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Late Jurassic to Early Cretaceous Stable Isotope and Geochemical Records from the 
Northern High Latitudes: Implications for Palaeoclimate 

The Jurassic and Cretaceous periods are widely accepted as being dominated by 
greenhouse conditions with elevated CO2 levels and warm polar regions. Although much 
compelling evidence to support this idea of global warmth exists, some recent studies 
propose that the greenhouse climate may at times have been punctuated by sub-freezing 
polar conditions and the presence of limited polar ice. The evidence, however, is 
somewhat equivocal and is both spatially and temporally limited with much of this 
research until now being concentrated in mid- to low latitudes, despite it being generally 
accepted that global climate is defined to a significant degree by prevailing conditions at 
the poles. Existing data are also often plagued by poor sampling resolutions and dubious 
diagenetic histories. 

This research presents the first extensive stable isotope and geochemical investigation of 
well-preserved belemnite rostra from the Callovian-Hauterivian Boreal Realm. Belemnites 
of the genera Cylindroteuthis, Pachyteuthis, Acroteuthis, Lagonibelus and occasionally 
Belemnopsis were investigated. Preservation was assessed using Backscattered Scanning 
Electron Microscopy, Cathodoluminescence, carbonate staining and trace element 
techniques. Organic carbon isotope analysis of fossilised wood was also undertaken where 
possible. Material from Staffin Bay, Isle of Skye, and Helmsdale, Sutherland, Scotland; 
the Izhma River, Timan-Pechora Basin, Russia; the Boyarka River, Yenisei-IChatanga 
Basin, Siberia; and Festningen and Janusfjellet, Svalbard was analysed. 

The carbon isotope data record relatively positive values in the Oxfordian, followed by a 
gradual shift towards more negative values through the Kimmeridgian and into the 
Volgian/Tithonian. A distinct Late Valanginian positive carbon isotope excursion is 
identified in both the marine carbonate and terrestrial organic carbon records from the 
Izhma and Boyarka rivers. The excursion occurs at a time of relatively low sea level in 
Russia and Siberia. The exposure and erosion of lowland areas and restricted ocean 
circulation (and therefore enhanced stratification) associated with a period of sea-level 
lowstand may account for increased rates of organic carbon burial. The Late Valanginian 
positive carbon isotope excursion is coeval with a distinct cooling in the Russian Izhma 
River succession. This could be explained by a fall in atmospheric CO2 concentration and 
a subsequent drop in temperature as the result of significant burial of sediments rich in 
organic carbon. Further evidence for cold conditions during the Valanginian interval 
comes from glendonites and dropstones, which were identified on Svalbard. 

High latitude warmth is most likely the norm for the Late Jurassic and Early Cretaceous 
interval, although this warmth is likely to have been punctuated by cold conditions 
providing the opportunity for the development of at least a seasonal cover of polar ice. 
The oxygen isotope data record the occurrence of cold episodes during the Lower 
Oxfordian Cordatum Zone, the mid-Ryazanian Kochi-Analogits zones and the Upper 
Valanginian Bidichotomus Zone. Palaeotemperatures as low as 2°C were calculated, 
providing strong evidence for the existence of cold polar conditions at theses times. 
Ultimately, climatic instability is probably the key characteristic of this greenhouse 
interval. 
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1. I N T R O D U C T I O N 

1.1. Rationale 

The Jurassic and Cretaceous periods are widely accepted as being a time of warm 

equable climates with a low global temperature gradient (e.g., Frakes, 1979; Barron. 1983; 

Huber et ai, 1995), elevated CO: levels (e.g., Barron et al., 1983; Weissert & Lini, 1991; 

Francis & Frakes, 1993; Bemer, 1994; Bice & Norris, 2002; Dromart et ai, 2003a; Royer 

et a/., 2004) and warm polar regions (e.g., Poulsen et a/., 1999; Spicer et al., 2002; 

Tarduno et al., 1998; Jenkyns et al., 2004). The general assumption has been that this 

period of extreme warmth is primarily the result of elevated concentrations of atmospheric 

CO: (Fig. 11) This presents an interesting idea, namely that the Jurassic and Cretaceous 

'greenhouse' period could be considered as a potential analogue for future climatic change 

providing it was better understood. 
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Figure 1.1 Atmospheric CO: through the Phanerozoic. The LOESS record is a compilation of pubhshed 
proxies (e.g., palaeosols. stomata, phytoplankton, boron, liverworts) produced by Royer (2006). The 
GEOCARB II I record is derived from a geochemical model (Bemer & Kolhavala, 2001). Diagram adapted 
after Royer (2006). 



The assumption that warm equable climates existed throughout the Jurassic and 

Cretaceous has recently been contested by newer research suggesting that the greenhouse 

climate may at times have been punctuated by sub-freezing polar conditions and the 

presence of limited polar ice. Such evidence includes the presence of potentially glacially 

derived sediments and minerals (Fig. 1.2) (e.g., Woolfe & Francis, 1991; Frakes & 

Krassay, 1992; Francis & Frakes, 1993; De Lurio & Frakes, 1999; Price, 1999; Alley & 

Frakes, 2003), observations from global sea level curves (e.g., Sloll & Schrag, 1996, 2000; 

Dromart et al., 2003a; Miller ct al.. 2003, 2005) and isotopic studies (e.g., Pirrie & 

Marshall, 1990; Dilchfield et al.. 1994; Pirrie et al.. 1995; Ditchfield, 1997; van de 

Schootbrugge ef al.. 2000; Puceat et al.. 2003; Price & Mutteriose, 2004). 
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Figure 1.2 Distribution of potentially glacially denved sediments and giendonites through the Mesozoic. 
Diagram adapted after Price (1999). 

The evidence for cool polar conditions, however, is still somewhat equivocal since 

much of the existing research has been carried out at a poor sampling resolution (in the 

high latitudes) or in the mid- to low latitudes or in the southern high latitudes of Antarctica, 

South America, Australia and New Zealand. There has been very linle research 

undertaken in the Arctic region, which prevents a thorough understanding of this issue. It 

is generally accepted that global climate is defined to a significant degree by the prevailing 

conditions at the poles (e.g., Jenkyns et al.. 2004) and it is therefore essential to collect 



robust data from the northern high latitudes in order to accurately reconstruct 

palaeoclimatic conditions. 

In September 2004, the first scientific drilling expedition to the central Arctic 

Ocean was completed. Integrated Ocean Drilling Program (lODP) Expedition 302, the 

Arctic Coring Expedition (ACEX) recovered sediment cores, of Late Cretaceous to 

Holocene age, from the Lomonosov Ridge, 250 km from the North Pole. In their lODP 

proposal Backman el al. (2002) highlighted the importance of the Arctic Ocean in driving 

climate change. They stated that: 

"The Arctic Ocean and its marginal seas play a fundamental role in the global 

ocean/climate system. The dense cold bottom waters of most of the world's oceans, which 

originate in the Nordic seas, strongly influence global thermohaline circulation, driving 

world climate. The permanent Arctic sea-ice cover has a tremendous influence on the 

Earth's albedo and the distribution of fresh water. It varies both seasonally and over longer 

lime periods and thus has a direct influence on global heat distribution and climate. While 

understanding the history of the Arctic Ocean is critical for any climate, ocean-circulation 

or tectonic model that would be truly global, the logistical difficulties associated with the 

work in this remote and harsh region have prevented us from gathering the critical data 

needed to document the role of this key region in the development and maintenance of the 

global climate system." 

Backman et al. (2002) ultimately recognised that a lack of knowledge about the 

influence of the Arctic Ocean on the development and maintenance of climatic extremes 

creates a ftindamental gap in our ability to understand and model global environmental 

change. 

This study will therefore investigate the Late Jurassic and Eariy Cretaceous 

northern high latitudes with regards to palaeoclimate. The Late Jurassic-Early Cretaceous 



time inter\'al has been chosen firstly, because only limited investigation has been carried 

out on this internal (most of the previously published palaeoclimate studies considering 

this issue prefer to concentrate on the Late Cretaceous) and secondly because several 

authors have indicated that sub-freezing polar conditions may be present throughout this 

interval, most notably during the Callovian-Oxfordian (e.g., Dromart et ai, 2003a, b; 

Lecuyer et al.. 2003), the Tithonian/Volgian (e.g.. Price, 1999; Schudack, 1999) and the 

Valanginian (e.g.. Price, 1999; Puceat et al.. 2003; Kessels et al., 2006) periods. Stable 

isotope and geochemical proxies (in conjunction with other observations) will be used to 

examine the Late Jurassic-Early Cretaceous Arctic palaeoclimate due to the high resolution 

data that these techniques can provide. 

1.2. Locations 
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F igure 1.3 Present day view of the Northern hemisphere showing the locations investigated as part this 
study. 



In order to contribute to the current debate about the existence of cold polar 

conditions during the Jurassic and Cretaceous greenhouse climate, five northern high 

latitude locations were considered (Fig. 1.3). The sites selected for this research ranged 

from Early Callovian to Early Hauierivian in age and were situated at Arctic or sub-Arctic 

palaeolatitudes during this time interval. There is a considerable degree of temporal 

overlap between the locations, which is essential for the accurate correlation of data 

between the different field sites (Fig. 1.4). Further information about each location is 

given in the respective chapters. 
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Figure 1.4 Temporal dislribuiion of the locations investigated as part of this study. The timescale is 
illustrated is the Boreal (Russian) timescale. 



1.3. Aims & Objectives 

The major aim of this research is to investigate the nature of Late Jurassic and Early 

Cretaceous northern high latitude climates, principally via stable isotope and 

geochemical proxies as derived from belemnites and fossilised wood. 

In order to achieve this aim the following objectives must be accomplished: 

• To undertake high resolution sedimentary logging and systematic bed-by-bed sampling 

of belemnites and, where possible, fossilised wood fragments/wood debris from five 

biostratigraphically constrained localities within the Upper Jurassic and Lower 

Cretaceous of the Boreal Realm (see Chapter 2). 

• To assess the level of preservation and effects of diagenesis on belemnite specimens. 

• To provide stable isotope (5'^0 and d^^C) and trace element records (Fe, Mn, Ca, Mg, 

Sr, Na and Li) from belemnite rostra from each of the five locations. 

• To produce palaeotemperature estimates for each of the localities based on 5*^0 data. 

• To investigate ocean-atmosphere links using marine (belemnite carbonate) and 

terrestrial (wood) records from coeval successions (Isle of Skye, Scotland and Boyarka 

River, Siberia). 

• To provide organic geochemical analysis of fossilised wood from the Isle of Skye and 

Boyarka River (e.g., 5'̂ Corg, TOC and Rock-Eval pyrolysis). 

• To evaluate the use of belemnites, stable isotopes and elemental/Ca ratios as 

palaeoclimate indicators. 

• To provide a critical analysis of palaeoenvironmental conditions in the Late Jurassic and 

Early Cretaceous northern high latitudes. 



1.4. Thesis Structure 

Chapters 2 and 3 of this thesis present background information that is critical to the 

current study. An overview of Late Jurassic and Early Cretaceous biostratigraphy and 

palaeogeography is presented in Chapter 2 with particular reference to the Arctic region. 

Also discussed in Chapter 2 are the key elements of the aforementioned palaeoclimate 

debate. In Chapter 3, an introduction to belemnites is given. This chapter provides a 

summary of the current state of knowledge with regards to this extinct group of organisms 

and ultimately focuses on the use of belemnites as palaeoclimate indicators. Together 

these chapters present the context in which the current study should be considered. A 

comprehensive review of methodology is given in Chapter 4, where each of the techniques 

utilised in this study are examined. 

Chapters 5-9 present the full range of data obtained from each of the field sites 

investigated as part of this study (StafTin Bay, Helmsdale, Boyarka River, Izhma River, 

Festningen/JanusQellet). Stable isotope and geochemical data are presented alongside 

detailed sedimentological and biostratigraphical information. The data are then interpreted 

in terms of palaeoclimate, with an emphasis on palaeotemperature and carbon cycling. 

Chapter 10 expands upon earlier discussions and examines a number of broader 

themes relating to this thesis. The nature of Late Jurassic-Early Cretaceous climates in the 

northern high latitudes is discussed and a number of issues arising from the methodologies 

utilised and results obtained are explored. Finally, Chapter 11 presents the conclusions 

drawn from this work, acknowledges the limitations of the work and makes 

recommendations for future investigation. 



2. T H E L A T E JURASSIC AND E A R L Y C R E T A C E O U S 

2.1. Biostratigraphy 

The Jurassic and Cretaceous periods have traditionally been correlated and 

subdivided on the basis of ammonite zones (e.g., d'Orbigny, 1842-51; Oppel, 1856-8; 

Arkell, 1933, 1956; Cope et ai, 1980a, b; Cox, 2001a), with the bases of most stages 

corresponding to the base of an ammonite zone (Ogg, 2004a). This biostratigraphic system 

was adopted due to the abundance of ammonite fossils from these periods (Harland et a!., 

1990) as well as historical precedence. 

A number of additional fossil groups have also been used for Jurassic-Cretaceous 

biostratigraphical purposes. These include brachiopods (e.g., Prosorovskaya, 1993; Garcia 

& Dromart, 1997; Cresta et ai, 2001), bivalves (e.g., Sha & Fursich, 1993; Cresta et al., 

2001), belemnites (e.g., Meledina 1;/., 1998), foraminifera (e.g., Dave & Chaterjee, 1996; 

Moss & Finch, 1997; Kabal & Tasli, 2003; Nagy & Seidenkrantz, 2003), ostracods (e.g.. 

Boomer, 1994; Cresta et al., 2001; Coimbra et al., 2002), calcareous nannofossils (e.g., 

Moss & Finch. 1997; Halasova, 1999; Marino et ai. 2004), dinoflagellates (e.g., Poulsen, 

1992), charophytes (e.g., Feist et ai, 1995) and palynomorphs (e.g., Mahmoud et ai, 1999; 

Cresta et ai, 2001; Coimbra et ai, 2002), although many of these taxa are often used on a 

local rather than a global scale. 

The use of ammonites to construct a global biostratigraphic system poses a 

significant problem however, due to the marked provinciality displayed by ammonites 

throughout the Mesozoic (e.g., Arkell, 1956; Imlay, 1965; Casey, 1971; Hallam, 1971, 

1975; Fursich & Sykes, 1997; Page, 1996). During the Jurassic and most o f the Cretaceous 

ammonites occupied three distinct realms, the Boreal Realm, the Tethyan Realm and the 

Austral Realm, the boundaries and extent of which changed considerably through time 

(Page, 1996). Such provincialism prevents the development of a truly global 

biostratigraphic scheme for this time, since different ammonite zones wi l l characterise 
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different palaeogeographical regions (most significantly the Boreal and Tethyan Realms) 

making high-resolution correlation between these different realms difficult, but by no 

means impossible (Ogg, 2004a). 

The major method of correlation is a biostratigraphic one (since the global system 

is based on ammonite zones) although additional techniques have also been employed. 

These include, for example, magnetostratigraphy (e.g., Housa et a/., 1999; Llanos & 

Riccardi, 2000; Hoedemaeker & Heragreen, 2003; Hounslow et a!., 2004; Speranza et ai, 

2005; Grabowski & Pszczolkowski, 2006), strontium isotope stratigraphy (e.g., Jones et 

aL. 1994a, b; Crame et al., 1999; Jenkyns et ai., 2002; Waltham & Grocke, 2006) and 

carbon isotope stratigraphy (e.g., Jenkyns et al.. 2002; Padden et al., 2002; Rey & 

Delgado, 2002, 2005). 

2.1.1. Borea l -Te thyan Corre la t ion 

Many of the stratotypes for the Late Jurassic and Early Cretaceous stages and 

substages are situated within western European (Tethyan) basins (Zakharov, 1997; Ogg et 

ai, 2004). For example, the proposed Global Boundary Stratotype Sections and Points 

(GSSP's) recognised by the International Commission on Stratigraphy for the bases of the 

Oxfordian, Tithonian, Valanginian, Hauterivian, Barremian and Aptian stages, are all from 

the UK, France, Italy or Spain (Ogg, 2004b). 

The differentiation of marine faunas has resulted in the development of a separate 

biostratigraphic scheme for the Boreal Realm that includes different stages and ammonite 

zones to those recognised in the Tethyan regions. In particular, the Jurassic-Cretaceous 

boundary has a plethora of regional terms and, for example, is represented by the 

Tithonian-Berriasian boundary in the Tethyan Realm and by the Portlandian-Ryazanian 

boundary or Volgian-Ryazanian boundary in the Boreal British or Boreal Russian Realms 

respectively (Sey & Kalacheva, 1999). 
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Figure 2.1a Tethyan-Boreal (British and Russian) correlation of the Middle-Upper Jurassic period (after 
Ogg, 2004a; Ogg et ai. 2004, with additions from Sahagian ei ai. 1996; Baraboshkin, 2004; Pearce et ai. 
2005 (and references therein)). 
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The Boreal-Tethyan correlation of zonal biostratigraphic scales is particularly 

important and has been attempted by several authors (e.g., Sey & Kalacheva, 1997, 1999; 

Zakharov et ai, 1997; Baraboshkin, 1999, 2002, 2004; Ogg et ai, 2004). In order to 

attempt such correlation, it is necessary to either employ for example, chemostratigraphic 

or magnetostratigraphic techniques or to identify localities with a mixed Tethyan-Boreal 

fauna (e.g., the Russian platform, northern Caucasus, Mangyshlak (western Kazakhstan), 

the Crimea and Poland) (Sey & Kalacheva, 1997, 1999). The presence of a mixed 

ammonite fauna is obviously desirable, however correlations have also been attempted 

where Telhyan ammonites are associated with the Boreal bivalve, Buchia (e.g., California, 

Oregon and western Canada) (Jeletzky, 1984; Zeiss, 1986; Hoedemaeker, 1987; Sey & 

Kalacheva, 1997, 1999). It is also worth noting that there is some considerable variability, 

in terms of ammonite zonalion, between different Boreal Zonal schemes. British, Russian 

Platform and Siberian schemes, for example, are not always consistent, although attempts 

to correlate these different schemes have been made (e.g., Zakharov et ai, 1997; 

Baraboshkin, 1999, 2002; Ogg et ai, 2004). 

The Jurassic and Cretaceous Boreal-Tethyan correlations (Fig. 2.1a & b) used for 

this research were compiled primarily from the work of Ogg (2004a) and Ogg et ai 

(2004) , with additions from Sahagian et ai (1996), Baraboshkin (2004) and Pearce et ai 

(2005) (and references therein). Wherever possible the most appropriate timescale was 

used for each of the sites investigated here. For example, the Boreal (Russian) timescale 

was used for the Izhma River and Boyarka River successions, whilst the Boreal (British) 

timescale was used for the Staffm Bay succession. At Helmsdale, the Boreal (British) 

timescale (as illustrated in Fig. 2.1a) was also used with the autissioderensis-paravirgatus 

ammonite zones regarded as belonging to the Upper Kimmeridgian (as per the BGS 

Helsmdale sheet S103EC). It should be noted however, that the use of the Upper 

Kimmeridgian in this sense is now commonly considered to be redundant, with this 
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interval generally renamed as the Tithonian following the Tethyan nomenclature, although 

other alternative stage names have also been proposed (e.g., the Bolonian (Ogg, 2004a)). 

2.2. Palaeogeography 
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Figure 2.2 Callovian palaeogeography map. The sites investigated in this study are shown. Map adapted 
after Smith et al. (1994). 

The break-up of the supercontinent Pangaea began in the Early to mid-Jurassic 

(Fig. 2.2) with the opening of the Central Atlantic Ocean and continued into the Early 

Cretaceous (Fig. 2.3) (Irving, 1983; Scotese, 1991; Golonka & Bocharova, 2000; Veevers, 

2004; Page 2005). Two key mechanisms have been postulated as being the origin of this 

break-up, namely, mantle plume activity (e.g., Leitch et al.. 1998; Golonka & Bocharova, 

2000; Janney & Castillo, 2001) and lithospheric stress (e.g., Scotese, 1991; McHone, 

2000). It has been argued that the large volumes of melt associated with the Central 

Atlantic Magmatic Province (CAMP) and the geochemical signature of the earliest 

Atlantic crust could only be produced by plume activity, whilst advocates of a non-plume 

origin have argued that the geochemical diversity of CAMP magmas indicates a 

lithospheric origin (Beutel et ai, 2005). 
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Figure 2.3 Hauterivian palaeogeography map. The sites investigated in this study are shown. Map adapted 
after Smith et al. (1994). 

In the Middle Jurassic, Atlantic spreading continued and by the Late Jurassic, the 

North Atlantic and western Tethys had opened significantly (Irving, 1983), with the 

Central Atlantic Ocean reaching a width of -500 km (Veevers, 2004). During this time, 

the Laurasian continents (North America, North China, Siberia and Eurasia) rifted away 

from the still intact Gondwana (Africa, South America, India, Australia, Antarctica) 

(MacLeod, 2005) and the two discrete supercontinents were separated by a continuous 

equatorial seaway through which surface ocean currents could flow (Skelton, 2003). 

Riftmg in the South Atlantic and the separation of India from Africa and from 

Antarctica/Australia, began in the Valanginian-Barremian (Irving, 1983; Veevers et al., 

1985; Scotese, 1991) splitting Gondwana first into two distinct parts (South America-

Africa and India-Antarctica-Australia) (MacLeod, 2005) and by the Albian (at ~100 Ma) 

into five dispersed continents (Veevers, 2004). Connections between the newly developed 

oceans were generally narrow and shallow, which had significant implications for ocean 

circulation, poleward heat transport and global climate (Skelton, 2003). Continental 

fragmentation and drif\ continued throughout the Cretaceous, until the mid-Tertiary, when 

the main elements of modem physical geology emerged (Irving, 1983). 
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2.2.1. A r c t i c Palaeogeography & Palaeoceanography 
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Figure 2.4 Late Jurassic palaeogeography of the Arctic region. Adapted after Ziegler (1990). 

Throughout the Jurassic and earliest Cretaceous, Arctic palaeogeography and 

palaeoceanography were controlled principally by the break-up of Pangaea and the 

opening of the Arctic-North Atlantic rift (Fig. 2.4). From the earliest Jurassic a connection 

between the Tethys and Arctic seas was established via a series of major marine 

transgressions across the Arctic-North Atlantic rift system and by the end of the Early 

Jurassic, epi-continental seas covered much of Western and Central Europe (Ziegler, 1990; 

1-^ 



Dore, 1991). The development and uplift of the North Sea rift dome in the Middle Jurassic 

created a barrier between the Tethys and Arctic seas as a consequence of the silting-up and 

choking of the connecting seaways (Ziegler, 1990; Dore, 1991). This barrier was a major 

contributing factor to the pronounced provinciality displayed by marine faunas at this time 

(e.g., Arkell, 1956; Imlay, 1965; Stevens, 1967; Hallam, 1975; Doyle, 1987; Mutteriose, 

1988, 1998). The North Sea rift dome collapsed during the Callovian to Volgian (Ziegler, 

1990). At this time, a strong transgressive regime continued and crustal extension 

intensified throughout the Arctic-North Atlantic rift to re-open the Tethys-Arctic 

connection via a system of interconnected straits and seas (Ziegler, 1990; Dore, 1991; 

Bjerrum et ai, 2001). These conditions continued into the Early Cretaceous, although 

tectonic activity increased at the Jurassic-Cretaceous boundary (Ziegler, 1990) and a series 

of structural highs developed, which controlled faunal provinciality through the 

construction of land barriers in the European-Arctic seaway (Dore, 1991). 

The deposition of organic-rich black shales is widespread in the Late Jurassic and 

Eariy Cretaceous, giving rise to extensive oil and gas accumulations across the circum-

Arctic region (Ziegler, 1990; Dore, 1991; Langrock et ai, 2003; Mutteriose et ai, 2003; 

Langrock & Stein, 2004). Economically viable accumulations of such petroleum source 

rocks are known from West Siberia, the Barents Shelf, mid-Norway and the North Sea 

Basin (Dore, 1991). An increase in the preservation potential of organic carbon can be 

caused by several different mechanisms, such as anoxic bottom waters, high primary 

production, reduced clastic input and rapid burial (Demaison & Moore, 1980; Stein et ai, 

1986; Meyers, 1997; Langrock et ai, 2003). 

Late Jurassic and Early Cretaceous black shale formation in the Norwegian-

Greenland seaway has been attributed to suboxic to anoxic bottom water conditions in 

restricted shallow marine basins as the result of a sea-level low stand (e.g., Ziegler, 1990; 

Mutteriose et ai, 2003; Langrock et ai, 2003). Langrock & Stein (2004) suggest that in 

addition to formation in anoxic or stagnant conditions, black shales from this region were 
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also deposited in highly-productive environments resulting from coastal upwelling. 

Macquaker & Keller (2005) consider organic-rich mudstone sedimentation from the Lower 

Cretaceous of Alaska to be attributed to high organic productivity related to episodic and 

rapid sedimentation rather than bottom water anoxia or upwelling. Dore (1991) concluded 

that organic-rich shale deposition was the result of multiple local mechanisms operating 

concurrently during the Late Jurassic and Early Cretaceous (e.g., a strong transgressive 

regime, extensional tectonics, reduced clastic input and the globally warm and equable 

climate), which together created an environment prone to stagnation and organic 

productivity in some basins. This trend was terminated post-Berriasian as the result of 

palaeoceanographic changes creating new ocean margins in the Canada Basin and Rockall 

Trough (Dore, 1991). 

During the Early Cretaceous the Canadian Basin of the Arctic Ocean began to open 

(Ziegler, 1990; Hay et ai, 1999) and the extensive rifting history of the Rockall Trough 

culminated in a spreading event (Dore, 1991). At the same time the narrow Greenland-

Norwegian Seaway (at the north of the Arctic-North Atlantic rift) reached a length of 

1500-2000 m and a width o f -300 km (Gradstein et ai, 1999; Mutteriose et ai, 2003). 

The rotational opening of the Canadian Basin may have provided a connection between the 

Arctic Basin and the Pacific Ocean, possibly along a narrow, deep passage to the South 

Anyui Basin (Hay et ai, 1999; Mutteriose et ai, 2003), although this passage may have 

been blocked by a land bridge so that there was no deep water connection between the 

Arctic Basin and the worid ocean at this time (Mutteriose et ai, 2003). In the mid-

Cretaceous, tectonic activity gradually abated in Central and Western Europe (Ziegler, 

1990). A major marine transgression in the Aptian-Albian submerged the structural highs 

created by Late Jurassic to Early Cretaceous tectonics and formed an open seaway from 

southern England to the Barents Sea, so that by the mid-Albian faunal connections from 

Svalbard to the Mediterranean had been ftjlly established (Dore, 1991). Arctic-North 

Atlantic plate reorganisation continued from the Late Mesozoic until the Late Eocene-
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Neogene post-Alpine plate reorganisation, which led to the present-day continent assembly 

and configuration of the Arctic Ocean (Ziegler, 1990). 

2.3. Palaeoclimate 

As mentioned previously the Jurassic and Cretaceous periods are commonly 

considered as a time of warm, equable global climates (e.g., Frakes, 1979; Hallam, 1981, 

1985, 1993). High mean annual temperatures, a low global temperature gradient (and 

subsequently weak climatic zonation) and warm polar regions are commonly hypothesised 

for this period (e.g., Frakes, 1979; Hallam, 1981; Barron, 1983). 

A number of studies have, however, suggested that during this period a more 

variable climate with seasonally low ocean temperatures and limited polar ice caps would 

have been present (e.g., Francis & Frakes, 1993; Ditchfield, 1997; Price, 1999; Price & 

Mutteriose, 2004; Kessels et al.. 2006). 

2.3.1. Ev idence f o r a W a r m , Equab le C l i m a t e 

There is much compelling evidence to support the concept of a warm, equable, ice-

free climate during the Jurassic and Cretaceous periods. In the past, the reported absence 

of glacial deposits has been considered as sufficient evidence for a greenhouse world (e.g., 

Hallam, 1985). Some of the more convincing recent evidence is discussed below and 

includes information about CO2 levels, polar forests and plant phenology, polar faunas, 

General Circulation Models (GCM's), stable isotopes and the new TEXge temperature 

proxy. It should be noted that much of this research has been conducted on the Cretaceous 

period. 

The general assumption is that this greenhouse climate was related to high 

atmospheric concentrations of carbon dioxide (e.g., Barron et al., 1993; Weissert & Lini, 

1991; Francis & Frakes, 1993; Dromart et ai, 2003a; Royer et ai, 2004), with recent 

estimates for Jurassic and mid-Cretaceous C O 2 levels in the range of 1200 to 3000 ppm 
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(approximately 4-10 times modem pre-industrial values) (Dromart et al., 2003a) and 

>4000 ppm (Bice & Norris, 2002) respectively. Additional factors of climatic significance 

may be the galactic cosmic ray flux (e.g., Shaviv & Veizer, 2003; Wallmann, 2004) and 

palaeogeography (e.g., Barron & Washington, 1982; Barron, 1983). 

Perhaps the most compelling evidence of Jurassic and Cretaceous polar warmth is 

the abundance of fossil forest localities recorded from both poles (<85° palaeolatitude) 

throughout the Mesozoic (Spicer & Parish, 1986). The poleward limit of present day forest 

vegetation is 59°N - 72°N in the northern hemisphere and 55°S in the southern hemisphere 

(Falcon-Lang et ai, 2001). Cretaceous fossil forests have been recorded from high 

palaeolatinjdes in Alaska (e.g., Herman 8L Spicer, 1997), Northern Russia (e.g., Spicer et 

ai, 2002), New Zealand (e.g., Kennedy et ai, 2002), Australia (e.g., Dettmann et ai. 

1992) and Antarctica (e.g., Cantrill & Nichols, 1996; Falcon-Lang et ai, 2001; Falcon-

Lang & Cantrill, 2001). In the northern hemisphere these forests tended to be dominated 

by deciduous vegetation and in the southem hemisphere by evergreen vegetation (Falcon-

Lang & Cantrill, 2001; Brentnall et ai, 2005). 

Plants are not mobile after germination and, therefore, strongly reflect the physical 

environment in which they lived (Spicer & Corfield, 1992). Analysis of fossil leaf 

phenology (e.g., Falcon-Lang & Cantrill, 2001), including physiognomy (e.g., Herman & 

Spicer, 1996, 1997; Spicer et ai, 2002), the analysis of growth rings or anatomical 

characters in trunk woods (e.g., Creber & Chaloner, 1985; Francis 8L Poole, 2002) and 

comparison with nearest living relatives (e.g., Chaloner & Creber, 1990) have yielded 

palaeotemperature information indicating that the Cretaceous poles were relatively warm. 

For example, Spicer et ai (2002) calculated a mean annual temperature of 13.0 ± l.8°C 

and a cold month mean temperature of 5.5 ± 3.3°C for northeastern Russia during the mid-

Cretaceous. 

The extensive distribution of fossil fauna at high latitudes is also considered to be 

evidence for warmer polar climates in the past. The first record of polar dinosaurs is 
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believed to be that of Lapparent (1960) who discovered Igitanodon footprints on Svalbard. 

Since then, dinosaurs, mosasaurs, plesiosaurs, ichthyosaurs, champosaurs and crocodilians 

have all been recorded from Mesozoic polar regions (e.g., Huber, 1998; Markwick, 1998; 

Tarduno et ai, 1998; Rich et ai, 2002; Buffetaut, 2004; Kear, 2006). Many authors 

interpret such finds as providing confirmation that polar regions were warm rather than 

near freezing. Tarduno et ai (1998), for example, estimate a mean annual temperature of 

>14°C for the Late Cretaceous based on the presence of champosaurs in the Canadian 

Arctic. Poleward habitat expansion of marine thermophilic organisms (rudistid bivalves, 

gastropods, larger foraminifera and coral reefs) has also been observed and further 

supports the idea of Cretaceous polar warmth (Kauffinan, 1973; Gordon, 1973; Habicht, 

1979; Lloyd, 1982; Huber et ai, 1995). It is worth noting, however, that Markwick (1998) 

considers the periodic absence of crocodilians from high latitudes in the Late Cretaceous as 

an indictor of cooling in these regions at these times and that Kear (2006) suggests that 

Early Cretaceous plesiosaur and ichthyosaur taxa may have possessed adaptations to 

enable them to cope with low temperatures (e.g., elevated metabolic levels or annual 

migration). 

GCM's have been used to provide both qualitative and quantitative evaluation of 

Jurassic and Cretaceous climates. Such models have generally supported the concept of 

Mesozoic warmth in the mid- to low latitudes (e.g., Moore et ai, 1992; Barron et ai. 1995; 

Price et ai, 1997; Poulsen et ai, 1999) although the nature of high latitude climates is 

more equivocal. Barron et al. (1995) conducted a series of GCM simulations of mid-

Cretaceous climate. Their model simulation, which best matched observations, recorded a 

globally averaged sea surface temperature of 6.2°C above present-day levels. Barron et ai 

(1995) suggest that this value is at the lowest end of estimates for Cretaceous warmth. 

There is an abundance of stable isotope data consistent with a warm, equable 

greenhouse climate dominating the Jurassic and Cretaceous periods (e.g., Stevens & 

Clayton, 1971; Barron, 1983; Huber et ai, 1995; Clarke & Jenkyns, 1999; Poulsen et ai. 
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1999; Wilson & Norris, 2001; Norris et al., 2002; Wilson e/ aL, 2002), although much of 

the available data concentrates on the mid- to Late Cretaceous. Barron (1983) estimated 

sea surface temperatures in the range of 27-32°C for equatorial regions in the Albian-

Cenomanian based on planktonic foraminifera. This is consistent with the data of Wilson 

et ai (2002), who estimated equatorial sea surface temperatures o f 30-33°C for the 

Turonian using glassy foraminiferal calcite and the data of Clarke & Jenkyns (1999), who 

estimated low-latitude temperatures of >33°C for the mid-Cretaceous generated from 

calcareous fine-fraction and bulk sediments from the Exmouth Plateau. 

Huber et al. (1995) investigated foraminiferal data from the southern high latitudes 

to provide evidence of a reduced latitudinal temperature gradient for the mid- to Late 

Cretaceous. They record palaeotemperatures of I7-23°C from the Albian to Cenomanian 

and <33°C in the Turonian, although they acknowledge that such values seem "excessively 

warm" for palaeolatitudes of 56-60°S. Further evidence consistent with mid-Cretaceous 

high-latitude warmth was reported by Poulsen et al. (1999) who recorded 

palaeotemperatures of approximately 18-20°C in the southern high-latitudes (Falkland 

Plateau and southeast Indian Ocean at -58-62°S). These values were derived from the 

5'^0 ratios of foraminiferal calcile. The S'̂ O values however, were inconsistent with the 

model predictions of the same study (Poulsen et al., 1999), which for the same sites 

predicted palaeotemperatures ranging from 7-11°C. It should be noted that for all of the 

above palaeotemperature estimates there is an estimate of S'^Oscawaicr- This can be highly 

variable and is a potential unknown that must be acknowledged (and is discussed later). 

Shouten et al. (2002) developed a new organic palaeothermometer, TEXge, which is 

based on the composition of lipids in the membranes of crenarchaeota (floating marine 

micro-organisms) and is independent of salinity or nutrient availability (Schouten et al., 

2002). Using the TEXge proxy, low latitude palaeotemperatures of ~30-36°C for the mid-

Cretaceous were calculated from the Shatsky Rise (Dumitrescu et al., 2006). In addition, 

Jenkyns et al. (2004) calculated an average sea surface temperature of - 15°C for the 
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Arctic Ocean in the Late Cretaceous and extrapolated a temperature in excess of 20°C for 

polar waters during the mid-Cretaceous. Such palaeotemperatures are however, 

significantly higher than many previous calculations and the technique has yet to be fully 

evaluated. Sluijs et al. (2006) applied the TEXge proxy to Arctic Ocean sediments 

deposited at the Paleocene/Eocene Thermal Maximum and recognised that the TEXge 

record was probably skewed towards summer temperatures, since the export of lipids to the 

sea floor coincides with high phytoplankton productivity and hence the Cretaceous 

estimates may represent extreme summer values. 

2.3.2. Evidence for Cold Polar Regions 

The Mesozoic Era almost certainly represents the longest period of warmth during 

the Phanerozoic. Nevertheless, this period of warmth would have been punctuated by 

oscillations in climate, which may or may not have been of sufficient magnitude and 

duration to produce cooling and the formation of polar ice (Price, 1999). Whilst many 

authors argue that this is unlikely, or at the least highly equivocal (e.g., Rowley & 

Markwick, 1992), there is much compelling evidence to the contrary (e.g., Moore et ai, 

1992; Sellwood et ai, 1994; Pirrie et al., 1995; Stoll & Schrag, 1996; De Lurio & Frakes, 

1999; Price, 1999; Gale a/.. 2002; Alley & Frakes, 2003; Dromart e/a/., 2003a; Miller 

ai, 2003, 2005). The evidence presented below includes data from stable isotopes, 

GCM's, sea-level curves and from glacially derived sediments and minerals. 

Much of the isotopic evidence for warm, equable Jurassic and Cretaceous climates 

has been based on climatic data derived from the mid- to low palaeolatitudes (Ditchfield, 

1997; Price & Mutterlose, 2004), introducing a potential bias when considering higher 

latitude conditions. Even in studies conducted in the mid to low latitudes however, cooling 

episodes have been observed during the Cretaceous greenhouse climate (e.g., Stoll & 

Schrag, 2000; Miller et al.. 2003, 2005). Puceat et al. (2003) investigated Tethyan marine 

waters using the oxygen isotope composition of fish tooth enamel. They were able to 
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distinguish three major coohng events at the million-year scale: at the Berriasian-

Valanginian boundary; during the earliest Late Valanginian; and during the earliest Aptian. 

Such data are supported by other studies, for example, van de Schootbrugge et ai (2000), 

which identifies progressively cooler temperatures from the late Valanginian to early 

Hauterivian in southeastern France. 

Where studies of high latitude sites have been undertaken, the isotopic data often 

record palaeotemperature values that are significantly cooler than might be expected based 

on mid- to low latitude estimates (e.g., Barrera et al., 1987; Pirrie & Marshall, 1990; 

Ditchfield et ai, 1994; Sellwood et ai, 1994; Pirrie et ai, 1995; Ditchfleld, 1997; Price & 

Multerlose, 2004). It is possible, that studies recording very warm temperatures for the 

high-latitude regions may be recording a diagenetic component, since partial 

recrystallisation will generally lower S'̂ O values and, therefore, generate overestimates of 

palaeotemperature (Schrag et ai, 1992). Price et ai (1996) argue that this may account for 

the "intuitively unlikely" temperatures proposed by Huber et ai (1995) for the mid- to Late 

Cretaceous southern high-latitudes (<33°C). 

Ditchfield et ai (1994) conducted an oxygen isotope study of molluscan 

macrofossils in Antarctica. They concluded that mean temperatures of almost 0°C may 

have occurred at the South Pole from the mid-Cretaceous and that elevated high latitude 

terrains were probably glaciated. Price & Mutterlose (2004) calculated minimum 

palaeotemperatures of 2°C derived from belemnites from the late Valanginian to early 

Hauterivian in the Yatria River, Western Siberia. This is consistent with the data of Polyak 

et ai (2003) whose stable isotope measurements of modem benthic foraminifera in the 

Kara and Pechora seas record an annual range of temperatures from -1 to +I2'*C. 

Cretaceous isotopic data have also been derived from foraminifera, for example, Sellwood 

et ai (1994) produced a poleward extrapolation of planktonic foraminiferal data to give an 

estimate of mid-Cretaceous latitudinal variations in mean annual temperature. Their model 
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suggested that palaeotemperatures could reach sub-freezing values at both poles during this 

time. 

Several GCM simulations have predicted the presence of sub-freezing conditions 

and hmited polar ice at the Jurassic and Cretaceous poles. Moore et al. (1992) considered 

two simulations of the Kimmeridgian/Tithonian palaeoclimate with differing C O 2 levels 

(280 and 1200 ppm). Each simulation predicted the presence of sea-ice, although the 

amount of sea-ice was significantly reduced in the 1200 ppm simulation. Valdes et al. 

(1995) also used a GCM to predict the presence of ice during the Late Jurassic. Their data 

indicate the presence of a modest, but significant Antarctic ice-cap, which they suggest 

would have disappeared at times of maximum seasonal forcing. Mid-Cretaceous 

greenhouse and icehouse climates were modelled by Price et al. (1998). Their icehouse 

simulation predicts small permanent ice-caps at both poles during this time. 

Further evidence for the presence of ice sheets during the Jurassic and Cretaceous 

can be found in records of rapid sea level change. Stoll & Schrag (1996) use strontium 

data from the Berriasian and Valanginian to suggest that global sea level fluctuated by -50 

m over 200,000 to 500,000 years and that such geologically rapid fluctuations indicated the 

existence of an Antarctic ice sheet at this time. This hypothesis is supported by the authors 

oxygen isotope measurements, which suggested that these rapid sea level changes were 

indeed caused by the growth of continental ice sheets. Dromart et al. (2003a) provide a 

detailed record of northern hemisphere sea surface temperatures for the Middle to Late 

Jurassic transition that record a severe cooling event coincident with an abrupt global-scale 

sea level fall. Such data could indicate a period of ice sheet formation, which the authors 

suggest may have developed over the mountainous regions of far-east Russia. A flirther 

sea level study of the Late Cretaceous shows large and rapid sea level changes occurring 

on a global scale, which are also interpreted as having a glacio-eustatic control (Miller et 

al., 2003). Miller et al. (2003, 2005) comment that the only alternative to a glacio-eustatic 

mechanism would be something that is as yet undefined since other potential mechanisms 
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(e.g., water storage in lakes, groundwater, deepwater changes or sea ice) cannot explain 

such large and rapid sea level changes. 

Tillites, dropslones and glendonites are often considered to be evidence of glacial 

conditions. Deposits with affinities to glacial tillites have been described from the Jurassic 

and Cretaceous of Russia, Siberia, Eastern Europe, Antarctica, South America and 

Australia (e.g., Epshteyn, 1978; Chumakov, 1981a, b; Woolfe & Francis, 1991; Price, 

1999; Huber et al., 2001; Alley & Frakes, 2003). However, the glacial nature of such 

deposits is often disputed and alternative mechanisms of origin are commonly proposed. 

For example, Oberbeck et al. (1993) and Rampino (1994) suggest that meteoric impacts 

could produce tillile-like deposits. 

Potential dropstones have been described from the Jurassic and Cretaceous of 

Europe and Australia (e.g., Pickton, 1981; Jeans et al., 1991; Frakes & Krassay, 1992; 

Francis & Frakes, 1993; Price, 1999). Such deposits are commonly considered to be the 

result of ice-rafting, although, it should be noted that Bennett & Doyle (1996) and Bennett 

et al. (1996) argue that caution should be exercised when interpreting dropstone evidence, 

because there are many agents besides icebergs by which dropstones may be transported 

(e.g., seaweed, kelp, driftwood). 

Glendonites are star shaped calcite pseudomorphs after the metastable mineral 

ikaite that are commonly taken to reflect deposition in cold subaqueous conditions (Francis 

& Frakes, 1993; Sellwood & Price, 1994; De Lurio & Frakes, 1999). Cretaceous 

glendonites have been identified from Svalbard (Kemper, 1983), Australia (De Lurio & 

Frakes, 1999; Alley & Frakes, 2003) and Canada (Kemper & Schmitz, 1975, 1981). De 

Lurio & Frakes (1999) investigated glendonites from the Lower Cretaceous Bulldog Shale 

in Australia and concluded that the presence of glendonites at this site indicated a gradual 

warming of waters from near-freezing temperatures to temperatures above 5-8°C. 

A well argued overview of this debate is presented by Price (1999). He evaluates 

published evidence for Mesozoic ice and cool temperatures from around the world. Based 
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on such evidence he suggests that several cold or sub-freezing periods can be identified in 

the polar regions, namely, during the (?)Pliensbachian, Bajocian-Bathonian, 

TithonianA^olgian, Valanginian and Aptian. Price (1999) concludes that although high 

latitude warmth is the norm throughout the Mesozoic, the occurrence of limited polar ice at 

times is not a myth but a reality. 
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3. B E L E M N I T E S 

3.1. Systematic Position 

The Belemnoidea (Hyatt, 1884) are a superorder of the Coleoidea, a monophyletic 

group of cephalopod molluscs characterised primarily by their possession of an internal 

(endocochleate) shell (Doyle et al., 1994; House, 1998). The Belemnoidea first appeared 

in the Early Devonian (Engeser & Bandel, 1988; Doyle, 1990a), possibly in response to the 

diversification of fish at the time (Young et al., 1998) and finally became extinct at the 

Cretaceous/Tertiary boundary (Engeser & Bandel, 1988). 

Autapomorphies (the characteristics defining a taxon) of the Belemnoidea are the 

closing organic membrane of the phragmocone, the 5-layered conotheca (the outer wall of 

the phragmocone), and the presence of arm hooks on ten subequal arms (Engeser & 

Bandel, 1988; Engeser, 1990). These characters are widely accepted, although some have 

yet to be demonstrated in certain groups. 

The Belemnoidea can be subdivided into the orders Aulacocerida (Middle 

Carboniferous - Early Jurassic), Belemnitida (Early Jurassic - end-Cretaceous) and 

Diplobelida (Late Jurassic - mid-Cretaceous), based primarily on their body chamber 

characteristics (Doyle et al., 1994; Doyle & Shakides, 2004). The Order Belemnitida 

(Zittel, 1895) is the one to which the true *belemnites' belong. The classification of the 

Belemnitida shown below is based on that of Doyle et al. (1994). Information beyond 

family level is not given. 

In addition to the suborders Belemnitina and Belemnopseina (as included here), 

other suborders have also been included in various Belemnitida classifications (e.g., 

Diplobelina (Jeletzky, 1966; Mutterlose, 1988) and Belemnotheutididina (Doyle et al., 

1994)), however the taxonomic positions of such suborders are often disputed, with some 

authors preferring to create new orders for such problematic groups. As such, only those 

27 



suborders universally recognised (Belemnitina and Belemnopseina) have been included 

here. 

The major distinction between the Belemnitina and Belemnopseina is in the ventral 

groove. The Belemnitina display apical furrows, whilst the Belemnopseina possess 

alveolar grooves (Mutterlose, 1988). 

Class CEPHALOPODA Cuvier, 1794 

Subclass COLEOIDEA Bather, 1888 

SuperorderBELEMNOlDEA Hyatt, 1884 

Order BELEMNITIDA Zittel, 1895 

Suborder BELEMNITINA Zittel, 1895 

Family PASSALOTEUTHIDIDAE Naef, 1922 

Family SALPINGOTEUTHIDIDAE Doyle, 1992a 

Family HASTITIDAENaef, 1922 

Family CYLINDROTEUTHlDiDAE Stolley, 1919 

Family OXYTEUTHIDIDAE Stolley, 1919 

Suborder BELEMNOPSEINA Jeletzky, 1965 

Family BELEMNOPSEIDAENaef, 1922 

Family DICOELITIDAE Saks and NaPnyaeva, 1967 

Family PSEUDODICOELITIDAE Saks and NaFnyaeva, 1967 

Family DUVALIIDAE Pavlow, 1914 

Family BELEMNITELLIDAE Pavlow, 1914 

Family DIMITOBELIDAE Whitehouse, 1924 

3.2. The Belemnite Animal 

The discussion presented below provides a general overview of belemnite 

morphology, palaeoecology and palaeobiogeography, as well as an overview of the use of 
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belemnites in palaeoclimate studies. It is worth considering, however, that with regards to 

belemnite morphology and palaeoecology one model may not fit all. 

3.2.1, Belemnite Morphology 

The belemnite animal can perhaps best be described as a marine squid-like 

cephalopod (e.g., Bandel & Spaeth, 1988; Cox & Doyle, 1996; Clarkson, 1998), similar in 

appearance to the extant squid Loligo (Bandel & Spaeth, 1988). Modem squids possess a 

flexible, unmineralised internal shell called a gladius, which is composed of chitin 

(Donovan & Toll, 1988). Unlike most modem squid however, belemnites possessed a hard 

(calcified) intemal skeleton (Kear et al., 1995; Cox & Doyle, 1996). The only extant 

coleoid families which also possess mineralised tissue are the Sepiidae and Spimlidae 

(Kear et al., 1995), which have retained a primitive phragmocone (Young et a!., 1998). 

The Sepiidae and Spimlidae are, therefore, commonly considered to be the closest 

analogue for the extinct order Belemnilida. 

The hard intemal skeleton of the belemnite animal is known as a rostmm (and is 

also commonly referred to as a guard, although this has an invalid ftinctional connotation 

(Doyle & Kelly, 1988; Doyle, 1990a)). The rostmm is composed of low-magnesium 

calcite (Hudson & Anderson, 1989; Saelen, 1989; Doyle & Bennett, 1995) and is 

consequently readily preserved in the fossil record (as discussed later). 

Eariy belemnite studies interpreted concentric rings exhibited within the rostmm as 

primary seasonal growth bands (e.g., Boggild, 1930; Miiller-Stoll, 1936; Urey et al., 1951; 

Spaeth et al., 1971) and the observed variations in oxygen isotope ratios between the bands 

were, therefore, interpreted as seasonal variations in temperature (Urey et al., 1951). 

