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Introduction

This Supporting Information provides further information on: the derivation of equa-

tions (2) and (4) in the main text, including their context and underlying assumptions;

the model parameters used in the case study; and a sensitivity analysis of the effects of
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plant elevation ηv, and the tenth D10 and ninetieth D90 percentiles of the bed sediment

grain size distribution on uprooting probability, Pτ , between pre- and post-dam scenarios.

1. Equation for Noise in Erosion process, gt

Equation 2 in Section 2.1 of the main text expresses random fluctuations in the erosion

process, and is used to solve the analytical expression for the probability density function

(PDF) of the elapsed time to uprooting pτ . An expression for the standard deviation

of noise characterizing the erosion process, gt, is derived as follows. Following Perona &

Crouzy (2018), we assume that the erosion process can be represented as an Ornstein-

Uhlenbeck stochastic process (Uhlenbeck & Ornstein, 1930) involving Gaussian diffusion

with drift, where the diffusion coefficient is given by D(t) = gt(t)/2, which, for the sake of

simplicity, is assumed constant with respect to time so that D = gt/2. This expression for

the diffusion coefficient is well known from Einstein’s theory of diffusion (Einstein, 1905)

which relates D to the variance σ2 of the diffusion process after an elapse time t, such

that

D =
σ2

2t
. (1)

For a discrete random walk process characterized by average jumps (or fluctuations) δ,

each taking a time interval ∆τ to occur, then, after N steps,

D =
Nδ2

2N∆τ
. (2)

Owing to the scaling properties of the Gaussian diffusion process, the quantity:

gt = 2D =
δ2

∆τ
, (3)

is therefore a constant. In order to transpose this idea to a layer of well packed spheres

of mean diameter D50 (Figure S1), it is necessary to determine an expression that links
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the fluctuation time ∆τ and fluctuation spatial scale δ to the characteristic quantities of

the erosion process. Let us then consider Figure S1, and assume that a turbulent stream

flow has a vertical profile of stream-wise velocity component u given by the log-law such

that ū
u∗

= 8.5 + 5.75log(y/ks) (see e.g. Papanicolaou et al. (2002)), where u∗ is the bed

friction velocity, y is the elevation vertically above the bed, and ks is the equivalent grain

roughness size (here assumed to be equal to the mean sediment size D50). Once an eroded

sediment particle of diameter D50 = ks is exposed to the stream flow, then it will travel

at a speed that is approximately ū = 8.5u∗ (i.e. as computed from the logarithmic profile

for y = ks). Hence, the time interval ∆τ taken by such a sediment particle to vacate its

space is:

∆τ =
D50

8.5u∗
. (4)

Substituting equation 4 into equation 3 leads to the following approximate expression for

the standard deviation of the noise characterizing the erosion process:

gt =
δ2

D50

8.5u∗
1

= 8.5
δ2

D50

u∗. (5)

Without loss of generality, and further assuming that the smallest fluctuations in the

process are of a size that is the same as the (spherical) mean sediment diameter, δ = D50,

then equation 5 becomes:

gt = 8.5D50u∗, (6)

which is the sought result.
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2. Stochastic modeling of groundwater level

In order to utilize the model proposed by Tron et al. (2014), we first idealize the tem-

poral groundwater level dynamics as a Compound Poisson Process – a convenient, robust

way of representing flow variability (see e.g. Rodriguez-Iturbe et al. (1999); Bertagni et

al. (2018); Calvani et al. (2019)). The Compound Poisson Process (CPP) is a synthetic

signal characterized by a sequence of stochastic instantaneous pulses followed by expo-

nential deterministic decays (Figure S2a). The CPP signal is governed by the Langevin

equation that, in the case of water table dynamics, has the form:

dzw
dt

= ηl(h2 − zw)− ζ (7)

where zw is the water table depth below the soil surface and h2 is the maximum distance

from the soil surface to the water table. The first term on the right-hand side of equation 7

expresses the deterministic component of the signal (exponential decay) with decay rate

ηl. The second term ζ is a state variable representing the stochastic component in which

pulses are modeled as white shot noise of mean rate, λl (Ridolfi et al., 2011), and is given

by:

ζ(t) =
∞∑
i=1

hi(t)δ(t− ti) (8)

where hiδ(0) is the amplitude of the i-th pulse at time ti, t is time, and δ(·) is the Dirac

delta function. From equation 7, the steady-state probability density function of the water

table level (Figure S2b) may be derived analytically (see e.g. Tron et al. (2014)) as:

p(zw) =
γ−βll

Γ [βl]
e
zw−h2
γl (h2 − zw)βl−1 (9)
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where Γ[·] is the Gamma function (Abramowitz & Stegun, 1948), γl is the mean amplitude

of the pulses in water level, and βl is the ratio of the mean rate of the pulses, λl, to ηl.

