5 <5 <5 <5 <5 <5 <5 6 <5 <5 <5 <5 <5 <5 5 <5 <5 
Aldrin PB B"' <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 12 7 15 19 10 180 17 16 10 16 
Dieldrin P8 S ' 1) 17 17 8 34 <10 58 36 35 15 39 15 <10 10 17 48 13 27 43 17 91 54 18 14 50 
Endrin PS 8"' <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 250 20 <15 18 <15 
Aroclor 1254 PS S"' 60 <60 <60 <60 140 180 5800 4700 850 1300 3830 930 380 600 1300 1000 300 810 600 550 4900 1130 640 430 950 
Aroclor 1260 P8 8"' 310 <60 <60 <60 <60 <60 3600 3600 1100 4400 2450 370 230 180 540 1460 390 580 1180 <60 1210 630 170 <60 1550 
PCB 44 PS B"' 26 <5 <5 <5 <5 <5 120 110 <5 36 160 28 20 16 54 66 <5 52 24 71 550 80 51 55 78 
PCB 49 PS 8* 16 <4 <4 <4 27 11 310 280 110 200 210 42 32 27 84 52 42 100 67 91 320 75 45 41 76 
PCB 52 PB B"' <6 <6 <6 <6 <6 12 340 270 93 130 270 95 53 66 120 79 87 230 150 160 710 270 120 140 260 
PCB 87 PBS'' 60 <9 <9 <9 9 <9 220 130 18 32 150 18 <9 14 39 36 <9 31 25 28 280 31 21 17 23 
PCB 101 PB B"' <l < | <1 <1 33 20 650 620 66 120 380 50 12 26 99 95 43 140 81 75 510 140 65 56 120 
PCB 105 PB S'' 18 <5 <5 <5 25 <5 520 370 44 100 380 79 20 36 94 82 14 37 51 10 130 57 12 <5 50 
PCB 118 PS 8'' 13 <5 <5 <5 29 21 1200 980 170 120 760 140 37 76 180 150 35 94 100 23 260 120 22 17 no 
PCB 128 PS 8"' <10 <5 <5 <5 <5 <5 140 110 43 130 170 41 10 16 61 53 11 28 33 <5 28 16 <5 <5 21 
PCB 138 PB B"' 20 <5 <5 <5 18 20 1200 930 ISO 370 670 130 41 71 190 340 68 170 240 39 470 260 87 52 270 
PCB 149 PB 6' 40 <5 <5 <5 24 12 600 540 340 340 640 94 28 48 170 220 49 140 180 38 440 180 44 24 180 
PCB 153 PS 8* 55 <5 <5 <5 56 19 990 890 190 430 590 110 34 59 150 310 71 180 240 26 450 220 60 28 260 
PCB 180 PB B' 71 <9 <9 <9 <9 <9 330 320 n o 450 200 33 15 18 60 200 40 64 180 9 120 130 22 <9 210 
PCB 187 P8 8' 33 <5 <5 <5 <5 <5 200 180 85 220 110 14 <5 <5 28 130 34 64 110 <5 170 54 16 <5 130 
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Romania 

Sample code P 1 P2 A 4 B 4 V 1 C M . Consta. P.O. Cost. M. SI S3 S6 88 N. 

EOM MB 8"' 250 160 490 20 8 8 3 5 to 50 60 100 160 60 SO 
HCB P8 8"' 23000 110 5300 140 10 32 1100 1700 36 150 40 130 180 60 <10 
a-HCH PS 8"' 5400 410 8600 400 70 84 120 620 170 300 260 640 940 740 30 
p-HCH P8 g' 550 220 2400 110 43 84 220 1600 170 140 380 690 610 1100 60 
Lindane Pg g' 1800 1600 29000 2100 180 380 470 2800 1400 230 210 430 400 560 100 
pp' DDE P8 8"' 5300 290 8200 120 70 220 390 3700 150 360 890 4700 3100 5100 230 
pp' DDD Pgg' 18200 1000 35000 400 320 1000 1700 25000 480 1800 1900 2400 2500 6800 220 
pp' DDT Pg g"' 7600 520 20000 200 500 1400 230 1200 330 1900 220 580 370 1250 100 
DDMU pg g"' 780 53 1400 47 25 67 140 1200 38 67 280 700 360 750 20 
op DDE Pg g' 170 16 330 15 9 18 29 470 9 20 31 97 80 110 10 
op DDD pg g' 3000 280 8100 99 77 250 530 6500 120 350 340 550 260 990 30 
Heptachlor pg 8"' <3 <3 <3 <3 <3 <3 <3 170 <3 3 <3 <3 <3 <3 <3 
Aldrin pg g' <10 <10 <10 <10 <10 <10 <10 180 <10 <10 <10 <10 <10 <I0 <I0 
Dietdrin pg g' 44 50 150 11 <7 7 8 240 8 60 24 70 70 110 10 
Endrin pgg* <10 28 <10 <10 <10 <10 10 250 <10 <10 <10 <10 <10 10 <10 
a-Endosulfan Pgg' 29 46 240 7 <7 <7 <7 270 IS <7 7 10 <7 20 20 
P-Endosulfon Pgg' <10 72 <10 <10 <I0 <I0 <10 100 <I0 <10 <I0 <I0 <10 <10 <10 
Endos. Sulfate pg 8"' 12 44 72 10 <7 <7 <7 20 7 <7 <7 <7 <7 <7 10 
Aroclor 1254 pg g' 4900 90 4300 730 240 350 440 25000 270 1040 400 1130 2650 980 160 
Aroclor 1260 P8 8'' 27000 630 12000 <60 <60 210 620 50000 410 200 730 2530 1460 1240 <60 
PCB28 pg g"' 250 4 290 6 I <1 39 200 21 30 40 46 1300 60 40 
PCB49 pg 8"' 4 16 180 25 13 6 6 250 6 <4 5 48 20 20 <4 
PCS 52 pg g' 220 <6 310 34 6 27 33 840 28 40 58 78 170 170 20 
PCB97 Pgg' 36 6 54 10 5 4 4 130 2 <2 <2 5 10 <2 <2 
PCB 101 Pgg' 520 I 280 47 7 38 55 3100 32 80 73 96 270 130 20 
PCB 136 P8 8'' 39 2 15 <1 <1 1 <I 130 <I <1 <1 <1 <1 <| <I 
PCB 138 P8 8"' 2200 58 1200 ISO 37 53 120 6300 42 340 180 370 660 290 10 
PCB 153 P8g' 2500 64 1200 87 34 45 95 6400 48 320 220 370 950 360 10 
PCB 180 pgg'' 3000 70 1300 110 15 30 76 6900 18 250 180 320 500 260 <5 



such as the former USSR, produced PCBs (Sovol) for use as a dielectric fluid in power 

capacitors and transformers (Ivanov and Sandell, 1992). A recent study showed that the 

composition of PCBs in Sovol was similar to that in Aroclor 1254, which contains 

mainly tetra- to hexa-chlorinated congeners (Iwata et ai, 1995). Although 

comparatively low concentrations of PCBs were found in this survey, significant 

concentrations in air, water, sediments, soil, fish and seals have been reported for other 

regions in the Russian Federation e.g. Lake Baikal (Iwata et ai, 1995; Nakata et ai, 

1997). The usage pattern and major sources of PCBs in other countries surrounding the 

Black Sea remain unclear. 
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Figure 3.1. Distribution of PCBs in sediment from the Black Sea(nggdry wt"') 

Among the 209 PCB congeners, some attain coplanarity and elicit highly toxic 

biological effects that can approach that of 2,3,7,8-TCDD (Safe, 1990). Tanabe et al. 

(1997a) have reported the presence of toxic co-planar PCBs in porpoise and fish from 

the Black Sea (Turkish coast) with a dominance of the highly chlorinated congeners 

(lUPAC No. 138, 153 and ISO). Results from our sediment analyses confirm the 

presence of co-planar congeners, especially lUPAC No. 138 and 153 (di-ortho) and 118 

(mono-ortho), which dominate (Tables 3.1 and 3.2). 
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sites. They are comparable to, or slightly higher than, those reported for other regions of 

Russian Federation (e.g. Lake Baikal), the USA and Mexico (Table 3.3). High 

concentrations of DDTs (sum of p,p'-DDT, o,p'-DDT, p,p'-DDE, o,p'-DDE, p,p'-DDD 

and o,p'-DDD, excluding o,p*-DDT in the case of the Romanian samples) in the Black 

Sea are associated with sediments rich in lipids (EOM) in the Ukraine (43 ng g"̂  dry ui 

- station 132) and Romanian stations, which are under the influence of River Danube 

discharges (stations PI and A4 - 34 and 72 ng g ' dry wt, respectively). The high 

concentrations associated with the Danube and adjacent coastal areas indicate that the 

river is a major source of contamination to the Black Sea. High concentrations are also 

reported for sediments in the vicinity of Odessa (stations 94a and 98 - 34 and 65 ng g ' 

dry wt, respectively) and Port Constantza (37 ng g * dry wt) (Fig. 3.2). 
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Figure 3.2. Distribution of DDTs in sediment from the Black Sea (ng g dry wt ') 

The DDE/DDT ratio can be used to indicate whether DDT inputs have occurred 

recently or in the past. Since p,p'-DDE is a metabolite of p.p'-DDT (and is not present 

in technical DDT), lower and higher ratios denote recent and past usage of technical 

DDT, respectively. A higher ratio of DDE/DDT may, however, also be influenced by 

long-range atmospheric transport, because of the more efficient transport of p,p'-DDE 

compared to p,p'-DDT (hvata ct al., 1993a). 
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DDT compositional ratios (p,p'-DDE/p,p'-DDT ) throughout the Black Sea show 

large variability among sites: > 7.0 along the Ukrainian north coastline; 0.2 - 1.2 at 

Sochi; 0.2 - 0.3 at Odessa; 0.1 - 1.6 along the Ukrainian coastline adjacent to the 

Danube; 0.3 - 5.0 in the vicinity of the Bosphorus and, finally, along the Romanian 

coastline (2.4 - 8.6 in Sinoe Lagoon; 0.4 - 0.7 in proximity to the Danube and 0.2 - 3.5 

at other Romanian stations) (Fig. 3.4). Similar variations have also been observed in 

other studies (Ramesh et a/., 1989; Iwata et a/., 1993a; Iwata et a/.. 1995). It is likely, 

however, that the low DDE/DDT values combined with the relatively high 

concentrations (especially in Odessa sediments and, Ukraine and Romanian sediments 

under influence of Danube discharges) are an indication of current DDT usage around 

the Black Sea. Measurements of DDT made in 1981 and 1982 indicated high water 

concentrations (32 to 486 ng.L'') in the region of Danube delta and in the Kerch Strait 

(8 to 20 ng.L"*) (EEA, 1995), indicating extensive usage of this insecticide. According 

to Tuncer et al. (1998), approximately 100 tonnes of DDT are discharged annually via 

rivers into the Black Sea suggesting continued illegal usage of this pesticide in 

agriculture. This is further supported by concentrations of DDT residues reported in 

human adipose tissues and organisms (porpoise and fish) from the region (Tanabe et a/., 

1997b). 

3.2.3 HCHs 

HCH concentrations (the sum of a, P and y isomers) were found to be in the range of 

0.02 to 40 ng g'* dry wt (Table 3.3). Concentrations of lindane (y-HCH) and the other 

HCH isomers are low in samples from the Ukrainian coastline, Russian Federation and 

Turkey (Fig. 3.3). These levels are comparable to the low to-medium range of values 

reported by Iwata et al. (1994b) for estuarine sediments from eastern and southern Asia 

and Oceania. However, they are much lower than values reported for India and 

Vietnam, which are subject to intensive sources of HCH contamination (Table 3.3). 

High concentrations in samples from Romanian stations (under the influence of the 

River Danube) indicate usage of HCH as a pesticide in the River Danube watershed. 

Indeed, on a global basis this study reports some of the highest concentrations recorded 

for HCHs in sediment (up to 40 ng g'* dry wt) (Table 3.3). 

With regard to the composition of the HCH isomers in sediment, a high percentage 

of the y-isomer is recorded at some locations along the Romanian Coastline (56 to 
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81%). However, the a isomer is dominant at Sulina arm of Danube delta (PI) and, at the 

Sinoe Lagoon (S1-S8) and the southernmost station Mangalia (M.), none of the isomers 

dominate (Fig. 3.5). Elevated percentages of the y-isomer indicate the use of lindane as 

a pesticide in the region. Technical HCH (which is also used as a pesticide) has been 

reported as a mixture of p (c. 9%), y (c. 14%) and a (c. 70%) isomers (Ramesh et al, 

1989; Iwata et al, 1994b; Iwata et al., 1995). The percentage of the y-isomer is between 

5 and 15% in Sochi (p-isomer 53-69%), 11 and 14% in Odessa (p-isomer 40-54%), 26 

and 27% along the Danube Coastline, 12 and 63% along the Ukrainian coastline (P-

isomer 29-74%), and 22 and 72% in the Bosphorus (Fig. 3.5). At some stations, P-HCH 

appears as the dominant isomer. Of the HCH isomers, the P-isomer has the lowest water 

solubility and vapour pressure, and is the most stable and resistant to microbial 

degradation. These properties could account for higher levels of this isomer in some 

sediments (Ramesh et al, 1991). 
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Figure 3.3. Distribution of HCHs in sediment from the Black Sea (ng g dry wt'^) 

The ratio between the a- and y-isomers was less than unity for sediments along the 

Romanian coastline (i.e. 0.1 to 0.4), with the exception for station PI (3.0), the Sinoe 

Lagoon (0.3 to 2.4) and Mangalia (1.3). These low values confirm the agricultural use 

of lindane in the region, since the ct/y ratio is between 4 and 7 for technical HCH and 

nearly zero for lindane (Iwata et a/., 1995). On the other hand, relatively high values 
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(i.e. those found at Odessa (2,2 and 4.4) and Sochi (2.1 to 5.1)), and intermediate values 

(i.e. those found along the Ukrainian coastline (1.0 to 1.8), Ukrainian Danube coastline 

(1.4 to 1.8) and Bosphorus (0.7 to 1.6)) suggest that HCH contamination at some 

locations arises through the use of both formulations. The use of technical HCH is 

recorded in the former USSR and Romania (Fischer et aL, 1991), but information is 

lacking for the other countries surrounding the Black Sea (Tanabe et a/., 1997b). 

Table 3.3. Worldwide concentrations of organochlorines in sediment (ng g'* dry wt) 

Area PCB D D T s HCHs References 

Pearl River Delta, China 11.5-485 N.A N.A. (Kange/fl/., 2000) 
North Coast Vieman 0.5-28.1 6.2-10.4 1.2-33.7 (Nhane/a/., 1999) 
South-Westem Coast, Baltic Sea O.MI <0.04-88 <0.04-I.2 (Dannenberger, 1996) 
Vanuatu and Tonga, South Pacific Islands N.A. <0.1-1027 <0.1-0.3 (Harrison e/fl/.. 1996) 
Humber Estuary, UK N.D.-84 N.A. N.A. (Tyler and Millward, 1996) 
Irish sea. UK 0.2-42 N.A N.A (Thompson e/ a/., 1996) 
San Quintin Bay, Mexico <10 <2-15 N.D.-<I (Galindoe/fl/.. 1996) 
Gulf of Bothnia, Baltic Sea 2-14 N .A N.A. (VanBavele/a/., 1995) 
Lake Baikal, Russia 0.08-6.1 0.01-2.7 0.02-0.1 (Iwatac/o/., 1995) 
Xiamen Harbour, China 0.05-7.2 4.5-3 II O.I-I.I (Hongc/fl/., 1995) 
Victoria Harbour, Hong Kong 3.2-81 1.4-97 <0.1-9.4 (Hongc/o/., 1995) 
Western Coast, Australia <10 1-22 N.A. (Burt and Ebell, 1995) 
Firth of Clyde, Scotland 0.5-500 N.A. N.A. (Kelly and Campbell. 1995) 
Sarasota Bay, Florida, USA N.A. <I-69 N.A. (Sherblomc/a/., 1995) 
Gulf of Alaska, Bering Sea, Chukchi Sea 0.1-2 0.01-0.2 0.04-0.3 (Iwatae/a/., 1994a) 
San Francisco Estuary, USA <0.1-8.1 <0.I-9 N .A (Pereirae/a/., 1994) 
Cities, India 4.8-1000 8-450 0.6-38 (Iwatae/o/., 1994b) 
Cities, Thailand 11-520 4.8-170 0.5-3.1 (Iwatac/o/., 1994b) 
Cities, Vietnam 0.2-630 0.4-790 0.4-12 (Iwatac/a/., 1994b) 
Cities, Indonesia 5.9-220 3.4-42 0.04-0.1 (Iwatac/a/., 1994b) 
Cities, Papua New Guinea 3.3-54 4.7-130 0.2-0.3 (Iwatae/fl/., 1994b) 
Cities, Solomon Islands 1.1-5.0 9.3-750 <0.3-2.2 (Iwatac/fl/., 1994b) 
Cities, Japan 63-240 2.5-12 4.5-6.2 (Iwatac/o/., 1994b) 
Cities, Taiwan 2.3-230 0.4-11 0.3-0.8 (Iwatac/fl/., 1994b) 
Cities, Australia 0.5-790 0.08-1700 0.02-17 (Iwatacra/., 1994b) 

Danube River 0.02-85 <0.04-4l 0.03-6.4 (Equipe Cousteau, 1993) 
Bosphorus, Black Sea, Turkey 0.4-4.4 0.2-7.2 0.08-I.I (This study) 
Sochi, Black Sea, Russia 0.3-4.7 3.3-12 0.3-0.8 (This study) 
Odessa, Black Sea, Ukraine 5.7-6.8 35-65 1.3-2.3 (This study) 
Coastline, Black Sea, Ukraine N.D.-0.4 0.06-0.6 0.02-0.2 (This study) 
Danube Coastline, Black Sea, Ukraine 1.4-2.7 9.2-43 1.3-2 (This study) 
Romania Coastline, Black Sea 0.1-24 0.6-72 0.2-40 (This study) 

N.D.: Not detected; N.A.: Not analised. 

Iwata et al. (1993b) have also suggested that an increase in the o/y ratio would occur 

during atmospheric transport, providing further evidence that the generally low oJy 

ratios recorded in the region are due to agricultural usage of HCH. Air-sea exchange 

represents an important process in regulating the composition and concentration of 
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organochlorine compounds in the marine environment. Iwata et al. (1993a; 1994a; 

1995) clearly demonstrated that, in accordance with the volatility (Henry's law 

constants and vapour pressure) of these compounds, they can be either selectively lost 

to the atmosphere or alternatively retained in the ocean. Thus, these processes that also 

depend on ambient conditions need to be considered in any marine environmental study 

o f these compounds. a-HCH has a higher Henry's law constant and vapour pressure 

than either the P- or y-isomers (Suntio et ai, 1988), rendering atmospheric transport 

more important for this isomer. y-HCH is preferentially degraded by micro-organisms 

(Benezet and Matsumara, 1973) and can be photochemically isomerised to the a-isomer 

(Malaiyandi and Shah, 1984). These factors could account for higher proportions of a-

HCH in sediments distant from contamination sources. 
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Figure 3.4. Composition of DDTs P - DDE; • - DDT; • - DDD) in sediment samples 
from the Black Sea 

Although few data exist for comparative purposes, mean and maximum water 

concentrations of a-HCH and y-HCH (lindane) in the Black Sea have been reported to 

be 5 ng L'* and 23 ng L ' \ and 1 ng L'* and 5 ng L"', respectively (Dechev, 1990; EEA, 

1995). Measurements made in 1981 and 1982 revealed levels of lindane in water of 20 

to 550 ng L'^ in the region of the Danube delta (EEA, 1995). 
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3.2.4 HCB and cyclodienes 

HCB and certain cyclodienes were also found in the sediments from the Black Sea 

(Tables 3.1 and 3.2). In many samples, however, cyclodienes were not detected. The 

concentrations of HCB in sediments, ranging from 0.01-23 ng g"* dry wt, are much 

lower than those recorded for other compounds. The highest values were recorded along 

the Romanian (5.3 and 23 ng g"' dry wt) and Ukrainian (0.7 and 1.3 ng g"' dry wt) 

coastlines adjacent to the River Danube. This chemical has been released into the 

environment as a by-product of industrial processes (Tanabe et al, 1997b) and is also 

formed by combustion and during chlorination (Grimalt et al., 1988). Some countries 

have also used it as a fungicide (Kutz et al, 1991). HCB has been previously reported in 

porpoise and fish tissues from the Black Sea (60-610 ng g * dry wt basis) (Tanabe et al, 

1997b), confirming the usage of the compound in the region. 
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Figure 3.5. Composition of HCHs P - y-HCH (Lindane); • - P-HCH; • - a-HCH) in 
sediment samples from the Black Sea 

As previously mentioned, important characteristics of organochlorines are their 

hydrophobicity and lipophilicity. These factors result in organochlorines being 

preferentially accumulated in sediments and marine organisms, particularly those that 

have a high lipid (EOM) content. Thus, sediments with high concentrations of organic 

carbon are more likely to adsorb the lipophilic organochlorines than those with lower 

concentrations, such as sandy materials (Iwata et al, 1994b). The most contaminated 

locations in this survey were those associated with lipid (EOM) rich sediments (200 to 
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490 \xg g"' dry wt) i.e. stations PI and A4 (Romanian coast), station 134 (Ukrainian 

Danube coast), stations 94a and 98 (Odessa) and stations 1 and 8 (Sochi - Russian 

Federation). There are, however, exceptions to these findings. For example, relatively 

high concentrations of organochlorines were observed in sediments at Port Constantza 

(P.C.) on the Romanian coastline, where the concentration of lipids (EOM) in sediments 

is low (i.e. 5 ^g g'* dry wt) indicating high inputs of wastes containing organochlorines 

in this particular area. 

3.3 Petroleum and Polycyclic Aromatic Hydrocarbons 

Hydrocarbons in sediments originate fi-om several sources which have been grouped 

into the following categories (UNEP/IOC/IAEA, 1992; Clark, 1997): 1) petroleum 

inputs; 2) hydrocarbons (especially PAH) released as the result of partial combustion of 

fuels; 3) PAHs originating fit)m forest and grass fires (transported to the marine 

environment via aeolean (atmospheric) and fluvial (riverine) processes); 4) biosynthesis 

o f hydrocarbons by marine or terrigenous organisms; 5) early diagenetic transformation 

of non-hydrocarbon natural products to hydrocarbons. Thus, the distribution of 

hydrocarbons in the environment can vary greatly from one area to another. Biological 

sources include land plants, animals, bacteria, macroalgae and microalgae. Certain 

hydrocarbons such as phytanes, hopenes and sterenes are produced from bacterial and 

chemical degradation of naturally occurring lipids. Bush fires, agricultural bum-off, 

vehicle exhausts and other combustion processes are also significant sources, especially 

of polycyclic aromatic hydrocarbons. Considerable amounts of petroleum products are 

discharged into the marine environment through runoff, industrial and sewage effluents, 

storm water drains, shipping activities, spillage, etc. Natural oil seeps can also be 

important in some areas. Significant changes in hydrocarbon composition can occur due 

to selective dissolution, evaporation, chemical and photo-oxidation and biodegradation. 

Short chain alkanes and simple aromatics are rapidly lost, but complex cyclic molecules 

such as steranes and hopanes are rarely affected and can be particularly useful in source 

investigations (Volkman et al, 1992). Sediments (especially anoxic silts) act as 

repositories of hydrocarbons where the compounds can remain for years. 

