Faculty of Science and Engineering

School of Biological and Marine Sciences

2020-03-17

Microfiber Release to Water, Via Laundering, and to Air, via Everyday Use: A Comparison between Polyester Clothing with Differing Textile Parameters

De Falco, F

http://hdl.handle.net/10026.1/17621

10.1021/acs.est.9b06892 Environmental Science & Technology American Chemical Society (ACS)

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.

1 D	isc	laimer
-----	-----	--------

2 3	'This is a copy of the accepted paper as submitted for publication. Readers are advised to refer to the final version of the paper which can be found at
4	Environmental Science & Technology, 54(6), 3288-3296. doi:10.1021/acs.est.9b06892
5	
6	
7	Microfibre release to water, via laundering, and to
8	air, via everyday use: a comparison between
9	polyester clothing with differing textile parameters
10	Francesca De Falco, ^{†,‡} Mariacristina Cocca, * [†] Maurizio Avella, [†] Richard C. Thompson [‡]
11	[†] Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, Via
12	Campi Flegrei, 34- 80078, Pozzuoli, NA, Italy.
13	[‡] International Marine Litter Research Unit, School of Biological and Marine Sciences, University
14	of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, U.K.
15	
16	KEYWORDS: microplastics, microfibres, polyester, textiles, sustainable fashion.
17	
18	ABSTRACT. Textiles are one of the major sources of microplastic pollution to aquatic
19	environments and have also been reported in dry and wet atmospheric deposition. There is still a
20	lack of information on the direct release of microfibres from garments to the air and on the

21 influence of textile characteristics including structure, type of yarn and twist. The present study 22 examined microfibre emissions directly to the air and to water as a consequence of laundering. 23 Polyester garments with different textile characteristics were examined including: various material 24 compositions, fabric structure, yarn twist, fibre type, and hairiness. Scaling up our data indicate 25 release of microfibres per person per year to the air is of a similar order of magnitude to that 26 released to wastewater by laundering. The lowest releases to both air and water were recorded for 27 a garment with a very compact woven structure and highly twisted yarns made of continuous 28 filaments, compared with those with a looser structure (knitted, short staple fibres, lower twist). 29 Our results demonstrate for the first time that direct release of microfibres from garments to air as 30 a consequence of wear is of equal importance to releases to water. Currently there is considerable 31 interest in interventions focused on capture from wastewater. However, our results suggest more 32 effective interventions are likely result from changes in textile design that could reduce emissions 33 to both air and water.

34

35 **1. Introduction**

Microplastic pollution has become a high profile topic. The term first came into popular use following research in the marine environment¹ but it has become clear that microplastics are also present in freshwater² and terrestrial³ systems, as well as urban dust⁴. Microplastics are defined as plastic particles smaller than 5 mm, and are further divided, on the basis of their origin, as "primary" microplastics if they are intentionally produced either for direct use or as precursors to other products, and "secondary" microplastics if they are formed in the environment from breakdown of larger plastic materials.^{5,6} 43 According to desk based evaluation conducted by the International Union for conservative of 44 Nature (IUCN), washing of synthetic textiles could contribute 35% of the release of primary microplastics to the oceans.⁷ However, this estimation is based on releases of primary 45 46 microplastics via laundering alone and the release to the atmosphere as a consequence of wearing 47 clothes is not included. Hence, the overall importance of textiles as a source of microplastics could 48 be underestimated. Irrespective of the pathway via air or water it is important to note that, during 49 laundering and wearing, not only microfibres of synthetic origin (microplastic of fibrous shape < 5 mm) could be released, but also microfibres of artificial or natural origin. Natural fibres can be 50 51 modified during manufacturing processes, for example by reconstitution into semi-synthetic cellulosic materials as well as by bleaching, dyeing, finishing. The persistence and potential 52 53 impacts of these varying forms of fibres in the environment is not fully understood.

54 There is clear evidence of widespread microfibre accumulation in aquatic environments, including shorelines⁸, rivers⁹, oceans¹⁰ as well as the Arctic^{11,12} and deep sea^{13,14}. Microfibre ingestion has 55 also been reported for a variety of aquatic organisms, including oysters¹⁵, fish^{16,17}, and turtles¹⁸. 56 57 More recently, microfibres have been found in terrestrial environments. For example, microfibres accounted for more than the 50% of the total microplastics detected in farmland around Shangai,¹⁹ 58 for 92% of the microplastics in samples from the Chai River valley, China,²⁰ and represented the 59 largest proportion of microplastics also in soils from rice-fish experimental stations in Shanghai.²¹ 60 Recent studies have also indicated the presence of microfibre contamination in the air^{22,23} and it 61 62 has been estimated that between 3 and 10 tons of microfibres are deposited by atmospheric fallout every year in Paris alone, with 29% constituted by fibres of petrochemical nature²⁴. The presence 63 of microfibres in the air has also been investigated indoors^{25,26}, in an intercity terminal and a 64 university campus in Turkey²⁷. The results of these works confirmed the presence of synthetic 65

66 microfibres in the indoor and outdoor environments, but the prevalent microfibres were artificial and natural ones. Concentrations of microfibres in the range 1.0-60.0 microfibres/m³ and 67 deposition rates between 1586 and 11,130 microfibres/day/m², were documented indoor.²⁵ The 68 quantity of microfibres in the atmosphere shows considerable temporal and spatial variability.²⁷ 69 70 Human exposure to microplastics via ingestion of contaminated seafood and exposure via 71 household microfibres fallout during a meal, has also been examined, showing that microplastic 72 ingestion by humans via consumption of mussels ranged between 123 particles/year/capita in the 73 UK to 4620 particles/years/capita in countries with a higher shellfish consumption, whereas 74 microfibre exposure during a meal via dust fallout in a household was found to be much greater, with 13,731-68,415 particles/years/capita.²⁸ Exposure to microfibres could lead to inhalation, as 75 already observed for natural and synthetic fibres found in human lungs by Pauly et al.²⁹ Synthetic 76 77 fragments and fibres, as well as non-synthetic particles of protein and cellulose origin, were founded inhaled by a Breathing Thermal Manikin, in a set of simulation experiments in indoor 78 environments.³⁰ 79

80 Several studies have investigated the release of microfibres to wastewater from the washing of 81 synthetic clothes, using different washing procedures, and estimated that thousands of microfibres could be released by a single household wash of 5-6 kg.^{31,32,33} It has been suggested that textile 82 parameters such as material composition of the fabric³¹, type of yarn³² and textile construction^{34,35} 83 84 could all influence release. However, very little information is available on these parameters and 85 more research is needed to provide information to guide interventions to reduce microfibre 86 emission. The present work aims to assess the influence of several parameters on release. 87 Furthermore, we will quantify release of microfibres during everyday use and wear of clothing. 88 The three main objectives were: (1) determine the amount of microfibres released from garments

during washing, and (2) compare this with the amount shed directly to the air due to their wearing, (3) examine the extent to which microfibre release both to air and water is influenced by textile characteristics. Four polyester garments were selected with different textile characteristics, including material composition (neat or blend), fabric structure (woven or knitted), yarn twist (high or low), fibre type (staple or filament), and hairiness (high or low). Microfibre release to water and air was assessed by using a household washing machine and tests to quantify the release of fibres from wearing clothes.