Note that γl and βl represent the scale and shape parameters of the PDF in Figure S2b.

In the model proposed by Tron et al. (2014), stochastic fluctuations in the water ta-

ble trigger variations in water and oxygen availability in the soil, thus influencing root

shape and evolution dynamics. Tron et al.’s model assumes that roots potentially grow

within the zone, h2, defined as the maximum layer thickness between the soil surface and

water table depth zw (Figure S3), below which root growth is hindered by excess water

availability. Root growth is stimulated in the unsaturated zone, the so-called ‘optimal

root-growth zone’, L, where water availability is ensured through capillary rise. This

zone, whose thickness is controlled by D10 and D90 of the sediment, is located at a dis-

tance (h2 − h1) above the water table (see Figure S3). The analytical expression of L is

built on the concept of capillary rise in soil as follows:

L =
4Tcosζ

ρgD10

− 4Tcosζ

ρgD90

(10)

where the first term on the right-hand side relates to the height of maximum capillary

rise above the groundwater table, whereas the second term represents the thickness of the

saturated capillary fringe. T is surface tension, ρ is water density, g is acceleration due to

gravity and ζ is the contact angle (which is equal to 0 assuming full wettability between

the rising water and the soil particles). The optimal root-growth zone L, fluctuates

according to stochastic oscillation of the groundwater dynamics (Figure S3) described as

a Compound Poisson Process (Figure S2a). As a result, Tron et al. (2014) assumed that

the water table moves almost synchronously with the river water stage.
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Root growth-decay dynamics inside and outside the zone L is modelled using dichoto-

mous noise (Ridolfi et al., 2011). This type of noise is commonly used to describe the

dynamics of systems that randomly switch between two states – in this case, root growth

and death.

The equation representing root dynamics is:

r(z) =
2θ(z)k(z)

θ(z) + θ(z)k(z) + 1− k(z)
, (11)

where θ(z) is the ratio of root growth rate to death rate. The function k(z) expresses the

probability that a generic depth below the soil surface, z, is located in the optimal root-

growth zone. Hence, when a depth z is located within L, root development is enhanced; if

z is located outside L, then root growth contracts because of dryness (above L) or anoxia

(below L). It is hence assumed that k(z) may be expressed by the following piece-wise

equation:

k(z) =


[
Γ
(
βl,

h1−z−L
γl

)
− Γ

(
βl,

h1−z
γl

)]
· Γ(βl)

−1 −∞ < z < h1 − L

1− Γ
(
βl,

h1−z
γl

)
· Γ(βl)

−1 h1 − L < z < h1

(12)

3. Scour depth Le

Equation 4 in the main text is derived by combining models by Bau’ et al. (2019) and

Tron et al. (2014).

The analytical approach proposed by Bau’ et al. (2019) provides a formula for calcu-

lating the critical rooting length of flexible plants at incipient uprooting. By definition,

the critical rooting length corresponds to the residual rooting length of the plant when

uprooting occurs and can be determined by assessing the equilibrium of forces between

root resistance and flow-induced drag. Bau et al.’s model assumes that, during extreme
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flow-induced erosion events, plants become reconfigured in the stream-wise direction (Fig-

ure S4b). Therefore, at incipient uprooting, the vector sum of destabilizing forces acting

on the plant must balance mechanical resistance, so that:

Fn + Fd,n + Fd,t = R. (13)

where Fn is the net buoyancy force, Fd,n is the net normal drag force, Fd,t is the net

tangential drag force, and R is the resistance exerted by the root system.

