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Abstract Recent studies of water waves propagating over sloping seabeds have shown that8

sudden transitions from deeper to shallower depths can produce significant increases in the9

skewness and kurtosis of the free surface elevation and hence in the probability of rogue10

wave occurrence. Gramstad et al. (2013, Phys. Fluids 25 (12): 122103) have shown that the11

key physics underlying these increases can be captured by a weakly dispersive and weakly12

nonlinear Boussinesq-type model. In the present paper, a numerical model based on an al-13

ternative Boussinesq-type formulation is used to repeat these earlier simulations. Although14

qualitative agreement is achieved, the present model is found to be unable to reproduce ac-15

curately the findings of the earlier study. Model parameter tests are then used to demonstrate16

that the present Boussinesq-type formulation is not well-suited to modelling the propagation17

of waves over sudden depth transitions. The present study nonetheless provides useful in-18

sight into the complexity encountered when modelling this type of problem and outlines a19

number of promising avenues for further research.20
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1 Introduction22

Long considered the stuff of legend, rogue waves are now recognised as a serious hazard23

to ships and offshore structures. Historical reports of giant, powerful waves appearing first24

without warning and then suddenly vanishing have since been supported by theory and ex-25

periment (Dysthe et al., 2008; Kharif et al., 2009). In recent decades, numerous studies have26

explored both the physical mechanisms which might produce such waves and the statisti-27

cal parameters that may be used to estimate their occurrence probability. Comprehensive28

reviews are provided by Dysthe et al. (2008), Kharif et al. (2009), Slunyaev et al. (2011),29

Onorato et al. (2013), and Adcock & Taylor (2014), amongst others.30

Rogue waves are typically defined as those having heights which are more than twice31

the local significant wave height (e.g. Holthuijsen, 2007) but their study is complicated by32

a limited number of real-world measurements (Kharif et al., 2009) and conflicting views as33

to how much information can be inferred from these (Dysthe et al., 2008). The key ques-34

tion at present is whether such observations represent ‘classical’ extremes which can be35

described by conventional models and statistics, or ‘freak’ waves requiring new theories36

and approaches (Haver & Andersen, 2000; Dysthe et al., 2008; Kharif et al., 2009). Some37

authors take the view that rogue waves are rare instances of random superposition in seas of38

weakly nonlinear waves (Christou & Ewans, 2014; Fedele et al., 2016) whilst others hypoth-39

esise that certain waves, such as the well-known Draupner wave, must have been produced40

by some other forcing mechanism (Adcock et al., 2011; Cavaleri et al., 2016).41

Other possible rogue wave generating mechanisms include modulational instability; in-42

teractions with variable bathymetry, opposing currents, or between crossing seas; wind forc-43

ing; or some combination of these factors (Dysthe et al., 2008; Kharif et al., 2009; Onorato44

et al., 2013; Fedele et al., 2016). Attempts to derive a single, unifying theory are compli-45

cated by the facts that geometric focusing cannot explain the transient nature of rogue waves46

(Janssen & Herbers, 2009), that modulational instability requires an improbable set of ini-47

tial conditions (deep-water waves with a narrow spectral bandwidth and narrow directional48
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spreading) (Dysthe et al., 2008), and that rogue waves can be produced even when several49

of the foregoing factors are absent (Mori & Janssen, 2006; Kharif et al., 2009).50

The simplest theory assumes that the dynamics of ocean surface waves are purely linear,51

that the free surface elevation is a stationary, Gaussian process, and that the wave amplitudes52

are well approximated by the Rayleigh distribution (Ochi, 2005; Holthuijsen, 2007). How-53

ever, because ocean waves are inherently (weakly) nonlinear (Trulsen, 2018), wave-wave54

interactions or other mechanisms can result in considerable deviations from the Gaussian55

model (Fedele et al., 2016). Some authors have suggested that rogue waves may be a re-56

sult of non-equilibrium dynamics: if waves are somehow forced into an unstable state, their57

statistics can deviate in such a way as to suggest an increased likelihood of extreme events58