96 97

98 2. Materials & Methods

99 2.1. Materia

Four different polyester commercial garments were used. These included a 100% green polyester blouse, a 100% blue polyester t-shirt, a 100% black polyester dress, and a 50%:50% pink polyester/cotton sweatshirt. Four replicates of each garment were used for investigating the release of microfibres during washing and four separate replicates were used for investigating release of microfibres during wear. All garments were purchased in the same size (Large).

Before testing, the garments were pre-washed to eliminate loose fibres, impurities and the presence of other type of fibres. All replicates of the same garment type were washed in a Whirlpool WWDC6400 washing machine (40 °C, 1200 rpm, 1h), using a commercial liquid laundry detergent in the dose recommended by the manufacturer, whose composition is reported in the Supporting Information (SI). Cross-contamination of microfibres between washes was prevented as described in the QA/QC section of the SI. Cotton lab coats and nitrile gloves were worn during all the experimental work.

112 **2.2. Textile characteristics of tested garments**

113 The polyester garments were selected considering five textile parameters: (1) material 114 composition, (2) textile structure, (3) yarn twist, (4) fibre length and (5) hairiness. 115 The work focused on polyester garments but, since polyester is widely used in blends with cotton, 116 the effect of neat versus blended polyester fabrics on microfibres release was also studied. The 117 composition of the fabrics reported on the label was confirmed by Fourier transform infrared 118 spectroscopy (FTIR). Spectra were acquired by means of a Hyperion 1000 microscope (Bruker) 119 coupled to an IFS 66 spectrometer (Bruker), using 16 scans and a resolution of 4 cm⁻¹, over the range 4000–400 cm⁻¹. The obtained spectra were compared to a spectral database of synthetic 120 121 polymers (Bruker I26933 Synthetic fibres ATR library).

122 Usually, textiles have two main structures: woven and knitted. The woven structure is made of two 123 sets of yarns interlaced, the warp runs in a lengthways direction and the weft runs in a widthway direction; the knitted is obtained by interlacing loops of yarn.³⁶ The yarn can be constituted by 124 125 staple fibres, of comparatively short length, and filaments, which are fibres of indefinite length.³⁷ 126 The yarn twist provides structural integrity to the yarn and is defined as the number of turns present in a unit length of yarn.³⁸ The fabric structure and yarns of the selected garments was analysed 127 128 using a Leica M205 FA light microscope (Leica Microsystem) and a field-emission scanning 129 electron microscope (SEM) Quanta 200 FEG (FEI) operating in high vacuum mode, using an 130 accelerating voltage ranging between 15 and 20 kV and a secondary electron detector (Everhart-131 Thornley detector). Before SEM analysis the samples were sputter-coated with gold-palladium. 132 SEM micrographs were also used to measure the twisting. The yarn twist (turn per meter, t/m), 133 was measured by using equation 1:

134
$$T = \frac{tan\theta}{\pi d}$$
 Equation 1

135 where θ is the angle formed by the fibre in the yarn with the yarn axis, d is the diameter in meters.³⁹ 136 The level of twist was classified in this way: no twist means that no torsion is present in the yarn; 137 low twist indicates values up to 500 t/m; moderate twist refers to a twist value up to 1000 t/m; high 138 twist was used to comment value above 1000 t/m.

139 Lastly, the hairiness is defined as the presence of small fibres that protrude from the main yarn core⁴⁰ and basically could be high or low depending whether the yarn is made of staple fibres or 140 141 continuous filaments, respectively. Hairiness was evaluated through the observation of the yarns under the light microscope.⁴¹Its value was expressed as number of protruding fibre ends per meter 142 143 of yarn (n/m). The level of hairiness was classified as low for values up to 500 n/m, and high for 144 values above 1000 n/m. The values obtained were in line with the type of fibres composing the 145 yarns of the fabrics. In fact, yarns made of short staple fibres presented greater hairiness than those 146 made of continuous filaments.

Figure S1 in the Supporting Information (SI) reports the optical and scanning electron micrographs of the surfaces of each selected garment and the yarns constituting them. The textile parameters analysed for each garment as reported in Table 1, and were used to codify the samples.

131 Table 1. Code and lexine parameters of the selected garmen	51	Table 1.	Code and	textile	parameters	of the	selected	garment
---	----	----------	----------	---------	------------	--------	----------	---------

Type of garment	Structure	Yarn	Twist	Hairiness	CODE
100% polyester	woven	continuous	warp 2458 t/m	warp 96 n/m	PES-Woven-
blouse		filaments	weft 875 t/m	weft 173 n/m	Filament
100% polyester	knitted	continuous	no twist	59 n/m	PES-Knit-
t-shirt		filaments			Filament

100% polyester	knitted	short staple	631 t/m	3754 n/m	PES-Knit-
dress		fibres			Staple
50 %:50%	knitted	short staple	470 t/m	3426 n/m	PES/COT-
polyester/cotton		fibres			Knit-Staple
sweatshirt					

- 152
- 153

Due to its mixed composition of cotton and polyester, PET/COT-Knit-Staple was further analysed by SEM to understand how cotton and polyester fibres were combined together in the yarns. In Figure S2, the obtained SEM micrographs are reported and it is clearly detectable the presence in the yarn of cotton fibres, with the typical twisted ribbon form, and of polyester fibres with a cylindrical and smooth surface.⁴² The two types of fibres were mixed together in each single yarn.

159 **2.3. Release of microfibres from synthetic clothes during washing**

Release of microfibres from the selected garments due to laundering was evaluated. Washing tests were performed using a Bosch washing machine serie 4 varioperfect WLG24225it with the following program for synthetics at 40°C, 1 h 47 min and 1200 rpm. The choice of the washing cycle is described in the SI. The commercial liquid detergent, whose composition was detailed in the SI, was used in the dose recommended by the supplier. Each garment was washed alone, with four replicates for each garment type. A total of 16 washing trials were performed.

166 The analytical procedure³⁵ adopted to determine the amount of microfibres consisted in a multistep 167 filtration procedure as detailed in the SI, using filters with 400, 60, 20 and 5 μ m pore size. The 168 weight of microfibre recovered on the different pore size filters, was normalized for the washing 169 load, obtaining W in mg/kg. The mean value of the total mass of microfibres per kilogram of

170 washed fabric for each type of garment, W_a, and the standard deviation (SD), were calculated. 171 QA/QC measures applied to prevent cross-contamination of microfibres between washes and 172 among the different filtrations are described in the SI. Since PES/COT-Knit-Staple was made of a 173 blend of cotton and polyester, further analyses were performed on the released microfibres in order 174 to assess if they were of synthetic or cellulosic nature. Thermogravimetric analysis was performed 175 on approximately 5 mg of microfibres recovered form 400 μ m and 60 μ m pore size filters as well 176 as on a neat sample, about 5 mg, cut from a new sweatshirt (not pre-washed). Samples were placed in an open platinum pan and heated from 30 to 800 °C at the rate of 10 °C min⁻¹ under nitrogen 177 atmosphere (flow rate: 40 mL min⁻¹) in a Pyris 1 TGA (Perkin–Elmer). 178

The dimensions of the collected microfibres were determined using the procedure reported in the SI. For each test, the number of microfibres released to wastewater by each garment, N, was estimated according to Equation 2:

182
$$N_w = \frac{\frac{W}{\rho}}{\pi \cdot \frac{D^2}{4} \cdot L}$$
 Equation 2

183 where W is the amount of microfibres in grams released by the washed garment, ρ is the density of the material, L and D are average length and diameter, respectively, of the released fibres.³¹ For 184 185 the PES/COT-Knit-Staple garment, the formula took into account the data obtained from TGA 186 analysis. The numbers of polyester and cotton microfibres released were first calculated separately, 187 considering in the formula the masses (provided by the TGA analysis) and the mean dimensions 188 (obtained from optical microscopy and SEM analysis) of the microfibres released by the two 189 different materials. The two values were then summed to obtain the overall number of microfibres 190 released by PES/COT-Knit-Staple. Each value of N was normalized for the weight of the 191 corresponding washed garment, obtaining the number of microfibres/gram, in order to compare 192 more easily the number of microfibres released to water with those released to air. Finally, the mean value of the total number of microfibres per gram of washed fabric for each type of garment,and the SD, were calculated.