An expression for root anchoring is particularly complicated to derive from first prin-

ciples, and so it is convenient to recall empirical correlation laws derived from pullout

experiments. Such laws link the resistance force R to the total rooting length Lr (Fig-

ure S4a):

R = R(Lr). (14)

Consequently, the force exerted to pullout the plant Fp is directly related to the total

rooting length Lr,

Fp = Φ(Lr), (15)

where Φ is an empirical fitting relationship extracted from experimental data. Hence,

equation 11 becomes:

Fn + Fd,n + Fd,t = Fp. (16)

Without a priori knowledge of the total rooting length, equation 14 has to be augmented

by the model of Tron et al. (2014) to determine the erosion depth Le. The proportionality

coefficient, am, linking root density and the total rooting length, suffices for the purpose:

am =
Lr

av
∫ zm

0
r(z)dz

(17)
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where av accounts for the dependence between Lr and the plant species, and the integral∫ zm
0

r(z)dz expresses the root biomass density underneath the vertical root profile r(z)

with depth below soil surface zm (Figure S4a). In evaluating equation 17, we obtain Lr

by recalling the balance of forces in equation 14:

1

2
CDρwu

2An +
1

2
Cfρwu

2At +
1

2
Cfρwu

2πdr(Lr) = Fp(Lr) (18)

where ρw is the water density, CD is the drag coefficient, Cf is the friction coefficient,

An is the projected area of the plant in the flow direction, At is the surface area of the

plant subjected to the tangential component exerted by flow drag, and u is the flow

velocity. With am evaluated and av assigned, the scour depth Le is evaluated by solving

the following integral:

Le,t = am

∫ Le

0

r(z)dz, (19)

which gives the expression obtained in the main text. Le,t is obtained from (Figure S4b):

Le,t = Lr − Lc,t (20)

where Lc,t is obtained in a similar way as Lr, from:

1

2
CDρwu

2An +
1

2
Cfρwu

2At +
1

2
Cfρwu

2πdr(Lr − Lc,t) = Fp(Lc,t) (21)

The calculation procedure is as follows. First, Lr is calculated from equation 17 and

Lc,t from equation 20. In certain cases, it is possible to solve these equations explicitly,

depending on how the pullout law Fp is expressed. Once Lr and Lc,t have been determined,

then Le,t is calculated from equation 19. Finally, equation 18 is integrated numerically to

obtain Le.
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4. Parameters used in the case study

A case study was undertaken for the River Maggia in Switzerland. Parameters used to

implement the model for the case study are briefly described below and further summarised

in Table S1.

Channel geometry and hydraulic parameters

The cross-section representative of the braided reach of the River Maggia was approx-

imated by a trapezoidal geometry with external angle, α, of 5◦ and a minor base, B, of

50 m width. The channel slope was set to 5‰, which is within the range outlined by Ruf

(2007). The water level in the river was computed using Engelund’s method for different

values of the Strickler coefficient for vegetated (Ks,1 = 6) and non-vegetated (Ks,2 = 20)

parts of the river. The vegetated area coincides with the riverbanks, whereas the non-

vegetated area comprises the channel bed. The value assigned to Ks,1 = 6 corresponds to

highly densely vegetated riverbanks (Hrissanthou & Kaffas, 2019).

Turning to bed-load transport, the critical Shields parameter for incipient motion, τ ∗cr,

was set equal to 0.03 (Parker et al., 2007). Sediment porosity, λg was set to 0.2 according

to the empirical formula suggested by Wu & Wang (2006), the exponent of the sediment

transport formula, b, was given a value of 1.5 (e.g. Van Rijn’s model), and the sediment-

to-water density ratio, ρg, was set to 2600 kg/m3. The coefficient of the bed-load transport

formula, αBL, was set equal to 3.97, following Wong & Parker (2006). A representative

value for ∆X proved difficult to assign, and so, following Calvani et al. (2019), ∆X

was assumed equal to 6B, which is approximately the length scale of a bar according to

Leopold & Wolman (1957).

April 21, 2021, 1:30pm



X - 10 :

Soil texture parameters

The grain size distribution of riverbank soil is unknown for the River Maggia in Valle

Maggia, Switzerland. Hence, values assigned to D10 and D90 are purely indicative. Fur-

thermore, given the sediment retention capacity of the dam, it is appropriate to account

for a shift in sediment size between the pre- and post-dam periods. The change in sedi-

ment supply and the resulting decrease in bed mobility downstream of the dam lead to

the intuitive assumption that sediment size increased in the post-dam period.

In the case study, D90 and D10 of the riverbank soil were prescribed to vary from 0.12

to 0.24 mm and from 0.03 to 0.06 mm between the two states. For the riverbed sediment

grain size distribution, Ruf (2007) suggested the median value for riverbed pebbles, D50,

was about 100 mm. The value of D50 in the pre-dam scenario was taken equal to 65 mm,

noting that the actual value is unknown.