To estimate the severity of oil contamination, a number of indicators have been 

proposed: i) high concentrations (>100 ^ig g"*) of **total" hydrocarbons; ii) C2rC35 n-

alkanes having no odd over even predominance; i i i) complex distributions; iv) an 
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Table 3.4. Concentrations of aliphatic hydrocarbons (on a dry weight basis) and selected ratios for Black Sea sediments 

Sampling sites Ukraine Russian Federation Turkey 

26 39 45 53 54 55 94a 98 132 134 1 3 5 6 8 9 10 16 17 22 30 31 35 36 44 

EOM (Hgg ') 25 29 16 13 37 5 200 390 90 490 290 170 54 100 290 110 76 70 160 33 180 48 42 44 85 
CHRequiv. (jigg"') 0.9 1.8 3.2 0.9 7.4 0.6 40 230 11 320 200 55 16 54 160 18 42 8.4 34 1.9 69 5.7 4 4.6 19 
ROPMEequiv. (pg g ') 5.0 10 18 5.0 42 3.2 220 1300 66 1750 680 180 52 180 530 64 140 30 120 6.5 340 20 14 16 69 
TOT- HC (ngg ") 2.7 5.2 6.6 4.4 5.8 2.1 110 310 49 220 170 16 7.6 15 53 69 39 38 51 16 76 35 16 12 35 
RES-ALI (Mgg ') 0.68 1.2 0.79 1.1 0.84 0.21 5.1 8.1 2.4 6.3 7.8 3.0 1.6 2.4 4.7 5.6 2.6 3.3 3.1 2.1 5.6 3.5 2.2 1.8 2.8 
UCM-ALI (ngg *) 1.2 1.6 3.1 1.8 3.0 1.0 78 232 33 160 140 5.9 2.9 7.8 36 38 20 19 25 4.1 26 17 7 4 18 
TOT-ALI (pgg-') 1.9 2.8 3.9 2.9 3.8 1.2 83 240 35 166 150 8.9 4.5 10 41 44 23 22 28 6.2 32 21 9.2 5.8 21 
n-Ci7(ng g') 7.7 17 12 14 24 27 47 75 21 91 130 44 34 50 80 21 21 31 20 24 69 22 19 16 22 
Pristanc (ng g'') 1.2 4.5 3.9 3.2 5.5 0.4 4.8 11 23 170 160 86 76 93 100 19 21 30 14 22 92 25 25 16 24 
n-Ci8(ng g') 3.1 8.2 5.1 4.8 6.8 2.2 9.7 23 7.5 45 110 30 25 33 48 15 16 25 13 20 64 17 14 11 18 
Phytane (ng g'') <0.3 <0.3 0.6 <0.3 2.5 0.4 37 12 35 170 160 27 16 18 60 9 5.8 10 4.9 9.9 24 9 5.7 6.1 6.1 
Squalane (ng g'') <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 3.2 <0.4 <0.4 <0.4 8.8 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 

I/I-CM-C34(Hg g') 0.25 0.57 0.46 0.52 0.37 0.11 1.6 1.4 1.2 2.1 3.4 1.9 0.74 1.2 2.1 2.6 1.5 1.6 1.4 1.4 1.7 1.9 1.4 1.3 1.4 
UCM/RES 1.8 1.3 3.9 1.6 3.6 4.8 15.3 28.6 13.8 25.4 18.0 2.0 1.8 3.3 7.7 6.8 7.7 5.8 8.1 2.0 4.6 4.9 3.2 2.2 6.4 
%UCM/ aliphattcs 63.2 57.1 79.5 62.1 78.9 83.3 94.0 96.7 94.3 96.4 93.3 66.3 64.4 78.0 87.8 86.4 87.0 86.4 89.3 66.1 81.3 81.0 76.1 69.0 85.7 
%n-al kanes/aliphatics 13.2 20.4 11.8 17.9 9.7 9.2 1.9 0.6 3.4 1.3 2.3 21.3 16.4 12.0 5.1 5.9 6.5 7.3 5.0 22.6 5.3 9.0 15.2 22.4 6.7 
C,T/Pr 6.4 3.8 3.1 4.4 4.4 67.5 9.8 6.8 0.9 0.5 0.8 0.5 0.4 0.5 0.8 1.1 1.0 1.0 1.4 1.1 0.8 0.9 0.8 1.0 0.9 
C,(/Ph >31 >82 8.5 >48 2.7 5.5 0.3 1.9 0.2 0.3 0.7 1.1 1.6 1.8 0.8 1.7 2.8 2.5 2.7 2.0 2.7 1.9 2.5 1.8 3.0 
Pr/Ph >12 >45 6.5 >32 2.2 1.0 0.1 0.9 0.7 1.0 1.0 3.2 4.8 5.2 1.7 2.1 3.6 3.0 2.9 2.2 3.8 2.8 4.4 2.6 3.9 
%aliphatics/EOM 7.6 9.7 24.4 22.3 10.3 24.0 41.5 61.5 38.9 33.9 51.7 5.2 8.3 10.0 14.1 40.0 30.3 31.4 17.5 18.8 17.8 43.8 21.9 13.2 24.7 
%T0T-HC/E0M 10.8 17.9 41.3 33.8 15.7 42.0 55.0 79.5 54.4 44.9 58.6 9.4 14.1 15.0 18.3 62.7 51.3 54.3 31.9 48.5 42.2 72.9 38.1 27.3 41.2 
%aIiphatics/TOT-HC 70.4 53.8 59.1 65.9 65.5 57.1 75.5 77.4 71.4 75.5 88.2 55.6 59.2 66.7 77.4 63.8 59.0 57.9 54.9 38.8 42.1 60.0 57.5 48.3 60.0 

Abbreviations used: CHR equiv.: Chrysene equivalents; ROPME equiv.: ROPME Oil equivalents; TOT-HC: Total Hydrocaibons;RES-ALI: Resolved Aliphatics; UCM-ALI: Unresolved Allphatics; TOT-ALI: Total 
Aliphatics 
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Table 3.5. Concentrations of polycyclic aromatic hydrocarbons (on a dry weight basis) and selected ratios recorded for Black Sea sediments 

Sampling sites Ukraine Russian Federation Turkey 

26 39 45 53 54 55 94a 98 132 134 1 3 5 6 8 9 10 16 17 22 30 31 35 36 44 

RES-ARO (Mgg') 0.35 0.6 0.69 0.43 0.47 0.19 2.0 2.4 1.3 3.3 2.4 4.0 0.56 1.2 2.7 3.7 3.1 3.3 3.1 2.8 14 4 2.5 2.4 2.8 
UCM-ARO(pg g') 0.49 1.8 2.0 1.1 1.5 0.73 28 63 13 51 16 3.5 2.5 3.4 8.9 21 13 13 20 6.9 30 10 4.5 3.6 11 
TOT-ARO(Mgg') 0.84 2.4 2.7 1.5 2.0 0.92 30 65 14 54 18 7.5 3.1 4.6 12 25 16 16 23 9.7 44 14 7 6 14 
NAPH (ngg-')* 2.2 7.5 7.6 3.9 3.0 1.5 11 25 9.5 29 0.3 6.1 5.2 9.7 11 6.4 6 4.5 4.5 1.7 7.2 4.8 1.8 1.8 5.1 

Cl-NAPH (ngg V 0.7 2.5 2.4 1.6 1.4 0.8 5.2 17 6.6 32 3.2 6.2 4.7 10 11 4.5 3 3.3 2.8 1.5 4.2 3 1.7 1.5 3.5 
C2-NAPH (ngg-'r 1.8 6.0 4.9 2.9 2.4 I.I 9.8 31 8.2 39 3.6 7.5 6.2 13 16 5.4 4.2 4.5 3.8 1.2 4.3 4.2 1.8 1.3 4.2 
ACTHY (ng g') <0.5 <0.5 1.1 <0.5 <0.5 <0.5 <0.5 <0.5 1.5 5.2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 1.8 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 
ACE(ngg-') <0.5 <0.5 3.6 <0.5 <0.5 <0.5 0.9 8.5 0.6 3.0 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 2.8 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 
F L ( n g g ' ) 0.10 2.0 9.6 0.7 1.0 0.5 5.7 23 4.5 20 9.8 3.1 2 2.3 4.5 2.5 5.6 1.8 1.7 1 2.4 2 1.0 0.8 1.5 
PHE(ngg-') 1.6 10 58 2.8 7.3 2.8 28 130 8.7 77 53 20 9.1 14 24 16 69 14 11 4.2 18 8.3 6.3 4.4 13 
ANT (ngg') <0.I <0.I 5.7 <0.1 1.3 <0.l 1.0 37 <0.l 59 1.8 0.9 0.3 <0.1 1.3 4.8 22 1.9 4.1 0.1 <0.1 0.4 1.6 <0.1 4.5 
C2-PHE(ngg') 1.3 1.5 4.2 0.8 2.4 1.2 4.9 37 1.2 19 19 8.2 3 5 11 3.4 12 3.7 4.1 1.3 14 1.9 3.4 1.8 5 
C l - P H E ( n g g ' ) 0.8 1.3 1.9 0.6 1.5 0.4 2.8 21 1.5 19 11 5.4 3.5 6 8.5 1.8 6.3 3.2 3.4 1.6 10 I . I 1.5 1.3 3.1 
Fluoronthene (ng g'') 3.3 3.0 21 0.4 1.3 1.4 11 190 1.8 67 100 25 9.5 17 37 10 145 13 32 3.3 15 6.1 6.1 4.7 30 
PYR( i igg ' ) 2.3 1.5 17 0.2 11 0.9 4.0 160 1.6 93 86 23 9 16 36 6.3 130 8.3 29 3.5 30 3.9 5.2 5.4 30 
Cl-PYR(ngg-' ) <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 3.4 1.9 2.4 9.7 <0.l <0.l <0.1 <0.1 <0.l 0.1 4.5 0.1 1.8 <0.l 2.1 <0.1 0.4 0.4 2 
C H R ( n g g ' ) 1.3 0.2 0.9 0.3 11 0.10 1.4 46 0.4 67 56 21 7.1 13 35 0.2 49 0.4 18 0.03 3.9 0.1 1.4 1.7 13 
PER(ngg-') 0.1 0.1 0.2 0.3 6.2 <0.l 0.3 0.6 0.4 43 3.5 4.6 6.3 9 9.1 0.1 5 0.1 37 0.1 29 0.1 1.2 30 11 
BaA {ng g') 0.4 0.1 0.5 0.2 6.1 <0.l 0.8 2.7 0.3 32 29 8.2 2.1 7.3 16 0.1 49 0.1 15 0.1 1.9 0.1 0.7 0.8 11 
Bb+kF (ngg-') 0.3 <0.1 0.1 0.4 7.5 <0.1 1.3 8.0 0.5 57 16 18 4.8 11 22 0.1 30 0.1 20 <0.1 5.6 0.1 0.6 2.3 18 
InP(ngg') 0.2 0.1 0.2 0.4 1.3 <0.1 0.5 0.3 0.3 26 0.8 3.8 2.4 6.2 6.7 <0.I 1.7 <0.l I I <0.l 3.9 <0.1 0.1 0.8 3.5 
DBA (ngg-') 0.1 <0.1 0.1 0.2 0.3 <0.1 0.1 0.1 0.1 4.1 0.2 0.8 0.3 0.9 1.2 <0.1 0.3 <0.1 1.3 <0.l 0.4 <0.l <0.l 0.2 1 
BghiP(ng g') 0.1 0.1 0.2 0.3 0.8 <0.l 0.7 0.2 0.4 37 0.6 3.6 3.6 8 6.2 <0.1 1.0 <0.1 11 <0.1 3.8 <0.l <0.1 0.6 3.2 
BaP (ng g-') 0.1 <0.I 0.1 0.2 2.3 <0.1 0.1 1.3 0.1 28 6.3 6.9 2.3 6.6 11 <0.1 7.8 <0.l 9.4 <0.1 1.4 <0.1 0.1 0.6 5.4 
BcP(ngg') 0.1 <0.1 0.1 0.2 1.6 <0.l 0.4 2.9 0.2 34 8.1 6.2 3.5 9.6 14 <0.l 10 <0.l 9.6 <0.1 2.6 <0.1 0.3 1.0 7.4 
I P A H (ngg-')* 12.1 24.5 125.8 10.2 55.8 7.2 66.9 635.0 30.5 638.3 367.9 146.6 61.2 121.6 225.9 46.4 531.0 44.0 177.6 13.8 96.1 25.7 25.2 25.1 146.6 
%ARO/TOT-HC 31.1 46.2 40.9 34.1 34.5 43.8 27.3 21.0 28.6 24.5 10.6 46.9 40.8 30.7 22.6 36.2 41.0 42.1 45.1 60.6 57.9 40.0 43.8 50.0 40.0 
PHE/ANT >15 >15 10.2 >15 5.6 >I5 28.0 3.5 >I5 1.3 29.4 22.2 30.3 >I5 18.5 3.3 3.1 7.4 2.7 105.0 >15 20.8 3.9 >15 2.9 
FLTH/PYR 1.4 2.0 1.2 2.0 0.1 1.6 2.8 1.2 I.I 0.7 1.2 1.1 I.I 1.1 1.0 1.6 1.1 1.6 1.1 0.9 0.5 1.6 1.2 0.9 1.0 
ZMPHE/PHE 1.3 0.3 0.1 0.5 0.5 0.6 0.3 0.4 0.3 0.5 0.6 0.7 0.7 0.8 0.8 0.3 0.3 0.5 0.7 0.7 1.3 0.4 0.8 0.7 0.6 
BaA/CHR 0.4 0.1 0.2 0.2 0.8 <0.2 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 1.2 0.0 0.4 0.0 0.0 0.0 0.2 0.2 0.6 
%PER/i:penta 14.3 >20.0 33.3 23.1 34.6 - 13.6 4.7 30.8 25.9 10.3 12.6 36.6 24.3 15.9 >20.0 9.4 >20.0 47.9 >20.0 74.3 >20.0 >50.0 88.0 25.7 

Abbrevialions used: RES-ARO: Resolved Aromatics; UCM-ARO: Unresolved Aromatics; TOT-ARO: Total Aromalics; NAPH: naphthalene; Cl-NAPH: 1 methyl naphthalene; C2-NAPH: 2 methyl naphthalene; 
ACTHY: Accnaphthylene; A C E : Acenaphihene; F L : Fluorenc; PHE: Phenanthrcne; C2-PHE: 2 methyl phenanlhrene; C l -PHE: I methyl phenanthrene; ANT: Anthracene; F L T H : Fluoranthene; PYR: Pyrenc; C l -
PYR: I methyl pyrene; CHR: Chrysene; BaA: Benzta]anlhracene; PER; Perylene; Bb+kF: Benzo[b+kinuoranlhene; DBA: Dibcnzla.hjanthraccnc; BaP: Benzolo|pyrcnc; BcP: BenzoleIpyrcne; InP: Indcnoll,23-
cdlpyrene; BghiP: Benzolg,h,ilperylene; %ARO/TOT-HC: %aromatics/total hydrocarbons; yoPER/Epcnta: %PeTyIene/Ipenta-isomcrs. • Compound subject to losses during analyses giving higher analytical 
vnrinhilitv. ^IPAH -117 i-uimm 



unresolved complex mixture (UCM), which produces a raised baseline in the gas-

chromatogram of the hydrocarbon fraction; v) biomarkers (Volkman et al,, 1992). 

Regarding hydrocarbon contamination in the Black Sea, the European Environment 

Agency (1995) and Mee (1992) have highlighted severe contamination (particularly by 

oil) in areas subject to riverine discharges, navigation routes and ports. However, 

Wakeham (1996) and Maldonado et al. (1999) report only moderate contamination. To 

determine the hydrocarbon contamination in the Black Sea region, surface sediments 

from several areas were collected and analysed. Results from the aliphatic and 

polycyclic aromatic hydrocarbon analyses are summarised in Tables 3.4 and 3.5, 

respectively. 

3.3.1 "Total" aliphatic hydrocarbons 

Total extractable organic matter (EOM) in sediments from the Black Sea ranged 

from 5 to 37 Mg g'' dry wt along the northern Ukrainian coastline (stations 26, 39, 45, 

53, 54 and 55), torn 54 to 490 ^g g"' dry wt in the vicinity of Odessa (stations 94a and 

98), Danube coastline (stations 132 and 134) and Port of Sochi (stations 1, 3, 5, 6 and 

8), and from 33 to 180 pg g * dry wt in the vicinity of the Bosphorus (stations 9, 10, 16, 

17, 22, 30, 31, 35, 36 and 44) (Table 3.4). In most of these samples, 'total" 

hydrocarbons accounted for a major part of the EOM (from 9.4 to 80%). With the 

exception of only a few sample locations, '*total" hydrocarbon concentration in sediment 

was related to the concentration of extractable organic matter (EOM) (r^ = 0.78, n = 25). 

Thus, in general, the hydrocarbon burdens appeared to follow dispersal trends similar to 

•total" lipids. 

In terms of **total" hydrocarbons (Table 3.4), concentrations range from 2 to 310 pg 

g'̂  dry wt. In "impolluted" intertidal and estuarine sediments, concentrations generally 

range from sub-pg g"' to approximately 10 pg g * (Volkman et al., 1992; Bouloubassi 

and Saliot, 1993), although they may be two or three times higher where significant 

inputs of w-alkanes derived from plant waxes occur. Organic-rich marine sediments may 

contain up to 100 pg g * o f ' t o t a l " aliphatic hydrocarbons, but concentrations higher 

than these are usually associated with petroleum inputs. Indeed values of up to 2900 pg 

g * have been reported in petroleum-contaminated surface sediments from New York 

Bight (Farrington and Tripp, 1977). When the concentration of hydrocarbons is < 50 pg 

g"' , a more detailed analysis of the hydrocarbon constituents is generally required to 
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assess the magnitude of anthropogenic contamination. The most contaminated Black 

Sea stations (concentrations > 100 ^g g * dry wt) are associated with discharges from 

Odessa, inputs from the River Danube and the Port of Sochi (Fig. 3.6). Samples taken 

from the Northern Black Sea (Ukrainian) coastline show comparatively little 

contamination Ctotal** hydrocarbon concentrations < 10 ^ig g"' dry wt) even though 

some areas are subject to wastewater discharges. This is partly explained by a lower 

lipid content when compared to other more contaminated stations. Regarding inputs 

through the Bosphorus (Turkey), the level of hydrocaiton contamination is relatively 

low (concentrations < 100 ^g g"' dry wt). hi this region hydrocarbons are correlated 

with EOM (r^ = 0.76, n=10) and spatial variations in levels probably relate to 

sedimentation characteristics. 
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Figure 3.6. Distribution of "total" hydrocarbons in sediments from the Black Sea (/ig g * 
dry wt) 

Wakeham (1996) have reported similar levels of hydrocarbons ('total" aliphatic 10 -

153 \ig g * dry wt) in sediments from the Black Sea. This author, however, worked with 

off-shore samples but also recorded maximum contamination associated with Danube 

inputs. Compared to other regions of the world (Table 3.6), levels are shown to be 

substantially higher than those from selected pristine environments (e.g. Antarctica and 

the Great Barrier Reef) and are generally comparable to levels encountered in the 

Mediterranean. Much higher concentrations than those reported for the Black Sea are. 
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however, shown for locations known to be chronically contaminated by oil (e.g. the 

Gulf, Hong Kong, New York Bight). 

3.3.2 Unresolved complex mixture (UCM) 

Gas chromatographic traces of saturated hydrocarbons can be characterised by two 

general features: resolved compounds and an unresolved complex mixture (UCM). The 

latter appeared in all samples from the Black Sea as a broad unimodal hump in the range 

C18-C35. The UCM is generally considered to be a mixture of many structurally complex 

isomers and homologues of branched and cyclic hydrocarbons that cannot be resolved 

by capillary C j C columns (Bouloubassi and Saliot, 1993). However, using chemical 

degradation techniques it has been shown that the UCM consists primarily of linear 

carbon chains connected at branch points, which result in *T-shaped" molecules (Gough 

and Rowland, 1990). These molecules are resistant to biodegradation and thus 

accumulate in sediments. In general, the presence of a UCM in aliphatic hydrocarbon 

chromatograms is considered to be associated with degraded or weathered petroleum 

residues (Farrington and Tripp, 1977; Readman et al., 1986a; LeDreau et al., 1997). 

Smaller contributions, in the low pg g"' dry wt range (Volkman et al., 1992) can, 

however, relate to bacterial reworking of sedimentary organic matter (Grimalt et al., 

1988) or weathering of ancient rocks (Volkman et aL, 1992). 

The absolute UCM concentrations or, alternatively, its relative importance expressed 

as the ratio of unresolved to resolved compounds (U/R) are commonly used as a 

diagnostic criteria o f pollutant inputs (Mazurek and Simoneit, 1984). According to this 

criterion, values of U/R >4 confirm the widespread presence of important petroleum-

related residues (Mazurek and Simoneit, 1984; Lipiatou and Saliot, 1991). In the Black 

Sea, the UCM was by far the major component of the "total" sedimentary aliphatic 

hydrocarbons (Table 3.4). UCM concentrations varied from 1 to 232 pg g ' dry wt, 

which accounted for 57-97% of the 'total" aliphatic hydrocarbons. The U/R ratio 

ranged fix»m 1.3 to 28.6 (Table 3.4). The highest values were recorded in samples near 

Odessa, the Danube delta and Sochi, which also showed the highest UCM 

concentrations and hydrocarbon levels (Table 3.4) indicating high petroleum 

contributions to these sediments, particularly from the Danube River (Equipe Cousteau, 

1993) (Table 3.6). The concentration of UCM in sediments from the Black Sea is 

comparable to those previously reported for other regions and show similar trends as 

described for the 'total" hydrocarbons (Table 3.6). 

61 



3.3.3 Aikanes 

w-Alkanes in the range of w-Cm to W-C35 are present in nearly all sediments. Although 

biogenic hydrocarbons from recent sources can dominate chromatograms in 

uncontaminated samples (UNEP/IOC/IAEA, 1992), I / i - C m to W-C34 can provide a good 

indication of "fresh" oil inputs (Readman et al, 1986a; Readman et al, 1986b). E/j-Cu 

to W-C34 concentrations in the surficial Black Sea sediments ranged from 0.1 to 3.4 ^g g" 

* dry wt (Table 3.4) constituting 0.6-22.6% of the *total" aliphatic hydrocarbons. 

Lowest concentrations were reported for stations on the Ukrainian coastline indicating 

negligible fresh petroleum inputs at these locations. Major contributions of fresh oil to 

the Black Sea occur at the Danube outflow (see also Equipe Cousteau, 1993) where the 

highest concentrations were recorded. To place these levels in perspective, 

concentrations are comparable to the lower values reported from around the world 

(Table 3.6). 

Variations in w-alkane concentrations did not reflect those for "total" aliphatic 

hydrocarbons (which were quantitatively dominated by UCM). This could be explained 

by differential transport mechanisms, which have been reported by several authors, n-

Alkanes (particularly the terrigenous components) have been found to be associated 

with coarse sediment fractions rich in plant debris. Conversely, the anthropogenic UCM 

has been found in association with finer particles (Bouloubassi and Saliot, 1993). In the 

case of sediments from Sochi, however, similar distributions of/j-alkanes and the UCM 

(r^ = 0.82, n = 5) indicate a uniform source and similarity in dispersal mechanisms of 

the two hydrocarbon groups. 

3.3.4 Isoprenoid hydrocarbons 

Pristane (C19) and phytane (C20) are common isoprenoids detected in coastal marine 

sediments. They are present in most petroleums, usually as the major constituents 

within a much wider range of isoprenoid aikanes. They are often considered as good 

indicators of petroleum contamination. The ratio of pristane to phytane varies between 

oils reflecting the depositional envirormient of the original source. Biogenic sources of 

the compounds are important, for example they derive from the phytol side chain of 

chlorophyll, either under reducing conditions (phytane) or oxidising conditions 

(pristane) and can also originate from lipids of zooplankton and bacteria (LeDreau et 
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aL, 1997). As a rule, a high ratio of pristane to phytane or the predominance of a single 

isoprenoid (such as pristane) indicate a biogenic source (UNEP/IOC/IAEA, 1992). 

In the Black Sea, the highest concentrations were recorded in the vicinity of the 

Danube and around Sochi (pristane ranging from 23-170 ng g * dry wt and phytane from 

16 to 170 ng g * dry wt; Table 3.4). In these areas, and additionally at Odessa, the 

pristane to phytane ratios were ^1 reflecting petroleum contamination. In sediments 

from the unpolluted Ukrainian coastline, concentrations of pristane ranged from 0.4 to 

5.5 ng g * dry wt. High ratios of pristane to phytane were recorded in this region 

reflecting biogenic origins. In these samples it is noted that n-Cn dominates pristane 

(Table 3.4) indicating contributions derived from algae. 

Other unsaturated isoprenoid alkenes, e.g. squalene (a C 3 0 isoprenoid), were also 

recorded in some samples (Table 3.4). This compound is usually attributed to animals 

(UNEP/IOC/IAEA, 1992) but is also ubiquitous in microalgae (Volkman et aL, 1992). 

3.3.5 Polycyclic aromatic hydrocarbons (PAHs) 

PAHs are primarily products of incomplete combustion processes and comprise two 

to six fiised aromatic rings. The low molecular weight (two and three rings) PAHs have 

a significant acute toxicity, whereas some of the higher molecular weight PAHs are 

carcinogenic (Neff, 1979; Witt, 1995). Low temperature thermal alterations of organic 

matter, such as in the formation of fossil fuels, result in PAHs with a 2 or 3 ring 

structure and a large proportion of alkylated homologues. Conversely, high temperature 

combustion produces PAHs with a 4, 5 or 6 ring structure and minimal alkylated 

products. Some PAHs, however, occur naturally in minerals (e.g. coronene) (Onuska, 

1989) and others (e.g. perylene) are synthesised by organisms, such as bacteria, algae 

and fungi. Inputs from these natural processes are generally low when compared to 

those torn anthropogenic sources (Witt, 1995). 

Anthropogenic PAHs enter the marine environment through a variety of routes 

including atmospheric deposition, river runoff, domestic and industrial outfalls and the 

direct spillage of petroleum or petroleum products. The aqueous solubility of PAHs is 

low (Wei and Chan, 2000) and their hydrophobic nature (log K o w = 3-8) favours 

particulate associations. In addition, there is increasing evidence that PAH may be 

occluded in soot particles (e.g. Readman et aL, 1984) (American Chemical Society, 

1997) hindering exchange and isomer specific alterations through microbial 
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degradation, photo-degradation and chemical oxidation. The final repository of PAH is 

generally sedimentary deposition. 

In many environmental studies, 'Hotal" PAH concentrations are often reported as the 

sum of 3 to 6 ring parent compounds. This facilitates comparisons, but can 

underestimate the total amount of PAHs occurring in environmental samples. Moreover, 

this parameter does not take into account lower molecular weight petrogenic PAHs 

derived mainly from fossil fuels, which are characterised by a high abundance o f 

alkylated homologues and sulphur-heterocyclics (Bouloubassi and Saliot, 1993). 
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Figure 3.7. Distributions of PAHs (E17 isomers) in sediments fi^m the Black Sea (ng 
g"* dry wt). 

Concentrations of'total*' PAHs (the sum of 17 parental (non-alkylated) compounds) 

in sediments from the Black Sea are generally quite low (from 7 ng g ' dry wt to 640 ng 

g * dry wt) (Table 3.5, Fig. 3.7). Petroleum derived PAH (containing 3 or less aromatic 

rings with a high proportion of alkylated homologues) and pyrogenic PAH (parental 

compounds with 4 or more aromatic rings) are both present. Highest concentrations 

were observed at sites influenced by the Danube (638 ng g"' dry v^), Odessa (635 ng g * 

dry wt), the Port of Sochi (368 ng g ' dry wt) and station 10 (Bosphorus) (531 ng g'̂  dry 

wt) (Fig. 3.7). Comparable distributions have been inferred by Wakeham (1996) 
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working with "off-shore" sedimenU and Maldonado et al. (1999) who have also 

identified the importance of estuarine inputs of PAHs. 