195 **2.4. Release of microfibres from synthetic clothes to air**

196 An experimental procedure was developed to quantify the number of microfibres released to the 197 air from synthetic clothes. Tests with volunteers wearing the selected garments, were carried out 198 in a closed room of 4 m² floor area. The room had room had a desk with a height of 85 cm, no 199 windows, no other sources of air flow. The floor was covered using cardboard and paper tape. 200 Before testing, the room was deep cleaned using liquid soap, water and a handheld vacuum cleaner, 201 white cotton cloths were used during the cleaning of the room. All the operators involved in the 202 cleaning and tests, wore polypropylene boilersuits and shoe covers so that microfibre 203 contamination could be eliminated from the results. To assess the cleanliness of the room prior to 204 the trials, 8 polystyrene Petri dishes (9 cm of diameter) each lined with dampened filters papers 205 (Whatman n. 1), were left in the room for 10 days, following a similar procedure reported elsewhere⁴³. The Petri were then observed under the Leica M205 FA light microscope. The 206 207 observation revealed the presence of only one microfibre in one of the Petri, so the room was considered cleaned. Based on the approach used to collect dust,⁴⁴ and taking into account recent 208 works on airborne contamination^{25,28,43}, Petri dishes were used to capture the microfibres released 209 210 during the tests. Dampened filter papers were used in preference to adhesive tape, so as not affect the FTIR analysis.^{28,43} Four adult volunteers were selected and performed the test procedure 211 212 (approved by the Ethics Committee of the University of Plymouth). Each person separately tested 213 each of the 4 garment types, resulting in a total of 16 tests. Other than the garment under test, the 214 volunteers wore white leggings made of 100% cotton. Each volunteer, positioned at the centre of 215 the room, performed a specific sequence of movements that was selected to simulate a mix of real

216 life activities. The duration of the sequence was set to 20 min as a compromise between a 217 reasonable time to allow microfibres to deposit and acceptable time for the volunteers to remain 218 in the closed room. A detailed description of the sequence of movements is reported in the SI. 8 219 Petri dishes lined with filter papers were placed at a distance of about 60 cm from the volunteer. 220 To avoid cross-contamination between two consecutive tests, the room was cleaned by an operator

221 wearing 100% cotton clothes under a boilersuit, and by using a handheld vacuum cleaner. QA/QC 222 measures are reported in the SI.

223 The microfibres released during the tests and collected on the filter papers, were observed through 224 optical microscopy to allow a quick evaluation of the microfibres present, as already reported in 225 other works.^{25,28,43}For their identification different criteria were taken into account, such as the 226 colour and shape of the original fibres from the garments, and are reported in detail in the SI.^{25,42} 227 In details, the surface of the filter papers was observed and counted by using a Leica M205 FA 228 light microscope (Leica Microsystem) and analysed by Image J to measure their dimensions.

229 For each test, the number of microfibres per unit area, N_t , was calculated by using Equation 3:

230
$$N_t = \sum_{i=1}^8 n_i / 8a$$
 Equation 3

-0

231 with n_i the number of microfibres counted in each filter paper, a is the area of the Petri dish. The 232 total number of microfibres released in the room per gram of worn fabric, was determined by using 233 Equation 4:

234
$$N_a = \frac{N_t}{W_t} \cdot A$$
 Equation 4

235 where A is the area of the room (4 m^2) and W_t the weight in grams of the garment worn in the test. 236 Then, the mean value of the total number of microfibres per gram of worn fabric for each type of 237 garment, and the SD, was calculated. A mean size was calculated for length and diameter of the released microfibres, based on the measurements of 100 microfibres for PES-Knit-Filament, PES-238

Knit-Staple and PES/COT-Knit-Staple, and 10 microfibres for PES-Woven-Filament since the number of microfibres released by this garment was much smaller than those of the others. To confirm the chemical composition of the counted microfibres, FTIR spectroscopy was applied as detailed in the SI.

243 2.5. Statistics

Statistical analysis of the amount and number of microfibres released to water and air, respectively,
was carried out by using IBM® SPSS® Statistics software. One-way Analysis of Variance
(ANOVA) with a Student–Newman–Keuls (SNK) post hoc test, Welch ANOVA with a GamesHowell post hoc test, two-sample t-test and Mann-Whitney U (MWU) were applied. A 5%
significance level was used for all statistical tests; p values <0.05 indicate significant difference
among the data. More details are reported in the SI.

250

251 **3. Results**

252 **3.1. Microplastic release to water**

253 PES/COT-Knit-Staple released the greatest quantity of mg of microfibres per kg fabric of 1054 ± 158 , while PES-Woven-Filament fabrics released the lowest one of 128 ± 62 . PES-Knit-Filament 255 and PES-Knit-Staple released 296 \pm 36 mg of microfibres per kg fabric and 244 \pm 25 mg of 256 microfibres per kg fabric, respectively. The mass of microfibres recovered on 400 µm, 60 µm, 20 257 µm pore size filters and the concentration calculated dividing the mass of microfibres recovered 258 on the 5 µm pore size filter for the volume filtered (mg/L), for each garment type, are reported in 259 Figure S3 and discussed in the SI. It is to be highlighted that the largest quantity of microfibres was recovered on the filter with a 60 µm pore size for all garments except PES-Woven-Filament,
for which the greatest aliquot was recovered on the 20 µm filter.

Since the PES/COT-Knit-Staple garment was made of a blend of 50%:50% polyester/cotton, in order to understand the composition of the microfibres released during the washing tests and recovered during the filtration of the wastewater, a thermogravimetric investigation was carried out on the microfibres accumulated on 400 and 60 μ m pore size filters. The thermogravimetric curves are reported in Figure S1d and discussed in the SI.^{45,46} The results of this analysis indicate that around the 80% of the fibres released from PES/COT-K-S to water were of cotton.