Vegetation properties

We assumed the pullout law followed a polynomial trend (i.e. Fp(Lr)=0.025Lr+0.6Lr),

appropriate for plants at an advanced stage of growth (Edmaier et al., 2014). For the sake

of simplicity, the coefficient av was set equal to 1 so as to consider plants with the same

allometric relationships between below- and above-ground biomass. The drag coefficient,

CD, was assigned a representative value of 1.0, in accordance with Bau’ et al. (2019). The

friction coefficient value of Cf = 3 was higher than that calibrated by Bau’ et al. (2019).

This was because of the more complicated plant geometry, comprising a larger number of

branches and leaves and more complex configuration (Järvelä, 2002). The surface area of

the plant exposed to flow, At, was prescribed as 1 m2, whereas the projected area of the
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stem and branches in the flow direction, An, was set to 0.5 m2. The mean diameter of a

single root was assumed to be 3 x 10−3 m.

Note that the free-body model has been applied without revisiting its inherent assump-

tions for two reasons. First, there are no input values for the plant properties. Second,

plants likely to be uprooted are usually still in their intermediate stage of growth (thus

flexible). It should also be noted that species differences and growth stage dynamics of

vegetation are not explicitly included in the model. Therefore, the maximum depth that

the root can reach, zm, is not constrained by vegetation type and age, and solely depends

on plant elevation, soil texture, and water table level.

5. Sensitivity Analysis

We performed a sensitivity analysis for the two most important input parameters: plant

elevation, and grain size distribution of the riverbank soil.

Figure S5 shows equilibrium curves obtained for a plant of elevation varying between

0.8 to 2 m, and constant values of D10 and D90 between the pre- and post-dam periods.

For comparison purposes, uprooting probability was plotted against the non-dimensional

ratio ∆H̃, defined as ∆H̃ = ∆H
ηv

where ∆H is the difference between plant soil elevation

and mean water stage and ηv is the plant elevation.

Role of plant elevation

From Figure S5a it is evident that, at the state points P1 and P3, uprooting probability

decreases as plant elevation increases and vice versa. This is quite intuitive for the post-

dam period, when plants located closest to the riverbed are more likely to be uprooted

given the long periods of low flow conditions. Conversely, plants at higher elevation are
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only inundated during sporadic flood events that cannot be contained by the dam (see

Figure 2b1 in the main text). The same logic can be applied to the pre-dam period, where

plants with higher probability of being stressed by drag forces are also inundated during

low flow conditions in winter.

Figure S6a presents the variation in probability of plant uprooting with plant elevation

on the riverbank. Figure S6a is particularly useful in illustrating to what extent the

elevation of the plant influences the uprooting percentage at points P1, P2, P3, and

P4. Uprooting percentages at P1 and P3 decrease as the plant elevation increases. The

uprooting percentage at P3 decreases more rapidly with plant elevation than at the pre-

dam point P1. Hence, the low flow conditions of the post-dam scenario have greater

impact on uprooting probability.

Figures S6b, S6c, and S6d illustrate differences in uprooting percentage, ∆Pτ , obtained

between the points P1 & P3, P2 & P3, and P1 & P4, as functions of plant elevation.

The trends appear parabolic, and are remarkably similar, each with a maximum at ηv

between 1.2 and 1.5. Plants at different elevations therefore display the same response in

terms of ecosystem shift (Figure S6b), adaptation to post-dam equilibrium (Figure S6c),

and ability to re-establish pre-dam conditions (Figure S6d). However, it is important to

note that these seemingly similar reactions by plants at different elevations have different

causes. This can be seen, for instance, by comparing Figure S6b with Figure S6a. For

plants located at elevations lower than 1.3 m, the uprooting probability at P3 decreases

much more rapidly than at P1. The opposite is observed in the trend of the uprooting

probability for plants at elevations between 1.4 and 1.7 m, where rapid decrease in Pτ

occurs at P1.
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Role of soil parameters

Figure S5b replots the same curves as Figure S5a, the only difference being that, in

this case, the values assigned to D10 and D90 are kept constant between P1 and P3. In

other words, this is a scenario that would occur if the dam had no impact on downstream

sediment supply. Although not a natural scenario, this could occur if sediment continuity

was artificially maintained. Figure S5b shows that such change could significantly affect

the uprooting probability. Specifically, Pτ reaches higher values during the post-dam

period than in Figures S5a for the same plant elevations. Trends in Pτ at P1 and at P2

(Figure S7a) are almost the same as those represented in Figure S6a. However, this is not

the case at P3 and P4.