Longinelli (1969) however, hypothesised that diagenetic processes may have simulated 

seasonal temperature variations, since it was apparent that radial variations in oxygen 

isotope composition could be observed in belemnites that had undergone considerable 

diagenetic alteration (whilst such oscillations, i f a primary feature, should be obscured by 
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diagenesis). Modem studies suggest (although not conclusively) that this pattern of 

concentric rings was probably the result of organic matter decay (Rosales et ai. 2004a). It 

is believed that belemnite rostra were originally composed of radial crystals of low-

magnesium calcite, which were porous and contained variable amounts of organic matter 

that would have decayed post-mortem to create void space that was later infilled by 

secondary calcite (e.g., Saelen, 1989; Saelen & Karstang, 1989; Podlaha et ai, 1998; 

Rosales et ai, 2004a). 

The rostrum is the largest and most posterior section of the belemnite shell (Fig. 

3.1). It is cylindriconical in form, tapers to a point posteriorly and is indented by a conical 

cavity (the alveolus) at the anterior end (Clarkson, 1998). The phragmocone is an 

aragonitic, thin-walled and chambered part of the shell situated within, and projecting out 

of the alveolus (Saelen, 1989; Clarkson, 1998). A slender siphuncle threads through the 

phragmocone septa at the ventral margin (Clarkson, 1998). The final (and most anterior) 

component of the belemnite shell is the pro-ostracum. This is a long, flat, tongue-shaped 

extension of the phragmocone, which projects forwards and presumably covered the 

anterior part of the body (Clarkson, 1998). These three major components of the belemnite 

shell were wholly internal, with the complete structure surrounded by soft tissue. 

Pro-ostracum 
Phragmocone 

Rostrum 

Syphon Siphuncle 

Gills 

Figure 3.1 Belemnite morphology. A reconslmclion of a living belemniie showing the internal skeleton. 
Adapted after Eyden (2003). 
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The preservation of belemnite soft body parts is extremely rare, although four 

belemnite specimens with soft parts, ink sacs and hooks preserved have been described 

from the Early Jurassic Posidonia Shale of South Germany (Reitner & Urlichs, 1983; 

Riegraf & Hauff, 1983; Engeser & Clarke, 1988). These specimens show the outline of the 

mantle and head, arms with double rows of hooks, but no fins (Hewitt et al., 1999). No 

clear records of belemnite fins have ever been discovered, although fins are frequently 

included in reconstructions (Young et al., 1998). For hydrodynamic reasons it seems 

likely that small manoeuvrable fins would have been present (probably attached at the 

sides, where lateral grooves can be seen in the rostrum), as in other coleoids (Monks et al., 

1996; Hewitt e/a/.. 1999). 

Belemnites are believed to have had 10 subequal arms, each equipped with 30-50 

pairs of normal sized hooks (Engeser & Bandel, 1988; Engeser & Clarke, 1988). Of the 

four belemnites described from the Posidonia Shale, one had a very large 'onychite' hook 

at the base of the arm crown, which has been interpreted as a sexual modification, probably 

of the male belemnite (Engeser & Clarke, 1988). The possibility of sexual dimorphism in 

belemnites was first proposed by d'Orbigny (1842) and has since been mentioned by 

numerous authors, for example Phillips (1867), Lissajous (1925), Roger (1952), Waterston 

(1952), Delattre (1956), Stevens (1965a), and Doyle (1985). The presence of dimorphic 

characters in ammonites (e.g., Makowski, 1963; Calloman, 1963; Palframan, 1966) and 

extant cephalopods (e.g., Westermann, 1969) has been widely accepted and it therefore 

seems reasonable to expect some degree of dimorphism in belemnites (Doyle, 1985). 

3.2.2. Belemnite Palaeoecology 

Belemnites, like modem squid, were nektonic organisms (Stevens, 1963; Spaeth et 

al., 1971; Bandel & Spaeth, 1988; Anderson et al., 1994; Doyle et al., 1997; Rosales et al., 

2004a). Today, squid inhabit a diverse range of marine environments, including, the 

pelagic zones of shallow estuaries, continental shelves and open oceans, as well as the deep 
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sea, and polar oceans (Portner & Zielinski, 1998). This might suggest that belemnites also 

inhabited a comparable range of environments. 

Hewitt et al. (1999) suggest that belemnites would have swum in a horizontal 

position similar to that of modem Loligo, although the method for achieving this horizontal 

poise is debated (e.g.. Monks et al., 1996; Hewitt et al., 1999). Belemnites were 

presumably active pelagic swimmers, although there is also evidence to suggest that some 

may have been nektobenthic (Bandel & Spaeth, 1988; Anderson et al., 1994; Martill et al., 

1994). A disparity in the oxygen isotope derived palaeotemperatures of belemnites and 

ammonites has long been recognised (e.g., Tan et al, 1970), and indicates that these 

nektonic organisms preferred to inhabit different positions in the water column. For 

example. Tan et al. (1970) observed a depletion of 1.0 to 1.6 %o in the oxygen isotope 

values of ammonites compared with associated belemnites, which they interpreted as 

ammonites inhabiting warmer, near-surface or near-shore waters than belemnites. 

Anderson et al. (1994) and Wierzbowski & Joachimski (2006) also record a lower range of 

palaeotemperatures for belemnites than for ammonites. These lower temperatures are 

often indistinguishable from those derived from benthic bivalves (Anderson et al., 1994) or 

oysters (Wierzbowski & Joachimski, 2006) of the same succession, which the authors 

interpret as belemnites inhabiting colder, deeper waters than the ammonites, which 

inhabited the warmer surface waters. This interpretation is supported by other authors 

(e.g., Martill et al., 1994; Price & Sellwood, 1994; van de Schootbrugge et al., 2000). 

Analysis of concave septa in extant and fossil cephalopods can provide an estimate 

of the mechanical limits of coleoid shells to water depth. Westermann (1973) estimated 

that the Belemnitida would have inhabited rather shallow waters, with a maximum depth 

range of 50-200 m. The exception to this being Cylindroteuthis, which could potentially 

have descended to a maximum depth of 400 m. The notion that belemnites were restricted 

to shallow shelf waters is supported by the abundance of fossilised belemnite rostra in 

shallow marine deposits (e.g., Podlaha et al., 1998). 
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It is now commonly accepted that belemnites lived in neritic (probably near-shore 

to mid-shelf) environments rather than in the open ocean (Christensen, 1976; Wignall & 

Hallam, 1991; Monks et al., 1996; Rosales et al., 2004a). The observed diversity in the 

habitats of modem squid however (e.g., Portner & Zielinski, 1998), may suggest that 

belemnites potentially inhabited different sub-habitats (which could be reflected in isotopic 

values). It has been hypothesised that although active swimmers, belemnites could have 

been restricted to shelf areas by their prey, which were themselves confined to the shelves 

(Stevens, 1963). 

By analogy with extant squid it has been deduced that belemnites were camivorous, 

hunting small fish and cmstaceans (Bandel & Spaeth, 1988). Belemnites themselves were 

preyed upon by bony fish, sharks and marine reptiles (e.g., ichthyosaurs) (Cox & Doyle, 

1996). Evidence for such predation has been identified in the form of tooth marks in 

belemnite rostra (Holder, 1973; Hewitt, 1980) or healed rostra (Abel, 1916), as well as the 

presence of rostra (Bandel & Spaeth, 1988; Pollard, 1990; Cox & Doyle, 1996) and 

belemnite arm hooks (Martill, 1996) in the stomach contents of well preserved sharks and 

ichthyosaurs. Fossilised ichthyosaur vomit has even been discovered, with the regurgitated 

belemnites displaying signs of acid etching, presumably from the ichthyosaurs digestive 

juices (Doyle, 2002). The presence of an ink sac in exceptionally preserved specimens 

indicates that belemnites would have been able to expel a cloud of ink as a defensive 

mechanism when under attack (Bandel & Spaeth, 1988; Cox & Doyle, 1996). 

Mass accumulations of belemnite rostra ('belemnite battlefields') are common in 

the Mesozoic fossil record (e.g., Quenstedt, 1856; Frebold, 1957; Taylor et al., 1979; 

Jarvis, 1980; Ager, 1988; Doyle & Macdonald. 1993). This might suggest that like the 

majority of living coleoids, belemnites tended to form schools, particularly for feeding and 

spawning (Doyle & Macdonald, 1993). Post-spawning mortality has been recorded from 

almost all extant coleoid groups (Mangold, 1987) and has been extensively investigated in 

neritic squid populations (e.g., Fields, 1965; Mangold, 1987). Such a mechanism could 
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easily account for the occurrence of belemnite battlefields, where the population is 

composed only of adult individuals of a single species (e.g., Doyle & Macdonald, 1993). 

3.3. Belemnite Palaeobiogeography 

Since the now classic study of Neumayr (1883) it has been recognised that many 

Jurassic marine faunas do not have a cosmopolitan distribution (Hallam, 1975; Fiirsich & 

Sykes, 1977). Such provinciality has been well summarised by several authors (e.g., 

Arkell, 1956; Imlay, 1965; Stevens, 1967), 

Belemnite provinciality developed in the Early Jurassic (Doyle, 1987) and from the 

Late Jurassic to Early Cretaceous belemnites occupied three distinct faunal realms (Fig. 

3.2): the Boreal Realm (Russia, northern Europe, Greenland and North America) 

dominated by the suborder Belemnitina, which is often informally divided into the Boreal-

Atlantic and Boreal-Arctic Provinces; the Telhyan Realm (southern and central Europe, 

East Africa, Madagascar, Antarctica, South America, Australasia and India) dominated by 

the suborder Belemnopseina and informally divided into the Mediterranean and indo-

Pacific Provinces; and the Austral Realm (Madagascar, Patagonia, New Zealand), 

dominated by the family Dimitobelidae (Stevens, 1963, 1971, 1973a, b; Doyle, 1987; 

Mutteriose, 1988, 1998). These realms persisted until the Aptian, when the Tethyan and 

Boreal Realms were homogenised by cosmopolitan taxa and a bipolar distribution of 

belemnites developed resulting in a Tethyan-Boreal Realm and an Austral Realm (Stevens, 

1973b; Mutteriose, 1988, 1998; Doyle, 1992b). 

The boundaries of these realms changed through time and migration between the 

realms was rare. The causes of this provinciality have been widely debated (e.g., Stevens, 

1963, 1965b, 1973a, b; Fursich & Sykes, 1977, Doyle, 1987) and include climate control, 

temperature or salinity gradients, environmental stability and physical or physiological 

barriers. The dominance of certain belemnite genera in the different realms has been 
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comprehensively described by a number of authors (e.g., Stevens, 1963, 1973a, b, 

Mutterlose^/a/.. 1983; Mutterlose, 1988, 1998; Doyle, 1987, 1992b). 

TETHYAN REALM 

AUSTRAL REALM • Areas of Land 

• A r a M o f H i g h 
R e M 

Figure 3.2 Hautenvian palaeobiogeography. The three distinct belemnile Realms are shown. 
Palaeogeographic map adapted after Smith et al. (1994) with additional palaeobiogeographic data from 
Stevens (1971, 1973b) and Doyle (1987). 

3.3.1. Boreal Realm 

In the Pliensbachian, Boreal-Tethyan provinciality can be distinguished in certain 

ammonite families (Howarth, 1973; Hallam, 1975). It is not until the Toarcian, however, 

that such provinciality can be confirmed in belemnites (Doyle, 1987). In the Toarcian 

belemnites colonised Siberia, Svalbard and North Amenca for the first time (Doyle et al.. 

1997) with fauna dominated by endemic genera (Saks & NaFnyaeva, 1970, 1975; Doyle et 

ill.. 1997). 

From the late mid-Jurassic the family Cylindroteuthidae became dominant in the 

Boreal Realm, after their first appearance in the Bajocian-Bathonian inter\al (Doyle, 

1987). At this time the realm was characterised by the genera Cylindroteuthis and 

PachyteuthLs. Pachyteuthis evolved in the Arctic Basin from the Bajocian onwards and 

therefore dominated the Boreal-Arctic Province, whilst the Boreal-Atlantic Province was 

dominated by Cylindroteuthis (Mutterlose, 1988). Both genera were extremely common 

throughout the Boreal regions, with specimens found in sediments from Svalbard, North 
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Russia and East Greenland (Doyle, 1987). However, in the Kimmeridgian Cylindroteuihis 

and Lagonibelus migrated into the Boreal-Arctic Province so that by the Early Cretaceous 

the Boreal-Atlantic Province was characterised by the cylindroteuthid genus Acroteuthis 

(which appeared in the Volgian), although Cylindroteuthis and Pachyteuthis were still 

common in places (e.g., Doyle, 1987; Mutterlose, 1988). 

In the Late Berriasian (and into the Early Valanginian) Acroteuthis assumed 

dominance in both the Boreal-Atlantic and Boreal-Arctic Provinces (Stevens, 1973b). This 

dominance continued until the Early Hauterivian, when the Tethyan genus Hibolithes 

invaded the Boreal Realm and largely displaced Acroteuthis in the Boreal-Atlantic 

Province (Doyle, 1987). In the Barremian the differentiation of the Boreal Realm cannot 

be recognised and by the Albian, a distinct Boreal assemblage no longer exists (Mutterlose, 

1988). 

The Boreal family Cylindroteuthidae remained restricted to the Boreal Realm 

throughout the Late Jurassic and Early Cretaceous, despite the presence of conditions 

suitable for incursions of Tethyan taxa during parts of the Early Cretaceous (Mutterlose, 

1998). 

3.3.2. Tethyan Realm 

During the Early Jurassic, belemnite evolution was centred in Europe, with 

migration somehow prevented until the Late Pliensbachian (Stevens, 1973a). Belemnites 

became widespread for the first time in the Toarcian, with diversity increasing significantly 

in the Late Toarcian (Doyle et al., 1997). 

From the mid-Jurassic the Tethyan Realm was characterised by the belemnopseid 

genera Mibolithes and Belemnopsis {Ste\ens, 1963; Doyle, 1987, 1992b; Mutteriose, 1988, 

1998; Doyle et al., 1997). Belemnopsis first appeared in the Mediterranean region during 

the Toarcian and in the Aalenian Belemnopsis migrated to the north and south (Mutterlose, 

1988). Hibolithes gradually replaced Belemnopsis in the Mediterranean region throughout 
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the Callovian, to become the dominant Mediterranean genus by the Oxfordian (at which 

time European-type belemnites still dominated the Tethyan seaway) (Stevens, 1973a). 

From the Oxfordian, the Tethyan Realm faunas became differentiated into Mediterranean 

(with rare Belemnopsis) and Indo-Pacific Provinces (dominated by endemic Belemnopsis 

species) (Stevens, 1971, 1973a; Mutterlose, 1988). 

The belemnopseid taxa continued their dominance of the Tethyan Realm into the 

Early Cretaceous. In the Valanginian of Europe, species of Hiboiithes, Duvalia and 

Conobelus evolved and migrated along the Tethyan seaway, whilst the Indo-Pacific 

Province largely disappeared (Stevens, 1973b). During the Valanginian and Hauterivian, 

the Tethyan genus Hibolithes was able to penetrate the Boreal Realm and co-exist with 

cylindroteuthids, for example in the Pechora Basin, Svalbard and California (Doyle, 1987). 

The Aptian Tethyan Realm was characterised by Mesohibolites, Neohibolites and 

Parahibolites (Stevens, 1963, 1973b; Mutterlose, 1988). 

The Tethyan Realm finally disappeared after the Early Cenomanian with the 

extinction of Belemnitidae genera Neohiboiites and Parahibolites and for the remainder of 

the Cretaceous only Austral Realm and (homogenised) Tethyan-Boreal Realm faunas can 

be differentiated (Stevens, 1963, 1973b; Doyle, 1992b). 

3.3.3. Austral Realm 

The anti-Boreal (Austral) Realm first developed during the Kimmeridgian-

Tithonian in waters with earlier Jurassic Tethyan affinities and became firmly established 

after the Hauierivian (Stevens, 1973a, b). Throughout the Kimmeridgian and Tithonian, 

Indo-Pacific Province belemnites {Belemnopsis, Hibolithes, Duvalia, Conobelus) occupied 

much of the Southern hemisphere, extending to approximately 75°S. At this time an 

endemic form of Belemnopsis evolved in Madagascar and Patagonia that is believed to be 

the precursor of the Austral Realm genera (Stevens, 1973a). 
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The Dimitobelidae, which eventually dominated the Austral Realm, populated the 

Indo-Pacific and western Antarctic regions from the Aptian onwards, leading Stevens 

(1965) to differentiate them as part of an Indo-Pacific Realm, although Stevens (1973a, b) 

recognised that their later association with other Cretaceous Austral taxa, suggested that 

they should instead be assigned to an Austral Realm. From the Early Cenomanian the 

Austral Realm belemnites became restricted to Australasia and Antarctica (Stevens, 1973b; 

Doyle, 1992b). 

3.4. Belemnites as Palaeoclimate Indicators 

Urey (1947) was the first to hypothesise the correlation between temperature and 

5'^0 variations as recorded in primary calcite. This was later confirmed by Epstein et al. 

(1953). Since that time belemnites have been considered to be one of the most eminently 

suitable fossil groups for palaeotemperature determinations (Spaeth et al., 1971), because 

they have arguably the highest potential to preserve an original isotopic signal (Marshall, 

1992). Belemnite rostra are constructed of low-magnesium calcite (Saelen, 1989), which is 

relatively insoluble in surface environments (compared with high-magnesium calcite or 

aragonite, which are metastable) and is therefore unlikely to undergo significant pervasive 

alteration (Marshall, 1992). It is worth noting that evidence for a belemnite species with 

an aragonitic rostrum has been presented (Bandel & Kulicki, 1988). There is also evidence 

for the incorporation of small amounts of phosphate in the carbonate rostrum (Longinelli et 

al., 2002, 2003). Some modem marine organisms (e.g., Sepia) precipitate small amounts 

of phosphate (<0.5 %) in their carbonate shells, with such precipitation in isotopic 

equilibrium with the carbonate and ambient seawater (Bettencourt & Guerra, 1999; 

Longinelli et al., 2003). 

Belemnites are lergely facies independent and have a wide geographic range (from 

the Toarcian until their extinction at the end-Cretaceous) (Doyle and Bennett, 1995). 

Consequently belemniles are relatively abundant in the fossil record, and can therefore be 
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used for accurate comparisons of palaeotemperatures on considerable spatial and temporal 

scales. This is important because different organisms can give different palaeotemperature 

results from the same locations, e.g., belemniies and ammonites (Tan et ai, 1970; 

Anderson et al., 1994), and belemnites and planktonic foraminifera (Huber et al., 1995; 

Price et al., 1996; Huber & Hodell, 1996). Belemnites appear to record cooler 

palaeotemperatures than known shallow water taxa (Lowenstam & Epstein, 1954; Pirrie & 

Marshall, 1990; Ditchfield et ai, 1994), supporting the notion that belemnites inhabited 

intermediate to benthic water depths. Today, belemnite-derived palaeotemperatures are 

thought to potentially represent minimum estimates of sea-surface temperatures at high 

latitudes (Price et ai, 1996), as vertical ocean temperature gradients in shallow, high 

latitude regions wi l l be minimal (Barrera et ai, 1987; Price et ai, 1996). 

As an extinct group of organisms, belemnites provide several complicating factors 

when being considered for palaeoenvironmental analysis, since it is impossible to observe 

their life cycle and habitat. Being nektonic animals, it is possible that their habitat changed 

with ontogeny, perhaps as the result of migration, either laterally or vertically in the water 

column. Significant lateral migration appears unlikely, given the distinct provinciality 

exhibited by belemnites (e.g., Stevens, 1963, 1973a, b; Mutterlose et ai. 1983; Doyle, 

1987, 1992b, 1997; Mutteriose, 1988, 1998). However, short-range lateral and vertical 

migration within a biogeographic province seems probable. Such behaviour would almost 

certainly produce an isotopic shift in shell composition, and shells can therefore be 

expected to preserve an average record of temperature for the areas in which the individual 

animal lived and secreted its shell (Spaeth et ai, 1971). 

Another factor to be considered is that belemnile shell precipitation may involve a 

Vital effect'. This occurs when an organism does not secrete its shell in equilibrium with 

its environment, a process that is known from several marine organisms, most notably 

echinoderms (Spaeth et ai, 1971) and corals (Hudson & Anderson, 1989). Modem 

cephalopods however, are known to secrete their shells very close to equilibrium with 
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seawater (Taylor & Ward, 1983; Morrison & Brand, 1986; Rosales et al., 2004a; Rex fort 

& Mutterlose, 2006). More specifically, the oxygen isotope composition of extant 

molluscan shells appears to be in equilibrium with ambient seawater, whilst for the carbon 

isotope, disequilibrium precipitation often prevails, with shells being less enriched in '^C 

than might be predicted (Wefer and Berger, 1991; Klein et al., 1996; Bettencourt & 

Guerra, 1999; Geist et al.. 2005). Wefer & Berger (1991) attribute this to the presence of a 

larger pool of oxygen (i.e., water) compared with carbon (i.e., dissolved inorganic carbon, 

mostly bicarbonate) available for shell formation. The observed offset in the carbon 

isotope data is often attributed to a contribution from metabolic or kinetic carbon (e.g., 

Tanaka et ai, 1986; Klein et al., 1996; Geist et al., 2005). 

Such isotopic disequilibrium has been observed in the cephalopod genera Sepia, 

Spimla, Argonauta and Nautilus (Rexfort & Mutterlose, 2006). Rexfort & Mutterlose 

(2006) studied stable isotope records from Sepia officinalis as an analogy for belemnites. 

They concluded that the oxygen isotope composition of Sepia was in equilibrium with the 

surrounding seawater and therefore, reflected ambient temperature. However, for the 

carbon isotope signal a biofractionation control was possible, although it was 

acknowledged that no direct conclusions could be drawn from their dataset. Wefer & 

Berger (1991) recorded lighter than expected carbon isotope values in the earliest portion 

of the calcareous shells. This, however, has been interpreted as the result of embryonic 

precipitation of the earliest septa within the egg (Eichler & Ristedt, 1966; Cochran et al., 

1981; Taylor & Ward, 1983; Wefer & Berger, 1991). Belemnite rostra can, therefore, be 

considered to record both carbon and oxygen isotope changes in ambient seawater, and be 

used for palaeoclimatic analysis, providing care is taken with the use of juvenile specimens 

or early ontogenetic elements of the rostra. It is also important to note that no major 

seasonal or taxonomic differences in fractionation have yet been confirmed (Saslen e/ al., 

1996; Podlaha et al.. 1998; Rosales et al., 2004a), although McArthur et al. (2004) suggest 
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that differences in fractionation or habitat may potentially produce a disparity in stable 

isotope values for different belemnite species. 

Finally, it is important to ensure that the calcite being analysed has not been post-

depositionally altered to corrupt the primary isotopic composition. Methods of identifying 

diagenesis are described and evaluated by Saelen (1989) and include scanning-electron 

microscopy, cathode-luminescence microscopy, blue-light fluorescence microscopy, 

staining of thin sections (using Dickson's (1955, 1966) methodology), and x-ray 

diffractometry. Furthermore, trace element geochemistry, in particular the analysis for Mn 

and Fe can be used to screen for diagenesis (see Chapter 4), as Fe and Mn are commonly 

associated with diagenetic cements (Veizer et al., 1983). Once a belemnite has been 

ascertained to be unaltered (or only altered in easily removable sections of the specimen) it 

can be analysed with confidence. 
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4. M E T H O D O L O G Y 

4.1. Selection of Sites 

The purpose of this research is primarily to investigate northern high latitude 

climates during the Late Jurassic and Early Cretaceous. In order to explore this, it was 

necessary to consider a range of field locations. Those selected for this study were: Staffin 

Bay, Isle of Skye, Scotland; Helmsdale, Sutherland, Scotland; Izhma River, Timan-

Pechora Basin, Russia; Boyarka River, Yenisei-Khatanga Basin, Northern Central Siberia; 

and Festningen and Janusfjellet, Svalbard. Each of the sites selected was situated within 

the Boreal Realm of the Late Jurassic - Early Cretaceous, with the sites deliberately chosen 

to provide a significant spatial and temporal distribution of data. 

In terms of spatial distribution (Fig. 4.1), the sites ranged from palaeolatitudes of -

45°N (Isle of Skye and Sutherland) at the periphery of the Boreal Realm to - 70°N 

(Boyarka River), well within the palaeogeographic Arctic Circle (according to Smith et ai, 

1994). The sites are also well distributed throughout the eastem circumpolar region. 

The ages of the sections varied from Callovian (Middle Jurassic) in Staffin Bay, 

Brora (Sutherland), the Izhma River, Festningen and Janusfjellet to Hauterivian (Early 

Cretaceous) in the Izhma and Boyarka Rivers (Fig. 1.4). Whilst this distribution of age 

was important, it was also essential to ensure that there would be a considerable degree of 

temporal overlap between the different locations. This overlap is crucial for the correlation 

of data between the different field sites. 

Additional factors that were considered when selecting these sites were faunal 

content, available biostratigraphic information and logistics. Most importantly, it was vital 

that the section was known to contain relatively abundant and well preserved belemnites. 

In addition, it had to be possible to date the section accurately (in terms of ammonite 

biostratigraphy). This was ensured by choosing sections where a detailed biostratigraphy 

already existed, or where a fairly accurate estimate of age was known by co-workers and 
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could be determined after a short period in the field. In this case the presence of abundant 

ammonites was also required, in order to constrain the section biostratigraphically. 

The field sites selected for this study (Staffin Bay, Isle of Skye, Scotland; 

Helmsdale. Sutherland, Scotland; Boyarka River, Northern Central Siberia; and Festningen 

and Janusijellet, Svalbard) were chosen using the criteria outlined above. An additional 

site that satisfied the aforementioned criteria was also included in this study but did not 

require fieldwork (Izhma River, Russia). The material obtained from this site was 

collected by Dr Gregory Price (University of Plymouth) in the summer of 2003. 

RCTIC 

ahma River] 
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iandl T E T H Y A N 

Figure 4.1 Volgian circumpolar map. The extent of the Boreal (blue) and Tethyan (brown) belemnite 
Realm.s are shown and the sites investigated in this study are highlighted. Map adapted after Smith et al.. 
(1981) with additional data from Doyle (1987) and Stevens (1973a). 

4.2. Field Techniques 

Field data were collected during two major field seasons: in the spring/summer of 

2004; and the spring/summer of 2005. UK based field work (e.g.. Isle of Skye and 
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Sutherland) was conducted during the spring time, whilst Arctic field work (e.g., Siberia 

and Svalbard) was carried out during the summer months. 

4.2.1, Graphic Sedimentary Logs 

At each individual field location a sedimentary log was drawn. Features such as 

lithology, sedimentary characteristics and fossil content were noted, as well as the 

positions from which samples were obtained. It should be noted that the extent of the 

outcrops varied significantly between locations. For a guide to the log symbols used see 

Figure 4.2. 

I I Claystone/Mudstcne 

^ 1 Siltstone 

iHHill Sandstone 

N=i=H Limestone 

ISfil Conglomerate 

1^1 Boulder Bed 

Planar Lamination 

Im] Cross Bedding 

Concretion 

[g] Glendonite 

I 6 I Dropstone 

Wood 

l°H Belemnite 

fSl Bivalve 

I 6 I Gastropod 

I (3) I Ammonite 

| @ | Crinoid 

fg l Coral 

Figure 4.2 Key lo sedimentary log symbols used in this study. 

4.2.2. Sample Collection 

The primary focus of the sample collection for this research was on belemnites. At 

each site, belemnite rostra were collected bed-by-bed from wherever possible. Multiple 

samples were taken from stratigraphic horizons where belemnites were abundant, with care 

being taken to select representative samples and, therefore, avoid any selection bias. 

Occasionally other elements of the faunal assemblages were collected either by myself or 

co-workers: e.g., ammonites were collected by Dr Kevin Page (University of Plymouth) 

from the Isle of Skye and Svalbard and Prof Evgenij Baraboshkin (Moscow State 

University) from the Izhma River, Russia and Boyarka River, Siberia. Such samples were 

collected primarily for their use in biostratigraphy. 
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In addition to the belemnite sampling, bulk sediment and fossil wood samples 

were also collected (from the isle o f Skye and Boyarka River respectively). The mudrock 

sediments of Staffin Bay, Isle of Skye are known to contain microscopic wood debris 

(Pearce et al., 2005). The bulk sediment samples were collected frequently (although not 

regulariy) at an average interval spacing of - 70 cm. The macrofossil wood samples were 

also collected frequently but irregularly (here, as a consequence of the limited presence of 

wood in certain sections of the outcrop). These samples were collected at intervals of 

- Im. 

4.3. Laboratory Techniques 

4.3.1. Rationale 

The laboratory techniques outlined below were careftilly selected for inclusion in 

this study. Each of the techniques has been repeatedly tested (in an appropriate context) 

through years of published, peer-reviewed research. 

Optical Techniques 

The photographic techniques employed either provided a record of representative 

specimens (prior to isotopic or geochemical analysis) or when used in combination with 

other techniques provided an assessment of sample preservation. Photography was 

undertaken principally on belemnite specimens, but also on wood samples. 

Representative photographs of belemnite specimens were taken after die 

application of a thin coating of ammonium chloride (e.g., Doyle & Kelly, 1988). The use 

of such coating prevents preservational features obscuring morphological characteristics 

and therefore produces photographs that are suitable for taxonomic comparisons. 

Additional optical techniques were employed on a number of belemnite rostra in 

order to identify areas of diagenetic alteration, for example, representative specimens were 
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photographed under cathodoluminescence (CL) and backscattered scanning electron 

microscopy (BSEM) conditions, and after carbonate staining (Dickson, 1965, 1966). 

Perhaps the most commonly used of these optical techniques ( i f used in isolation) is 

cathodoluminescence (e.g., McArthur et ai, 2000; O'Neill et ai, 2003; Rosales et ai, 

2004a; Koleva-Rekalova & Metodiev, 2005). However, more often, a range of these 

techniques is used in combination in order to ensure that any and all alteration can be 

identified (e.g., Saelen, 1989; Podlaha et ai, 1998; Veizer et ai, 1999; Grocke et ai, 2003; 

McArthur et ai, 2004; Price & Mutteriose, 2004), 

Finally, photography was also performed on representative samples of well 

preserved macroscopic wood fragments. Photographs were taken using a scanning 

electron microscope (SEM), a technique which is popular for such samples as it permits an 

evaluation of preservation (e.g., Grocke et ai, 2005; Pearce et ai, 2005). 

Trace Elennent Techniques 

Trace element analysis was undertaken for two primary reasons, firstly to identify 

the presence of diagenesis (undertaken in addition to the optical techniques) and secondly, 

to complement the stable isotope analysis of palaeoclimate. Investigations of extant 

molluscan species indicate that the concentrations of Fe and Mn incorporated into the 

mollusc shell are relatively low in recent populations. Milliman (1974) recorded values of 

Fe and Mn from recent Sepia (cuttlefish) shells (possibly the closest modem analogue of 

the extinct belemnite) as 32 ppm and 4 ppm respectively. These data are supported by 

more recent studies such as that of Miramand & Bentley (1992), which recorded average 

values of 42 ± 8 ppm for Fe and 2 ± 0.4 ppm for Mn from modem Sepia collected from the 

French coast of the English Channel. Miramand et ai (2006) also recorded Fe values from 

the cuttlebone of mature adults of the species Sepia officinalis. They recorded average 

values of 25 ± 2 ppm for Fe but did not measure Mn. In a study o f the extant limpet 

Patella aspera, Cravo et ai (2002) recorded Fe and Mn concentrations in shells collected 
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from Portugal. They recorded average values of 35.8 ppm and 29.9 ppm for Fe and Mn 

respectively, although the maximum Fe and Mn values were 70.5 and 130.5 ppm 

respectively. Such data suggest that relatively low Fe and Mn concentrations should be 

present in well-preserved belemnite rostra and authors commonly accept that values of 

<I50 ppm Fe and <100 ppm Mn are representative of well preserved individuals (e.g., 

Pirrie & Marshall, 1990; Podlaha et al, 1998; Price & Mutterlose, 2004). 

Post-depositional repartitioning of trace elements during diagenesis typically causes 

the depletion of Sr, Mg, Na and Ba and the enrichment of Mn, Fe and Zn (among other 

elements) in low magnesium calcite (Veizer, 1983, 1999; Brand, 1989; Podlaha et al., 

1998). Diagenetic effects can normally be identified via trace element analysis 

(particularly of Fe and Mn), although it should be noted that alteration can take place in the 

absence of Fe and Mn, for instance, under oxidising conditions (Marshall, 1992; Jones et 

al., 1994b). Nevertheless, trace element analysis is a technique that is commonly used to 

identify diagenetic alteration in belemnites and other carbonates since high concentrations 

of Fe and Mn virtually guarantee the presence of diagenetic calcite (e.g.. Brand & Veizer, 

1980; Ditchfield et a!., 1994; Jones et al., 1994b; Price & Sellwood, 1997; Grocke et al., 

2003; Price & Mutteriose, 2004). This technique was used here, together with the optical 

techniques outlined above, to ensure that the presence of any diagenetic alteration could be 

constrained. 

Isotopic and trace element analysis of well preserved belemnite calcite have been 

used extensively to investigate (mainly Jurassic) seawater chemistry (e.g., Jenkyns et al., 

2002; Bailey et al., 2003; McArthur et al., 2004; Rosales et al., 2004a). The trace element 

ratios Mg/Ca, Sr/Ca, Na/Ca and Li/Ca have been used here to assess changes in the 

environmental conditions of seawater (e.g., temperature and salinity). Mg/Ca and Sr/Ca 

ratios in biogenic calcite are commonly measured in order to investigate environmental 

conditions (e.g., Klein et al., 1996, 1996; Bailey et al., 2003; McArthur et al., 2004; 

Rosales et al., 2004a, b, 2006), although Na/Ca (e.g.. Bailey et ai, 2003) and Li/Ca (e.g., 
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Hall & Chan, 2001; Bailey et al., 2003) are less commonly utilised. Convention is 

followed here by expressing these values as mmol/mol (Mg/Ca, Sr/Ca, Na/Ca) or 

^mol/mol (Li/Ca) (e.g., McArthur et al. 2000; Bailey et al., 2003; Rosales et al., 2004a, 

2004b). Arguably the most useftil of these ratios is Mg/Ca, which has been shown to vary 

mainly with water temperature (e.g., Klein et al., 1996; Wei et al., 2000; Lear et al., 2002; 

Steuber & Rauch, 2005) and to be affected only to an extremely limited degree by salinity 

(e.g., Yasamanov, 1981; Klein et al, 1997; Rosales et ai, 2004a). It can therefore 

potentially be used as a salinity-independent (unlike S'^O) palaeotemperature proxy 

(Rosales et al., 2004a). 

McArthur et al. (2000) and Bailey et al. (2003) have recently investigated this 

relationship in belemnites, where they identified a marked correspondence between 

elemental composition (Mg/Ca, Sr/Ca, Na/Ca) and S'^O, suggesting that Mg/Ca (although, 

perhaps not Sr/Ca or Na/Ca) can be used as a palaeotemperature proxy. This technique 

(together with the S'̂ O technique) will be explored fully in this study, by using the Mg/Ca 

palaeotemperature equation of Klein et al. (1996), which was developed for extant 

bivalves. It remains impossible however to calculate absolute palaeotemperatures from 

Mg/Ca ratios (or 6'^0 values) as belemnites are an extinct group, and therefore the 

response of such proxies to water temperature cannot be observed experimentally (Rosales 

etai, 2004a). 

Carbonate Stable Isotope Techniques 

Since the earliest days of isotope analysis when it was first observed that the 

precipitation of the '^0-isotope in calcite was related to temperature (Urey, 1948) and that 

this provided the means to reconstruct palaeoclimates (Epstein et al., 1953), belemnites 

have been considered as remarkably suitable organisms for such investigations (e.g., Urey 

et al., 1951; Bowen, 1961a, b; Longinelli, 1969; Anderson et al., 1994; Podlaha et al., 

1998; Bailey et al., 2003; Voigt et ai, 2003; Wierzbowski, 2004). Plausible estimates of 
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palaeotemperature have been determined from belemnites, after taking into account the 

ecology, diagenesis and the isotopic composition of seawater (e.g., Pirrie & Marshall, 

1990; Podlaha et ai. 1998; Price et ai, 2000; Hesselbo et ai. 2000). Belemnite derived 

oxygen isotope data were therefore produced for this research and palaeotemperatures 

were calculated using the equation of Anderson & Arthur (1983) for molluscan calcite. 

There are however, limitations to using S'̂ O data to calculate palaeotemperatures. 

These are that the isotopic composition (which can be related to salinity) of the water from 

which the calcite was precipitated cannot be measured directly. The Anderson & Arthur 

(1983) formula requires an estimate of the isotopic composition of seawater to be made. In 

the Jurassic/Cretaceous greenhouse world this is generally assumed to be -1 %o SMOW 

(e.g., Pirrie & Marshall, 1990; Marshall, 1992; Saelen e/a/., 1996; Price & Sellwood, 1997; 

Podlaha et ai. 1998; Price & MutieHose, 2004; Rosales et ai. 2004a). This value 

however, is dependent on the amount of water stored as glacial ice (Rosales et ai. 2004a) 

and the S'^Oscawaicr composition can vary by as much as 1.5 %o between high and low 

latitudes in the modem open ocean (Broecker, 1989). 

Local variation in 6'^Oscawatcr (related to salinity) is also influenced by the input of 

fresh-water runoff (which is depleted in '^O) into the system. This wi l l produce more 

negative 5'^Oscawaicr values than would otherwise be expected and the S'̂ O data will 

therefore overestimate palaeotemperatures (Klein et ai, 1996). The impact of salinity on 

seawater temperature however, can be determined by using Mg/Ca data (e.g., Klein et ai, 

1996; Rosales et ai, 2004a; Immenhauser et ai. 2005). The use of Mg/Ca ratios is 

discussed above. 

Carbon isotope data were simultaneously produced and provide additional 

information about carbon cycling, chemostratigraphy and palaeoclimatic change (although 

'vital' effects (as mentioned earlier) also need to be considered). Carbon and oxygen 

isotope records are commonly considered together in order to provide a detailed 

assessment of palaeoclimate (e.g., Weissert, 1989; van de Schootbrugge et ai, 2000; 
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Wierzbowski, 2002; Grocke et al., 2003; Price & Mutterlose, 2004). Insights to be gained 

from the inclusion of carbon isotope data include information relating to 

palaeoceanography, palaeoatmospheres (e.g., atmospheric C O 2 concentrations and 

methane release), weathering and carbon burial. 

Organic Carbon Techniques 

Carbon isotope values derived from terrestrial organic matter have been 

successfully used to investigate the coupling of marine and terrestrial carbon cycles 

throughout geological time (providing comparison is possible with marine curves), as well 

as providing palaeoenvironmental information (e.g., Bocherens et al., 1993; Grocke, 1998; 

Jahren et al., 2001; Hesselbo et al., 2003; Grocke et al., 2005). Grocke et al. (1999) 

suggest that the magnitude of carbon isotope excursions as recorded in wood is 

considerably greater than in coeval pelagic carbonate. Detailed terrestrial carbon isotope 

records are virtually non-existent throughout much of the Mesozoic (Hesselbo et al., 2003) 

and records from successions containing both marine carbonate and terrestrial organic 

carbon values have yet to be recorded, due to the rarity of suitable sedimentary successions 

in the geological record. Two such successions however, have been identified and 

investigated here. The terrestrial components are represented either by macroscopic 

fossilised wood fragments or by microscopic wood debris and the marine carbonate 

component by belemnites. 

Modem terrestrial plants demonstrate considerable variability in S'̂ C values 

between different species, individuals of the same species and within an individual 

(Robinson & Hesselbo, 2004). Today plants can be divided into C3, C4 and CAM groups 

based on their different photosynthetic systems (Bocherens et al., 1993). Almost all 

Mesozoic plants can be classified as C3 plants however, which are predominantly 

temperate shrubs, trees and some grasses (Bocherens et al., 1993; Grocke, 1998). 

Cretaceous floras, therefore, occupied one distinct photosynthetic pathway, which wil l 
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reduce the variability of carbon isotope values within the palaeo-ecosystem (Robinson & 

Hesselbo, 2004). 

Modem C3 plants demonsu^te significant variability of carbon isotope composition 

(< ±4 %o) between leaves, branches, twigs, and late and early wood (Leavitt & Long, 1991; 

Loader et al., 1995; Schleser, 1999). It is therefore important to restrict analyses to 

specific plant elements where possible. Carbon isotope ratios in modem plants may also 

be affected by environmental conditions such as varying salinity, temperature, light, water 

supply and local pCOi (Grocke, 1998). Diagenesis of fossil plant matter wil l also affect 

the 6'^C values. The preservation potential of plant tissue varies between constituent parts 

of the plant, for example, lignin and lipids are the most resistant parts to diagenesis and 

carbohydrates, the least resistant (Grocke, 1998; Robinson & Hesselbo, 2004). Lipids and 

lignin are therefore depleted in '"̂ C relative to the whole plant whilst carbohydrates are 

more enriched (Hedges et al., 1985; Bocherens et al., 1993; Grocke, 1998). Fossil coal 

and plants are reported to be enriched in '''C by - 3 %o compared to modem 5'^Cpiant values 

(Grocke, 1998; Robinson & Hesselbo, 2004), although the preservational state of fossil 

wood (e.g., coal or charcoal) does not appear to produce a systematic difference in S'̂ Ĉ 

values (Hesselbo et al., 2003; Robinson & Hesselbo, 2004; Grocke et al., 2005; Pearce et 

al.. 2005). 

Similar problems are also inherent to the bulk-rock technique for analysing 

microscopic wood debris. Grocke et al. (2005) describe the three key problems. These are 

that firstly, not every sample is assessed for the percentage of marine versus terrestrial 

organic matter (see Rock-Eval pyrolysis below), secondly, the terrestrial organic matter 

may be sourced from different floral components and finally, the terrestrial organic mauer 

may be sourced from different environments (Grocke et al., 2005). Despite such potential 

for carbon isotope variability, 6'^Corg values can be used to indicate long-term shifts in the 

composition of atmospheric carbon (e.g., Robinson & Hesselbo, 2004; Grocke et al., 2005; 

Pearce et al., 2005). 
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Total Organic Carbon (TOC) analysis was performed on samples of microscopic 

wood debris to ensure that enough organic matter was present for S'^CQIB analysis. TOC 

content can also provide additional information about palaeoproductivity, organic matter 

preservation and sediment dilution (e.g., Lallier-Verges et al., 1993; van Kaam-Peters et 

ai. 1998; Tribovillard et al., 2001; Tyson, 2004). 

Rock-Eval pyrolysis coupled with published palynology (e.g.. Riding & Thomas, 

1997; Hesketh & Underbill, 2002) was also performed in order to confirm the chemical 

composition of kerogen present in the microscopic wood samples and therefore, the source 

of organic matter (e.g., Espitalie et ai. 1985; Peters, 1986; Langford & Blanc-Valleron, 

1990; Tyson, 2004). According to Espitalie et ai, (1985) Type i kerogen is predominantly 

lacustrine in origin. Type II kerogen is marine in origin and Type I I I , continental. 

4.3.2. Optical Techniques 

The optical techniques outlined below were undertaken on representative samples 

of either belemnites or wood. The techniques used to assess diagenesis in belemnites (CL, 

BSEM and carbonate staining) were carried out on 100 (approximately 1 in 5) of the 

samples measured for stable isotopes and trace element geochemistry. These samples were 

analysed in order to provide an independent check on the trace element results, which were 

conducted on all 586 of the belemnite samples. 

The same 100 specimens were each analysed using CL, BSEM and carbonate 

staining, as all three techniques provide information at a different magnification and 

together, the limitations of each individual technique can be eliminated. For example, 

when using the CL technique on highly ferroan calcite, there wil l be limited or no 

luminescence (as Fê ^ is the main quencher of luminescence in calcite (Miller, 1988)). 

This absence of luminescence could be wrongly interpreted as indicating that there has 

been no diagenetic alteration in the sample. However, when the same sample is subjected 

to carbonate staining, it will display a purple-blue colouration, indicating that the sample 
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has a high Fe concentration (Dickson, 1966) and has in fact, been subject to very severe 

diagenetic alteration. 

Ammonium Chloride Technique 

This technique was used to photograph representative examples of the beiemnite 

species considered here. Prior to photographing, the specimens were cleaned, repaired 

(using a standard superglue) and taxonomically identified. The samples were then coated 

in a fine f i lm of ammonium chloride. This was produced by putting ammonium chloride 

powder into a glass puffer and heating it over a Bunsen burner to produce a vapour that 

was then blown onto the specimens. The specimens were then photographed in black and 

white using a Nikon Coolpix 4500 digital camera. The ammonium chloride coating 

produced a smooth final image, where morphological details were not obscured by 

preservational features. After a short period of time the vapour evaporated from the 

specimens, leaving them uncontaminated for isotopic and geochemical investigation. In 

total, 99 belemnites were photographed using this technique, each from at least two 

different perspectives (ventral outline, right profile, and where suitable transverse/alveolar 

section). 

Cathodoluminescence (CL) 

Cathodoluminescence microscopy was used to evaluate i f a beiemnite had been 

diagenetically altered, as primary biogenic carbonate is thought to be non-luminescent 

(Czemiakowski et aL, 1984; Popp et aL, 1986; Scelen, 1989; Sslen & Karstang, 1989). 

Luminescence occurs where the diagenetic product Mn is present, as Mn^^ is the main 

activator of luminescence in calcite, whilst (as noted above) Fê "̂  is the main quencher 

(Miller, 1988). Areas that have been diagenetically altered wi l l , therefore, show 

luminescence, providing that the amount of Fe does not dramatically exceed the amount of 

Mn. 
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Polished thin-sections of the belemnite rostra were produced, with the cross-

sections cut horizontally through the rostrum (wherever possible this horizontal slice was 

taken from alongside the isotope/geochemical sample). Thin sections were made on a 

Logitech LP30 production lapping and optical polishing machine and then polished on a 

Buehler Petropol polishing system with a 12" lapping plate using Buehler aluminium oxide 

powder (0.3 micron) on a Texmet 1000 polishing cloth. 

The CL analysis was performed using a CITL CL MK3A Luminoscope at the 

Camborne School of Mines (CSM), University of Exeter, in Cornwall. The thin sections 

were placed in a vacuum sealed specimen chamber, under an electron gun emitting a 

cathode ray (with a gun current of ~ 450 ^lA and a gun voltage of ~10 kV). The specimens 

were viewed through an attached petrographic microscope and photographed. In total, 100 

belemnites were analysed in this way. 

Backscattered Scanning Electron Microscopy (BSEM) 

Backscattered scanning electron microscopy (BSEM) was also used to assess the 

presence of diagenesis in the belemnite rostra. The efficiency of backscattered electrons 

reflected from the flat surface of a specimen is dependant on the chemistry of that surface 

(Trewin, 1988). The reflection coefficient increases as the atomic number increases, 

causing a brighter image where the atomic number is higher (Thornton, 1968). The 

presence of diagenetic products in calcite can therefore be identified, as calcite containing 

the common diagenetic products Fe and Mn will have a higher atomic number than 

unaltered calcite, and will therefore show as brighter areas in a BSEM image. 

The rostra were sliced and polished (first with a lapping wheel, then with 

decreasing sizes of carborundum powder (starting at 600 microns) and finally aluminium 

oxide powder (0.3 microns)) to produce a smooth and highly polished surface. The 

belemnite slice was then washed in a sonic bath, mounted on a SEM stub and placed, 

uncoated in a JEOL 5600 scanning electron microscope housed at the University of 
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Plymouth. The samples were then photographed under low vacuum conditions using a 

back scattered electron detector (accelerating voltage 15kV, spot size 38) to show the 

atomic number contrast on the polished surface. This method of analysis was conducted 

on the same belemnites that were subject to CL microscopy (100 belemnites in total). 

Whilst both techniques identify diagenetically altered regions in the rostrum, they do so at 

significantly different magnifications. 

Scanning Electron Microscopy (SEM) 

Scanning electron microscopy (SEM) was used to examine fossil plant material 

from the Ryazanian-Hauterivian of the Boyarka River, Siberia. Al l 184 samples were 

identified as charcoal, charcoal-coal or coal using a binocular microscope. Approximately 

20 representative samples (e.g., of charcoal, charcoal-coal and coal) were then mounted on 

stubs and sputter coated with gold for SEM analysis. The University of Plymouth's JEOL 

5600 SEM was used (in high vacuum mode with an accelerating voltage of l5kV and a 

spot size of 25). 

Carbonate Staining 

Carbonate staining was undertaken on 100 belemnites in order to identify the areas 

of the rostrum prone to diagenetic alteration. The technique used follows that described by 

Dickson (1965, 1966) for use on thin sections, where the section surface is first etched with 

dilute hydrochloric acid (HCl), then stained with an alizarin red-S and potassium 

ferricyanide mixture (3 parts : 2 parts), and finally stained with alizarin red-S to intensify 

the colour differentiation. This is a highly selective technique, with colouration confined 

sharply to crystal boundaries (Allman & Lawrence, 1972). Calcites stained using this 

method will display a very pale pink-red colouration, whilst ferroan calcites, show mauve-

purple-royal blue colouration (Dickson, 1965). 