268 Microscopy analysis of the microfibres recovered on each filter was used to examine their 269 dimensions. The length of the microfibres recovered on the different pore size filters is reported in 270 Figure S1c. PES-Knit-Filament released microfibres had an average length of $610 \pm 480 \,\mu\text{m}$ and 271 diameter of $16 \pm 3 \mu m$; PES-Woven-Filament microfibres had a mean length of $760 \pm 690 \mu m$ and 272 diameter of $15 \pm 2 \,\mu$ m; in the case of PES-Knit-Staple the average length and diameter were 796 273 \pm 604 µm and 16 \pm 2 µm, respectively; microfibres released from PES/COT-Knit-Staple had a 274 mean length of $720 \pm 742 \,\mu\text{m}$ and a mean diameter of $18 \pm 6 \,\mu\text{m}$. Regarding this last garment, the 275 average length and diameter of cotton fibres were 889 \pm 835 µm and 19 \pm 6 µm respectively, 276 whereas those of polyester fibres were $420 \pm 395 \,\mu\text{m}$ and $15 \pm 4 \,\mu\text{m}$. Notwithstanding that the 277 polyester microfibres released from PES/COT-Knit-Staple were significantly smaller than the 278 cotton ones (MWU: U=706, p=0.00), the greater release of cotton microfibres could be due to the 279 different chemical compositions of the fibres composing the yarn. In fact, the higher hydrophilicity of cellulosic fibres could influence the wettability of these fibres⁴⁷ during the washing process 280 281 possibly increasing their release from the fabric. In addition, it should be considered that, during laudering, the wet abrasion of cotton is high since the fibres could swell and fibrils could easily be
broken due to mechanical action and physical forces of the washing process.⁴⁸

284 The weight of microfibres released by each garment type, was converted to a number of 285 microfibres released by applying a formula with the mean dimensions of the released fibres, and 286 the density of the material. The average numbers of microfibres released per gram of washed 287 fabrics, per each type of textile, are reported in Figure 1a. The amount of microfibre released by 288 the four different fabrics were compared through statistical analysis with Welch ANOVA (Table 289 S1 in the SI), that detected significant difference in the quantities released (F(3,6)=49.29, p=0.00). 290 Games-Howell post hoc test revealed a significantly greater release of microfibres from PES/COT-291 Knit-Staple (3898 \pm 467 microfibres/g of fabric), than the releases from all the other garments 292 (p<0.05 in all cases). Comparing PES/COT-Knit-Staple with PES-Knit-Staple, that has the same 293 textile parameters (knitted structure, short staple fibres), the difference in the release for these two 294 fabrics is related to the presence of cotton in the blend of PES/COT-Knit-Staple, as supported by 295 the TGA analysis. PES-Knit-Filament (1747 ± 193 microfibres/g of fabric) released significantly 296 more microfibres than both PES-Woven-Filament (709 \pm 343 microfibres/g of fabric, p=0.014) 297 and PES-Knit-Staple (1128 ± 111 microfibres/g of fabric, p=0.011). All three garments are made 298 of 100% polyester, but with differences in textile parameters. PES-Knit-Filament and PES-Knit-299 Staple are both arranged in a knitted structure, but the first has yarns made of continuous filaments 300 no twisted and with low hairiness, whereas the second has yarns made of short staple fibres 301 moderately twisted and with high hairiness. Since the hairiness of PES-Knit-Filament is lower than 302 PES-Knit-Staple, the greater release of PES-Knit-Filament could be ascribable to the absence of 303 the twist in its yarns that could have favored the release of microfibres from the fabric. Moreover, 304 it should be taken into account that the minimun lengths detected for PES-Knit-Filament and PES-

305 Knit-Staple were 71 µm and 87 µm, respectively. Then, this contradictory result on the release 306 from PES-Knit-Filament, could be due to the release from PES-Knit-Staple of microfibres with 307 dimensions lower than about 70 µm, not observable with the filtration and identification methods 308 applied in these experiments. Instead, the differences in the release between PES-Knit-Filament 309 and PES-Woven-Filament could be found in their different textiles structures (knitted vs. woven). 310 In general, PES-Woven-Filament was the fabric that released the lowest amount of microfibres, 311 but it was found not significantly lower than PES-Knit-Staple (p=0.248), indicating that a woven 312 structure, with more twisted yarns, plays a role in reducing the amount of microfibres released 313 during washing.

Figure 1. a) Release to water: number of microfibres released per gram of washed fabric from 100% polyester blouse PES-Woven-Filament, 100% polyester t-shirt PES-Knit-Filament, 100% polyester dress PES-Knit-Staple, 50% polyester/50% cotton sweatshirt PES/COT-Knit-Staple, (n=4); b) Release to air: number of microfibres per gram of worn fabric, released to air by wearing the 4 selected garments (n=4); Different symbols denote significant differences among the number of microfibres released by each type of fabric to water (*) and air (#).

321 **3.2 Microplastic release to air**

322 The number of microfibres released per gram of worn fabric for each kind of tested garment are 323 reported in Figure 1b, together with the SD. Statistical analysis (Table S2) performed on these 324 values confirmed that the number of microfibres released to air during the wearing of the garments 325 differs significantly depending on the type of fabric (ANOVA-SNK: F(3,12)=35.45, p=0.00) and 326 follow the order PES-Woven-Filament < PES-Knit-Filament < PES-Knit-Staple < PES/COT-Knit-327 Staple. No significant difference was found between the values of the two knitted fabrics with 328 short staple fibres PES/COT-Knit-Staple (403 \pm 65 microfibres/g of fabric) made of 50%:50% 329 polyester/cotton, and PES-Knit-Staple (347 ± 102 microfibres/g of fabric) made of 100% polyester 330 (ANOVA-SNK: p=0.24). A significant difference (ANOVA-SNK: p>0.05) was found between 331 the number of microfibres released by the two fabrics constituted by continuous filaments, PES-332 Knit-Filament (108 \pm 44 microfibres/g of fabric) and PES-Woven-Filament (1 \pm 1 microfibres/g 333 of fabric), confirming a mitigating effect of the woven structure. These results also indicate that 334 the fabrics made of short staple fibres, PES-Knit-Staple and PES/COT-Knit-Staple, released more 335 microfibres to air than those released by fabrics made of continuous filaments, PES-Woven-336 Filament and PES-Knit-Filament (ANOVA-SNK: p>0.05). Moreover, PES/COT-Knit-Staple and 337 PES-Knit-Staple have also yarns poorly twisted whereas PES-Woven-Filament yarns presented 338 the greatest twist. Regarding PES-Knit-Filament, the effect of the twist is less clear in this case 339 since its yarns have no twist but maybe the fact that they are made of continuous filaments, could 340 be responsible for the low release of microfibre and thus the fibre length had a mitigating effect. 341 Mean fibre dimensions, length and diameter, were calculated analyzing the optical micrographs of 342 the microfibres recovered in the Petri dishes. Microfibres released by PES-Knit-Filament were 343 characterized by a length of 1036 \pm 393 µm and diameter of 18 \pm 4 µm; the dimensions of

344 microfibres released by PES-Knit-Staple were length of $1023 \pm 467 \,\mu\text{m}$ and diameter of 18 ± 3 345 μ m; the microfibres released by PES/COT-Knit-Staple were 1024 \pm 1008 μ m in length and 21 \pm 346 6 μ m in diameter. Microfibres released by PES-Woven-Filament had diameter of 15 \pm 4 μ m and 347 length of $494 \pm 15 \,\mu\text{m}$, significantly smaller than the lengths of both PES-Knit-Filament (t-test: 348 t(28)=8.61, p=0.00) and PES-Knit-Staple (t-test: t(37)=7.81, p=0.00). It is interesting to note that 349 microfibres released by both PES-Knit-Filament and PES-Knit-Staple have length not 350 significantly different (t-test: (198)=0.21, p=0.83) even if the release for the latter was significantly 351 higher (ANOVA-SNK, p>0.05). The comparison of the average length of the microfibres released 352 to both media by each garment, showed that the length was greater for the microfibres released to 353 air than water for all garments, except for PES-Woven-Filament where the contrary occurs.