Table 3.6. Worldwide concentrations of hydrocarbons in sediments (/ig g"* dry wt) 

Area Survey "total" Oil En- Aliphatic References 
year Hydroc. "Equiv." Alkanes UCM 

Crete, Mediterranean 1994 0.5-5.7 t - 0.1-0.9 0.3-4.8 (Gogouf/a/.,2000) 

OfTshore, Gulf 1994 - 5.4-92 - - (Al-Lihaibi and Ghazi, 1997) 

Saudi Arabia, Gulf 1991-93 11-6900 5.3-26000 0.2-28 6.4-5300 (Readmane/a/., 1996) 

Kuwait, Gulf 1992-93 40-240 72-1400 0.3-2.2 28-150 (Readmane/a/., 1996) 
Xiamen Harbour. China 1993 3.1-33 t - 0.4-3.4 2.7-30 (Hong e/a/., 1995) 
Victoria Harbour, Hong Kong 1992 60-646 t - 3.1-20 56-626 (Hongc/o/., 1995) 
Mississippi-Alabama, USA 1987-89 - - 0.1-3.2 1-131 (Kennicunc/a/., 1995) 

Alexandria, Egypt - - - 7-143 54-1214 (Aboul-Kossim and Simoneit, 1995) 

Western Coast, Taiwan 1990 869-l0300t - - - (Jengand Han, 1994) 

Rhone River, France, 1985-86 25-170 - 2-12 18-146 (Bouloubassi and Saliot, 1993) 

Kuwait, Gulf 1991 28 13 0.2 24 (Fowler c/a/., 1993) 

Saudi Arabia, Gulf 1991 19-671 5-1400 0.9-23 10^20 (Fowler c/a/.. 1993) 

Bahrain. Gulf 1991 23-41 3-14 0.3-2.6 14-30 (Fowler era/., 1993) 

UAE, Gulf 1991 16 5-7 0.3-0.5 9-12 (Fowler e/a/., 1993) 

Oman, Gulf 1991 6-22 1-12 0.1-1.2 3-13 (Fowler effl/., 1993) 
UK estuaries 1990 - 0.4-750 - - (Franklin, 1992) 
Great Barrier Reef, Australia 1984 0.5-2 - - - (Volkmane/a/., 1992) 

Antartica (pristine) 1988 <0.5 - - - (Lenihanc/fl/., 1990) 

Dee Estuary, UK 1984 - - 1.8 10 (Readmanef a/., 1986b) 

Tamar Estuary, UK 1984 - - 13 42 (Readmane/a/., 1986b) 

Mersey Estuary, UK 1984 - - t l 104 (Readmane/a/., 1986b) 
New York Bight, USA 1971-75 35-2900 - - - (Farrington and Tripp, 1977) 

OfT-shore Black Sea 1988-90 7-153 t - (Wakeham, 1996) 

Danube River 1992 - - 1-40 4-530 (Equipe Cousteau, 1993) 

Bosphonjs, Turkey 1995 12-76 6.5-340 1.3-2.6 4-38 This study 

Sochi, Russia 1995 7.6-170 52-680 0.7-3.4 2.9-140 This study 
Odessa, Ukraine 1995 110-310 220-1300 1.4-1.6 78-232 This study 
Coastline, Ukraine 1995 2.1-6.6 3.2-42 0.1-0.6 1-3.1 This study 
Danube Coastline, Ukraine 1995 49-220 66-1750 1.2-2.1 33-160 This study 

t *^otar' aliphatic hydrocarbons 

Concentrations of PAHs in these Black Sea sediments are comparable to relatively 

unpolluted locations in other seas (e.g. unpolluted locations in the Mediterranean Sea) 

and are much lower than levels reported for polluted estuaries in the UK (e.g. Mersey, 

Tyne, Thames) (Table 3.7). Of the areas sampled in this study, one of the most 

contaminated sites is situated in the River Danube delta (638 ng g * dry wt). This is 

explained by the fact that the river drains extensive urbanised inland areas (Equipe 

Cousteau, 1993). The relatively high concentrations observed for Odessa bay and the 

port and river of Sochi are linked to the greater industrialisation and urbanisation at 

these locations compared to the other sites. In contrast, PAH concentrations in most of 

the sediments sampled in the Northern Black Sea (Ukrainian) coastline and in the 
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vicinity of the Bosphonis (Turkey) are low (< 50 ng g ' dry wt), and arc typical of 

locations distant from extensive anthropogenic activities (Baumard ei al, 1998). 

Table 3.7. Worldwide concentrations of polycyclic aromatic hydrocarbons (PAHs) in 
sediments (ng g dry wt'*). 

Area Survey 
year 

Concentration References 

Gironde estuary and Arcachon bay, France - 3.5-853 ( E U P A H s ) (Socio e/a/.. 2000) 

Cotonou, Benin - 80-1411 ( E U P A H s ) (Socio era/., 2000) 

France, Mediterranean Sea 1996 36-6900 (El8 PAHs) (Baumard et a/., 1998) 

Spain, Mediterranean Sea 1996 1.2-8400 (El 8 PAHs) (Baumard eta!., 1998) 

Majorca, Mediterranean Sea 1996 0.3-100 (El8 PAHs) (Baumard e/a/., 1998) 

Kyeonggi bay, Korea 1995 9.1-1400 (E23 PAHs) (Kime/a/. , 1999) 

River Thames, United Kingdom 1993-96 N.D.-65l9(E15PAHs) (Woodheadc/a/., 1999) 

River Mersey, United Kingdom 1993-94 6-6230 (El 5 PAHs) (Woodheadc/a/., 1999) 

River Tyne, United Kingdom 1993-96 260-43470 (El5 PAHs) (Woodheadc/fl/., 1999) 

Crete Sea, Eastern Mediterranean Sea 1994 14.6-158.5 (E28 PAHs) (Gogouc/a/.,2000) 

North-West Coast, Mediterranean Sea 1991 86.5-48090(El4 PAHs) (Benlahcencro/., 1997) 

North-Westem Gulf 1991-93 <20-4740(E13PAHs) (Readmanc/fl/., 1996) 

San Quintin Bay, Mexico 1992 N.D.-<50 (E44 PAHs) (Galindo a/., 1996) 

Xiamen Harbour, China 1993 70-33000 (E9 PAHs) (Hong a/., 1995) 

Victoria Harbour, Hong Kong 1992 350-3450 (E9 PAHs) (Honge/fl/.. 1995) 

Baltic Sea 1993 9.5-1871 (E15 PAHs) (Witt, 1995) 

Sarasota Bay, Florida, USA - 17-26771 ( E l l PAHs) (Sherblome/a/., 1995) 

Western Coast, Australia 1991 1.0-3200(Ell PAHs) (Burt andEbell, 1995) 

Italy Coast, Adriatic Sea 1990 27-527 (E9 PAHs) (Guzzellaand DePaolis, 1994) 

Rhone River, Mediterranean Sea 1985-86 1070-6330 (El5 PAHs) (Boutoubassi and Saliot, 1993) 

Lake Burley Griffm, Australia 1989 80-538 (E8 PAHs) (Lceming and Maher, 1992) 

Tabasco State Continental Shelf, Mexico 1989 454-3120 (El5 PAHs) (Botelloe/a/., 1991) 

Brisbane River Estuary, Australia 1986 2840-13470 (E17PAHs) (Kayal and Connell, 1989) 

Dec Estuary, UK 1984 490 (El3 PAHs) (Readmane/fl/., 1986b) 

Tamar Estuary, UK 1984 8630 (El3 PAHs) (Readmane/a/., 1986b) 

Mersey Estuary, UK 1984 5310 (E13 PAHs) (Readman etal, 1986b) 

Boston Harbour, USA - 487-718360 (EI4 PAHs) (Shiaris and Sweet, 1986) 

Lake Woods, N.Y., USA 1978 12104 (E19 PAHs) (Tan and Heit, 1981) 

Lake Sagamore, N.Y., USA 1978 3660 (El9 PAHs) (Tan and Heit, 1981) 

Abyssal Black Sea 1988-90 200-1200 (E28 PAHs) (Wakeham, 1996) 

Danube River mouth. Black Sea 1988-90 2400 (E28 PAHs) (Wakeham, 1996) 

Danube River 1992 < 10-3700 (E4 PAHs) (Equipe Cousteau, 1993) 

Bosphorus, Black Sea, Turkey 1995 13.8-531 (EI7PAHS) (This study) 

Sochi, Black Sea, Russia 1995 61.2-368 (El7 PAHs) (This study) 

Odessa, Black Sea, Ukraine 1995 66.9-635 (El7 PAHs) (This study) 

Coastline, Black Sea, Ukraine 1995 7.2-126 (El7 PAHs) (This study) 

Danube Coastline, Black Sea, Ukraine 1995 30.5-608 (E17 PAHs) (This snjdy) 

The absence of correlation between 'total*' hydrocarbons and PAHs (i^ = 0.04) 

indicates separate primary sources and/or differing transport processes for the two 

classes of compounds. Wakeham (1996) also report a similar lack o f correlation in 

offshore sediment from the Black Sea. It is likely that combustion derived PAH wil l 

have aeolian components to their transport mechanisms, whereas petrogenic PAH wil l 
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be predominantly fluvial. As previously mentioned, PAH derived from the two prime 

sources have distinctive compositional differences. Readman et al. (1996) compared 

"typical" extracts of oil and combustion derived materials to identify the origin of PAH. 

On the basis of this work, it can be demonstrated that PAHs in sediments from the 

Black Sea originate from both pyrolytic and petrogenic sources (Fig. 3.8). A mixture of 

pyrolytic and petrogenic PAHs can be observed in most of the sediments, usually with a 

slightly pyrolytic predominance but less frequently with a petrogenic predominance 

(e.g. Fig. 3.8 - station 132 (Danube delta)). A substantial biogenic input of perylene was 

observed in some samples (e.g. Fig. 3.8 - station 30). For some stations of f the 

Bosphorus, only a pyrolytic profile is observed (Fig. 3.8 - station 10). 

A less subjective approach to investigate sources can be achieved using molecular 

indices based on ratios of selected PAH concentrations (Socio, 1986; Sicre et al., 1987; 

Garrigues et a/., 1995; Baumard et al, 1998). Some characteristic values are given in 

Table 3.8. Equivalent values for the Black Sea sediments, for the following indices: 

phenanlhrene concentration/anthracene concentration (PHE/ANT), fluoranthene 

concentration/pyrene concentration (FLTH/PYR), Zmethyl-phenanthrenes/phenanthrene 

(SMPHE/PHE) and benz[a]anthracene/chrysene (BaA/CHR), are presented in Table 

3.5. 

The degree of alkylation, as assessed by ZMPHE/PHE, is less than 2 for all samples 

indicating pyrolytic origins. If , however, the assessment is tempered by using other 

parental PAH ratios (Table 3.5), it becomes apparent that the majority of sediment 

samples contain a mixture of petrogenic and pyrolytic profiles. Stations with greatest 

pyrolytic inputs include 45 (Ukrainian coastline), 98 (Odessa), and 9, 35 and 44 

(Bosphorus). At stations 10 and 17 (Bosphorus) negligible petrogenic input is apparent. 

To supplement this information, values of PHE/ANT can be plotted against values of 

FLTH/PYR (Fig. 3.9) (Baumard et al, 1998). Two standard matrices, oil and coal tar, 

which represent, respectively, petrogenic and pyrolytic fingerprints, are also included in 

Fig. 3.9. The plot confirms the dominance of the combustion derived material at most 

Bosphorus stations and indicates contributions of oil to sediments at Sochi. However, 

the diagram fails to classify e.g. station 132 into its clear petrogenic class endorsing the 

need to use a variety of measurements in order to provide a robust assessment. 
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Figure 3.8. Composition of PAHs (^ig g'̂  dry vn) in sediments from the Black Sea: a) 
station 132 (Danube coastline); b) station 30 (Bosphorus) and c) station 10 (Bosphorus). 

Compositions indicate primarily a petrogenic origin at station 132, a mixture of 
petrogenic and pyrogenic PAH at station 30 and a dominant pyrogenic PAH input at 

station 10. Station 30 also includes a substantial biogenic input of perylene. * See Table 
3.5 for the abbreviations 

The low levels of PAH in the sediments from the Ukrainian coast might relate to an 

atmospheric soiuce of the compounds with negligible fluvial inputs (Prahl and 

Carpenter, 1984). In addition, the cyclonic circulation pattern in the western basin 

would protect this area, drawing major inputs from the Danube southerly towards the 

Bosphorus (Aibulatov, 1987; Wakeham, 1996). 
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Table 3.8. Characteristic values of molecular indices for pyrolytic and petrogenic 
origins of polycyclic aromatic hydrocarbons (PAHs). 

P H E / A N T F L T H / P Y R I M P H E / P H E B a A / C H R P H E / A N T 
F L T H / P Y R 

Pyrolytic 
origin 

<I0 >l <2 >0.9 0-10 
>1 

Peirogenic 
origin 

>15 <l >2 £0.4 >10 
< 1 

Reference (Gschwend and 
Hites, 1981; 
Socio, 1986) 

(Sicre et a/., 
1987; Bauniard 

etal, 1998) 

(Prahl and Carpenter, 
1983; Garrigues et al, 

1995) 

(Gschwend 
and HItes, 

1981) 

(Baumard et 
al, 1998) 

PHE/ANT: phenanthrene concentration / anthracene concentration. FLTH/PYR; fluoranthene concentration / 
pyrene concentration. ZMPHE/PHE: sum of the concentrations of the methyl-phenanthrenes against 
phenanthrene concentration. BaA/CHR: benz[a]anthraccne concentration against chrysene concentration. 
(PHE/ANT) / (FLTH/PYR) (phenanthrene concentration / anthracene concentration) vs (fluoranihene 
concentration / pyrenc concentration). 
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Figure 3.9. Plot of the isomeric ratios PHE/ANT (phenanthrene vs anthracene) vs 
FLTH/PYR (fluoranthene vs pyrene) for sediments from the Black Sea and for two 

reference matrices ( • ) to attempt delineation of petrogenic and pyrolytic sources (Wise 
etal, 1988). 

In addition to pyrolytic and petrogenic sources, perylene is also produced by in situ 

degradation of biogenic precursors (Venkatesan, 1988; Wakeham, 1996; Baumard et al, 

1998). Indeed, perylene is probably the most important diagenetic PAH encountered in 

sedimentary environments and, thus, a high abundance of perylene relative to the other 

PAHs can indicate an important natural origin of the compound. Perylene has been 

frequently associated with inputs from rivers and estuaries (LaFlamme and Hites, 1978; 
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Baumard et ai, 1998). These authors have suggested that concentrations of perylene 

which are higher than 10 % of the total penta-aromatic isomers indicate a probable 

diagenetic input, whereas those in which perylene is less than 10 % indicate a probable 

pyrolytic origin of the compound. Concentrations of perylene relative to the penta-

aromatic isomers (expressed as % composition) for the Black Sea sediments are given 

in Table 3.5 and are shown in Fig. 3.10. A few values are < 10%, indicating a pyrolytic 

origin of the compound. High values are, however, observed in most of the samples 

from the Black Sea - the Ukrainian coastline (14-35%), Odessa (14%), the Danube 

coastline (26-31%), Sochi (10-37%) and Bosphorus (>20-88%), indicating a diagenetic 

origin for the presence of perylene at these locations. Most probably, the diagenesis of 

terrestrial organic matter draining into the Black Sea produces the majority of the 

perylene present. 
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Figure 3.10. Concentrations of perylene relative to the combined concentration of all 
measured penta-aromatic isomers. The horizontal line at 10% delineates biogenic inputs 

of perylene (at > 10%) from pyrolytic sources (< 10%). 

3.4 Sterol Markers to Assess Sewage Contamination 

The transport and fate of urban contaminants can be traced using molecular markers 

of domestic wastes (Vivian, 1986; Readman et aL, 1986a). Among them, coprostanol 

(5P(H)-cholestan-3P-ol) has proven to be a successful indicator of sewage pollution in 

many coastal environmental studies (Goodfellow et al., 1977; Readman et a/., 1986a; 

Readman et al., 1986b; Grimalt et ai, 1990; Venkatesan and Kaplan, 1990; Leblanc et 
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a/., 1992; Chalaux et al., 1995). Coprostanol is produced in the digestive systems of 

higher animals by the microbial reduction of cholesterol and is one of the principal 

sterols in human and animal faeces. However, because of the multiplicity of sources of 

sterols in aquatic environments and the transformation/degradation processes that occur, 

the occurrence of coprostanol in coastal environments cannot be unambiguously 

attributed to urban sewage pollution. In theory, however, unpolluted sediments should 

not contain coprostanol, i.e. the compound should typically be below the limits of 

analytical detection. To enhance the reliability of pollution assessments using 

coprostanol (and other steroid compounds), some authors have derived (and tested) 

ratios between selected steroids. Grimalt ei al. (1990) proposed the use of the 

5p/(5p+5a)cholestan-3P-ol (sterols) and 5p/(5p+5a)cholestan-3-one (ketones). 

With a growing population density in coastal urban centres within the Black Sea 

basin (at least 171 million people, about 81 mill , in the Danube basin), the need for 

disposal of sewage containing faecal wastes increases. Although data on sterols in the 

Black Sea are scarce (Gagosian et a/., 1979; Wakeham, 1989; King and Repeta, 1991), 

it is known that municipal wastes are often discharged into the aquatic environment. In 

order to elucidate the present status o f sewage contamination, an effort has been made 

in this study focusing on faecal sterols in sediments from several areas along the Black 

Sea coast. 

The concentration of coprostanol in the analysed samples ranged from 1 to 5400 ng 

g"* dry sediment (Table 3.9 and Fig. 3.11). Differences of 1-2 orders of magnitude are 

observed between sediments from the Ukrainian coastline (which are shown to be 

imcontaminated) and contaminated areas. However, coprostanol is present in all cases. 

In the majority of samples, levels were comparatively low (<500 ng g''), providing 

evidence of minor sewage contamination. Conversely, there was evidence of 

contamination with sewage, grossly in the case of stations 1, 3, 8 at Sochi (up to 5400 

ng g ' ) and station 134 on the coast adjacent to the Danube delta (2600 ng g"'). For 

comparison, levels of coprostanol reported in dry sewage sludge include: 1,282,000 ng 

g ' (Goodfellow et aL, 1977); 5,800,000 ng g ' (Hatcher et al., 1977); 910,000-

7,800,000ngg' (McCAlley, 1980). 

Concentrations of coprostanol for the Black Sea samples are comparable to, or 

perhaps even lower than, those generally encountered in estuarine and coastal areas 

woridwide (Table 3.10). Since a previous study on the River Danube (Equipe Cousteau, 
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1993) identified high concentration of coprostanol in some samples, this could explain 

the high concentration reported at station 134. 

Romania 

5 4 0 0 . •• 

Russian 
Federation 

Georgid 

Ukra 
p a 

Dniasim'flrvar V 

Sea Black 
Bulgaria 

Coprostanol 
[dry SMtomm) 

BosphOTQS 60ns/Q Turkey 

0 : 200 ml 

Figure 3.11. Distribution of coprostanol in sediment from the Black Sea (ng g~' dry wt). 

To enhance the reliability of pollution assessments using coprostanol (and other 

steroid compounds), some authors have derived (and tested) ratios between selected 

steroids. Grimalt et al. (1990) proposed the use of the 5p/(5p+5a)cholestan-3P-ol 

(sterols) and 5p/(5p+5a)cholestan-3-one (ketones). They showed that ratios higher than 

0.7 (showing a clear predominance of Sp isomers) could be attributed to contaminated 

areas, whilst ratios lower than 0.3 indicate non-contaminated samples. The 5a stanols 

are thermodynamically more stable than their SP epimers and the sedimentary reduction 

process of sterols gives rise to stanol mixtures in which the 5a isomers predominate 

(Robinson et al, 1986; Grimalt et al., 1990). Microbial assemblages from marine 

sediments allowed to grow in anaerobic media containing cholesterol provide nearly 

equal concentrations of 5a- and 5P-(H) cholestan-3P-ol. In contrast, 5P stanols are 

dominant in sewage sludge (Gaskell and Eglington, 1975; McCAJley et a/,, 1981). Also, 

the 5p/(5P+5a)cholestan-3P-ol ratio is susceptible to change through direct inputs of 

5a stanols from diverse aerobic organisms, including phytoplankton, zooplankton, 

and macrophyte species (Grimalt and Albaiges, 1990; Grimalt et al., 1990). In this 

respect, intermediate ratios of 5p/(5p+5a) stanols in sedimentary records dominated by 
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Table 3.9. Concentrations of sterols (ng g* dry weight basis) and selected parameters in sediments from the Black Sea 

Sample code 

Ukraine Russia Turkey 

Sample code 26 39 45 53 54 55 94a 9S 132 134 1 3 5 6 8 9 10 16 17 22 30 31 35 36 44 

Coprostnnol 10 4.4 5.4 1.3 3.3 5.1 290 130 170 2600 5400 900 54 220 800 360 71 29 340 IS 440 33 64 12 41 
24-Ethyl-coprostanol ng 8"' 35 17 3.0 7.3 15 40 490 110 310 1200 2100 430 71 160 440 420 88 47 330 <3.0 1400 49 87 36 56 
Coprosian-3-one ng 8"' 6.4 10 3.6 2.9 8.9 15 ISO 55 130 950 2100 280 95 160 400 140 37 8.9 240 69 300 45 48 9.9 140 
Cholesterol ngg' 56 280 13 17 360 560 570 160 390 1600 2000 760 760 580 1000 260 160 99 1000 210 16000 120 520 37 540 
Cholestanol ngg' 28 33 9.5 9.0 54 80 610 240 360 1600 1000 230 92 190 440 280 64 68 230 37 1900 100 86 43 190 
Cholestunone ng g"' 7.7 11 3.9 3.0 13 5.7 120 43 48 330 320 SO 40 60 150 61 23 17 65 22 120 40 21 26 65 
Campestcrol ng g' 76 92 30 n.d. 29 2.0 610 57 ISO 370 430 26 17 45 110 170 71 94 150 130 160 170 99 92 180 
Stigmasterol ng 8"' N.Q. N.Q. N.Q. N.Q. N.Q. N.Q. N.Q. N.Q. N.Q. N.Q. N.Q. N.Q. N.Q. N.Q. N.Q. N.Q. N.Q. N.Q. N.Q. N.Q. N.Q. N.Q. N.Q. N.Q. N.Q. 
b-Sitosterol ng s' 38 42 18 9.5 25 31 610 ISO n.q. 950 980 690 62 170 520 340 150 130 220 94 270 190 84 50 190 
Mean detection limit 18 8"' 3.2 2.1 0.5 0.7 1.2 0.5 0.7 1.1 1.2 4.S 1.8 4.1 3.0 4.3 3.7 1.1 1.2 1.8 1.8 1.8 9.0 1.9 1.9 1.9 2.0 

Ratios 
(5(i/C5P+5a)) cholestan-3P-ol 0.26 0.12 0.36 0.13 0.06 0.06 0.32 0.35 0.32 0.62 0.84 0.80 0.37 0.54 0.6S 0.S6 0.53 0.30 0.60 0.29 0.19 0.25 0.43 0.22 0.18 

(5p/(5p+5a)) choIestan-3K)ne 0.45 0.48 0.48 0.49 0.41 0.72 0.56 0.56 0.73 0.74 0.87 0.8S 0.70 0.73 0.73 0.70 0.62 0.34 0.79 0.76 0.71 0.53 0.70 0.28 0.68 
cholesterol/cholesterol+5a(H)- 0.67 0.89 0.58 0.65 0.87 0.88 0.48 0.40 0.52 0.50 0.67 0.77 0.89 0.75 0.69 0.48 0.71 0.59 0.81 0.8S 0.89 0.55 0.86 0.46 0.74 
cholestan-3p-ol 

N.Q.-notquantified 



phytoesterol inputs render it difficult to confirm faecal contamination, particularly in 

regions o f high algal productivity (Grimalt et a/., 1990). 

In contrast, the 5p/(5P+5a) stanones (ketones) ratio is not significantly influenced by 

algal inputs, affording a supplementary parameter for the reliable identification of 

sewage contamination in such areas. The sterone (ketone) composition of aquatic 

particulates and sediments polluted with faecal matter is essentially comprised of C27 

and C29 5P(H)-cholestan-3-ones. Hence, larger concentrations of these sterones 

generally correspond to a higher degree of sewage pollution. As with the stanols, 5a-

cholestan-3-one predominates in anoxic depositional environments (Robinson et a/., 

1986) because of the microbial and/or diagenetic reduction of sterols. In microbial 

reduction, 5a-cholestan-3-one is preferentially produced. In contrast, intestinal bacteria 

give rise to 5P(H)-cholestan-3-one due to their stereospecific mechanism of sterol 

biohydrogenation (Grimalt et al., 1990). 

Table 3.10. Worldwide concentration of coprostanol in sediments (ng g'* dry vn). 

Area Survey 
year 

Concentration References 

San Vicenl Bay, Chile 1997 10-7,300 (Mudge and Seguel, 1999) 
Venice Lagoon, South-Wesl Italy 1992 40-4,410 (Fattorec/a/., 1997) 
Ria Formosa, Algarve, Southern Portugal 1994 100-41,800 (Mudge and Bebianno, 1997) 
South-Westem Coast, Taiwan 1992 <5.820 (Jengc/a/., 1996) 
Kaoping River, Taiwan 1992 835-58,200 (Jengc/fl/., 1996) 
Tokyo Bay, Japan 1989 20-243 (Chalauxe/a/., 1995) 
Firth of Clyde, Scotland 1989 <100-I76,000 (Kelly and Campbell, 1995) 

Tan-Shui Estuary, Taiwan 1990 710-163,000 (Jengand Han, 1994) 
Venezia, Italy 1986 200-41,000 (Sherwine/a/., 1993) 
Narragansett Bay, USA 1985-86 130-39,300 (Leblanc e/fl/.. 1992) 
Barcelona, Spain 1986-87 1,000-390,000 (Grimalt c/a/., 1990) 
Santa Monica Basin, USA 1985 500-5,100 (Venkatesan and Kaplan, 1990) 
Rhone Estuary, France 1988 <1,000-24,000 (Readman etal, 1989) 

Narragansett Bay, USA 1984 10104,070 (NOAA, 1987) 
Dee Estuary, UK 1984 1,400 (Readman etal, 1986b) 
Tamar Estuary, UK 1984 800-17,000 (Readman et a/., 1986a) 
Mersey Estuary, UK 1984 9,000 (Readman a/., 1986b) 

Dry sewage sludge - 910,000-1,282,000 (Readman a/., 1989) 

Danube River 1991 15-56,000 (Equipe Cousteau, 1993) 
Bosphorus, Black Sea, Turkey 1995 12-440 This study 
Sochi, Black Sea, Russia 1995 54-5,400 This study 
Odessa, Black Sea, Ukraine 1995 130-290 This study 
Coastline, Black Sea, Ukraine 1995 1.3-5.4 This study 
Danube Coastline, Black Sea, Ukraine 1995 170-2,600 This study 
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When the C27 5P(H) sterone/sterol is considered, a significant decrease with 

increased pollution is evident. After an initial rapid decay of coprostanol (under the 

influence of aerobic bacteria (Walker et al., 1982; Bartlett, 1987), an equilibrium is 

achieved. 