55 



The polished ihin sections of belemnite rostra made for CL microscopy were first 

photographed under the CL microscope, and then stained by emersion of the section in the 

following sequence: dilute HCI (15 seconds), deionised water (10 seconds), alizarin red-S 

and potassium ferricyanide mixture (45 seconds), alizarin red-S (15 seconds), deionised 

water (10 seconds), deionised water (10 seconds). The thin sections were then quickly 

dried before being photographed under a low-powered binocular microscope using a Nikon 

Coolpix 4500 digital camera. 

4.3.3. Trace Element Analysis 

In total 586 samples were analysed (with duplicate samples taken from 

approximately 1 in 6 belemnite specimens to evaluate the consistency of both trace 

elements and stable isotope values within the rostrum). Trace element analysis of every 

sample was undertaken prior to stable isotope analysis. This provided screening for 

diagenesis, so that severely altered specimens could be excluded from further analysis. 

This technique was performed on every sample to ensure that there was a constant and 

accurate, quantitative measure of preservation for every belemnite sample. The trace 

element work was complimented by optical techniques (conducted on representative 

samples) that were used to double-check the trace element data. 

The carbonate subsamples were digested in 20% nitric acid (HNO3) (-100 mg in 10 

ml) and analysed by Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-

AES) using a Perkin Elmer Optima 3300RL ICP-AES system (with autosampler) at the 

NERC ICP facility, Department of Geology at Royal Holloway, University of London. 

Each sample was analysed for Ca, Na, Mg, K, Fe, A l , B, Ba, L i , Mn, Pb, Sr, Ti and Zn, 

with values given in ppm. 
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4.3.4. Carbonate Stable Isotope Analysis 

Prior to isotopic analysis the areas of the belemnite rostrum most susceptible to 

diagenesis were removed. These areas were identified using several of the techniques 

described in this chapter: Cathodoluminescence (CL), Backscattered Scanning Electron 

Microscopy (BSEM) and carbonate staining (following the technique of Dickson (1965, 

1966)). Those areas most prone to diagenetic alteration are the rostrum margin, the apical 

line and any cracks or prominent growth bands. Such areas were removed using a circular 

saw and lapping wheel. The remains were then washed in de-ionised water and 

fragmented, before being picked under a binocular microscope to ensure that only the most 

well preserved fragments were selected for analysis. The selected fragments were ground 

into a fine homogenous powder using an agate pestle and mortar, and a subsample was 

removed for trace element analysis. A similar method of preparation has been used by 

several authors in an attempt to homogenise any intra-specimen geochemical variation 

(e.g., McArthur el aL, 2000, 2004; Bailey et al., 2003). 

Stable isotope data were generated using a Multiflow (GV Instruments, UK) 

automated carbonate preparation module with Gilson 222XL autosampler, interfaced with 

an Isoprime isotope ratio mass spectrometer (GV Instruments, UK), at the University of 

Plymouth, UK and on a VG Optima mass spectrometer at the NERC Isotope Geosciences 

Laboratory (NIGL), Keyworth, UK. A small set of representative samples were analysed 

on both instruments to ensure reproducibility (and to allow correlation of data from the 

different institutions). The mean difference in values from replicate analysis was 0.28%o 

and 0.09%o for oxygen and carbon respectively. For oxygen, this value is outside of the 

reproducibility of each instrument (see below), however, such variability is to be expected 

as a belemnite sample will never be completely homogenous due to the variability 

occurring across a belemnite rostrum. 

The Isoprime isotope ratio mass spectrometer analysed triplicate injections fi-om 

each vile, with liberated CO2 (from carbonate reaction with phosphoric acid) measured 
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against reference CO2 (research grade, BOC Special Gases). The VG Optima mass 

spectrometer measured CO2 liberated from water vapour under vacuum, after the carbonate 

had reacted with anhydrous phosphoric acid in vacuo overnight at a constant 25°C. 

The measurements from both institutions were standardised using within-run 

laboratory standards and calibrated with the internationally recognised NBS19 standard 

using the daily correction method. Values were expressed using the standard delta (5) 

notation as a per mil (%o) deviation from the Vienna Peedee Belemnite (V-PDB) standard. 

Replicate analyses for each instrument gave a reproducibility of <± O.l%o for both oxygen 

and carbon isotope ratios. 

4.3.5. Organic Carbon Analysis 

Bulk Sediment Samples (Microscopic Wood Debris) 

Carbon isotope measurements were made on a total of 207 bulk sediment samples 

from Staffin Bay, isle of Skye. For each sample approximately 1-2 g of powdered 

sediment was covered with 200 ml of 5% hydrochloric acid (HCI). The samples were left 

overnight until alt the carbonate had reacted and then rinsed thoroughly with de-ionised 

water (3 overnight 500 ml washes). Samples were then oven dried at 40-50 °C until a 

constant weight. The resulting samples were then re-powdered, weighed (between 10-30 

mg) and placed in tin capsules for combustion. Analyses were performed by combustion 

in a Cario Erba NA1500 (series 1) elemental analyser at NIGL, Keyworth. The resulting 

gas samples were subsequently measured for carbon isotope ratios by an on-line VG 

TripleTrap and Optima dual-inlet mass spectrometer. Carbon isotope ratios were measured 

using within-run laboratory standards (BROC 1) and calibrated against NBS-19 and NBS-

22. Values were expressed in delta (5) notation against the international, V-PDB standard. 

Al l results were accurate to within ± 0.3%o. 
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Macrofossil Wood Samples 

A total of 184 individual wood samples were analysed for carbon isotope ratios 

from the Boyarka River, Siberia. Samples were divided (where enough material was 

present) to allow a portion of the sample to be archived. The rest of the sample was 

prepared for analysis using a preparation technique similar to that described previously. 

Samples were treated with 5% HCl to remove any carbonate material and then washed 

with de-ionised water. The samples were then oven dried at 40-50 °C before being 

powdered with an agate pestle and mortar. 

The samples were analysed by Dr Darren Grocke at McMaster University, Ontario, 

Canada, where samples were weighed, combusted in an elemental analyser and the 

resulting gas purified and passed through a SIRA II Series 2 dual-inlet isotope-ratio mass-

spectrometer for isotopic analysis. Carbon isotope ratios were measured against an 

international standard (NBS-21). Analytical reproducibility using this method was better 

than ±0.1%o. 

4.3.6. Total Organic Carbon (TOC) 

In total 103 bulk sediment samples from Staffin Bay, Isle of Skye were analysed 

for Total Organic Carbon (TOC). Sediment samples were crushed, oven dried at 40-50 °C 

(until a constant weight) and ground to produce a fine homogenised powder. 

TOC was then measured using two different techniques (to ensure accuracy a 

selection of samples were analysed using both methods). The first technique (which was 

used to analyse approximately 3 out of 4 of the samples) was the industry standard, high-

temperature catalytic oxidation (HTCO) technique. This was conducted on a Primacs SLC 

Carbon Analyzer at the University of Plymouth. Samples were weighed ( - 100 mg) into a 

small crucible and covered with quartz wool before being combusted at a high temperature 

to release carbon, giving a measurable Total Carbon (TC) value. A separate sample was 

weighed ( - 100 mg) into a glass test tube and mixed with a small amount of deionised 
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water. This was combusted at a low temperature with acid to release the Inorganic Carbon 

( I C ) . The Total Organic Carbon was then calculated as TOC = TC - I C . The second 

technique (which was used to measure 50 sediment samples) is described below, as TOC 

was also measured as a component of Rock-Eval pyrolosis. A l l TOC values are given as 

wt % TOC. 

4.3.7. Rock-Eval Pyrolysis 

Rock-Eval pyrolosis was performed on 50 bulk sediment samples from the Isle of 

Skye in order to determine the source of organic matter within the sediments. The samples 

selected for analysis were distributed fairly evenly throughout the Staffin Bay succession, 

although particular attention was paid to sections of the 6'^Corg curve where minor 

fluctuations could have been caused by changes in the source of organic carbon. Samples 

were prepared according to the same technique described above for TOC analysis. The 

samples were then analysed with a Rock-Eval 6, at the University of Neuchatel, 

Switzerland. Values for TOC, Hydrogen Index (HI) and Oxygen Index (01) were 

obtained. 

4.3.8. Storage of Material 

Al l of the materials used during this research are currently stored in the School of 

Earth, Ocean and Environmental Sciences at the University of Plymouth, UK. 
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5. STAFFIN BAY, I S L E O F SKYE, SCOTLAND 

5.1. Location & Site Description 

The Isle of Skye lies to the northwest of the Scottish mainland at a latitude of 

approximately 57°N. Staffm Bay is situated on the northeast coast of Skye, on the 

Trottemish peninsula, approximately 30 km north of the main town of Portree. 

Slaffin 

_! 

Figure 5.1 Location map of Slaffin Bay, Isle of Skye, Scotland. (A) Location of StafTin Bay. (B) Relative 
positions of each of the sites v isited on the Staffin Bay coast. 

Ten different sites were examined along a -2.5 km stretch of the Staffm Bay coast 

between Digg and Kildorais (Fig. 5.1). These sites were predominantly broad foreshore 

exposures (Fig. 5.2), often accessible only at low tide and intermittently covered with 

boulders and seaweed, with such cover varying seasonally as the result of weather 

conditions and beach processes. Occasional low c l i f f exposures located near to the shore 

line were also studied. 
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The Staffin Bay composite section extends from the Middle Callovian {Koenigi 

Zone) to the Early Kimmeridgian {Cymodoce Zone) and provides an almost complete 

record of sedimentation during this time. 

Figure 5.2 Broad foreshore exposure typical of the Staflln Bay coast. Isle of Skye, Scotland. Dunans Clay 
Member of the Staffin Shale Formation (location SKI - see Fig. 5.1). 

5.2. Geological Setting 

During the Jurassic period, Scotland was situated at a palaeolalitude of 

approximately 45°N (Smith et ai, 1994). The Jurassic rocks of the Hebrides occur in tilted 

fault blocks within a major half graben, probably formed during the early extensional 

phases of the evolution of the Central and North Atlantic Oceans (Morton & Hudson, 

1995). The Hebrides Basin (Fig. 5.3) is itself a complex half-graben that was gently 

subsiding throughout Jurassic time (Riding & Thomas, 1997; Hesselbo & Coe, 2000; 

Hudson & Trewin, 2002) and was just one of a system of basins on the North Atlantic 

margins that extended as far north as Greenland and Svalbard (Tankard & Balkwill, 1989; 
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Ziegler, 1990; Morton & Hudson, 1995). The basin is bounded to the west by the Minch 

Fault Zone, just east of the Outer Hebrides (Brewer & Smythe, 1984; Stein, 1988; Hudson 

& Trewin, 2002), whilst to the east, the margin is unfaulted (Morton & Hudson, 1995; 

Hudson & Trewin, 2002). The basin is commonly subdivided into two; the Hebrides 

(Little Minch) sub-basin and the Inner Hebrides sub-basin (Riding & Thomas, 1997; 

Hesselbo & Coe, 2000; Hudson & Trewin, 2002). It has been proposed that activity along 

major onshore faults linked the development of the Hebrides Basin with coeval 

development in the Moray Firth Basin in the northeastern North Sea (see Chapter 6) 

(Underbill, 1991; Wignall & Pickering, 1993; Hesselbo & Coe, 2000). 
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Figure 5.3 Mid-Jurassic (Balhonian) Scottish palaeogeography. Adapted after Hudson & Trewin (2002). 

The Jurassic period is characterised by an overall eustatic rise in sea level (Haq et 

ai, 1987), causing widespread transgression in the Early and Late Jurassic, although, the 
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Middle Jurassic was marked by a relative sea level fall (Fyfe et al., 1993). During the 

transgressive phases of the Eariy and Late Jurassic, deposition in the Hebrides Basin 

occurred predominantly in shallow-marine environments (Fyfe et a!., 1993). 

The Mesozoic sediments of the Hebrides Basin thicken westwards as a result of 

faulting of the Precambrian/Palaeozoic basement (Riding & Thomas, 1997). The Jurassic 

succession reaches a maximum thickness of -1000 m and is commonly overlain by 

basaltic lava flows from the Palaeogene Thulean Igneous Province (Morton & Parson, 

1988; Riding & Thomas, 1997). Many of the successions in the Hebrides Basin have been 

affected by thermal alteration, although, this is not the case near Staffin (Thrasher, 1992; 

Bishop & Abbott, 1995; Morton & Hudson, 1995; Pearce et a!., 2005). 

The Staffin Bay section on the Isle of Skye is one of the most stratigraphically 

complete Oxfordian sections in Europe (Sykes & Callomon, 1979; Morton & Hudson, 

1995; Matyja et aL, 2004; Pearce et al., 2005). It is of great importance for Upper Jurassic 

stratigraphy in the Boreal Realm because it contains the type localities for several of the 

Boreal Middle and Upper Oxfordian Zones and Subzones established by Sykes and 

Callomon (1979). It is also a proposed GSSP for the Oxfordian-Kimmeridgian boundary 

(Wierzbowski et al., 2006). 

The sedimentation at Staffm appears to have been continuous from the Callovian 

and through into the Kimmeridgian (Wright, 2001). The strata are comprised of the Staffin 

Bay Formation (Hudson, 1962) and the Staffin Shale Formation (Turner, 1966) (Fig. 5.4). 

The Staffin Bay Formation is Lower Callovian in age {Herveyi to Koenigi zones) and the 

Staffin Shale Formation is Middle Callovian to Lower Kimmeridgian {Jason to Cymodoce 

zones). The outcrops at Staffin Bay are the most accessible, extensive and fossiliferous 

outcrops of these formations (Morton & Hudson, 1995). 

Comprehensive descriptions of the Staffin Bay and Staffin Shale Formations are 

given by Morton & Hudson (1995). The Staffm Bay Formation is divided into the Upper 

Ostrea Member {Herveyi Zone) and the Belemnite Sands Member {Koenigi Zone). The 
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Upper Ostrea Member is composed of dark grey shales with shell beds. The shell beds are 

generally of low but fluctuating diversity and are dominated by bivalves (Anderson & Cox, 

1948; Morton & Hudson, 1995). Deposition occurred in a non-flilly marine environment, 

most likely a coastal lagoon (Morton & Hudson, 1995). Such an interpretation is 

supported by palynological evidence, which is consistent with a restricted, inshore and 

brackish depositional environment (Riding & Thomas, 1997). 
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Figure 5. 4 Slratigraphic chart of the StafTin Bay section. Facies association and relative sea level are also 
shown. Figure adapted after Hesselbo & Coe (2000). 

The Belemnite Sands Member is made up principally of siltstones and sandstones 

with a more varied and more marine fauna of bivalves and belemnites (Anderson & Cox, 

1948; Anderson & Dunham, 1966; Morton & Hudson, 1995; Riding & Thomas, 1997), 
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Belemnites are common in the glauconitic beds towards the top of the member (Riding 8L 

Thomas, 1997). Morton & Hudson (1995) interpret this member as an offshore sandy bar 

migrating across the coastal lagoons. 

The Staffin Shale Formation is dominated by mudrocks deposited in a generally 

offshore marine environment (Pearce et aL, 2005) and is broadly equivalent to the better 

known English Jurassic, Oxford Clay Formation, Corallian Group and Kimmeridge Clay 

Formation (Hesselbo & Coe, 2000). The Dunans Shale Member (Jason to Coronatum 

zones), Dunans Clay Member {Athleta to Cordatum zones), Glashvin Silt Member 

{Cordatum to Tenuiserratum zones), Digg Siltstone Member (Tenuiserratum Zone) and 

Flodigarry Shale Member {Tenuiserratum to Cymodoce zones) make up the Staffin Shale 

Formation (Fig. 5.4). 

The dark, laminated, bituminous shales of the Dunans Shale Member are very 

distinct from the coarse sandstones of the Beiemnite Sands Member beneath (Morton & 

Hudson, 1995). The bituminous shales are interspersed with thin, silty, glauconitic layers 

(Sykes, 1975) and belemnites are common throughout. The lack of benthos suggests a 

period of anoxic sea floor deposition (Fisher & Hudson, 1987), with silty, glauconitic 

layers representing occasional oxic perturbations (Morton & Hudson, 1995). 

Sykes (1975) described the Dunans Clay Member (Fig. 5.2) as being dominated by 

grey-green clays with some siltstones (occassionaly with visible woody debris). Both 

ammonites and belemnites are often abundant but the bivalve fauna is limited. Deposition 

probably occurred in dominantly well-oxygenated conditions (Morton & Hudson, 1995). 

A gradual coarsening upwards trend, from the Dunans Clay to Digg Siltstone 

Member, coupled with an increase in carbonate content from the Glashvin Silt Member is 

described by Pearce et ai (2005). The Glashvin Silt Member is dominated by dark grey 

carbonaceous silts, with a diverse bivalve fauna (with large bivalves {Pinna, Cucullaea, 

Pleuromya and Pholadomya) often in life position) and some sandstones with lignite debris 

(Morton & Hudson, 1995; Wright, 2001). The depositional environment was probably 
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similar to that of the Dunans Clay Member but somewhat shallower (Morton & Hudson, 

1995). 

The Digg Siltstone Member is composed predominantly of light grey sandy silts 

with some fme sandstone beds and darker grey silts (Wright, 2001). The lithologies are 

coarser and lighter than those of the Glashvin Silt Member and probably represent a 

shallowing sequence, with deposition of this member occurring near to the fair-weather 

wave base (Morton & Hudson, 1995). 

Dark grey, slightly bituminous, shaly clays are the principal lithology of the 

Flodigarry Shale Member (Wright, 1989, 2001; Morton & Hudson, 1995) (Fig. 5.5). 

Glauconitic silts and muds are present at the base and mark a major change of facies from 

the Digg Siltstone Member (Morton & Hudson, 1995; Pearce et aL, 2005). The Flodigarry 

Shale Member is particularly fossiliferous, with abundant belemnites, ammonites and 

bivalves (Morton & Hudson, 1995). Pearce et al. (2005) interpret the occurrence of 

glauconitic mudstones at the base of the member as representing a return to higher sea 

levels from the upper Tenuiserratum Zone. 

5.3. Sampling & Methodology 

The ten different sites examined in the Staffin Bay area provided an almost 

complete succession from the Upper Callovian - Lower Kimmeridgian. In total, 241 

horizons were sampled from the Staffin Bay section. This included 174 belemnite 

horizons (each horizon often containing multiple specimens) and 216 sediment horizons 

(with such sediment containing microscopic wood debris). Wherever possible both 

belemnite and sediment samples were collected from the same horizon (Fig. 5.5). 

The preservation of belemnite rostra was evaluated through trace element and 

stable isotopic analysis, backscattered scanning electron microscopy (BSEM), 

cathodoluminescence (CL) and carbonate staining (following the technique of Dickson 

(1965, 1966)). The areas most susceptible to diagenesis were removed prior to isotopic 
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and geochemical analysis. Samples were analysed for carbon and oxygen isotopes, with 

subsamples taken for trace element analysis (Fe, Mn, Ca, Sr, Mg, Na and Li) . The stable 

isotope data was compared with a small amount of data generated by Wierzbowski (2004) 

for the upper part of the Staffm section. This helped ensure the reproducibility of the data. 

> 

Figure 5.5 Relatively abundant belemnites in a mudrock (suitable for sampling) containing microscopic 
wood debris. Flodigarry Shale Member of the Staffin Shale Formation (location SK6). 

Stable isotope data were generated on a VG Optima mass spectrometer at the 

NERC Isotope Geosciences Laboratory (NIGL), Keyworth, UK. Samples for trace 

element data were digested in 20% nitric acid (HNO^) and analysed by Inductively 

Coupled Plasma-Atomic Emission Spectrometer (ICP-AES) using a Perkin Elmer Optima 

3300RL ICP-AES system (with autosampler) at the NERC ICP facility. Department of 

Geology, Royal Holloway, University of London. 

Bulk sediment samples (containing microscopic wood debris) were covered with 

5% hydrochloric acid (HCl) then rinsed with deionised water, oven dried and powdered 

with an agate pestle and mortar. Carbon isotope analysis was performed by combustion in 

68 



a Carlo Erba NA1500 (series 1) elemental analyser at NIGL, Keyworth. The resulting gas 

samples were subsequently measured for carbon isotope ratios by an on-line VG 

TripleTrap and Optima dual-inlet mass spectrometer. A representative selection of 

samples (67 in total) were also analysed for Total Organic Carbon (TOC) on a Primacs 

SLC Carbon Analyzer at the University of Plymouth. An additional 50 samples were also 

analysed by Rock-Eval Pyrolysis (which includes a measurement for TOC) on a Rock-Eval 

6, at the University of Neuchatel, Switzerland. For a fu l l description of the methodology 

used see Chapter 4. 

5.4. Results 

The isotopic compositions derived from belemnite carbonate were determined 

using well-preserved rostra of the genera Cylindroteuthis, Pachyteuthis (Boreal Realm 

genera) and occasionally Belemnopsis (a typically Tethyan genus). There appears to be no 

major discrepancy between the isotope values derived from the different belemnite genera 

(Fig. 5.6). The belemnites sampled from this region were predominantly composed of 

honey-coloured translucent calcite. Several specimens displayed areas of intense 

endolithic borings on the margins, which were removed prior to analysis. Carbonate 

staining, CL and BSEM analysis (Plates 1-3) was conducted on 40 out of 206 specimens 

and indicated that the belemnite margins were often Fe-rich, with some pyrite replacement 

and sparite infilling of borings. Such features were identified by mauve-blue colouration 

after carbonate staining, pale grey to white colouration under BSEM and luminescence 

under CL conditions. Such areas were removed prior to subsampling because even subtle 

diagenetic alteration can have an isotopic effect. 

The determined elemental abundances of the belemnite rostra were as follows: Fe 

0-2134 ppm, mean 68 ppm; Mn 1-305 ppm, mean 24 ppm; Mg 539-4220 ppm, mean 1045 

ppm; Sr 766-1232 ppm, mean 953 ppm and Ca 28 % - 33 %, mean 30 %. Low Mn (<100 

ppm) and Fe (<150 ppm) values were recorded for most of the belemnites. Relatively low 
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Mn and Fe concentrations can be assumed to reflect well preserved shell material, since 

such concentrations have been measured from modem molluscs (e.g., Pirrie & Marshall, 

1990; Podlaha et a/., 1998; Price & Mutterlose, 2004). Trace element data (Fe and Mn) 

were plotted against 6'^0 to constrain any diagenetic alteration (Fig. 5.7). The higher 

amounts of Fe and Mn and occasional negative 5'^0 outliers are regarded as an artefact of 

diagenesis. The lack of correlation between the values, however, suggests minimal post-

depositional alteration. Those samples with higher concentrations were considered likely 

to have undergone diagenetic alteration and were excluded from any further analysis (24 

samples in total). 
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Figure 5.6 Cross-plot of 6"*0 and 6 '"C values denved from belemnites from Staffin Bay. Isle of Skye, 
Scotland. 

The Mg/Ca ratios vary from 3.08 to 14.22 mmol/mol. A plot of 6^^0 vs. Mg/Ca 

shows no significant correlation (Fig. 5.8). The Mg/Ca trend (Fig. 5.9) shows minimum 

values in the Middle Oxfordian Densiplkatum Zone (as low as 3.14 mmol/mol) and in the 

Lower Kimmendgian Cymodoce Zone (as low as 3.08 mmol/mol). The Sr/Ca ratios range 

from 1.13 to 1.80 mmol/mol. The Sr/Ca trend (Fig. 5.9) shows a general increase in values 
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from the Lower Oxfordian to the Lower ICimmeridgian. A cross-plot of 5'^0 vs. Sr/Ca 

reveals a negative correlation, although covariance is poor (Fig. 5.8). Neither the Na/Ca 

nor Li/Ca ratios show a significant covariance with 5*^0 (Fig, 5.8). Na/Ca ratios range 

from 4.01 to 11.00 mmol/mol and Li/Ca ratios from 7.08 to 113.24 \imo\/mol 
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Figure 5.7 Cross-plots of 5 0 againsi Fe (left) and Mn (right). The dashed line illustrates the cut o(T values 
for well preser\'ed samples. 

The oxygen and carbon isotope values derived from well preserved belemnite 

rostra range from -2.07 to 1.43 %o and from 0.01 to 4.26 %o respectively (Fig. 5.10). Both 

the oxygen and carbon isotope values show a considerable degree of scatter, although, 

long-term trends can still be recognised. The oxygen isotope ratios decrease very 

gradually throughout the succession from values of between -0.76 to 1.43 %o in the Middle 

Callovian to Lower Oxfordian to values of -1.85 to 0.73 %o in the Lower Kimmeridgian. 

The carbon isotope ratios also decrease gradually throughout the succession. The 

Middle Callovian values are in the range of c. 2.0-3.0 %o, compared with values in the 

range of c. 0.5-1.5 %o in the Lower Kimmeridgian. There is a brief, but distinct negative 

carbon isotope excursion at the Cordatum-Densiplicatum Zone boundary (with a peak 

negative value of 0.01 %o). This excursion is followed by a return to pre-excursion values, 

which is followed by drop in values from c. 3.0 %o to c. 0.5 %o at the Tenuiserratum-

Glosense Zone (Middle-Upper Oxfordian) boundary. The Upper Oxfordian and Lower 

Kimmeridgian carbon isotope record generally fluctuates between c. 0.0 and 2.0 %o, 

71 



although, a brief, indistinct positive fluctuation is identified at the Baylei-Cymodoce 

boundary, with values reaching 3.57 %o. A plot of the 5*^0 vs. data (Figs 5.6) reveals 

no significant correlation. 
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Figure 5.8 Cross-plots of S'̂ O agains! (A) Mg/Ca, (B) Sr/Ca, (C) Na/Ca and (D) Li/Ca. 

Total Organic Carbon (TOC) values derived from the organic wood debris range 

from 0.18 to 9.22 %, with values gradually increasing up the sequence, despite significant 

scatter (Fig. 5.11). TOC values in the Dunans Clay and Glashvin Silt members are highly 

variable, whilst values in the Flodigarry Shale Member are more consistent (between - 1 

and 3 wt % ) . Rock-Eval pyrolysis (Fig. 5.12) indicated that the analysed material was 

predominantly Type III kerogen (organic matter derived from higher plants), although a 

small amount of Type I I kerogen (derived from the marine environment) was also present. 

The hydrogen indices ranged from 23 to 396 HC/g TOC and from 21 to 317 COi/g TOC. 
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Figure 5.9 El Ca ratios from the Callovian-Lower Kimmendgian succession at Staffin Bay. isle of Skye, 
Scotland. Boreal (British) ammonite zones and subzones illustrated. See Figure 4.2 for key to log symbols. 
Scale IS in metres. 
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Figure 5.10 5"Corg. 6"Ccart and 6"*Ocarb records from the Callovian-Lower Kimmeridgian succession at 
Staffin Bay, Isle of Skye, Scotland. Boreal (Bntish) ammonite zones and subzones illustrated. See Figure 
4.2 for key to log symbols. Scale is in metres. 
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Figure 5.11 TOC record from ihe Callovian-Lower Kimmeridgian succession al SiafTin Bay, Isle of Skye, 
Scotland. Boreal (British) ammonite zones and subzones illustrated. See Figure 4.2 for key to log symbols. 
Scale is in metres. 

The fossil wood samples have an average 5'̂ Corg value of -23.2 %o, with a range of 

-26.2 to 21,2 %o. The organic carbon isotope data show a broad Lower to Middle 

Oxfordian positive carbon isotope excursion from the Mahae to Tenuiserra/um Zone, with 

maximum values occurring in the Cordatum Zone (c. 21.0 %o). This is followed by a 
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return to pre-excursion values continuing into the Lower Kimmeridgian Cymodoce Zone. 

There is a brief positive fluctuation in the Cymodoce Zone where S'^Corg values reach -

23.54 %o). This fluctuation occurs slightly later than a similar fluctuation observed in the 

S'^Ccaib record, although, this is not easily identifiable given the scatter of the data. A brief 

negative excursion (of -2.0 %o) is also identified near the Densiplicatum-Tenuiserratum 

boundary. This brief negative excursion occurs approximately one ammonite zone later 

than negative excursion observed in the S'̂ Ccarb record. The 6''*CorE negative excursion 

was examined by Rock-Eval Pyrolysis. Five samples from the peak and shoulders of the 

excursion were analysed. The hydrogen indices for these samples ranged from 45 to 89 

HC/g TOC and fi-om 23 to 113 COjIg TOC, with each sample demonstrating a Type 111 

origin of kerogen. This excursion is therefore not the result of a change in the source of 

organic matter {cf. Foster et al., 1997). 
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Figure 5.12 Van Krevlan diagram showing the origin of organic matter analysed from the Callovian-Lower 
KJmmeridgian Staffin Bay succession. 
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5.5. Discussion 

5.5.1. Stable Isotope, Geochemical & Taxonomic Records 

The stable isotope (Fig. 5.10) and El/Ca (Fig. 5.9) records presented here highlight 

the different belemnite genera from which the data were derived. This was done in order 

to assess the impact ( i f any) of genus-specific differences in isotope or trace element 

fractionation. The greatest degree of scatter observed from the isotope ratios was found in 

the genus Cylmdroteuthis and in the juvenile specimens. This, however, could be the 

result of the predominance of these groups. Those groups displaying less scatter are those 

which are less common in the succession (e.g., Pachyteuthis and Belemuopsis), with 

Pachyteulhis displaying less scatter than the other groups in the oxygen isotope record in 

particular. Belemnopsis exhibits very little scatter in the isotope or El/Ca records because 

it was collected from only one horizon. 

The El/Ca ratios display similar generic patterns to those observed in the stable 

isotope records with the juvenile group of specimens once again exhibiting the greatest 

scatter. In neither the isotope nor EUCa records does one genus appear to be consistently 

more positive or negative than the others. I f taxonomic differences in fractionation do 

exist, these data suggest that they are likely to be minor here. It is therefore highly 

unlikely that the trends observed here are caused solely by genus-specific effects. 

5.5.2. The Oxygen Isotope Record & Palaeotemperature Implications 

A long-term trend of gradually decreasing oxygen isotope values (and potentially 

increasing palaeotemperatures) is recorded from the Staffm Bay section. The oxygen 

isotope values presented here are consistent with those published by Wierzbowski (2004) 

from the Middle Oxfordian {Densiplicatum Zone) to Lower Kimmeridgian {Cymodoce 

Zone) of Staffm Bay (Fig 5.10). Wierzbowski (2004) analysed 23 belemnite specimens of 

the genera Cylmdroteuthis and Pachyteuthis and recorded oxygen isotope values of -1.88 
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to 0.81 %o (compared with values of -2.07 to 1.20 %o recorded from the same time interval 

in this research). 

There is some degree of scatter in the S'^O values (<2.38 %o, mean 0.73 %o) 

recorded here from coeval belemnites. This scatter could be the result of diagenetic 

alteration, salinity fluctuations, generic vital effects or generic palaeoecological variability. 

The effect of taxonomic differences in fractionation appears to be limited here, since no 

major isotopic trends can be identified at the generic level (as discussed previously). 

Major diagenetic alteration of the specimens has also been ruled out by extensive 

screening. However, it is possible that subtle alteration escaped detection, although since 

the specimens were collected from the same location, were exposed to the same post-

depositional processes and passed the same selection criteria, any such effect on the scatter 

of data would be very limited, as it is likely that the whole data set would have been 

affected and therefore the temporal trend would still be preserved even i f absolute values 

were not. 

As discussed previously (in Chapter 3) modem cephalopods are known to secrete 

their calcite very close to isotopic equilibrium with surrounding seawater (e.g., Taylor & 

Ward, 1983; Morrison & Brand, 1986; Resales et al., 2004a; Rexfort & MutteHose, 2006) 

and at present no major seasonal or taxonomic differences in fractionation have been 

confirmed (Sajlen e/a/., 1996; Podlaha a/., 1998; Rosales e/a/., 2004a). McArthur et al. 

(2004) suggest that differences in fractionation or habitat may potentially produce a 

disparity in isotope values for different belemnite species, although such disparity is not 

observed here. The Staffm Bay oxygen isotope record is therefore considered to primarily 

reflect changes in environmental conditions (temperature and salinity) rather than 

taxonomic or diagenetic processes. It should be noted however, that since belemnites are 

extinct organisms it is impossible to calibrate the temperature response of S'^O within the 

skeleton and it is therefore probably unrealistic to calculate absolute palaeotemperatures 

(McArthur et al., 2000) from the oxygen isotope data, although the likely magnitude of 
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temperature change can be estimated (Bailey et ai, 2003). Nevertheless 

palaeotemperatures have been calculated here and should be considered as a guide to the 

potential palaeotemperatures for the region. 
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Kiyure 5.13 Palaeotemperalures calculated from Mg/Ca data (using the Klein et al.. 1996 equation) and 6'*0 
data (using the Anderson & Arthur, 1983 equation). Boreal (British) ammonite zones and subzones 
illustrated. See Figure 4.2 for key to log symbols. Scale is in metres. 

Figure 5.13 shows seawater palaeotemperatures calculated from the 6'^0 equation 

of Anderson & Arthur (1983). The isotopic composition of the water was assumed to be 

that of non-glacial seawater at -1 %o S M O W . This is consistent with previously published 

literature on the Jurassic period (e.g., Marshall, 1992; Saelen et al.. 1996; Price & 
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Sellwood, 1997; Podlaha et ai, 1998; Price & Mutterlose, 2004; Resales et al., 2004a, 

2004b). The average palaeotemperature derived from the Staffin Bay belemnites was 

12.4°C and the palaeotemperaUire range was 6,7°C to 20.6°C for the Callovian-

Kimmeridgian interval. The lowest palaeotemperatures were recorded from the Lower 

Oxfordian Mariae Zone and the highest palaeotemperatures from the Baylei Zone of the 

Lower ICimmeridgian. Such values are broadly comparable with other published 

Oxfordian records. For example, Price & Grocke (2002) record temperatures of 14.5 to 

21.2°C from the Oxfordian-Kimmeridgian o f the Falkland Plateau, Wierzbowski (2002) 

records values of 10.5 to I8.5°C during the Oxfordian in Central Poland and Riboulleau et 

al., (1998) record values of 7 tol8°C from the Oxfordian of the Russian Platform. 

As stated previously the Staffin Bay palaeotemperatures were calculated using a 

value of - I %o SMOW for non-glacial seawater (following convention). Broecker et ai 

(1989) however, suggest that seawater oxygen isotope compositions can vary by as much 

as 1.5 %o between high and low latitudes as a result of evaporation, precipitation and 

atmospheric vapour transport. High latitude S'̂ Oscawatcr values are lower that those of the 

low latitudes and have a lower salinity due primarily to the transport of isotopically 

depleted water vapour towards the poles. In addition, seasonal ice-melt and the proximity 

to landmass (and therefore the potential for riverine runoff) provide ftirther opportunities 

for the input of isotopically light and low salinity waters into the high latitude system 

(Price & Mutteriose, 2004). Roche et al. (2006) modelled this phenomenon of S'̂ Oscawatcr 

latitudinal distribution in past warm climates. They record surface water 5'̂ Oscawatcr values 

of higher than today in the equatorial region and lower than today in the high latitudes, 

with more pronounced differences occurring as the average climate becomes warmer. 

They conclude that neglecting these changes has led to an underestimation of temperature 

in the low latitudes and an overestimation of temperature at the poles. 

The temperature-salinity plot shown in Figure 5.14 illustrates the effect that salinity 

can have on calculated temperature. This model was constructed by Railsback et al. 
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(1989) and Woo et al. (1992) with modification by Price & Mutteriose (2004). Each 

isopleth represents the potential range of temperature (calculated using the Anderson & 

Arthur (1983) equation) and salinity combinations for calcite of a known isotopic value. 

For example, within the model, a 5'^0 value of 1.4 %o (the highest value recorded from 

Staffm Bay) corresponds to a palaeotemperature range of between 2.9°C (at 30 %o salinity) 

and 6.7°C (at 34 %o salinity) as shown by the dashed lines. The palaeotcmperatures 

calculated using a 'normaP marine salinity of 34 %o correspond to those calculated by the 

Anderson & Arthur (1983) equation and a S'̂ 'Oscawatcr value of -1 %o. 

32 34 

Salinity (%•) 

Figure 5.14 Temperature-salinity plot for the Staffin Bay data. The continuous diagonal lines are isopleths 
of 5'**0 values and show the possible combination of temperature and salinity that corresponds to calcite of a 
given isotopic composition and for a given isotopic composition of scawater (-1 ".«.) The shaded area shov\s 
the range of isotope values recorded from belemnite rostra from the Callovian-Lower Kimmeridgian 
succession at Staffm Bay. The dashed lines represent the values discussed in the text above. 

5.5.3. The Elemental Records & Palaeotemperature Implications 

Several authors have recently investigated the use of elemental ratios (e.g., Mg/Ca, 

Sr/Ca, Na/Ca and Li/Ca) from biogenic calcite (e.g., belemnites, foraminifera. ostracods 

and corals) as palaeotemperature proxies (e.g., Dwyer et al.. 1995; Klein et ai, 1996; 

Mitsuguchi et al., 1996; Lear et al.. 2000, 2002; McArthur et al.. 2000; Wei et al.. 2000; 

Hall & Chan, 2001; Bailey et al.. 2003; Billups & Schrag, 2003; Resales et al.. 2004a, b; 

Immenhauser et al.. 2005). It has been suggested that elemental/Ca values in belemnites 

may reflect only temperature, whilst 8"^0 ratios reflect both temperature and variations in 
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ice-volume or salinity (McArthur et al., 2000). McArthur et al. (2000) record a significant 

correlation between Sr/Ca, Na/Ca and Mg/Ca ratios with 5'^0 and they suggest that Sr/Ca 

values may be the most robust elemental ratio with which to estimate palaeotemperatures. 

Bailey et al. (2003) however, concluded that their belemnite Sr/Ca records were unlikely to 

reflect temperature alone and that physiological factors (e.g., growth rate or metabolic 

effects) may also significantly influence the Sr/Ca record. As such, they suggested that 

Mg/Ca would provide a better palaeotemperature proxy. 

Both McArthur et al. (2000) and Bailey et al. (2003) observed inverse correlations 

between Mg/Ca, Sr/Ca, Na/Ca and S'̂ O, with R^ values between 0.16 and 0.69, 0.19 and 

0.56, and 0.0004 and 0.45 respectively. Cross-plots of El/Ca against 5'^0 for the Staffin 

Bay belemnites generally recorded less significant correlations, with R^ values of 0.11 

(Mg/Ca), 0.46 (Sr/Ca) and 0.18 (Na/Ca) (Fig. 5.8). Interestingly, only Sr/Ca shows a 

statistically significant (at the 99% confidence level) negative correlation with S'̂ O for the 

StafTin Bay data, whilst neither Mg/Ca nor Na/Ca show a statistically significant 

correlation with S'̂ O. 

Mn/Ca values were calculated for each sample and only those samples with values 

below 100 |imol/mol are included here, as this is the lower limit for samples that are 

believed to have been altered under reducing conditions (McArthur, 1994). The elemental 

ratios presented here (Mg/Ca, Sr/Ca, Na/Ca and Li/Ca) show little long-term variability 

(Fig. 5.9), although this is also the case for the S'̂ O record, which becomes only slightly 

more negative up sequence. The Mg/Ca values decrease slightly up sequence, whilst Sr/Ca 

values increase. The Na/Ca and Li/Ca values show no discernible long-term trend, it is 

difficult to fiilly assess the relationship between S'̂ O and El/Ca ratios for the Staffin Bay 

section because the Callovian to ICimmeridgian interval is isotopically quite static. I f 

instead, a major isotopic event occurred during this time the relationship between 5*^0 and 

El/Ca would be more readily observable. 
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The only statistically significant correlation observed from the Staffin Bay 

belemnites is that between Sr/Ca and 5'^0, where the lowest Sr/Ca values correspond with 

the highest S'̂ O values. McArthur et ai (2000) also observed a stronger correlation 

beuveen Sr/Ca and S'̂ O than between Mg/Ca and S'^O, although Bailey et ai (2003) 

recorded the opposite for the same Pliensbachian-Toarcian Yorkshire succession. Studies 

based on extant coccoliths (Stoll et ai, 2002) and foraminifera (Lea et ai, 1999) indicate 

that the temperature sensitivity of Sr/Ca is approximately 10 times greater than that of 

Mg/Ca. However, this is not consistent with the relative changes observed here between 

Sr/Ca and Mg/Ca, which would indicate that these belemnite records may not reflect 

temperature alone. Klein et ai (1996) suggest that for the marine mussel Mytilus trossulus 

Sr/Ca appears to be strongly influenced by physiological factors and it is therefore possible 

that the Sr/Ca temperature response in belemnites is exaggerated by physiological effects. 

The Mg/Ca proxy is generally considered to be the most appropriate elemental ratio 

with which to investigate palaeotemperature (e.g., Klein et ai, 1996; Lear et ai, 2000; 

Bailey et ai, 2003; Rosales et ai, 2004a, b; Immenhauser et ai, 2005). The Mg content of 

seawater is primarily controlled by the balance between fluvial supply rates and removal 

into biogenic carbonates and hot basalt at ocean spreading ridges (Wilkinson & Algeo, 

1989). At short time scales (ammonite zones or subzones) temperauire change is the most 

likely control on Mg/Ca ratios in biogenic carbonates (Jenkyns et ai, 2002). In general, 

low Mg/Ca ratios have been associated with cooler seawater temperatures, whilst high 

values are associated with warmer conditions (Rosales et ai, 2004b). Several authors have 

suggested that unlike 5'^0, the Mg/Ca proxy is largely independent of salinity effects (e.g., 

Klein et ai, 1996; Bailey et ai, 2003; Rosales et ai, 2004a, b; Immenhauser ei ai, 2005). 

This idea is supported by experimental data indicating that even a salinity decrease of 18 

%o is only weakly reflected in Mg/Ca ratios (e.g., Naydin & Teys, 1976; Yasamanov, 1981; 

Klein et ai, 1997; Rosales et ai, 2004b). 
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For the belemnites from Staffin Bay there is no statistical correlation between 

Mg/Ca and S'̂ O, although the linear regression line suggests a weak positive relationship 

between the two values. This positive relationship is contrary to the correlation observed 

in modem skeletal calcite (Steuber & Rauch, 2005) and in previous belemnite studies (as 

mentioned previously). The absence of correlation observed here could be due to 

interspecies offset (as different genera were sampled), ontogenetic variations (as different 

regions of the rostra were sampled), metabolic activity, salinity or temperature depending 

on the influence of each variable on each proxy. Assuming however, that temperature is 

the major control on Mg/Ca ratios and that belemnites have a similar temperature 

sensitivity to modem biogenic calcites (as has been concluded by several of the recent 

studies of El/Ca ratios in belemnites: e.g., Bailey et al. (2003) and Rosales et al. (2004a)) it 

seems likely that salinity has had an effect on the S'̂ O record. The palaeotemperatures 

calculated from the S'̂ O and Mg/Ca proxies show only slight long-term variation. The 

5'^0 derived temperatures indicate a slight warming up sequence, whilst the Mg/Ca 

derived temperatures remain relatively static. The S'̂ O and Mg/Ca palaeotemperatures 

(calculated using the Anderson & Arthur (1983) and Klein et al. (1996) equations 

respectively) show a considerable offset (Fig. 5.13), with ranges of 5'^0 and Mg/Ca from 

6.7 to 20.6 °C (average 12.4 °C) and -1.3 to 21.2 °C (average 3.8 °C) respectively. This 

offset is consistent with data from Klein et al. (1997) that recorded lower temperatures 

from Mg/Ca values compared with 5'^0 values for Mytilus trossulus. The average 

discrepancy between the palaeotemperature proxies is 8.6 °C. I f this temperature 

difference was interpreted solely as the result of salinity it would require a change in 

salinity from, for example, 34 to 25.2 %o. However, a change of this magnitude seems 

unlikely, since it would be occurring in a shallow marine succession with an abundance of 

marine fauna (ammonites and belemnites) throughout as well as a diverse palynoflora 

indicting open marine conditions (Morton & Hudson, 1995; Riding & Thomas, 1997; 

Wierzbowski, 2004). An average palaeotemperature of 3.8 °C for this palaeolatitude is 
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intuitively unlikely, which together with the salinity changes required to achieve this 

suggests that the use of Mg/Ca palaeotemperature equations on belemnites (after Klein et 

ai (1996) and based on an extant bivalve species) may not be entirely appropriate. 

Ultimately, the use of Mg/Ca as a palaeotemperature proxy requires further evaluation. 

The covariance of both Na/Ca and Li/Ca with S'̂ O as observed here is statistically 

insignificant. Bailey et al. (2003) report weak covariance between these variables and 

suggest that the lack of correlation indicates that these elemental ratios are unlikely to 

reflect temperature variations in belemnites. This is supported by experiments on modem 

foraminifera (e.g., Delaney et al., 1985). Hall & Chan (2001) demonstrated that for recent 

foraminifera Li/Ca ratios were temperature sensitive and responded in the opposite sense to 

Mg/Ca (with Mg/Ca ratios decreasing with falling temperatures whilst Li/Ca ratios 

increased). Bailey et al. (2003) could not confirm these obseivations for belemnites and 

suggested that Li/Ca signals were not recorded, probably as the consequence of the small 

size of the Li ion, which makes it likely to be quickly lost from the calcite lattice after 

burial. 

The difficulty in interpreting the El/Ca ratios in terms of environmental conditions 

is exacerbated at Staffin Bay by the static nature of the oxygen isotope record during this 

time period. By considering a more dynamic time period containing more significant 

isotope shifts (e.g., the Valanginian - see Chapters 7 and 8) it should be possible to produce 

more useful data with which to assess the nature of the relationships between temperature, 

5'^0 and £//Cfl ratios. 

5.5,4. The Terrestrial Carbon Isotope Record 

The organic carbon isotope ratios presented here are considered to primarily reflect 

changes in the terrestrial carbon isotope reservoir. The limitations and reliability of fossil 

wood data were discussed in Chapter 4, where it was concluded that 6'^Corg values could 

be used to confidently identify long-term shifts in the composition of atmospheric carbon. 
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The 5'^Corg data from Staffin Bay reveal a rapid change towards more positive 

carbon isotope values from the Lower-Middle Callovian boundary and into the Lower 

Oxfordian. The positive excursion has a magnitude of ~- 5 %o (from approximately -26.5 to 

-21.5 %o). This excursion is coincident with a change of depositional conditions from a 

coastal lagoon-type environment in the Callovian to more fii l ly marine conditions from the 

earliest Oxfordian. The observed shift towards more positive values in the Lower 

Oxfordian however, cannot be attributed to a change in the source of organic matter. This 

is contrary to the work of Foster et al. (1997), which concluded that although secular 

variations in S'^Corg were present, they were often overprinted by changes in organic 

source or facies. The Rock-Eval data (Fig. 5.12) presented here confirm that the organic 

matter analysed from the Isle of Skye was predominantly derived from a terrestrial source 

(Type III kerogen). This is consistent with published palynological data for Staffin Bay, 

which record abundant palynomorphs that are dominated by gymnospermous pollen grains 

and associated with pteridophytic spores (Riding & Thomas, 1997). More specifically, the 

conifer pollen Classopollis and the wood genus Cupressinoxylon (Pearce et a!., 2005) have 

been recognised. The Rock-Eval pyrolysis identified several samples with relatively high 

hydrogen indices, which would suggest that a marine component is occasionally 

incorporated within the organic matter. Marine microplankton, most notably dinoflagellate 

cysts, have been recorded from throughout the Staffin Bay section (Riding & Thomas, 

1997; Hesketh & Underbill, 2002). These data however, do not consistently correspond 

with heavier carbon isotope ratios. It is therefore assumed that the organic matter source 

has not significantly influenced the carbon isotope trend recorded here. 

From the Lower Oxfordian the values remain fairly constant, fluctuating 

between approximately -21 and -23 %o (values typical of terrestrial organic matter) until 

the Middle-Upper Oxfordian boundary, after which the carbon isotope values decrease 

reaching - -25.5 %o in the Lower Kimmeridgian Cymodoce Zone. The timing and duration 

of the observed S'^Corg trend is consistent with data published by Pearce et a!. (2005). 
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Pearce et a!. (2005) analysed 37 Upper Callovian {Athleta Zone) to Lower ICimmeridgian 

(Baylei Zone) samples of microscopic wood debris from the Staffm Shale Formation. 

Microscopic wood fragments were separated from the mud matrix and crudely categorised 

as coal, charcoal or a combination of both, although no relationship between the state of 

preservation and isotope ratio was discemable. The S'-'Corg values presented here are 

consistent with those of Pearce et ai (2005) and are similar to the range expected for 

Cretaceous C3 plants (-23 to -34 %•) (Bocherens et aL, 1993; Grocke, 1998; Robinson & 

Hesselbo, 2004; Pearce et al., 2005). The coeval marine carbonate samples are offset by 

between 21 and 30 %o. 