The high SD of the length of PES/COT-Knit-Staple microfibres, measured among the 100 microfibres analysed to determine mean length and diameter, could be due to the difference between the length of cotton and polyester staple fibres. The staple length of a synthetic fibre is controlled by the manufacturer, so they may be all the same length or they consist of a mixture of fibres of different lengths blended in known proportions. In the case of a natural fibre, staple length is a much less easily defined characteristic of any batch of fibre, which basically consist of fibres varying in length over a wide range.⁴⁷

FTIR analyses of subsamples of the microfibres collected in the Petri dishes during the tests revealed that they were all polyester for the polyester garments PES-Knit-Filament, PES-Woven-Filament and PES-Knit-Staple. Alternatively, in the case of PES/COT-Knit-Staple, results pointed out that only 1 of the 32 analysed fibres were polyester, while the others were all of cellulosic nature. Such result was foreseen during the inspection of filters under light microscope since the microfibres observed had all the characteristics of cotton fibres.³⁴

367 **4. Discussion**

368 All the textiles examined released measurable quantities of fibres as a consequence of both 369 laundering and everyday wear. The polyester/cotton blend garment showed the greatest release to 370 both media, with a majority of microfibres, 80 % (in water) and 97 % (in air), being identified as 371 cotton. This appears to indicate that garments with a polyester/cotton blend composition tend to release more cotton microfibres than synthetic ones, a finding in line with previous works^{35,49,50}. 372 373 However, there is no scientific consensus on microfibre release from cotton, since other works 374 reported that polyester/cotton blended garments release less³¹ or found no clear comparisons between the releases of polyester and cotton textiles⁵¹. Several studies have already reported the 375 presence of cotton fibres in aquatic environments^{52,53,54}, ingested by fish⁵⁵ as well as in the 376 377 atmosphere^{19,25,27,56}. The occurrence of natural microfibres in different environment highlights that 378 natural fabrics could shed more microfibres than synthetic ones. This could be due to the material 379 composition and textile characteristics of natural fabrics. This data allows to hypotize a possible 380 underestimation of the exposure of human to microfibres, since microfibres of natural origin are 381 often not taken into account. Therefore, that calls for further research on the release, fate and 382 impact of cellulosic microfibres in the environment.

PES-Knit-Filament and PES-Knit-Staple garments have the same knitted structure but the first was composed of continuous filaments with no twist and low hairiness, whereas the second of short staple fibres with moderate twist and high hairiness. Short staple fibres and high hairiness, have been found responsible for a greater release of microfibres during washing in a previous investigation³⁵ since the short fibres can more easily slip away due to the mechanical actions of wearing and moving, as also supposed by the mechanism of fibre release reported by Zambrano et al.⁴⁹. However, PES-Knit-Filament released significantly less microfibres to air than PES-Knit390 Staple, but it behaves oppositely during the washing process, calling for further studies to assess 391 if this outcome is due to limits in fibre length detection in washing tests (as discussed in the Results 392 section) or if the release of microfibres during washing could have more complex release 393 mechanisms and variables than that to air. PES-Woven-Filament was the garment responsible for 394 the overall lowest numbers of microfibres released to both media. The reasons for this behavior 395 lay in the textile parameter of PES-Woven-Filament, which is made of continuous filaments highly 396 twisted and arranged in a woven structure. In fact, the releases of PES-Woven-Filament to air and 397 water were significantly lower than those of PES-Knit-Filament, whose yarns were also made by 398 continuous filaments but were arranged in a knitted structure with no twist. This could be due to 399 the presence of high twisted yarns arranged in a woven structure, resulting in a more compact textile with respect to knit fabrics which are typically softer and more flexible.⁵⁷ 400

401 Comparing the overall quantities of microfibres released during washing to those reported by De Falco, et al.³⁵ of 49-308 g per kg of washed fabric, the release for the present study was much 402 403 higher (128-1054 mg/kg of washed fabric). A possible explanation could be that washing tests 404 carried out with only one garment result in greater wettability of the fabric that could enhance the 405 mobility of microfibres that detach from the yarns. In fact, a recent work has pointed out that 406 washing programs with a high water-volume-to-fabric ratio are responsible for a greater release of microfibres.⁵⁸ The outcomes of the present work indicate that in order to reduce microfibre 407 408 emissions to water and air, the optimal textile parameters are, wherever possible, woven structure, 409 yarns made of continuous filaments highly twisted, low hairiness. The selected parameters are in line with conclusions by Carney Almroth et al.,³⁴ who found that tightly constructed yarns (i.e. 410 with high twist) are to be preferred to reduce microfibre release. Cesa et al.⁵⁹ also suggested that 411 412 parameters responsible for fibres cohesion (i.e yarn twist, fibres size and regularity) avoid possible

413 propagation of fibres. Zambrano et al.⁴⁹ highlighted that fabrics with lower hairiness, higher 414 abrasion resistance and yarn strength released less microfibres. Furthermore, a previous work²⁰ 415 found that woven polyester fabrics released more than knitted ones but this finding was correlated 416 to the yarn type, that was made of short staple fibres in the woven structure, whereas it was 417 composed by continuous filaments in the knitted fabric. This scenario points out how, despite 418 differences in the method used in the different papers, there seems to be consensus among the 419 scientific community that some parameters have a direct effect on microfibre release.

420 Here, we present the first estimation of microfibres released to air directly as a consequence of 421 wearing clothes. Considering other results reported in literature on fibre deposition from the 422 atmosphere, the lengths of fibres (494-1036µm) released from clothing in our experiments 423 resembled that of past studies for indoor air and dust (50-450µm) as well as fibres found in human lung tissues (50-250µm).^{25,29,30} Some information of the consequences of chronic high dose 424 425 exposure to microfibres can be derived from studies on the health of workers of synthetic textile 426 and flock industries, who presented an increased prevalence of the following symptoms: interstitial 427 lung disease, reduced lung capacity, coughing, dyspnoea, wheezing, increased phlegm production, allergic reactions, asthma.⁶⁰ Further, due to their hydrophobic nature, textile fibres have the 428 429 potential to sorb and subsequently release chemical contaminants during wear and washing, including additives, unreacted monomers and environmental pollutants.^{61,62} Therefore, more 430 431 studies are needed to assess the potential exposure and consequent impact of microfibres, both of 432 synthetic and natural origin, on human health.

The data obtained were scaled up to obtain an estimation of the possible number of polyester microfibres that a single person could release per year. In order to scale up the numbers of polyester microfibres released to water and to air, and allow a more direct comparison of the emissions, the

436 following assumptions were made: (1) one person performs 55 laundry cycles per year with an 437 average load of 4 kg of polyester garments per wash18; (2) one person wears 1 kg of polyester 438 garments and performs similar movements simulated during the air tests for 8 h per day; (3) the 439 number of microfibres per gram of fabric released during washing among the values related to the 440 four types of textiles and the same was done for the number of microfibres per gram of fabric 441 released during wearing. Regarding these last assumption, both for washing and wearing, for the 442 PES/COT-Knit-Staple garment only the contribution of polyester fibres was considered, on the 443 basis of TGA analysis for the washing tests (20%) and FTIR spectroscopy for wearing tests (3%). 444 These assumptions lead to data useful for understanding the possible orders of magnitude of 445 polyester microfibre release to water and air, mainly for comparison reasons. Of course, they 446 cannot be representative of the global release of microfibres to both media, since only one type of 447 material, i.e. polyester, was taken into account. The scale up of the data indicate that one person could release a number of polyester microfibres per year of approximately 2.98.10⁸ to water by 448 449 washing, and $1.03 \cdot 10^9$ to air by wearing polyester garments. Of course, these estimations do not 450 take into account the variability of garments actually used by a person. However, the relative 451 magnitude of the two releases is very similar and this highlights that microfibres are not just 452 released from clothing to wastewater but also to the air. Such finding implies that previous 453 estimations of microplastic pollution in world oceans⁷, actually underestimated the impact of 454 synthetic textiles on this environmental problem since they did not take into account the amount 455 of synthetic microfibres that can reach the oceans by atmospheric deposition. In fact, atmospheric 456 deposition is likely an important pathway for microfibres to enter soils; yet, the sources, fate and effects of microfibres to terrestrial ecosystems is understudied.⁶³ Further, there is likely 457 458 underestimation of microfibre pollution in the environment due to the exclusion of inputs of natural

and artificial fibres which this study has shown is an abundant component of microfibres releasedfrom clothing (through both washing and wear).