It is evident from the above discussions that joint quantification of sterols and 

evaluation of the C27 isomeric ratios of 5a and 5P stanols and stanones affords a useful 

differentiation between sewage polluted and unpolluted samples. It has been 

demonstrated that cross-representation of both the 5p/(5P+5a) isomeric ratio of 

cholestan-3P-ol and cholestan-3-one provide an even better discrimination between 

contaminated and uncontaminated environments (Grimalt et al., 1990). 

Sochi (Russia Federation), especially near to Sochi port (station 1), Canyon Adier 

(station 3) and the river Sochi (station 8), appear to be one of the most contaminated 

sites in terms of sewage. These sites display a typical sewage contamination signature, 

with high levels of coprostanol and high values for the 5p/(5p+5a) isomeric ratios of 

cholestan-3P-ol and cholestan-3-one (Fig. 3.12). Although sediments at Chosta (station 

5) and river Matchesta (station 6), contained relatively low levels of coprostanol (54 and 

220 ng g"*, respectively), these sites exhibited high 5p/(5p+5a) cholestan-3-one ratios 

which suggest the presence of sewage pollution. In contrast, the 5p/(5p+5a) cholestan-

3P-ol ratios are intermediate in value, probably indicating a substantial algal input (Fig. 

3.12). This might arise from an increased flow of nutrients associated with the 

anthropogenic discharges that would enhance microbial degradation (Grimalt et al., 

1990). 

The Ukrainian coastline was sampled throughout the north (stations 39, 45, 53, 54 

and 55) and north-western (Odessa - stations 94a and 98; Danube coastline - stations 

132 and 134) coastal shore of the Black Sea. Samples from the north are characterised 

as non-polluted sediments, showing very low coprostanoi concentrations and 

5p/(5p+5a) isomeric ratios (Fig. 3.12). 

Odessa sediments have intennediate coprostanol concentrations and 5p/(5p+5a) 

isomeric ratios (Fig. 3.12), indicating minor sewage contamination and probably 

reduction of stenols to 5a(H)-stanols by anaerobic microbial transformation. The 

cholesterol/cholesterol+5a(H)-cholestan-3P-ol ratios of 0.48 and 0.40 (samples 94a and 
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98, respectively) (Table 3.9) provide evidence in support of anoxic cholesterol reduction 

at these sites. Cholesterol/cholesterol+5a(H)-cholestan-3p-ol (cholestanol) ratio lower 

than 0.5 is an indication of cholesterol reduction (Chalaux et al., 1995). 
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Figure 3.12. Cross-representation of the coprostanol (a) and coprostanone (b) 
concentrations and their corresponding C27 epmeric ratios for the Black Sea sediments 

(A Sochi; X Bosphorus; • Ukrainian Coastline; O Odessa; + Danube Coastline). 

The River Danube influences locations on the Danube coastline significantly. Station 

134 is located in the "Bistraya" arm, near to the Danube discharge, and station 132 a 

little further off-shore. The coprostanol concentrations and 5p/(5p+5a) isomeric ratios 

are high and intermediate, respectively (Fig. 3.12). The cross-representation of both the 

5p/(5p+5a) isomeric ratio of cholestan-3p-oI and cholestan-3-one (Fig. 3.13) indicate 

that sediments at both locations are contaminated by sewage, severely in the case of 

station 134. The comparatively lower cholesteroiychoIesterol+5a(H)-cholestan-3p-ol 

ratios of 0.52 and 0.50 (samples 132 and 134, respectively) (Table 3.9) might also 

indicate some anaerobic microbial cholesterol reduction at these sites. 

In the south-west Black Sea region, samples were taken in the vicinity of the 

Bosphorus (Turkey). Highest values were found near to the Bosphorus (stations 9, 10, 

17 and 35), with values decreasing with increasing distance seawards. These sediments 

generally contained high values for both the 5p/(5p+5a) isomeric ratios o f cholestan-

3P-ol and cholestan-3-one, indicating sewage contamination (Figs. 3.12 and 3.13). 

Other locations (stations 16, 22, 31 36 and 44) are considered to be uncontaminated by 

sewage since their ratios of 5p/(5p+5a) cholestan-3P-ol are lower than 0.3. The level of 

440 ng g * of coprostanol at station 30 could have originated from the anoxic microbial 
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reduction of large cholesterol concentrations (16000 ng g'*) present in sediment. The 

low 5p/(5p+5a) cholestan-3P-ol ratio could be a reflection of high algal productivity 

due to nutrients availability. 

0.0 0.2 0.4 0.6 0.8 
5p/(5p+5a)cholestanol 

Figure 3.13. Cross-representation of the 5p/(5p+5a) isomeric ratios of cholestan-3P-ol 
and cholestan-3P-one for the Black Sea sediments (A Sochi; X Bosphorus; • Ukrainian 

Coastline; O Odessa; + Danube Coastline). 

The reduction of A^ stenols in the anoxic sediments leading to the formation of 5a-

and SP-stanol has been reported previously in anoxic sediments and particulate matter 

boundaries in the Black Sea (Gagosian et al, 1979; Wakeham, 1989). Reduction of 

stenols, the predominant biogenic sterols, to 5a(H)-stanols is primarily an anaerobic 

microbial transformation. Increased stanol/stenol ratios are used as evidence of this 

process, for example in sediments where stanol/stenol ratios are higher at lower redox 

potential (Chalaux et al, 1995). 

In the Black Sea, increased 5a(H)-stanol/A^ stenol ratios in particulate matter at the 

oxic-anoxic interfaces in the water column were attributed to in situ microbial 

conversion of sterol to stanol (Wakeham. 1989). The extent of conversion varies with 

water-column redox potential: little stanol generation occurs under oxic conditions, 

whereas there is substantial conversion in anoxic waters. These results imply that anoxic 

waters, particularly near oxic-anoxic interfaces, are important sites of intense alteration 

of organic matter. 
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3.5 Conclusions 

3.5.1 Organochlorines 

The ranking of concentrations of the various organochlorine compounds in sediments 

from the Black Sea are as follows: DDTs >HCHs > PCBs >HCB >cyclodienes. 

Concentrations of PCBs in sediments from the Black Sea are relatively low in 

comparison with those reported for other regions of the world. The highest 

concentrations of PCBs are recorded for the Romanian coastline (stations influenced by 

discharges from the River Danube and Port Constantza), Odessa, Sochi and one of the 

furthest offshore stations in the Bosphorus. Among the PCBs, the toxic d\-ortho and 

mono-ortho co-planar congeners were dominant. 

Concentrations of DDT related compounds in sediments from Black Sea are shown 

to be generally lower than those reported for the Baltic Sea and most Asian sites. They 

are comparable to, or slightly higher than, those reported for other regions of the 

Russian Federation (e.g. Baikal Sea), the USA and Mexico. The highest concentrations 

of DDTs in the Black Sea are associated with lipid rich sediments in the Ukrainian and 

Romanian coastline, which are under the influence of the River Danube discharges. 

Elevated concentrations are also reported for sediments in the vicinity of Odessa and 

Port Constantza on the Romanian coastline. The low DDE/DDT values combined with 

the relatively high concentrations (especially in Odessa sediments and, in sediments 

under the influence o f Danube discharges) indicate current usage o f DDT around the 

Black Sea. 

Concentrations of lindane (y-HCH) and the other HCH isomers are low in samples 

from the Ukrainian coastline, Russian Federation and Turkey. These levels are 

comparable to the low to medium range o f values for estuarine sediments from eastern 

and southern Asia and Oceania. However, they are much lower than values reported for 

areas that are subjected to intensive sources of HCH contamination, e.g. India and 

Vietnam. Elevated concentrations in samples from Romanian stations, under the 

influence of the River Danube, indicate substantial usage of HCH as a pesticide in the 

River Danube watershed. Indeed, we report some of the highest sedimentary 

concentrations ever recorded for SHCH. The composition of the HCH isomers in the 

sediments showed a high percentage of the y-isomer at the highly contaminated 
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locations along the Romanian Coastline (56 to 81%) indicating usage of lindane in this 

region. Conversely, the values found at Odessa, Sochi, along the Ukrainian coastline, 

the Ukrainian Danube coastline and Bosphorus suggest that HCH contamination at 

some locations arises through atmospheric inputs or/and use of both lindane and 

technical formulations. 

HCB and cyclodienes were also found in sediments from the Black Sea, albeit at 

much lower concentrations than those recorded for the other compounds. The highest 

values of HCB were recorded along the Romanian and Ukrainian coastlines adjacent to 

the River Danube. 

3.5.2 Hydrocarbons 

The Black Sea is only moderately contaminated by hydrocarbons. Concentrations of 

"total" hydrocarbons in sediments from the Black Sea are shown to be substantially 

higher than those from pristine environments and are generally comparable to levels 

encountered in the Mediterranean Sea. The most contaminated stations (concentrations 

> 100 Jig g *) are shown to be associated with discharges from Odessa, Sochi and inputs 

from the River Danube. Samples taken from the Ukrainian coastline show 

comparatively little contamination (**total" hydrocarbon concentrations < 10 ng g"' dry 

wt) even though some areas are subject to wastewater discharges. 

The UCM is by far the major component of the "total" sedimentary aliphatic 

hydrocarbons and indicates contamination by degraded/weathered petroleum. The 

highest unresolved/resolved hydrocarbon ratios were recorded in samples near Odessa, 

the Danube coastline and Sochi, co-varying with the highest UCM and hydrocarbon 

levels, confirming substantial petrogenic inputs to these sediments. 

"Fresh" oil inputs (as indicated by ZW-CM to W-C34 concentrations) are shown to be 

low and comparable to relatively uncontaminated areas on a worldwide basis. A major 

contribution to the Black Sea is, however, shown to be associated with inputs through 

the River Danube. Very low concentrations were reported for some stations (generally 

those on the Ukrainian coastline) indicating negligible fresh petroleum inputs at these 

locations. 

In general, the concentrations of PAHs (sum of 17 isomers) in Black Sea sediments 

are low by comparison with those observed in other regions. The highest concentrations 
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of' ' total" PAHs were observed at sites along the Danube coastline (638 ng g * dry wt), 

Odessa (635 ng g * dry wt) and Sochi (368 ng g"* dry wt). A mixture of pyrolytic and 

petrogenic PAHs were observed in most of the sediments, usually with a slight pyrolytic 

predominance. This was most notable at the Bosphorus stations. Petrogenic 

contributions were recorded at the Danube delta and at Sochi. No correlation between 

'total" hydrocarbons and PAH was observed (r^ = 0.04) indicating separate primary 

sources and/or differing transport processes for the two classes of compounds. High 

concentrations of perylene were recorded in many of the samples. The diagenetic origin 

of this compound was most notable in samples taken from the Bosphorus. 

3.5.3 Sterols 

Coprostanol is present in all sediments from the Black Sea, with variations o f 1-2 

orders of magnitude in concentration. Levels of coprostanol in the Black Sea are 

comparable (or perhaps even lower) than those generally encountered in the regions 

selected for comparison. 

In the majority of the samples, levels were comparatively low (<500 ng g'*), 

indicating minor sewage contamination. However, there was evidence of chronic 

contamination with sewage, grossly in the case o f Sochi (up to 5400 ng g'') and on the 

coast adjacent to the Danube delta (2600 ng g''). Odessa sediments have intermediate 

coprostanol concentrations and 5p/(5p+5a) isomeric ratios, indicating minor sewage 

contamination. Very low coprostanol concentrations and 5p/(5p+5a) isomeric ratios 

along the Ukrainian coastline are characteristic of non-polluted sediments. 

Coastal locations influenced by the River Danube exhibit high coprostanol 

concentrations and 5p/(5p+5a) isomeric ratios indicating sewage contamination. In 

addition, cross-representation of both the 5p/(5p+5a) isomeric ratio of cholestan-3p-ol 

and cholestan-3-one confirm sewage contamination and indicate anaerobic microbial 

cholesterol reduction at these sites. 

In the Bosphorus, the highest values were found near shore, with values decreasing 

with increasing distance seawards. These sediments generally contained high values for 

both the 5p/(5p+5a) isomeric ratios of choIestan-3p-ol and cholestan-3-one, indicating 

sewage contamination. 
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The anoxic conditions in the Black Sea favour reduction of sterols to a-stanol by in 

situ microbial conversion. Our results indicate that anoxic waters (and particularly near 

oxic-anoxic interfaces) are important sites of intense alteration of organic matter 

including the reduction of sterols to a-stanols by in situ microbial conversion. 
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Chapter 4 

4 Evaluation, development and application of immunoassay 
techniques 

4.1 Introduction 

This chapter incorporates data which have generated five separate manuscripts, one of 

which has been accepted, three are submitted and one is in the final stages of preparation. 

These cover different appHcations of immunoassay. Initially, an evaluation and validation 

of an ELISA kit to detect semi-volatile hydrocarbons (BTEX) in contaminated 

groundwater is presented. This data has been submitted to Environmental Technology 

(Francioni et a/.. Submitted). Secondly, the perforaiance of different hydrocarbon 

immunoassay kits is tested using sediment extracts and results are compared with those 

obtained using chromatography. A manuscript is in the final stages of preparation 

(Filhnann et ai. In Preparation). The third section investigates the adaptability and 

applicability of ELISA to measure PCB levels in mussel tissues. This study has been 

submitted to the Analytical Chimica Acta (Fillmann et ai. Submitted a). Finally, the 

effectiveness of ELISA in measuring PAH metabolite levels in body fluids of crabs 

{Carcinus maenas) is tested. The first part of this research has been accepted for 

publication in Marine Environmental Research (Fillmann et ai. In Press b) and 

complementary data including HPLC analyses of metabolites has been submitted to 

Environmental Science and Technology (Fillmann et a/., Submitted b). 

4.2 Semi-volatile hydrocarbons (BTEX) in groundwater 

4.2.1 Introduction 

Aliphatic and aromatic hydrocarbons are among the most commonly detected 

contaminants in the aquatic environment (UNEP/IOC/IAEA, 1992). Their ubiquity 

together with the high concentrations fi-equently encountered raises environmental 

concern regarding ecotoxicological effects including carcinogenicity (Manahan, 1992; 

Harrison, 1996; Betton, 1997). Accidental contamination of soil and groundwater by 

petroleum products stored in underground tanks poses a threat to groundwater. Benzene, 

toluene, ethylbenzene and xylene (BTEX) which are found at relatively high 
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concentrations in most gasolines (c. 35%) (Pels, 1999) are the most commonly used 

indicators of dissolved phase petroleum contamination. BTEX have a relatively high 

aqueous solubility and, at least in the case of benzene, are considered very toxic and 

potentially carcinogenic (Beyer et al, 1997). 

Determination of BTEX in environmental matrices typically involves several steps 

(extraction, clean-up, and analysis with HPLC, GC or GC/MS). Analyses are, therefore, 

time consuming and generally expensive. Also, they do not provide a rapid response 

which is sometimes needed in an environmental assessment. To avoid these complex 

procedures, immunoassay techniques have recently been directed towards measuring 

environmental contaminants (Waters et al., 1997b) because they are generally faster and 

less expensive than conventional laboratory methods (BarceI6 et a/., 1998; Kramer, 

1998). Modem tests are rapid, sensitive, and selective, and are adaptable to field use. 

They have been applied to diverse environmental contaminants (e.g. triazines, total 

petroleum hydrocarbon, polycyclic aromatic hydrocarbons, organophosphoms pesticides, 

polychlorinated biphenyls, organochlorines) (Meulenberg et al, 1995; Barceld et ai, 

1998; Castillo et A/ . , 1998). The most common format used for environmental analyses is 

the ELISA (enzyme-linked immunosorbent assay) (Meulenberg et ai, 1995; Hage, 1999). 

An important advantage of immunological methods is the possibility of the application 

to complex matrices with only minor sample preparation. This has generated interest in 

the development of rapid screening methods. A number of commercially available 

BTEX-immunological tests have been developed by several producers. Each kit uses 

different strategies, for example, the type of antibody source (poly and monoclonal), and 

the test format (tubes, microtiter plate, immunofiltration). Detection limits are generally 

in the ppm- (mg L"*) or high ppb-range (^g L"') for single and multiple analytes. Beyer et 

al. (1997) have described most o f the BT(E)X enzyme immunoassays which are 

commercially available or have been reported in the literature. The selected ELISA kit 

(BTEX RaPID Assay®), however, was not evaluated by these authors. 

In contrast to conventional analytical methods, many immunoassays have not, to date, 

been extensively characterised. At the moment, several agencies in the USA and Europe 

are evaluating the use of iimnunoassays for regulation-linked analyses (Meulenberg et 

al., 1995). Although immunoassay-based analytical methods are rapidly gaining 

acceptance, it is essential for any new analytical method to be rigorously validated 

83 



(Waters et ai, 1997b). Information on field-based environmental applications of 

immunoassays is scarce (Meulenberg et ai., 1995). 

The goal of the present work was to investigate the performance of an immunoassay 

technique for the detection of benzene, toluene, ethylbenzene and xylene (BTEX) as 

tracers for gasoline contamination in groundwater. The case study we describe arose as a 

result of leakage from storage tanks in an urban petrol station in Rio de Janeiro city. 

Underground tank corrosion in Rio de Janeiro is aggravated due to the close proximity of 

the sea which is exacerbated through location of petrol stations on sandbar 

areas/shorelines. 

4.2.2 Results and Discussion 

Gasoline (or petrol) is comprised of approximately 50% aliphatic hydrocarbons and 

50% aromatic (plus naphthenic) compounds (Betton, 1997). Benzene, toluene, 

ethylbenzene and xylenes are important constituents/markers. Whilst these BTEX 

compounds have relatively high vapour pressure/Henry's law constants, when trapped 

within the ground their release into the atmosphere is restricted and concentrations in 

groundwater can become elevated. 

Calibration of the two analytical techniques revealed good linear regressions (r^ > 

0.99) for gas chromatography and ELISA, respectively, within the calibration ranges of 0 

to 50 ng L * (GC) and 0 to 18 mg L'* (ELISA). Detection limits are described in Section 

2.2.1.4 and 2.2.1.5 for the GC-FID/PID and ELISA techniques, respectively. 

Results from analyses of the potentially contaminated samples taken in Rio de Janeiro 

are given in Table 4.1 and those pertaining to the two different types of analyses are 

plotted against each other in Fig. 4.1. It is evident that the immunoassay procedure 

overestimates the actual concentration of the BTEX by a factor of two or more. This 

probably results from interactions between the antibody and other constituents of the 

petrol (i.e. cross reactivity). A similar trend has been reported by Barcel6 et ai. (1998) 

and Castillo et al (1998) for PAH RaPID Assay® ELISA, although differences in that 

case reached one order o f magnitude. Good reproducibility of the ELISA is 

demonstrated, ranging from 0.30 % to 11.7 % (as given by standard deviations from 

triplicate analyses). 

In Fig. 4.1, a strong linear relationship (r^ = 0.997; slope: 0.471; Y-intercept: 0.088) is 

demonstrated between results from the two analytical techniques. Despite this tight 
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regression, the ratio of [ B T E X ] ELISA/[BTEX] GC shows more scatter at the lower 

concentrations. It is likely that with the ELISA, discrimination between B T E X and other 

hydrocarbons is less at lower concentrations when competition for binding sites increases 

and non-BTEX constituents can have an increasing effect producing more scatter in the 

results. This suggestion is upheld by the data for samples 5, 7 and 10. As can be seen in 

Fig. 4.2 and Table 4.1, although samples 5 and 10 have essentially the same B T E X 

concentration, the immunoassay gave results that are 4 times larger for sample 10. The 

chromatograms (Fig. 4.2) differ principally through the presence of a set of light 

unidentified compounds, which are eluted in the first 8 minutes of the chromatographic 

run. These possibly interact with the antibody producing an elevated response with 

ELISA. At higher concentrations (> 10 mg L**) the immunoassay results appear close to 

those given by GC-FID/PID (see, for example, sample 7). This might infer that effects 

owing to other hydrocarbon components are lesser. 

Table 4.1. Concentration values (mg L"^) of BTEX obtained by ELISA and GC-PID/FID 

Sample ELISA GC/PID/FID I B T E X J E U S A / 

BTE)C BTE)^ Benzene Toluene Ethyl 
benzene 

m+p-
xylene 

o-
xylene 

[BTEXloc 

1 <0.06 <0.005 <0.001 <0.001 <0.001 <0.001 <0.001 -

2 <0.06 0.04 <0.001 <0.001 0.02 0.02 0.01 -

3 <0.06 0.12 0.001 0.07 0.01 0.02 0.01 -

4 2.0 (0.5)*= 1.68 0.01 0.94 0.26 0.32 0.14 1.2 

5 0.52(1.2)' 0.41 0.005 0.05 0.10 0.17 0.09 1.3 

6 1.3(0.11)' 2.10 0.90 0.23 0.58 0.22 0.17 0.6 

7 78.9(11.7)'= 37.4 5.32 7.58 7.53 11.25 5.70 2.1 

8 61.2 (2.7)' 29.1 2.80 7.69 5.58 8.96 4.04 2.1 

9 13.7 (0.3)' 5.2 3.94 0.10 0.42 0.61 0.12 2.6 

10 2.5 (9.7)' 0.44 0.13 0.06 0.09 0.11 0.06 5.7 

" BTEX is expressed as the sum of the components by multiplying the value obtained by 6. 
BTEX is the sum of benzene, toluene, eihylbenzene and o-, m-, p-xylene. 

'Coefficient of variation expressed in percentage. 

The results obtained from chromatographic and immunoassay analyses agreed with 

respect to the distribution of the spilled fuel. Sampling stations 1, 2 and 3, in which the 

concentration values were below the detection limits of the immunoassay tests, were 

distant from the fuel spillage. In contrast, stations 7, 8 and 9 (chromatographic BTEX 

concentrations of 37.4, 29,1 and 5.2 mg L ~\ respectively) were the most affected sites. 
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Despite their close proximity, station 7 presented a concentration ahnost 85 fold higher 

than station 10. This is explained by a remediation treatment applied at station 10, where 

the groundwater had been pumped out continuously prior to our sampling campaign. 
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Figure 4.1. Conrelation between BTEX RaPID Assay® ELISA and GC-PID/FID 

analyses of BTEX in contaminated groundwater 

With regards to pollution levels, results indicate a critical contamination of 

groundwater close to the petrol station, although measurable concentrations were also 

found in a radial distance of approximately 100 m from the source. Benzene 

concentrations are up to 500 times above the maximum levels pemiitted for drinking 

water by the Brazilian legislation (0.01 mg L"*) (CONAMA, 1986) and up to 1000 times 

above EPA standards (0.005 mg L ' ' ; US Environmental Protection Agency) (Beyer et a/., 

1997). 

The results obtained indicate that the applied immunoassay test is suitable for 

detecting contamination fix)m gasoline at "hot spots" such as leakage. It is important to 

note, however, that the reactivity of the ELISA is lower for benzene than the other 

compounds and subsequently results relate primarily to other marker compoimds. This is 

important because legislation on drinking water specifies benzene. In addition, at the 

lower levels the ELISA cannot reliably measure the concentrations specified by 

legislation. This renders compliance testing using the ELISA inappropriate. Additional 
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woric to enhance the sensitivity of the test is required. This may be attained through pre-

concentration or by altering reaction times or the amount of sample used. 
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Figure 4.2. Chromatograms of GC-PID/FID in three groundwater samples:#5, #7 and #10 

4.2.3 Conclusions 

In general, good agreement was achieved between the conventional gas 

chromatography analyses and the RaPID Assay® BTEX ELISA. A linear regression of 

= 0.99 was achieved for gasoline contaminated environmental samples analysed using 

both techniques. The ELISA has proven very simple and rapid to use but the results 

obtained at lower concentrations (< 10 mg L"*) revealed increased scatter. Also, the 

detection limits cannot (at present) achieve the concentrations specified by legislation. 
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This renders the ELISA technique (currently) unsuitable for compliance testing but 

demonstrates its worth as a rapid screening tool to investigate "hot spots" of 

contamination. In spite of the tendency to overestimate the actual concentration the test 

allows identification of problematic sites where storage tanks should be repaired or 

exchanged. The simple and fast application makes ELISA suitable for screening of large 

networks of gasoline distribution as those existing in the city of Rio de Janeiro and 

elsewhere. 

4.3 Petroleum hydrocarbons and PAHs in sediment 

4.3.1 Introduction 

Aliphatic and aromatic hydrocarbons are amongst the most commonly detected 

contaminants in the aquatic environment, deriving from petroleum and combustion 

processes. Their ubiquity and frequent high concentrations creates environmental concern 

regarding ecotoxicological effects. Although a wealth of literature addresses these as 

important environmental pollutants, there is a weak link between chemical investigations 

and biological effect assessments using ecotoxicological methods. Oflen, time consuming 

chemical methods do not provide the response needed for rapid environmental 

assessments. However, immunoassay techniques have recently been directed towards 

measuring environmental contaminants (Meulenberg et al., 1995; Waters et ai., 1997a). 

The most common format used for environmental analyses is the ELISA (enzyme-linked 

immunosorbent assay) (Meulenberg et ai., 1995; Aga and Thurman, 1997; Hage, 1999). 

This technique has proven to be rapid and cost effective (Barcel6 et ai., 1998; Kipp et ai., 

1998) and can usefiilly complement ecotoxicological methods in environmental 

assessments (Galloway et al.. Submitted) (see Chapter 5). 

Immunoassay-based analytical methods are rapidly gaining acceptance. However, it is 

necessary for any new analytical method to be rigorously vahdated before it can be 

considered as a replacement for, or adjunct to, currently used laboratory methods. The 

scarcity of available information on the "real" environmental applications of 

immunoassays was documented (Meulenberg et ai., 1995). Multiple and independent 

evaluations lend credibility to the method. Most currently available immunoassay 

validations have been produced by the kit manufacturers (Waters et al., 1997a; Kramer, 

1998). Therefore, independent evaluations of these kits are necessary to enhance the 

acceptance of the technology by potential users. The use of commercial immunoassays 
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for field-testing has been encouraged (Oubina et ai, 1996b). In this work, a laboratory 

study was conducted to evaluate the perfomiance of two immunoassay-based analytical 

methods for quantification of "total" petroleum hydrocaitons and polycyclic aromatic 

hydrocarbons. Two commercially available ELISA kits (BTEX and carcinogenic PAH 

RaPID Assays®) were evaluated for quantification of hydrocarijons in estuarine sediment 

samples, including reference materials. The BTEX RaPID Assays® was employed to 

analyse aliphatic and small aromatic hydrocarbons. The c-PAH RaPID Assays® was 

employed to analyse the polycyclic aromatic hydrocarbons (> 3 aromatic rings). Results 

were validated by comparison with gas chromatographic analyses (CG-FID with GC-MS 

confirmation). 