5.5.5. The Marine Carbon Isotope Record 

The marine 6'*'Ccart) record shows a distinct change from more positive values in the 

Lower and Middle Oxfordian (typically - 2 to 4 %o), to more negative values from the 

Upper Oxfordian and into the Lower ICimmeridgian (typically - 0 to 2 %o). This trend can 

be observed despite a considerable degree of scatter in the marine carbonate data. Such 

scatter however, is consistent with published belemnite data from other sections (e.g.. 

Bailey et ai, 2003; McArthur et al., 2004; Price & Mutterlose, 2004; Wierzbowski, 2004) 

and is most likely the result of real and natural variation. By comparison, bulk records 

tend to produce smoother, less noisy curves. This is the result of time averaging, which 

dampens natural variability and homogenisation of the constituent components. For 

example, a 1 mm bulk sediment sample could represent anything in the range of 100-1000 

years or more, whilst a 1 mm sample of belemnite calcite probably only represents a period 

of months. 

The belemnite derived carbon isotope values presented here are compatible with 

those recorded by Wierzbowski (2004) from the Middle Oxfordian {Densiplicatum Zone) 

to Lower Kimmeridgian {Cymodoce Zone) of Staffm Bay (Fig. 5.10). Wierzbowski (2004) 
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recorded carbon isotope values between 0.62 and 4.69 %o (compared with values of 0.11 to 

4.02 yoo recorded here for the same interval). 

5.5.6. The Carbon Isotope Records & Ocean-Atmosphere Correlation 

The comparison of marine with terrestrial carbon isotope stratigraphy is essential to 

confirm that isotopic patterns are of global origin rather than the result of local or 

diagenetic factors (Hesselbo ei al., 2003). There have been a number of recent studies that 

have compared marine and terrestrial carbon isotope records (e.g., Ando et al., 2002, 2003; 

Hesselbo et ai, 2003; Robinson & Hesselbo, 2004; Grdcke et ai, 2005; Pearce et a!., 

2005), however these studies almost always compare carbon isotope data from 

geographically different successions. Geological successions containing both a marine and 

terrestrial record suitable for isotope work are extremely rare and data from such a 

succession have never been published, where data were collected simultaneously. This 

study presents the first coeval marine and terrestrial record of this kind. 

The observed offset between the Staffm Bay S'^Ccarb and S'^Corg data is 

approximately -25 .5 %o on average, which is consistent with the observed offset of - 2 5 %o 

recorded by Pearce et a!. (2005) for the same succession (their value was calculated using 

the carbonate data of Wierzbowski (2004)). The S'^Ccarb curve corresponds well with the 

S'^Corg curve from the Lower Oxfordian and into the Kimmeridgian, which indicates a 

strong coupling of the ocean-atmosphere system at this time. The most positive 

values occur during the Lower and Middle Oxfordian (Mariae to Glosense zones) where 

values are consistently high in both the marine and terrestrial records. A change to 

increasingly negative values occurs during the Upper Oxfordian Glosense Zone until the 

occurrence of a brief positive fluctuation in the Early Kimmeridgian Cymodoce Zone. This 

trend is observed in both records, which suggests that the total exchangeable carbon 

reservoir would have been affected, it is worth noting that the S'^Corg data show a greater 

amplitude of change than the coeval S'^Qarb data, which is in agreement with other 
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published Mesozoic 6'^Cwood data (e.g., Grocke et al., 1999; Robinson & Hesselbo, 2004; 

Pearce et al, 2005). 

The Callovian S'̂ Ccarb and S'^Corg curves, however, do not correspond. A rapid 

positive excursion of approximately 4 96o is observed in the S'^'Corg record, whilst the 

S'^Ccarb values remain relatively constant. This decoupling is probably the result of a 

small, local event which is only recorded in either the marine or terrestrial realm, although 

the nature of such an event remains unclear. 

5.5.7. Callovian-Kimmeridgian Marine & Terrestrial Isotopic Records 

The isotopic offset between the Staffin Bay 5'^Corg and S'^Ccarb records ( -25 .5 %o) 

is greater than that observed between S'^Corg and 5'^Ccarb values in the Oxfordian of Poland 

and Germany ( -23 %o) as recorded and discussed by Wierzbowski (2002, 2004) and Pearce 

et ai (2005). Wierzbowski (2004) attributes this difference in offset to isotopically heavier 

belemnite values as a result of '^C enrichment in the Boreal Realm due to high organic 

matter productivity in the partly isolated Boreal seas. Since no enrichment is observed 

here in the S'^Corg data (which are consistent with the sub-Tethyan Oxfordian S'^Cwood 

values from Dorset (Pearce et al. 2005)) the observed offset must be the result of localised 

changes of isotopic composition in the marine carbon reservoir. This lends support to the 

idea that S'̂ ^Corg data reflect a global signal influenced primarily by perturbations in the 

total exchangeable carbon reservoir (Pearce et al., 2005). 

The timing of the positive 5'^C excursion recorded here is similar to that recorded 

in previously published Callovian to Kimmeridgian 5'^C marine and terrestrial data. The 

duration of the Staffin Bay excursion is from the Mariae to Tenuiserratum zones, with the 

maximum occurring across the Cordatum-Vertebrale Subzonal boundary (using the Boreal 

British ammonite zonation) in both the organic and carbonate records. Pearce et al. (2005) 

also record a broad positive S'^Cwood excursion at this time from the Staffin Bay 

succession, although their maximum occurs slightly later, across the Vertabrale-

89 



Tenuiserratum Subzonal boundary. A broad positive S'^'Ccarb excursion has also been 

recorded in the sub-Alpine basin of southeast France, with a maximum during the 

Parandieri Subzone (Tethyan ammonite zonation, equivalent to the Boreal British Upper 

Tenuiserratum Subzone) (Beat Louis-Schmid pers. comm.). Middle Oxfordian positive 

excursions have also been recorded by Jenkyns (1996), Weissert & Mohr (1996), 

Bartolini et ai (1999), Wierzbowski (2002), Dromart et al. (2003b). 

It is worth noting that although the excursion maximum observed here in the 

Staffm Bay data occurs earlier than in the other comparable successions, the values 

remain relatively positive until the end of the Tenuiserratum Zone. Much of the 

discrepancy between the timing and duration of the positive excursion may be accounted 

for by factors such as poor sampling resolution, limited biostratigraphical data, condensed 

sections and missing strata in the previously published sections. The Staffin Bay data is 

very well constrained biostratigraphically and of a high sampling resolution, which may 

contribute to the elimination of some of this uncertainty. 

Jenkyns (1996), Weissert & Mohr (1996) and Wierzbowski (2002) have interpreted 

the mid-Oxfordian positive carbon isotope excursion as the result of organic carbon burial 

during a eustatic sea-level rise. However, Hesselbo & Coe (2000) presented a sea level 

curve covering the complete Callovian to ICimmeridgian Staffin Bay succession, which led 

Pearce et al. (2005) to conclude that sea-level rise was not the primary factor to influence 

this excursion because, according to their investigation, increasing values 

corresponded to a relative sea-level fall. Instead, Pearce et al. (2005) proposed an increase 

in global organic carbon burial rates or an as-yet un-established mechanism to account for 

the excursion. Evidence for Oxfordian organic carbon burial in the form of high TOC 

values or organic rich deposits has been reported from Canada (Stewart et al., 1992) the 

Arabian Peninsula and the U.S. Gulf Coast (Dromart et al., 2003b). The TOC data 

presented here (Fig. 5.11) is relatively low (with an average value of -2.0 wt % cf, -11 wt 

% as reported from Canada (Stewart et al., 1992)), however, this may be because the 

90 



depositional environment at this location was not favourable to organic matter 

preservation. The TOC data may still support the idea of increased organic carbon burial 

however, as a slight increase in values is seen during the Oxfordian. 

Middle Oxfordian {Transversarium and Bifurcatus zones) negative carbon isotope 

excursions have been identified by Padden et al. (2001, 2002) in the Tethyan region 

(Switzerland and France) (Fig. 5.15). The observed excursions are relatively brief and of a 

high magnitude (2 %o in marine carbonates) leading to the suggestion that they may be 

associated with episodes of methane release as the excursions are of a similar magnitude 

and duration to the Toarcian, Aptian and Palaeocene events, which have been more firmly 

attributed to the dissociation of oceanic methane hydrates (Padden et al., 2001). These 

negative excursions are not identified in the Staffin Bay data however. Small and brief 

negative excursions are observed in both the organic and carbonate records ( -1 .5 96o), 

although these occur much earlier than those observed in the Tethys (in the Vertebrale 

Subzone and Cordatum Subzone respectively). These somewhat indistinct excursions 

could easily be explained by a slight fluctuation in the organic matter source (wood record) 

or natural variability in the data (carbonate record). It should be further noted that the 

negative excursion recorded in the organic carbon isotope data occurs almost immediately 

after the Middle Oxfordian positive S'̂ C excursion maximum. Pearce et al. (2005) suggest 

that this relationship is compatible with the theory that a relative sea-level rise associated 

with the reopening of Boreal-Tethyan oceanic connections changed oceanic circulation and 

released methane. 

Pearce et al. (2005) did not observe the negative carbon isotope excursions in either 

their Staffin Bay or Dorset datasets. They suggested that this may have been the result of 

an insufficient sampling resolution. However, the greatly improved sampling resolution 

employed here, indicates that the negative excursions observed in the Tethyan region are 

not occurring in this part of the Sub-Boreal Realm. This would suggest that the negative 

excursions identified by Padden et ai (2001, 2002) may not be the result o f fluctuations in 
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Figure 5.15 Callovian-Lower Kimmendgian 6"C correlation between a composite Telhyan d^CcMb curve 
and the 6 ' a n d 6'*Co,g curves from Staffin Bay. Isle of Skye, Scotland. The Tethyan data was collected 
from the following locations: Bartolini (1991) - Italy; Jenkyns (1996) - Italy, Weisserl & Mohr (1996) - E. 
Switzerland; Padden et al. (2002) - S. Alps. S. Switzerland; Dromart et al. (2003b) - France. For Staffm Bay 
curve Boreal (British) ammonite zonation is illustrated and scale is in metres. See Figure 4.2 for key to log 
symbols. For Tethyan curve Tethyan ammonite zonation is illustrated 
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the total exchangeable carbon reservoir and that perhaps the global scenario needs to be 

revisited. 

5.6. Conclusions 

• The data presented here comprise the first combined high-resolution isotope 

investigation of S'^Corg, S'^Ccarb and 5'^0cart> from Staffin Bay, Isle of Skye. It is also 

the first ever investigation of a coeval 6'^Corg and S'̂ ^Ccarb record (together with the data 

presented in Chapter 7), the development of which is essential to understanding ocean-

atmosphere interactions. 

• The average palaeotemperature derived from the Staffin Bay S'̂ O record (using the 

Anderson & Arthur (1983) equation) was I2.4°C and the palaeotemperature range was 

6.7°C to 20.6°C for the Callovian-Kimmeridgian interval. 

• The average palaeotemperature derived from the Staffin Bay Mg/Ca record (using the 

Klein et al. (1996) equation) was 3.8°C and the palaeotemperature range was -1.3°C to 

21.2''C for the Callovian-Kimmeridgian interval. This average palaeotemperature is 

intuitively unlikely, suggesting that the use of belemnite Mg/Ca as a palaeotemperature 

proxy may require further investigation. 

• The S'^Corg data record a broad Lower-Middle Oxfordian positive carbon isotope 

excursion of -5 %o. A return to pre-excursion values occurs from the Upper Oxfordian 

and into the Lower Kimmeridgian, although, a brief positive fluctuation is observed 

during the Lower Kimmeridgian Cymodoce Zone. This long-term trend is also 

observed in the 5'''Ccart) data, although the magnitude of the trend is approximately half 

that of the 5'^Corg record (this is typical of other records). This correlation indicates a 

strong coupling of the ocean-atmosphere system at this time and suggests that the total 

exchangeable carbon reservoir was affected. Such a relationship has never before been 

observed from a coeval marine and terrestrial record. 

93 



There is a possible decoupling of the ocean-atmosphere system during the Callovian. 

At this time a large shift of 5'^Corg values occurs, whilst 6'^Ccarb values remain fairiy 

constant. This indicates that there may have been a local influence on the marine or 

terrestrial realm during the Callovian period, although the nature of this influence in 

unclear. 

The Middle Oxfordian positive b^^C excursion maximum occurs eariier in the Staffm 

Bay record {Cordatum-Vertebrale Subzonal boundary) than it does in the Tethyan 

records {Temnserratiim Subzone). However, consistently high values are observed at 

Staffin Bay until the end of the Temiiserratum Zone. This positive excursion is 

believed to be the result of an increase in global organic carbon burial rates. 

The mid-Oxfordian negative carbon isotope excursions previously identified in the 

Tethyan regions are not recorded in the Staffin Bay data despite the relatively high 

sampling resolution and good biostratigraphic control. These negative excursions have 

previously been attributed to methane release, however, this new data indicates that the 

Tethyan excursions may not represent fluctuations in the total exchangeable carbon 

reservoir and therefore the fidelity of the methane hypothesis should be re-evaluated. 
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Plate 4 . C;illK)dolumincsccncc images sl»o\\inii IIK: SKHC of prcscn;i!ion ol bclcinnilc roslra from Slaflli 
Ba>. Isle of Skye. Scotland All scale bars represent I mm (A) Bonngs m rostmm margin mfilled \ \ \ \ \ 
diagenetic cement (B) Bonngs m rostmm margin infilled b\ diagenetic cement (C) Rostmm margin anC 
growth bands showing alteration (D) Fractures displa>ing alteration (E) Fractures and growth line* 
displa>ing alteration (F) Fractures and growth lines displaxing alteration (G) Apical canal with scdimcni 
infilling and growth bands displa>ing alicnuion (H) Diageneticalh altercd fractures eminaiing from the 
apical canal 
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Plate 2. Backscaitcrcd SEM images showing ihc slale of prescnalion of belemnile rostra fnom Siaffin Ba>. 
Isle of Skye All scale bars represent lengths stated on images (A) Well preserved calcite with some slight 
alteration at rostrum margin (B) Gcneralh well preserved cakite but with some p> nte growth ak>ng growth 
lines towards the rostrum margin (C) P>nte growth along fracture (D) Fracture mnmng through 
diageneticalh altered apical canal (E) Apical canal and surrounding growth lines displa> ing alteration (F) 
Edge of apical canal with presence of p> riie (G) Area of altered calcite (H) Area of altered cak:ite around 
fractures. 
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P L A T E 3 
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Plate 3. Caitx>natc stained images showing the stale of preservation of belcinnite rostra from StafTm Ba>. 
Isle of Skye All scale bars represent 1 m m (A) Rostrum margin with bonngs infilled uith d iagenctK 

cement (B) Rostmm margin with borings infilled with diagenetic oemcnt (C) Fractures and sections ol 
growth hnes displa> ing alleratioa alilwugh othenvise wel l preserved (D) Vei> we l l prcscr>ed calcite No 
alteration presem (E) Rostmm margin showing aheration particular!) along growth hnes. (F) Fracture 
infilled w ith diagenetic cement and displav ing p> ntisation (G) Faint fracture mrming through apical canal 
(H) Apical canal w ith qiurt/ replaccnicni and fractures displa> ing alteration 
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6. H E L M S D A L E , S U T H E R L A N D , SCOTLAND 

6.1. Location & Site Description 

Helmsdale is located on the eastern coast of Sutherland (at ~58°N), on the northeast 

coast of the Scottish mainland near Wick (Fig. 6.1). Five sites were examined along the 

coastline near Helmsdale between Kintradwell and Dijn Glas. In addition a further two 

sites were examined; Brora, approximately 15 km south of Helmsdale and Eathie Haven, 

55 km south of Helmsdale near Cromarty on the northeast tip of the Black Isle. 

Figure 6.1 Location map of the Sutherland coastal region. The relative positions of Helmsdale, Brora, 
Eathie and Staffin (Isle of Skye) are shown (left). Also shown are the locations of the sites examined along 
the coast between Brora and Dim Glas (right). 

The Sutherland outcrops comprise predominantly of intermittent foreshore 

exposures of boulder beds, mudstones, siltstones and sandstones (Fig. 6.2). Several of the 

outcrops were accessible only at low tide and were covered by a mobile boulder beach and 

seaweed. 

The Helmsdale succession provides an almost complete record of the 

Kimmeridgian {sensu anglico - see Chapter 2) Cymodoce to Fittoni ammonite zones. The 

Eathie section is Early Kimmeridgian (Mutahilis Zone) in age and the Brora section is 

Middle/Late Callovian in age. 

98 



Figure 6.2 Foreshore exposure typical of the area around the Helmsdale coast, Sutherland, Scotland. This 
photograph shows the exposure near Helmsdale Harbour (location HL5), which is part of the Portgower 
Boulder Beds Member. 

6.2. Geological Setting 

During the Jurassic Period, Scotland was situated at a palaeolatitudc of 

approximately 45°N (Smith et al.. 1994). The coastal onshore Jurassic strata of northeast 

Scotland (e.g., at Brora, Helmsdale and Eathie) outcrop on the faulted western margin of 

the Inner Moray Firth Basin (Wignall & Pickering, 1993; Riding, 2005), which is part of 

the North Sea Basin system (Underhill, 1991) (Fig. 5.3). The Inner Moray Firth Basin was 

initiated in the Permian (Trewin et al., 1990) and during the Mesozoic was controlled 

principally by two major extensional events (pre-Jurassic and Late Jurassic) (Underhill, 

1991). 

The basin is bounded on the north, northwest and south margins by the Wick, 

Helmsdale and Banff fault systems respectively (Trewin et al., 1990; Underhill, 1991) and 

the Helmsdale and Great Glen faults separate the Helmsdale Terrace from the rest of the 
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basin (Wignall & Pickering, 1993) (Fig. 6.3). The Helmsdale fault was active during the 

Jurassic and fault controlled Kimmeridgian deposition occurred on a proximal slope to 

deep marine system on the downthrow side (southeast) of the fault (Pickering, 1984; 

Trewinetal., 1990). 
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Figure 6.3 Late Jurassic palaeogeography. Inset is a locality map of the study area showing the Helmsdale 
Terrace and onshore outcrops of Jurassic strata. Palaeogeography map adapted after Hudson & Trewin 
(2002). Inset adapted after VVignall & Pickering (1993). 

The basement of the Moray Firth Basin is composed of Moinian metasediments, 

intruded by the late Caledonian Helmsdale Granite and is unconformably overlain by 

Devonian Old Red Sandstone strata (Trewin et al, 1990; Riding, 2005). The centre of 

Moray Firth deposition was situated offshore, 25 km east of Helmsdale, where the Jurassic 

succession reaches a thickness of - 2300 m (Chesher & Lawson, 1983; Riding, 2005). The 

most extensive and complete onshore outcrops are located on the Brora, Golspie and Dim 

Glas foreshores (Riding, 2005) providing a narrow coastal strip of Jurassic outcrop 

bordering the margin of the Moray Firth Basin (Trewin et al, 1990). The narrow outcrop 
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of ICimmeridgian strata in Helmsdale is the most extensive Kimmeridgian outcrop in 

Britain, excluding that of the Dorset coast (Cox, 2001b). 

Three major formations make up the Bathonian to Upper Kimmeridgian {sensu 

anglico) strata of the Brora-Helmsdale region. These are the Bathonian-Callovian Brora 

Shale Formation; the Callovian-Oxfordian Clynekirkton Sandstone Formation; and the 

ICimmeridgian Helmsdale Boulder Beds Formation (BGS sheet S103EC, 1998) (Fig. 6.4), 
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Figure 6.4 Stratigraphic chart for the Middle-Upper Jurassic of the Brora-Helmsdale region. Data from 
BGS sheets 103EC, 1998. 

The Brora Shale Formation (Bathonian to Middle Callovian, Coronaium Zone) is 

composed of the following units: Doll Sandstone (oldest), Inverbrora Shale, Brora Coal, 

Brora Shale, a Glauconitic Sandstone and the Brora Brick Clay (youngest) (BGS sheet 

SI03EC, 1998). The formation is exposed on the foreshore south of Brora and on the 

banks of the Brora River (Sykes, 1975; Trewin et a!., 1990; BGS sheet SI03EC, 1998). It 

is dominated by silty to shaly mudstones, with some bioturbation (Neves & Selley, 1975; 

Sykes, 1975; Trewin et a/., 1990). The Bathonian Doll Sandstone Member at the base of 
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the formation is a cross-bedded sandstone containing plants and rootlets, which has been 

interpreted as fluvial or deltaic in origin (Hurst, 1981; Trewin et ai, 1990). The other units 

represent lagoonal conditions (the Inverbrora Shale) followed by a transgressive event (at 

the base of the Brora Shale Member) and subsequent marine regression (Trewin et a/., 

1990). Belemnites are common in this formation, particularly within the Brora Shale, 

Glauconitic Sandstone and Brora Brick Clay members, which have a greater marine 

influence (Lee, 1925;Sykes, 1975; MacLennan & Trewin, 1989; Trewin e/a/., 1990). 

The Fascally Siltstone, Brora-Clynelish Quarry-Fascally Sandstone and Ardassie 

Limestone make up the Clynekirkton Sandstone Formation {Athleta to Baylei zones) (BGS 

sheet SI03EC, 1998). This formation coarsens upwards slightly from bioturbated 

siltstones at the base (Fascally Siltstone), to fine-grained sandstones, with some rounded 

pebbles and trough cross-bedding towards the top of the Brora-Clynelish Quarry-Fascally 

Sandstone Member (Sykes, 1975; Trewin et al., 1990). The -12 m thick, Ardassie 

Limestone is composed of alternating calcareous sandstones and limestones, with the 

limestones reportedly comprised almost entirely of Rhaxella sponge spicules that have 

been replaced by calcite (Sykes, 1975; Trewin et al., 1990). The sandstone facies of this 

formation were deposited on a coastal marine shelf during a period of marine regression, 

whilst the Ardassie Limestone, was deposited under transgressive conditions (Trewin et 

al., 1990). The Clynekirkton Sandstone Formation is exposed on the foreshore near the 

mouth of the Brora River and along the rivers banks (Lee, 1925; Trewin et al., 1990; BGS 

sheet S103EC, 1998). It is also exposed at Ardassie Point, just north of Brora (Lee, 1925; 

Trewin et al., 1990; BGS sheet S103EC, 1998). Belemnites have been observed 

throughout the Clynekirkton Sandstone Formation (Lee, 1925; Trewin et al., 1990). 

The Helmsdale Boulder Beds (Cymodoce to Albani zones) include the Kintradwell 

Boulder Beds Member, the Allt na Cuile Sandstone Member, the Lothbeg Shale Member 

and the Portgower Boulder Beds Member (youngest) (BGS sheet S103EC, 1998). The Allt 

na Cuile Sandstone Member and the Kintradwell Boulder Beds Member are believed to be 
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lateral equivalents of each other, demonstrating the sedimentological variability occurring 

along an active fault (Trewin et al, 1990). The All t na Cuile Sandstones are medium to 

fine-grained and are often planar-laminated (Brookfield, 1976; Pickering, 1984; Trewin et 

al.. 1990; Wignall & Pickering, 1993). In places they are extensively veined due to their 

proximity to the active Helmsdale Fault (Trewin et al., 1990). By comparison, the 

Kintradwell Boulder Beds are dominated by finely-laminated and fissile siltstones that 

contain rounded clasts, presumably derived from earlier Jurassic formations (Roberts, 

1989; Tyson, 1989; Wignall & Pickering, 1993). Wignall & Pickering (1993) remark that 

perhaps the most spectacular feature of the Kintradwell Boulder Beds is the abundant 

evidence for synsedimentary deformation. These facies are exposed on the coastal 

foreshore between Kintradwell and Lothbeg Point (Trewin et al., 1990), although exposure 

is often limited by an extensive cover of seaweed. Small, isolated outcrops of the 

Kintradwell Boulder Beds are distributed along the coastline. The boulder beds were 

observed to contain relatively abundant sandstone clasts, wood debris, occasional 

belemnites and rare partial ammonite clasts. 

Also exposed at Lothbeg point is the Lothbeg Shale Member, which overlies the 

Allt na Cuile Sandstone and Kintradwell Boulder Beds. It is composed of interbedded 

shaly mudstones, siltstones and sandstones (Trewin et al., 1990; Wignall & Pickering, 

1993). Again the outcrop is extensively covered by seaweed, although interbedded 

mudstones, siltstones and sandstones were observed, some containing slumps and folds 

resulting from wet sediment deformation. This unit is overlain by the Portgower Boulder 

Beds Member, which is exposed on the coast from Lothbeg Point to Dun Glas, northeast of 

Helmsdale (Trewin a/., 1990; BGS sheet S103EC, 1998). These boulder beds have been 

described in detail by Pickering (1984) and Wignall & Pickering (1993). The boulder beds 

are supported by a sandstone matrix and separated by interbedded sandstones and 

siltstones, some of which have been described as 'tiger-strip' facies (Pickering, 1984; 

Trewin et ai, 1990; Wignall & Pickering, 1993). The boulder bed clasts are mostly 
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subrounded to subangular and are typically derived from Devonian and Jurassic lithologies 

(Pickering, 1984; Trewin ei al., 1990; Wignall & Pickering, 1993). Synsedimentary wet-

sediment deformation structures are common in these boulder beds (Wignall & Pickering, 

1993). The exposure of the Portgower Boulder Beds Member north of Helmsdale Harbour 

is particularly good. The clasts within the boulder beds become more angular and chaotic 

up sequence and bedding becomes more difficult to discern. Belemnites are relatively 

abundant components in parts of the boulder bed succession and corals, gastropods, 

crinoids, bivalves and occasionally ammonites were also observed. 

In the earliest ICimmeridgian, onset of activity along the Helmsdale Fault changed 

the environment of deposition from a broad, shallow marine shelf (on which the 

Clynekirkton Sandstone Formation was predominantly deposited) to a rapidly subsiding 

palaeoslope on which debris flow, rock slide and turbidity current deposition alternated 

with poorly oxygenated hemipelagic deposition (Pickering, 1984; Wignall & Pickering, 

1993). Wignall & Pickering (1993) concluded that the deepest waters were located 

immediately next to the Helmsdale fault scarp, which would account for the more diverse 

benthic fauna observed in the lithologies at the Eathie location, representing shallower 

water conditions (Fig. 6.3). 

6.3. Sampling & Methodology 

The five main sites examined in the Helmsdale region provided samples from the 

Early ICimmeridgian {Cymodoce Zone) to latest ICimmeridgian {Fittoni Zone). These key 

sites provided an extension of the Early ICimmeridgian samples collected at Staffm Bay, 

Isle of Skye. In addition, the site visited in Brora (at which only I belemnite horizon was 

sampled) was Callovian in age (Koenigi Zone) and the site at Eathie (from which 9 

belemnite horizons were sampled) was Early KJmmeridgian {Mutabilis Zone). In total, 58 

belemnite horizons were sampled from the Sutherland region. Complete specimens were 

very rare from the Helmsdale region because the belemnites were generally well cemented 
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within the rock so that only fragments could be collected (Fig. 6.5). This was not the case 

at Brora or Eathie however, where more complete samples were collected from 

mudstones/siltstones. No sediment samples were collected from this region. Wherever 

possible multiple specimens were collected from the belemnite horizons. A l l samples were 

collected in June 2005. 

The preservation of belemnite rostra was evaluated through trace element and 

stable isotopic analysis, backscattered scanning electron microscopy (BSEM), 

cathodoluminescence (CL) and carbonate staining (following the technique of Dickson 

(1965) and (1966)). The areas most susceptible to diagenesis were removed prior to 

isotopic and geochemical analysis. Samples were analysed for carbon and oxygen 

isotopes, with subsamples taken for trace element analysis (Fe, Mn, Ca, Sr, Mg, Na, Li) . 

Figure 6.5 Typical preservation of Helmsdale belemniles. (A) Belemnite from the Kintradwell Boulder 
Beds Member on the Kintradwell coast (location H L I ) . (B) Belemnites from the Portgower Boulder Beds 
Member near Helmsdale Harbour (location HL5). 

Stable isotope data were generated on a VG Optima mass spectrometer at the 

NERC Isotope Geosciences Laboratory (NIGL), Keyworth, UK. Trace element data were 

analysed by Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-AES) using 

a Perkin Elmer Optima 3300RL ICP-AES system (with autosampler) at the NERC ICP 

facility. Department of Geology at Royal Holloway, University of London. For a ftill 

description of the methodology used see Chapter 4. 
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6.4. Results 

The belemniles sampled for this study were mostly translucent. The opportunity to 

conduct BSEM, CL and carbonate staining analysis on these specimens was limited due to 

lack of complete rostra collected. In total 11 out of 83 specimens were subject to optical 

analysis (Plates 4-6). Such analysis indicated that the periphery of the rostrum, the areas of 

the rostrum surrounding the apical canal, prominent fractures and strong growth bands 

were particularly susceptible to diagenetic alteration. These regions commonly appeared 

as pale grey-white in colour when subjected to BSEM analysis, luminescent under CL 

conditions and mauve-blue in colour after carbonate staining and were therefore removed 

prior to sampling. 

o 
A Brx» 

C . 3 0 

•4 0 

-50 

-60 

o 
^ ^ o 

o 

* ^ o o 
o o o 

o o 

O 
600 BOO 1000 120O 1400 0 20 40 60 60 too 120 140 

Figure 6.6 Cross-plots of 5'*0 against Fe (left) and Mn (right). The dashed line illustrates the cut off values 
for well preserved samples. 

The Mn and Fe concentrations of the belemnites were also determined in order to 

provide an additional method by which to assess their state of preservation as noted 

previously. The determined values of Fe and Mn from the Helmsdale belemnite rostra 

were 5-910 ppm, mean 78 ppm and 2-51 ppm, mean 11 ppm respectively. The Fe and Mn 

values for the Eathie belemnites were 26-1154 ppm, mean 142 ppm and 3-57 ppm, mean 8 

ppm respectively and the values for the Brora horizon were 30-32 ppm, mean 31 ppm for 

Fe and a mean of 3 ppm for Mn. Low Fe and Mn values were recorded for most of the 
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belemnites, with a total of 17 samples rejected from this study on the basis of poor 

preservation. Trace element data (Fe and Mn) were plotted against 5*^0 to constrain any 

diagenetic alteration (Fig. 6.6). The higher amounts of Fe and Mn and occasional negative 

S'̂ O outliers are regarded as an artefact of diagenesis. The lack of correlation between the 

values, however, suggests minimal post-depositional alteration. Those samples with high 

Fe or Mn values that are considered to have possibly undergone some level of alteration 

were excluded from further analysis. 

Additional elemental abundances derived from belemnite rostra from Helmsdale 

were as follows: Sr 676-1918 ppm, mean 1276 ppm, Mg 531-3280 ppm, mean 1189 ppm, 

Ca 22 % - 42 %, mean 30 %. Abundances for rostra from Eathie were: Sr mean 1172 ppm, 

Mg 1215-2971 ppm, mean 1792 ppm, Ca 30 % - 31 %, mean 30 %. For Brora the values 

were: Sr 905-950 ppm, mean 928 ppm, Mg 859-1194 ppm, mean 1066 ppm, Ca mean 30 

%. 

The oxygen and carbon isotope values of well preserved belemnites from 

Helmsdale range from -2.84 to 0.78 %o and from -2.25 to 2.82 %o respectively; from Eathie 

range from -1.60 to -0.41 %o and from 0.15 to 2.27 %o respectively; and from Brora range 

from -0.44 to -0.17 %o and 2.16 to 2.96 %o respectively. The Brora isotope values are 

similar to the isotope values derived from Callovian {Koenigi Zone) Isle of Skye 

belemnites, as noted previously. The Koenigi Zone is represented on the Isle of Skye by 

the Belemnite Sands Member (Morton & Hudson, 1995), a sandy glauconitic facies with 

abundant belemnites towards the top of the unit. The Brora belemnites were also sampled 

from a sandy, glauconitic unit (Early/Middle Callovian in age) with abundant belemnites. 

The mean values of 5*^0 and S'̂ C from the Brora belemnite rostra were -0.32 and 2.43 %o 

respectively, compared with values from the Isle of Skye of -0.33 (5'^0) and 2.65 %o 

(5 '^C). 

The oxygen and carbon isotope ratios from Helmsdale (Cymodoce to Fittoni zones) 

and Eathie (Mutabilis Zone) have some degree of stratigraphic overlap and so are 
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Figure 6.7 S'^C and d^^O records from the Kimmeridgian succession at Helmsdale and Eathie, Sutherland. 
Scotland. Boreal British ammonite zones are illustrated here, however, it should be noted that the Upper 
Kimmeridgian {sensu anglico) is equivalent to the Tethyan Lower-Middle Tithonian. See Figure 4.2 for key 
to log symbols. Scale is in metres. 
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combined here to provide an almost complete succession of the Kimmeridgian {Cymodoce 

to Fittoni zones) for northeast Scotland (Fig. 6.7). Both the oxygen and carbon ratios show 

short and long-term variation. The overall oxygen isotope trend is one of values becoming 

gradually more positive, although, shorter-term variability is superimposed on this general 

trend, particularly for the Early ICimmeridgian Cymodoce and Mutabilis zones, where 

values become first more negative (-0.58 to -2.84 %o) before becoming more positive (-

2.84 to -0.41 %o). From the Eudoxus Zone, the oxygen isotope values increase more 

consistently from -2.00 %o to 0.16 %o in the Fittoni Zone. The carbon isotope ratios 

generally become more negative throughout the ICimmeridgian, despite some degree of 

scatter. Values decrease from 2.22 %o in the lower Cymodoce Zone (where the most 

positive values can be observed) to -2.25 %o in the Fittoni Zone (where the most negative 

values can be observed). Increases in S'̂ C are mirrored by decreases in 5'^0. This is 

confirmed by a cross-plot of 6*^0 vs. (Pearson's value, 0.498), which reveals a 

statistically significant negative correlation (at the 99% confidence level) (Fig. 6.8). 
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The belemnites sampled from these Callovian to Kimmeridgian successions were 

species of the boreal genera Pachyteuthis and Cylindroteuthis (although taxonomic 

identification was not always possible from these locations). 

6.5. Discussion 

6.5.1. Stable Isotope, Geochemical & Taxonomic Records 

As indicated above, taxonomic identification of belemnite rostra was very difficult 

with specimens from the Helmsdale region. The affect of taxonomic difTerences on stable 

isotope and geochemical records is, therefore, almost impossible to assess from this 

location. Whilst the data available do not indicate a taxonomic influence on the isotopic 

and elemental records, the limited nature of the data means that such an influence cannot 

be ruled out. 

6.5.2. The Oxygen Isotope Record & Palaeotemperature Implications 

The oxygen-isotope data recorded from belemnites from the Helmsdale coast 

display some degree of scatter. Variation recorded from coeval belemnites ranged from 

0.01 %o to 2.20 %o, with an average of 0.59 %o. This scatter could be the result of 

diagenetic alteration, salinity fluctuations, generic vital effects or generic palaeoecological 

variability as noted earlier. Major diagenetic alteration of the specimens has been ruled out 

by extensive screening, however, generic variations are impossible to rule out from this 

dataset due to the taxonomic identification problems encountered. 

As discussed in Chapters 3 and 5 modem cephalopods are known to secrete their 

calcite very close to isotopic equilibrium with surrounding seawater (e.g., Taylor & Ward, 

1983; Morrison & Brand, 1986; Rosales et al., 2004a; Rexfort & Mutterlose, 2006) and at 

present no major seasonal or taxonomic differences in fractionation have been confirmed 

(Saelen et al., 1996; Podlaha et al., 1998; Rosales et al., 2004a), although McArthur et al. 
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(2004) suggest that a small 5*^0 offset (in the region of 0.4 %o) may be observed between 

co-occurring specimens of different genera. As such, the 5*^0 data presented here is 

considered primarily to reflect changes in environmental conditions. McArthur et al. 

(2000) concluded that since belemnites are extinct it is unrealistic to calculate absolute 

palaeotemperatures from their S'̂ O composition. The palaeotemperatures calculated here 

should therefore only be regarded as a guide to the potential seawater temperatures in the 

region. 

Palaeotemperatures calculated using the Anderson & Arthur (1983) equation are 

shown in Figure 6.7. The isotopic composition of the water was assumed to be that of non-

glacial seawater at -1 %o SMOW (e.g., Marshall, 1992; Saelen et al., 1996; Price & 

Sellwood, 1997; Podlaha et al., 1998; Price & Mutterlose, 2004; Rosales et al., 2004a, b). 

The calculated palaeotemperatures range from 9.1 to 24.0°C for the Kimmeridgian 

interval, with an average palaeotemperature of I5.8°C. This corresponds reasonably well 

with the Staffin Bay data, which record palaeotemperatures of 6.7°C to 20.6°C, with an 

average value of 12.4°C for the Callovian-ICimmeridgian interval. The warmest 

temperatures recorded from Helmsdale occur in the Lower ICimmeridgian Cymodoce Zone. 

Despite the degree of scatter present in the data a general trend of increasing S'̂ O (and 

therefore decreasing temperature) is observed, particulariy from the Wheatleyensis to 

Fittoni zones. 

6.5.3. The Elemental Records & Palaeotemperature Implications 

The use of combined El/Ca and 6*^0 palaeotemperature investigations was 

discussed in Chapter 5. McArthur ei al. (2000), Bailey et al. (2003) and Rosales et al. 

(2004a, b) consider Mg/Ca and Sr/Ca to be the most useful ratios with which to investigate 

palaeoclimate, whilst Na/Ca and Li/Ca are of more limited use. Mg/Ca, Sr/Ca, Na/Ca and 

Li/Ca ratios were calculated here together with Mn/Ca ratios, which were calculated to 

assess preservation, with those displaying a value exceeding 100 ^mol/mol excluded from 
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further analysis, since McArthur (1994) considers this to be the lower limit for samples 

that have experienced alteration under reducing conditions. 
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Figure 6.9 Cross-plots of S'*"© against (A) Mg/Ca, (B) Sr/Ca, (C) Na/Ca and (D) Li/Ca. 

Cross-plots of El/Ca against 5 O for the Helmsdale belemnites show no 

statistically significant correlations (Fig. 6.9). The maximum value recorded here was 

0.190 for Li/Ca and the lowest value recorded here is between 5*^0 and Sr/Ca, which 

according the McArthur et ai (2000) and Bailey et ai (2003) should be one of the 

strongest correlations. Mg/Ca and Sr/Ca are commonly considered to be the most 

appropriate El/Ca ratios with which to assess palaeotemperature and R̂  values for these 

ratios when plotted against S'̂ O are commonly in the region of 0.5 (e.g., McArthur et ai, 

2000; Bailey et al, 2003). The R̂  values observed for these correlations here however are 

0.178 for Mg/Ca and 0.064 for Sr/Ca. This lack of correlation could be the result of the 
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relatively static nature of the S'̂ O record during the Kimmeridgian. No distinctive long-

term trend is discemable for much of this period and the record displays some degree of 

scatter. This may go some way towards explaining the lack of covariance observed in this 

succession (much like the Staffin Bay succession). 

There are no distinctive long-term trends in the El/Ca records (Fig. 6.10). The 

Mg/Ca, Na/Ca and Li/Ca records are particularly noisy, which may act to obscure a long-

term trend i f one were present. Some of the observed scattered may be attributed to taxon 

or ontogenetic variations in the biological regulation of trace elements. For example, 

foraminifera display an Mg/Ca inter-species offset of <l .5 mmol/mol (Lear et ai, 2002; 

Billups & Schrag, 2003; Rosales et al., 2004a). Such processes may be superimposed on 

the temperature control to contribute to the scatter of the data. 

Previous studies have shown that Mg/Ca ratios are likely to be controlled mostly by 

temperature (e.g., McArthur et al., 2000; Bailey et al., 2003; Rosales el al., 2004a, b), 

whilst Sr/Ca ratios are likely to be more significantly influenced by salinity, growth rate 

and metabolic activity (Klein et a!., 1997; Rosales et al., 2004a). The palaeotemperatures 

calculated using the Klein et al. (1996) equation for molluscan Mg/Ca ratios are shown in 

Figure 6.7. 

The palaeotemperature range calculated from the Mg/Ca ratios is -1.7 to 24.7°C, 

with an average palaeotemperature for the Kimmeridgian of 5.0°C. The offset observed 

between average 6 O and Mg/Ca derived temperatures is on average 10.8°C (compared 

with an offset of 8.6°C recorded from Staffin Bay). I f this temperature difference was 

interpreted solely as the result of salinity input influencing the S'̂ O record it would require 

a change in salinity from 34 %o (normal marine conditions) to 24.1 %o, which seems 

intuitively unlikely as modem Sepia have only occasionally been caught in water with a 

salinity of down to 29 %o (Schafer, 1972; Wierzbowski, 2004). A similar technique was 

employed by Bailey et al. (2003) to investigate the influence of salinity on S'̂ O derived 

belemnite palaeotemperatures. Bailey et al. (2003) calculated a change in temperature 
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Figure 6.10 El/Ca ratios from ihe Kimmeridgian succession at Helmsdale and Ealhie, Sutherland, Scotland. 
Boreal British ammonite zones are illustrated here, however, it should be noted that the Upper ICimmeridgian 
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across the Toarcian Ocean Anoxic Event (OAE) from both S'̂ O and Mg/Ca, although their 

Mg/Ca temperature values were calculated using the equations of Dv^er et al. (1995), 

Elderfield & Ganssen (2000) and Lear et al. (2002) for foraminifera and ostracodes. They 

calculated a ~6°C warming, associated with a substantial freshening of seawater during the 

OAE event. The use of these equations seems inappropriate however, given that a 

mollusc-derived equation (that of Klein et al. (1996)) also exists. 

The lowest palaeotemperatures recorded here occur during the Upper 

Kimmeridgian Pectinatus to Fittoni zones in both the Mg/Ca and 5'^0 records. However, 

the sub-freezing temperatures calculated from the Mg/Ca ratios for this time are impossible 

since marine cephalopods could not live in these conditions. Immenhauser et al. (2005) 

question the validity of applying the Klein et al. (1996) temperature equation to fossilised 

skeletal calcites. They suggest that it may only be appropriate for temperatures in the 

range of 5-23°C where the temperature-Mg relationship is linear and go on to suggest that 

the utility of Mg/Ca ratios may be limited by the ion regulating capability of the animals 

being considered. The data presented here lends support to the idea that the application of 

the Klein et al. (1996) palaeotemperature equation should be used with caution. 

6.5.4. The Carbon Isotope Record 

The marine carbonate 5'^C record shows a distinctive long-term trend towards 

more negative values throughout the Kimmeridgian (sensu anglico) interval (Fig. 6.7). 

Typical Early Kimmeridgian Cymodoce Zone values range between 1.3 and 2.8 %o 

compared with Late Kimmeridgian Pectinatus-Fittoni Zone values of -2.2 to -0.4 %o. This 

trend is observed here despite some scatter in the belemnite data. The scatter however is 

consistent with that observed in other belemnite records (e.g.. Bailey et al., 2003; 

McArthur et al., 2004; Rosales et al., 2004a, 2006; Price & Mutteriose, 2004; 

Wierzbowski, 2004). 
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A gradual shift to more negative 5'^C values as observed here requires a continued 

input of ' 'C to the oceanic carbon reservoir and consequently the incorporation of '^C into 

the belemnite calcite. A decrease in 5'^C ratios could be caused by upwelling of cold 

bottom waters enriched in ' 'C (Kuspert, 1982; Price & Grocke, 2002), methane release 

from the dissociation of gas hydrates (e.g., Dickens et ai. 1995; Padden et al.. 2001), 

volcanism (e.g., Hesselbo et al.. 2002), or low carbon burial rates (Weissert & Erba, 2004). 

The input of isotopically light carbon observed here is possibly associated with a 

relative sea-level fall (Voigt & Helbrecht, 1997), during which ' 'C could be released by the 

weathering, erosion and oxidation of organic-rich sediments (Voigt & Helbrecht, 1997; 

Price & Grocke, 2002). A eustatic sea-level fall has been proposed for the latest Jurassic-

eariiest Cretaceous (e.g., Haq et al.. 1987; Hallam, 1992) and ^̂ Sr/**̂ Sr ratios rise 

throughout the Kimmeridgian (e.g., Jones et al., 1994a; Veizer et al.. 1999; Jenkyns et al.. 

2002) potentially indicating increased continental weathering, although this trend could 

also be attributed to decreased activity at ocean ridges (Price & Grocke, 2002). 

6.5.5. K i m m c r i d ^ i a n Stable Isotope Records 

Figure 6.11 Kimineridgian palaeogeography map showing published belemnite derived palaeotemperatures 
for this time period. (SB = StafTin Bay [Kimmendgian data only]; HL = Helm.sdale and Eathie). 
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The S'̂ O composition of belemnite calcite from the Helmsdale coast region was 

considered earlier in this chapter in terms of paiaeotemperature, with the Anderson & 

Arthur ( 1 9 8 3 ) equation regarded as the most appropriate with which to perform the 

temperature calculations. The ICimmeridgian temperatures calculated here ( 9 . 1 - 2 4 . 0 ° C , 

average 1 5 . 8 ° C ) are generally consistent with palaeotemperatures calculated from 

published belemnite-derived oxygen-isotope data (Fig. 6 . 1 1 ) . The highest 

paiaeotemperature values predicted here are consistent with those previously published, 

which commonly predict temperatures in excess of 20°C. The lowest values recorded 

here agree with the data produced by Ditchfield ( 1 9 9 7 ) , which is the one of the highest 

latitude datasets published and is the only other study to predict palaeotemperatures this 

low for the ICimmeridgian. 

Typical belemnite derived Kimmeridgian S ' ^ C values range from -1 to 2 %o (Price 

& Grocke, 2 0 0 2 ; Grocke et ai, 2 0 0 3 ) . The range of ratios observed here however is 

slightly greater with values of between - 1 . 7 6 and 2 . 9 6 %o recorded. The gradual shift (of 

- 5 %o) to more negative carbon-isotope values observed here from the Helmsdale 

belemnites has also been recorded from other Kimmeridgian-Tithonian successions and 

has been shown to continue through the latest Tithonian and into the Early Berriasian (e.g., 

Weissert & Mohr, 1996; Weissert et al., 1998; Bartolini et ai, 1999; Cecca et al., 2 0 0 1 ; 

Padden et al., 2 0 0 2 ; Price & Grocke, 2 0 0 2 ; Grocke et al., 2 0 0 3 ; Weissert & Erba, 2 0 0 4 ) 

(Fig. 6 . 12 ) . Such data have been compiled from predominantly bulk rock data from 

successions in Italy, SwitzeHand and France, although belemnite data have also been 

obtained from New Zealand and the Falkland Plateau (Price & Grocke, 2 0 0 2 ; Grocke et 

al., 2 0 0 3 ) . The record presented here is the first high resolution record of the 

Kimmeridgian decrease documented from a relatively high latitude in the northern 

hemisphere. The fact that this pattern is observed in the Tethyan region and in the northern 

and southern high latitudes suggests that the total carbon reservoir was affected by global 

conditions. 
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Fitiure 6.12 Kimmeridgian 6"C correlation between a composite Tethyan 6"Cbuik curve and the d'^C curve 
from Helmsdale. Boreal British ammonite zones are illustrated here for the Helmsdale succession and scale 
is in metres. Timescale correlation is from Gradstein et al. (2004). See Figure 4.2 for key to log symbols. 

The general decline to more negative values observed during the 

Kimmeridgian and Tithonian has been associated with a shift from silica-rich to carbonate-

rich pelagic deposition (Weissert & Channel, 1989; Padden et a/.. 2002; Weissert & Erba, 

2004). This expansion of carbonate sedimentation is believed to be the result of decreased 

sea floor spreading and an accompanying drop in global sea level (e.g., Haq et al.. 1987), 

which would have led to a deepening of the calcite compensation depth (CCD) (Weissert 

& Channel, 1989). A relative fall in sea level could result in the weathering, erosion and 

oxidation of newly exposed organic-rich sediments, during which ' 'C would be released. 
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Such a situation creates a paradox however, since increased weathering can also be 

associated with increased nutrient supply rates, increased oceanic productivity and 

therefore a positive carbon-isotope excursion (Price & Grocke, 2002). It is postulated that 

the effect of the erosion of organic-rich sediments on the b^^C record at this time must be 

greater than the effect of increasing productivity. Substantial organic-rich deposits have 

been recorded from the ICimmeridgian-Tithonian, for example the ICimmeridge Clay 

Formation. Morgans-Bell ei ai (2001) record very high TOC levels (up to 30 wt %) from 

the Kimmeridge Clay Formation in Dorset, with the highest values occurring in the 

Eudoxus-Pectinatus zones and coincident with a positive S'^Corg excursion. The erosion of 

these Kimmeridge Clay deposits i f exposed, could account for a significant release of '^C 

and a negative carbon isotope excursion, although, the exposure of much older black shales 

is more likely. The observed decrease in S'^Ccajb values from Helmsdale in the Early 

K-immeridgian however, is difficult to account for, since a synchronous increase in S'^^Corg 

values is observed from Dorset (Morgans-Bell et al., 2001), although, this could be a local 

signal. 