(Janssen & Herbers, 2009; Viotti & Dias, 2014). The kurtosis of the free surface elevation59

is a convenient metric by which to quantify such deviations: an increase in free surface kur-60

tosis signifies an increase in the probability of rogue wave occurrence (Onorato et al., 2004;61

Mori & Janssen, 2006).62

Waves propagating into shallower water are known to be transformed by shoaling and63

nonlinear effects (Dean & Dalrymple, 1991; Dingemans, 1997) but recent studies have64

shown that sudden transitions between deeper and shallower domains can also produce65

strongly non-Gaussian wave statistics. Physical experiments by Trulsen et al. (2012), Zhang66

et al. (2019), and Trulsen et al. (2020) showed significant increases in free surface skew-67

ness and kurtosis for irregular waves near the crest of an inclined seabed of 1-in-20 slope68

connecting otherwise flat domains, and these findings have been supported by numerical69

simulations due to Sergeeva et al. (2011), Gramstad et al. (2013), Viotti & Dias (2014),70

Ducrozet & Gouin (2017), Zhang et al. (2019), and Zheng et al. (2020). Similar results71

have also been obtained in experimental and numerical studies of waves propagating over72

submerged bars (Ma et al., 2014, 2015), shoals (Janssen & Herbers, 2009; Raustøl, 2014;73

Fallahi, 2016; Trulsen et al., 2020), compound slopes (Kashima et al., 2014), and vertical74

steps (Zheng et al., 2020).75

The foregoing local increases in skewness and kurtosis usually coincide with local en-76

hancements of higher harmonic content related to the sudden decreases in depth and cor-77
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responding increases in nonlinearity (Gramstad et al., 2013; Zhang et al., 2019; Trulsen et78

al., 2020). In fact, Zheng et al. (2020) have recently shown that second-order terms in wave79

steepness are responsible for the change in the statistical properties near the depth transition80

for the cases examined by Trulsen et al. (2012) and Gramstad et al. (2013). These deviations81

are also expected to depend on the initial steepness, spectral bandwidth, and directionality82

of the waves (Ducrozet & Gouin, 2017; Støle-Hentschel et al., 2018; Trulsen et al., 2020;83

Zheng et al., 2020), the gradient of the seabed slope, and the depth beyond the slope: for84

milder slopes and deeper depths beyond the slopes, there may be no local maxima, or per-85

haps even local minima, in skewness and kurtosis (Zeng & Trulsen, 2012; Gramstad et al.,86

2013; Raustøl, 2014; Fallahi, 2016; Trulsen et al., 2020).87

In this paper, the phenomenon of increased free surface skewness and kurtosis following88

a sudden depth transition is explored further using an accurate yet computationally efficient89

Boussinesq-type model, following the work of Gramstad et al. (2013), whose model appears90

to be the simplest of those describing such anomalous statistical deviations. The aim is to91

first reproduce the findings of Trulsen et al. (2012) and Gramstad et al. (2013) and then92

extend the parameter space in our numerical simulations to provide further insight into the93

underlying physics. The paper is structured as follows: §2 provides a brief description of94

the numerical model, set-up of the numerical simulations, and grid convergence and sponge95

layer calibration tests; §3 compares the present findings with those of Trulsen et al. (2012)96

and Gramstad et al. (2013) and summarises the results of a model parameter study; and §497

presents the discussion, conclusions, and recommendations for further work.98

2 Model99

2.1 Numerical model100

The present simulations are performed using OXBOU, a depth-integrated hybrid numerical101

model designed to simulate the propagation in one horizontal dimension of ocean surface102

gravity waves from intermediate to shallow and zero water depth. A brief overview of the103

model features will suffice here; detailed descriptions of the numerical implementation and104
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verification and validation tests are given by Orszaghova (2011), Orszaghova et al. (2012),105

and Fitzgerald et al. (2016).106

The OXBOU model uses two sets of governing equations and two numerical schemes:107

unbroken waves are simulated using weakly dispersive, weakly non-linear Boussinesq-type108

equations, which are solved using a fourth-order finite difference method, whilst broken109

waves are modelled as bores using the non-dispersive, non-linear shallow water equations,110

which are solved using a shock-capturing finite volume scheme (Orszaghova et al., 2012).111