461 Hence, mitigation actions focused on intercepting microfibre release to water (e.g. washing 462 machine filters, washing conditions, wastewater treatment etc.) will only address part of the issue 463 and a wider approach is therefore needed. Based on the findings of this study and others^{32,34,35,49,59}, 464 it is clear that textile parameters play a role in influencing microfibre emissions to both water and 465 air. Therefore, improved textile designs utilizing, where possible, textile parameters able to reduce 466 the amount of microfibres released, could be an effective solution to tackle the problem of 467 microfibre emissions. From the work so far it would appear that design should focus on production 468 of fabrics with a compact structure, such as woven, using highly twisted yarns made of continuous 469 filaments, while more loose structures including knitted, short staple fibres and low twist should 470 be avoided when possible. Further investigations should be performed to create a comprehensive 471 set of recommendations to guide industry and policy. Mitigation actions at the textile design stage 472 could also be complemented by application of a finishing treatment that is able to protect the fabric 473 from the chemical and mechanical actions of laundering or from friction and abrasion during wearing, but more research is still needed on this topic.^{64,65,66} The combination of these measures, 474 possibly together with fibre capture systems for washing machines⁶⁷ could lead to substantial 475 476 reduction of microfibre pollution from textiles.

477

480 Supporting Information.

- 481 The following files are available free of charge.
- 482 Additional information as noted in the text (PDF)
- 483 AUTHOR INFORMATION
- 484 **Corresponding Author**
- 485 *E-mail: mariacristina.cocca@ipcb.cnr.it

486 Author Contributions

- 487 The manuscript was written through contributions of all authors. All authors have given approval
- 488 to the final version of the manuscript.
- 489 Notes
- 490 The authors declare no competing financial interest
- 491
- 492 ACKNOWLEDGMENT
- 493 The authors sincerely thanks the volunteers that have performed the release tests to air.
- 494
- 495
- 496
- 497
- 498
- 499
- 500
- 501

- 502 REFERENCES
- 503 (1) Thompson, R. C.; Olsen, Y.; Mitchell, R. P.; Davis, A.; Rowland, S. J.; John, A. W. G.;
- 504 McGonigle, D.; Russell, A. E. Lost at Sea: Where Is All the Plastic? *Science* **2004**, *304*, 5672, 838;
- 505 DOI 10.1126/ science.1094559
- 506 (2) Eerkes-Medrano, D.; Thompson, R.C.; Aldridge, D.C. Microplastics in freshwater systems: A
- 507 review of the emerging threats, identification of knowledge gaps and prioritisation of research
- 508 needs. *Water Research* **2015**, *75*, 63-82.
- 509 (3) Horton, A.A.; Walton, A.; Spurgeon, D.J.; Lahive, E.; Svendsen, C. Microplastics in freshwater
- 510 and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps
- and future research priorities. *Science of the Total Environment* **2017**, *586*, 127-141.
- 512 (4) Dehghani, S.; Moore, F.; Akhbarizadeh, R. Microplastic pollution in deposited urban dust,
 513 Tehran metropolis, Iran. *Environmental Science and Pollution Research* 2017, *24*, 20360.
- 514 (5) Arthur, C.; Baker, J.; Bamford, H. In: Proceedings of the International Research Workshop on
- 515 the Occurrence, Effects and Fate of Microplastic Marine Debris, 49. NOAA Technical
- 516 Memorandum 2009 NOS-OR&R-30.
- 517 (6) GESAMP. Sources, fate and effects of microplastics in the marine environment: a global
- 518 assessment. In: Kershaw, P.J. (Ed.), Joint Group of Experts on the Scientific Aspects of Marine
- 519 Environmental Protection. Rep Stud GESAMP 2015 No. 90, 96 p.
- 520 (7) Boucher, J.; Friot, D. Primary Microplastics in the Oceans: a Global Evaluation of Sources.
- 521 IUCN: Gland, Switzerland, 2017, en, 43pp. https://doi.org/10.2305/IUCN.CH.2017.01.
- 522 (8) Browne, M. A.; Crump, P.; Niven, S.J.; Teuten, E.; A., Tonkin; Galloway, T.; Thompson, R.
- 523 Accumulation of Microplastic on Shorelines Woldwide: Sources and Sinks. Environmental
- 524 *Science and Technology* **2011**, *45* (21), 9175-9179.

525	(9) Lahens, L.; Strady, E.; Kieu-Le, T.; Dris, R.; Boukerma, K.; Rinnert, E.; Gasperi, J.; Tassin,
526	B. Macroplastic and microplastic contamination assessment of a tropical river (Saigon River,
527	Vietnam) transversed by a developing megacity. Environmental Pollution 2018, 236, 661-671.

528 (10) Lusher, A.L.; Burke, A.; O'Connor, I.; Officer, R. Microplastic pollution in the Northeast

- Atlantic Ocean: Validated and opportunistic sampling. *Marine Pollution Bulletin* 2014, *88*, 325–
 333.
- 531 (11) Obbard, R. W.; Sadri, S.; Wong, Y.Q.; Khitun, A.A.; Baker, I.; Thompson, R. C. Global
- 532 warming releases microplastic legacy frozen in Arctic Sea ice. *Earth's Future* **2014**, *2*, 315–320.
- 533 (12) Kanhai, L.K.; Gardfeldt, K.; Lyashevska, O.; Hassellov, M.; Thompson, R.C.; O'Connor, I.
- 534 Microplastics in sub-surface waters of the Arctic Central Basin. *Marine Pollution Bulletin* 2018,
 535 *130*, 8-18.
- 536 (13) Woodall, L. C.; A., Sanchez-Vidal; Canals, M.; Paterson, G. L. J.; Coppock, R.; Sleight, V.;
- 537 Calafat, A.; Rogers, A. D.; Narayanaswamy, B. E.; Thompson, R. C. The deep sea is a major sink
 538 for microplastic debris. *R. Soc. Open Sci.* 2014, *1*, 140317–140317.
- (14) Taylor, M.L.; Gwinnett, C.; Robinson, L.F.; Woodall, L.C. Plastic microfibre ingestion by
 deep-sea organisms. *Scientific Reports* 2016, *6*, 33997.
- 541 (15) Li, H.; Ma, L.; Lin, L.; Ni, Z.; Xu, X.; Shi, H.; Yan, Y.; Zheng, G.; Ritschof, D. Microplastics
- in oysters Saccostrea cucullata along the Pearl River Estuary, China. *Environmental Pollution*2018, 236, 619-625.
- 544 (16) Halstead, J. E.; Smith, J. A.; Carter, E.A.; Lay, P.A.; Johnston, E.L. Assessment tools for
- 545 microplastics and natural fibres ingested by fish in an urbanised estuary. *Environmental Pollution*
- 546 **2018**, *234*, 552-561.