An increase in continental weathering is recorded during the Kimmeridgian-

Berriasian interval, as indicated by rising '̂Sr/^^Sr values (e.g., Jones et al., 1994a; Veizer 

et a!., 1999; Jones & Jenkyns, 2001; Jenkyns et a/., 2002) and would serve to increase 

transfer rates of alkalinity (carbonate) from the continents and into the oceans, potentially 

lowering atmospheric CO2 levels (Robinson et ai, 2002; Weissert & Erba, 2004). 

Weissert & Channell (1989) suggest that the decrease in atmospheric CO2 levels would 

have ultimately resulted in a decelerated hydrological cycle and therefore decreased 

productivity in parts of the Atlantic and Tethys Oceans. 

6.5.6. Correlation of the Helmsdale & Staffin Bay Isotope Records 

Helmsdale and Staffm Bay were situated at approximately the same palaeolatitude 

(-45°N) during the Late Jurassic (Smith et al., 1994). It has been proposed that the 
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Hebrides Basin (in which Staffin Bay is situated) and the Moray Firth Basin (in which 

Helmsdale is situated) experienced coeval development as the result of activity along 

major onshore faults (Underbill, 1991; Wignall & Pickering, 1 9 9 3 ; Hesselbo & Coe, 

2 0 0 0 ) . As the development of these two basins was linked (i.e., the water masses were 

connected) it should be possible to correlate and combine the stable isotope records 

produced from the Helmsdale and Staffin Bay successions. The compilation of these two 

datasets then provides an almost complete carbonate isotope record from the Middle 

Callovian to Latest ICimmeridgian (sensu anglico) of Northern Scotland. 

In order to assess the validity of this approach, isotope values from overlapping 

parts of the different successions were compared. These were the Lower Callovian 

Koenigi Zone and the Lower Kimmeridgian Cymodoce Zone deposits. The Koenigi Zone 

is represented on the Isle of Skye by the Belemnite Sands Member, a sandy glauconitic 

facies with abundant belemnites towards the top of the unit. In Brora, belemnites were 

collected from the Brora Shale Member, a sandy, glauconitic unit (Early/Middle Callovian 

in age) also with abundant belemnites. The mean values of S'̂ O and S'̂ C from the Brora 

belemnite rostra were - 0 . 3 2 %o and 2 .43 %o respectively, compared with values from 

Staffm Bay o f - 0 . 3 3 %o (5*^0) and 2 .65 %o (S'^C). These values are very similar. 

For the Early Kimmeridgian {Cymodoce Zone) the average values of 5*^0 and 6'^C 

observed from Staffin Bay were -0 ,7 %o and 2 .0 %o respectively. For the Helmsdale 

belemnites, the Cymodoce Zone values were - 1 . 2 4 %o for 5*^0 and 1.88 %o for S'̂ C. The 

greater amount of offset observed between these values (compared with those from the 

Koenigi Zone) is to be expected because the Staffin Bay values represent the lowermost 

Cymodoce Zone, whilst the Helmsdale values represent the Upper Cymodoce Zone. The 

Koenigi Zone correlation, however, was undertaken on belemnites from one coeval 

horizon and therefore the offset between the isotope values is significantly lower. The 

extremely close match between the Koenigi Zone isotope values and reasonably good 

match between the Cymodoce Zone values confirms that the Helmsdale and Staffm Bay 
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successions can be combined to produce a stable isotope record from the Middle Callovian 

to uppermost ICimmeridgian from this region. 

The combined Helmsdale and Staffin Bay carbonate isotope data (Fig. 6 . 1 3 ) show a 

long-term trend of relatively static values (on average between 2 -3 %o) through the 

Early and Middle Oxfordian followed by a shift to more negative values during the Late 

Oxfordian and into the Kimmeridgian. Despite a brief positive fluctuation in the Early 

Kimmeridgian (Baylei-Cymodoce zones) S'̂ C values continue to decrease throughout the 

Kimmeridgian (to values as low as - 2 .25 %o). The S ' ^ O curve shows a considerable 

amount of scatter, however despite this noise a very slight, gradual shift to less positive 

values throughout the Oxfordian and into the Early Kimmeridgian is discemable (from 

values of 1.43 %o to - 2 . 8 4 %o). From the EaHy to mid-Kimmeridgian a gradual return to 

more positive values is inferred ( 0 .78 %o). 

6.6. Conclusions 

• The data presented here comprise the first relatively high-resolution stable isotope 

investigation of marine biogenic carbonate (belemnites) from the Helmsdale coast, 

Sutheriand, Scotland. 

• The average paiaeotemperature derived from the Helmsdale 5*^0 record (using the 

Anderson & Arthur ( 1 9 8 3 ) equation) was 1 5 . 8 ° C and the paiaeotemperature range was 

9.1 to 2 4 . 0 ° C for the Kimmeridgian interval. This corresponds well with the Callovian-

Kimmeridgian paiaeotemperature data derived from belemnites from the Staffin Bay 

succession, Isle of Skye (6 .7°C to 20 .6°C, average I2 .4°C) . The Helmsdale 

paiaeotemperature data is also consistent with previously published literature on the 

Kimmeridgian-Tithonian, particularly with regards to low palaeotemperatures recorded 

from the northern high latitude region (e.g., Ditchfield, 1 9 9 7 ) . 

• Mg/Ca derived paiaeotemperature estimates range from - 1 . 7 to 2 4 . 7 ° C , with an average 

paiaeotemperature for the Kimmeridgian of 5.0°C. Records of sub-freezing 
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temperatures are impossible however, because marine cephalopods could not live in 

these conditions. This casts doubt on the use of the Klein et ai (1996) Mg/Ca 

palaeotemperature equation when applied to fossilised skeletal calcite. 

The marine carbonate 5'^C record shows a distinctive long-term trend towards more 

negative values throughout the Kimmeridgian. This input of isotopically light carbon is 

coincident with a relative sea-level fall during which '^C would be released by the 

weathering, erosion and oxidation of organic-rich sediments. 

The shift to low 5'^C values during the Kimmeridgian is also recorded from the Tethyan 

region and the northern and southern hemispheres. The Helmsdale data provide the first 

documented record of this pattern from a northern high latitude site. The widespread 

occurrence of this event suggests that the total global carbon reservoir was affected. 

The Helmsdale and Staffin Bay (Chapter 5) carbonate isotope data are correlated and 

combined here to produce an almost complete succession from the Middle Callovian to 

uppermost Kimmeridgian of northem Scotland. This is possible because the Hebrides 

and Moray Firth Basins experience coeval development during the Late Jurassic. This 

is confirmed by the almost identical 6'^C and 5'^0 values recorded from Lower 

Callovian Koenigi Zone belemnites from both successions. 
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Plate 4. Caihodolumincsccncc images show ing Ihc stale of prcserv ation of belemniie rostra froin Helmsdale. 
Scotland All scale bars rcprescni 1 imn (A) Rostrum inargm displa>ing alteration (B) Fracture infilled b> 
diagenetk cement (C) Fracture aixl grouih lines displa>ing alteration (D) Fractures and growth lines 
displacing alteration (E) Fractures and growth lines displacing alteration (F) Fractures eminating from 
apical canal and showing alteration (G) Apical canal with sediment infilling and some fine fractures (H) 
Hca\ il> altered growth bands surrounding the apical canal 
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P L A T E S 

Plate 5. Backscaticrcd SEM linages showing the slate of preservation of belemnite rostra from Helmsdale. 
Scotland All scale bars represent lengths staled on images (A) Well preserved calciie sho\ung little 
alteration along fracture (B) Well preserved cjilcite (C) Shghl alteration along gro%\ih bands (D) Fracture 
ninning through apical canal (E) Faint alteration around apical canal region (F) Apical canal and 
sunounding growth lines displa\ing alteration (G) Borings and fractures at rostrum margin (H) Fractures 
sliowing little alteration 
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P L A T E 6 

Plate 6. Caibonalc stained nnagcs showing the state of preservation of bclcmnite rostra from Hclmsdiilc 
Scotland All scale bars icprcscnt I mm (A) Vers ucll prcscned calcilc u ith famt alicratron at margm edge 
(B) Rostrum margin with some p>ritisation (C) Rostmm nwrgm with altcmtron along fractures and growth 
lines. (D) Wide fracture infilled with diagenetic cement (E) Gcncralh well prcscned calcite. (F) Fracture 
and sections of adjacent growth bands displa> ing alteration (G) Fractures eminating from apical canal. (H) 
Apical canal w ith sediment infilling surrounded b> some areas of alteration 
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7. BOYARKA RIVER, YENISEI-KHATANGA BASIN, 
SIBERIA 

7.1. Location & Site Description 

The Boyarka River lies within the Yenisei-Khatanga Basin of northern Central 

Siberia, south of the Taymyr Peninsula (Fig. 7.1). The section of the river considered here 

is located at -70°N and is approximately 300 km south of the town of Khatanga. In total 

five major sites were examined along a 15 km stretch of river. These sites were also the 

main ones visited during the study of Shulgina et al. (1994). The exposures were generally 

low river-side clifTs cut perpendicular to strike and composed predominantly of soft sands 

or silty-sands (Fig. 7.2). 

Figure 7.1 Location map of the Boyarka River, northern Central Siberia. The location of the Boyarka River 
is shown (left) together with the relative positions of each of the sites examined (right). 

The composite Boyarka River section is approximately 300 m thick and ranges in 

age from the Ryazanian (Kochi Zone) to the Early Valanginian {Bojarkensis Zone). 
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Figure 7.2 River-side cliff exposure typical of the Boyarka River, northern C entral Siberia (location KHI-4, 
L'pper Valanginian, Bidichotomus Zone). 

7.2. Geological Setting 

The Yenisei-Khatanga Basin is a trough on the northeastern branch of the West 

Siberian rift system (Khain et al.. 1991) (Fig. 7.3). It is bounded to the west by the West 

Siberian Basin, to the north by the Taymir fold belt and to the south and southeast by the 

East Siberian Platform (Aplonov, 1995; Vyssotski et al.. 2006). It is worth noting, that all 

of these areas are known to have been affected by the emplacement of flood basalts from 

the East Siberian Traps at -250 Ma (the Permo-Triassic boundary), at which time basalts 

would also have extended from northeastern Siberia into the Barents and Kara seas 

(Vyssotski et al.. 2006). 

During the Middle Triassic, the Yenisei-KJiatanga Rift experienced a period of 

inversion, where compression replaced rifting, to produce inversion structures in which oil 

and gas zones would later accumulate (Khain et al.. 1991). O'Reilly et al. (2005) describe 
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the Jurassic to Cretaceous evolution of the Yenisei-Khatanga Basin. They report a period 

of Jurassic rifting, followed by terrane collisions in East Siberia during the Valanginian to 

produce the Laptev Sea and Verkhoyansk fold belts. This collision diverted continental 

drainage systems towards the Yenisei-Khatanga Basin, where there was a resulting influx 

of sedimentation until the extensional fold belt collapse of the Barremian (O'Reilly et ai, 

2005). 
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Figure 7.3 Simplified geological map of the Yenisei-Khalanga Basin and surrounding areas. Adapted after 
Vyssolski et al. (2006). 

The basement of the Yenisei-Khatanga trough consists of Archean-Proterozoic 

igneous and metamorphic rocks similar to those of other Siberian Platform regions 

(Semenovich et al.. 1973). Jurassic to Paleogene deposits in the Yenisei-Khatanga Basin 

reach a thickness of 7 km (Vinogradov et al., 1973), with the Jurassic to Cretaceous 
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Figure 7.4 Sedimentary log and photographs of the Boyarka River succession. (A-E) described m text. 
Boreal (Russian) ammonite zones are illustrated. See Figure 4.2 for key to log symbols. Scale is in metres. 
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elements of the sedimentary epirift complex well known for their oil and gas potential 

(e.g., Semenovich et al., 1973; Khain et al., 1991; O'Reilly et al., 2005). The Lower 

Cretaceous Boyarka River sediments are dominated by sandstones, clays and siltstones of 

shallow marine origin (Fig. 7.4). Exposure is generally good where outcrops exist, 

however, there are large breaks in the continuity of the Ryazanian to Hauterivian sequence 

where no viable outcrops could be identified. The Ryazanian {Kochi, Analogiis and 

Meseshnikom ammonite zones) sediments are approximately 30 m thick and are 

dominated by grey silty clays with occasional concretions or limestone bands (Fig. 7.4a). 

There are -10m of very poorly exposed sediments occurring during the Analogits Zone, 

however, the sediments above and below this gap appear to be the same grey silty clays. 

Fossilised wood fragments and belemnites are common throughout the Ryazanian. 

After a break in exposure of -25 m (estimated using dip and strike) the Lower 

Valanginian (Klimovskiensis and Stubendorffi zones) sediments are exposed. They are 

composed of approximately 120 m of sands and silts, although the exposure of the -60m in 

the middle of the succession is very poor. The basal Valanginian sediments are 

predominantly sandstones, although occasional thin claystone beds are also present. The 

sandstones are green in colour and display some cross-bedding. Isolated concretions and 

concretionary layers are distributed throughout the succession. Large bivalve (Mcleania) 

shells are particularly common in the Lower Valanginian, either isolated or in stacks and 

crinoid ossicles are also present in a lower Klimovskiensis Zone shell bed (Fig. 7.4b). 

Bioturbation is common (distinct Rhizocorallium-\\kt burrows are present in the 

Klimovskiensis Zone shell bed together with the crinoid ossicles) and fragments of wood 

and coal are distributed throughout the Lower Valanginian succession. 

The Upper Valanginian {Bidichotomus Zone) sediments were exposed after a 

break in outcrop of -90 m and are approximately 20m thick. These sediments are 

predominantly clayey sands or sands that are generally pale grey in colour but mottled red 

in places from iron-staining (Fig. 7.4c). Thin, dark grey clay layers (<3m in thickness) are 
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commonly interbedded with the clayey sands and sandstones. At the bases of the claystone 

layers small tabular concretions and belemnites are relatively common. 

The Lower Hauterivian {Bojarkensis Zone) section continues on from the Upper 

Valanginian succession without a break in outcrop. The Hauterivian succession is 

approximately 60m thick and composed of pale grey/green sandstones and clayey sands. 

The sandstone units are occasionally cross-bedded and often display some degree of iron-

staining giving them a mottled orange/red appearance in places (Fig. 7.4d). Large isolated 

concretions, although rare, do occur towards the top of the succession. Condensed clay 

layers with small concretions at the base (and occasional belemnites) occur relatively 

regularly (at an interval of -15m) in the Hauterivian section. Large bivalves (Mcleania) 

are distributed throughout the succession (Fig. 7.4e). Beds are often locally bioturbated 

and fossilised wood fragments are common (including large fossilised tree branches, 50 

mm in diameter) particularly towards the base of the succession. 

7,3. Sampling & Methodology 

The five major Boyarka River outcrops form a succession from Early Ryazanian 

(Kochi Zone) to Early Hauterivian {Bojarkensis Zone) in age. Samples were taken from 

210 different horizons throughout this succession. This included 64 belemnite horizons 

(Fig. 7.5) and 150 fossilised wood horizons (Fig. 7.5). Wherever possible multiple 

samples were taken from a horizon. The Boyarka River was visited for a three week 

period in August 2004. 

Once again, belemnite rostra were assessed for preservation by stable isotope and 

trace element analysis, backscattered scanning electron microscopy (BSEM), 

cathodoluminescence (CL) and carbonate staining. Areas prone to diagenesis were 

removed prior to isotopic and trace element analysis. 
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Figure 7.5 Belemnites and macroscopic wood from the Boyarka River succession. (A) Belemnile from the 
Meseshnikowi Zone (location KH17). (B) Belemnite from the Kochi Zone (location KH16). (C) Wood from 
the Klinunskiensis Zone (location ICH13). (D) Wood from the Bidichotomus Zone (location KHl-4). 

Stable isotope analysis was conducted on a Multitlow automated carbonate 

preparation module with Gilson 222XL autosampler, interfaced with an Isoprime isotope 

ratio mass spectrometer (GV Instruments, UK), at the University of Plymouth, UK. Trace 

element data were generated by Inductively Coupled Plasma-Atomic Emission 

Spectrometer (ICP-AES) using a Perkin Elmer Optima 3300RL ICP-AES system (with 

aulosampler) at the NERC ICP facility. Department of Geology at Royal Holloway, 

University of London. 

Representative macroscopic wood samples were photographed by scanning 

electron microscopy (SEM) on the University of Plymouth's JEOL 5600 SEM. In total 

184 fossil wood samples were analysed for carbon-isotope ratios. Samples were treated 

with 5% HCl to remove any carbonate material and rinsed with deionised water before 

being oven dried and powdered with an agate pestle and mortar. Samples were analysed 
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by Dr Darren Grocke at McMaster University, Ontario, Canada, where samples were 

measured on a SIRA II Series 2 dual-inlet isotope-ratio mass-spectrometer for isotopic 

analysis. For a ful l description of methodology see Chapter 4. 

7-4. Results 

The belemnites sampled from this succession were of the Boreal genera 

Cylindroteuthis, Acroteuthis, Pachyteuthis and Lagonibelus. Most of the belemnites were 

composed of translucent calcite and retained the primary concentric banding that 

characterise belemnite rostra. Several specimens exhibited endolithic borings around the 

rostrum margins. BSEM, CL and carbonate staining analysis was conducted on 14 

specimens (Plates 7-9) in order to identify the areas of the rostrum that were particularly 

prone to diagenetic alteration (e.g., the rostrum margins, the area surrounding the apical 

canal, well-developed fractures and strong growth bands). Such areas tended to be Fe-rich 

and were sometimes subjected to partial replacement by pyrite. These areas were removed 

prior to sampling or were avoided. 
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Figure 7.6 Cross-plols of S'^O against Fe (left) and Mn (right). The dashed lines indicate the cut off values 
for well preserved samples. 

The concentrations of Fe and Mn were determined to provide an additional means 

of assessing preservation. The Fe and Mn values derived from the Boyarka River 

belemnites were 3-52 ppm, mean 9 ppm (for Fe) and 2-149 ppm, mean 11 ppm (for Mn). 
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Fe and Mn data were plotted against 5*^0 to constrain any diagenetic alteration (Fig. 7.6). 

High values of Mn or Fe and occasional outliers with regards to S'̂ O values were regarded 

as an artefact of diagenetic alteration. Relatively low values of Fe (<150 ppm) and Mn 

(<100 ppm) were recorded from most of the Boyarka River belemnites, with only 1 sample 

excluded from further analysis. 

Elemental abundances for additional trace elements are as follows: Sr 925-1701 

ppm, mean 1187 ppm, Mg 297-1817 ppm, mean 876 ppm and Ca 28 % - 32 %, mean 30 

%. The oxygen and carbon isotope values for well preserved Boyarka River belemnites 

range from -1.71 to 2.83 %o and from -1.07 to 4.24 %o respectively (Fig. 7.7). The oxygen 

isotope data from this location show a significant amount of scatter, for example the Lower 

Ryazanian (Kochi to Analogiis zones) data show a c. 4.5 %o variation (from -1.71 to 2.83 

%o) compared to a c. 2.0 %o (from -1.07 to 0.96 %o) variation in the concurrent carbon 

isotope values. The most positive oxygen isotope values are observed during the Lower 

Ryazanian (2.83 %o). The carbon isotope data demonstrate an overall trend of increasing 

values from the Ryazanian and into the Lower Hauterivian, with a peak during the Upper 

Vaianginian Bidichotomus Zone where values range from 1.68 to 4.24 %o. After the 

positive carbon isotope excursion observed during the Upper Vaianginian, carbon isotope 

values drop to a range of 1.00 to 1.72 %o in the Lower Hauterivian. The most negative 

carbon isotope values occur in the Lower Ryazanian {Kochi to Analogus zones) and are 

coincident with the most positive oxygen isotope values, although, a cross-plot of S'̂ O vs. 

reveals no statistically significant correlation (Fig. 7.8). 

Macroscopic wood samples were identified as charcoal (43 samples), charcoal-coal 

(51 samples) or coal (61 samples) where possible and representative samples were 

photographed by SEM (Plates 10-11). The range of preservation did not have a significant 

impact on the overall long-term S'̂ Corg curve (as previously demonstrated by Hesselbo et 

a/., (2003) and Grocke et a!., (2005)). Identification of the wood to a generic or specific 

level was not undertaken. The organic carbon isotope ratios derived from these fossilised 
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Figure 7.7 6"Co,g, 6"Cc«rt„ and 6"*Oc.rt. records from the Ryazanian-Lower Haulerivian Boyarka River 
succession, northern Central Siberia. Calculated palaeotemperatures and sea level are also shown. Boreal 
(Russian) ammonite zones are illustrated. See Figure 4.2 for key to log symbols. Scale is in metres. 
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wood samples range from - 2 7 . 2 0 to -21 .21 %o (Fig. 7 .7 ) . The most negative 5'^Corg values 

occur during the Upper Ryazanian to Lower Vaianginian (Kochi to Klimovskiensis zones), 

with a range from - 2 7 . 2 0 to - 2 3 . 7 4 %o, average - 2 4 . 9 3 %o. Upper Vaianginian to Lower 

Hauterivian {Bidichotomus to Bojarkensis zones) S'^^Corg values are in the range of - 2 5 . 7 0 

to -21.21 %o, average - 2 3 . 7 5 %o. These are the most positive S'^Corg values in the 

succession. The S'^Corg curve shows a long-term increase in values from the Upper 

Ryazanian to Lower Hauterivian, although, the increase in values is only small (< - 2 %o). 

A large positive carbon isotope excursion, like that observed in the 5'^Ccarb record (of - 4 

%o), is not identified in the S'^Corg record. The amount of scatter present in the Boyarka 

river wood data is similar to that observed in previous comparable studies (e.g., Grocke et 

al., 1999 , 2 0 0 5 ; Robinson et ai, 2 0 0 4 ) . 
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Figure 7.8 Cross-plot of S'̂ O and values derived from belemnites from the Boyarka River succession, 
northern Central Siberia. 
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7.5. Discussion 

7.5.1. Stable Isotope, Geochemical 8c Taxonomic Records 

McArthur et al. (2004) suggested that taxonomic ditTercnces may influence stable 

isotope (particularly oxygen) and trace element records. The data presented here, 

therefore, highlight the different belemnite genera (Figs 7.7 and 7.9) from which such 

measurements were taken in order to assess the potential influence of genus-specific 

differences in fractionation. 
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Figure 7.10 Close-up of the Ryazanian Kochi-Analogus zones, Boyarka River, northern Central Siberia. 
6' O record shown. Boreal (Russian) ammonite zones are illustrated. See Figure 4.2 for key to log symbols. 
Scale is in metres. 

In neither the isotope nor elemental records does one genus consistently record 

either more negative or more positive values than any other genus, although co-occurring 
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belemniles of different genera are rare, making this difficult to assess with confidence. 

Perhaps the most striking taxonomic factor observed here is the high level of variability 

present in Cylindroteuthis specimens, particularly with regard to the 5*^0 record. Values 

derived from Cylmdroteuthis specimens almost always exceed both the highest and lowest 

values recorded from other genera where both occurr in close proximity. The most notable 

example of this is in the Early Ryazanian Kochi-Analogns zones. The Cylindroteuthis 

S'̂ O values for this period range from -1.71 to 2.83 %o compared with values of between -

1.10 and 0.90 %o recorded from other genera (Fig. 7.10). This variability could be 

attributed to several factors, firstly to the abundance of Cylindroteuthis specimens 

compared to other genera, which are recording real and significant fluctuations of 

temperature or salinity or it could be the result of habitat and/or migration differences 

compared to other the genera. Interestingly, Cylindroteuthis is the only belemnite that is 

believed to have been able to withstand relatively deep water depths of down to 400m 

(compared to maximum water depths of 50-200m for other genera) (Westermann, 1973). 

The observed variability in the isotope and elemental records could, therefore, be the result 

of increased vertical migration within the water column compared to the other genera. 

This would account for the increased variability observed in the S'̂ O record as the result of 

temperature fluctuations relating to water depth. 

7.5.2. The Oxygen Isotope Record & Palaeotemperature Implicarions 

The S'̂ O record derived from belemnites of the Boyarka River displays a 

considerable amount of scatter. The Lower Ryazanian interval for example, shows a -4.5 

%o range of values (fi-om -1.7 to 2.8 %o). This degree of scatter is greater than would 

usually be expected for belemnite isotope data and is likely to be related to the shallow 

nature of the succession. It is also in part, probably the result of the condensed nature of 

the lower part of the Boyarka River succession. The succession becomes more expanded 

in the Valanginian and Lower Hauterivian and the scatter becomes less pronounced. 
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No long-term trend in the oxygen-isotope curve is discemable here, possibly as the 

result of the degree of scatter present in the data. The average oxygen-isotope value for the 

whole Lower Cretaceous succession is 0.45 %o and the data fluctuate about this value. 

Assuming that the oxygen-isotope record presented here primarily reflects changes in 

environmental conditions (temperature and salinity) rather than taxonomic or diagenetic 

processes a palaeotemperature estimate can be attempted. The problems associated with 

belemnite derived palaeotemperature estimates are discussed in previous chapters and so 

wil l not be repeated here, although, it must be acknowledged that any calculations 

presented can only be considered as a guide to the potential palaeotemperatures rather than 

definitive values for the region. 

Figure 7.7 shows the seawater palaeotemperatures calculated using the Anderson & 

Arthur (1983) S ' ^ O equation. An isotopic composition of -1 %o SMOW was assumed for 

non-glacial seawater, which is consistent with previously published literature on the 

Cretaceous period (e.g., Pirrie & Marshall, 1990; Podlaha et al., 1998; Price & Mutteriose, 

2004). The average palaeotemperature calculated using 5'^0 for the Boyarka River was 

10.6°C and the palaeotemperature range was 2.1 to 19.0°C for the Ryazanian to 

Hauterivian interval. Both the lowest and highest palaeotemperanires occurred during the 

Lower Ryazanian Kochi to Analogits ammonite zones. These values are slightly higher 

than the modem temperature range for the region, which Polyak et a!. (2003) estimate to 

be around -1 to 12°C based on foraminiferal isotope studies in the Kara and Pechora seas. 

Published belemnite derived palaeotemperatures for the Lower Cretaceous are consistent 

with those presented here. Van de Schootbrugge et ai (2000), for example, infer Early 

Valanginian temperatures of - I 5 ° C from France and McArthur et al. (2004) record values 

o f - 1 rC at the base of the Hauterivian in England. Price & Muttedose (2004) recorded a 

range of 7.0 to 2I.4°C for the Volgian-Valanginian from the Yatria River in Siberia. The 

Yatria River was located at an Eariy Cretaceous palaeolatitude of 60-65°N (Price & 
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Mutterlose, 2 0 0 4 ) , which is 5 - 1 0 ° south of the Boyarka River. A difference in 

palaeotemperature of - 2 . 5 - 5 . 0 ° C between these palaeolatitudes seems reasonable. 

The most positive S'^O value observed here (and therefore the most likely to 

represent the coolest palaeotemperature) is 2 .8 %o. According to the temperature-salinity 

model constructed by Railsback et al. ( 1 9 8 9 ) and Woo et al. ( 1 9 9 2 ) with modification by 

Price & Mutterlose ( 2 0 0 4 ) this value corresponds to a palaeotemperature o f 2.1°C, when a 

normal marine salinity (of 34 %o) is assumed (Fig. 7 . 1 1 ) . However, Roche et al. ( 2 0 0 6 ) 

modelled 6"*Oscawatcr values in past warm climates and several of their models indicated 

that 6'**Oj,u values could reach approximately - 1 . 5 %o in the Arctic (this corresponds to a 

salinity value of - 3 2 %o). I f these new values of S'̂ O^w and salinity are considered then the 

5'*^0 value of 2.8 %o now corresponds to a palaeotemperature of 0 . 5 ° C . In order to resolve 

a S ' ^ O value of 2.8 %o for even a moderate palaeotemperature o f - I 0 ° C a marine salinity of 

- 41 %o (or a value of ~ 1.5 %o) is required, either or which seems very unlikely. 

Such positive 6'*^0 values as observed in the Ryazanian of the Boyarka River must, 

therefore, correspond to very low palaeotemperatures. 

a> 10 

32 34 

Salinity (%o) 

Figure 7.11 Temperature-salmity plot for the Boyarka River data. The continuous diagonal Imes are 
isopleths of 5"*0 values and show the possible combination of temperature and salmity that corresponds to 
calcite of a given isotopic composition and for a given isotopic composition of seawater (-1 %o). The shaded 
area shows the range of isotope values recorded from belemnite rostra from the Ryazanian-Hauterivian 
succession the Boyarka River. The dashed lines represent the values discussed in the text above. 
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7.5.3. The Elemental Records & Palaeotemperature Implications 

The rationale for, and implications of, considering El/Ca ratios together with 5*^0 

data was discussed in Chapter 5. Mg/Ca and Sr/Ca ratios are generally considered to be 

the key proxies with which to assess palaeoclimate, whilst Na/Ca and Li/Ca are of limited 

use (e.g., McArthur et ai, 2000; Bailey et aL, 2003; Rosales et al., 2004a, b). Mn/Ca 

values were calculated for each sample and only those samples with values below 100 

^mol/mol were included here, as this is the lower limit for samples that are believed to 

have been altered under reducing conditions (McArthur, 1994). 

The elemental ratios presented here (Mg/Ca, Sr/Ca, Na/Ca and Li/Ca) are quite 

noisy, however a long-term trend is apparent (Fig. 7.9). The most striking long-term trend 

observed here is that in the Mg/Ca record (and to a lesser degree also in the Na/Ca and 

Sr/Ca records). This is the relatively rapid shift to higher values during the Lower 

Hauterivian. This shift follows the 5'^C positive isotope excursion observed in both the 

organic and carbonate data. The El/Ca data is particularly noisy during the Ryazanian 

interval, probably in part, as a result of the condensed nature of the lower part of the 

Boyarka River succession (the same pattern is observed in the 5*^0 data). 

Cross-plots of El/Ca against 5'^0 record very poor correlations for the Boyarka 

River belemnites (Fig. 7.12). This may be because the S'̂ O record displays so much 

scatter. The only statistically significant correlation (at the 95% confidence level) recorded 

here is between Li/Ca and 5'^0 (R^ value, 0.253), which according to the work of Bailey et 

ai (2003) should show the least significant correlation. Both Mg/Ca and Sr/Ca display an 

inverse relationship with 5*^0 as determined using a linear regression line. This is 

consistent with published belemnite data (e.g., McArthur et al., 2000; Bailey et al., 2003; 

Rosales et al., 2004a, b) and for Mg/Ca the work of Steuber & Rauch (2005) on modem 

skeletal calcite. 

The Mg/Ca ratio is commonly considered to be one of the most accurate 

palaeotemperature proxies available, primarily because, unlike 5 O it is not thought to be 
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significantly influenced by salinity fluctuations (e.g., Klein et a!., 1996; Lear et ai, 2000; 

Bailey et a!., 2003; Rosales et al.. 2004a, b; Immenhauser et al., 2005), The absence of 

correlation between Mg/Ca and 5*^0 is therefore surprising, although this could be the 

result of several factors, such as, interspecies offset, ontogenetic variations, metabolic 

activity, salinity or temperature. Assuming however, that temperature is the major control 

on Mg/Ca ratios and that belemnites have a similar temperature sensitivity as modem 

biogenic calcites, it seems likely that salinity has had an effect on the S'̂ O record, which is 

reflected by the poor correlation. The Boyarka River succession is a fii l ly marine sequence 

(indicated by the abundant marine fauna, e.g., ammonites and belemnites), however the 

input of substantial quantities of wood suggests a very near-shore environment and fluvial, 

freshwater input from such a location would go some way to explaining a salinity effect on 

the 5'^0 record. 
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Figure 7.12 Cross-plots of S'^O against (A) Mg/Ca, (B) Sr/Ca, (C) Na/Ca and (D) Li/Ca for the Boyarka 
River belemniles. 
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Palaeotemperatures were calculated from the Mg/Ca ratios using the equation of 

Klein et al., (1996). The average Mg/Ca temperature is 2.2°C, with a range of -4.2 to 

12.8°C compared to an average temperature of I0.6°C and range of 2.1 to I9.0°C as 

calculated from the S'̂ O data (Fig. 7.7). The average offset between the 

palaeotemperature calculations is 8.4°C. Bailey et al. (2003) calculated the potential 

influence of salinity during a warming event by using estimates of Mg/Ca and 5*^0 derived 

palaeotemperamres, although different Mg/Ca palaeotemperature equations were used. A 

similar technique was followed in Chapter 6 and wil l be used again here. I f the 8.4''C 

temperature difference is interpreted solely in terms of salinity a freshening from a 

'normal' marine salinity of 34 %o to a salinity of 25.8 %o is required, although, as 

mentioned in the previous chapter, modem Sepia have rarely been caught in waters with 

salinity values below 29 %o (Schafer, 1972; Wierzbowski, 2004). An additional problem 

associated with the calculated palaeotemperature values and the assumption that Mg/Ca 

ratios represent temperature whilst S'̂ O values are assumed to represent temperature and 

salinity, is that a value of -4.2°C (the lowest value calculated using Mg/Ca ratios) is 

impossible, since marine cephalopods could not exist in these conditions. This casts 

serious doubt on the use of Mg/Ca as a palaeotemperature proxy for belemnites using the 

IClein et al. (1996) palaeotemperature calibration. 

7.5.4. The Terrestrial Carbon Isotope Record 

The wood-derived carbon-isotope ratios presented here are considered to primarily 

reflect changes in the terrestrial carbon-isotope reservoir. The limitations and reliability of 

fossil wood data were discussed in Chapter 4, where it was concluded that 5'̂ Corg values 

could be used to confidently identify long-term shifts in the composition of atmospheric 

carbon. Recognisable plant fragments (e.g., charcoal and coalified material) were used to 

construct the organic carbon isotope record presented here rather than the bulk matter 

approach (as was used for Staffin Bay, Isle of Skye). The advantages of this sampling 
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strategy (over the bulk approach) are that only terrestrial matter is collected (not marine) 

and that the effects of variation in the organic matter source component or environment are 

minimised. The validity of this technique has been demonstrated by several Mesozoic 

studies (e.g., Hesselbo et al.. 2003; Robinson & Hesselbo, 2004; Grocke et al.. 2005). The 

preservation of plant material ranged from charcoal to coal (see Plates 10 & I I ) , however 

this made no significant difference to the long-term 6*^Corg trend. Several previously 

published studies confirm the lack o f influence o f preservation on isotopic values (e.g., 

Hesselbo et al.. 2003; Grocke et al.. 2005). 

The Ryazanian-Hauterivian 6'^Corg curve from the Boyarka River succession 

records a positive carbon-isotope excursion with the maximum occurring in the Upper 

Valanginian Bidichotomus Zone (Fig. 7.7). The initiation of the positive isotope excursion 

occurs in the upper part of the Lower Valanginian Stubendorffi Zone, which is broadly 

time-equivalent to the Tethyan Campylotoxia Zone. Ryazanian to Lower Valanginian 

S'"*Corg values fluctuate between -27.2 and -23.2 %o, whilst Upper Valanginian values reach 

a maximum of -21.2 %o (Fig. 7.7). The carbon-isotope values fall gradually across the 

Valanginian-Hauterivian boundary and pre-excursion values are reached ( - -25 to -23 %o) 

in the Lower Hauterivian Bojarkensis Zone. The scatter observed in this Boyarka River 

record is consistent with the degree of scatter observed in previously published Mesozoic 

wood records (e.g., Heimhofer et al., 2003; Hesselbo et al.. 2003; Grocke et al.. 2005). 

The timing and duration of the S'^Corg positive excursion is consistent with 

previously published terrestrial data from the Crimea (Grocke e/ al.. 2005). The values 

recorded by Grocke et al. (2005) however, are - 3 %o heavier than those observed here. 

This may be the result of analysing different plant elements since modem C3 plants 

demonstrate significant variability in carbon isotope composition (< ±4 %o) between 

discrete elements (Leavitt & Long, 1991; Loader et ai, 1995; Schleser. 1999; Robinson & 

Hesselbo, 2004). In addition, lighter isotope values are commonly recorded in regions 

where soil moisture content is high. Heavier high latitude isotope values therefore seem 
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reasonable. The initiation of the excursion recorded by Grocke et ai (2005) also occurs 

slightly later (in the Tethyan Verntcosum Zone) than that observed here (assuming 

accurate correlation). Prior to the work of Grocke et ai (2005) the Upper Valanginian 

positive carbon isotope excursion had only been recorded in marine carbonates and marine 

organic matter (e.g., Lini et ai, 1992; Henning et ai, 1999; Wortmann & Weissert, 2000; 

Price & Mutterlose, 2004). The record presented here is the first Boreal Realm terrestrial 

record of this event. 

7.5.5. The Marine Carbon Isotope Record 

The 6'^Ccarb curve shows some degree of scatter, although this is consistent with 

previously published belemnite data. The lowest carbon-isotope values (-1.1 %o) occur in 

the Lower Ryazanian Kochi Zone. Values increase slightly from the Ryazanian and into 

the Valanginian until the rapid positive excursion initiated in the upper part of the Lower 

Valanginian Stuhendorffi Zone. The positive carbon-isotope excursion is of a magnitude 

of approximately 3 %o (reaching a maximum of 4.2 %o). A return towards pre-excursion 

values occurs in the Lower Hauterivian Bojarkensis Zone. 

The Upper Valanginian positive carbon-isotope excursion recorded here in marine 

carbonate from the Boyarka River can be compared to data published by Price & 

Mutterlose (2004) from the Yatria River, Westem Siberia. Price & Mutterlose (2004) also 

recorded the positive excursion from belemnites. They recorded the positive excursion 

from two sites in the Yatria River, although less positive values were observed at the 

excursion maximum (< 3.7 %o) and the excursion was of a slightly smaller magnitude (< 

-2 %o). The timing and duration of the excursion was compatible with that observed here, 

with initiation in the upper part of the Lower Valanginian and a return to pre-excursion 

values into the Hauterivian. 
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7.5.6. The Carbon Isotope Records & Ocean-Atmosphere Correlation 

As discussed in Chapter 5 the comparison of marine and terrestrial carbon isotope 

stratigraphy is essential to understanding perturbations in the global carbon cycle. Marine 

and terrestrial carbon-isotope records have been compared in a number of studies (e.g., 

Grocke et al., 1 9 9 9 , 2 0 0 5 ; Ando et al., 2 0 0 2 , 2 0 0 3 ; Hesselbo et al., 2 0 0 3 ; Robinson & 

Hesselbo, 2 0 0 4 ; Pearce et al., 2 0 0 5 ) , however such work has almost always compared 

marine and terrestrial records from different successions. This presents problems in terms 

of accurate correlation that are often difficult to overcome. Geological successions 

containing terrestrial organic matter together with marine carbonate are very rare and 

consequently coeval marine and terrestrial records are not generally published. The 

Boyarka River succession however, presents this oppormnity. 

The observed offset between the 5'^Corg and 6''*Ccarb data is approximately 2 5 %o on 

average. This is consistent with the average observed from the Staffin Bay, Isle of Skye 

data ( - 2 5 . 5 %o). These values are larger than might be expected, for example, from Poland 

and Germany ( - 2 3 %o) as recorded and discussed by Wierzbowski ( 2 0 0 2 , 2 0 0 4 ) and Pearce 

et al. ( 2 0 0 5 ) . In Chapter 5 it was hypothesised that this difference in offset was likely to be 

the result of isotopically heavier belemnite values as a result of '^C enrichment in the 

Boreal Realm, due primarily to high organic matter productivity in the partly isolated 

Boreal seas (Wierzbowski, 2 0 0 4 ) . The observed offset in the Boyarka River data lends 

further support to this hypothesis. 

The initiation of the S'^Corg and 5'^Ccarb positive isotope excursions occurs 

simultaneously in the upper part of the Lower Vaianginian Stubendorffi Zone. This 

suggests that the ocean-atmosphere system is strongly linked at this time. Previous studies 

of marine and terrestrial carbon isotope data have shown that the timing and duration of 

excursions are likely to be synchronous in terrestrial organic matter, marine organic matter 

and marine carbonate (e.g., Grocke et al., 1999 , 2 0 0 5 ) . This can now be confirmed for 

terrestrial organic matter and marine carbonate by the Boyarka River data. 
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The 6'̂ Ccarb excursion observed here is of a higher magnitude dian that of the 

5''*Corg excursion. This is quite unusual, since the magnitude of shifts in the terrestrial 

record is normally considerably greater than those in the respective marine record (e.g., 

Grocke et a!., 1999; Robinson & Hesselbo, 2004, Pearce et a!., 2005). A classic example 

of this relationship is the negative carbon isotope excursion recorded at the Palaeocene 

Eocene Thermal Maximum (PETM), where the excursion in the terrestrial record is 

approximately twice the magnitude of that observed in the marine record (e.g., Bowen et 

al„ 2004, 2006). Smith et al. (2006) hypothesise that this may be the result of an increase 

in pCOj concentrations at this time, causing increased warming and an increase in 

moisture, to which plants would respond with greater carbon isotope discrimination and 

ultimately an enhanced carbon isotope signature. 

It is interesting that the inverse terrestrial-marine relationship is observed in the 

Boyarka River succession, which is coincident with a drop in pCOi (as determined below -

see section 7.5.7). Given this relationship, it is tempting to suggest that such a drop in 

pCOi would cause plants to reduce their carbon isotope discrimination and therefore lower 

the magnitude of the S'̂ Corg excursion. The problem with this model however, is that a fall 

in pCOi should also result in increasing oceanic alkalinity, which would potentially reduce 

carbonate fractionation in the marine realm. This effect has been observed in modem 

foraminifera (e.g., Spero et al., 1997) and would presumably also lower the rate of 

fractionation in Valanginian belemnites during a drop in pC02. It is possible however, that 

changes in pCOi have a stronger or more immediate influence on the terrestrial realm, 

which may account for the reduced carbon isotope signature in plants but not in belemnites 

at this time. The usual interpretation of changes in discrimination by plants however, is 

that they have experienced a change in available moisture. The decrease in discrimination 

observed here could therefore be the result of increased water stress under drier conditions 

(Francesca Smith pers. comm.). 
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7.5.7. Ryazanian-Hauterivian Marine & Terrestrial Isotopic Records 

Published marine carbonate stable isotope records for the Early Cretaceous have 

been constructed primarily from successions in the Tethyan region (e.g., Lini et al,, 1992; 

Weissert et a/., 1998; Price et al., 2000; van de Schootbrugge et al., 2000; Weissert & 

Erba, 2004), although Price & Mutteriose (2004) have also published data from a high 

latitude site. The overall pattern described from such research is one of decreasing S'̂ C 

values across the Jurassic-Cretaceous boundary, relatively stable S'̂ 'C values in the earliest 

Cretaceous, then a rapid mid- to Late Valanginian positive carbon-isotope excursion 

(occurring in the Tethyan Campylotoxus ammonite Zone) and a subsequent return to pre-

excursion values in the Upper Valanginian and Lower Hauterivian (Price & Mutteriose, 

2004) (Fig. 7.13). 

The Boyarka River positive carbon-isotope excursion observed in both the 5'̂ Ccarb 

and 5'̂ CorB records begins in the upper Stttbendorffi zone (which is correlatable with the 

Tethyan Campylotoxus Zone). The peak of the positive S'̂ C excursion occurs in the 

Bidichotomus Zone which corresponds well biostratigraphically with the timing of the 

Tethyan excursion in the Tr'modosum and Callidiscus ammonite zones (e.g., van de 

Schootbrugge et al., 2000; Weissert & Erba, 2004), however, it should be noted that much 

of the uppermost Stubendorffi Zone is missing. Lini et al. (1992) hypothesised that the 

Valanginian carbon-isotope event represented the first episode of greenhouse conditions 

during the Cretaceous period. This event has frequently been related to episodes of 

platform drowning within the Tethys (e.g., Lini et al., 1992; Follmi et al., 1994; Weissert 

et al., 1998; Wortmann & Weissert, 2000). Positive carbon isotope events are commonly 

attributed to increased organic carbon burial either as the result of enhanced surface water 

productivity or owing to enhanced preservation under reduced O 2 conditions (Weissert et 

al., 1998; Bersezio et al., 2002; Erba et al., 2004; Price & Mutteriose, 2004). Van de 

Schootbrugge et al. (2000) however, highlighted the problem with this model, which is that 

during the Hauterivian, at least two phases of platform drowning are not associated with 
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positive carbon-isotope excursions. Wortmann & Weissert (2000) suggested that the sea-

level rise and drowning of platform carbonates corresponded to the initiation of more 

positive carbon-isotope values. 

According to the eustatic sea-level curve of Sahagian et al. (1996), based on 

Russian platform and Siberian stratigraphy, the Upper Valanginian Bidichotomus Zone 

witnesses a brief sea-level rise coincident with the initiation of the positive carbon-isotope 

excursion, then a sea-level fall synchronous with the excursion maximum and followed by 

another rise into the Hauterivian coinciding with the return to pre-excursion values (Fig 

7.7). Although the Sahagian et al. (1996) sea-level curve is contrary to the sea-level curve 

of Haq et al. (1987), the Valanginian section of the Sahagian et al. curve was constructed 

from data taken from the Boyarka River section itself. Positive carbon-isotope excursions 

may be related to regressive conditions due to an increased input of nutrients resulting 

from the exposure and erosion of lowland areas (Brenchley et al., 1994; Grocke et ai, 

1999; Price & Mutterlose, 2004). Partial separation of the Boreal and Tethyan Realms 

during periods of sea-level lowstand could have restricted ocean circulation and enhanced 

stratification to promote organic carbon burial in these high latitude locations (Price & 

Mutterlose, 2004). 

The evidence for widespread Late Valanginian marine black shales is very limited. 

Perhaps the best evidence comes from organic carbon-rich black shales in the Southern 

Alps (Bersezio et al., 2002) and from the Shatsky Rise in the West Pacific (Bralower et al., 

2002). Price & Mutterlose (2004) suggest that the absence of widespread Valanginian 

black shale deposits could be due to erosion (e.g., Weissert et al., 1998) or due to burial 

away from typical marine settings (e.g., in terrestrial environments) or away from the 

Tethys (e.g., at high latitudes). 

The terrestrial S'̂ C record presented here is the first Boreal Realm terrestrial record 

of the Upper Valanginian positive carbon-isotope event. Only one other terrestrial record 

of this event exists, that of Grocke et al. (2005) from the Crimean Peninsula of the 
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southern Ukraine. Grocke et al. (2005) also record the positive carbon-isotope excursion 

from macroscopic wood. Their excursion begins in the Submartini Zone (which is 

correlatable with the Tethyan Verrucusum Zone) and reaches a maximum in the Tethyan 

Callidiscus Zone, This excursion correlates well (within the limits of biostratigraphic 

resolution) with the carbon-isotope excursions identified in the Boyarka River and in 

Tethyan carbonates. 

Delta-delta (A5 = 5'̂ Ccarb - 5'̂ Corg) relationships observed from the paired analysis 

of marine carbonate and marine or terrestrial organic matter have been used as a proxy for 

pCOi concentrations (e.g., Weissert et al., 1998; Kump & Arthur, 1999; Hasegawa et al., 

2003). Grocke et al. (2005) calculated A5 values from their S'̂ Cpiam data and a composite 

S'̂ 'Ccarb record from the Tethyan region (compiled from the work of Lini et al. (1992) and 

Channell et al., (1993)). They observed a +2 %o shift between the Tethyan marine 

carbonate record and the terrestrial plant record for the Crimea, which they linked to a drop 

in atmospheric pC02 in the order of MO % and consequently to a short-term Valanginian 

cooling event. This was calculated following the work of several authors, which suggested 

that a 10 % shift in pCOj levels would result in a 0.5 %o change in 6 Corg due to the 

alteration of photosynthetic isotopic fractionation (e.g., Komer et al., 1988; Grocke, 1998; 

van de Water et al., 1994). An organic carbon burial event and associated positive 

excursion would lead to this drawdown of pCOz (Grdcke et al., 2005) and, potentially, 

acidification. The A5 relationship observed from the Boyarka River dataset is consistent 

with that observed in the Crimea, although it is of a smaller magnitude (-1 %o rather than 2 

%o). The Boyarka River data therefore support the idea that the Valanginian period sees a 

drop in atmospheric pCOi associated with the peak of the Valanginian carbon-isotope 

event. Atmospheric pC02 values can also be affected by other factors however, such as 

volcanism, silicate weathering and deposition of calcium carbonate (Kump & Arthur, 

1999; Bemer & Kothavala, 2001; Grocke et al., 2005). 
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The idea of a Valanginian cooling event is consistent with other recently published 

evidence on this period (e.g., Mutterlose et al., 2003; Puceat et al., 2003; Erba et al, 2004; 

Weissert & Erba, 2004; Kessels et al., 2006; McArthur et al., in press). Erba et al. (2004) 

provided nannofossil and oxygen-isotope evidence for a cooling event at the S'̂ C 

excursion maximum. Weissert & Erba (2004) suggest that the cooling event may have 

been the result of increased organic carbon burial (as reflected by the positive 

excursion) and the resultant pumping of CO2 from the atmosphere and into the sediment. 