The model switches from the Boussinesq-type to shallow water equations when certain112

depth or free surface slope criteria are met, but the present simulations involve non-breaking113

waves solely and so employ only the Boussinesq-type model. The numerical scheme in-114

corporates a moving boundary piston paddle wavemaker, which is facilitated by a mapping115

between stretching-compressing physical and fixed computational sub-domains, and is ca-116

pable of producing waves with approximately correct second-order bound harmonics (see117

Orszaghova et al., 2012). The scheme also includes an absorbing-generating sponge layer118

which allows incident waves to propagate freely inshore whilst simultaneously removing119

offshore-travelling reflections (see Fitzgerald et al., 2016).120

OXBOU solves the Boussinesq-type equations of Madsen & Sørensen (1992), which121

were selected for their enhanced linear dispersion characteristics and computational ef-122

ficiency (Borthwick et al., 2006; Orszaghova et al., 2012). Following Orszaghova et al.123

(2012) and Fitzgerald et al. (2016), these equations are presented in a well-balanced, stage-124

discharge (η ,q) form as125

ηt +qx = ψ(ηo−η), (1)

qt +

(
q2

d
+

1
2

g(η2−2ηb)
)

x
=−gηbx−

τb

ρ
+

1
3

h2qxxt +
1
3

hhxqxt

+B
(

h2qxxt +gh3
ηxxx +2gh2hxηxx

)
+ψ(qo−q), (2)

where η = b+h+ζ is the free surface elevation above a prescribed horizontal datum (with126

b the depth of the datum below the seabed, h the still water depth, and ζ the free surface ele-127
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vation above still water level); q is depth-integrated velocity; ψ is the sponge layer damping128

strength; d = h+ ζ is the total depth; g is acceleration due to gravity; τb is bed stress; ρ is129

the fluid density; the subscripts t and x denote partial derivatives with respect to time and130

horizontal distance, respectively; the subscript o refers to solutions imposed by the sponge131

layers; and B is a linear dispersion coefficient such that the wave celerity, c, is given by132

c2

gh
=

1+Bk2h2

1+
(

B+
1
3

)
k2h2

, (3)

where k is the wave number. Setting B = 1/15 embeds the [2,2] Padé approximant of the exact133

linear dispersion relation within the momentum equation, whereas setting B = 0 recovers the134

classical equation derived by Peregrine (1967) (Orszaghova et al., 2012).135

2.2 Set-up of numerical simulations136

Following Gramstad et al. (2013), the first set of simulations is designed to replicate the137

physical experiments described by Trulsen et al. (2012), which were performed in the shal-138

low water basin at the Maritime Research Institute Netherlands (MARIN). These experi-139

ments considered three cases of long-crested irregular waves propagating from a piston-type140

wavemaker (at x = 0 m) first over a deeper flat domain, then over a 1-in-20 inclined seabed141

slope (from x = 143.41 m to 149.4 m), and finally over a shallower flat domain leading to142

an absorbing beach (at x = 173.41 m). In all three experimental cases, the still water depths143

before and after the slope were h = 0.6 and 0.3 m, respectively, and the nominal input sig-144

nificant wave height was Hs = 0.06 m. Cases 1, 2 and 3 were distinguished by the nominal145

peak periods of their input wave spectra: Tp = 1.27, 1.70, and 2.12 s, respectively. Wave146

records were obtained from eight gauges placed along the length of the basin, and the influ-147

ence of the depth transition on the probability of rogue wave occurrence was examined by148

calculating the skewness and kurtosis of the free surface elevation and exceedance function149

of the (Hilbert) wave envelope at each location.150

In repeating these experiments, the present study follows closely the methodology de-151

scribed by Trulsen et al. (2012) but uses OXBOU to output results at 1 m spatial intervals,152
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Fig. 1: Schematic diagram showing a simulation performed using coupled (a) incident and (b) run-up
domains. Identical irregular waves are produced by the moving boundary wavemakers (left), and absorbing

