Faculty of Science and Engineering

School of Engineering, Computing and Mathematics

2020-03-01

Stochastic evolutionary-based optimization for rapid diagnosis and energy-saving in pilot- and full-scale Carrousel oxidation ditches

Li, L

http://hdl.handle.net/10026.1/17666

10.3808/jei.201700377 Journal of Environmental Informatics International Society for Environmental Information Science (ISEIS)

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.

Fig. 1 Framework of hybrid model of conditions in the oxidation ditch, comprising a three-dimensional (3D) three-phase computational fluid dynamics (CFD) model, multi-site artificial neural network (ANN) model and accelerating genetic algorithm (AGA) model.

Fig. 2 Schematic of pilot-scale oxidation ditch and monitoring sites (Unit: mm).

Fig. 3 Comparisons between calculated and measured values of: (a) ammonia nitrogen concentration; (b) nitrate concentration; (c) TN concentration; (d) DO concentration; (e) COD concentration; (f) MLSS concentration; and (g) liquid velocity in a pilot-scale OD.

Fig. 4 Stream-wise profiles of (a) predicted liquid velocity and (b) concentration of MLSS at elevation 0.1 m above the bottom of the pilot-scale oxidation ditch, for an aeration rate of 1.4 m³/h.

Fig. 5 Stream-wise profiles of dissolved oxygen at elevation 0.1 m above the bottom of the pilot-scale oxidation ditch, for aeration rates of (a) 1.4 m^3 /h and (b) 3.0 m^3 /h.

Fig. 6 Predicted effluent concentrations of (a) ammonia nitrogen, (b) nitrate, (c) TN, and (d) COD as functions of aeration rate, at an elevation 0.25 m above the bottom of the pilot-scale OD under three different operation modes.

Fig. 7 Full-scale oxidation ditch and monitoring sites, Ping Dingshan, Henan Province, China (Unit: m).

Moving part -	Case	I	Case	II	Case	III	Case IV		
Moving part	Speed (rpm)	Direction	Speed (rpm)	Speed (rpm) Direction		Direction	Speed (rpm)	Direction	
Impeller 1	40	$+^{1}$	80	+	180	+	40	+	
Impeller 2	40	+	80	+	180	+	40	+	
Stirrer 1	40	_2	90	-	120	-	70	-	
Stirrer 2	40	+	90	+	120	+	70	+	
Stirrer 3	40	+	90	+	120	+	70	+	
Stirrer 4	50	+	70	+	115	+	50	+	

Table 1 Rotational modes of impellers and stirrers.

 1 + clockwise rotation.

 2 – anticlockwise rotation.

Inflow discharge (L/h)	TN (mg/L)	Carbon-nitrogen ratio	MLSS (g/L)	Aeration rate (m ³ /h)	Speeds of impellers and stirrers
100	50	3	3.9	1.4	Case IV
100	50	3	3.9	1.8	Case IV
100	50	3	3.9	2.2	Case IV
100	50	3	3.9	2.6	Case IV
100	50	3	3.9	3	Case IV
100	50	5	3.9	1.4	Case IV
100	50	5	3.9	1.8	Case IV
100	50	5	3.9	2.2	Case IV
100	50	5	3.9	2.6	Case IV
100	50	5	3.9	3	Case IV
100	50	7	3.9	1.4	Case IV
100	50	7	3.9	1.8	Case IV
100	50	7	3.9	2.2	Case IV
100	50	7	3.9	2.6	Case IV
100	50	7	3.9	3	Case IV

Table 2 Experimental conditions for testing the ANN model in the pilot-scaleoxidation ditch.