This model is supported by oxygen-isotope data from Tethyan fish tooth enamel, which 

indicate a major cooling event during the earliest Late Valanginian (Puceat et al., 2003). It 

is further supported by a Late Valanginian boreal nannoplankton excursion in Romania 

(Melinte & Mutterlose, 2001) and the presence of glendonites in several Valanginian 

successions (e.g., Kemper, 1987; Tarduno et al., 2002). Unfortunately the oxygen-isotope 

data from the Boyarka River succession provides somewhat inconclusive evidence with 

regards to palaeotemperatures. For the S'̂ 'C positive excursion maximum a 

palaeotemperature range of 6.3 to 14.8 °C is recorded. 

7.6. Conclusions 

• The data presented here comprise the first combined high-resolution isotope 

investigation of 6'̂ Corg, 5'̂ Ccarb and S'̂ Ocarb from the Boyarka River, Northern Central 

Siberia, it is also the first ever investigation of a coeval 5'̂ Corg and 6'"'Ccarb record 

(together with the data presented in Chapter 5). 

• The average palaeotemperature derived from the Boyarka River S'̂ O record (using the 

Anderson & Arthur (1983) equation) was 10.6°C and the palaeotemperature range was 

2.1 to 19.0°C for the Ryazanian to Hauterivian interval. This suggests that the climate 

may have been very variable at this time or that salinity may have had a significant 

influence on 5'^0 ratios. The temperature range also indicates that the region was at 
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times considerably colder than previously thought, which could indicate the presence of 

limited polar ice. 

An Upper Valanginian positive carbon-isotope excursion is identified in both the 6'̂ Corg 

and S'̂ Ccarb records. The initiation of the excursion occurs simultaneously in the upper 

part of the Lower Valanginian Stubendorffi ammonite zone (broadly equivalent to the 

Tethyan Campylotoxia Zone). In both records the carbon-isotope values then decrease 

across the Valanginian-Hauterivian boundary and a return towards pre-excursion values 

occurs during the Bojarkensis Zone. This trend is consistent with that observed in 

Tethyan carbonate successions and therefore indicates a strong coupling of the ocean-

atmosphere system at this time and suggests that the total exchangeable carbon reservoir 

was affected. 

The initiation of the positive 5'''C excursion is associated with a brief sea-level rise on 

the Russian platform, although the excursion maximum occurs during a period of 

overall regression. Exposure and erosion of lowland areas and restricted ocean 

circulation and enhanced stratification during a period of sea-level lowstand may 

account for increased rates of organic carbon burial. 

The Boyarka River A5 values may indicate a drop in atmospheric pC02- This is likely 

to be the result of enhanced organic carbon burial, which could lead to a drawdown of 

pCOi and a period of cooling in the late Valanginian. 
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P L A T E ? 
r • 

Plate 7. Calhodolumincsccncc images sho\\ing the state of picsenation of bekniniie rostra from the 
Boxarka Ri\er. Siberia All scale bars represent I mm. (A) Rostmm margm displa> mg sigmfiamt altenitron 
(B) Rostmm margin, growth bands and fractures displa\ mg alteration (C) Groxuh bands displaxmg 
significam alteration. (D) Strong alteration along the rostrum margin (E) Fractures and gro\uh bands 
displa> mg alteratron (F) Fractures and growth bands displa> mg alteration (G) Apical canal surrounded b> 
area dispKing significant alteration (H) Fractures eminaling from and growth bands surrounding the apical 
canal 
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Plate 8. Backscatlercd SEM images sho\% ing the stale of preserv ation or bclcinnite rostra Trom the Bo>arka 
River. Sibcna All scale bars represent lengths stated on images (A) Well preserved cakite with sonK slight 
alicr.iiion ;ilonu izrouih lines al the rostnim margin (B) GeneralK well preserved calcile but with some 
alteration along growth bands towards the rosimm margin (C) P>nte growth along growth line fractures at 
rostrum margin (D) Fracture at rosimm margin showing little alteration (E) Fracmrc mnmng through 
;ipical canal (F) Fracture mnnmg through apical canal (G) Apical Canal (H) Rostmm margin wiili 
fractures and dispbiv ing alteration along growth b:mds 
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P L A T E 9 

Plate 9. Carbonate staiiKd images showing the state of preserv ation of belemnite rostra from die Bo>arka 
Ri\cr. Sibena All scale bars represent I mm (A) Ver> well prcsened calcite al rostrum margia (B) 
Generall> uell prcscncd cakite but w nli some p> rite gio\%th along growlh lines towards the rostmm margin 
(C) Fracmres and groxvth lines toxsards rostmm maigin displa>ing alteration (D) Generalh uell preserved 
cakite but with some alteration and p>nie growth at margin edge (E) Rostmm margin showing alteration 
panicularly atong growth hncs (F) Rostmm margin showing alteration particularl) along growth lines and 
around fractures (G) Fracture mnmng through apical canal (H) Fracture mnning through apical canal 
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PLATE 10 

i ^ k K j x i z e 1 

I / -
Plate 10. Scamung Electron Microscope images sliowing ilie state of preservation of fossil wood fragments 
from the Bo>ar1ca River. Sibena All scale bars represent lengths stated on images (A) Charcoal - wood> 
structure preserved (B) Charcoal - wood> structure preserved (C) Coal - bkx:k> nature of fragment (D) 
Charcoal-coal - mosth homogenised inicm:il sinicmrc (I ) ( oal - complcich lioingcniscd micnwl simcnire 
(F) Charcoal-coal - homogemscd and compacted intenial striicturc (G) Charcoal-coal - homogemscd and 
compacted interreil structure (H) Charcoal - internal cellular structure preserved 
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P L A T E 11 

Plate 11. Scanning Electron Microscope images showing the stale of prcsen ation of fossil wood fragments 
from tlie Bo>arka Ri\er Sibena All scale bars reprcsent lengths stated on images (A) Charcoal - internal 
cellular structure preserved (B) Charcoal - inlemal cellular structure preser\ed (close-up of A). (C) 
Cliarcoal - internal cellular structurc prcsened (D) Charcoal - internal cellular structure preserved (close-up 
of C). (E) Charcoal - imemal cellular structure preserv ed (F) Charcoal - internal cellular structure prescrv ed 
(close-up of E) (G) Charcoal-coal - internal cellular stniclure displav ing some signs of homogenisation (H) 
Cliarcoal-coal - internal cellular structure displa> ing SOUK signs of homogenisation 
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8. IZHMA RIVER, TIMAN P E C H O R A BASIN, RUSSIA 

8.1. Location & Site Description 

The Izhma River is a tributary of the Pechora River, both of which are situated 

within the Timan-Pechora Basin of north-eastern European Russia (Fig. 8.1). The Izhma 

River hes just west of the sub-Arctic Ural Mountains at a present-day latitude of ~64°N. 

The sections exposed on the banks of the Izhma River begin north of the towns of Ukhta 

and Sosnogorsk, which are approximately 200 km south of the confluence of the Izhma 

and Pechora Rivers. 

PC10 

PC 5-7 

Iznma 
River 

Figure 8.1 Location map of the Izhma River. Russia. The location of the Izhma River is shown (Icti) 
together w ith the relative positions of each of the sites examined (right). 

Ten key locations were examined along the course of the Izhma River, ranging 

from Early Callovian (Elatmae ammonite Zone) to Harly Hauterivian (Bojurkcnsis 

ammonite Zone) in age. The outcrops were in the form of low, river cuttings (containing 

belemnites) (Fig. 8.2) and pebbly river foreshores, with belemnites particularly common 

elements of the foreshore scree. 
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Kijjure 8.2 River-side cliff, exposure typical of the Izhma River, Russia. 

8.2. Geological Setting 

The Timan-Pechora Basin covers an area of -440,000 km' (O'Leary et al.. 2004). 

It is a passive margin basin that extends from northern Russia and into the Barents Sea, 

where it merges with the South Barents Sea Basin (Requejo et al.. 1995; O'Leary et al., 

2004) (Fig. 8.3). On the western margin of the basin is the Timan Ridge, a major linear 

basement elevation (striking NW-SE) thought to represent the collision of one or more 

small continental blocks with the East European Platform during the Ediacaran 

(Zonenshain et al.. 1990; Ismail-Zadeh et al.. 1997; O'Leary et al.. 2004). The eastern and 

northeastern margins of the basin are formed by the Urals fold-and-thrust belt, which 

developed during the collision of the East European and Siberian blocks during the Late 

Carboniferous-Permian (O'Leary et al.. 2004). A series of deep depressions on the east 

margin of the basin are known as the Pre-Urals Depression and were formed above a zone 

of Palaeozoic peri-craton subsidence during the Uralian Orogeny (Ismail-Zadeh et al., 
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1997). The Timan-Pechora Basin tapers southwards towards the convergence of the 

Timan Ridge and the Ural Mountains and broadens northwards where it extends offshore 

(O'Leary et al., 2004). Zonenshain et al. (1990) divided the basin into two broad, stable, 

basement highs each with relatively thin sedimentary cover (the Izhma-Pechorskaya 

(within which the studied section of the Izhma River is situated) and Khoreyverskaya 

depressions) (Fig. 8.3). These highs are divided by fault-defined, linear mobile belts 

containing relatively thick sedimentary successions (O'Leary et al., 2004). 

t South Barents Sea Basin 
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Figure 8.3 Simplified map of the Timan-Pechora Basin and surrounding areas. The principal structural 
zones are shown. Adapted after O'Leary et al (2004). 
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During the Palaeozoic the Timan-Pechora Basin was a major extensional basin 

comprising a series of narrow grabens mainly orientated NNW-SSE (Banks et al., 1997). 

Early Palaeozoic extension was particularly intense in the Middle-Late Devonian when the 

basin experienced rapid subsidence (Banks et al., 1997; Ismail-Zadeh ei al., 1997). During 

the Early Permian another period of relatively rapid subsidence occurred in the Timan-

Pechora Basin (Ismail-Zadeh et al., 2004). This subsidence was the result of collision 

between the Baltic and Kazakstan plates at the time of the Uralian Orogeny, which was 

initiated in the Late Carboniferous/Permian (Banks et al., 1997; Ismail-Zadeh et al., 1997). 

Uralian activity was terminated in the Middle Triassic to Early Jurassic and a series of 

structural highs were formed, which now host over 250 known hydrocarbon accumulations 

in the region (Requejoe/fl/.. 1995; Banks e / 1 9 9 7 ) . 

The Timan-Pechora basement is exposed along the Timan Ridge and consists of 

metamorphosed sedimentary and volcanic rocks that have been intruded by granites 

(O'Leary et al., 2004; Kuznetsov et al., 2005). Overlying this thick metamorphosed 

basement are the Palaeozoic successions, which accumulated mainly in the western and 

central parts of the basin and are dominated by carbonate deposition, with episodes of 

siliciclastic sedimentation (Requejo et al., 1995; O'Leary et al., 2004). Finally, the 

continental to shallow marine siliciclastic Mesozoic sequence forms the dominant surface 

geology in the Timan-Pechora Basin (O'Leary et al., 2004). 

The Jurassic to Cretaceous Izhma River sequence is dominated by sandstones, 

siltstones and clays (Fig. 8.4), although, these are regularly affected by landslips and 

glacio-tectonic activity. The Lower Callovian (Elatmae Zone) outcrops -2 km upstream of 

Porozhsk village and is represented by a poorly exposed, condensed sequence of clays 

containing abundant belemnites and phosphatic remains. A thin (15 cm) limestone horizon 

is also present. After a break in outcrop, Middle-Late Volgian sediments are exposed 

(Panderi to Subditus zones) -1.8 km north of Kedvavom village. At the base, the 

sequence is dominated by calcareous grey claystones interbedded with black shales 
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containing belemnites. Belemnites become more abundant up sequence into the Maximus 

Zone, which is dominated by relatively well-bedded calcareous clays (layers of black shale 

are rare). Small carbonate concretions are scattered throughout and shells (mainly Buchia) 

are also common. The upper part of the Maximus Zone is composed of a relatively 

massive dark claystone. The Upper Volgian Subditus Zone is composed of phosphatic-rich 

silty claystone (similar to that of the Panderi Zone), with abundant shelly material and 

some belemnites. 

The Basal Ryazanian Pseudocraspedites/Surites Zone (Fig. 8.4) outcrops -6 km 

north of Kedvavom village, although, the exposure is generally poor. Silty sandstones at 

the base containing occasional small phosphatic nodules are overlain by dark grey/green 

sands containing rare Surites ammonites (-4 m thick). Above this sandy unit is a -2 m 

thick band of heavily weathered, dark grey claystones with a pebble layer at the base. 

Belemnites occur throughout the succession, but are particularly common in a thin 

phosphatic horizon towards the top of the sand unit. Poorly preserved wood fragments 

also occur in this unit, but are quite rare. 

The Upper Ryazanian Tzikwimanus Zone sediments (Fig. 8.4) are sandy at the 

base, but become increasingly clayey up sequence. The basal sands are grey, with 

abundant phosphatic concretions and belemnites. Abundant Buchia shells commonly 

occur in discrete horizons that are often associated with calcareous sands or phosphatic 

concretions. The sands become more iron rich towards the top of the sequence until the 

Ryazanian-Valanginian boundary, which is marked by an iron rich, red claystone bed of -

30 cm thickness. 

Above the iron rich bed is a unit of light grey claystones that are silty at the base 

and contain Polyptychities sp. ammonites. These lowermost Valanginian deposits also 

contain dark grey claystones, grey/green sandstones and phosphatic claystones. 

Belemnites are common, particularly within layers of light grey/green claystones. 
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Figure 8.4 Sedimentary log and photographs of the Izhma River succession, Russia. Boreal (Russian) 
ammonite zones illustrated. See Figure 4.2 for key to log symbols. Scale is in metres. 
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The Upper Valanginian {Bidichotomus Zone) (Fig. 8.4) is composed of poorly 

exposed fine, clayey to silty, dark grey/green sandstones. Large carbonate concretions 

containing abundant Buchia and some ammonites {Dichotomites sp.) occur in horizons <50 

cm thick near the base of the unit. Smaller concretions however, occur towards the top of 

the unit. Belemnites are not common in Upper Valanginian strata and when present are 

extensively weathered. The Lower Hauterivian (Bojarkensis Zone) outcrop is reasonably 

well exposed, although, it has been subjected to a degree of glacio-tectonic activity. Dark 

grey clays with concretions that contain Buchia and belemnites are the dominant lithology. 

8.3. Sampling & Methodology 

The ten major sites visited along the Izhma River provided samples from the Early 

Callovian {Elatmae Zone) and from the Middle Volgian {Pandeh Zone) to Early 

Hauterivian {Bojarkensis Zone). Belemnites were collected from 67 different horizons. 

Wherever possible multiple specimens were collected from the belemnite horizons. In 

addition, 86 sediment horizons and 13 fossilised wood horizons were sampled, although, 

these samples have not been analysed here. A l l samples were collected in the summer of 

2003 by Dr Gregory Price, University of Plymouth. 

The preservation of belemnite rostra was evaluated through trace element and 

stable isotopic analysis, backscattered scanning electron microscopy (BSEM), 

cathodoluminescence (CL) and carbonate staining. The areas most susceptible to 

diagenesis were removed prior to isotopic and geochemical analysis. 

Stable isotope data were generated on an Isoprime isotope ratio mass spectrometer 

(GV Instruments, UK), at the University of Plymouth, UK and on a VG Optima mass 

spectrometer at the NERC Isotope Geosciences Laboratory (NIGL), Keyworth, UK. 

Replicate analyses were run at both institutions to ensure reproducibility. Trace element 

data were analysed by Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-

AES) using a Perkin Elmer Optima 3300RL ICP-AES system (with autosampler) at the 
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NERC ICP facility. Department of Geology at Royal Holloway, University of London. 

For a f i i l l description of the methodology used see Chapter 4. 

8.4. Results 

The Izhma River belemnites (Fig. 8.5) collected were of the Boreal Realm genera 

Cylindroteuthis, Acroteuthis, Pachyteuthis and Lagonihelus. Most of the belemnite rostra 

were composed of translucent calcite and displayed concentric banding. BSEM, CL and 

carbonate staining analysis (Plates 12-14) were conducted on 16 out of 60 specimens in 

order to assess the typical preservation. These techniques identified Fe-rich areas and 

some pyrite replacement particularly around the rostrum margins and apical canal as well 

as along fractures and strong growth bands. The areas shown to be especially prone to 

alteration were either avoided or removed prior to subsampling. 

Figure 8.5 Pholographs of belemnites from the Izhma River succession. Russia. Age and Formation 
unknown. (A) Belemnite with serpulid worm trace. (B) Belemnites in foreshore scree. 

Trace element analysis of Fe and Mn concentrations was carried out on every 

belemnite sample in order to provide detailed information about the level of preservation. 

The concentrations of Fe and Mn range from 7-312 ppm, mean 25 ppm and 2-105 ppm, 

mean 10 ppm respectively. Plots of Fe and Mn against 5**̂ 0 (Fig. 8.6) were used to 

constrain diagenetic alteration. A cross-plot of Fe and Mn is also provided to show the 

range of these trace element values (Fig. 8.7) as stable isotope analysis was not conducted 

on the most diagenetically altered specimens from this site. Belemnites with high 
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concentrations of Fe (>150 ppm) and Mn (>100ppm) were considered post-depositionally 

altered and were excluded from further analysis. 
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Figure 8.6 Cross-plols of 5'*0 against Fe (left) and Mn (right). The dashed lines indicate the cut o f f values 
for well preserved samples. 

Additional element abundances are as follows: Sr 719-1504 ppm, mean 1192 ppm, 

Mg 281-1374 ppm, mean 621 ppm and Ca, 23% - 33 %, mean 31 %. Stable isotope 

analyses were conducted on 60 of the well-preserved belemnite samples. The carbon and 

oxygen isotope values of the Callovian to Early Hauterivian Izhma River belemnites were -

0.98 to 2.67 %o and -1.32 to 1.27 %o respectively. The most negative carbon isotope values 

(-0.98 %o) are observed in the Lower Volgian Panderi Zone and values remain relatively 

low to (between -0.98 and 0.83 %Q) until the Lower Valanginian Syzranicum-Polyptychus 

zones, where the initiation of a positive carbon isotope excursion is observed. The S'̂ C 

maxima (2.67 %o) occur in the Upper Valanginian Bidichotomus Zone and are followed by 

a return towards pre-excursion values in the Early Hauterivian Bojarkensis Zone. A 

similar long-term trend is recorded in the S'̂ O data. Relatively low oxygen isotope values 

persist throughout the Volgian and Early Ryazanian (-1.32 to -0.11 %o) until a shift towards 

more positive values occurs from the Upper Ryazanian and into the Lower Hauterivian. 

Maximum 5*^0 values (1.27 %o) occur during the Upper Valanginian Bidichotomus Zone. 

A cross-plot of the 5'^0 and data (Fig. 8.8) shows a significant positive correlation (at 

the 99% confidence level). 
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Figure 8.7 Cross-plot of Mn and Fe. The dashed lines indicate the cut ofT values for well preserved 
samples. 
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Figure 8.8 Cross-plot of 5'^0 and 5'^C values derived from belemnites from the Izhma River succession, 
Russia. 
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8.5. Discussion 

8.5.1. Stable Isotope, Geochemical & Taxonomic Records 

The stable isotope and trace element records from the Callovian-Hauterivian Izhma 

River succession have been presented here together with data pertaining to the generic 

classification of the belemnite specimens (Figs 8.9 & 8.10). The purpose of this was to 

assess the impact ( if any) of genus-specific differences in isotope or trace element 

fractionation. 

In neither the stable isotope nor E!/Ca records does one genus appear to be 

consistently more positive or negative than the others. In addition, each genus displays a 

similar degree of scatter within the records presented (e.g., -2.0 %o for isotopes). At 

StafTm Bay and the Boyarka River, the belemnite genus Cylindroteuthis displayed more 

scatter than any other genus in both the stable isotope and El/Ca records. It was 

hypothesised that this was in part due to the predominance of this genera compared with 

the others present. Interestingly, the number of specimens measured from each of the three 

dominant genera at the Izhma River section was very similar, for example 19 Pachyteuthis, 

14 Acroteuthis and 13 Lagonibehts specimens were analysed. This provides some support 

for the idea that particularly dominant genera will display the most scatter. It should be 

noted however, that the genus Cylindroteuthis is especially rare in this succession (only 2 

specimens analysed) so an enhanced degree of scatter in this genus cannot be ruled out. I f 

taxonomic differences in fractionation do exist here, these data suggest that they are likely 

to have only a minor effect on the stable isotope and geochemical records. It is therefore 

highly unlikely that the trends observed here are caused solely by genus-specific effects. 

The trends are therefore interpreted as the result of environmental fluctuations. 
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Figure 8.9 8''C and 6'*Ocart) records from the Callovian-Lower Hauteriv ian Izhma River succession, Russia. 
Calculated palaeotemperatures and sea level are also shown. Boreal (Russian) ammonite zones illustrated. 
See Figure 4.2 for key to log symbols. Scale is in metres. 
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Figure 8.10 ElyCa records from the Callovian-Lower Haulerivian Izhma River succession, Russia. Boreal 
(Russian) ammonite zones illustrated. See Figure 4.2 for key to log symbols. Scale is in metres. 
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8.5.2. The Oxygen Isotope Record & Palaeotemperature Implications 

The oxygen isotope record (Fig. 8.9) shows a long-term trend of relatively stable 

values from the Volgian to Ryazanian (fluctuating between approximately -1.0 and 0.0 %o) 

and then a shift to more positive values (1,27 %o) from the Upper Ryazanian and into the 

Upper Valanginian. The oxygen isotope values presented here display approximately 1-2 

%o scatter, which is consistent with published belemnite records (e.g., van de Schootbrugge 

et al., 2000; Wierzbowski, 2002; Price & Mutterlose, 2004). Considerably less scatter is 

observed in the Izhma River succession than in the Boyarka River succession (see Chapter 

7) which covers a similar time interval (Ryazanian-Hauterivian) and is approximately 10° 

further north in terms of palaeolatitude. 

The scatter observed in the Izhma River data could be the result of taxonomic 

variability (as discussed previously), diagenetic alteration or salinity fluctuations. The 

presence of major diagenetic alteration has been ruled out by the extensive screening 

described earlier, although it is possible that subtle alteration may have escaped detection. 

The data are therefore considered to primarily reflect environmental fluctuations. 

As discussed previously, belemnites are commonly believed to secrete their calcite 

very close to isotopic equilibrium with the surrounding seawater (e.g., Taylor & Ward, 

1983; Morrison & Brand, 1986; Rosales et ai. 2004a; Rexfort & Mutteriose, 2006). It is 

therefore possible to estimate palaeotemperatures using the oxygen isotope composition of 

belemnite calcite, although calculations of absolute values are unlikely since belemnites 

are an extinct group of organisms. The palaeotemperatures calculated here should 

therefore be considered as a guide to the potential palaeotemperatures for the region. 

The palaeotemperature estimates from the Izhma River succession (Fig. 8.9) were 

calculated using the equation of Anderson & Arthur (1983). The range of temperatures 

observed here is from 7.3 to 17.3°C, with an average value for the whole succession of 

n.O^C. These values were calculated using a value of - I %o SMOW, which is consistent 

with previously published literature on the Jurassic and Cretaceous periods (e.g., Pirrie & 
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Marshall, 1990; Marshall, 1992; Saelen et al., 1996; Price & Sellwood, 1997; Podlaha et 

al., 1998; Price & Mutterlose, 2004; Rosales ei al., 2004a, b). The palaeotemperatures 

decrease up succession with the highest values in the Upper Volgian Subditus Zone and the 

lowest values in the Upper Valanginian Bidichotomus Zone. 

8.5.3. The Elemental Records & Palaeotemperature Implications 

The rationale and implications of considering El/Ca ratios together with S'̂ O data 

were discussed in Chapter 5. Long term trends are observed in the elemental ratios 

presented here (Fig. 8.10). The Mg/Ca ratios show a decrease in values from the Callovian 

and into the Upper Valanginian, with a brief fluctuation to higher values in the Lower 

Hauterivian. The Sr/Ca curve shows a slight increase in values until the Upper 

Valanginian, where a return to lower values occurs. The Na/Ca ratios reveal a slight shift 

towards lower values through the succession and the Li/Ca ratios show generally low 

values with occasional rapid fluctuations to very high values, most notably in the Upper 

Ryazanian Tzihvinianus Zone. The reason for these spikes is unclear. 

Cross-plots of E//Ca against S'̂ O (Fig. 8.11) show no correlation between Sr/Ca 

and S'̂ O, Na/Ca and S'̂ O, and Li/Ca and 5'^0. The correlation between Mg/Ca and 5'^0 

however revealed a statistically significant negative correlation (at the 99% confidence 

level). This is the first instance where a significant correlation has been observed between 

Mg/Ca and S'̂ O in this study. The negative relationship is consistent with the published 

belemnite data (e.g., McArthur et al., 2000; Bailey et al., 2003; Rosales et al., 2004a, b) 

and the work of Steuber & Ranch (2005) on modem skeletal calcite. The Mg/Ca ratio is 

commonly considered to be one of the most accurate palaeotemperature proxies available, 

primarily because unlike S'̂ O it is not thought to be significantly influenced by salinity 

fluctuations (e.g., Klein et al., 1996; Lear et al., 2000; Bailey et al., 2003; Rosales et al., 

2004a, b; Immenhauser et al., 2005). The correlation between Mg/Ca and 5*^0 as 

observed here suggests that temperature is the major control of both proxies for the 
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Callovian-Upper Valanginian interval at the Izhma River. This assumes that belemnites 

have a similar temperature sensitivity to modem biogenic calcites. 
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Figure 8.11 Cross-plots of 5'^0 agains! (A) Mg/Ca, (B) Sr/Ca, (C) Na/Ca and (D) Li/Ca for the Izhma River 
belemnites. 

Palaeotemperatures were calculated from the Mg/Ca ratios using the equation of 

Klein et ai. (1996) (Fig. 8.9). The calculated values ranged from -4.5 to 6.7°C, with an 

average temperature for the whole succession of -0.9°C. The average offset between the 

palaeotemperature calculations for the succession is 13.9°C. This value is extremely high, 

especially given the significance of the correlation and the obvious inverse relationship 

(observed using a linear regression line) between Mg/Ca and S'̂ O. The significance of the 

correlation suggests that both variables are influenced by one prevailing factor (presumable 

temperature). The observed offset beuveen the calculated palaeotemperamre averages, 

however, suggests that salinity must have had a highly significant and consistent impact on 
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5'^0, which seems unlikely. I f the observed temperature difference was attributed solely 

to influence from salinity, a change in salinity of 13.8 %o is required, which seems 

impossible. Even i f the S'̂ Oscawatcr value of Roche et al. (2006) for the high latitudes (-1.5 

%o SMOW) is used to replace the standard estimate of -1 %o S M O W (which would give a 

S'^O palaeotemperature average of II.O°C) a change in salinity of 12 %o would still be 

required. Episodes of freshening in the high latitudes can be caused by input from riverine 

runoff (which is particularly likely on the Russian platform) and seasonal ice melt. These 

factors are likely to have had an affect on the Izhma River S'^O data, however, such factors 

alone are unlikely to account for the required magnitude of salinity change. The Mg/Ca 

data must therefore be viewed with caution. As discussed previously, sub-freezing 

temperature values could not possibly be recorded by belemnites as they would not have 

been able to survive in such conditions. Immenhauser et ai, (2005) suggest that it may 

only be appropriate to apply the IClein et al., (2996) equation to temperatures in the range 

of 5-23°C where the temperature-Mg relationship is linear. In addition, the data presented 

here suggest that the use of Mg/Ca palaeotemperature equations may be inappropriate for 

belemnites and that any subsequent calculation of salinity influence is probably not 

reliable, especially at relatively low temperatures. 

8.5.4. The Carbon Isotope Record 

The marine carbonate record (Fig. 8.9) shows a shift to more negative values 

between the Callovian and Lower Volgian. Values remain fairly consistent (beUveen -1.0 

and 1.0 %o) until the Lower Valanginian which witnesses the initiation of a positive carbon 

isotope excursion with the maximum (2.67 %o) occurring in the Upper Valanginian 

Bidichotomus Zone. A return towards pre-excursion values is observed in the Lower 

Hauterivian. The positive carbon isotope excursion occurs at the same time as a shift 

towards more positive values in the S'^O record (which is consistent with a fall in 

palaeotemperature). Using data from Sahagian et a!. (1996) the initiation of the positive 
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carbon isotope excursion in the Izhma River succession occurs during a period of sea level 

fall. This is contrary the relationship observed in the Boyarka River succession, where the 

initiation of the positive excursion was coincident with a sea level rise. It should be noted, 

however, that the shift towards more positive values in the Izhma River succession occurs 

slightly earlier than that in the Boyarka River succession assuming that the correlation is 

correct. It is likely that these excursions did actually occur simultaneously and the 

differences observed in this study are the result of limitations in sampling resolution and 

biostratigraphy. The Upper Valanginian positive carbon isotope excursion occurs during a 

time of frequently fluctuating sea level on the Russian Platform and in Siberia. Given the 

limitations mentioned above, it is therefore impossible to determine whether the initiation 

of the 5''C excursion occurred during a period of relative sea level rise or fall, although i f 

considered in terms of eustatic sea level change throughout the Jurassic and Cretaceous the 

excursion does occur during a period of relatively low sea level. 

8.5.5. Volgian-Hauterivian Stable Isotope Records 

As discussed in Chapter 7, published marine carbonate stable isotope records for 

the Early Cretaceous have been constructed primarily from successions in the Tethyan 

region. In terms of the 5'^C record, the overall pattern described from such research is one 

of decreasing 5''*C values across the Jurassic-Cretaceous boundary, relatively stable 5'"*C 

values in the earliest Cretaceous, then a rapid mid- to Late Valanginian positive carbon-

isotope excursion (occurring in the Tethyan Campylotoxus ammonite zone) and a 

subsequent return to pre-excursion values in the Upper Valanginian and Lower Hauterivian 

(Price & Mutterlose, 2004). The nature of the S'̂ O record is obviously more variable, 

depending to a large degree on palaeolatitude. 

Price & Mutterlose (2004) record palaeotemperature estimates of 7 to 21 °C for the 

Volgian-Valanginian interval from the Yatria River, Siberia. This is compatible with the 

data presented here for the Izhma River succession, where a palaeotemperature range of 
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7.3 to 17.3°C is predicted for the same interval. These two locations are situated on the 

same landmass and at approximately the same palaeolatitude so similar values are to be 

expected and the reproducibility of such palaeotemperatures provides considerable 

confidence in these values. The lower end of these temperature ranges provides substantial 

evidence for the existence of cold conditions in the northern high latitudes at this time. 

Polyak et al. (2003) estimated modem temperauires for the region of -1 to 12X based on 

benthic foraminiferal isotope studies in the Kara and Pechora Seas. By comparison, it 

would be reasonable to consider that a palaeotemperature range of 7-21 °C could be 

consistent with the existence of a seasonal ice cover at the Arctic pole during the Late 

Jurassic and Early Cretaceous. I f the Boyarka River 5*^0 data are considered in addition 

to those of the Izhma and Yatria (livers (which is again from the same landmass but 

approximately 10° further north in terms of palaeolatitude) the evidence for cold conditions 

is even more convincing. The calculated palaeotemperature range from the Boyarka River 

is from 2-19°C for the Ryazanian-Hauterivian interval based on oxygen isotopes. 

The Izhma River data record a fall in palaeotemperature during the Valanginian 

period. This is consistent with a number of published studies that record evidence for a 

Valanginian cooling event (e.g., Mutterlose et al., 2003; Puceat et al., 2003; Erba et al., 

2004; Weissert & Erba, 2004; Kessels et al., 2006) (this evidence is discussed in Chapter 

7). Ultimately, the studies presented here lend very strong support to the idea that the Late 

Jurassic and Early Cretaceous greenhouse climate was at times punctuated by sub-freezing 

conditions at the poles. 

The Izhma River positive carbon isotope excursion observed here begins during the 

Lower Valanginian Syzranicum-Polyptychus zones (the Polyptychus Zone is correlatable 

with the Tethyan Campylotoxus Zone). The peak of the positive 5''*C excursion occurs in 

the Bidichotomus Zone which corresponds well biostratigraphically with the timing of the 

Tethyan excursion in the Trinodosum and Callidiscus ammonite zones (e.g., van de 

Schootbrugge et al., 2000; Weissert & Erba, 2004). The excursion observed here also 
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correlates well with the positive carbon isotope excursion observed in the Boyarka River 

succession (Fig. 8.12). As discussed in the previous chapter, this excursion has been 

attributed to the first episode of greenhouse conditions during the Cretaceous period (Lini 

et al, 1992) and episodes of platform drowning in the Tethys (e.g., Lini et al.. 1992; 

Follmi et al., 1994; Weissert et al., 1998; Wortmann & Weissert, 2000). Van de 

Schootbrugge et al. (2000) however, recognised that during the Hauterivian at least two 

phases of platform drowning were not associated with positive carbon-isotope excursions 

and Wortmann & Weissert (2000) instead suggested that the sea-level rise and drowning of 

platform carbonates corresponded to the initiation of more positive carbon-isotope values. 

The 5'̂ C excursion recorded here in the Izhma and Boyarka rivers however, 

occurs during a period of relatively low eustatic sea level according to the sea level curve 

of Sahagian et al. (1996) constructed for the Russian Platform. A period of sea-Ievel 

lowstand would have resulted in the partial separation of the Boreal and Telhyan Realms 

(as confirmed by belemnite provinciality) and could have restricted ocean circulation and 

enhanced stratification to promote organic carbon burial in these high latitude locations, 

although the evidence for widespread Late Valanginian global marine black shales is 

limited (Price & Mutterlose, 2004). In addition, an increased input of nutrients resulting 

from the exposure and erosion of lowland areas (Brenchley et ai, 1994; Grocke et al.. 

1999; Price & Mutterlose, 2004) could have contributed to the positive carbon isotope 

excursion at this time. 

Interestingly, the most positive carbon isotope values coincide with the most 

positive 6'^0 values (and therefore the lowest palaeotemperatures). This could be 

explained by a fall in atmospheric CO2 concentration and a subsequent drop in temperature 

as the result of a significant burial of sediments rich in organic carbon. Vincent & Berger 

(1985) termed this the 'Monterey Hypothesis'. Such a relationship was also observed by 

Price & Mutterlose (2004) for the Late Valanginian positive carbon isotope excursion 
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Figure 8.12 Ryazanian-Hauterivian and 5*^0 correlation between the Izhma River succession and the 
Boyarka River succession. See Figure 4.2 for key to log symbols. 
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from the Yatria River. This is not observed in the Boyarka River succession however, 

although this could in part, be due to the large degree of scatter present in the data. 

8.6. Conclusions 

• The data presented here comprise the first relatively high-resolution isotope 

investigation of marine biogenic carbonate (belemnites) S'̂ C and 5*^0 from the Izhma 

River, Russia. 

• The average palaeotemperature derived from the Izhma River succession 5*^0 record 

(using the Anderson & Arthur (1983) equation) was I3,0°C and the palaeotemperature 

range was 7.3°C to 17.3°C for the Callovian-Hauterivian interval. This suggests that 

contrary to popular opinion there was the potential for the existence of cold conditions 

during the Late Jurassic and Early Cretaceous greenhouse period. 

• A fall in palaeotemperature is observed during the Valanginian. This is consistent with 

previously published evidence for a cooling event during the Valanginian period. 

• The palaeolemperatures calculated from Mg/Ca ratios ranged from -4.5 to 6.7°C, with a 

average value of -0.9"^C. The calculation of such low values casts doubt on the validity 

of using the Klein et a/., (1996) equation when applied to belemnites living in relatively 

low temperatures. 

• The Late Valanginian positive carbon isotope excursion is recorded here in the Izhma 

River S'̂ C curve. The timing and duration of this excursion is consistent with that 

observed in previously published Tethyan records and with that observed from the 

Boyarka River succession. This suggests that the event influenced the total 

exchangeable carbon reservoir. The positive excursion occurs at a time of 

relatively low sea level in Russia and Siberia. The exposure and erosion of lowland 

areas and restricted ocean circulation (and therefore enhanced stratification) associated 

with a period of sea-level lowstand may account for increased rates of organic carbon 

burial. 
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The most positive carbon isotope values coincide with the most positive oxygen isotope 

values (and therefore the lowest palaeotemperatures). This could be explained by a fall 

in atmospheric C O 2 concentration and a subsequent drop in temperature as the result of 

a significant burial of sediments rich in organic carbon. 
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P L A T E 12 

Plate 12. Caihodolumincsccnce images showing ihe stale of prcsenation of belemmte rostra from the I/hiivi 
Rncr. Russia All scale bars represent I mm (A) Growth bands towards rostrum margin displa>ing 
alteration (B) Growth bands towards rostmm margin displa>ing alteration (C) Fracture and growth Unes 
displa>ing alteration (D) Fractures and growth lines displa>ing alteration (E) GencralK ver> well 
prcsened calcilc (F) Faint fractures eminating from apical canal and sliowing some alteration (G) Apical 
canal with and some fractures displa>ing alteration (H) HcaMh altered growth bands and fractures-
surrounding the apical canal 
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P L A T E 13 

Pliiic 13. Backscaiicrcd SEM images sho\\ing ihc stale of prcscnalion of bcleiniiiic rostra from StafTin Ba\. 
Isle of Skye All scale bars represent lengths stated on images (A) Vei> well preserved calcite (B) Bonngs 
and growth line fractures at rostmm margin (C) Fracture bonngs and areas of alicniiion m rosimm (D) 
Fracture mnning through apical canal (E) Fracture eminating from apical canal (F) Fracture ninninj; 
through diageneticalh altered apical canal (G) Gencralh well preserved calcite <H) Fractures infilled with 
dia genetic ceuKnt 
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P L A T E 14 

Plate 14. Cartx)naic siaincd iiiiagcs showing ihc stale of prcscnaiion of bcleniniie rostra from the l/hiiw 
Rher. Russia Al l scale bars rcprcsem 1 mm (A) Rostrum iiuirgm displa>ing borings aivi alteration (B) 
[ionngs iiinilcd unh diagcnctic cement (C) Vtr> well preserved calcilc (D) Area near rostrum margin 
displa> ing alieiation. (E) Fracture and growth I U K S displa> ing alleralioa (F) Fractures displax ing alteralior 
in otherwise well prcser>ed cakite (G) Fracture mnning through apical canal (H) Apical canal and 
surrounding growth lines displa> ing aheration 
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9. F E S T N I N G E N & J A N U S F J E L L E T , SVALBARD 

9.1. Location & Site Description 

Svalbard is an archipelago situated north of Norway on the edge of the Arctic 

Ocean. The islands have a latitudinal range of 74°N to 81°N and all are well within the 

present-day Arctic Circle. Festningen and JanusQellet are both situated south of Isfjorden, 

on the principal island, Spitsbergen, at approximately 78°N (Fig. 9.1). 

KONG KARLS LAND 

Figure 9.1 Location map of Svalbard. The field sites examined (Festningen and JanusQellet) are shown. 

Festningen is situated approximately 40 km southwest of the main town of 

Longyearbyen and near to the Russian mining town of Barentsburg. The outcrop at 

Festningen (Fig. 9.2) is in the form of a continuous low coastal clifif extending for 

approximately 7 km along the northern Nordenskiold coast. Janusfjellel (Fig. 9.3) is 

situated inland, approximately 10 km north of Longyearbyen. The peak o f JanusQellet is 

approximately 800 m above sea level. 
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Fij;ure 9.2 Low coastal c l i f f typical of the Festningen exposure. This photograph shows the Lower 
Valanginian Runkfjellet Formation. 

Figure 9.3 Typical exposure at Janusfjeiiet. This photograph shows the Volgian Argardhfjellel Formation. 
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9.2. Geological Setting 

EARLY C R E T A C E O U S 
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Figure 9.4 Simplified palaeogeographic map of the Arctic region. Structural and tectonic c\ents are 
summarised. Adapted after Harland (1997) 

During the Jurassic and Cretaceous, Svalbard was situated at a palaeolatitude of 60-

70°N (Rowley & Lottes, 1988; Smith et al.. 1994; Dilchfield, 1997), just north of 

Greenland (Harland, 1969; McWhae, 1986) (Fig. 9.4). Throughout the Mesozoic, a stable 

platform regime prevailed on Svalbard, although, there is evidence for considerable 

igneous activity in the high Arctic region (north of Svalbard) during the Late Jurassic and 

Early Cretaceous (Worsley, 1986; Kelly, 1988; Bailey & Rasmussen, 1997; Maher, 2001). 

The magmatic activity on Svalbard was accompanied by significant vertical movements 

along major lineaments (Worlsey, 1986; Bailey & Rasmussen, 1997). Magmatic material 
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includes sills, dikes and basalt flows that reveal increasingly intense activity eastwards 

(Harland, 1973, 1997; Worsley, 1986; Maher, 2001). 

During the Early Jurassic, the Eastern Platform subsided (following a phase of 

uplift in the Triassic) whilst the main Spitsbergen Basin remained relatively stationary 

(Harland, 1997). This was caused by movement along the major Billefjorden lineament, 

the result of which was the existence of equivalent units of the Kapp Toscana Group 

immediately west and east of the lineament measuring 18 and 60-70 m respectively 

(Worsley, 1986). 

SEA LEVEL ChlANGE EVENTS/FACIES 

Ris€ yPall maK)r uplift 

Albian 

C ' .*•.*• - f - ^ ^^^^ 

f C
R

ET
A

C
EO

U
S 

f C
R

ET
A

C
EO

U
S 

Aptian \ 
—J 

2 Barremian 
\ • dettaic . ' , • ; . 

Barremian 

HaulerMan shnail6w'marlrve-

Valanginian outer shelf 

Bemasian 

R
A

SS
IC

 Tithonian 

R
A

SS
IC

 

Kimmehdgian . .Jj:^' mid-Shelf 

Ul 
0)dordian 

Callovian 
deltaic outer shelf 

Bathonian ^ — ^ starved shelf 

Figure 9.5 Summary of events and facies in the Late Jurassic and Early Cretaceous history of Svalbard. 
Adapted after Harland (1997). 

A significant marine transgression commenced in the Late Bathonian and inundated 

both east and west Svalbard, whilst subsidence also became more pronounced in the west 

(Harland, 1997). This event led to the widespread deposition of the predominantly marine 

Adventdalcn Group (Worsley, 1986; Hariand, 1997; Dypvik et al, 2002) (Fig. 9.5). 
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During the Callovian, subsidence in the Pechora region created open marine conditions 

from the Barents Shelf, across the Russian Platform and into the Tethys for the first time 

during the Jurassic (Harland, 1997). The Late Bathonian transgression was followed by a 

mid-Callovian regression and a subsequent Late Callovian to Oxfordian renewed 

transgression (Dypvik ei al, 2002), which reached a maximum in the Early Volgian 

(Harland, 1997). A ftirther marine regression initiated in the mid-Volgian continued into 

the Early Cretaceous (Harland, 1997; Dypvik et ai, 2002). By the Late Volgian, access 

from the Barents Shelf to the Tethys across the Russian Platform was closed south of the 

Volga region, however this route had re-opened by the Middle Berriasian (Harland, 1997). 

A period of major uplift in the north affected the whole Mesozoic platform from the 

Late Jurassic and was probably linked to the opening of the Canada Basin (Worsley, 1986; 

Bailey & Rasmussen, 1997). Such uplift initiated basinal closure to the north and finally 

resulted in a break of deposition and subsequent extensive erosion throughout the Late 

Cretaceous (Worsley, 1986; Dypvik et al.. 2002). As a result of this uplift, Lower 

Cretaceous sequences tend to become thicker and more complete to the south (Worsley, 

1986) and Upper Cretaceous deposits appear to be absent on Spitsbergen altogether as the 

result of major tectonic uplift (Dypvik et al., 2002) (Fig. 9.5). Following a major 

regression in the Barremian (Harland, 1997; Dypvik et al., 2002), a long-term 

transgression continued into the Albian, at which time globally high sea-levels prevailed 

(Harland, 1997). 

Jurassic and Cretaceous sedimentation on Svalbard was dominated by marine shelf 

deposition. The Bathonian to Albian Adventdalen Group (Fig. 9.6) comprises a ~-2 km 

thick sequence of black marine shales, deltaic sandstones and delta front elastics (Parker, 

1967; Worsley, 1986; Hariand, 1997). The Adventdalen Group lies (with varying degrees 

of minor unconformity) on top of the Triassic ICapp Toscana Group (Kelly, 1997). 

The Adventdalen Group forms an asymmetric syncline plunging gently to the SSE, 

which is exposed most extensively in southern Spitsbergen, with the major exposure south 
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of Isfjorden (Kelley, 1997). The group has been divided into the Janusfjeiiet Subgroup 

(which is divided into the Agardhfjellet and Rurikfjellet formations), the HelvetiaQellet 

Formation and the CarolineQellet Formation (Parker, 1967; Harland, 1973, 1997; Dypvik, 

1992; Dypvik et ai, 2002). 
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Figure 9.6 Stratigraphic chart for principal liihoslraiigraphic units of the Middle Jurassic to Early 
Cretaceous of Svalbard. Data from Harland (1997). 

The JanusQellet Subgroup (Fig. 9.6) (Bathonian to Barremian) was formed under 

marine shelf conditions and dominated by clay sedimentation, although silt and sand 

accumulation was also significant (Parker, 1967; Dypvik, 1985; Dypvik et a!., 1991a; 

Harland, 1997). The subgroup is --300-800 m thick, has TOC values <I0 % (although 1-4 

% is more typical) and is dominated by Type HI (with some Type II) kerogen (Hvoslef et 

al., 1986; Harland, 1997). Belemnite and ammonite fossils are present throughout the 

Janusfjeiiet Subgroup (Parker, 1967; Harland, 1997). 

The Agardhfjellet Formation (Fig. 9.6) (Bathonian to Volgian) has been divided 

into 4 different members (Dypvik et al., 1991a, b). The formation is 243 m thick at the 

type locality and composed of dark grey-black shales exhibiting a fissile, papery 

appearance, with interbedded bioturbated siltstones, sandstones and thin carbonate bands 
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(Parker, 1967; Dypvik, 1985; Hvoslef a!., 1986; Dypvik et al.. 1991b; Harland, 1997; 

Kelly, 1997). The Agardhfjellet Formation was deposited during a transgressive phase on 

an open marine shelf, where stagnant conditions were relatively common (Dypvik, 1985). 

Dypvik et al. (1992) suggest that the Agardhfjellet Formation was deposited in mid- to 

outer shelf regions. The exposure at Festningen is heavily weathered and iron and sulphur 

staining are particulariy common throughout the shales. At Janusfjellet, the exposure is 

mostly in the form of laterally continuous concretionary horizons that are also heavily 

weathered. 

The Oppdalen Member is a fining-upwards transgressive sequence from a well-

cemented conglomeratic unit at the base (formed by erosion and reworking of the 

underlying Wilhelmoya Formation), through glauconitic sands, to marine clays and silts at 

the top (Dypvik et al., 1991a, b; Harland, 1997; Kelly, 1997). The Lardyfjellet Member is 

dominated by organic rich dark grey to black shales that are finely laminated and devoid of 

bioturbation (Dypvik et al., 1991a, b; Harland, 1997; Kelly, 1997). The Oppdalsata 

Member is composed of highly bioturbated silts and fine sands throughout which several 

coarsening upwards sequences can be identified (Dypvik et al., 1991a, b; Harland, 1997; 

Kelly, 1997). Finally, the Slottsmoya Member consists of dark grey to black shales and 

paper shales similar to those of the Lardyfjellet Member (Dypvik et al., 1991a, b; Hariand, 

1997; Kelly, 1997). 

The Berriasian to Barremian Rurikfjellet Formation (Fig. 9.6) was deposited during 

regressive shelf sedimentation, with deposition occurring on the outer to inner shelf and in 

prodeltaic depositional conditions (Dypvik et al., 1992), and is relatively enriched in 

volcanogenic components compared with the Agardhfjellet Formation (Dypvik, 1985). 

The formation is 176 m thick at the type location and consists of dark grey shales, 

siltstones and sandstones, frequently interbedded with reddish carbonate horizons (Parker, 

1967; Dypvik, 1985; Dypvik et al., 1991b; Kelly, 1997). It has been divided into 3 distinct 

193 



units: the MyklegardQellet Bed (oldest), the Wimanfjellet Member and the Ullaberget 

Member (Dypvik e/a/., 1991a, b). 

The Myklegardfjellet Bed was originally named by Birkenmajer (1980). It is a 

distinctive marker horizon that signals the transition between the Agardhfjellet and 

Rurikfjellet Formations across central and eastern Spitsbergen (Dypvik et al., 1992). This 

bed varies in thickness from 0.5 to 10 m and consists of distinctive layers of white to 

yellow/green soft, plastic, weathered clays (Dypvik et al., 1991b, 1992; Harland, 1997; 

Kelly, 1997). The bed was deposited by marine shelf processes at the culmination of a 

shallowing period in the depositional region (Dypvik et al., 1992; Harland, 1997). The bed 

marks a change in depositional control, from global sea-level controlled shelf 

sedimentation to locally controlled, shallow shelf to prodeltaic/deltaic deposition (Dypvik 

etal., 1992). 