(right) and absorbing-generating sponge layers (centre) are used to eliminate reflections from the ends of the
tanks and submerged seabed slope.

and moves the seabed slope 0.01 m closer to the wavemaker to facilitate the use of uniform153

(fixed) computational grids. The simulations for each case are performed as follows. The154

wavemaker is used to generate identical irregular waves in both an incident domain and a155

run-up domain. In the incident domain, the numerical wave tank (from x = 0 m to 200 m) is156

assigned a flat seabed profile (h = 0.6 m), whilst in the run-up domain, the tank comprises157

deeper (h = 0.6 m) and shallower (h = 0.3 m) sections connected by a 1-in-20 seabed slope158

(from x = 143.4 m to 149.4 m). In both domains, the bed is frictionless and the waves prop-159

agate into an absorbing sponge layer (from x = 185.8 m to 200 m), which gradually reduces160

ζ and q to zero to ensure that there are no reflections either from the end of the tank or161

the absorbing layer itself. Meanwhile, in the run-up domain, reflections from the slope are162

removed by an additional absorbing-generating sponge layer (from x = 92.9 m to 107.1 m),163

which adjusts the free surface elevation, ζr, and depth-integrated velocity, qr, to match those164

in the incident domain, ζi and qi (Fig. 1).165

Irregular waves are produced as the sum of wave components obtained from a truncated166

JONSWAP spectrum with peak frequency fp = 1/Tp and upper and lower cut-off frequen-167

cies fmax = 3 fp and fmin = 0.5 fp. The JONSWAP function is given by168



8 P. A. J. Bonar et al.

S( f ) = α
g2

(2π)4
1
f 5 exp{−1.25( fp/ f )4}γ exp{−( f− fp)

2/2(σ fp)
2}, (4)

where f is the component frequency, α is the energy scale parameter, γ = 3.3 is the peak169

shape parameter, and σ is the peak width factor, which is assigned values of σ = 0.07 for f ≤170

fp and σ = 0.09 for f > fp (Ochi, 2005; Holthuijsen, 2007). Pseudo-random wave signals171

are generated using the random-amplitude/random-phase approach of Tucker et al. (1984),172

in which the amplitudes and phases of the linear components are determined, respectively,173

from a Rayleigh distribution with scale parameter
√

S( f )4 f , where 4 f is the frequency174

domain sampling interval, and a uniform distribution on [0, 2π] (Fitzgerald et al., 2016). The175

corresponding linear wavemaker signal is then calculated using the Biésel transfer function,176

and a large number of harmonic components is chosen to ensure that the repeat period of the177

signal is greater than the duration of the simulation. This linear signal can also be corrected178

by applying a second-order transfer function approximated from the wavemaker theory of179

Schäffer (1996) but, for ease of computation, only first-order accurate wavemaker signals180

are considered initially.181

2.3 Grid convergence and sponge calibration tests182

Model solutions converged for a uniform computational grid spacing of 0.02 m and a time183

step of ∼ 0.0066 s. Figure 2a shows the excellent agreement in free surface time series ob-184

tained when computational grids of resolution 0.018 m, 0.02 m, and 0.022 m (which repro-185

duce the tank using 11,000, 10,000, and 9,000 grid points, respectively) are used to simulate186

an example focused wave group, which is created by bringing 128 harmonic wave com-187

ponents from the Case 2 spectrum to a linear focus amplitude of 0.03 m at the toe of the188

seabed slope (x = 143.4 m). Wave records from a point just beyond the crest of the slope189