- 547 (17) Rochman, C.M.; Tahir, A.; Williams, S.L.; Baxa, D.V.; Lam, R.; Miller, J.T.; Teh, F.C.;
- 548 Werorilangi, S.; Teh, S.J. Anthropogenic debris in seafood: plastic debris and fibres from textiles
- 549 in fish and bivalves sold for human consumption. *Scientific Reports* **2015**, *5*, 1-10.
- 550 (18) Duncan, E.M.; A.C., Broderick; Fuller, W.J.; Galloway, T.S.; Godfrey, M.H.; Hamann, M.;
- 551 Limpus, C.J.; Lindeque, P.K.; Mayes, A.G; Omeyer, L.C.M; Santillo, D.; Snape, R.T.E.; Godley,
- B.J. Microplastic ingestion ubiquitous in marine turtles. *Global Change Biology* 2019, 25, 744752.
- 554 (19) Liu, M.; Lu, S.B.; Song, Y.; Lei, L.L.; Hu, J.; Lv, W.; Zhou, W.; Cao, C.; Shi, H.; Yang, X.;
- 555 He D. Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China.
- 556 *Environmental Pollution* **2018**, *242* 855-862.
- 557 (20) Zhang, G.S.; Liu, Y.F. The distribution of microplastics in soil aggregate fractions in
 558 southwestern China. *Sc. Total Environ.* 2018, *642*, 12-20.
- 559 (21) Lv, W.W.; Zhou, W.Z.; Lu, S.B.; Huang, W.W.; Yuan, Q.; Tian, M.L.; Lv, W.; He, D.
- 560 Microplastic pollution in rice-fish co-culture system: a report of three farmland stations in 561 Shanghai, China. *Sci. Total Environ.* **2019**, *652* 1209-1218.
- 562 (22) Gasperi, J.; Wright, S.L.; Dris, R.; Collard, F.; Mandin, C.; Guerrouache, M.; Langlois, V.;
- 563 Kelly, F.J.; Tassin, B. Microplastics in air: Are we breathing it in? *Current Opinion in* 564 *Environmental Science & Health* **2018**, *1*, 1-5.
- 565 (23) Prata, J.C. Airborne microplastics: Consequences to human health? *Environmental Pollution*566 2018, 234, 115-126.
- 567 (24) Dris, R.; Gasperi, J.; Saad, M.; Mirande, C.; Tassin, B. Synthetic fibres in atmospheric fallout:
- a source of microplastics in the environment? *Marine Pollution Bulletin* **2016**, *104*, 290-293.

- 569 (25) Dris, R.; Gasperi, J.; Mirande, C.; Mandin, C.; Guerrouache, M.; Langlois, V.; Tassin, B. A
- 570 first overview of textile fibres, including microplastics, in indoor and outdoor environments.
- 571 *Environmental Pollution* **2017**, *221*, 453-458.
- 572 (26) Prata, J. C.; Castro, J. L.; da Costa, J. P.; Duarte, A. C.; Cerqueira, M.; Rocha-Santos, T. An
- 573 easy method for processing and identification of natural and synthetic microfibres and
- 574 microplastics in indoor and outdoor air. *MethodsX* **2020**, 7, 100762.
- 575 (27) Kaya, A. T.; Yurtsever, M.; Bayraktar, S. C. Ubiquitous exposure to microfibre pollution in
 576 the air. *Eur. Phys. J. Plus* 2018, 133:488.
- 577 (28) Catarino, A.I.; Macchia, V.; Sanderson, W.G.; Thompson, R.C.; Hemry, T.B. Low levels of
- 578 microplastics (MP) in wild mussels indicate that MP ingestion by humans is minimal compared to
- 579 exposure via household fibres fallout during a meal. *Environmental Pollution* **2018**, *237*, 675-684.
- 580 (29) Pauly, J. L.; Stegmeier, S. J.; Allaart, H. A.; Cheney, R. T.; Zhang, P. J.; Mayer, A. G.; Streck,
- 581 R. J. Inhaled cellulosic and plastic fibres found in human lung tissue. *Cancer Epidemiol.*582 *Biomarkers Prev.* 1998, 7 (5), 419–428.
- (30) Vianello, A.; Jensen; R. L.; Liu, L.; Vollertsen, J. Simulating human exposure to indoor
 airborne microplastics using a Breathing Thermal Manikin. *Scientific Reports* 2019, 9:8670.
- 585 (31) Napper, I.E.; Thompson, R.C. Release of synthetic microplastic plastic fibres from domestic
- washing machines: Effects of fabric type and washing conditions. *Marine Pollution Bulletin* 2016, *112*, 39–45.
- 588 (32) De Falco, F.; Gullo, M. P.; Gentile, G.; Di Pace, E.; Cocca, M.; Gelabert, L.; Brouta-Agnésa,
- 589 M.; Rovira, A.; Escudero, R.; Villalba, R.; Mossotti, R.; Montarsolo, A.; Gavignano, S.; Tonin,
- 590 C.; Avella, M. Evaluation of microplastic release caused by textile washing processes of synthetic
- 591 fabrics. *Environmental Pollution* **2018**, *236*, 916-925.

- 592 (33) De Falco, F.; Gentile, G.; Di Pace, E.; Avella, M.; Cocca, M. Quantification of microfibres
- 593 released during washing of synthetic clothes in real conditions and at lab scale. *European Physical*
- 594 Journal Plus 2018, 133, 257.
- 595 (34) Carney Almroth, B.; Aström, L.; Roslund, S.; Petersson, H.; Johansson, M.; Persson, N.
- 596 Quantifying shedding of synthetic fibres from textiles; a source of microplastics released into the
- 597 environment. *Environmental Science and Pollution Research* **2018**, *25*(2), 1191-1199.
- 598 (35) De Falco, F.; Di Pace, E.; Cocca, M.; Avella, M. The contribution of washing processes of
- 599 synthetic clothes to microplastic pollution. *Scientific Reports* **2019**, *9*, 6633.
- 600 (36) Wilson, J. Handbook of textile design: Principles, processes and practice; Woodhead
- 601 Publishing Ltd and CRC Press LLC, 2000.
- 602 (37) Spencer, D.J. *Knitting technology*; Woodhead Publishing: Cambridge, 2001.
- 603 (38) Gandhi, K. Woven Textiles Principles, Technologies and Applications, 1st ed. Woodhead
- 604 Publishing: New Delhi, 2012.
- 605 (39) Ozkaya, Y.A.; Acar, M.; Jackson, M.R. Yarn twist measurement using digital imaging. *The*
- 606 Journal of The Textile Institute **2010**, 101, 91–100.
- (40) Haleem, N.; Wang, X. Recent research and developments on yarn hairiness. *Textile Research Journal* 2014, 85, 211-224.
- 609 (41) Haleem, N.; Wang, X. A comparative study on yarn hairiness results from manual test and
- 610 two commercial hairiness meters. J Text Inst 2012, 104 (5), 1–8.
- 611 (42) Houck, M.M. *Identification of textile fibres*. Woodhead Publishing Limited and CRCPress
 612 LLC, 2009.