An estimate of **total" hydrocarbons contamination is included by screening 

measurements fi-om both assays. 

4.3.2 Results and Discussion 

4.3.2.} Analytical Performance 

The linearity of standard calibration curves for BTEX and benzo(a)pyrene analysed by 

ELISA was > 0.99 for both kits. The method detection limits (MDL), as estimated at 90% 

B/Bo for the BTEX or c-PAH calibration dilutions, were 1.08 ng g* and 5.5 ng g\ 

respectively. A 10% inhibition of signal was considered to be significantly different fi-om 

the zero analyte concentration and was used to estimate the sensitivity of the assay giving 

the method detectable limit (MDL) at 90% B/Bo (Oubina et a/., l996a).The coefficient of 

variation (%CV) for repeated analyses for a single sample was 16 ± 8% (n = 5) and 6.7 ± 

4% (n = 5) for BTEX and c-PAH, respectively. These are similar to variations within 

conventional analytical techniques. 

The 50% B/Bo (IC50) (the concentration required to inhibit one-half of the colour 

produced by the negative control) was 63.6 | ig g * and 255 ng g'̂  for the BTEX and c-

PAH RaPID Assay®, respectively. 

Inherent to the use of antibodies is a certain degree of cross-reactivity, the binding of 

structurally related compounds to the antibody. The degree to which a particular antibody 

selectively binds the analyte of choice determines its applicability. A low degree of cross-

reactivity makes it suitable for single-compound assays. In contrast, a group-specific 

assay requires an antibody having a high degree of cross-reactivity. Thus, the selection of 

antibody depends on the purpose of application. Generally, an antiserum consisting of 
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several types of antibodies (polyclonal) shows a broader spectrum of cross-reactivities 

than a monoclonal antibody (Meulenberg et al., 1995). The ELISAs being tested are 

polyclonal and, thus, suitable to detect multi-compounds such as hydrocarbons. 

Table 4.2. Cross-reactivities against other hydrocarbons and petroleum products in the 
BTEX RaPID Assay® (data provided in the RaPID Assay® SDI Product Information) 

Compound MDL" 50% B/Bo' 

(Mgg'') (Hg g'') 

m-Xylene 0.6 36 

p-Xylene 2.6 62 

o-Xylene 4.4 94 

Ethylbenzene 4.8 156 

Toluene 8.8 148 

Benzene 11.8 1,000 

Naphthalene 0.6 11.8 

Anthracene 1.2 560 

Styrene 1.4 52 

H exac hlorobenzene 1.6 NR 

Phenanthrene 1.6 32 

Acenapthene 3.4 124 

n-Octane 68 NR 

n-Nonane 88 NR 

n-Heptane 126 NR 

n-Decane 270 NR 

Methylene Chloride NR NR 

Trichloroethylene NR NR 

Gasoline 8.6 842 

Diesel 25.8 324 

Kerosene 30 480 

Jet-A Fuel 54 670 

NR - non reactive up to 1,000 jig g*' 
* based on a 20-fold dilution of the sediment extact 

In the present study, the cross-reactivity against other PAHs and other petroleum 

products are expressed in Tables 4.2 and 4.3 as the method detectable limit (MDL) and 

50% B/Bo. However, comparisons are hindered since cross-reactivity often varies with 

the dose of cross-reactant due to nonparallel displacement curves (usually, but not 

always, with higher cross-reactivity at lower doses). In addition, the commercial assays 
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generally describe the cross-reactivities of an individual cross-reactant at one fixed 

concentration and using a clean matrix, either distilled or ground water (Oubina et aL, 

1996a). This would affect comparisons with environmental samples. In spite of this, 

results indicate that the ELISAs wi l l detect most aliphatic and small PAHs (BTEX RaPID 

Assay®) and >3 ring PAHs (c-PAH RaPID Assay®) (albeit with differing sensitivities) 

potentially affording an effective monitor to environmental hydrocarbons (aliphatics + 

PAHs). 

Table 4.3. Cross-reactivities against other PAHs and petroleum products in the c-PAH 
RaPID Assay® (data provided in the RaPID Assay® SDI Product Information sheet) 

Compound MDL* 50% B/Bo' 

(ngg-') (ngg') 

Benzo(a)pyrene 4.0 160 

Benz(a)anthracene 1.0 48 

Benzo(k)f1uoranthene 1.0 63 

Chrysene 2.0 69 

Beiizo(b)fluoranthene 2.0 130 

lndeno( 1,2,3-c,d)pyrene 1.0 203 

DibeDz(a,h)anthracene 7.0 241 

Anthracene 22 2,050 

Phenanthrene 135 6,720 

Fluoranthene 100 6,850 

Benzo(g,h,i)peTyIene 15 > 10,000 

Pyrene 100 23,300 

Fluorene 1,850 34.200 

Naphthalene 18.800 NR 

Acenaphthylene 7,400 NR 

Acenaphthalene NR NR 

Creosote 62 838 

Fuel Oil #4 1,260 30.400 

Fuel Oil #5 1,000 20,700 

Heating Fuel 1,000 65.300 

Diesel Fuel 12,000 NR 

Gasoline 10.000 NR 

Kerosene NR NR 

Jet A Fuel NR NR 

NR - non reactive up to 50,000 ng g"' 
* based on a 100-fold dilution of the sediment extact 
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The accuracy of immunoassay-based methods, as with most analytical methods, wil l 

depend on the integrity of the standards used to calibrate them. The history of a standard 

is important since the concentration of the standards may change over time alter the first 

use (Waters et ai., 1997a). Small discrepancies in concentrations (smaller than stated) 

have been reported for RaPID Assay® calibration standards (Kipp et ai., 1998), None of 

the standards supplied and used in this study appeared to contain less than the assigned 

concentration at first use. 

The best indicator of the integrity of the standards (and reagents as a whole) is the % 

B/Bo. This treatment of the data effectively cancels out variations in absolute 

absoitance measurements resulting from inherent variability of the assay. The % B/Bo 

values for a particular standard concentration should remain relatively constant and can 

be used as an index of quality control (Waters et ai., 1997a). The % B/Bo values for all 

the BTEX standards used in the BTEX RaPID Assay® were 80.29 ± 1.42% (for the 0.54 

/ig g * standard, n = 3), 62.78 ± 0.79% (for the 2.1 /ig g"' standard, n = 3), 42.34 ± 

1.22% (for the 18 /ig g"* standard, n = 3). Values obtained for all the ben2o(a)pyrene 

standards used in the c-PAH RaPID Assay® were 86.33 + 1.56% (for the 0.1 ng g* 

standard, n = 3), 65.83 ± 1.79% (for the 1.0 ng g'* standard, n = 3), 39.03 ± 2.12% (for 

the 5.0 ng g'* standard, n = 3). 

4.3.2.2 Performance ofELISAs 

Sediment Extraction. An important disadvantage of the commercially available 

immunoassay is the associated extraction kit. The samples are mixed with 20 ml of 

methanol and shaken vigorously for at least 60s (5 minutes in present research). 

Samples are then lefl to settle, filtered and diluted with buffer solution. This procedure 

is more or less the same for all immunoassay test kits, since methanolic solutions are 

compatible with the assay (Hottenstein ei al, 1995; Lawruk et ai, 1996). Knowing that 

even Soxhlet extraction for several hours can show incomplete extraction or have 

different analyte and/or matrix dependant extraction efficiencies, it is not surprising that 

there are differences between the results obtained with immunoassay test kit and those 

obtained with conventional analytical methods (Kipp et ai, 1998). It is suggested that 

lower ELISA PAH concentrations are generated because methanolic extraction caiuiot 

effectively remove all the PAH from the samples (Johnson and VanEmon, 1996; 

Chuang et ai, 1998; Johnson et ai, 2001). In addition, the sediment type can also 
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influence the efficiency of extraction, where clay type sediments have less efficient 

extraction of PAHs (Waters et al., 1997a). 

BTEX RaPID Assay® Results. A total of 34 sediment samples were analysed. Five 

sediment samples spiked with a mixture of W-C12-C35 (14 to 112 ^ig g'*) and, 

additionally, a sediment reference material (IAEA 383) were analysed in triplicate. 

Sixteen environmental sediment samples from the Patos Lagoon estuary (southern 

Brazil) were also analysed singly. 

The concentrations of "total" petroleum hydrocarbon (expressed as BTEX 

"equivalents") found by the ELISA were plotted against the concentrations measured by 

GC/FID (Fig. 4.3). The spiked sediment extracts were differentiated from all other 

samples. The ELISA results for the spiked sediments gave a best-fit straight line with an 

r̂  value of 0,94 and slope of 0.75. Although this shows good agreement between both 

techniques, the slope is indicative of the higher immunoreactivity of the E/i-alkane-

spiked samples relative to that of BTEX standards. 

Results for the unspiked samples also show a reasonable agreement between the 

techniques (r^ = 0.68. slope =1.21) (Fig. 4.3). In this case the TPH found by ELISA is 

compared with GC/FID results which include the sum of alkanes. unresolved complex 

mixture and < 3 ring PAHs. The slope indicates a lower reactivity compared to that of 

BTEX standards. Since the UCM is dominant in these samples (15.5 - 98%, with an 

average of 73.3%), the UCM is shown to have a lower reactivity with these ELISA 

antibodies. The sample with the highest UCM (Esgoto, 98%) is the one showing the 

lowest reactivity (Fig. 4.3). Samples with less UCM (< 80%) and more < 3 ring 

aromatics (> 7%) show increased reactivity (e.g. Mercado and Refinaria, Fig. 4.3) 

However, i f only the alkanes and < 3 ring PAHs are compared with the ELISA results, 

no relationship is found (r^ = 0.10), indicating that it is the UCM that is cross-reacting 

with the antibodies. Indeed, this would concur with very recent data published by 

Rowland et al. (2001) who report on the composition and toxicity of the aromatic UCM. 

These authors confirm that the composition of this UCM includes the presence of alkyl 

benzenes and C-ring monoaromatic steroids (revealed by GC-MS mass 

fragmentography). These constituents would be expected to react with the BTEX 

RaPID Assay® antibodies. The absence of a correlation when the UCM components are 

removed from the GC data carmot, however, discount contributions of components (e.g. 
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volatiles) in the extracts which are not quantified by the selected GC analytical 

techniques. 

120 H 

-O) 90 
O) 
3 
Q 
o 
^ 60 

3 
X 

O Esgoto 

O O O 

y= 1.21X-3.40 
R2 = 0.68 

y = 0.75x-3.40 

Distnbuidora 
9 
Mercado 

40 80 120 
TPH found by ELISA (BTEX equiv. pg/g) 

160 

Figure 4.3. Plot of results fi-om the BTEX RaPID Assay® ELISA and GC/FID analyses 
of TPH compounds in (0) L«-Ci4-C36-fortified sediment samples and environmental 

sediment samples (O) (GC results indicate the sum of alkanes, UCM and < 3 ring 
PAHs) 

The BTEX RaPID Assay® uses equivalent parts of benzene, toluene, ethylbenzene 

and m-, o- and p-xylene as the cross reactants set as 100%. Other hydrocarbon 

compounds react in weaker (or much weaker) ways compared to the main targets. 

Again, depending on the individual hydrocarbon composition of each sediment, the 

response of the total petroleum hydrocarbon ELISA will differ. Consequently this test 

cannot be used as a quantitative method for determining "total" petroleum hydrocarbons 

(TPH) in sediment. The concentrations derived from the ELISA should not, therefore, 

be treated as absolute and accurate measurements, but rather relative comparisons 

between samples. 

PAH RaPID Assay® Results. A total of 25 sediment samples were analysed. Four 

PAH-spiked sediment samples (18, 177, 670 and 1650 ng g"'), five sediment reference 

materials (HS-4B, HS-5, IAEA 383, QPHI6MS and QPH17MS) and sixteen 
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environmental sediment samples (from the Patos Lagoon estuary, southern Brazil) were 

analysed. 

The concentrations (PAH "equivalents") found by the ELISA were plotted against 

the concentrations measured by GC/FID (Fig. 4.4). The spiked sediment extracts were 

differentiated from all other samples. The ELISA results gave a best-fit straight line 

with an r̂  value of 0.97 and slope of 0.80. This indicates good agreement between the 

two techniques. The slope indicates higher immunoreactivity of the E PAH-spiked 

samples relative to that of benzo(a)pyrene calibration standard. 
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= 0.87 
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^ 2000 
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PAHs found by ELISA (benzo(a)pyrene equiv. ng/g) 
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Figure 4.4. Plot of results from the c-PAH RaPID Assay® ELISA and GC/FID analyses 
of PAH compounds (>3 rings) in (0) E 24 PAHs-fortified and (O) environmental 

sediment samples 

The ELISA results for the other samples also showed good agreement with the GC 

data (r^ = 0.87, slope = 1.96) (Fig. 4.4). In this case the c-PAHs found by ELISA are 

compared with GC/FID results for E ^ 4 ring PAHs. The slope indicates a lower 

reactivity compared to that of benzo(a)pyrene calibrant. The sediment samples used 

were 0.5 - 2.0 times as reactive with the antibodies as benzo(a)pyrene (except for the 

samples Distribuidora (0.3 times) and Mangueira (0.2 times)). In the field samples, 

shifts in the relative composition of complex mixtures of PAH are apparent which alter 

95 



the ELISA response. For example, the sample from Mangueira contained phenanthrene, 

fluoranthene and pyrene as major constituents but no five or six ring compounds were 

detected. These differences in response result from the fact that the antibodies were 

produced against benzo(a)pyrene (a 5 ring PAH). Thus the different shaped/sized PAH 

wil l react to different degrees. The correlation between immunoassay and 

chromatographic PAH results, as might be expected, was better using the sum of PAHs 

>4 rings than the total PAH. Other chemical compounds not quantified using the 

selected chromatographic technique could also, in part, be responsible for the higher 

ELISA kit test values. 

Several other ELISA kits to measure PAH are available and have been described in 

the literature. In Section 1.2.3 (Table 1.2), sensitivities of different kits are compared 

and indicate a high performance for the RaPID Assay®. Various authors have 

investigated the RaPID Assay® PAH-ELISA performance relative to other analytical 

techniques and usually report overestimation by the ELISA. Chuang et al. (1998), 

working with house dust and soil, found that the c-PAH RaPID Assay® ELISA 

measurements were 5.9 times higher than those from GC/MS. Waters et al. (1997a) 

showed that a 16 component PAH mixture had 3,4 - 4.5 times more reactivity to the 

PAH RaPID Assay® ELISA antibody than phenanthrene. Kipp et ai (1998) working 

with the PAH RaPID Assay® report ELISA results 10 limes higher than those obtained 

with HPLC. Indeed, in most cases the overestimation of the ELISA is at least one order 

of magnitude (e.g. Barcelo et a/., 1998). These results concur with those obtained using 

an EPA protocol involving a commercial microliter plate ELISA for PAH (EPA SW-

846 Method 4035) that also give a considerable overestimation (USEPA, 1997). 

Reasons for this overestimation probably relate to differences in the reactivity of 

compounds in the environmental extracts. Often extracts contain many more 

compounds in the extract than the 16 PAHs normally quantified. These compounds 

most probably are isomeric or substituted analogues of the 16 quantified PAHs and, 

therefore, can react with the antibody leading to elevated results (Kipp et al, 1998). 

Although the present study reports a marginal overestimation for the "spiked" 

sediments, in general our results do not demonstrate the same overestimation as 

commonly reported. It should be noted that the kit used in our study was the 

carcinogenic PAH RaPID Assay® so only the work of Chuang et ai (1998) (who 

reported a 5.9 times overestimation) is strictly comparable. It is likely that discrepancies 
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arise owing to extraction techniques. Compounds spiked into sediments are extracted 

more easily than compounds actually present in environmental samples. The better 

reactivity within the spiked samples might, therefore, be related to better recoveries. For 

the environmental and reference samples, the lower reactivity (slope = 1,96, Fig. 4.4) 

might relate to the extraction procedures used. Dichloromethane was used for the GC 

analyses, whereas methanol was used for the ELISA. In addition. Soxhlet extraction 

was for 16 hours for the GC samples and that for the methanol was only 5 minutes 

(ELISA samples). Sonication would possibly improve recoveries using the melhanolic 

extraction and provide a more effective technique to extract c-PAH from sediments 

(Chuang et ai, 1998), whilst maintaining simplicity of operation. 

Analytical interferences due to the limited selectivity of antibodies (cross-reactivity) 

is another very important aspect to take into account when assessing ELISA 

performance (Oubina et a/., 1997). Castillo et ai (1998) found that many non-PAH 

compounds in industrial wastewater samples could be detected by the carcinogenic 

PAH RaPID Assay® test kit. Phthalates in particular gave high cross-reactivities. Whilst 

immunoassays are often used without cleaning-up the extracts, this may result in matrix 

interferences which affect performance. Values produced by immunoassay, therefore, 

only provide a qualitative/semi-quantitative estimate of contaminants in extracts. The 

application of limited clean-up techniques can often improve performance to an extent. 

To check for matrix interferences, standard additions can prove of great use owing to 

the fact that interferences usually have widely different reactivities than the selected 

determinands. When sediments from diverse sources are analyzed, matrix variations can 

differ and affect results. Within a pollution gradient with a single pollution source, 

however, the compositional variability is small and the performance of an immunoassay 

improves (Gascon et al, 1995; Waters et a/., 1997a). 

4.3.3 Conclusions 

Results from the ELISA kits tested are shown to compare well with those obtained 

by GC. This confirms ELISA to be a useftil screening protocol with which to focus 

more expensive (high resolution) analytical techniques. In addition, the selected 

immunoassay kits are fiilly portable (including the spectrophotometer), offering true 

field deployment. Other screening techniques such as inf i^ red and spectrofluorimetry 

require laboratory based measurements. The combined use of both the BTEX and 
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carcinogenic PAH RaPID Assay® offers the capability to screen for a very wide range 

of hydrocarbon components to give a good measure of *total" hydrocarfjons. 

Our results indicate that the use of attenuation/correction factors can improve the 

ELISA performance. In addition, owing to differences in cross reactivities (especially 

with the PAH kit), it is essential to appreciate limitations associated with compositional 

differences. BTEX and c-PAH RaPID Assay® ELISA cannot strictly be used as a 

quantitative method for determining hydrocarbons in environmental sediments, since 

the antibodies used bind differently to different hydrocarbons/PAHs. The concentrations 

derived from the ELISA cannot, therefore, be treated as absolute and acciu-ate 

measiu^ements but rather as a rapid inexpensive and portable screening tool for 

environmental investigation of contamination/pollution. 

4.4 PCBs in mussel tissue 

4.4.1 Introduction 

During the last decade, environmental immunoassays have been developed to detect 

selected pollutants in water and sediment/soil samples. Several commercial kits are now 

available for this purpose and offer rapid screening at comparatively low cost. Recently, 

environmental researchers have started to apply the technique to the analysis of 

biological media in which pollutants and their metabolites can become concentrated 

(Sherry et a/., 1989; Nam and King, 1994; Itak et a/., 1994; Zajicek et a/., 1996; Zajicek 

et ai, 2000). Biological monitoring data is often essential to provide a measure of 

exposure to biologically "available" contaminants. Methods to provide this data, 

however, are often complex. 

Conventional biomonitoring methods, which use chromatographic techniques, are 

often time consuming, labour intensive, and expensive. Immunochemical methods, such 

as enzyme-linked inununosorbent assays (ELISAs), are easier and less expensive to use, 

can be very specific to the chemical or group of chemicals (e.g. PCBs), may offer 

improved limits of detection, and are easily adapted for use in the field. 

The principles of enzyme-linked immunosorbent assays (ELISA) have been 

previously described (Kemeny, 1991; Aga, 1997; Sherry, 1997). Among several ELISA 

formats available, the PCB RaPID Assay® (Strategic Diagnostics Inc., Newtown, PA, 

USA) using magnetic particle-based immunoassay was selected for this study. This 
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format has been applied to the detection of contaminants in different matrices such as 

water (Dombrowski et o/., 1997; Barcelo et al, 1998), sediment/soil (Lawruk et al., 

1993a; Lawruk et ai, 1993b; Hottenstein et al., 1995; Donnelly et ai, 1996), organisms 

(Zajicek et a/., 1996) and food (Nam and King, 1994; Itak et aL, 1994; Lawruk et a/., 

1995) . In addition, magnetic particle ELISA has shown better precision and sensitivity 

compared to formats where the antibody is passively adsorbed to polystyrene tubes 

(Aga and Thurman. 1993; Lawruk et a/., 1996). 

Whilst primarily designed for analyses of polychlorinated biphenyls (PCBs) in water, 

our goal was to adapt and evaluate the effectiveness of this immunoassay method in 

measuring PCB levels in the biological tissues of exposed invertebrates (mussels). 

These evaluations included: a) adaptation of our routine sample work-up procedure to 

combine with ELISA; b) determination of matrix effects relating to co-extracted 

biogenic materials; c) assessment of cross-reactivities of the antibodies with technical 

PCB mixtures (Aroclors); d) assessment of reproducibility and limits of detection, and; 

e) determination of how well immunoassay results correlate with more definitive cGC-

ECD results. 

4.4.2 Results and Discussion 

PCB congener patterns in contaminated environmental matrices often resemble those 

of the commercial/technical PCB mixtures (Aroclor® 1016, 1242, 1248, 1254 and 1260) 

or their combinations. As a result, immunoassay antibodies for PCB analysis have been 

raised and calibrated against technical Aroclors (e.g. Aroclor 1254 (Lawruk et aL, 

1996) ; Aroclor 1248 (Zajicek et aL, 2000)). The RaPK) Assay® PCB ELISA was raised 

and calibrated against Aroclor 1254. For these reasons, performance testing of the 

immunoassay procedure included other technical Aroclor mixtures. 

Some organisms, however, can accumulate a modified composition of congeners 

depending on the extent of environmental alterations, and the bioaccumulative and 

metabolic capabilities of the organisms (Lake et aL, 1995). Results for the ELISA are, 

therefore, compared with GC-ECD results to better understand the ELISA response to 

environmental PCB compositions. 
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4.4.2.1 Performance of ELISA 

Immunoassay kits for particulate analyses generally recommend methanolic 

extraction which results in a solution compatible with the immunosorbent assay 

(Hottenstein et a/., 1995; Lawruk et ai, 1996). Extractions involving polar solvents, 

however, are generally not as effective for complex matrices and very hydrophobic 

contaminants (Johnson and VanEmon, 1996; Johnson et ai, 2001). For this reason, 

Soxhlet extraction, which yields high recoveries (and is used in our routine sample 

preparation procedure for PCB analysis), was selected to provide extracts for this study. 

This does, however, coextract extraneous lipids which can introduce matrix effects with 

the ELISA. In addition, hydrophobic solvents (e.g. isooctane, hexane, etc.) inhibit the 

ELISA. For example, Zajicek et al. (1996) have reported significant interference by 

isooctane on a PCB ELISA (based on antibody-coated magnetic particles) even at trace 

0.1% (v/v) concentrations. Therefore, a solvent exchange procedure (hexane to 

methanol) is essential when using high sensitivity ELISA such as PCB RaPID Assay®. 

Matrix effects were carefiilly studied. A preparatory clean-up (see Section 2.2.3) was 

selected to remove the bulk of extraneous lipids. Ten mussel samples were diluted (to 

cover the entire range of the standard calibration curve) and then analysed by ELISA. 

Results were compared to similar curves resulting from Aroclor 1254 standards. A lack 

o f parallelism between samples and standard curves can indicate matrix effects 

(Kemeny, 1991). The slope of the curves (slope = 0.663 ± 0.023, r̂  = 0.97 ± 0.04, n = 

10, not shown) was unaffected by the dilutions, providing evidence that no significant 

matrix effects were present using the selected analytical conditions. 

The method detection limit (MDL), as estimated at 90% B/Bo for the Aroclor 1254 

calibration dilutions, was 0.08 ng mL *. The 50% B/Bo (concentration required to 

inhibit one-half of the colour produced by the negative control) was 2.9 ng mL"' (Table 

4.4). This sensitivity approached the estimated detection limit for the C j C - E C D 

technique (0.1 ng mL"'). The assay detection limit for mussel tissue was 0.6 ^g g'* (dry 

wt.), which is the 90% B/Bo corrected for the dilution used. Quantification using the 

ELISA must be within the range of the standard curve (0.6 to 40 ng g ') and appropriate 

dilutions must be made. The sensitivity can be improved by reducing the dilution up to 

a limit that guarantees no matrix effect. The coefficient of variation (%CV) within the 

assay was less than 11 ± 4% (n = 10), which is similar to conventional analytical 

variability. 
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Within the analytical protocol, internal standard PCB 29 (40 ng) was added to enable 

improved quantification by cGC-ECD (to correct for recovery). Thus the compound 

was also present in the extracts analysed by ELISA. Tests to investigate the potential for 

this to affect the immunoassay results revealed that even ten times the amount of PCB 

29 added as internal standard produced no measurable ELISA response. 

Although the PCB RaPID Assay® was raised and calibrated against the technical 

Aroclor 1254 mixture, compositions of PCBs in the environment can vary and reflect 

other Aroclors (or their combination) thus resulting in different ELISA responses. The 

ELISA was, therefore, tested against other commercial Aroclors (1242, 1248 and 1260). 

Results relative to Aroclor 1254 are given in Table 4.4 and demonstrate that the assay is 

broadly responsive to all the Aroclors tested. The ELISA response for Aroclor 1242 and 

1248 is smaller indicating that these congener mixtures have lower binding efficiency 

than those of Aroclor 1254. Conversely, Aroclor 1260 has a higher binding efficiency 

than Aroclor 1254, inferring that it has a higher proportion of strongly binding 

congeners. These results indicate that the antibodies have increased affinity for 

congeners with a higher degree of chlorination. Similar relative cross-reactivities for the 

Aroclors have been reported by Lawruk et aL (1996) using a magnetic-particle PCB 

ELISA and Zajicek et aL (2000) using a EnviroGard™ tube format PCB ELISA. 