(x = 150 m) show excellent agreement, with root mean square error (RMSE) values ranging190

from ∼ 2.47× 10−5 m to ∼ 5.68× 10−5 m, as do the corresponding frequency-domain re-191

sults, which are not shown for brevity. Excellent results are also obtained in tests for mass192
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Fig. 2: Free surface elevation time histories at x = 150 m showing excellent agreement between (a) records
of a crest-focused group simulated on computational grids of resolution 0.018 m (circles), 0.02 m (line), and

0.022 m (crosses), and (b) subsequent repeat periods (crosses, line) of a periodic irregular wave signal.

conservation, reversibility, and the accumulation of round-off error, with model errors typi-193

cally much less than 1%.194

The absorbing and absorbing-generating sponge layers are then calibrated to ensure that195

they are able to damp effectively waves passing through without altering the incoming wave196

field. The absorbing-generating layer, which is used only in the run-up domain and placed197

such that its midpoint lies halfway along the one-dimensional tank (Fig. 1), is assigned a198

triangular strength profile (such that ψ increases and decreases linearly and symmetrically199

about the midpoint of the layer), whilst the identical absorbing layers, which are placed at200

the ends of the tanks in both the incident and run-up domains, are given linearly increasing201

strength profiles (Fitzgerald et al., 2016).202

Calibration is undertaken by comparing, for different sponge layer lengths, Ls, and in-203

tegrated sponge layer strengths, ψ , the wave records obtained from points upstream and204

downstream of the sponge layers. With the absorbing-generating layer switched off, a crest-205

focused wave group is first propagated from left to right through the absorbing layers, which206

are temporarily moved 20 m upstream so that measurements can be taken both upstream and207

downstream of the layers, and measurements are taken in the run-up domain as the waves are208

damped to zero. With the absorbing layers calibrated and moved back to the end of the tank,209

the reflected wave group, which is obtained from an additional simulation with no sponge210
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layers, is then propagated from right to left through the absorbing-generating layer, which211

is set to damp the waves to the conditions in the incident domain (in this case, still water).212

Excellent absorption properties are achieved by setting, for all layers, Ls = 4λp = 14.2 m213

and ψ = 4ωp = 14.8 rad/s, where λp is the the peak wavelength and ωp is the peak angular214

frequency of the Case 2 spectrum. Following Fitzgerald et al. (2016), a periodic irregular215

wave signal with repeat period ∼ 2.17× 102 s is then used to determine the efficacy of the216

sponge layer absorption by testing for repeatability in the wave record at a given gauge.217

Figure 2b shows the excellent agreement (RMSE ≈ 2.64× 10−4 m) in free surface time218

series obtained between subsequent repeat periods in the wave record at x = 150 m in the219

run-up domain, which confirms that the reflections from the end of the tank and submerged220

seabed slope are negligible.221

3 Results222

3.1 Comparison with the results of Trulsen et al. (2012) and Gramstad et al. (2013)223

The three experimental cases performed at MARIN are simulated by first discretising their224

input spectra into 214 harmonic wave components to produce irregular wave signals and225

corresponding linear paddle signals with repeat periods ∼ 1.67× 104 s, 1.11× 104 s, and226

1.39× 104 s, respectively (Figs. 3a, 3b). OXBOU is then used to run each simulation for a227

duration of Td = 1.10× 104 s with the linear dispersion coefficient tuned for optimal dis-228

persion: B = 1/15. With the three simulations complete, the wave records are compiled and229

the first 200 s of each is neglected, following Trulsen et al. (2012), which leaves, at each230

grid point, records of duration ∼ 8.48×103, 6.36×103, and 5.90×103 peak wave periods,231

respectively. Figure 3c shows, for the Case 2 simulation, the convergence of the normalised232

mean, standard deviation, skewness, and kurtosis of the free surface elevation with number233

of time samples in the wave record at x = 150 m. Each statistic is normalised by the corre-234

sponding value obtained for the entire record, and it is clear that the ∼ 1.644×106 samples235

are sufficient to provide robust estimates for each experimental case.236
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Fig. 3: Example plots from the present Case 2 simulation showing (a) the input JONSWAP spectrum, (b) the
nominal input wave signal, and (c) the convergence of the statistical moments G with the number of time
samples n in the wave record (which has a total of N ≈ 1.644×106 samples) at x = 150 m: mean (dotted

line), standard deviation (dashed-dotted line), skewness (dashed line), and kurtosis (solid line).