Variable	Structure	MSE	OF	R ²
Ammonia nitrogen	12-11-10-1	7.34×10 ⁻²	0.33%	0.9996
Nitrate	12-8-13-1	2.21×10 ⁻¹	0.32%	0.9990
TN	12-14-4-1	5.69×10 ⁻¹	0.33%	0.9963
DO	12-7-14-1	3.34×10 ⁻³	1.13%	0.9922
COD	12-12-9-1	4.87×10 ⁻³	0.04%	0.9982
MLSS	12-14-13-1	7.38×10 ⁻³	0.23%	0.9031
Liquid velocity	12-11-8-1	5.26×10 ⁻⁵	1.36%	0.9822

 Table 3 Optimum structures and test results of the ANN model in the pilot-scale

 oxidation ditch.

		Opera	tion con	dition				Ef	fluent quali	_	10		
\mathbf{x}^1	a_1^2	a ₂	b ³ 1	b ₂	b ₃	b_4	NH^4	NO ⁵	TN ⁶	DO^7	COD ⁸	v ⁹	E ¹⁰
1.60	46.35	43.02	47.06	55.73	78.67	88.76	4.36	0.14	4.50	0.01	25.0336	0.07	216.90

Table 4 Optimized operating condition in the pilot-scale OD.

x¹: aeration rate, m³/h; a²: rotating speed of impeller, rpm; b³: rotating speed of stirrer, rpm; NH⁴: concentration of ammonia nitrogen, mg/L; NO⁵: concentration of nitrate, mg/L; TN⁶: concentration of total nitrogen, mg/L; DO⁷: concentration of dissolved oxygen, mg/L; COD⁸: concentration of COD, mg/L; \bar{v}^{9} : averaged liquid velocity, m/s; E¹⁰: energy consumption, W.

 R^2 Variable MSE RSD Structure BLE Ammonia nitrogen 0.17%0.9864 y=0.9973x+0.0571 23-15-13-1 0.2701 Nitrate 23-14-4-1 0.1570 0.59% 0.9523 y=0.9602x+0.085 y=0.9952x+0.0709 TN 23-14-9-1 0.3416 0.14% 0.9704 y=0.9786x+0.5775 COD 23-12-2-1 2.4733 0.21% 0.9886 Liquid velocity 23-7-8-1 0.0004 0.60%y=0.9421x+0.0078 0.9216

Table 5 Optimum structures and test results of the ANN model in the full-scaleoxidation ditch, Ping Dingshan, Henan Province, China.

R²: Correlation coefficient

BLE: Best linear fitting equation

N7 1		Surface aeration													Submerged impeller						Effluent quality				-7			
Number	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	S 1	S2	S3	S4	S5	S6	S7	S8	S9	NH ³	NO^4	TN^5	COD^6	V	E
1	0^1	1 ²	0	1	0	1	0	1	0	1	0	0	1	0	0	1	0	1	1	0	0	1	4.76	9.08	13.84	30.19	0.16	238.76
2	0	1	0	1	0	1	0	1	0	1	0	0	1	1	0	1	0	1	0	0	0	1	4.12	3.39	7.51	30.04	0.16	238.76
3	0	1	0	1	0	1	0	1	0	1	0	1	0	0	0	1	0	1	0	1	0	1	4.43	2.46	6.89	28.65	0.16	238.76
4	1	0	0	1	0	1	0	1	0	1	0	0	1	1	0	1	0	1	0	0	0	1	4.89	4.64	9.53	29.96	0.16	238.76
5	1	0	0	1	0	1	0	1	0	1	0	1	0	0	0	1	0	1	0	1	0	1	2.48	4.01	6.49	29.76	0.16	238.76

Table 6 O	ptimized o	perating c	ondition in	full-scale	OD , Pin	g Dingshan.	Henan	Province,	China.
					,		/	,	

0¹: Non-operation; 1²: Operation; NH³: concentration of ammonia nitrogen, mg/L; NO³: concentration of nitrate, mg/L; TN⁵: concentration of total nitrogen, mg/L; COD⁶: concentration of COD, mg/L; \bar{v}^7 : averaged liquid velocity, m/s; E⁸: energy consumption, kW.