Table 4.4. Specificity (cross-reactivity) of Aroclors® in the PCB RaPID Assay® 

% MDL° 50%B/Bo*' Cross-

Aroclor® Chlorination (ngmU^) (ngmU^) reactivity 

1260 60 0.08 212 1.07 

1254 54 0.08 2.90 1.00 

1248 48 0.16 6.90 0.42 

1242 42 0.35 14.20 0.20 

• M D L - method detection limit (90% B/Bo) 
50%B/Bo - is the concentration required to inhibiting one-half of the colour produced by the 

negative control. 

Lawruk et aL (1996), using a magnetic-particle PCB ELISA, showed that PCB 

antibodies are most reactive to the Aroclors that largely contain 4, 5, and 6 chlorine-

substituted homologues (i.e., Aroclor 1248, 1254, 1260) because Aroclor 1254 (which 

was used as the PCB immunogen) is comprised of 94% of these homologues. It is, 

however, difficult to determine which specific congeners are most reactive to the 
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antibodies. Carlson (1995) suggested that a PCB immunoassay had a greater specificity 

for congeners with 2,4,5- substitution pattern and its 2,4- and 2,5- subsets, which 

represent a significant portion of Aroclor mixtures. In the present study, the response of 

the assay was v^thin a factor of 2.5 for Aroclors 1248 and 1260 and is in agreement 

with the significance of 2,4-, 2,5- and 2,4,5- substitution in these congener mixtures. In 

general, as the percent chlorination of Aroclors increases, so does their content of 

congeners chlorinated in the 2-,4-,5-,2'-,4'-,5'-positions and hence ELISA cross-

reactivity (Zajicek et ai, 2000). Lawruk et al (1996) showed, however, that a coplanar 

PCB (3,3',4,4',5-pentachlorobiphenyl) was the most reactive of a selection of congeners 

tested. Another pentachlorobiphenyl (2,3,4,4',5-) along with tetra- and 

hexachlorobiphenyls showed much lower reactivities. 

4,4,2,2 Comparison of results from ELISA and cGC-ECD 

In total, twenty-seven (27) mussel tissue samples were analysed by ELISA and GC-

ECD. These included mussels from natural populations (with diverse concentrations of 

PCBs from 0.3 - 100 ^g g ' dry wt; n = 20), tissues fortified with Aroclor 1254 (0.7 - 40 

^g g'̂  dry wt; n = 3), and replicates of a certified standard reference material (SRM 

2977, n = 4). To enable comparison of the results obtained by both techniques, the GC 

results were not corrected for procedural recovery since ELISA results cannot be 

corrected for this factor. Losses during the analytical procedure were typically less than 

20% (based on recoveries of the internal standard). Since mussel extracts were 

processed using the same general analytical procedure for both GC and ELISA 

analyses, losses should be comparable. However, minor differences might be expected 

because the extracts for ELISA analyses went through an additional solvent exchange 

and dilution, whilst the GC extracts were further cleaned-up and fractionated using 

Florisil® 

Comparison of "total" PCB data for both techniques (E 128 congeners for the GC-

ECD; Aroclor 1254 "equivalents" for ELISA) shows a high correlation between the 

immunoassay and GC results (r^ = 0.95, slope = 1.28, n = 27) (Fig. 4.5). ELISA results, 

however, were consistently lower than those obtained by GC by a factor of 0.83 (3-

29%). A reduced antibody response, due to differences in the congener composition 

between the mussel extracts and Aroclor 1254 (used to raise and calibrate the ELISA), 

provides the most likely explanation for this discrepancy. 
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To ftirther investigate differences between the PCB congener compositional patterns, 

the cCG-ECD data were subjected to principal component analysis (PCA) ) (PCl -

29.9%; PC2 - 27.8%) (Fig. 4.6). The majority of the PCB mixtures in most mussel 

extracts, although differing from technical Aroclors (or their combinations), are 

confirmed to be most closely related to the technical Aroclor 1254. Mussel samples 

from Whitsand Bay, however, are shown to comprise either a mixture o f Aroclors or an 

environmentally altered technical mixture (Fig. 4.6). The good agreement achieved 

between the ELISA and GC results is enhanced because the mussel extract PCB 

composition resembles that of Aroclor 1254. This is supported by the fact that the 

samples fortified with pure Aroclor 1254 exhibit ELISA/GC ratios very close to one 

(Fig. 4.5). 
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Figure 4.5. Correlation between PCB concentrafions in field-contaminated samples 
(New Bedford Harbor ( • ) ; Whitsand Bay ( • ) ) , Aroclor 1254-fortified mussel tissue ( • ) 

and standard reference material (A). GC-determined PCB concentration - E 128 
congeners; ELISA-determined PCB concentration - Aroclor 1254 "equivalents". 

Our results are consistent with levels and congener patterns previously reported for 

New Bedford Harbour (Pruell et a/., 1990; Lake et a/., 1995; Ho et ai, 1997). Whilst 

physical, chemical and metabolic processes can potentially discriminate between 

congeners, the cGC-ECD data closely matches the patterns reported for other bivalves, 

sediments and water in New Bedford Harbour (Pruell et ai, 1990; Lake et aL, 1995). 
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This is in agreement with negligible metabolism of PCBs by the mussels (Brown, 

1992), although Lake et ai (1987; 1995) do suggest enhanced accumulation of mid 

range congeners. No previous data are available for mussels from Whitsand Bay, UK. 
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Figure 4.6. Principal component analysis (PCA) for Aroclor mixtures and 
environmental samples analysed by cGC-ECD. 1:1:1:1- equal parts of Aroclor 1242, 

1248, 1254 and 1260; 1254:1242 - equal parts of Aroclor 1242 and 1254; S R M -
standard reference material; WS - Whitsand Bay (UK); NBH - New Bedford Harbor 

(USA); 1254 - Aroclor 1254 and Aroclor 1254-fortified mussel tissue. 

A comparison of PCB data for the different sites and samples is presented in Fig. 4.7. 

Comparison of means (± 2 standard error), based on four samples for each site, shows 

that the techniques are comparable over a wide range of concentrations. Indeed, no 

significant differences were detected (p>0.05) with PCB concentrations up to 30 ng g V 

It is, however, revealed that for the samples with the highest concentrations of PCBs, 

whilst the trend in increased concentration is shown by both techniques, results fix)m the 

two methods are statistically different (p<0.01) (Fig. 4.7). This marginal difference 

probably relates to the fact that even after dilution, the measurement was made at the 

upper part of the calibration curve. It is notable, however, that larger differences can be 

observed between individual environmental samples taken from the same location 

(Bergen et a/., 2001). Thus, the lower ELISA results could potentially relate to 

methodological differences, especially solvent exchange and sample dilution. It was 

necessary to transfer the ELISA extract from hexane to methanol. This involved taking 
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the extract to dryness followed by redissolution of the residue in methanol. Although 

this can result in losses of volatiles or problems related to dissolution of hydrophobic 

contaminants into a comparatively polar solvent, Zajicek et al. (1996) have shown good 

and quantitative recoveries for this procedure with PCBs. It is also noteworthy that the 

ELISA diluent (50% v/v methanol/buffered solution) is polar and the solubility of 

hydrophobic chemicals is likely to be reduced. Li and Andren (1994) measured 

solubilities of different PCBs (PCB 3, PCB 30, and PCB 155) in mixtures of water and 

methanol. Concentrations of PCBs in the extracts in the present study are generally well 

within the solubility limits determined by Li and Andren (1994). With the most 

concentrated samples (Site 4, Fig. 4.7), however, limits of solvation are being 

approached. 
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Figure 4.7. Results {\ig g'̂  dry wt) of procedural blanks, standard reference material 
(SRM) and environmental samples (sites 1, 2, 3 and 4 - New Bedford Harbour, USA; 
WSBay - Whitsand Bay, UK) analysed by ELISA and cGC-ECD. Values shown are 

means (± 2 standard errors, n = 4). • - /-test p<0.01. ^*Total" PCB - GC (E 128 congeners); ELISA 
(Aroclor 1254 "equivalents"). 

Finally, a second exploratory statistical procedure, similarity analysis (Primer®), was 

used to investigate the correlation between immunoassay results and individual 

congener distributions. It revealed the highest correlations to be between prominent 

congeners in the Aroclor 1254 mixture and supports the conclusion that PCB ELISA 
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results are affected by the degree of chlorination. It did not, however, identify any 

specific substitution pattern to be more highly correlated. 

4.4.3 Conclusions 

ELISA can be used to measure **total" PCBs in hydrophobic extracts following 

removal of lipids and non-polar solvent. 

The accuracy of PCB ELISA measurements can be maximised by grouping samples 

with a common source of PCB contamination and by using an appropriate technical 

PCB mixture as the calibration standard. The reactivity of the polyclonal antibody used 

allows the detection of Aroclor 1248, 1254 and 1260, with a good degree of agreement. 

In the present study, where environmental samples were contaminated with PCB 

patterns similar to that of Aroclor 1254, consistent results are reported. 

Although cGC-ECD affords the capability to quantify individual congeners o f 

differing reactivity and toxicity, the data reported indicates that ELISA analyses of 

mussel tissue offer a rapid general indication of the level of contamination. Even though 

Soxhlet extraction and partial clean-up is necessary to remove lipids, ELISA is not as 

time consuming or expensive as GC analyses. Because the same sample is used and 

extracted for both ELISA and GC-ECD analyses, initial ELISA screening can be used 

to identify samples appropriate for chromatography. After sample preparation, twenty 

quantitative ELISA analyses (in duplicate) can be obtained in less than 2 hours. The 

procedure described, which involves Soxhlet extraction and partial purification, is not, 

however, suitable for adaptation to "on-site" monitoring of PCBs. 

4.5 PAH/PAH metabolites in crab urine 

4.5.1 Introduction 

Biological monitoring data are oflen essential for exposure assessments. Polycyclic 

aromatic hydrocarbons (PAHs) occur ubiquitously as complex mixtures in the 

environment and there is very strong evidence that some of them are carcinogenic to 

organisms (Geraci and Aubin, 1990; Di Giulio et al, 1995; Baird, 1999). Generally, 

environmental exposure of organisms is assessed by monitoring their environment 

(sediment/soil, water and air). Biomonitoring, however, can provide an assessment o f 

the integrated uptake through all exposure routes. This is important since only the 
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bioavailable chemical is likely to be assimilated/concentrated in tissues, body fluids and 

excreta. Owing to the complexity of biological samples, however, complex analytical 

protocols are traditionally used for analyses, and are often time consuming, labour 

intensive, and expensive. 

Biomarkers of exposure can measure either the concentration of contaminants in 

body fluids or tissues of exposed individuals (Jongeneelen, 1997). Since PAHs 

comprise a mixture of compounds, biomarkers can either address the whole group of 

PAH isomers or specific/single PAHs (Jongeneelen, 1997). A variety of biomarker 

techniques have been used to investigate PAH exposure, e.g. urinary PAH-metabolites, 

DNA-adducts, cytochrome P450, and analytical measurements using immunochemical 

or chromatographic methods. Specific hydroxy-PAHs (e.g. 1-OH-pyrene) in urine 

(Levin et aL, 1995; Blackburn et aL, 1999) (Strickland and Kang, 1999; Jongeneelen, 

2001) and immunoassays using monoclonal antibodies to detect specific DNA-adducts 

(Casale et aL, 1996; Bentsen-Farmen et aL, 1999) provide single PAH-markers. ^^P-

post-labelling assays can detect total aromatic DNA-adducts, giving a measure of 

exposure to '*total" PAH (Jongeneelen, 1997; Marafie et aL, 2000; Koganti et aL, 2001). 

Quantification of various PAH in urine has been suggested to be useful biomarker, 

either after 'reversed metabolism' (enzymatic hydrolysis) to parent PAH (van Schanke 

et aL, 2001) or by determining a variety of hydroxylated-PAH (Mannschreck et aL, 

1996; Grimmer et aL, 1997; Angerer et aL, 1997). 

Immunochemical methods, such as enzyme-linked immunosorbent assay (ELISA), 

have been routinely used for monitoring of human exposure (Knopp, 1995; Biagini et 

aL, 1995; Mastin et aL, 1998; Knopp et aL, 1999; Striley et aL, 1999; MacKenzie et aL, 

2000). Only recently ELISA techniques have been tested on body fluids and excreta of 

aquatic organisms (Filbnann et aL, In Press b). Polyclonal ELISA can provide a "total" 

PAH measure without the need for enzymatic hydrolysis (Fillmann et aL, In Press b). 

This allows contributions from both pyrolytic and petrogenic sources to be assessed. 

Compared to conventional chromatographic methods, ELISA is rapid, easier and less 

expensive to use, can afford comparable limits of detection, and is easily adapted for use 

in the field (Mastin et aL, 1998). By integrating ELISA with urine analyses, an elegant 

(non-destructive) measure of exposure is afforded. Cross-reactivity and kinetics of 

metabolism and excretion, however, require consideration and testing. 
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In the present study, which includes laboratory exposure experiments and field 

investigations, the effectiveness of ELISA for measuring PAH metabolite levels in the 

urine of exposed aquatic crabs {Carcinus maenas) is assessed by: a) evaluating matrix 

effects associated with the urine; b) assessing cross-reactivities of the ELISA antibodies 

with parent PAH and their metabolites (1-OH-pyrene and 9-OH-phenanthrene); c) 

investigating sensitivity and limits of detection; d) determining whether immunoassay 

results correlate with more conventional analytical techniques (UV-fluorescence), and 

e) identifying the main urinary pyrene metabolites produced by Carcinus maenas using 

high performance liquid chromatography (HPLC). A conunercially available 

immunoassay kit was selected for urinary biomonitoring (PAH RaPID Assay®, Strategic 

Diagnostics Inc., Newtown, PA). This kit was originally designed to measure PAH in 

water. 

4.5.2 Results and Discussion 

When using biological monitoring techniques, to effectively assess exposure of an 

organism to a chemical, the metabolism and excretion of the compound needs to be 

considered. The approach adopted in this research uses controlled experimental dosing 

utilising different quantification procedures and includes identification of metabolites. 

Environmentally exposed crabs fi'ora clean and contaminated site are then investigated 

to assess whether the presence of metabolites or differences in their concentrations can 

be measured by ELISA. 

4.5.2. J A nalytical Performance 

Fluorescence Spectrometry. The fluorescence spectrometry was calibrated against 

the major metabolites 1-OH-pyrene and 9-OH-phenanthrene. Linearity within the 

concentration range of 0-200 ^ig L * exceeded 0.99 for both compounds. The limit of 

detection (LOU) of the fluorescence assay (defined as the average blank signal ± 3SD) 

was 6.2 ± 0.5 ^g L ' ' for 1-OH-pyrene and 6.8 ± 1.7 ^g L ' ' for 9-OH-phenanthrene. 

Blanks revealed negligible fluorescence. With analyses of the urine, for practical 

purpose (urine volume) and to negate matrix effects, samples were diluted at least 1:20 

for pyrene and at least 1:40 for phenanthrene exposed crabs. 

Immunoassay, The linearity of standard calibration curves of pyrene and 

phenanthrene analysed by ELISA was > 0.97. The method detection limit (MDL) for 

the PAH RaPID Assay® defined as the concentration giving 90% B/Bo was 0.92 ± 0.08 
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Hg L ' (phenanthrene), 24.5 ± 2.7 ng L * (9-OH-phenanthrene), 9.09 ± 0.76 ^ig L * 

(pyrene) and 8.82 ± 0.96 pg L * (1-OH-pyrene) (Table 4.5). The coefficient of variation 

(%CV) for repeated analyses for a single sample assay was 12 ± 5% (n = 8), similar to 

variations with conventional analytical techniques. A 1:20 dilution was found to be 

required to minimise matrix effects (see below), thus providing practical envirormiental 

MDLs 20-fold higher than these concentrations quoted for the standards. 

Table 4.5. Reactivity of parent PAHs and metabolites in the ELISA (n = 3) 

MDL* 

( M g L ' ) 

50% B/Bo** 

(Mg L-') 

Cross- reactivity 

(%) 

Phenanthrene 0.92 ± 0.08 28.7 100 

9-OH-phenanthrene 24.5 ± 2.7 655.2 4.4 

Pyrene 9.01 ±0 .76 280.6 10.2 

1-OH-pyrene 8.82 ± 0.96 290.9 9.9 

• M D L - method detection limit (90% B/Bo) 
** 50%B/Bo - is the concentration required to inhibiting one-half of the colour produced 
by the negative control. 

Table 4.5 shows the cross-reactivity and 50% B/Bo (ICso) values (concentration 

required to inhibit one-half of the colour produced by the negative control) determined 

for phenanthrene, 9-OH-phenanthrene, pyrene and 1-OH-pyrene using PAH RaPID 

Assay®. The ELISA proved to be highly sensitive to phenanthrene (indicated by low 

50% B/Bo values), but less so for pyrene and monohydroxy metabolites. The better 

performance for phenanthrene is explained because the immunoassay antibodies were 

raised against phenanthrene (Waters et aL, 1997a). Table 4.6 shows a comparison of 

50% B/Bo values for other PAHs (taken from the manufacturer's documentation). 

These results indicate that the ELISA wil l detect most PAH (albeit with differing 

sensitivities) potentially affording an effective monitor of exposure to environmental 

PAHs. 

Undiluted human urine interferes with the ELISA to seriously hinder its sensitivity 

and dynamic range (Mastin et aL, 1998; Knopp et aL, 1999; MacKenzie et aL, 2000). In 

order to investigate matrix effects for the PAH ELISA assay, aliquots of diluted control 

crab urine (1:5 to 1:80) were analysed by the ELISA. A representative plot o f the urine 

samples is shown in Fig. 4.8. Even though differences in absorbances (or B/Bo) were 
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evident in undiluted or slightly diluted urine samples, at dilutions equal or greater than 

1:20 matrix-induced differences were minimal (Fig. 4.8). 

Table 4.6. Specificity (cross-reactivity) of parent PAHs and metabolites in the ELISA. 
Taken from the manufacture's insert (RaPID Assay®) 

MDL^ 50% B/Bo** 

(Mg L-') (MgL-') 

Phenanthrene 0.93 21.9 

Fluoranthene 0.43 6.3 

Benzo(a)pyrene 0.67 9.2 

Pyrene 0.27 10.2 

Chrysene 0.53 10.4 

Anthracene 0.72 14.6 

lndeno( 1,2,3-c,d)pyrene 1.04 36.2 

Benz(a)anthracene 1.02 37.8 

Fluorene 2.19 46.8 

Benzo(b)fluoranthene 1.21 72.1 

Acenaphthylene 13.3 595 

Benzo(k)fluoranthene 1.02 697 

Ace naphthalene 17.2 915 

Benzo(g,h,i)perylene 19,6 >1330 

Naphthalene 86.5 >1330 

Dibenzo(a,h)anthracene 34.2 >1330 

' M D L - method detection limit (90% B/Bo) 
50%B/Bo - is the concentration required to inhibiting one-half of the 

colour produced by the negative control. 

4.5.2.2 Performance of ELISA 

4.5.2.2. J Laboratory exposure experiments 

Response to exposure. To evaluate whether or not crabs are useful in biomonitoring 

PAH exposure it is necessary to investigate the dose-response relationship. It is also 

important to understand the kinetics of metabolism and excretion. Time- and dose-

response experiments for C. maenas demonstrate that urinary levels of pyrene 

"equivalents" reached a maximum after 48 hrs (Fig. 4.9). Urinary levels proved to be 

dose-dependent for both phenanthrene (Fig. 4.10) and pyrene (Fig. 4.11). A simple 

regression analysis of mean urinary levels over the range of exposure concentrations 

produced a correlation coefficient of above 0.8 for both parent PAHs. 
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Figure 4.8. Matrix effects of crab urine on the PAH RaPID Assay® ELISA. B/Bo is the 
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Figure 4.9. Fluorescence intensity (FF) measured in the urine of shore crabs exposed to 
pyrene for up to 10 days. Peak concentrations are reached between 2 and 4 days 

Fluorescence spectra. Fixed excitation wavelength fluorescence (FF) analyses of 

urine samples from pyrene exposed crabs produced three distinct peaks on the emission 

spectrum, with the largest at approximately 382nm (Fig. 4.12). In phenanthrene exposed 

crabs urine a broad fluorescence in the emission range of 350-400nm resulted (Fig. 
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4.13). These peaks are conspicuously absent from control samples (Figs. 4.12 and 4.13). 

Synchronous excitation/emission fluorescence spectrometry (SFS) reduced these peaks 

to a single emission band, with a large sharp peak around Ex340/Em382 nm in pyrene 

exposed samples and around Ex300/Em354 nm in phenanthrene exposed samples (not 

shown). Once again, controls lacked these peaks. The position of the dominant emission 

peaks seen in FF and SFS for pyrene exposed samples is shifted approximately 5nm 

from that of the largest peak seen in the 1-OH-pyrene standard spectra (~Em387 nm) 

(Fig. 4.12). The unresolved "shoulder" to the main peak (exposed sample) is interesting 

since it indicates (together with the main peak) the presence of compounds with 

potentially similar properties of 1-OH-pyrene, possibly pyrene conjugates. Parent 

pyrene is almost certainly absent from the urine since its characteristic synchronous 

peak at 372 nm (wavelength difference of 37nm) is not present in the urinary spectra of 

exposed crabs. According to Ariese et al (Ariese et a/., 1993), the emission spectrum of 

conjugated 1-OH pyrene (e.g. pyrene-1-glucuronide) is blue shifted by 5nm. The results 

above might indicate that C. maenas can transform pyrene and phenanthrene following 

exposure and excrete them in the urine as more water-soluble metabolites/conjugates. 
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Figure 4.10. Correlation between PAH RaPID Assay® ELISA and FF252/357 analyses of 
phenanthrene metabolites in crab urine. Exposure concentrations: (•) 200 ng L ' \ (o) 
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From previous studies, it is known that aquatic organisms are capable of 

metabolising PAH. Primary and conjugated metabolites of pyrene, phenanthrene and 

benzo(a)pyrene were identified in bile and urine of vertebrates and invertebrates 

(Solbakken et al, 1980; James et a/., 1988; James et a/., 1991; Ariese et a/., 1993; Li 

and James. 1993; Law and Biscaya, 1994; Aas et a/., 1998; James and Boyle, 1998). 

Marine crustacean studies have shown that hepatopancreatic and other organs 

microsomes contained cytochrome P450 (Li and James, 1993; James and Boyle, 1998), 

which can metabolise PAH. PAH metabolism studies in shore crab (C. maenas) have 

shown that benzo(a)pyrene is rapidly metabolised to primary and conjugated 

metabolites (McElroy and Colarusso, 1988; Lemaire et al., 1993). 
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Figure 4.11. Correlation between PAH RaPID Assay® ELISA and FF345/382 analyses of 
pyrene metabolites in crab urine. Exposure concentrations: (•) 200 L " \ (o) 100 ^g 

V\ (O) 50 Mg L - \ ( ^ ) 25 Mg L ^ (A) 0 Mg L"' 

HPLC analysis. The fluorescence data (described above) indicate strongly that the 

pyrene is being metabolised. For this reason, HPLC analyses of urine samples were 

undertaken to investigate the metabolites. From the literature, the initial metabolite is 

thought to consist mainly of 1-hydroxypyrene, which is subsequently conjugated into 

Phase n metabolites (Stroomberg et ai, 1996; Stroomberg et al, 1999). Our results 

concur with this and indicate conjugation into three major metabolites. A typical 

chromatogram is shown in Fig. 4.14. Two of the conjugates were identified as pyrene-l-
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glucoside and pyrene-l-sulfate (Fig. 4.14). The identity of one other conjugate is still 

unknown but Stroomberg and co-workers, who have found the same metaboHte in 

isopods, have, using electrospray mass spectrometry, estabUshed that it has an m/z ratio 

of 467 (Stroomberg et al. Submitted). Evidence of a malonate and a glucoside 

functional groups on a pyrene moiety has been obtained (Stroomberg, personal 

communication). The other two peaks present in the chromatogram could not be 

identified (^17.6 / 18 min, and 24.2 min. Fig. 4.14), but from their fluorescence 

properties are possibly pyrene or pyrene-like structures. None of the metabolites 

observed coeluted with pyrene-1-glucuronide, although the peaks at 17.6 /18 min were 

marginally close to it. In vertebrates, the preferred carbohydrate cosubstrate is UDP-

glucoronic acid, giving rise to glucuronides. In crustaceans, however, the preferred 

cosubstrate is UDP-glucose, forming the glucosides (James, 1987; Li and James, 1993; 

Livingstone, 1998). Finally, the last peak in the chromatograms was parent pyrene. 

Although not quantified, the pyrene peak was always negligible (Fig. 4.14). The relative 

distribufions of conjugates show that pyrene-l-glucoside and pyrene-l-'conjugate' 

dominated (Fig. 4.15). Comparing the relative amounts of 1-OH-pyrene and its 

conjugates, it was found that an average of 38.9% is present as pyrene-l-glucoside, 

9.7% as pyrene-l-sulfate, 47.7% as the unknown conjugate and 3.7% as non-conjugated 

l-hydroxy-pyrene. The fact that the amount of 1-OH-pyrene is rather small in 

comparison to the pyrene conjugates indicates a high conjugation rate of 1-OH-pyrene 

(Stroomberg et al., 1999). These ratios indicate that glucosidation is more efficient than 

sulfation. 

The metabolite pattern detected at high exposure concentrations, however, might not 

necessarily reflect baseline metabolic patterns. Exposure to high levels of pyrene might 

involve all available metabolic pathways, thus producing many different metabolites. 

Comparing conjugate patterns in experimentally exposed and in environmentally 

exposed organisms, it can be seen that most conjugates are formed under both exposure 

conditions although the relative levels of metabolites are different (Figs. 4.15 and 4.16). 

Compared to PAH metabolism studies on benzo(a)pyrene in shore crab {Carcinus 

maenas) (Lemaire et al., 1993), the number of metabolites formed following pyrene 

exposure is limited to one major intermediate (1-hydroxypyrene), which restricts the 

number of final conjugates. 
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Figure 4.12. Fixed excitation wavelength fluorescence (FF345/382) spectra of urine from 
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Figure 4.13. Fixed excitation wavelength fluorescence (FF252/357) spectra of urine from 
crabs exposed to phenanthrene 
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Figure 4.14. HPLC-fluorescence chromatogram (Xex/em = 346/384 nm) of urine from 
crabs exposed to 200^g L"' pyrene. *pyrene-l-*conjugate' has not been identified 
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Figure 4.15. Concentrations of 1-OH-pyrene and conjugates (ng |iL'*) in urine from 
crabs exposed to pyrene (200 and 100 ^g L *) and control. *pyrene-l-*conjugate' has not been 

identified 
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Comparison of ELISA, fluorescence and HPLC results. Comparison of results fix)m 

the immunoassay and fluorescence techniques shows a high correlation for urine of 

crabs exposed to phenanthrene (r̂  = 0.83; n = 40) and pyrene (r̂  = 0.88; n = 42) (Figs. 