The Wimanfjellet Member comprises dark grey, silty, bionjrbated shales containing 

irregular to cannon-ball shaped, reddish sideritic concretions (Dypvik et al., 1991b; 

Harland, 1997). These are particularly common in the Festningen section. The Ullaberget 

Member consists of upwards-coarsening sequences of fine sands, silts and shales, with 

often well developed hummocky cross-stratification, planar cross-bedding and bioturbation 

(Dypvik et ai, 1991b; Hariand, 1997; Kelly, 1997). Concretions similar to those of the 

Wimanfjellet Member are present in the lowermost beds of the Ullaberget Member 

(Dypvik et ai, 1991b). HaHand (1997) attributes the deposition of the Ullaberget Member 

to progradation of the Festningen delta system. 

The Barremian HelvetiaQellet Formation (Fig. 9.6) consists of a sequence of 

sandstones, shales and coals deposited in a continental environment (Parker, 1967; Steel et 

al., 1977; Hariand, 1997; Maher et ai, 2004). The unit varies from 50 to 100 m in 

thickness and contains coals of Type III and IV kerogen (Harland, 1997). The formation is 

divided into the Festningen and GlitreQellet Members (Parker, 1967; Harland, 1997). The 

Festningen Member is a prominent, massive, hard light grey sandstone, weathering 
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yellow/orange (Parker, 1967). The Glitrefjellet Member is composed of coal measure-type 

facies, with abundant plant remains and poor quality coal (Parker, 1967; Harland, 1997). 

Steel et al. (1977) interpret this formation as a deltaic facies, with channel and crevasse 

splay sandstones, and interdistributary bay fines. 

The Carolinefjellet Formation (Aptian to Albian) (Fig. 9.6) is divided into five 

members on the basis of sandstone-shale proportion. The formation is over 1200 m thick 

in places (Kelly, 1997) and signals a return to marine shelf deposition (Parker, 1967; 

Harland, 1997; Maher et a!., 2004), The succession is dominated by sandstones and 

shales, with some well developed ripple laminations, glendonites and rare fossils (Parker, 

1967; Harland, 1997; Maher et al., 2004). The top of the Carolinefjellet Formation is 

truncated by the Tertiary unconformity, the result of which is that post-Albian deposits 

have not been identified on Svalbard (Parker, 1967). 

9.3. Sampling & Methodology 

The Festningen samples ranged from Upper Oxfordian to Valanginian in age 

(although, it is worth noting that the Festningen section provides a complete succession 

from the Upper Carboniferous to Lower Cretaceous (Hoel & Orvin, 1937)). Belemnites 

were sampled from 25 well dispersed horizons from throughout the succession and 

glendonites were recorded from several horizons in the Valanginian. At Janusfjellet, 

belemnites were collected from 17 horizons and glendonites sampled from one major 

horizon only (again Valanginian in age). An attempt was made to collect multiple 

specimens from each horizon, however, the scarcity of belemnites at both Festningen and 

Janusfjellet meant that this was rarely possible. Sediment samples (-50) were collected 

from the Festningen section for nannofossil analysis by Dr Jorg Mutterlose, at the Ruhr-

Universitat, Bochum, Germany. A l l samples were collected in August 2005. 

The preservation of belemnite rostra was assessed through trace element and stable 

isotope analysis in addition to BSEM, CL and carbonate staining. The areas of the rostrum 
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most susceptible to diagenesis were removed prior to stable isotope and trace element 

analysis. 

Stable isotope analysis was conducted on a VG Optima mass spectrometer at the 

NERC Isotope Geosciences Laboratory (NIGL), Keyworth, UK. Trace element data were 

generated by Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-AES) 

using a Perkin Elmer Optima 3300RL ICP-AES system (with autosampler) at the NERC 

ICP facility. Department of Geology at Royal Holloway, University of London. For a ftill 

description of the methodology used see Chapter 4. 

9.4. Results 

Figure 9.7 Typical preservation of Svalbard belemniles. (A) Highly ferroan and fractured belemnite from 
the Volgian Argardhljellet Formation (Janusfjellet). (B) Recrystallised belemnile rostrum from the Callovian 
Argardhfjellet Formation (Janusfjellet). 

The belemnite rostra collected from both Festningen and Janusfjellet were 

generally very poorly preserved and fragmented (Fig. 9.7) making generic identification 

difficult, i f not impossible (although the belemnites were known to be of Boreal affinities 

from the work of Doyle *fe Kelly (1988) conducted on belemnites from Kong Karls Land). 

In total, 18 out of 38 specimens were subjected to BSEM, CL and carbonate staining 

(Plates 15-17) in order to assess which areas of the belemnite rostra were commonly 

affected by diagenesis. The majority of the specimens were severely altered, with some 

exhibiting an exclusively blue colouration after carbonate staining, indicating that the 
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specimens were composed entirely of ferroan calcite (Plate 17). The CL technique, 

however, was much less effective at assessing the preservation of such specimens because 

the Fe levels were so high that they greatly exceeded the concentration of Mn (which is the 

catalyst for the CL reaction) and therefore, prevented luminescence. The BSEM analysis 

showed an abundance of sparry calcite and pyrite replacement, (which far exceeded any 

diagenetic alteration apparent in specimens from the other field locations considered here) 

particularly around the apical canal, the margins of the rostrum, on strong growth bands 

and along fractures (Plate 16). Also identified by these optical techniques was an infilling 

of quartz around the apical canal that was present in several specimens and the occurrence 

of deformation of the internal structure in some of the rostra. The areas prone to diagenetic 

alteration were either avoided or removed prior to subsampling. 
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Figure 9.8 Cross-plol of Fe and Mn for belemnites from Svalbard. The dashed lines illustrate the cut off 
values from well preserved samples. Note the use of a logarithmic scale on the Fe axis. 

Digenesis was further assessed using trace elements analysis, which was conducted 

on all 38 specimens in order to either confirm the presence of diagenetic alteration or to 

rule it out. The concentrations of Fe and Mn from the Festningen and Janusfjellet samples 

were as follows: Fe 12-68855 ppm, mean 19845 ppm; Mn 2-1911 ppm, mean 331 ppm. A 

cross-plot of Mn and Fe was produced in order to constrain any diagenetic alteration (Fig. 
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9.8). Samples with concentrations of Fe and Mn exceeding 150 ppm and 100 ppm 

respectively were excluded from further analysis as they were considered likely to have 

undergone post-depositional alteration. In total 28 samples were rejected from further 

study on the basis of poor preservation. 
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Figure 9.9 Cross-plot of 5'^0 and values derived from well preserved belemnites from Svalbard. 

Additional trace element values were as follows: Sr 249-2857 ppm, mean 

I l!7ppm; Mg 548-86290 ppm, mean 26404 ppm; Ca 7 % - 31 %, mean 22 %. Where 

diagenesis could be excluded oxygen and carbon isotope values ranged from -2.26 %o to 

1.14 %o and -0.06 %o to 2.10 %o respectively. A cross-plot of S '^O and S ' ^ C reveals a 

statistically significant negative correlation (at the 95 % confidence level) (Fig. 9.9). The 

well-preserved isotope data presented here comes from the Ryazanian-Upper Valanginian 

interval of the Svalbard succession, despite belemnite specimens also being collected from 

the Callovian-Volgian. In total, 9 separate belemnite horizons yielded potentially primary 

isotope values. 
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9.5. Discussion 

9.5.1. Sedimentary Indicators of Palaeoclimate - Glendonitcs 

Abundant stellate crystal aggregates were identified from the Upper Valanginian of 

the Rurikfjellet Fomiation at both the Festningen and Janusfjellet sections on Svalbard 

(Fig. 9.10). These mineral accumulations were yellow/orange/brown in colour, up to 

approximately 5 cm m size and composed of distinct crystals with pyramidal or ttat 

tennmations radiating out from a central nucleus. They were occasionally identified in Fe-

rich concretions but were more commonly simated within dark mudstones or siltstones. 

These stellate aggregates are interpreted here as glendonites. 

Figure 9.10 Glendon.tes from the Rur.kfjellet Forniauon at Janusfjellet and Festnmgen. (A) Glendonite. 
(B) Abundance of glendoniles. ( O Cdendonite. (D) Glendonile in concretion. 

Glendonites are calcite pseudomorphs after the metastable mineral ikaite (CaCO, 

6H:0) (DeLuno & Frakes. 1999). Sellwood & Price (1994) descnbe these pseudomorphs 
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as comprising of "obliquely striated and stepped crystals with a characteristic curved and 

tapered form". Glendonites are most commonly associated with fine-grained dark 

mudstones and shales indicating reducing conditions and often interpreted as offshore to 

offshore-transition facies (Kemper, 1975; Kemper & Schmitz, 1975; England, 1976; 

DeLurio & Frakes, 1999; Jones et ai. 2006). 

Glendonites are generally considered to represent cold depositional conditions 

(Shearman & Smith, 1985; Sellwood & Price, 1994; DeLurio & Frakes, 1999; Swainson & 

Hammond, 2001; Jones et ai, 2006) due to the environmental conditions required for 

ikaite precipitation. Ikaite forms at low temperatures in carbonate and calcium rich waters 

(Lennie et al., 2004) and has only been observed naturally at temperatures between -1.9 

and VC (Larson, 1994; Johnston, 1995; DeLurio & Frakes, 1999; Jones et a/., 2006). The 

exposure of ikaite to higher temperatures results in the mineral becoming unstable after 

which it is transformed can be calcite (Jones et al., 2006). Modem day occurrences of 

ikaite have been identified at Ikka, Greenland (Pauly, 1963), where a carbonatite intrusion 

flows into a marine fjord (Buchardt et al., 1997), in Antarctic marine sediments (Suess et 

al., 1982), the Nankai trough, Japan (Stein & Smith, 1985) and on the Alaskan coast 

(Kennedy e/a/.. 1987). 

The unstable nature of ikaite prevents long-term preservation in the geological 

record. However, the transformation of ikaite to caicite provides an opportunity for 

preservation in the form of glendonites. Glendonites have been identified and described 

from many locations worldwide, including, in the Neoproterozoic Twitya Formation, 

Canada (James et al., 2005), the Permian of eastern Australia (Jones et al., 2006), the 

Dwyka Group in the Great Karoo Basin, South Africa (McLachlan et al., 2001), the Aptian 

Bulldog Shale, Australia (DeLurio & Frakes, 1999), the Valanginian & Aptian of 

Spitsbergen (Kemper, 1983) and in the present day Sea of Okhotsk, Eastern Siberia 

(Greinert & Derkachev, 2004). 
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Limited stable isotope studies have been conducted on glendonites, with attempts 

made to estimate the seawater temperature at which they formed (e.g., DeLurio & Frakes, 

1999; Greinert & Derkachev, 2004). The major problems associated with such 

investigations however, are firstly that the oxygen-isotope composition of the source water 

is unknown and secondly, that equilibrium crystallisation cannot be guaranteed. 

Presumably the recorded oxygen-isotope composition represents the transition from ikaite 

to calcite. This transition is observed to occur when temperanares exceed a given range 

(probably near 8°C (Stein & Smith, 1985; DeLurio & Frakes, 1999)), however, the rate of 

temperature rise influences the level of preservation (only a gradual rise in temperature 

will preserve the ikaite morphology) and the exact temperature at which transition occurs 

is dependent on water chemistry (DeLurio & Frakes, 1999). Oxygen-isotope ratios derived 

from the Bulldog Shale glendonites yield palaeotemperauire estimates of I2-I8*^C, which 

seems peculiariy high and could be the result of several factors, for example, the majority 

of the calcite may represent later infilling or the estimate of 6'̂ Oscawmcr may have been 

incorrect (DeLurio & Frakes, 1999). 

Despite the problems associated with glendonite isotope studies it is probably 

reasonable to assume that the presence of glendonites in a geological succession represents 

cold conditions. The formation of the precursor mineral ikaite almost certainly took place 

in temperatures below 7°C and in marine successions at temperatures below 4°C, since 

marine ikaite has never been reported at temperatures exceeding this value (Bischoff et al., 

1993; Buchardt et al., 1997). The presence of abundant glendonites in both the Festningen 

and Janusfjellet successions, therefore, confirms the presence of cold depositional 

conditions during the Late Valanginian in the region of Svalbard. 

9.5.2, Sedimentary Indicators of Palaeoclimate - Outsized Clasts 

Outsized clasts are fairiy common in the Valanginian part of the JanusQellet 

Subgroup at Festningen (Fig. 9.11). The clasts are small, dark, sub-rounded and often sub-
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spherical, polished pebbles (< ~2cm) and are preserved either as individual stones or small 

clusters of stones within fine-grained facies, such as mudstone or fine-grained sandstone. 

The presence of relatively large clasts within a fine host sediment present a potential 

"hydrodynamic paradox" between the low energy depositional requirements of the host 

rock and higher energy conditions required to transport relatively large clasts (Bennett et 

al., 1996). Clasts of this nature are often described as dropstones, a name derived from the 

likely method of deposition. Dropstones are introduced vertically or obliquely into the 

host sediment usually from some form of raft (Bennet & Doyle, 1996; Bennet et al., 1996). 

The most common mechanism invoked to account for the presence of dropstones in a 

succession is deposition from icebergs or sea-ice (e.g., Frakes, 1979; Hambrey & Harland, 

1981; Gilbert, 1990). 

F igure 9.11 Outsized clast. Upper Valanginian Rurikljellet Formation, Feslningen. 

Dropstones have been identified from Cretaceous sediments in Australia (Frakes & 

Francis, 1988; Francis & Frakes, 1993), from Late Jurassic and Early Cretaceous deposits 
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in Siberia (collated in Hambrey & Harland, 1981) and from Cretaceous and Paleogene 

sediments in Svalbard (Pickion, 1981). These deposits (and many others like them) have 

been attributed to ice-rafting and are therefore considered representative of cold climatic 

conditions, although, Bennett & Doyle (1996) question the reliability of dropstone 

evidence in demonstrating the presence of ice. 

Dropstones may be transported and deposited in many ways. They could be either 

volcanic or meteoric projectiles (Bennett et al., 1996) or they could be rafted by something 

other than ice. Bennett & Doyle (1996) describe several biological and physical processes 

that could deposit dropslones, for example, they could be rafted from vegetation such as 

seaweed, kelp and driftwood (e.g., Woodbome et al., 1989; Bennett et al., 1994; Doublet 

& Garcia, 2004), they could be gastroliths (e.g.. Stokes, 1987; Clarkson, 1988) or 

indigestible stomach contents (e.g., Emery, 1965) or they could be floating stones. 

Gastrolilhs and indigestible stomach contents would be expected to form a small cluster of 

stones (Bennett et al., 1996) and therefore cannot account for at least some of the deposits 

identified at Festningen. In addition, the stones at Festningen are never associated with 

skeletal remains. Floating stones are usually flat and are very limited in occurrence 

(Bennett et al., 1996) and are therefore also unlikely to account for the outsized clasts 

identified. Perhaps the most likely allemative is rafting ft-om vegetation, since this 

mechanism could deposit both individual stones and small clusters (Bennett et al., 1994). 

Polishing on at least one side of a pebble would be expected i f it had been entrained 

in ice. In addition, the presence of striations on outsized clasts could be used to confirm 

deposition from ice-rafting. The pebbles observed here were often highly polished but no 

striations were observed, although this does not rule out deposition by ice. Other features 

often displayed by dropstones include evidence of sediment depression or deformation 

around the clasts, which would have been formed during impact and the draping of 

overlying sediments (Thomas & Connell, 1985; Jones et al., 2006). Again, neither of these 

203 



features was observed at Festningen, although this is most likely due to the small size of 

the pebbles and consequently a low velocity of impact. 

Although, ice-rafting cannot be confirmed as the mechanism of deposition for the 

outsized clasts observed at Festningen, the presence of such deposits lends some support to 

the idea that deposition could have occurred during cold conditions. Some of the pebbles 

identified were located within a few metres, stratigraphically, of glendonite deposits. The 

occurrence of both of these sedimentological features in the same succession is significant 

and goes some way to proving that cold conditions did occur in Svalbard during the Early 

Cretaceous. 

9.5.3. Stable Isotope, Geochemical & Taxonomic Records 

As discussed previously, taxonomic identification of belemnite rostra was very 

difficult with specimens from the Svalbard region due to generally poor preservation. The 

affect of taxonomic differences on stable isotope and geochemical records is therefore 

almost impossible to assess from this location. This problem is exacerbated by the limited 

nanire of the isotope record as recorded here. Whilst the data available does not indicate a 

taxonomic influence on the isotope and elemental records, the limited nature of the data 

means that such an influence cannot be ruled out. 

9.5.4. The Oxygen Isotope Record Sc Palaeotemperature Implications 

Palaeotemperatures (Figs 9.12 & 9.13) were again calculated using the equation of 

Anderson & Arthur (1983) and assuming an isotopic composition for the water of non-

glacial seawater at - I %o SMOW and a typical marine salinity of - 34 %o. The 

palaeotemperature range for the Ryazanian-Upper Hauterivian succession at Janusfjellet 

was 7.7 to 8°C, compared to a palaeotemperature range of 11.1 to 21.4°C for the Upper 

Valanginian interval of the Festningen succession. Combined, these two records provide a 

palaeotemperature range o f 7.7 to 21.4°C for the Ryazanian-Upper Valanginian of 
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Svalbard and an average temperature of 13.0°C. The lowest values occur in the Ryazanian 

and the highest values in the Upper Valanginian Dichotomites ammonite zone. 

Surprisingly, the highest palaeotemperature estimates occur just prior to (-10 m below) the 

glendonite occurrences in the Festningen section, although the temperatures do drop 

significantly (from 21.4 to 11.1 °C) where glendonites are most abundant. At Janusfjellet, 

belemnites and glendonites also co-occur during the Upper Valanginian. Here 5*^0 

derived palaeolemperatures give values of-S.O^'C. Interestingly, this is the estimated basal 

transition temperature for the change from ikaite to calcite in glendonites (e.g., Stein & 

Smith, 1985; DeLurio & Frakes, 1999). 

9.5.5. The Elemental Records & Palaeotemperature Implications 

Mg/Ca, Sr/Ca, Na/Ca and Li/Ca ratios were calculated here (as in the previous 

chapters) together with Mn/Ca in order to assess preservation. Those samples with Mn/Ca 

values exceeding 100 ^mol/mol were excluded from further analysis. Cross-plots of E!/Ca 

against S'̂ O for the Ryazanian-Upper Valanginian Svalbard belemnites (Fig. 9.14) show 

statistically significant correlations (at the 99% confidence level) for Na/Ca with S'̂ O and 

Li/Ca with S'̂ O but not for Mg/Ca or Sr/Ca. The R^ values for the correlations are as 

follows, 0.447 (Mg/Ca), 0.062 (Sr/Ca) 0.899 (Na/Ca) and 0.799 (Li/Ca). The strength of 

the correlations between Na/Ca and 5*^0 and between Li/Ca and S'̂ O is surprising as such 

correlations have not been observed in published belemniie studies (e.g., McArthur et a/., 

2000; Bailey et al., 2003; Rosales et ai, 2004a, b) nor have they been observed in the 

previous chapters (although Li/Ca and 6*^0 did show a statistically significant correlation 

in the Boyarka River dataset). The reason for the significance of these correlations is 

unclear. 

Long-term trends cannot be observed from the JanusQellei succession (Fig. 9,15) 

because the succession contains only three data points (one in the Ryazanian and two in the 

Valanginian), however, there appears to be little change in the El/Ca values recorded at 
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Janusfjellet. The long-term trends recorded from the Festningen succession (Fig. 9.16) are 

also difficult to interpret due to the sparsity of data. As is expected from the correlations 

observed in the El/Ca and S'̂ O cross-plots (Fig. 9.14) Na/Ca and Li/Ca show a distinct 

shift to more negative values, which is followed by a return towards more positive values 

at the top of the succession (as is observed in the 5 O record). 
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Figure 9.14 Cross-plols of 5'^0 and (A) Mg/Ca, (B) Sr/Ca, (C) N'a/Ca and (D) Li/Ca. 

Mg/Ca ratios were used to calculate palaeotemperatures (Figs 9 . 1 2 & 9 . 1 3 ) for the 

Ryazanian-Upper Valanginian interval using the equation of Klein et al. ( 1 9 9 6 ) (as in the 

previous chapters). The average palaeotemperature (for the Janusfjellet and Festningen 

sections combined) is 2.4°C and the range is -1 .3 to 5.6°C. The average offset between the 

S'̂ O derived values and Mg/Ca derived values for the combined Svalbard successions is 

10.6°C. This temperature difference is linked to a distinct freshening o f - 1 0 %o, which 

equates to a change from a 'normal' marine salinity of 3 4 %o to a value of 2 4 %o. 
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Figure 9.15 El/Ca ratios from the Upper Valanginian succession at Festningen, Svalbard. Svalbard/Barents 
Sea ammonite zonation is illustrated (see references within Harland (1997)). Indicated to the right of the 
sedimentological log (with a belemnite symbol) are the horizons from which belemnites were collected. See 
Figure 4.2 for key to log symbols. Scale is in metres. 

209 



1 ^ 

9 

1 
E 

CO V 

o ^ 

t o . 

y •« 
o 
o 

o 
i 
i 
CD 

2 

o ^ 

SI •• 

o ^ 

SI •• • 
o ^ 

SI •• 

o ^ 

SI •• 

& & & 

r - 7 i r - 9 : 7 - r 
ee 
ee 9 :i:9 

uoticxujod laoa&ioucfljv 

NVINIONVTVA 83d<in NVINIONVTVA " I iNVlNVr 
'-ZVAd' 
* • • I 

NVIOlOA I Nvia 
»-aojxo 
J . . I . 

NVIAOTTVO ± 1 
1— 5 

Figure 9.16 El/Ca ratios from the Ryazanian-Upper Valanginian succession at Janusfjellet, Svalbard. 
Svalbard/Barents Sea ammonite zonation is illustrated (see references within Harland (1997)). Indicated to 
the right of the sedimentological log (with a belemnite symbol) are the horizons from which belemnites were 
collected. See Figure 4.2 for key to log symbols. 
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This amount of freshening seems unlikely since belemnites are always associated with 

other marine organisms and are therefore unlikely to have survived in seawater with a 

salinity that low. I f the oxygen isotope composition of seawater is assumed to be -1.5 %o 

(the value predicted by Roche et al. (2006) for the high latitudes) the average S'̂ O derived 

palaeotemperature is 11.0°C (instead of 13.0°C). A change in temperature of 8.6°C can be 

interpreted as the result of an 8.4 %o change in salinity. This value still seems high, which 

suggests that Mg/Ca derived palaeotemperature estimates must be viewed with caution, 

particularly as the Mg/Ca calculations used here produce sub-freezing values for parts of 

the succession and such temperatures could not possibly be recorded by belemnite calcite. 

9.5.6. The Carbon Isotope Record 

Carbon isotope values from the Festningen and Janusfjellet successions range from 

-0.06 %o in the Ryazanian to 2.1 %o in the Upper Valanginian. Once again, the sparsity of 

data makes it difficult to interpret a long-term trend here. In spite of these difficulties 

however, a shift to more positive values in the Upper Valanginian is observed. This is 

consistent with the timing of the global carbon isotope positive excursion that occurs 

during this interval (and has been identified from carbonate and organic records presented 

in this study - see Chapters 7 & 8). The shift towards more positive carbon isotope values 

observed here is coincident with a relative sea level rise, although the maximum values 

occur during the onset of a sea level fall. This relationship observed between carbon 

isotope values and sea level is very similar to that observed from the Boyarka River 

succession, where the initiation of the positive carbon isotope excursion coincides with a 

sea level rise but the excursion maximum coincides with a sea level fall. As discussed 

previously, positive carbon-isotope excursions may be related to regressive conditions due 

to an increased input of nutrients resulting from exposure and erosion of lowland areas 

(Brenchley et ai, 1994; Grocke et al., 1999; Price & Mutteriose, 2004). In addition, the 

partial separation of the Boreal and Tethyan Realms during periods of sea-level lowstand 
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could have restricted ocean circulation and enhanced stratification to promote organic 

carbon burial in these high latitude locations (Price & Mutterlose, 2004). 

9.5.7. Ryazanian-Valanginian Stable Isotope Records 

The Ryazanian-Upper Valanginian temperatures calculated here (7.7 to 21.4°C, 

average 13.0°C) are consistent with palaeotemperatures calculated from published 

belemnite-derived oxygen-isotope data. Ditchfield (1997) calculated palaeotemperatures 

of 5.3 to 10.9°C for the Tithonian-Valanginian interval from Kong Karls Land, Svalbard. 

Other palaeotemperature estimates include those of Price et al. (2000) at 10-15°C for 

Yorkshire, England, McArthur et al. (2004) at 9-14°C also for Yorkshire, England, van dc 

Schootbrugge et al. (2000) at 12-16°C for southeastern France and Price & Mutterlose 

(2004) at 7-21°C for the Yatria River, Siberia (Fig. 9.17). The palaeotemperature data 

presented here is consistent with the lowest values previously recorded for Ryazanian-

Valanginian interval but also presents some surprisingly high temperature values. 
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Figure 9.17 Valanginian palaeogeography map showing published belemnile derived palaeotemperatures for 
this time period. (SV = Svalbard; BY = Boyarka River; IZ - Izhma River). 

The palaeotemperature estimates from the Ryazanian-Valanginian northern high 

latitudes (calculated from this study and by Price & Mutterlose (2004)) are more variable 
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than the estimates derived from the mid-latitudes (e.g., Price et a!., 2000; van de 

Schootbrugge et al., 2000; McArthur et ai, 2004). This could be the consequence of 

several factors, firstly, increased seasonal temperature differences in the high latitudes 

compared with those in the mid- to low latitudes, secondly, the proximity of these sites 

(and in particular those in Russia and Siberia, which show the greatest variability) to a 

substantial landmass and hence the likely influence of riverine runoff and thirdly, the 

potential influence of seasonal ice-melt to these high latitude sites. An additional factor 

that could account for the observed high latitude variability is that Boreal Realm belemnite 

taxa could have a greater tolerance to changing environmental conditions than their 

Tethyan counterparts. 

As discussed in previous chapters an Upper Valanginian positive carbon isotope 

excursion has been identified from the Tethyan region (e.g., Lini et ai., 1992; Channell et 

al., 1993) and from the high latitudes (e.g., Price & Mutterlose, 2004; Boyarka River and 

Izhma River (this study)) and from both carbonate (e.g., Lini et al., 1992; Channell et ai, 

1993) and organic carbon records (e.g., Grocke et al., 2005; Boyarka River (this study)). 

The 5''*C shifl to more positive values observed in the Svalbard successions is consistent 

with the timing of this seemingly global excursion. 

9.6. Conclusions 

• The data presented here comprise the first belemnite stable isotope study to be 

conducted from the Ryazanian-Upper Valanginian interval at Festningen and 

Janusfjellet, Svalbard. 

• The preservation of belemnites at this site was very poor, although stable isotope 

analyses were possible from -25% of the collected specimens. 

• Glendonites and outsized clasts (interpreted here as glacial dropstones) were identified 

from the Svalbard successions. The presence of such deposits occurring in close 
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stratigraphic proximity lends definite support to the idea that cold conditions occurred 

in the northern high latitudes during the Early Cretaceous. 

The palaeotemperature range calculated from the belemnite S'̂ O data is 7.7 to 21.4°C, 

with an average temperature of 13.0°C. This is consistent with previously published 

data for this time interval. Despite the variability observed, the existence of cold 

conditions is further supported by these data. 

The Mg/Ca derived palaeotemperature estimates range from -1.3 to 5.6°C, with an 

average temperature of 2.4°C. As noted in previous chapters, it would be impossible for 

belemnites to record sub-freezing temperatures, which casts doubt on the use of Mg/Ca 

palaeotemperature equations when applied to belemnite calcite. 

The 5'^C data display a shift to more positive values from the Ryazanian and into the 

Upper Valanginian (of -2 %o). This shift is consistent with the timing of the Upper 

Valanginian positive carbon isotope excursion, which has been recorded from the 

Tethyan region, from the high latitudes, from carbonate and from organic carbon 

records. 
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Plate 15. Cathodolumincsccncc images shouing [\\c stale of prcscnalion of bclcmnitc rostra from 
Fcstningcn and JanusQcllct. S\albard All scale bars represent 1 mm. (A) Rostrum margm. growth bands 
and fractures displa> uig alteration <B) Gn\oth bands and fnictnircs displax ing alteration (C ) Apical canal 
surrounded b> growth bands displa> ing alteration (D) Fractures cminaiing from jipical canal (E) Fractures 
and growth baivls ncir apical canal displaxing alteration (F) Apical canal wiih sedinient infilling (G) 
Distinct cracks partiallx infilled with diagencuc cement (H) GeneralK well prcser\ed calcile. 
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P L A T E 16 

4 

Plate 16. Backscatlcrcd SEM images sho\\ing the state of preservation orbclemnile rostra from Festningen 
and Janusfjcllei. S\albard All scale bars represent lengths stated on miages (A) Grouth lines dispUixmg 
strong alteration and some p>nte growth (B) Growth lines displa>ing alteration (C) Growth lines 
displj>mg strong alteration and the presence of p>rite (D) Fractures mnnmg through apical canal, one 
mfillcd wnh p> ntc (E) Apical canal and surrounding growth lines displa> ing alteration anf I IK presence of 
p>ritc (F) Edge of apical canal w ith presence of p> rite (G) Fractures surrounded b> aheration and wnh 
some p\ nic infilling (H) Dcfomicd internal stmcture and areas of altered cjilcite around deformation 
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P L A T E 17 

• 

Plalc 17. Caitwnatc stained images shouing ihe stale of prcscrvaiion of beleitinite rostra from Festningen 
and JanusQcllet. S\albard All scale bars represent I mm (A) Ver> well preserved calcite (B) P> nte growtli 
along fractures at rostmm margm (C) Fractures cmin;itmg from rosimm nuirgm dispUiving alicmuon (D) 
Apical canal, fractures and gro\Mh lines displa>mg alteration. (E) Femigiiious calciie with some qiuirty 
replacement (F) Femiginous calcite (G) Ferruginous calcite with some quart/ replacement and p>nte 
grovvilv (H) Fcmiginous calcite uith some quiiri/ replacement and deform îtion of internal stnicture 
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10. DISCUSSION 

This chapter wil l discuss two major themes in relation to the data presented in this 

study. Firstly, it wil l evaluate the use of belemnites as palaeoenvironmental indictors. 

This is of particular importance for appreciating both the limitations and the potential of 

the data investigated here. Secondly, the contribution of this study to the understanding of 

Late Jurassic and Eariy Cretaceous global palaeoenvironment wil l be examined. 

10.1. Evaluating Belemnites as Palaeoenvironmental Indicators 

10.1.1. Preservation 

The belemnite specimens analysed in this research are considered to be generally 

well preserved and, therefore, represent the original isotopic and geochemical composition 

of the belemnite calcite. A range of methods were used in this study in order to assess the 

preservation of belemnite rostra. These methods were: CL, BSEM, carbonate staining and 

trace element analysis. In addition to these techniques, a preliminary visual inspection of 

each belemnite rostrum was conducted and opaque or cloudy specimens were rejected. 

Each of the aforementioned techniques is extremely useful for assessing 

preservation, although, there are a number of limitations associated with their use. CL 

microscopy, for example, is not effective where the concentration of Fe greatly exceeds 

that of Mn, which is the catalyst for the luminescence reaction. Ferroan calcite highly 

enriched in Fe, therefore, does not show luminescence despite being severely 

diagenetically altered. This problem was encountered with several of the belemnite 

specimens analysed from Svalbard in the present study. 

The major limitation associated with Backscattered Scanning Electron Microscopy 

is the ambiguity present in the generated image. Areas of alteration are highlighted by a 

change in tone on the greyscale image (i.e., lighter and darker greys) and subtle alteration 
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is therefore often difficult to distinguish. The BSEM technique however, provides a higher 

level of magnification than is available from any of the other screening methods, which 

allows more minor areas of alteration to be identified, although, such resolution is often 

unnecessary since those areas of minor alteration wi l l often be confined to the segment of 

the rostrum being analysed and wil l not be present in the subsample from which 

subsequent isotope and geochemical analysis wi l l be conducted. 

Carbonate staining of belemnite rostra produces a very clear visual representation 

of preservation and is probably the most illustrative of the optical screening techniques 

applied here. The carbonate staining technique responds to the occurrence of Fe, unlike 

the CL technique, which utilises the presence of Mn. Well preserved calcite displays a 

pale pink colouration after staining, whilst Fe-rich areas appear as dark pink-mauve-

purple-blue colours, depending on the abundance of Fe (blue represents highly ferroan 

calcite). This technique, therefore, shows not only the presence of diagenetic products but 

also the degree of alteration present. CL microscopy is also capable of this because a 

greater amount of Mn will create stronger luminescence. The problem with interpreting 

the CL reaction in this sense however, is that the strength of luminescence can be altered 

manually by modifying the gun current and gun voltage and a change in luminescence 

strength is not as visually striking as a change in colour (as demonstrated in the carbonate 

stained specimens). 

Trace element analysis is perhaps the most useftil of the tests for diagenesis as it 

provides a quantitative rather than qualitative assessment of alteration. High 

concentrations of Fe and Mn more or less guarantee that diagenetic calcite is present, 

although it should be noted that alteration can take place in the absence o f Fe and Mn, for 

example under oxidising conditions (Marshall, 1992; Jones et al., 1994). 

In conclusion, it is important to assess belemnites for diagenetic alteration using a 

combined approach that incorporates both geochemical and optical techniques. Firstly, 

belemnite rostra must be examined using the naked eye. Only those specimens that display 
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a predominantly honey coloured and translucent appearance should be considered for 

further analysis. In addition, care should be taken where obvious signs o f bioerosion are 

present on the rostrum margin. Optical screening techniques should then be performed on 

a representative range of samples, or where possible (with small datasets for example) such 

analyses should be carried out all specimens. Finally, trace element analysis (for Fe and 

Mn) should be conducted on every specimen. I f this process is followed, all specimens 

affected by modest to severe post-depositional alteration, as well as many o f those affected 

by very slight alteration should be recognised and removed. The remaining specimens can 

then be analysed for stable isotopes and trace element concentrations with the confidence 

that any trends recorded will not be the result of preservational factors. 

10.1.2. Natural Variability in Belemnite Records 

For each of the belemnite isotope or elemental records presented here a significant 

degree of scatter is present. This variability is not considered to be the result of diagenetic 

alteration as an extensive screening process was employed in order to eliminate altered 

specimens (as outlined above). The variability is therefore likely to be the result of real 

environmental change (e.g., temperature, salinity, ice volume), genus- or species-specific, 

ontogenetic or gender related differences in fractionation. 

McArthur et a!. (2004) observed a small (<0.4 %o) offset in the S '^O ratios recorded 

from co-occurring belemnites of the genera Hibolites (typically a Tethyan Realm genus) 

and Acroteuthis (typically a Boreal Realm genus) from the Early Cretaceous at Speeton, 

Yorkshire. This led them to allude to the possibility of genus related differences in the 

fractionation of biogenic calcite. Such differences could be caused by a difference in 

habitat (e.g., one genus inhabited the shallow shelf, whilst the other inhabited deeper 

waters), differences in migratory habits (possibly related to mating and feeding 

differences) or a slight offset fi-om equilibrium fractionation in one or both of the genera. 

The major problem with assessing whether or not different genera record slightly different 
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stable isotope or geochemical signatures is that co-occuiring beiemnites consisting of a 

variety of genera are not common in the geological record. In the successions investigated 

here, only 10 belemnite horizons out of approximately 375 contained more than one genus 

(where taxonomic identification could be undertaken with confidence) and even then only 

one or two specimens from each genus were suitable for collection and analysis. 

Furthermore, i f only one or two specimens from each genus is analysed, it is difficult to 

determine whether an observed difference in composition is attributable to generic factors 

or whether it is instead the result of changing environmental conditions between the 

deposition of each individual. Beiemnites probably only lived for a few years (based on 

analogy with modem cephalopods) (Rexfort & Mutterlose, 2006), whilst deposition of a 

sedimentary horizon containing beiemnites could require a considerably greater period of 

time to form. Doyle & Macdonaid (1993) suggest that belemnite assemblages on a single 

bedding plane could require several thousand years to form. This, therefore, provides the 

opportunity to preserve a number of beiemnites in a sedimentary horizon that would have 

lived at slightly different times and consequently would also have recorded slightly 

different geochemical compositions. 

The analysis of co-occurring beiemnites in this study (Table. 10.1) is inconclusive 

with regards to the influence of generic differences upon fractionation. In total, 23 

belemniie horizons containing either co-occurring beiemnites of the same genus (only 13 

horizons out of -375) or co-occurring beiemnites o f different genera (10 horizons) were 

identified. The offset observed in both the oxygen and carbon isotope values is highly 

variable, with offsets ranging between 0.04 and 2.39 %o for oxygen and between 0.02 and 

1.96 %o for carbon (Fig. 10.1). The maximum offset in oxygen isotope values is observed 

between beiemnites of the same genus {Cylindroteuthis), whilst the maximum offset in 

carbon isotope values is observed between different genera {Cylindroteuthis and 

Pachytenthis). There appears to be no consistency in the amount of offset observed 

between co-occurring beiemnites of the same genus and co-occurring beiemnites of 
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different genera. In addition, there is no consistency between the nature of the offset 

observed where different genera are considered, for instance, where Cyiindroteiahis and 

Pachyteuthis co-occur, neither genus records consistently heavier nor lighter isotope 

Horizon Na Am. Zone Genus 6"o 6"c Mg/Ca Na/Ca LUCa SrTCa 
Offsd Offset 

KH1-4; 3Z30 Val.-Haut. D.bid.-H.boy. Cytindro. -0.64 1.64 1.52 0.13 4.45 5.21 22.93 1.82 

V^.-Haut. D.bid.-H.boy. Cytindro. 1.00 1.65 5.08 5.88 34.47 1.88 

KH1-4b: -20.00 LVal . D.bidtchot. Arcto. Z06 1.73 273 0.23 260 5.50 7.24 2.19 
L Val. D.bidichot. Arcto. 0,32 296 2.95 4.85 5.16 200 

KH16: 2.80 E. Ryaz. H.koc.-S.aa Cytindro. 1.92 0.68 0.41 0.13 3.84 4.99 18.56 1 . ^ 
E. Ryaz. H.koc.-S.aa Cylindro. 1.24 0.28 4.86 5.18 17.93 1.70 

KH16: 2.S5 E. Ryaz. H.koc.-S.an. Cylindro. 227 2.39 0.31 0.03 2.71 6.54 19.90 1.94 

E. Ryaz. H.koc.-S.an. Gylindro. -0.12 0.28 5.27 5.39 29.18 1.54 

PCI E. Callov. C.elatmae Pachy. -0.31 0.04 1.66 0.18 6.79 5.20 72.62 1.25 
E. CaPov. C.elatmae Cylindro. -0.26 1.48 5.62 4.49 71.82 1.46 

PC2.1 Volg D.max Lagonib. -0.64 0.15 -0.53 0.03 6.76 4.76 45.17 1.54 

Volg D.max Lagonib. -0.79 -0.50 5.17 5.69 183.27 1.42 

PC2.9 Volg D.max Lagonib. ^.92 0.08 -0.75 1.02 4.55 4.32 28.60 1.45 

Vofg O.max Lagonib. -0.84 0.27 4.42 4.70 30.19 1.40 

PC2.11 Volg O.max Lagonib. -0.56 0.08 0.36 0.70 5.16 6.88 6.84 1.79 

Volg D.max Pachy. -0.48 -0.34 3.41 5.44 2.47 1.47 

SKI; 4.50 E. Oxf. Mar-Cor Cytindro. 1.24 0.34 214 0.89 7.53 6.14 38.03 1.45 
E.Oxf. Mar-Cor Gytindro. 0.90 3.03 8.41 6.44 50.12 1.28 

SKI; 5.90 E. Oxf. Pk/br-Cor Gylindro. 1.43 0.17 213 0.02 6.54 5.17 29.56 1.30 
E.Oxf. hter-Cor Gylindro. 1.26 211 8.00 6.97 31.11 1.59 

SK2:1.05 M. Oxf. DervTen Cytindro. 0.75 0.34 264 0.51 5.44 5.67 41.66 1.39 

M. Oxf. Den-Ten Cytindro. 1.09 3.15 4.88 5.78 42.58 1.38 

SK2:1.30 M.Oxf. DervTen Gylindro. -0.61 0.88 4.02 1.77 4.75 4.91 3215 1.36 

M.Oxf. Den-Ten Cylindro. 0.27 225 7.39 5.99 62.95 1.22 

SK3: 6.40 E-M. Oxf. Cor-Den Cytindro. 066 0.64 287 1.13 5.09 4.81 57.01 1.24 

E-M. Oxf. Cor-Den Pachy. 1.30 1.74 4.54 5.01 47.06 1.35 

SK4:0.20 E-L. Call. Koe-Lam Cylindro. 0.27 1.01 274 0.82 5.35 5.84 43.50 1.55 

E-L. Call. Koe-Lam Pachy. -0.74 1.92 7.83 6.17 55.07 1.49 

SK4: i.eo E-L Call. Koe-Lam Gylindro. -0.31 0.27 271 0.16 5.73 4.58 41.24 1.31 
E-l»CaIl. Koe-Lam Cylirvlro. -0.03 287 4.63 5.64 30.66 1.52 

SK4:6,80 E-L. Call. Koe-Lam Cyfindro. 0.27 0.24 257 0.23 6.73 4.42 33.84 1.30 
E-L. Call. Koe-Lam Belemn. 0.03 279 6.45 5.89 59.40 1.21 

SK5; 4.15 E. Kimm. Bay-Cym Cylindro. -0 58 0.23 217 0.11 3.70 4.09 32.92 1.45 
E. Kimm. Bay-Cym Pachy. -0.35 228 3.74 4.96 36.37 1.54 

SK5: 5.70 E. Kimm. Bay-Cym Cylindro. -1.70 1.79 3,57 0.26 4.44 4.49 31.54 1.72 
E. Kimm. Bay-Cym Pachy. 0.09 3.31 3.26 4.44 39.77 1.50 

SK5: 7.40 E. Kimm. Bay-Cym Pachy. 0.62 2.01 0.80 1.96 6.47 6.93 113.24 1.49 

E. Kimm. Bay-Cym Cyiindro. -1.39 276 4.42 423 40.60 1.45 

SK5; 8.10 E. Kimm. Bay-Cym Pachy. -0.49 0.66 211 0.87 5.65 7.09 70.25 1.66 
E. Kimm. Bay-Cym Cytindro. -1.15 298 3.78 3.94 35.56 1.47 

SK6:1.50 E. Kimm. Gym Cylindro. ^.97 0.15 249 0.26 4.65 4.53 40.14 1.42 
E. Kimm. Gym Gylindro. -1.12 224 8.00 5.45 51.56 1.52 

SK6:7.50 E. Kimm. Gym Gylindro. -0.25 1.21 1.24 0.59 7.93 6.47 55.73 1.59 

E. Kimm. Gym Gytindro. -1.46 1.83 4.50 5.27 4217 1.69 

SK7; 5.70 Oxf.-Kim. Reg-Bay Pachy. 0.41 0.17 1.30 0.18 4.13 4.87 45.47 1.55 
Oxf.-Kim. Reg-Bay Cytindro. 0.24 1.49 5.78 5.41 47.84 1.53 

Table 10.1 Table showing genus-level differences in stable isotope and geochemical measurements from 
coeval belemnites. Coeval belemniies of different genera are highlighted. Key lo notation: KH (Boyarka 
River); PC (Izhma River); SK (Staffin Bay). 
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Sample Na Age Am. Zone Genus 6̂ \) Offset 6"C Offset 
Mg/Ca Na/Ca UICa SrfCa 

EA1;0.05 L. Kimm. Mutabilts Cyttndro. -0.63 0.69 1,10 0.53 9.66 8.09 54.06 1.83 

EA1;0.05B L. Kimm. Mulabilis N. -1,32 1.63 7.46 6.55 3252 1.98 

KHlTb; 1.55 L.Ryaz. B.meses. Cyltndro. -0,47 0.50 0.58 0.52 5.40 6.06 37.97 1.56 

KHITb: 1.55 B L.Ryaz. B.meses, iv. -0.97 0.06 5.02 4.81 32.90 1.54 

PC2.11 Volg. (?) D.max (?) Lagorvb. -0.56 0.02 0.36 0.84 5.16 6.86 6.84 1.79 

Vdg. (?) D.max (?) fv- -0.58 -0.48 5.25 7.76 -1.92 1,84 

PC2.13 Volg. (?) D.max (?) Lagorab. -0.18 0.42 0.83 1.51 4.03 8.35 0.00 203 

Volg. (?) D.max (?) iv. -0.60 -0.68 5.68 5.17 0.00 1,46 

SK3: 3.00 E-MOxf. Cor-Den 0,72 0.17 3.97 2.24 3.50 5,10 46,97 1.32 

E-M. Oxf. Cor-Den N- 0.89 1.73 14,22 11.00 100.12 1.80 

SK3: 5.20 E-M Oxf. Cor-Den iv- 0.69 0,36 0.01 3.64 6.62 5.49 54.49 1.39 
E-M Oxf. Cor-Oen N. 0.33 3.65 4.59 S2B 46.85 1.37 

SK4: 1.80 E-L Call. Koe-Lam Cytindro, -0.03 0.09 2.87 0.85 4.63 5.64 30.66 1.52 
E-L Can. Koe-Lam jv. 0.05 2.02 4.79 4.28 30.73 1.38 

SK5; 6.25 E. Kimm. Bay-Cym Cylindro. -1.48 1.29 2.32 0.26 4.74 4.70 46.30 1.51 
E. Kimm. Bay-Cym -0.19 2.05 4.35 4.48 49.77 1.41 

SK5; 7.20 E. Kimm. Bay-Cym (V- -1.11 0.12 2.94 0.11 3.61 4.41 41,65 1.47 

E. Kimm. Bay-Cym Cylindro, -1.23 3.06 5.57 4.49 37.28 1.47 

SK6; 0.00 E. Kimm. Cym ^ • 0.09 1.62 1.29 0.40 7.92 6.26 72.04 1.52 
E. Kimm, Cym CylirwJro. -1,53 1.69 6.19 4.65 45.09 1.46 

SK6: 5.90 E. Kimm. Cym jv- -1.74 0.85 0.84 0.15 7.42 5.89 55.60 1.43 
E. Kimm. Cym Cylindro, •0.89 0.69 6.85 5.89 47,13 1.67 

SK6; 7.20 E. Kimm. Cym Cylindro. -0.67 0.09 1.31 0.71 4.70 5.17 46.05 1.54 
E. Kimm, Cvm iv. -0.76 2.01 4.84 5.00 38.50 1.51 

SK6: 7.80 E. Kimm, Cym jv- -1.85 0.97 2.39 1.20 4.84 4.90 40,10 1.62 

E. Kimm. Cym -0.88 1,19 10.28 7,02 65.23 1.56 

SK7: 1.20 Oxf,-Kim. Reg-Bay jv- 0.38 1.36 1.87 0.22 4.37 4.84 36.03 1.50 

Oxf.-Kim. Reg-Bay N- -0.98 1,65 4.97 5,28 54.39 1.40 

SK7: 14.80 Oxf.-Kim. Reg-Bay iv- 0.05 0.20 1.56 1.25 5.67 5.14 46.12 1.43 
Oxf.-Wm. Reg-Bay iv. 0 , ^ 0.31 6,05 5,27 28,28 1.39 

SK7; 15.40 Oxf.-Kim. Reg-Bay /V- 0.13 0.19 1.90 0.45 5.40 5.54 33.02 1.45 

Oxf.-Kim. Req-Bay Cylindro, 0.32 1,44 6.05 6.02 36.50 1,50 

SK7; 17.80 Oxf,-Kim. Reg-Bay iv- -0.79 1.34 1.02 0,33 5.67 4.83 34.07 1.52 

Oxf.-Kim. Reg-Bay iv- 0.55 1,34 4.17 4.15 23.41 1,39 

SK7; 20.90 Oxf.-Kim, Reg-Bay iv. -0.43 0,08 1.35 0.46 4,76 4.54 25,37 1.53 
Oxf,-Kim, Reg-Bay -0.35 1.81 4.38 4.67 20,48 1.62 

SK8; 27.20 E. Oxf. Cor Cylindro, 0.60 0.57 2.76 0.57 3.49 5.41 3214 1.32 

E. Oxf. Cor iv. 0.03 3,33 4.48 4.85 24.70 1.26 

SK8: 27.40 E.Oxf. Cor iv. 0.50 0,12 2.30 0.68 4.78 4.80 21.96 1.38 

E.Oxf. Cor iv. 0.62 2.98 3.91 4,79 1274 1,35 

SK8; 35.60 E. Oxf. Cor N- -0,17 0.09 3.63 0.33 5,13 4.82 20.12 1.31 

E. Oxf, Cor N- •0,26 3.30 4.19 4,92 21.58 1.38 

SK10:0.40 LOxf. Ser-Reg iv- 0.68 0.46 0,73 0.29 5.33 4,39 24.07 1.41 

LOxf. Ser-Reg iv- 0.22 0.44 5.03 4.73 23.19 1.47 

SKia 14.30 LOxf. Ser-Reg 0.09 0.04 1.72 0,51 5.67 5.37 28,78 1.42 

LOxf. Ser-Reg 0,13 1.20 10.82 7.12 39.64 1.39 

Table 10.2 Table showing ontogenetic differences in slable isotope and geochemical measuremenls from 
coeval belemnites. Coeval belemnites of different ontogenetic stages are highlighted (i.e., adult and 
juvenile). Key to notation: KH (Boyarka River); PC (Izhma River); SK (Staffm Bay). 

values. Ultimately, the data presented here cannot be used to either confirm or refute the 

existence of genus-specific differences in fractionation, because despite obvious offsets 
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between different genera occurring in the same horizon, similar levels o f offset are also 

observed between co-occurring belemnites of the same genus. 