Comparison between Figure S7 and Figure S6 reveals that maintaining D10 and D90

constant mostly affects the uprooting probability of plants whose elevation is less than

about 1.5 m. By maintaining the same soil texture between P1 and P3, the retention

capacity of the soil remains unchanged as well. Hence, compared to the results in Fig-

ures S5a and S6, at P3 the roots do not have to propagate to deeper layers in order to

reach the water table. This implies that plants can reach the equilibrium point at P3,

and approach P4 more easily. However, this finding does not also apply to plants that

grow at higher elevations, where ∆Pτ appears almost independent of soil texture (compare

Figures S7a and S7b to Figures S6a and S6b).
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Figure S1. Longitudinal velocity profile of a particle, and similarity between the spatial

scale of the particle and its median size D50.

Figure S2. Stochastic dynamics of groundwater level: a) simulated Compound Poisson

Process for water table level, zw; and b) probability density function of water table level,

p(zw).
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water table

soil surface

optimal root growth

zone

z

h2

h1

L

Figure S3. Sketch depicting synchronous fluctuations in groundwater level and the

optimal root-growth zone L. Oscillations are indicated by dashed lines: rising in red,

falling in green.

Lr
Lc,t

Le

Le,t

  

R 

Fd,n
Fd,t

Fn

r(z) 

zm

a) b)

Figure S4. Outline of the free-body model. a) Upright plant without bed erosion (Le

= 0). Total length of below-ground biomass is Lr, whose density is represented by the

integral of the analytical root profile r(z) between the soil surface and the rooting depth

zm. b) Forces acting on a bent plant (red coloured arrows) and root mechanical resistance

(blue coloured arrow) at the uprooting time. Due to scouring around the plant, part of

the root system is partially exposed (Le,t), hence reducing the rooting length to Lc,t.
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Figure S5. Uprooting probability, Pτ , plotted against the ratio of the difference between

plant soil elevation and mean water stage to the plant elevation, ∆H̃, for a) a range of

plant elevations between 0.8 and 2 m b) and for constant values of D10 and D90.
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Figure S6. a) Variation in uprooting probability Pτ with plant elevation on the

riverbank at P1, P2, P3, and P4. b)-d) Variation in difference in the uprooting probability

with plant elevation on the riverbank for different values of ηv between: b) P1 & P3, c)

P2 & P3, d) P1 & P4.
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Figure S7. a) Variation in uprooting probability Pτ with plant elevation on the

riverbank at states P1, P2, P3, and P4, while keeping the value of soil texture constant

between P1 and P3. b)-d) Variation in difference in uprooting probability with plant

elevation on the riverbank for different values of ηv and constant values of D10 and D90

between: b) P1 & P3, c) P2 & P3, d) P1 & P4.
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Table S1. Input data to the model.

Input parameters description pre-dam post-dam
τd integral temporal scale 3.31 d 1.60 d
γd average jump height 23 m3s−1 50 m3s−1

λd average jump height 0.22 d−1 0.05 d−1

B river width 50 m 50 m
Ks,1 river bed Strickler coefficient 20 m1/3s−1 20 m1/3s−1

Ks,2 vegetation Strickler coefficient 6 m1/3s−1 6 m1/3s−1

S river slope 5‰ 5‰
ρg sediment density 2600 kgm−3 2600 kgm−3

λg sediment porosity 0.2 0.2
b exponent in sediment transport formula 1.5 1.5

∆X longitudinal length scale of bed erosion 300 m 300 m
αBL coefficient in bedload transport formula 3.97 3.97
τ ∗cr critical Shields parameter 0.03 0.03
gt erosion process noise 0.18 m2 d−1 0.18 m2 d−1

D10 grain size value 3.4 x 10−5 m 6.0 x 10−5 m
D90 grain size value 1.2 x 10−4 m 2.4 x 10−4 m
D50 median pebble size 6.5 x 10−2 m 1.0 x 10−1 m
Cd drag coefficient 1.0 1.0
Cf friction coefficient 3.0 3.0
dr root diameter 3 x 10−3 m 3 x 10−3 m
At plant surface area 1 m 2 1 m2

An plant normal area 5 x 10−1 m2 5 x 10−1 m2

ηv plant elevation 1.2 m 1.2 m
av coefficient of plant species 1.0 1.0
ar coefficient of pullout law† 0.025 0.025
br coefficient of pullout law† 0.6 0.6

† static pullout law: Fp = arx
2 + brx
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