4.10 and 4.11). ELISA results, however, were consistently lower than those obtained by 

fluorescence by a factor of 0.26 (9-OH-phenanthrene equivalents) and 0.16 (1-OH-

pyrene equivalents) (Figs. 4.10 and 4.11). With polyclonal antibodies, reactivities differ 

between chemical structures such as the diverse metabolites and conjugates discussed in 

the previous section. It is therefore feasible that the PAH conjugates present in the crab 

urine samples are less reactive than the parent PAH used to raise the antibody. 

PAH levels derived fi^om HPLC results (sum of the 4 main pyrene 

metabolites/conjugates) show very good agreement with the ELISA (r̂  > 0.94) and 

fluorescence (r^ > 0.91) data (Fig. 4.17). This affords strong validation for the "rapid" 

assessment techniques. 
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Figure 4.16. Concentrations of 1-OH-pyrene and conjugates (ng ^L"*) in urine from 
crabs taken from clean (Bantham) and contaminated (Sutton Harbour) sites, •pyrene-1-

*coDjugate* has not been identified 

The results above provide evidence that exposure of crabs to PAH can be usefiilly 

assessed by analyses of their urine. Whilst absolute levels may be difficult to determine, 

both ELISA and fluorescence appear to provide a rapid and useful measure of exposure. 

However, it is important to extend the assessment from experimental systems to the 

field. 
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4.5.2.2.2 Environmental samples 

To test the applicability of the urinary analyses to assess exposure of crabs to PAH 

under field conditions, crabs from clean and contaminated environments were 

investigated. Results are shown in Fig. 4.18 and demonstrate that urine analyses can 

clearly identify crabs from the differing environments. Variations in concentrations 

from Sutton Harbour (the contaminated site) are, however, large. 
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Figure 4.17. Correlations between PAH RaPID Assay® ELISA and HPLC results (•) 
and FF345/382 and HPLC results (O) of pyrene metabolites in crab urine 

Comparison of the ELISA and UV-fluorescence results show that both techniques 

detected PAHs (mainly petrogenic) contamination in urine with good agreement (r^ = 

0.83; n = 15) (Fig. 4.18). The fluorescence spectra for the contaminated site showed a 

broad fluorescence characteristic of naphthalene/phenanthrene wavelengths (Fig. 4.19). 

In some samples, weak fluorescence at pyrene wavelengths (not shown) was also 

recorded. Samples taken from the clean site contained no such peaks (Fig. 4.19). To 

further characterise the PAH mixture, extracts were also subject to synchronous 

fluorescence spectrometry (SFS). HPLC/FIuorescence analyses were run on selected 

extracts to identify and quantify any pyrene metabolites/conjugates present in the 

environmental samples. Results from both Bantham (clean) and Sutton Harbour 

(contaminated) showed very low concentrations (close to the limits of detection of the 

method) (Fig. 4.16). Indeed, concentrations of PAH metabolites/conjugates approached 
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the levels in laboratory control samples. From the fluorescence results, however, mainly 

to 2-3 ring PAHs were shown to dominate the environmental PAH with only very small 

concentrations from 4 ring congener such as pyrene. 

These data demonstrate that both the ELISA and fluorescence analyses of the crab 

urine can differentiate organisms from contaminated areas. 
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Figure 4.18. Correlation between PAH RaPID Assay® ELISA and SFS (42 nm diff.) 
analyses of PAH type metabolites in urine taken from environmentally exposed crabs. 
(•) Bantham (control) and (O) Sutton Harbour (contaminated) - Southwest England 

4.5.2.2.3 Interindividual variability of urinary PAH metabolites 

Urinary PAH data showed considerable interindividual variability both within 

experimentally and environmentally exposed populations. In some cases, levels of 

urinary PAHs were 3-4 times higher in some individuals compared to others, despite 

being exposed to the same concentrations of parent PAH. Interindividual variations 

relating to biological differences are difficult to assess. Whilst this might be easier to 

explain with field populations, where variations in dietary, pre-exposure to xenobiotics 

and contaminant concentrations within sites is inevitable, it is more difficult to explain 

in a seemingly homogenous group of organisms (similar size, sex, and moulting stage) 

kept under experimentally controlled conditions. This might partly be explained by 

interindividual variations in absorption, metabolism and/or excretion of PAHs. 

Variations in the rate and degree of metabolism will also be influenced by the level of 
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induction and efficacy of the appropriate P450 enzymes, possible pre-exposure to 

xenobiotics (Carr and Neff, 1988) and subtle differences in moult stage between crabs 

(Mothershead and Hale. 1992). Concerning field populations, interindividual variations 

in PAH metabolite levels in aquatic organisms (fish bile) have been previously reported 

(Krahn et ai, 1986; Lin et ai, 1994). 

It is feasible that the variability in data might be better characterised with larger 

sample numbers (Siwinska et al, 1998). In the absence of previous data concerning 

variability in crabs exposed to contaminants and experimental constraints the present 

design was considered optimal for a preliminary investigation. Other scientists have 

promoted normalisation of urinary concentrations to other components to allow for 

fluctuations related to dilution (Jongeneelen et A/ . , 1987). These studies, however, relate 

to human investigations and, whilst theoretically very appealing, no current research has 

identified potential candidate compounds in crustaceans. Conversely, some authors 

believe this normalisation procedure has little effect on the results (Kanoh et al, 1993; 

Kang et al, 1995; Levin et a/., 1995; Aas et ai, 2000). 

soo.o-

250.0 
240.0 

PAHs 
2-3 rings 

Sutton Harbour (polluted) 

Banthan (clean) 

300.0 I— I — 
350.0 

400.0 450.0 
500.0 

Figure 4.19, Synchronous excitation/emission fluorescence spectra (SFSAX42nin) of crab 
urine taken from environmentally exposed (Sutton Harbour) and control (Bantham) 

sites 
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4.5.3 Future research 

With recent developments into new antibodies, it is now possible to selectively detect 

major metabolites, e.g. the phenolic glucoronides (Staimer et a/., 2001). This will afford 

greater sensitivities in future research and w\\ also enable focussing on the most 

relevant metabolites. 

Because metabolic oxidation of PAHs is responsible for the formation of toxic and 

carcinogenic intermediates (Livingstone, 1994), the determination of the level of 

metabolism by an organism can improve the assessment of risk. Whilst the present 

technique offers a most useful extension to monitoring parent/metabolite compound 

levels in organisms, it still retains some constraints regarding the limit between levels 

and effects (Kurelec, 1993). Concurrent ecotoxicological investigation can bridge this 

gap. 

4.5.4 Conclusion 

The reported results demonstrate that analysis of crab urine can enable PAH 

exposure to be detected. 

Both the ELISA and fluorescence techniques described are adequately sensitive to 

the metabolites to provide a useful measure of exposure. 

The ELISA tested is fairly insensitive to urine matrix effects, and a simple dilution ( > 

1:20) is the only sample preparation required. With this method, 100 samples can be run 

in duplicate (along with standards) per day. 

The major metabolites of pyrene (as determined by HPLC) were shown to be pyrene-

1-glucoside, pyrene-l-*conjugate' and pyrene-1-sulfate. 

Good correlations were obtained in the measurements of contaminants by the 

ELISA, fluorescence and HPLC techniques. 

Preliminary studies demonstrate significant differences in the composition of PAH 

and their metabolites between crab populations sampled from contaminated (Sutton 

Harbour) and control sites. 

Analyses of crab urine offers an inexpensive, rapid, non-destructive method to 

provide a measure of bioavailable contaminants taken up via all assimilation routes. 
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Chapter 5 

5 Rapid assessment of marine pollution using multiple 
biomarkers and chemical immunoassay 

5.1 New Bedford Harbour Case Study 

5.1.1 IntroductioD 

Environmental managers are constantly faced with having to determine the extent of 

environmental contamination and identify localities and habitats most at risk. 

Environmental protection agencies in most developed countries achieve this aim and 

protect the environment using a combination of legislation and enforced chemical and 

biological monitoring programmes to check compliance. A wide range of 

ecotoxicological tools are available for detecting and assessing aquatic pollution 

(Depledge and Hopkin, 1995; USEPA, 1996; Anderson et a/., 2001). These include the 

monitoring of community characterisation to quantify changes in the abundance and 

diversity of species, sediment chemistry and tissue residue analysis to determine the 

bioavailability and bioaccumulation of contaminants and the use of biomarkers which 

relate quantifiable molecular, cellular or physiological measures in a dose or time 

dependent manner to the degree of dysfunction that the contaminant has produced 

(Peakall and Shugart, 1992). 

When these procedures are combined and implemented in structured survey 

programmes, they can be used to identify which pollutants are responsible for 

environmental degradation, to identify sites at risk and to track the progress of remedial 

action. In recent years, individual biomarkers have been incorporated into research 

programmes which have highlighted the need for remedial action in a number of different 

aquatic ecosystems, e.g. the Venice lagoon (Lowe et ai, 1995) and the Black Sea Mussel 

Watch programme (Moore et al, 1999). Only recently have suites of biomarkers begun to 

be included in routine management protocols (Burgeot et ai, 1996; Nasci et al., 1998) 

and their combination with chemical analyses used to link chemical exposure and 

biological response in situ (Nasci et ai, 1999; Sole, 2000; Michel et al., 2001). The 

widespread implementation of this approach has so far been limited, partly because 

complex instrumental methods can make detailed studies of contaminated sites expensive 
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and time-consuming, but also by a lack of understanding of how biomarkers can be 

incorporated into legal instruments. 

In response to these practical and cost limitations, suites of rapid, robust biological 

methods have been developed in the laboratory for the detection of exposure to 

chemicals, sublethal biological damage and organismal health in marine biota which 

require only basic laboratory equipment and can be performed by personnel with non-

specialist laboratory skills (Depledge, 2000). These biomarkers have been used together 

with commercial enzyme-linked immunosorbent assays (ELISAs), which use antibodies 

to measuring the presence of diverse environmental contaminants in soil and water 

samples (see Chapter 2 and 4). This so-called RAMP (Rapid assessment of marine 

pollution) approach has undergone preliminary testing in Brazil, Costa Rica and Vietnam 

where it has shown considerable promise. Recently we have applied these ELISAs to 

biological matrices including mussel tissue extracts (see Section 4.4) (Fillmann et al.. 

Submitted a). Complementary extraction procedures for hydrophobic contaminants have 

been developed and refined, and comparisons performed v̂ ath more conventional 

chromatographic techniques. Close correlations have been reported between ELISA and 

chromatography for total PCBs in tissue extracts (see Section 4.4), 

The aim of this study was to determine the viability of using the RAMP approach to 

characterise the relationship between anthopogenic contaminant levels, toxic damage and 

adverse health effects in the ribbed mussel Geukensia demmissa from sites in and around 

New Bedford Harbour (Massachusetts, USA). The estuary is a Superfiind Site on the US 

EPA National Priorities List due to sediment heavily contaminated by heavy metals 

(Pruell et a/., 1990) (Ho et al., 1997), polychlorinated biphenyls (PCBs) (Carton et al., 

1996) (Ho et al., 1997) and other organics including polycyclic aromatic hydrocarbons 

(PAHs) (StofFers et al, 1977; USEPA, 1996). The ribbed mussel Geukensia demissa 

inhabits the upper tidal area. Bioaccumulation factors for organic pollutants are in the 

region of 10̂  for bivalves (Niimi, 1996) and this, coupled to relatively low metabolic 

transformation rates (Moore et al., 1989) and a sessile, filter-feeding lifestyle make these 

bivalves useftil bioindicators of organic hydrocarbon pollution. The biomarkers and 

chemical methods applied are listed in Fig. 5.1. The testing regime included biomarkers 

of cellular (cell viability, lysosomal integrity) and physiological (heart rate, condition 

index) status as well as measures of genotoxicity (micronucleus formation) and 

immujiotoxicity (spontaneous cytotoxicity). The PCB and PAH levels of tissue extracts 
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were analysed by commercial ELISA and GC-ECD, GC-FID and GC-MS to afford a 

comparison between the different methods. Tissue metal levels were measured by ICP-

MS. Exposure to metals was also assessed by determining metallothionein induction. 

Both simple and multi-variate statistical methods were used to describe the relationship 

between the biological and environmental variables. The results of this research has been 

submitted to the Environmental Science and Technology (Galloway et a/.. Submitted). 

Table 5.1. Biomarkers and chemical procedures selected and applied in this study 

Method 

Biomarker Neutral red retention time 

Spontaneous cytotoxicity response 

Cell viability 

Methallotionein analysis 

Heart rate monitoring 

Micronucleus detection 

Condition index 

ELISA 'Hotal" PCBs (RaPID Assay*) 

"total" PAHs (RaPID Assay®) 

Analytical Chemistry PCBs 

PAHs 

Metals 

5.1.2 Results 

5.7.2. J Chemical analysis of tissues and extracts 

The results of chemical analyses of metal residues in mussel tissues for each site are 

shown in Fig. 5.1. There was a discrete pattern of different metal concentrations for each 

of the sites which in all cases was lower than the US EPA (USEPA, 1996) results 

reported for sediments from the same areas (Table 2.2). 

The results of total PCB values detected in extracted mussel tissues by immunoassay 

are shown in Fig. 5.1. Our results are consistent with levels and congener patterns 

previously reported for New Bedford Harbour (Pruell et aL, 1990; Lake et a/., 1995; Ho 

et aL, 1997). The results were correlated to GC-ECD analysis of the same samples (n=16) 

to give a correlation coefficient of r̂  = 0.95 with ELISA results lower than GC- ECD by a 

factor of 0.83 (see Fig. 4.3 and Section 4.4). The results for GC- ECD were not corrected 
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for procedural recovery, calculated to be > 80% using the internal standard, as a similar 

recovery estimate was not available for ELISA. The samples were processed in largely 

the same manner for both analytical procedures, differing only in the final stages where 

ELISA samples were solvent exchanged and diluted and GC samples were further 

cleaned-up and fractionated using Florisil®. The level of recovery is therefore assumed in 

this instance to be similar for the two methods. The highest levels of PCBs (96.2 ± 5.8 \ig 

g * dry weight) were seen unambiguously at site 4 {p > 0.000) with all four sites 

statistically different from each other for both ELISA and GC-ECD results. This 

represents a pollution gradient in tissue contamination of >100-fold between control and 

upper harbour sites and of around 20-fold between the upper harbour and Buzzard's Bay. 
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Figure 5.1. Summary of tissue chemical residue analysis according to site of collection. 
Results are expressed as fig g"' dry wt tissue. Metals were analysed by IPC-MS, PCBs 

were analysed by PCB RaPID Assay® ELISA (results expressed as Aroclor® 1254 
"equivalents"), PAHs were analysed by PAH RaPID Assay® ELISA (results expressed as 

phenanthrene "equivalents") 

The relative toxicity of different PCB congeners can be explained in part by their 

ability to elicit dioxin-like effects. The toxic equivalency factor (TEF) proposed by Smith 

et al. (1990) for coplanar PCBs provides a consensus of toxicity for each congener 

relative to the most toxic congener, 2,3,7,8-TCDD. These values have been used to 
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calculate a Toxic Equivalent {TEQ) value for each site based on the tissue concentration 

of non-ortho, mono-ortho and di-ortho-PCBs present. The resulting TEQs varied from 

0.034 to 3.02 ng TEQ g"* dry wt and are shown in Table 5.2. Whilst these figures relate 

to vertebrate animals, no equivalent studies have been undertaken for invertebrates. 

Table 5.2. Non-, mono- and di-ortho-polychlorinated biphenyl (PCB) congeners 
concentrations in G. demmissa tissue extracts and toxic equivalent concentrations (TEQs) 

PCB congener concentration (ng g'* dry weight) 

PCB Site 1 Site 2 Site 3 Site 4 

Non-ortho-PCBs 

PCB 77 1 (0.2) 97(11.6)" 39 (5.8) 5.5(1.1) 

PCB 81 <0.3 5.3 (0.6) 2.2 (0.3) 0.3 (0.05) 

PCB 126 0.05 (0.01) 4.8 (0.6) 2(0.3) 0.3 (0.05) 

PCB 169 <0.05 <0.05 

Mono-ortho-PCBs 

<0.05 <0.05 

PCB 60 2.9(1) 436 (52) 177 (26) 25 (4.8) 

PCB 105 9.6 (2.3) 682 (56) 467(85) 83(12) 

PCB 114 1.3(0.3) 222 (22) 109 (21) 14 (4.6) 

PCB 118 29 (20) 4270(670) 2093 (211) 280(18) 

PCB 156 <0.19 44(27) 43 (30) 5.6 (4.2) 

PCB 157 <0.14 9.7(1.2) 3.9 (0.6) 0.6 (0.1) 

PCB 167 2.5 (0.6) 344 (50) 165(16) 22(1.1) 

PCB 189 <0.05 <0.05 

Di-ortho-PCBs 

0.3 (0.3) 0.1(0.1) 

PCB 128 11(3) 369 (61) 279 (62) 56(14) 

PCB 138 30(5.5) 2907 (347) 1179(175) 165 (32) 

PCB 158 0.3 (0.6) 74(14) 29 (22) 3.9 (2.8) 

PCB 170 0.7 (0.3) 119(47) 56 (30) 6.4 (3.7) 

PCB 180 1 (0.9) 306 (96) 127 (63) 17(9) 

TEQ*" 0.034 3.02 1.44 0.22 

" Mean (standard deviation) of samples from four organisms. 

Calculated as the sum of TEQs for individual congeners using toxic equivalent factors proposed by Smith et 
fl/. (1990). 

As it was possible that hydrocarbon compounds were also present in the samples, the 

remaining (second fraction) tissue extracts prepared for PCB analysis were used for 

analysis of PAH levels and the results are presented in Fig. 5.1. Although the analytical 

protocols and fractionations were optimised for PCB quantification, PAH were also 

analysed. Analytical recoveries for most PAH exceeded 75 ± 12%. For those compounds 
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falling outside of this performance, quantification was not undertaken. Linear regression 

analysis between GC-FID *total" PAH (resolved + unresolved components) and ELISA 

*total" PAH (phenanthrene "equivalents") for the 16 samples gave a correlation 

coefficient of r̂  = 0.54 with some discrepant results for some samples (Fig. 5.2). PAHs 

were present in samples from all sites with an increasing gradient of concentrations fix)m 

site 1 (2.06 ± 1.8 /ig g"' dry wt) through to site 4 (38.7 ± 35.4 /ig g'* dry wt). All four sites 

were significantly different Gxtm each other (Kruskal-Wallis, p < 0.01). It was evident 

from the GC-FID analysis that sites 3 and 4 contained elevated quantities of aromatic 

unresolved complex mixtures (UCMs). 

1.17X-0.66 
R2 = 0.54 

2 20 

20 40 60 80 
ELISA-Determined PAH Concentrations (pg/g) 

Figure 5.2. Correlation between PAH concentrations in field-contaminated samples of 
New Bedford Harbour. GC-determined PAH concentration - E resolved and unresolved 
PAH compounds; ELISA-determined PAH concentration - phenanthrene "equivalents" 

5.1.2.2 Biological responses 

The results for each of the biomarkers were initially analysed individually to 

determine the statistical significance of differences between sites. These results are 

summarised in Fig. 5.3. Significant differences were seen between sites for heart rate, 

spontaneous cytotoxicity response, cell viability and the presence of micronuclei 

(Manova: p values = 0.000, 0.002, 0.000 and 0.000) All of these exhibited increasingly 

detrimental effects from sites 1-4. There was no significant difference between sites for 
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condition index or for whole body metallothionein levels. Neutral red retention time 

revealed a trend of decreasing lysosomal stability between sites 1-4, but this did not reach 

statistical significance. 
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Figure 5.3. Summary of biomarker responses according to site of collection, (a) 
immunotoxicity measured by the spontaneous cytotoxicity assay and expressed as an 
index relative to the control (b) micronucleus number per 1000 cells, (c) heart rate as 
beats per minute (d) cell viability assessed using neutral red retention expressed as a 
relative index (e) lysosomal stability expressed as the neutral red retention time (f) 

metallothionein, l ig g"' wet weight and (g) condition index as the ratio of whole tissue 
weight as a function of shell length 
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5.1.2.3 Multivariate analysis 

In order to detect and describe differences between the different biomarkers between 

sites more fully, the results were subjected to a multivariate analysis of variance 

(Manova). An assumption was made that the within-group distributions of variables were 

multivariate normal with the same variances and covariances in each group. The 

Hkelihood ratio statistic Wilks' lambda was used to test for significance (Sparks, 2000). 

The analysis revealed that all sites differed, although it was not possible to distinguish 

which o f the biomarkers was most responsible for the variation. 

Significant differences were again evident for spontaneous cytotoxicity, cell viability, 

heart rate and micronucleus formation {p ^0.04, ^0.04, ^0.002, ^0.001). Sites 1-2 

(outside the breakwater) and sites 3-4 (inside the breakwater) tended to be grouped 

together. This was evident for all o f the parameters tested except heart rate, in which sites 

1-3 were grouped and site 4 was significantly different fi^om the others. 

The relationship between the biological and chemical variables was then studied using 

multivariate canonical correlation analysis, an ordination procedure which can be viewed 

as a canonical form of principal components analysis (PCA). In ordination techniques 

such as PCA, the aim is to replace the original, usually large set of variables by a much 

smaller set of derived variables which still retain most of the relevant information. 

Ordination thus tries to approximate the complex pattern of the ful l data set in a few 

dimensions. In canonical correlation analysis, the variables measured are divided into two 

sets and a linear combination of the first set of variables is created that maximises 

correlation with a linear combination of the second set. Thus canonical correlation 

analysis extracts the correlation between the two sets of variables and concentrates it in a 

few new pairs of variables (Sparks, 2000); in contrast to PCA which takes the variability 

o f a single set o f variables and concentrates it in a few new axes. Table 5.3 shows the first 

two pairs of axes and the corresponding correlations (the canonical correlations) between 

the axes in each pair, treating the biomarker results as one set of variables and the 

immunoassay results as the other set of variables. In the first pair of axes, the biomarkers 

axis aligned a strong positive correlation with micronucleous number and a negative 

correlation with heart rate and neutral red retention time. The chemical axis gave a 

positive coefficient for PCBs and PAHs. The correlation between these two axes was 

0.959, indicating a highly significant relationship. This can be interpreted to mean that 

129 



mussels with high levels of PCBs and PAHs in their tissues had increased levels of 

micronucleus formation, lower heart rate and decreasing lysosomal stability. 

No correlation was distinguishable between any of the biomarkers and tissue metal 

levels when evaluated individually by linear regression or when subjected to canonical 

correlation analysis with or without organic contaminants. 

5.1.3 Discussion 

This study has provided an illustration of how a suite of biomarkers at the biochemical 

and physiological level coupled with rapid chemical analysis using immunoassays can 

provide a detailed picture of the existence of stress situations. 

Despite the high levels of metals, particularly Cu, Cr, Cd and Zn previously measured 

in sediments in the estuary (Table 2.2), there were no statistical differences between 

tissue metal concentrations between the sites and nor did any of the results fall outside 

archived normal concentration ranges for closely similar bivalves of similar size collected 

from uncontaminated areas (NOAA, 1987; Fowler, 1990). The average metallothionein 

levels for organisms collected from each site varied between 66-72 ^g g * total body wet 

weight and showed no statistically significant differences between sites. These values are 

comparable to the reported average digestive gland tissue concentration of 

metallothionein of around 80 ng g'̂  wet weight in mussels ( M galloprovincialis) of 

similar size collected from uncontaminated sites and subjected to the same procedure 

(Viarengo et al., 1997). Therefore the mussels in New Bedford Harbour had neither 

accumulated significant quantities of metals, nor had they evidence of a biological 

response to the presence of metals. This illustrates how difficult it can be to predict the 

bioavailability of heavy metals that may accumulate in water or sediments. A proportion 

of the metal may be strongly bound in dissolved complexes or onto sediment surfaces, or 

in organic films surrounding particles. This speciation o f metals can be extremely 

difficult to follow or predict either qualitatively or quantitatively (Salomons et a/., 1995). 

The PCB concentration was standardised against total body dry weight, following the 

recommendation of Bergen et al. (2001) that the standard method of normalising 

organism PCB concentrations to total lipid may not be appropriate as a routine practice 

for organisms with low total lipid content. The good agreement achieved between the 

ELISA method and GC-ECD (r^ = 0.95) demonstrate the suitability of this method (see 

Section 4.4). The reasons for the slight negative bias in ELISA results could be 
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attributable to slight differences in the congener pattern between the samples and that of 

Aroclor® 1254, against which ELISA was raised (see Section 4.4). 

Table 5.3. Canonical correlation analysis of the relationship between seven biomarkers 
and two chemicals. The significance level for correlation 1 wasp < 0.002. 

axis 1 axis 2 

canonical correlations 0.959 0.777 

Biomarkers 

spontaneous cytotoxicity -0.012 0.389 

cell viability 0.125 -0.566 

condition index 0.295 ^.056 

lysosomal stability -0.384 0.734 

micronucleus 0.714 0.074 

metallothionein -0.095 -0.376 

heart rate -0.255 -0.655 

Contaminants (immunoassay) 

'lotal" PCBs 0.700 1.037 

'^otal" PAHs 0.407 -1.183 

The PAH RaPID Assay® ELISA is raised and calibrated against the three-ringed 

phenanthrene. Results are presented as 'total" PAH (as phenanthrene "equivalents") 

which wil l include biogenic and anthropogenic aromatic hydrocarbons. Comparison of 

"total" PAH obtained by GC-FID and ELISA analyses of extracted tissue samples gave 

relatively comparable results (Fig 5.2). The correlation between ELISA and GC-FID 

analyses also revealed some samples, particularly from sites 3 and 4, which gave 

anomalous results between the two methods. This may have resulted from the relative 

cross-reactivity with the antibody of the different PAH constituents present at the 

different sites. The relative distributions of PAH compounds measured here by GC-FID 

was in agreement with previous studies, being dominated by parent compounds with 

lesser amounts of the alkylated homologues (Pruell et ai., 1990; Lake et a/., 1995). 