Figure 4 then compares, for each case, the simulated variations in variance, skewness,237

and kurtosis along the length of the tank with those obtained from the Boussinesq-type nu-238

merical simulations of Gramstad et al. (2013) and the physical experiments of Trulsen et239

al. (2012). The results from the present Boussinesq-type simulations are shown with 95%240

confidence intervals determined using histograms produced by calculating the same statis-241

tics for 1000 bootstrap samples, which are obtained by random sampling with replacement242

of 5% of the available data. Although the trends for each statistic are qualitatively similar,243

the present profiles do not match those reported by Trulsen et al. (2012) and Gramstad et al.244

(2013): the skewness results are consistently lower and initially negative, and the kurtosis245
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Fig. 4: Profiles of free surface elevation statistics: variance (a, b, c), skewness (d, e, f), and kurtosis (g, h, i)
for Cases 1 (left column), 2 (centre column), and 3 (right column). Results are obtained from the physical
experiments of Trulsen et al. (2012) (crosses), the Boussinesq-type simulations of Gramstad et al. (2013)
(solid lines), and the present Boussinesq-type simulations (dots with 95% confidence intervals shaded in

grey). The vertical dotted lines mark the positions of the toe (left) and crest (right) of the submerged seabed
slope.

profiles exhibit greater reductions along the tank and much less prominent spikes near the246

crest of the submerged seabed slope.247

3.2 Case 2 parameter study248

To investigate these discrepancies, a parameter study based on the Case 2 simulation is used249

to examine the effects of various model inputs on the kurtosis profiles obtained for irreg-250



Anomalous wave statistics following sudden depth transitions 13

50 100 150
x (m)

2.5

2.6

2.7

2.8

2.9

3

3.1
k
u
rt

os
is

(a)

50 100 150
x (m)

2.5

2.6

2.7

2.8

2.9

3

3.1

k
u
rt

os
is

(b)

Fig. 5: Kurtosis profiles from the Case 2 parameter study. (a) Flat domain: still water depth, h = 0.6 m (solid
line); narrower input spectrum (dashed line); lower input kurtosis (dashed-dotted line); and h = 0.3 m

(dotted line). (b) Submerged seabed slope: single realisation (solid line); quasi-ensemble average of the
single realisation divided into fifths (dashed line); ensemble average of five alternate, independent

realisations (dashed-dotted line); reduced sponge layer strengths (dotted line); and shorter simulations using
first- (circles) and second-order (crosses) accurate wavemaker signals.

ular waves propagating over a flat, horizontal bed (Fig. 5a) as well as over the submerged251

seabed slope (Fig. 5b). For a flat domain with still water depth h = 0.6 m, the kurtosis pro-252

file obtained for x < 143.4 m (Fig. 5a: solid line) is practically identical to that obtained253

in the Case 2 simulation (Fig. 5b: solid line), which confirms that the upstream kurtosis254

profile is unaffected by the reflections from the submerged slope. This flat-bed simulation255

also demonstrates a reduction in kurtosis along the length of the tank: the kurtosis decreases256

from the input value of∼ 3 and appears to stabilise at a value of∼ 2.9 towards the end of the257

domain. Repeating this simulation with a lower input value of kurtosis (which is done by re-258

placing the original wavemaker signal with the negatively skewed wave record subsequently259

obtained at x = 160 m) yields a more uniform profile, which further suggests an equilibrium260

kurtosis value of ∼ 2.9 for this case. However, this equilibrium value is found to depend, as261

in earlier studies (see Janssen, 2003; Zeng & Trulsen, 2012), on both the still water depth262