- 613 (43) Woodall, L.C.; Gwinnett, C.; Packer, M.; Thompson, R.C.; Robinson, L.F.; Paterson, G.L.J.
- 614 Using forensic science approach to minimize environmental contamination and to identify
- 615 microfibres in marine sediments. *Marine Pollution Bulletin* **2015**, *95*, 40-46.
- 616 (44) Adams, R.I.; Tian, Y.; Taylor, J.W.; Bruns, T.D.; Hyvarinen, A.; Taubel, M. Passive dust
- 617 collectors for assessing airborne microbial material. *Microbiome* **2015**, *3*, 46.
- 618 (45) Alongi, J.; Ciobanu, M.; Tata, J.; Carosio, F.; Malucelli, G. Thermal Stability and Flame
- 619 Retardancy of Polyester, Cotton, and Relative Blend Textile Fabrics Subjected to Sol-Gel
- 620 Treatments. *Journal of Applied Polymer Science* **2010**, *119*, 1961–1969.
- 621 (46) Alongi, J., Carosio, F., Malucelli, GInfluence of ammonium polyphosphate-/poly(acrylic
- 622 acid)-based layer by layer architectures on the char formation in cotton, polyester and their blends.
- 623 *Polymer Degradation and Stability* **2012**, *97*, 1644-1653.
- 624 (47) Gordon Cook, J. Handbook of Textile Fibres. Volume I: Natural Fibres. Woodhead
- 625 Publishing Limited: Cambridge, England, 2001.
- 626 (48) McQueen, R.; Batcheller, J.C.; Moran, L.J.; Zhang, H.; Hooper, P.M. Reducing laundering
- frequency to prolong the life of denim jeans. Int. J. Consum. Stud. 2017, 41, 36–45
- 628 (49) Zambrano, M. C.; Pawlak, J. J.; Daystar, J.; Ankeny, M.; Cheng, J. J.; Venditti, R. A.
- 629 Microfibres generated from the laundering of cotton, rayon and polyester based fabrics and their
- 630 aquatic biodegradation. Mar. Pollut. Bull. 2019, 142, 394–407.
- 631 (50) Yang, L.; Qiao, F.; Lei, K.; Li, H.; Kang, Y.; Cui, S.; An, L. Microfibre release from different
- fabrics during washing. *Environ. Pollut.* **2019**, *249*, 136–143.
- 633 (51) Sillanpaä, M.; Sainio, P. Release of polyester and cotton fibres" from textiles in machine
- 634 washings. Environ. Sci. Pollut. Res. 2017, 24, 19313–19321

- 635 (52) Stanton, T.; Johnson, M.; Nathanail, P.; MacNaughtan, W.; Gomes, R. L. Freshwater and
- 636 airborne textile fibre populations are dominated by 'natural', not microplastic, fibres. *Science of*
- 637 *the Total Environment* **2019**, *666*, 377-389.
- 638 (53) Savoca, S.; Capillo, G.; Mancuso, M.; Faggio, C.; Panarello, G.; Crupi, R.; Bonsignore, M.;
- 639 D'Urso, L.; Compagnini, G.; Neri, F.; Fazio, E.; Romeo, T.; Bottari, T.; Spanò, N. Detection of
- 640 artificial cellulose microfibres in Boops boops from the northern coasts of Sicily (Central
- 641 Mediterranean). Sci. Total Environ. 2019, 691, 455-465.
- 642 (54) Sanchez-Vidal, A.; Thompson, R. C.; Canals, M., and de Haan, W. P. The imprint of
- 643 microfibres in southern European deep seas. *PLoS One* **2018**, 13:e0207033.
- 644 (55) Compa, M.; A., Ventero; Iglesias, M.; Deudero, S. Ingestion of microplastics and natural
- fibres in Sardina pilchardus (Walbaum, 1792) and Engraulis encrasicolus (Linnaeus, 1758) along
 the Spanish Mediterranean coast. *Marine Pollution Bulletin* 2018, *128*, 89-96.
- 647 (56) Dris, R.; Gasperi, J.; Rocher, V.; Tassin, B. Synthetic and non-synthetic anthropogenic fibres
- 648 in a river under the impact of Paris Megacity: Sampling methodological aspects and flux
- 649 estimations. *Science of the Total Environment* **2018**, *618*, 157–164.
- 650 (57) Schwartz, P. Structure and mechanics of textile fibre assemblies. Woodhead Publishing
- 651 Limited: Cambridge, England, 2008.
- 652 (58) Kelly, M.R.; Lant, N.J.; Kurr, M.; Burgess, G. Importance of water-volume on the
- release of microplastic fibres from laundry. *Environ. Sci. Technol.* **2019**, *53*, 11735-11744.
- 654 (59) Cesa, F.S., Turra, A., Checon, H. H.,; Leonardi, B.; Baruque-Ramos J. Laundering and textile
- 655 parameters influence fibres release in household washings. Environmental Pollution 2020, 257,
- 656 113553.

- (60) Wright, S.L.; Kelly, F.J. Plastic and Human Health: A Micro Issue? *Environmental Science and Technology* 2017, *51*, 6634–6647.
- 659 (61) Saini, A.; Thaysen, C.; Jantunen, L.; McQueen, R.H.; Diamond, M.L. From clothing to
- 660 laundry water: investigating the fate of phthalates, brominated flame retardants, and 661 organophosphate esters. *Environ. Sci. Technol.* **2016**, *50*, 9289-9297.
- 662 (62) Saini, A.; Okeme, J.O.; Mark Parnis, J.; McQueen, R.H.; Diamond, M.L. From air to clothing:
- 663 characterizing the accumulation of semi-volatile organic compounds to fabrics in indoor 664 environments. *Indoor Air* **2017**, *27*, 631-641.
- (63) Rillig, M. C.; Ziersch, L.; Hempel, S. Microplastic transport in soil by earthworms. *Sci. Rep.* 2017, 7:1362.
- 667 (64) De Falco, F.; Gentile, G.; Avolio, R.; Errico, M. E.; Di Pace, E.; Ambrogi, V.; Avella, M.;
- 668 Cocca, M. Pectin based finishing to mitigate the impact of microplastics released by polyamide
 669 fabrics. *Carbohydrate Polymers* 2018, *198*, 175-180.
- 670 (65) De Falco, F.; Guarino, V; Gentile, G.; Cocca, M.; Ambrogi, V.; Ambrodio, L.; Avella, M.
- 671 Design of functional textile coatings via non-conventional electrofluidodynamic processes.
- *Journal of Colloid and Interface Science* **2019**, *541*, 367-375.
- 673 (66) De Falco, F.; Cocca, M.; Guarino, V.; Gentile, G.; Ambrogi, V.; Ambrosio, L.; Avella, M.
- 674 Novel finishing treatments of polyamide fabrics by electrofluidodynamic porcess to reduce
- 675 microplastic release during washings. *Polymer Degradation and Stability* **2019**, *165*, 110-116.
- 676 (67) McIlwraith, H.K.; Lin, J.; Erdle, L.M.; Mallos, N.; Diamond, M.L.; Rochman, C.M. Capturing
- 677 microfibres marketed technologies reduce microfibre emissions from washing machines. *Mar.*
- 678 *Pollut. Bull.* **2019**, *139*, 40–45.