Quantification by ELISA revealed significant contamination of mussel tissues with 

PCBs and PAHs representing a pollution gradient across the four study sites. The TEQ 

calculated as the sum of TEQs for individual congeners maintained an identical rank 

order to the total PCB burden revealing that the proportion of toxic congeners across the 

sites did not vary. The gradient for PCBs extending from inner to outer harbour and 
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continuing into Buzzard's Bay and West Island covers two orders of magnitude (120-

fold), whilst that for PAHs is around 6-fold. 

The scale and extent of the organic contaminant gradient was mirrored by the 

biological deterioration identified in the mussels collected fi"om across the four sites. This 

contrasts again with the studies reviewed by Sole (2000) in which the effects of PAHs 

and PCBs on the xenobiotic metabolising system and the antioxidant defence mechanism 

of mussels were evaluated in four coastal European sites. The results from these studies 

were inconsistent, with low levels of induction of the enzyme systems relative to 

background levels. This reflects the incomplete understanding of molluscan xenobiotic 

pathways which still hinders interpretation of such approaches. In the present study, a 

holistic approach to the choice of biomarkers has been made, to reflect the multiple 

mechanisms of toxicity and ensuring physiological impairment that possible follows 

exposure to combinations of contaminants. Although not all biomarkers revealed 

differences between sites, the combination of effects seen at the molecular, cellular and 

whole organism level provided compelling evidence of stress in the contaminated 

mussels. 

The biomarker which correlated most strongly with organic contaminant load was the 

micronucleus assay. Cytoplasmic micronuclei of reduced size associated with the main 

cellular nucleus are formed at the end of cell division and provide evidence of DNA 

breakage and spindle dysfunction during cell division associated with exposure to 

genotoxins (Mersch and Beauvais, 1997). In mussels, cell division of normal haemocytes 

does not usually take place in the open circulatory system (Ratcliffe and Rowley, 1981) 

where direct exposure to genotoxic agents might be expected to occur. This would imply 

that exposure has taken place during cell development within the tissues of the mussels, 

in accord with the high level of bioaccumulation of PCBs and PAHs evident from the 

tissue residue analysis. In a previous study which compared micronucleus formation in 

the clam Mya arenaria collected from New Bedford Harbour with a relatively pristine 

area (Martha's Vineyard), a significant increase in micronucleus formation was seen for 

the New Bedford Harbour clams (Dopp et aL, 1996), which was attributed to exposure to 

genotoxins. Although no measurement of tissue chemical residues was made, the 

assumption was that PCB contamination was the main causative agent. Increased 

micronucleus frequency has also been associated with PCB concentrations in feral fish 

(Hose et al., 1987). Mammalian toxicological studies have in general concluded that 
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PCBs are not mutagenic or genotoxic but are efficient tumour promoters, results which 

have been verified by carcinogenic studies on trout (Silberhom et a/., 1990). PCBs were 

not important factors in the initiation of hepatic lesions but had a promotional effect when 

present with other chemicals (Pandey et al, 1995). PCBs, in common with other 

hydrocarbon compounds, can induce increased expression of cytochrome P450 

monooxygenase activities in many species, which in turn can catalyse the metabolic 

activation of PAHs to form deleterious DNA adducts. Although the exact pathways of 

biotransformation by P450 related pathways remains incompletely understood in mussels, 

elevations in mixed function oxidase activities following hydrocarbon exposure are well 

documented (Moore et al, 1989) and several, such as benzo(a)pyrene hydroxylase, have 

been used as biomarkers of hydrocarbon exposure (Michel et al., 2001). Both bulky 

aromatic DNA adducts and 8-oxo-7,8-dihydro-2'-deoxyguanosine, a product of oxidative 

DNA damage have been identified directly in the tissues of the mussel Mytilus 

galloprovincialis following exposure to benzo(a)pyrene (Akcha et al., 2000), confirming 

this as a mechanism of toxicity. Thus the toxicological effects of PCBs and PAHs on the 

New Bedford Harbour mussels have been augmented by their joint presence. The 

concentrations of aromatic UCMs at sites 3 and 4 may also have contributed to the toxic 

effects; monoaromatic UCM components have recently been linked to toxicity responses 

and adverse health in exposed mussels (Rowland et ai, 2001). 

Synergism between the contaminants present may be used to explain the marked 

decrease in immunocompetence and viability of haemocytes evident at the two most 

heavily contaminated sites. Both PCBs and PAHs induce a broad spectrum of 

immunotoxic effects in molluscs including decreased cell viability, altered cytology and 

reduced phagocytic ability (Galloway and Depledge, 2001). The spontaneous cytotoxicity 

response is elicited in mussel haemocytes by direct cell contact with allogeneic cells and 

the release of lytic pore forming factors (Hubert et al, 1997). Perturbation to the cell 

membrane or to cellular energy metabolism and ATP production are both likely to affect 

the reaction. It is of relevance that in vitro testing regimes revealed that mixtures of PCBs 

and/or congener class (specifically, non-coplanar congeners) may be more highly 

immunotoxic than individual planar and ortho-coplanar congeners alone (Stack et al, 

1999). The practical significance of this for laboratory testing regimes is evident when 

sites such as New Bedford Harbour, containing mixtures of congeners and other 

hydrocarbons are considered. 
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At the whole organism level, the physiological effect of exposure was illustrated by a 

marked bradycardia. At high PCBs and PAHs concentrations, depression of respiration 

rate may be a result of partial valve closure or the narcotization effect on ciliary action, 

both of which may reduce ventilation rate and thus oxygen availability (Moore et a/., 

1989). This type of non-specific narcosis could also contribute to a reduction in energy 

acquisition through decreased ciliatory movement and neuro-muscular function. It is 

noteworthy, therefore, that there was no obvious effect on the growth of the mussels as 

measured by somatic tissue weight relative to length. Although this morphometric 

measurement has proven a useful indicator of growth in some studies (Krishnakumar et 

al., 1994), there is no allowance made for alterations in shell thickness or shape which 

might better be detected by including a measure of shell volume in the equation. 

Taken together, the suite of biological and chemical assays used in this study has 

provided a rapid indication of the extent of contamination and biological deterioration of 

G. demmissa in the New Bedford Harbour area. The relative tolerance of bivalve species 

to the toxic effects of PCBs and PAHs (Gilbertson, 1989) associated with their low level 

of biotransformation of these compounds has tended to suggest that the consequences of 

contamination are of more concern to organisms at higher trophic levels. However, the 

picture of genotoxic and immunotoxic damage and physiological impairment revealed 

here confirms the deleterious effects of organic contamination and is in accord with 

earlier estimates made by Nimmo (1974) that concentrations of PCBs of >25 ^g g ' in 

tissue would be likely to compromise growth and survival in aquatic invertebrates. 

Likewise, the threshold value of 10-80 jig g* "total" PAH estimated by Hellou (1996) 

above which biochemical and physiological effects might occur is confirmed as a realistic 

limit. 

The approach outlined has permitted the detection of environmental contamination 

and adverse biological effects rapidly, cheaply and (for the biological assays) relatively 

non-destructively. This is suggested as a useful initial approach to the hierarchical 

process of risk assessment to complement information regarding vulnerable ecosystems, 

contaminant discharges and planned developments. Data regarding the extent of 

contamination and biological degradation can then inform and guide planning of a more 

detailed programme to identify specific chemicals of concern prior to instigating 

regulatory and remedial action. In the face of continued human and financial resources, 

this approach represents a practical means of protecting the environment. 
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Chapter 6 

6 Summary, Conclusions and Future Research 

6.1 Summary 

To assess the significance of pollutant releases into the environment it is necessary to 

determine both the extent of contamination and the biological effects they give rise to. 

This research is based on a tiered system, which commences with conventional analytical 

chemistry (gas chromatography), followed by the development, evaluation and 

application of rapid and simple immunochemical techniques and, finally, the integration 

of chemical and biological markers to assess pollution. 

6.1.1 Conventional analytical chemistry to evaluate contamination 

The first objective was to carry out and evaluate a range of contamination assessments 

based on conventional analytical chemistry analyses using gas chromatography. A study 

was performed to appraise the extent of contamination of the Black Sea, which has been 

widely perceived as being heavily contaminated. There are little reliable data on 

contaminants being discharged, or to their environmental concentrations in this region 

(Mee, 1992; EEA, 1995). 

To investigate the extent of contamination of the Black Sea, surficial sediments were 

taken fi-om throughout the region and were analysed by gas chromatography (GC-

ECD/MS). 

6J. L1 Persistent Organochlorine Residues 

Concentrations of HCHs at sites influenced by the Danube delta were shown to be 

among the highest recorded on a global basis (up to 40 ng g * dry wt). The ratio between 

the a- and y-isomers was relatively low indicating contamination through the use of 

lindane as an agricultural pesticide. Concentrations of DDTs (0.06-72 ng g'̂  dry wt) and 

PCBs (0.06-72 ng g'' dry wt) were not especially high in comparison to levels reported 

fi-om other regions throughout the world. The DDE/DDT ratio was, however, low 

indicating fi-esh inputs and hence current usage of DDT within the Black Sea area. 
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6. J. 7.2 Petroleum and Polycyclic Aromatic Hydrocarbons 

The European Environment Agency (EEA, 1995) and Mee (1992) have expressed 

concern regarding severe contamination (particularly by oil) in areas subject to riverine 

discharges, navigation routes and ports. To investigate, hydrocarbons in surface 

sediments from several areas were analysed by GC-FID/MS. Results indicate that levels 

of petroleum hydrocarbons (2 to 300 /ig g ' dry wt "lotal" hydrocarbons) are generally 

comparable to those encountered in the Mediterranean and are lower than concentrations 

reported for highly contaminated areas. Highest concentrations of *Hotal" hydrocarbons 

(>100 iig g * dry wt) were associated with discharges from Odessa, Sochi and the River 

Danube. Chronic/degraded petroleum was the major contributor at these sites. Samples 

from the Ukrainian coastline were comparatively clean (<10 /tg g'* dry wt "total" 

hydrocarbons). Major contributions of fresh oil (as indicated by E/i-Cj4-34) occur through 

the River Danube. Concerning *total" PAH, concentrations (7 to 638 ng g * dry wt) 

compare to relatively unpolluted locations in the Mediterranean and are much lower than 

levels reported for polluted estuaries. Both pyrolytic and petrogenic PAH were identified 

in most samples, although petroleum derived PAH were dominant at Sochi and pyrolytic 

sources were prevalent in the Bosphorus region. The absence of a correlation between 

"total" hydrocarbons and PAH (r^ = 0.04) indicated different primary sources for the two. 

These results are in general agreement with Wakeham (1996) and Maldonado et ai 

(1999) who reported only moderate contamination by hydrocarbons. 

6.1.1.3 Sterol Markers to Assess Sewage Contamination 

With a growing population density in coastal urban centres within the Black Sea basin 

(at least 171 million people, about 81 million in the Danube basin), the need for disposal 

of sewage containing faecal wastes is substantial. Coprostanol (5P(H)-cholestan-3P-ol) 

together with other steroids have proven to be a successful indicator of sewage pollution 

(Goodfellow et al., 1977; Readman et al, 1986a; Readman et al, 1986b; Grimalt et aL, 

1990; Venkatesan and Kaplan, 1990; Leblanc et a/., 1992; Chalaux et aL, 1995). For 

elucidating the present status of sewage contamination, faecal sterols were measured in 

surficial sediments from several areas along the Black Sea coast. The concentration of 

coprostanol in the samples ranged from 1 to 5400 ng g"̂  dry sediment. Differences of 1-2 

orders of magnitude were observed between sediments contaminated and uncontaminated 

areas. Compared to many other regions throughout the world, levels of coprostanol were 

generally low (<500 ng g'^). Conversely, there was evidence of gross sewage 
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contamination at Sochi (up to 5400 ng g'*) and adjacent to the Danube delta (2600 ng 

g"*). 5p/(5p+5a) isomeric ratios confirm sewage contamination together with 5p/(5P+5a) 

isomeric ratio of cholestan-3p-ol against cholestan-3-one. In the Bosphorus, the highest 

values were found near shore, with values decreasing with increasing distance seawards. 

In addition, elevated 5a(H)-stanol/A^ stenol ratios in particulate matter at the oxic-anoxic 

interfaces in the water column probably relate to in situ microbial conversion of sterols to 

stanols (Wakeham, 1989). 

6.1.2 Evaluation, development and application of immunoassay techniques 

Hence, conventional analytical chemistry can raise substantial and useful information 

and, in addition, identify contamination relafing to a broad range of important pollutants. 

The protocols used in these assessments are labour intensive and time consuming. For 

this reason the next phase in this research was to develop, evaluate and apply rapid and 

simple immunochemical techniques. It was envisaged: a) to provide an independent 

evaluation of the performance and suitability of commercially available immunoassay 

kits; b) to evaluate and validate commercial enzyme-linked immunosorbent assays 

(ELISAs) for screening of contamination in water and sediments; c) to adapt and evaluate 

the effectiveness of ELISA techniques in measuring contaminant levels in the biological 

tissues/fluids, and; d) to develop new applications of ELISA techniques in accordance 

with the "Rapid Assessment of Marine Pollution" (RAMP) programme. Basically, four 

distinct applications of immunochemical techniques have been presented. Conventional 

gas chromatographic techniques were utilised to validate the rapid ELISA techniques. 

6.1.2.} Semi-volatile hydrocarbons (BTEX) in groundwater 

Initially, an ELISA kit (BTEX RaPID Assays®) designed to detect semi-volatile 

hydrocarbons (BTEX) in contaminated groundwater was evaluated. Determination of 

BTEX in environmental matrices typically involves several steps (e.g. purge and trap 

GC). To avoid complex procedures, immunoassay techniques have recently been directed 

towards measuring environmental contaminants (Waters et al, 1997b). The goal was to 

investigate the performance of the immunoassay for the detection of benzene, toluene, 

ethylbenzene and xylene (BTEX) as tracers for gasoline contamination in groundwater. 

Results were validated against GC-FID/PID. The case study described arose as a result of 

leakage fi-om storage tanks in an urban petrol station in Rio de Janeiro city. Results 

obtained fi-om chromatographic and immunoassay analyses were in good agreement (r^ = 
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0.997) and provided a clear delineation of the extent of contamination. The ratio of 

[BTEX]EUSA i [ B T E X ] G C did, however, show more scatter at the lower concentrations 

probably because of less discrimination between B T E X and other hydrocarbons at lower 

concentrations when competition for binding sites increases. 

6.1.2.2 Petroleum hydrocarbons and PAHs in sediment 

Next, a laboratory study was conducted to evaluate the performance o f two 

immunoassay-based analytical methods for ' total" petroleum hydrocarbons and 

polycyclic aromatic hydrocarbons. Two commercially available ELISA kits (BTEX and 

carcmogenic PAH RaPID Assays®) were evaluated for quantification of hydrocarbons in 

estuarine sediment samples, including reference materials. The BTEX RaPID Assay® was 

employed to analyse aliphatic and small aromatic hydrocarbons and the c-PAH RaPID 

Assays® was employed to analyse polycyclic aromatic hydrocarbons (> 3 aromatic rings). 

Results were validated by comparison with gas chromatographic analyses (CG-FID/MS). 

The immunoassay data is generally in good agreement with the chromatographic data 

obtained. However, BTEX and c-PAH RaPID Assay® ELISA cannot strictly be used as a 

quantitative method for determination hydrocarbons in environmental sediments, since 

the antibodies used bind differently to different hydrocarbons/PAHs. An estimate of 

'total" hydrocarbons contamination is achieved by summing measurements fi-om both 

assays. 

6.1.2.3 PCBs in mussel tissue 

The adaptabiHty and applicability of ELISA to measure PCB levels in mussel tissues 

was then tested. Biological monitoring data is often essential to provide a measure of 

exposure to biologically "available" contaminants. Results from PCB analyses of mussel 

tissue extracts by immunoassay (PCB RaPID Assay®) and conventional GC-ECD were 

described and compared. Mussels from natural populations with diverse concentrations of 

PCBs, mussel tissue fortified with technical Aroclor 1254 and a certified reference 

material were included. Whilst primarily designed for analyses of polychlorinated 

biphenyls (PCBs) in water, our goal was to apply the kit to analyse biological tissues of 

exposed invertebrates (mussels). A strong correlation was achieved between **total" PCBs 

quantified by both techniques (r^ = 0.95, n = 27). Immunoassay results, however, 

exhibited lower values compared to GC-ECD. A reduced antibody response, due to 

differences in the congener composition between the mussel extracts and Aroclor 1254 
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(used to raise and calibrate the ELISA), provides the most likely explanation for this 

difference. Similarity analysis showed high correlations between the most prominent 

congeners in Aroclor 1254 and inmiunoassay results. This analysis did not, however, 

identify a specific chlorine substitution pattern to which the immunoassay preferentially 

responded. Whilst GC-ECD affords the capability to quantify individual congeners of 

different reactivity and toxicity, the data reported do indicate that immunoassay offers a 

rapid and inexpensive alternative method for estimation of "total" PCBs at 

environmentally significant levels. It is, however, necessary to remove extraneous lipids 

to reduce matrix effects in the immunoassay. 

6.1.2,4 PAH/PAH metabolites in crab urine 

In a fourth application of immunochemical techniques, ELISA (PAH RaPID Assay®) 

and fluorometric techniques were applied to quantify PAH metabolites in crab urine as a 

measure of exposure. Whilst immunoassays have been extensively applied to evaluate 

environmental contamination, to date (outside of human medicine) they have rarely been 

used for the analysis of biological fluids. These media are important because pollutants 

such as polycyclic aromatic hydrocarbons (PAHs) and their metabolites become 

concentrated in tissues, body fluids and excreta thereby offering a measure of exposure to 

biologically available contaminants. Such analyses can provide a non-destructive tool for 

monitoring exposure. Urine of experimentally exposed crabs was sampled and analysed 

by ELISA and UV-fluorescence. Good correlations were recorded between results from 

the techniques used (r^ = 0.83 for phenanthrene and r̂  = 0.88 for pyrene). Matrix effects 

were overcome by dilution (> 20-fold) of the samples. However, cross-reactivity of the 

ELISA for pyrene and hydroxy-metabolites was lower than phenanthrene. HPLC 

analyses indicated that conjugate PAH metabolites were dominant in urine of crabs 

exposed to pyrene. Urine samples from crabs collected at clean and contaminated sites 

were also analysed by ELISA and UV-fluorescence. In samples fix)m a polluted harbour, 

both techniques detected PAHs (mainly petrogenic) contamination in the urine. Good 

agreement (r^ = 0.83; n = 15) was achieved between the techniques. 

6.1.3 Rapid assessment of marine pollution using multiple biomarkers and 
chemical immunoassay 

Finally, a combination of biological markers and chemical assays were use to provide 

assessments of the relationship between anthropogenic contaminant levels, toxic damage 
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and adverse health effects in selected invertebrates from a pollution gradient. Here a 

combination of quick, simple to perform and inexpensive biomarkers and chemical 

immunoassays were used to assess the exposure to and effects of pollutants on the ribbed 

mussel {Geukensia demmissa). Samples were collected from sites in and around New 

Bedford Harbour (Massachusetts, USA). Significant differences in polychlorinated 

biphenyl (PCB) and polycyclic aromatic hydrocarbon (PAH) tissue residues were 

detected between sites using both a RaPID Assay® ELISA and GC-FID/MS. The 

agreement between both techniques was good (r^ >0.95). Only small differences were 

observed in metals concentrations (Cu, Cd, Pb, As, Hg, Ni) between sites. Biomarkers of 

immunocompetence (spontaneous cytotoxicity), genotoxicity (micronucleus formation), 

cell viability and heart rate were significantly different between the selected sites. No 

significant differences were observed in lysosomal integrity, metallothionein or condition 

index. Multi-variate canonical correlation analysis indicated an association between 

micronucleus formation, heart rate, and PCB and PAH concentrations. Whilst causality 

cannot be conclusively stated, covariability with PAHs and PCBs is reported. 

6.2 Conclusions 

Conventional analytical chemistry provides a definitive measure of individual 

compounds which can be very useful for comparative purposes (e.g. to compare degrees 

of chlorination and legislation, etc.). It does not, however, afford any measure of the 

availability of the contaminants nor effects associated with their presence in the 

ecosystem. In spite of being very sensitive, conventional analyses are generally difficult 

to execute, are time consuming and expensive. 

Rapid assays (ELISA and fluorescence) have within this research shown good 

correlation with the more conventional techniques. They do not provide, however, a truly 

definitive measure. The responses relate directly to the reactivity/fluorescence of the 

analytes in the test sample relative to a reference compound. Responses/reactivities vary 

with composition. Also, there are limitations on the range of antibodies available in the 

case of immunoassays. Problems with matrix interactions are common and increase when 

complex environmental matrices such as tissues are used. In such cases simple extraction 

procedures are not sufficient and more elaborate clean up procedures are needed. 

Development of the crab urine method (either by ELISA or fluorescence) strikes a useful 

compromise with matrix complexity and shows very good potential for future use in 
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environmental assessment. Finally, the portability of ELISA enables application under 

field conditions, making this technique a very convenient screening technique. 

The advantages associated with the application of biological markers relate to their 

capability to differentiate between a contamination and a "pollution status", where 

biological effects are induced. In addition, they can provide information on pollutants 

which are not or cannot be measured. It is estimated that several million organic 

compoimds have already been synthesised by man. About 250,000 new chemical 

formulations are created per year of which 300-350 reach the stage of commercial 

production and up to a third of their production may find their way into the environment 

(Stumm and Morgan, 1996). Clearly, not all can be screened and the application of 

simple biomarkers, which are easy and rapid to use, can fill this gap. However, many 

biomarkers provide highly variable results that are not definitive. Because the response 

obtain by the biomarkers is usually specific to species (or class of organisms), for a 

general assessment of environmental quality it is necessary to apply a broad range of 

biomarkers at different levels of biological organisation. This is essential to cover 

possible effects fi-om a wide range of chemicals. Even i f alterations are detected, often the 

response cannot be directly related to a specific compound (or class of compounds) (e.g., 

TBTs in dog whelks, herbicides, etc.). Clearly, a combination of chemistry and biological 

is desirable. 

6.3 Future Research 

Within the conclusions, both the advantages and disadvantages of individual assays 

and techniques are identified and discussed. A combmation of conventional analyses and 

rapid chemical and biological assays appears to offer the best approach for environmental 

scientists, risk assessment managers and policy makers. 

Efforts should continue into the development and implementation of immunoassays to 

provide comparatively easy, rapid and inexpensive assessments of contamination. With 

the broad range of potential contaminants, broad-based assays offer advantages as they 

cover classes of pollutants. For example, class-selective immunoassays for the 

measurement of glucuronides in human urine can aid evaluation of himian exposure to 

complex mixtures of xenobiotics (Staimer et al, 2001). A similar class-selective 

immunoassay for glucosides and/or sulfates in invertebrate urine would help assess 
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exposure of aquatic organisms to complex PAH mixtures (see Section 4.5) and provide a 

measure o f stress. 

Immunoassay technology needs to be improved in terms of field portability, sensitivity 

and cost to strengthen its position as a rapid analytical assessment technique. Many 

immunosensor developments relate to the elements and mechanisms used for the 

detection of the physico-chemical changes produced by the biological interactions. 

Improvements in the development of measurement devices/systems (e.g. real time 

measurement) complement these. For example, inf ixed biosensors, solid-phase 

fluoroimmunoassay and optical transducer chips (and combination thereoQ have been 

described. Chromatographic (or flow) immunoassay has also received attention recently 

(Hage and Nelson, 2001). The direct detection of analytes as they are desorbed from 

immunoaffinity columns is the simplest approach that can be used in chromatographic 

immunoassays. Potential advantages of this flow-based immunoassay include their speed, 

precision, ease of automation, and ability to be coupled to other analytical methods 

(Hage, 1999). Techniques in this category include immunoaffinity chromatography, high-

performance immunoaffinity chromatography, flow injection immunoanalysis, flow 

inmiunoassays, immunodetection, and immunoextraction. 

Another novel and selective methodology is the use o f molecular imprinted polymers 

(MIPs) (Murray and Fish, 1997; Katz and Davis, 2000). MIPs show antibody-like 

affinities toward the template analyte. Molecular imprinting aims to create solid materials 

containing chemical ftuictionalities that are spatially prepared by interactions with 

imprint (or template) molecules during the synthesis process. Subsequent removal of the 

imprint molecule leaves behind sites for the recognition of the imprint molecules. These 

are well suited for applications such as separations, chemical sensing and catalysis. 

Applications of these methods presently remain in the early stages of development (Katz 

and Davis, 2000). 

Because metabolic oxidation of contaminants (e.g. PAHs) is responsible for the 

formation of toxic and carcinogenic intermediates (Livingstone, 1994), the determination 

of the level of metabolites by an organism can improve the assessment of risk. Whilst 

immunoassays offer a most usefiil extension for monitoring parent/metabolite compound 

levels in organisms, it does not, however, measure effects. Concurrent ecoloxicological 

investigation (integrated approach) can bridge this gap. 
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Whereas it is clearly recognised that changes at the population/community/ecosystem 

levels of biological organisation are the ultimate concern, they are of^en too complex and 

far removed fix>m the causative events to be of use in developing tools for the early 

detection and prediction of the consequences of environmental stress. For this reason 

exposure studies often focus on the molecular/biochemical, cellular and physiological 

changes within an individual. These alterations wil l induce environmental perturbations, 

which potentially can affect higher levels of organisation. 

Within this study, work has concentrated on the application of simple biomarkers and 

responses to afford rapid assessment of exposure. Many other biomarker techniques have 

been described in the literature and often relate to complex biochemical assessments. The 

combination of chemical and biological assessments, in the present research, has proven 

of great benefit, but also it identified the need to utilise broad combinations of biomarkers 

at different levels of organisation to investigate environmental degradation. 

Proteomic assays offers excellent prospects in future environmental monitoring and 

diagnostics since proteins control most processes in living organisms. Because protein 

compositions are selectively affected by any stressor they can act as the basis for early 

diagnosis of exposure or diseases (-, 2000; Evans, 2001). Although theoretically 

extremely complex it is envisaged that array developments wil l simplify diagnoses. 

Finally, translation of the chemical and biological/ecological data into useful risk 

assessment still needs to be improved. 
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