(Fig. 5a: dotted line) and the bandwidth of the input wave spectrum (Fig. 5a: dashed line).263

For simulations including the submerged seabed slope, the kurtosis profiles appear in-264

sensitive to the location of the generating-absorbing sponge layer and the end-of-tank bound-265

ary condition. A similar profile is also obtained when the strengths of the absorbing and266

absorbing-generating layers are reduced by 90% (Fig. 5b: dotted line), which implies that267
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the observed reduction in kurtosis is not the result of excess numerical damping. Dividing268

each wave record from the Case 2 simulation into five equal sections and taking the quasi-269

ensemble average of these fifths yields a similar profile (Fig. 5b: dashed line), as does taking270

the ensemble average across five alternate, independent realisations (Fig. 5b: dashed-dotted271

line). This demonstrates that the present results do not depend on the type of measurement272

taken. Moreover, the kurtosis profiles obtained from shorter-duration (for ease of computa-273

tion) simulations using first- and second-order accurate wavemaker signals are very similar274

(Fig. 5b: circles; crosses), which implies that neither are the observed trends due to error275

waves produced by the first-order accurate wavemaker (see Orszaghova et al., 2014).276

4 Discussion and conclusions277

The kurtosis profiles obtained in each experimental case agree qualitatively with those of278

Trulsen et al. (2012) and Gramstad et al. (2013) but the present numerical model is clearly279

unable to capture accurately the spikes near the crests of the submerged seabed slopes (Figs.280

4g, 4h, 4i). A parameter study has confirmed that the present results do not depend on the281

type of measurement taken, the position or damping strengths of the sponge layers, or the282

order of accuracy of the wavemaker signal (Fig. 5b). Further discrepancies are also evi-283

dent: for the depths considered here, second-order bound harmonics are expected to posi-284

tively skew the probability distribution function for the free surface elevation (Onorato et al.,285

2005) but the present skewness results are initially negative (Figs. 4d, 4e, 4f). Replication286

of an example irregular wave simulation with the ‘fully nonlinear’ OceanWave3D model287

(see Engsig-Karup et al., 2009) (comparison not shown for brevity) confirms that OXBOU288

produces consistently lower values of free surface elevation skewness and kurtosis.289

The discrepancies between the present results and those of Gramstad et al. (2013) most290

likely stem from differences in the underlying momentum equations. The exact source of291

these discrepancies, however, is difficult to determine. When examining the propagation of292

irregular waves over a compound slope, Kashima et al. (2014) found that the present equa-293

tion set returned values of skewness and kurtosis which were considerably lower than those294

obtained in the corresponding physical experiment. These lower values were explained as295
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being the result of insufficient nonlinearity in the numerical simulations, but Gramstad et296

al. (2013) were able to use a similar weakly nonlinear model to reproduce the results of297

Trulsen et al. (2012). Further, in deriving the present equation set, Madsen & Sørensen298

(1992) adopted a mild slope assumption which retained only the lowest-order spatial deriva-299

tives of the water depth. This means that the present model is unable to capture the effects300

of the sudden depth transition as well as that of Gramstad et al. (2013), which retains these301

high-order terms. It is also worth noting that two of the present three experimental cases con-302

sider water depths which exceed the depth limit (kph < 1, where kp is the peak wavenumber303

of the input spectrum) recommended to ensure the accuracy of the present equation set (see304

Madsen & Sørensen, 1992, 1993).305

Using a boundary element method with fast multipole acceleration to solve Laplace’s306

equation for potential flow with fully nonlinear boundary conditions, Zheng et al. (2020)307

have recently predicted the local changes in the statistical properties of irregular waves308

propagating over a range of submerged slopes in close agreement with the experiments309

by Trulsen et al. (2012). In doing so, Zheng et al. (2020) have demonstrated that these lo-310

cal changes are driven by second-order terms, which may help to explain why the peaks in311

skewness and kurtosis cannot be accurately captured by the present Boussinesq-type model.312

The present equation set includes a linear dispersion coefficient, B, which may be tuned to313

produce either enhanced dispersion characteristics or approximately correct second-order314

bound harmonics (Yao, 2007). Herein, B is assigned a value of 1/15 for optimal dispersion.315

It is reasonable to assume that if the bound waves are inaccurate, significant errors in skew-316

ness and kurtosis will arise near the sudden depth transition, because the peaks in skewness317

and kurtosis at this location are likely a consequence of the release of second-order bound318

waves by the depth transition (Zheng et al., 2020). Although there is no value of B which319

can make the present equation set equivalent to that of Gramstad et al. (2013), it is possible320

to match the linear dispersion relations by setting B = 0.057. However, this is found to make321

no appreciable difference to the present results and does not address the need to correct the322

bound waves. Frequency domain comparisons between OceanWave3D and OXBOU (again323
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not shown for brevity) demonstrate that there is also no value of B which gives satisfactory324

agreement on sub-harmonic and super-harmonic content.325

Modelling this sudden depth transition problem is challenging because it requires an326

accurate yet computationally efficient numerical code which is able to incorporate the ef-327

fects of both dispersion and nonlinearity on the evolution of the wave field. The work of328

Gramstad et al. (2013) has shown that the key physics underlying this localised increase in329

the probability of rogue wave occurrence can be captured by a weakly dispersive, weakly330

nonlinear Boussinesq-type model. There are, however, many different sets of Boussinesq-331

type equations and the present study demonstrates the importance of making an appropriate332

selection. Although OXBOU is a very useful tool for modelling nearshore wave propaga-333

tion, run-up, and overtopping, it is clear that the underlying equation set is not well-suited to334

modelling the propagation of waves over a sudden depth transition. It is thus recommended335

that this problem be revisited using a revised version of OXBOU based on an improved set336

of Boussinesq-type equations. The equations of Schäffer & Madsen (1995), for instance,337

provide the same enhanced linear dispersion characteristics as those of Madsen & Sørensen338

(1992) but are not limited to mildly sloping seabeds. It should also be noted, however, that339

the accuracy of any numerical model will depend on the means by which the spatial and tem-340

poral derivatives are calculated (Borthwick et al., 2006), and that sudden depth transitions341

invariably prove challenging for any low-order finite difference scheme. Shock-capturing342

schemes offer an alternative approach but are generally less accurate and may introduce343

further complications.344

In future studies, it would prove valuable to compare statistical results not only between345

different Boussinesq-type formulations but also between weakly and highly nonlinear mod-346

els, following Viotti & Dias (2014), Ducrozet & Gouin (2017), and Zheng et al. (2020), as347

well as with physical experiments, following Zhang et al. (2019) and Trulsen et al. (2020). It348

would also be interesting to explore whether idealised, multi-layer numerical models, such349

as SWASH (Zijlema et al., 2011), can provide additional insight. Future work should exam-350

ine not only the extreme amplitudes but also the shapes and periods of these rogue waves,351

which are crucial in understanding the strength of the wave impact and the resilience of ships352
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and offshore structures (Kharif et al., 2009; Adcock & Taylor, 2014). The effects of direc-353

tionality must also be considered because large waves evolve differently in unidirectional354

and directionally spread seas (Adcock & Taylor, 2014), and studies have shown that even355

a small amount of counter-propagating wave energy can result in a significant reduction in356

free surface kurtosis (Ducrozet & Gouin, 2017; Støle-Hentschel et al., 2018). Finally, real-357

world observations should be included wherever possible in studies of rogue wave formation358

and occurrence probability (Slunyaev et al., 2011) because it is the ocean that provides the359

most representative conditions with which to test and revise new theories.360
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