Also analysed during this study was the effect of ontogeny on fractionation. This is 

because it is possible that juvenile specimens may record different geochemical values to 

adults. For example, belemnites may have lived in a different part of the water column 

whilst young (as seen in modem cephalopods) or there may have been a slight difference 

in fractionation at this age, possibly in response to rapid growth during the juvenile stage. 

Rexfort & Mutterlose (2006) recognise the rarity of juvenile rostra in the geological record, 

which they suggest may indicate extremely rapid early growth. The general absence of 

such material in the fossil record however may be explained solely by its relative fragility. 
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Figure 10.1 Cross plots of 6'^0 and offsets observed from coeval belemnites. (A) Genus-specific 
differences. (B) Ontogenetic differences. 

Juvenile specimens were collected and analysed in this study (principally from 

Staffin Bay), with their stable isotope and geochemical composition recorded and 

subsequently compared with those of adult specimens (Table 10.2). The ontogenetic 

record displays great variability in the offset bet^veen isotope values, much like the generic 

record discussed above. High levels of offset were observed where juveniles were coeval 

with adult specimens as well as where different juvenile individuals were analysed from 

the same horizon (Fig. 10.1). Again, these data are inconclusive and cannot be used to 
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either confirm or refute the potential influence of ontogeny on the stable isotope and 

elemental records. 

it seems likely that as the belemnite rostra studied here display significant 

variability even where taxonomic and ontogenetic effects can be ruled out, something else 

must be influencing that variability (either in conjunction with, or in isolation from, these 

factors). Recent analysis of extant specimens of Sepia officinalis (the common cuttlefish, 

which is commonly believed to be one of the closest living relatives of the belemnite) 

records significant variation in isotopic composition across the cuttlebone that has been 

attributed to changes in seasonal temperatures and migration (Rexfort & Mutterlose, 2006). 

It seems reasonable to assume that beiemnites could also exhibit similar changes in 

isotopic composition across the rostrum. A preliminary investigation of this was 

conducted by Podlaha et al. (1998) where the internal variability o f individual rostra was 

shown to be as much as 2 %o for both S'^O and 5'"*C, suggesting that the variability 

observed in the belemnite record could be associated with this internal variability. It may, 

therefore, not be wise to drill small holes into the belemnite rostrum in order to collect a 

sample for isotopic analysis when a homogenised signal is preferred and instead to 

homogenise a larger segment of calcite (this approach was adopted here). 

The scatter observed in the belemnite data presented here is generally consistent 

with that of published belemnite records from other successions (e.g., van de Schootbrugge 

et aL, 2000; Bailey et ai, 2003; McArthur et ai, 2004; Price & Mutteriose, 2004; 

Wierzbowski, 2004). Only the Boyarka River data displayed a greater amount of scatter 

than would have been expected. This is likely to be the result of the shallow nature of the 

Boyarka River succession, which presents a relatively dynamic depositional environment. 

By comparison, the Izhma River succession records significantly less variability over the 

same time period, probably as a consequence of the less variable nature of the deeper water 

succession. 
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Bulk rock records tend to produce much smoother curves than belemnites, which is 

the result of time averaging and the homogenisation of constituent particles. These 

processes dampen natural variability to produce less noisy curves than those generated 

from belemnites. For example, a I mm bulk sediment sample could represent anything in 

the range o f 100-1000 years or more and could contain a number o f different microscopic 

organisms, which may have inhabited a range of levels in the water column, whilst a 1 mm 

sample of belemnite calcite represents the environment of one individual and probably 

only for a period of months. 

The scatter observed in belemnite data is, therefore, likely to be the result of real 

and naOiral variability. It is important to stress that in terms of palaeoenvironmental 

interpretation this natural variability is not a significant problem so long as long-term 

trends rather than small-scale fluctuations are interpreted. 

10.1.3. Oxygen Isotopes 

Oxygen isotope values in biogenic calcite reflect temperature as well as global (ice 

volume) and local (precipitation, runoff and evaporation) variations in S'̂ Oscawmcr- Only 

organisms which precipitate their calcite in equilibrium with their surroundings and remain 

unaltered after deposition wil l retain a pristine isotopic signal that reflects these factors. 

Belemnite rostra are believed to satisfy these criteria. It is commonly accepted that 

belemnites exhibited equilibrium fractionation for the oxygen isotope, although for the 

carbon isotope a slight offset from equilibrium precipitation may have been the norm. This 

is based on observations from modem cephalopods, which are known to secrete their shells 

very close to equilibrium with seawater (Taylor & Ward, 1983; Morrison & Brand, 1986; 

Rexfort & Mutterlose, 2006). In addition, belemnite rostra are composed of low-

magnesium calcite, which is relatively resistant to post-depositional alteration. Belemnites 

therefore, frequently preserve a pristine isotopic signal that can be used to provide 

information about palaeoenvironments and palaeoenvironmental change. 
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Beiemnites are relatively abundant in the fossil record, and can therefore be used to 

compare palaeotemperature estimates on considerable spatial and temporal scales. As 

mentioned previously, calculations of absolute palaeotemperature are highly problematic 

for an extinct group of organisms. This abundance of beiemnites therefore provides the 

opportunity to compare relative values of temperature from successions worldwide, 

providing that the same temperature equation is utilised. Fortunately, the 

palaeotemperature equation of Anderson & Arthur (1983) for molluscan calcite is almost 

always used in belemnite studies together with an isotopic composition o f - I %o SMOW 

for an ice-free worid (e.g., Price & Sellwood, 1994, 1997; Ditchfield, 1997; Price et al., 

2000; Price & Grocke, 2002; Grocke et al., 2003; McArthur et al., 2004; Price & 

Mutterlose, 2004). This equation and a S'^Oscawaicr value of - I %o S M O W were used 

throughout this study (despite evidence to suggest that a 6'̂ Oscawaicr value of -1.5 %o 

SMOW may be more appropriate for very high latitude locations - as discussed later). The 

belemnite derived palaeotemperatures can therefore be compared with each other ( i f not in 

terms of absolute values, then at least in terms of relative change) as well as with data 

generated from published studies. 

The importance of being able to compare beiemnites on a global scale is 

highlighted by the work of several authors that shows that different organisms can give 

different palaeotemperature results from the same locations, e.g., beiemnites and 

ammonites (Tan et al., 1970; Anderson et aL, 1994; Wierzbowski & Joachimski, 2006), 

beiemnites and brachiopods (Voigt et al., 2003) and beiemnites and planktonic 

foraminifera (Huber et aL, 1995; Price et aL, 1996; Huber & Hodell, 1996). Tan et aL 

(1970), Anderson et aL (1994) and Wierzbowski & Joachimski (2006) record a lower 

range of palaeotemperatures for beiemnites than for ammonites of the same succession, 

which the authors interpret as beiemnites inhabiting colder, deeper waters than the 

ammonites that inhabited the warmer surface waters. It should also be noted that Voigt et 

aL (2003) recorded colder palaeotemperatures (by --6°C) from belermiites than from co-
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occurring brachiopods, although they interpreted this as the result of belemnite migration 

from higher latitudes during a cool event. Ultimately, belemnites appear to record cooler 

palaeotemperatures than known shallow water taxa (Lowenstam & Epstein, 1954; Pirrie & 

Marshall, 1990; Ditchfield et al., 1994). At high latitudes, like those investigated in this 

study, belemnites are considered to represent minimum estimates of sea-surface 

temperatures at high latitudes as vertical ocean temperature gradients in relatively shallow, 

high latitude regions will be minimal (Barrera et ai, 1987; Price et al., 1996). The results 

presented here are consistent with this theory, for example the calculated 

palaeotemperature range from the Boyarka River succession (of 2 to 19°C) is compatible 

with the modem temperaOire estimate for bottom waters in the region (of -1 to I2°C) as 

calculated by Polyak et al (2003) from benthic foraminifera. 

As mentioned previously a 5**0scawatcr value of - I %Q S M O W is commonly used for 

palaeotemperature calculations for the Jurassic and Cretaceous periods. As discussed in 

the previous chapters however, a spatially invariant estimate of 5'^Oscawaicr may not be 

appropriate. The uncertainty encountered with regards to the isotopic composition of 

Jurassic/Cretaceous seawater is one of the major problems associated with the calculation 

of absolute palaeotemperatures for this time. Roche et al. (2006) suggested that 

palaeolatitudinal differences in 5'̂ Oscawatcr composition would have significant implications 

for palaeoiemperature calculations, namely that, for the late Mesozoic, existing low-

latitude calculations have underestimated palaeotemperatures, whilst high latitude 

calculations have overestimated palaeotemperatures. Such a situation has further 

implications in terms of reconstructing latitudinal temperaUire gradients and ocean 

circulation patterns. Despite these new data, the traditional view of 6'̂ Oscawatcr 

composition (using a value of -1 %o S M O W for the Jurassic and Cretaceous) has been 

adopted here. This provides the potential for a more direct comparison of the data 

generated from this study with that from previously published studies, although, the affect 
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of using the Roche et al. (2006) 6 Oscawatcr compositions is discussed later (see section 

10.2.2). 

10,1.4. Elemental/Ca Ratios 

In many modem calcifying groups, the Mg/Ca, Sr/Ca, Na/Ca and Li/Ca ratios 

reflect calcification temperature, although each to a varying degree. As mentioned 

previously, 5 O reflects temperature, salinity and ice-volume. Comparison of the two 

proxies should, therefore, provide an indication of the influence that such factors have had 

on the 6'^0 ratio. Where strong correlations between S'̂ O and El/Ca exist, temperature 

should be the dominant controlling factor. Conversely, where correlations are not 

observed, changes in salinity or ice-volume, interspecies or ontogenetic offset, metabolic 

activity or diagenesis may have had an influence. 

Statistically significant correlations between 5'^0 and El/Ca from this study were 

observed in the following cases: between S'̂ O and Mg/Ca (Izhma River), 5'^0 and Sr/Ca 

(Staffin Bay), 5*^0 and Na/Ca (Svalbard) and S'̂ O and Li/Ca (Boyarka River; Svalbard). 

An absence of correlation between S'̂ O and El/Ca is therefore the norm for this study. 

This can be interpreted in one of two ways, either as the result of environmental factors 

(salinity and ice-volume) influencing the S'̂ O record and therefore degrading the 

correlation, or as the result of physiological factors (metabolic activity and growth rate) 

influencing the El/Ca ratios. A significant impact from interspecies or ontogenetic offset 

or from diagenesis is unlikely as discussed previously (see sections 10.1.1 and 10.1.2), 

although these factors may account for some degree of scatter within the data. 

I f the absence of correlation is interpreted as being solely the result of 

environmental factors, significant salinity and ice-volume fluctuations are required 

throughout the northern high latitudes during the Late Jurassic and Early Cretaceous. 

Alternatively, i f the absence of correlation is attributed primarily to physiological factors 

then the use of El/Ca ratios as belemnite palaeotemperature proxies becomes highly 
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questionable. Unfortunately, it is impossible to confirm which of these two mechanisms is 

controlling the general lack of correlation, it may be that environmental factors dominate 

certain relationships, whilst physiological factors dominate others. Previously published 

studies on El/Ca ratios have tended to suggest that for Li/Ca, Na/Ca and, in some 

circumstances, Sr/Ca physiological factors have controlled fractionation (e.g., Delaney et 

ai, 1985; Klein et a!., 1996; McArthur et ai, 2000; Bailey et al., 2003), whilst for Mg/Ca 

fractionation is controlled by temperature (e.g., McArthur et aL, 2000; Bailey et al., 2003; 

Rosales et al., 2004a, b). A physiological effect on Li/Ca, Na/Ca and Sr/Ca would 

certainly be consistent with the data presented here, since in most cases no correlation is 

observed with 5'^0. This is equally true for the Mg/Ca ratios, however, and if, as is 

supposed by most authors, Mg/Ca is controlled by temperature rather than physiological 

effects, the lack of correlation observed here would be the result of environmental 

influences (temperature and variation in S'̂ Oscawatcr) on the S'̂ O record. In this case, the 

absence of correlation between the other Ei/Ca ratios would also be consistent with 

environmental influences on the S'̂ O records rather than physiological influences on the 

E//Ca records. Ultimately, the El/Ca data generated from this study are inconclusive with 

regards to the nature of the factors influencing the El/Ca and S'̂ O correlations. This has 

particular implications for estimates of the effects of salinity and ice volume on S'̂ O 

records, which is the most common use an El/Ca ratio in belemnites. Such estimates must 

be made with care and trends rather than absolute values must be interpreted. 

As discussed in the previous chapters the use of Mg/Ca palaeotemperature 

calculations for belemnites may not be appropriate. The Klein et aL (1996) equation was 

calibrated using the extant marine mussel Mytilus trossulus and was therefore considered 

here to be the most suitable equation for use on belemnites, since other palaeotemperature 

equations (e.g., those of Dwyer et oL (1995), Elderfleld & Ganssen (2000) and Lear et al. 

(2002)) were calibrated using foraminifera and ostracods. It is acknowledged however, 

that McArthur et al. (2000) and Bailey et al. (2003) both used Mg/Ca palaeotemperature 
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equations derived from the above foraminifera and ostracod calibrations, even though, the 

justification for doing this is unclear. In fact, in neither study do the authors satisfactorily 

explain why such systematically distant taxa to the coleoid order Belemnitida are utilised, 

when a much closer related, laxon calibration (derived from the bivalve Mytilus) is 

available. 

I f the Lear et a!. (2002) palaeotemperature equation (based on foraminifera) is 

applied to the Mg/Ca data presented in this study, for example for the Izhma River 

succession, then a calculated palaeotemperature range of 4.9 to 19.2°C and an average 

value of 12.2°C is generated. This can be compared to the Anderson & Arthur (1983) 6*^0 

derived palaeotemperature range of 7.3 to 17.3°C (average 13.0°C) and the Klein et al. 

(1996) range of -4.5 to 6.7°C (average -0.9°C) for the same succession. Based on this data, 

it is clear that the Lear et a!. (2002) calibration presents Mg/Ca derived palaeotemperatures 

closest to those of the 6*^0 calibration. It seems likely, that this is the reason that 

McArthur et al. (2000) and Bailey et al. (2003) selected this calibration rather than that o f 

Klein et al. (1996) for their research since no other justification is given. Whether or not 

this is sufficient reason to select a calibration, especially given the laxonomic arguments 

aginst such a seiction, is clearly debateably. In this study, the decision was taken that the 

use of foraminiferal or ostracod calibrations was not appropriate given the lack of 

taxonomic or ecological comparibility with belemnites. In order to consider these 

calibrations as appropriate, a much more convincing argument than seemingly suitable 

palaeoiemperatures must be presented. 

The Mg/Ca calculated palaeotemperatures generated here using the Klein et al. 

(1996) equation, commonly record sub-freezing values that could not have been recorded 

by belemnites (as they almost certainly would not have survived in such conditions). In 

addition, the S'̂ O composition of belemnite calcite is not expected to yield absolute values 

of palaeoiemperature for two key reasons, firstly the S'̂ Oscawatcr composition (on which the 

S'̂ Ocarbonatc composition is dependent) can only be estimated and secondly, the S'̂ O 
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fractionation capacity of belemnites cannot be measured since the group is extinct. Despite 

belemnite Mg/Ca ratios being possibly independent of seawater composition, there is still 

an element of uncertainty with regards to the fractionation of Mg/Ca. Mg/Ca calculated 

palaeotemperatures must, therefore, not be considered as absolute values but as being 

descriptive of a trend, particularly where relatively low values are concerned. 

Immenhauser et al. (2005) questioned the validity of applying the Klein et al. (1996) 

temperature equation to fossilised skeletal calcites. They suggested that it may only be 

appropriate for temperatures in the range of 5-23°C where the temperature-Mg relationship 

is linear. In addition, they go on to suggest that the utility of Mg/Ca ratios may be limited 

by the ion regulating capability of the animals being considered. 

If, as is commonly accepted, Mg/Ca ratios in biogenic calcite did reflect 

calcification temperature alone, (e.g., whilst S'̂ O reflects temperature plus a salinity and/or 

ice volume effect), then where both proxies are measured it should be possible to calculate 

relative changes in S'̂ Oscawatcr- This has very recently been attempted using Early 

Cretaceous (Berriasian-Hauterivian) belemnites from France and Spain (McArthur et al., in 

press). Such a calculation however, requires equilibrium fractionation of Mg/Ca, which 

for belemnites at least is highly questionable (see above). Nevertheless, i f we assume here 

that equilibrium fractionation has occurred, it is possible to consider the effects of 

fluctuations in S'̂ Oscawatcr on the 5'̂ Ocarb composition. Figure 10.2 shows calculated 

S'̂ Oscawaicr valucs for the Callovian-Hauterivian Izhma River succession. The average 

S'̂ OscawaicrValue of -4.9 %o IS indicated so that relative fluctuations about that mean can be 

considered, rather than considering absolute values of 5'̂ Oscawaicr, which are probably 

unrealistic given the sub-freezing palaeotemperauires generated from the Mg/Ca ratios. 

At the base of the Izhma River succession where palaeotemperature estimates are 

relatively high, the 5'̂ Oscawatcr values are relatively positive. Conversely, where a shift 

towards cooler temperatures is observed (in the Mg/Ca record) relative 5'̂ Oscauaicr values 

switch to being relatively negative. The presence of more negative S'̂ Oscawatcr values 
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Figure 10.2 Calculated palaeotemperatures and relative 6'**0«.av..icr values for the Callovian-Hauterivian 
Izhma River succession. Russia. Boreal (Russian) ammonite zones are illustrated. Scale is in metres. 

would be consistent with either a period of freshening or of ice melt, both of which would 

introduce isotopically depleted water into the system. The problem with this is that an 

average 2 %o fall in 5'̂ Oscawaicr composition would require a 4 %o freshening (according to 

the modified Railsback et al. (1989) and Woo et al. (1992) temperature-salinity model), 

which may be difficult to account for from freshwater input alone. The waning of ice-
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sheets however, i f of significant magnitude, may help to account for the 5'̂ Oscawaicr change. 

The issue here is that the shif^ towards more negative S'̂ Oscâ -atcr values coincides with 

very cold palaeotemperatures i f the Mg/Ca estimates are accepted. Even i f the absolute 

palaeotemperature values are ignored and just the trend considered, the shift still coincides 

with a drop in temperature. Cold temperature values could be consistent with ice-melt i f 

the melt was occurring locally but i f it was occurring on a global scale such cold values are 

impossible. In addition, given the correlation between falling temperature and falling 

5'̂ Oscawaicr valucs it sccms inconceivable that the relative shift in S'̂ Oscawatcr could be 

attributed to ice melt. In light of the problems associated with this model, it seems most 

unlikely that Mg/Ca ratios are faithfully recording temperature trends in belemnites. 

Despite the quantity of elemental data presented in this study, which was generated 

from a number of locations as well as from a range of time periods, the usefulness of El/Ca 

data as a palaeoclimate proxy remains in doubt. In addition, no defmite conclusions can be 

drawn with regards to the relative effects of environmental and physiological factors on the 

elemental ratios, nor can the observed Mg/Ca trends be convincingly related to 

palaeotemperature. Whilst this data does not rule out the use of El/Ca ratios as 

palaeotemperature proxies in certain circumstances, it does suggest that any interpretation 

of such data conducted in the future must be done with great care, at least until further 

research is conducted. 

10.1.5. Carbon Isotopes 

As discussed above, modem cephalopods are known to secrete their shells very 

close to isotopic equilibrium with seawater, although for the carbon isotope, a slight offset 

from equilibrium fractionation is not uncommon, with shells being slightly less enriched in 

5'^C than might be predicted (Wefer and Berger, 1991; Klein et al., 1996; Bettencourt & 

Guerra, 1999; Geist et al., 2005). Assuming that this offset is also present in belemnites 

and that the offset is consistent, it should not present a problem for the interpretation of 
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carbon isotope values or trends, since most carbon isotope values are presented relative to 

a belemnite standard (V-PDB). 

Where belemnite derived S'̂ C records have been compared with temporally similar 

5*̂ C records generated from other marine carbonate material (e.g., bulk rock, foraminifera, 

other macrofossils etc.) similar trends have been observed (e.g., van de Schootbrugge, 

2000; Grocke et al., 2005). This confirms that belemnites faithfully record a S'̂ C signal. 

Unlike oxygen isotope records, which are strongly influenced by temperature and therefore 

often by local conditions, carbon isotope curves record more global signals. The global 

5'̂ Cscawaicr composition primarily reflects the distribution of global carbon between 

oxidised (carbonate, bicarbonate, carbon dioxide) and reduced (organic carbon) reservoirs 

(Jenkyns et al., 2002). Distinctive excursions within the S'̂ C record can therefore be 

correlated to provide a high resolution carbon isotope stratigraphy. 

This approach of matching curves with a distinctive shape has been carried out on 

pelagic carbonates (e.g., Lini et al., 1992; Padden et al., 2002) other marine carbonates 

(e.g., belemnites - Podlaha et al,, 1998) and between marine carbonates and terrestrial 

organic matter (e.g., Grocke et al., 2005). The major problems with such correlations 

however, are that biostratigraphic control on the correlated successions is often weak and 

that small, isolated successions with different stratigraphic zonal schemes and/or 

sedimentological features (e.g., condensed sections and hiatuses) are common subjects for 

correlation. Such splicing together of small, isolated records only introduces more noise 

and inaccuracy into an already noisy system. The initiation of the Valanginian positive 

carbon isotope excursion, for example, was described by Channell et al. (1993) as 

occurring in the Pachydicratms Zone (now the uppermost Valanginian Furcillata Zone or 

the lowermost Hauterivian Radiatas Zone (McArthur et al., in press)). By comparison, 

however, the initiation of the same excursion was assigned by Hennig et al. (1999) to the 

Campylotoxus Zone, the uppermost ammonite zone of the Lower Valanginian. In addition, 

Grocke et al. (2005) record the initiation of the Valanginian positive carbon isotope 
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excursion from plant material in the Crimean Sttbmartim Zone, which they correlate with 

the Verrucosum Zone of Europe. McArthur et al. (in press) however, note that Crimean 

excursion occurs over just 1.2 m of sediment and immediately above a sandstone unit 

where ammonites are unusually uncommon. They, therefore, suggest that condensation or 

a hiatus is present in the Grocke et ai (2005) succession and that the strata recording the 

real onset of the excursion may not even be present making further carbon isotope 

correlation difficult. 

The problem of correlation is particularly prevalent where marine carbonate and 

terrestrial organic carbon records are correlated. The comparison of marine with terrestrial 

carbon isotope curves is essential to confirm that isotopic patterns are of a global origin 

rather than the result of local or diagenetic factors. To date, such correlations have only 

been carried out from geographically different successions. This study is the first to 

investigate marine carbonate and terrestrial organic 5'^C records from the same succession 

and with samples collected simultaneously. This new approach eliminates any uncertainty 

associated with the correlation and allows conclusions about the relationship between the 

ocean and atmosphere systems to be drawn with confidence. The coeval marine and 

terrestrial 5'**C records investigated here were synchronous throughout the Ryazanian-

Hauterivian Boyarka River succession and much of the Callovian-Kimmeridgian Staffin 

Bay succession. This demonstrates for the first time without any correlation related 

uncertainty that the ocean-atmosphere system was strongly linked at these times. The 

Staffin Bay record also provides information about a potential decoupling of the ocean-

atmosphere system during the Callovian period. Presumably, either the marine or the 

terrestrial realm was being influenced by local factors at this time, although the nature of 

this influence needs ftirther investigation. 
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10.2. Late Jurassic - Early Cretaceous Global Palaeoenvironment 

10.2,1 Boreal Realm Data 

The stable isotope and geochemical data presented in this study comprise the first 

high resolution investigation of the Late Jurassic-Early Cretaceous Boreal Realm (as 

defined by belemnites). A Callovian-Hauterivian compilafion of the S'-'C and S'̂ O data 

was generated in order to assess whether any long-term trends could be identified across 

the northern high latitude region (Fig. 10.3). In order to produce this compilation, the 

numerical age of each sample was estimated using the Gradstein et al. (2004) timescale. 

The oxygen isotope compilation displays a considerable degree of natural 

variability, making the identification of long-term trends difficult but by no means 

impossible. The most negative 6'^0 values (-2.8 %o) occur in the Lower Kimmeridgian, 

whilst the most positive 8'^0 values (2.8 %o) occur in the Lower-Upper Ryazanian. In 

terms of global palaeotemperature, this equates to the highest palaeotemperatures (24°C) 

occurring in the Lower Kimmeridgian and the lowest palaeotemperatures in the Lower-

Upper Ryazanian (2°C). Care must be taken with this approach however, because the 

warmest palaeotemperatures are recorded from the Helmsdale succession (at a 

palaeolatitude of "-45°N), whilst the coldest values are recorded from the Boyarka River 

succession (at a palaeolatitude of -70°N), which may indicate that local environmental 

conditions have had some impact on the S'̂ O record. 

Despite this limitation, the 5'^0 compilation provides significant evidence of 

predominantly warm conditions punctuated by cold episodes in the Late Jurassic and 

Early Cretaceous Arctic region. Oxygen isotope values exceeding 1 %o (which equates to 

- 8°C) are common in the Lower-Middle Oxfordian and in the Ryazanian-Lower 

Hauterivian intervals. For the Oxfordian, these values are almost certainly not an artefact 

of palaeolatitudinal differences because these positive values come fi-om one of the lowest 

palaeolatitude sites (Staffin Bay). For the Ryazanian-Hauterivian interval, the observed 
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S'̂ O ratios are significantly higher than those observed from any of the other sites 

indicting that these values reflect genuinely lower palaeotemperatures (as low as 2°C). 

Despite the scatter present in the Boyarka River data for this interval a faint trend towards 

less negative 5*^0 values from the Ryazanian and into the Hauterivian can be observed. 

This is consistent with the more distinct cooling trend observed in the Izhma River data for 

the same time interval. Interestingly, the occurrence of potential dropstones in Svalbard 

coincides with the latter part of this cooling trend (in the Upper Valanginian) and the 

coldest palaeotemperatures recorded from the Izhma River ( - 7°C) are also coincident with 

the occurrence of glendonites on Svalbard, lending strong support to the concept of a high 

latitude cooling episode at this time. 

The presence of cold conditions as observed from the record presented here is 

consistent with published works that have also identified cold episodes during the 

Callovian-Oxfordian, which is coincident with a eustatic sea level fall (e.g., Dromart et al., 

2003a, b; Lecuyer et al., 2003) and the Valanginian (e.g., Price, 1999; Puceat et al., 2003; 

Kessels et al., 2006). A cold episode during the TithonianA^olgian (e.g., Price, 1999; 

Schudack, 1999) has also been postulated, although evidence for this event is not observed 

here. This, however, may be due to the sparsity of data from this time interval. 

Distinctive long-term trends can also be identified in the Callovian-Hauterivian 

carbon isotope compilation (Fig. 10.3). The Callovian-Volgian interval witnesses a 

gradual shift from relatively positive S'̂ C values (exceeding 4 %o in the Oxfordian) to 

more negative values (-2.2 %o). This is followed by a rapid excursion to more positive 

values (4.2 %o) during the Valanginian and a return towards pre-excursion values in the 

Hauterivian. This pattern has also been identified in other Jurassic-Cretaceous global 

compilations (e.g., Jones o/., 1994a; Podlaha e/o/., 1998; Veizer e/a/.. 1999; Jenkyns 

al., 2002) (Fig. 10.4). In addition, elements of the overall pattern (e.g., the Oxfordian-

Volgian/Tithonian fall in S'̂ C values and the Valanginian positive S'̂ C excursion) have 

also been observed in smaller scale studies and studies of isolated successions, both from 
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marine carbonate and terrestrial organic carbon records (e.g., Lini et al., 1992; Weissert & 

Mohr, 1996; Weissert et al., 1998; Bartolini et ai. 1999; Price et al., 2000; van de 

Schootbrugge et al., 2000; Cecca et al, 2001; Padden et al., 2002; Price & Grocke, 2002; 

Grocke et ai, 2003; Price & Mutteriose, 2004; Weissert & Erba, 2004; Grocke et al., 

2005). 

A comparison of the 5'^C and 5*^0 data shows no consistent relationship between 

the two variables. The strongest relationship observed is that of the Valanginian Izhma 

River data, which reveal a positive correlation between S'̂ 'C and 5**0 that can be 

explained by the 'Monterey Hypothesis,' where the significant burial of organic carbon 

rich sediments results in a fall in the concentration of atmospheric CO2 and a subsequent 

drop in temperature. 

The compilation of 5*^0 Boreal Realm data presented here confirms that cold 

episodes occurred in the Arctic region during the Late Jurassic and Eariy Cretaceous, most 

strikingly during the mid-Ryazanian Kochi-Analogits zones and the Late Valanginian 

Bidochotomus Zone but also during the Lower Oxfordian Cordatum Zone. The 5'"*C data 

confirm that the Arctic region faithfrilly records the same S'̂ C signature as observed in the 

Tethyan regions. These findings are significant in terms of understanding the Late 

Jurassic-Eariy Cretaceous Arctic region as well as global palaeoenvironments. 

10.2.2. Global Palaeoenvironmental Studies 

Published palaeoenvironmental studies on the Late Jurassic and Early Cretaceous 

have tended to focus on the mid- to low latinjdes or on the southern high latitudes, whilst 

studies focusing on the northern high latitudes are relatively fewer. The new data 

presented here address this knowledge gap and provide significant information with which 

to assess global palaeoclimate. 

The data presented here are compared with those of similar published studies (i.e., 

those that concentrate on the stable isotope analysis of macroscopic (or large microscopic) 
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Age Region (Estlnurtod Palooolotltudo) Organism values Tempflroturo (*C) Rofttronoo 

Vatanglnlan - Barremlan Speeton. Yoricshire, England (40*N) Belemnites •2.12 to •»0.79 9-21 McArthur et el. (2004) 

Vatanglnian • Hautertvlan Vocontian Basin, S E France (40*N) Belemnites -1.36 to -K}.59 9-18(12.7) van de Schootbnjgge ef al. (2000) 

Berria^an - (Hai^erivfan) Western Tethyan Platform (35'N) Fish Teeth^ne +19.210+22.0 (P0-) 13-25(19) Pucdatefa/. 2003 

Ryazar^an - Hauterivian Boyarka River. Siberia (70'N) Belemr^tes -1.71 (0 +2.63 2-19 (10.6) TNs study 
Ryazanlan - Upper Valanginlan Festntngen/Janusneltei. Svalbard {62*N) Belemnites -2.26 to +1.14 8-21 (13.0) This study 

Upper Ryazanlan • Middle Hauterivian Speetoa Yoricshire, England (40*N) Belemnites •0.66 to +1.11 8.15(11.4) Price era/. (2000) 

Volgian - Hauterivian Izhma River, Russia (60*N) Belemr^tes -1.32 to+1.27 7-17 (13.0) This study 
Votgian • vatanglntan Yatria River, Siberia (62*N) Belemnites •226 to +1.34 7-21 Price & A^ertose (2004) 
Trthonlan Volga Basin. Russia (45*N) Belemnites -2.11 to -0.58 14-21 (17.3) GrOckeefe/. (2003) 

Tlttontan - Hauterivian Gennany (38*N) Belemnites •3.10 to+2.30 4-25 Velzer ef BI. (1999) 

Tilhontan? Santa Cruz, A^entina (40*S) Belemnites .2.0010-1.60 19-20(19.8) Bowen(1961} 
Klmmcriglan - (Berriasian) James Ross island. Antarctica (&4*S) Belemnites -1.0210 -0.26 13-16(14.6) Ditchlleld ef 0/. (1994) 

Klmmcridgtan - Tithonlan Mallorca. Spain (30*N) Belemnites -1.x to «0.04 
1M6(13.9) Prico & Sellwood (1994) 

Kimmeridglan Cutch. India {33'N) Belemnites -0.5910 -0.40 13-15(13.8) Bowen (1966) 
Klmmeridglan Subpolar Urals (55'N) Belemrutes (20) ZakharoveraA (2006) 

Kimmeridgian Helmsdale. Sutheriand. Scotland (45*N) Belem Rites -2.84 to +0.78 9-24 (15.8) This study 

Middle KImmertdgian • Tithonlan Milne Land. East Greenland (50'N) Belemrtites •1.91 10-1.13 17-20(18) Bowen (1966) 
Eariy Kimmeridglan HOndsruck. Gennany (38*N) Belemrtites - l . ieto -0.01 16-17(16.1) Bowen (1961) 
Upper Oxfordlan • Middle Tithonian Kawhia Hartraur, New Zealand (80*S) Belem rvtes •3.10 to •*0.36 11-25(17.8) Grocke or a/. (2003) 

Oxfordian - Votgian Russian Platfomi (55'N) Belem rdtes 7-18 Ribomieauefa/. (1998) 
Oxfordian - Tithonlan New Zealand (80*S) Belemnites -4.4010 +1.90 & ^ Velzer ef a/. (1999) 

Oxfordian - Tithonlan Falkland Plateau, South Atlantic (55'S) Belemnites •1.8810 -0.05 16-20(17.6) Price A Sellwood (1997) 

Oxfbrdian • Earty Kimmeridgian Scotland: Poland: Germany (4(rN) Belem rtites -1.8810 -*0.81 9-20 Wierzbowski (2004) 
Oxlordian Polish Jura Chain, Central Poland (40'N) Brachlopods •2.5 to •0.4 11-23 Wierzbowski (2002) 
Oxfordian Polish Jura Chain. Central Poland (40'N) Belemnites -1.5 to +0.5 10-16 Wlerzbovski (2002) 
Callovfan • Barremtan FalUand Plateau. South Atlantic (55'S) Belemnites -2.22 to 40.08 12-21 (17.4) Price & Grdcke (2002) 
Callovian •Volglan Russia (55'N) Belem rules -2.3010 +2.20 4-22 Velzer era/. (1999) 
Caiiovlan - Ktmmeridgian StafTin Bav. Isle of Skye. Scotland (45*N) Belemnites -2.07 to +1.43 7-21 (12.4) TNs study 
Callovlan - Oxfordian Kachchh Basin, W India (33'N) Belemnlles -2.1710 40.26 11-21 FOrslchefe/. (2005) 

Bathonian • eariy Kimmeridglan E France; SwitzertarvJ (35*N) Shart(/Fi3h Teeth +I8.7t0 +21.4 (PO4) 15-28(21.3) Dromart of el. (2003b) 
Bathonlan - Callovlan Kachchh Basin. W India (33'N) Brachlopods -2.86 to -1.66 19-24 FQrsiche/a/. (2005) 
Bajocian • Vatanglntan Kong Karis Land, Svalbard (62*N) Belemnltes -0.9710 +1.64 5-16 (9.5) Oitchfleld(1997) 
Bajocian • Kimmeridglan Poland: England (40*N) Bivalves (aragonltlc) 13-27 Malchus & Steuber (2002) 
Aalenian • Porilandian Anqlo>Pari3 Basin, France (3S'N) Shart</Fish Teeth +18.5 to +223 21-29 Lecuyerofa/. (2003) 



fossils). By considering such similar studies, direct comparisons can be drawn with 

regards to relative palaeoclimate. Table 10.3 shows the palaeotemperatures calculated 

from published literature as well as from the sites investigated here. Data from belemnites, 

bivalves, brachiopods and fish teeth/bone are included from a range of locations worldwide 

(including England, France, Germany, Switzerland, Poland, Spain, India, Russia, 

Greenland, Argentina, New Zealand and Antarctica). The majority of the published data 

are concentrated in the northern mid-latitudes between -30 and 40°N. Calculated 

palaeotemperatures for this region are typically in the range of 15-25°C for the Late 

Jurassic and Eariy Cretaceous, although values as low as 8°C in the Lower Hauterivian 

(Price et al., 2000) and as high as 29°C at the Bathonian-Callovian boundary (Lecuyer et 

al., 2003) have also been recorded. 

Palaeotemperatures calculated from southern high latitude locations (e.g., the 

Falkland Plateau, New Zealand and Antarctica) reveal a range from 11 to 25°C. The upper 

end of the range is certainly consistent with high latitude warmth, although, the lowest 

values may be consistent with the presence of occasional cold episodes. Even lower values 

are observed from the northern high latitudes, where palaeotemperatures between 2 and 

24°C are recorded. Again, the higher palaeotemperature values are compatible with high 

latitude warmth, whilst the lowest values suggest that cold episodes may occur at times. 

The lowest palaeotemperatures calculated from each of the sites investigated in this 

study varied from 2-9°C. Such values are consistent with the few northern high latitude 

studies that have been published, for example, Ditchfield (1997) recorded values as low as 

Ŝ 'C from the Tithonian-Valanginian of Svalbard, Price & Mutteriose (2004) recorded 

values down to 7°C from the Volgian-Valanginian of Siberia and Riboulleau et al. (1998) 

recorded temperatures as low 7°C from the Oxfordian-Volgian of the Russian platform. In 

terms of relative palaeotemperature, the evidence appears to be consistent with the 

northern high latitudes being on average ~7°C cooler than the mid-low latitudes during 

Late Jurassic and Early Cretaceous time. 
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Figure 10.5 Latitudinal changes in 6'*0^,^,,eT in warm climates. Adapted after Roche ct al. (2006). 

Roche et al. ( 2 0 0 6 ) used a coupled climate model to investigate the distribution of 

surface water 6 '^0 composition under past warm climate conditions. One of the time 

periods considered in their research was the late Mesozoic greenhouse climate. Their 

results are shown in Figure 10 .5 . The latitudinal gradient produced by Roche et al. ( 2 0 0 6 ) 

is broadly equivalent to that of the present day oceans for the mid- to low latitudes (e.g., 

Broecker, 1989; Zachos et a/.. 1 9 9 4 ) , although for the high latitudes Roche et al. ( 2 0 0 6 ) 

predict 6'^Oscawatcr values approximately 0 .5 %o lower than those of the present day. I f the 

Roche et al. ( 2 0 0 6 ) model is correct, the palaeotemperature difference between the low and 

high latitudes is likely to be even greater, since 5'^OscawatcT values in the mid-low latitudes 

are likely to be in the region of +0 .5 to I %o, whilst 5'^OM;awaicr values in the high latitudes 

( > 7 0 ° palaeolatitude) are likely to be lower than -1 %o (Fig. 10 .4 ) , which would in effect 

raise low latitude temperature estimates and lower high latitude estimates. By substituting 

the standard 6'*^Oscawaicr estimate of - I %o with the Roche et al. ( 2 0 0 6 ) range of values for 

S'^Oscawaicr 3 changc in latitudinal temperature gradient is observed when the data presented 
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in Table 10.3 for the Lower ICimmeridgian and Upper Valanginian is considered. These 

time intervals were chosen in order to illustrate the difference between a supposed warm 

period (the Lower Kimmeridgian) and cold period (the Upper Valanginian). Further 

subdivision of these time intervals (i.e., to ammonite zone level) was not possible due to a 

lack of published information. 
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Figure 10.6 Calculated average palaeolemperalures for the Oxfordian and Valanginian periods. A 
value of-1 96o and ihe Roche ei al. (2006) values are used. Only northern hemisphere 

locations and beleninite data were used. 

Figure 10.6 provides an approximation of latitudinal differences in 

palaeotemperature for the northem hemisphere resulting from the different S'^Oscawatcr 

estimates. This model assumes a homogenous Earth surface and does not take into account 

regional factors that may influence palaeotemperature. Allowing for this limitation, the 

Roche et ai (2006) values for 5'^Oscawatcr produce an increased temperature gradient for the 

Upper Valanginian data, with the offset between the calculated temperature values 

significantly smaller at higher latitudes. For the ICimmeridgian, the change in latitudinal 

gradient is less pronounced, although the relationship at this time is more difficult to assess 

owing to the limited latitudinal range of the data. The northem high latitude temperatures 

for the Upper Valanginian are on average approximately 10°C (at 70°N), although 

temperatures as low as -6°C are recorded. During the Lower Kimmeridgian, the high 

latitude temperatures are estimated to be -20°C (based on extrapolation of the trend line) 
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using the Roche et al. (2006) 6'^Oscawaicr latitudinal gradient. These significantly different 

high latitude palaeotemperature estimates suggest that both warm and cold conditions were 

present at the poles during different intervals of the Late Jurassic and Early Cretaceous. 

The traditional view of continuously warm polar conditions during the Jurassic and 

Cretaceous greenhouse climate is still championed by many workers. For example, 

Jenkyns et al. (2004) recently extrapolated mid-Cretaceous temperatures in excess of 20°C 

for polar waters using the TEXge proxy. Such estimates of extreme polar warmth are also 

coincident with estimates for the tropics, only slightly warmer than those of the present 

day. This is especially true of the Late Cretaceous, where temperatures in excess of 15-

20°C are commonly estimated for the poles (e.g., Huber et a!., 1995; Huber, 1998; Jenkyns 

et al., 2004), whilst temperatures in the region of 33-37°C are postulated for the low 

latitudes (e.g., Clarke & Jenkyns, 1999; Norris et al., 2002; Steuber et ai, 2005). The 

existence of such conditions however, poses a considerable problem, in that to date, the 

mechanism by which enhanced high latitude warming occurs without simultaneous 

warming in the tropics remains undefined. Sloan et al. (1995) summarised a number of 

mechanisms by which a low global temperature gradient might be achieved, including, an 

increase in the volume of warm deep/surface waters transported to the poles, increased 

high latitude albedo, increased cloud cover at high latitudes, cirrus cloud cover at low 

latitudes, or an expanded Hadley Cell. No definitive conclusion has yet been reached, 

although, the most commonly cited mechanism to account for such a situation is increased 

oceanic heat transport (e.g., Sloan et al., 1995; Huber & Sloan, 1999; Bice & Norris, 

2002). The problem with this model is that increased poleward heat transport produces 

more active circulation in the oceans, which may be incompatible with the formation of 

black shales during Oceanic Anoxic Events (OAEs) as are recorded in the Cretaceous 

period. Black shale formation is commonly attributed to oceanic stagnation, caused by 

slow oceanic circulation and consequent anoxia (Wilson & Norris, 2001) and may 

therefore contradict the model of increasingly active ocean circulation. The distinctive 
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provinciality of marine faunas at this time may also indicate that particularly active 

circulation would be unlikely. It is probable that marine provinciality was controlled to 

some degree by temperature or salinity gradients and, therefore, may not be compatible 

with enhanced circulation. 

If, as this study suggests, an enhanced global temperature gradient relative to that 

traditionally envisaged (e.g., Barron, 1983) is present during intervals of the Late Jurassic 

and Early Cretaceous, for example when cold conditions are present at the poles, then the 

need to invoke complicated and often poorly understood mechanisms is removed at these 

times. Present day summer sea surface temperatures range from approximately 0°C at the 

poles to 28°C at the equator, with the present day average global temperature gradient 

therefore being in the region of 0.3I**C per degree of latitude. The palaeotemperature 

gradient calculated using the Roche et al. (2006) 5'^Oscawaicr value and the data from this 

study was 0.26 for the Upper Valanginian, compared with a gradient of 0.10 for 

temperatures calculated using a 5'^Oscawaicr value o f -1 %o. The data presented here is, 

therefore, consistent with a moderate global temperature gradient during cold episodes of 

the Late Jurassic and Early Cretaceous. In this situation, oceanic heat transport would not 

need to be significantly increased, which would be compatible with belemnite provinciality 

and the deposition of black shales. The global rise in temperatures therefore, could 

probably be accounted for primarily by increased atmospheric CO2 levels, although 

differences in palaeogeography may have also had an influence. When warm conditions 

exist at the poles however (for example, in the Lower Kimmeridgian), a relatively reduced 

global temperature gradient may still exist. 

I f this model is applied to the Late Cretaceous, for which tropical 

palaeotemperature estimates in the region of 35°C are relatively common, then the newly 

calculated palaeotemperatures would be approximately 45°C (using a 5*^0scawatcr value of 

^ 1 %o). This would also be consistent with a moderate global temperature gradient i f 

polar temperatures in the region of 15-20°C are correct. Such high tropical values 
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however, may raise questions about the ability of calcifying organisms to live in these 

conditions and therefore also about the validity of the model. The Roche et al. (2006) data 

must therefore be utilised with care until further investigations can be carried out. 

General Circulation Models (GCMs) have fi-equently been used in order to assess 

Cretaceous palaeoclimate (e.g., Moore et al., 1992; Barron et al., 1995; Price et al., 1997; 

Poulsen et al., 1999) and have often encountered difficulties modelling the extreme 

warmth at the poles and concomitant tropical temperatures in the region of 30-37°C. 

Barron et al. (1995) estimated that atmospheric carbon dioxide concentrations of 

approximately four times present day levels were required, together with a 1.2 x lO'^ W 

increase in oceanic heat flux in order to best account for the greenhouse scenario. The 

model of Poulsen et al. (1999) however, produced temperatures that agreed well with the 

low latitude 5'^0 palaeotemperature estimates for the mid-Cretaceous but not the warm 

polar estimates. Perhaps the existence of an increased global temperature gradient for parts 

of the Late Jurassic and Early Cretaceous could help resolve some of the discrepancies 

encountered in the GCMs by removing the need to invoke such a substantially increased 

poleward transport of oceanic heat to warm the poles and to prevent the tropics from 

overheating. 

Evidence for genuinely cold conditions during the Late Jurassic and Early 

Cretaceous is limited to several discrete intervals such as the Lower Oxfordian Cordatum 

Zone, the mid-Ryazanian Kochi-Analogiis zones and the Upper Valanginian Bidichotomus 

Zone. At these times it is perhaps possible that the Late Jurassic-Early Cretaceous Earth 

system fiinctioned in much the same way as it does today, with the formation of polar ice 

increasing the salinity and density of polar waters and therefore dense cold bottom waters 

originating in the Arctic Ocean region and influencing thermohaline circulation to drive 

global climate (assuming that the required depth was available in the Arctic Ocean to 

generate circulation). This is something that will need to be considered and investigated in 

future palaeoceanographic models. In addition, the presence of at least seasonal ice cover 
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may have had an influence on the Earth's albedo as well as the distribution of fresh water. 

I f this scenario is correct, the investigation of these cold intervals as a potential analogue 

with which to model ftiture climate change is a very interesting prospect. 

This research provides a significant compilation of northem high latitude Late 

Jurassic and Early Cretaceous data, which show that high latitude warmth was almost 

certainly the norm for this time. This warmth however, would have been punctuated by 

cold conditions during which limited polar ice may have formed. Perhaps the key 

characteristic of the Late Jurassic-Early Cretaceous high latitudes is climatic instability, 

which contrasts markedly with the low latitudes that are commonly believed to be much 

more stable. Previous research has provided snapshots of these conditions but this research 

for the first time provides a more comprehensive overview of this greenhouse climate. 

Strong evidence for both very warm and cold polar conditions is presented here suggesting 

that in the ftiture, proponents of either warm or cold conditions wil l need to accept that 

both are likely to be a reality. 
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11. CONCLUSIONS 

The principal aim of this research was to investigate the nature of Late Jurassic and 

Early Cretaceous northern high latitude climates, principally via stable isotope and 

geochemical proxies as derived from belemnites and fossilised wood. This has been 

achieved and a considerable contribution to the understanding of Late Jurassic and Early 

Cretaceous climate has been made. 

11.1. Summary of Site Specific Investigations 

The major palaeoenvironmental findings for each of the sites investigated in this 

study are summarised below. 

11.1.1. Staffin Bay, Isle of Skye, Scotland 

• Callovian-Kimmeridgian palaeotemperatures derived from the belemnite 5*^0 record 

(using the Anderson & Arthur (1983) equation) were 6 TQ to 20.6°C (average I2.4°C). 

The highest palaeotemperatures were recorded in the Upper Oxfordian Rozenkrantzi 

Zone and the lowest palaeotemperatures in the Lower Oxfordian Mariae-Cordatum 

Zones. 

• The S'^Corg data record a broad Lower-Middle Oxfordian positive carbon isotope 

excursion of -5 %o. This trend is also observed in the S'^'Ccarb data. This correlation 

indicates a strong coupling of the ocean-atmosphere system at this time and suggests 

that the total exchangeable carbon reservoir was affected. Such a relationship has never 

before been observed from a coeval marine and terrestrial record. 

• The mid-Oxfordian negative carbon isotope excursions previously identified in the 

Tethyan regions are not recorded in the StafTm Bay data. These new data indicate that 

the Tethyan excursions may not represent fluctuations in the total exchangeable carbon 
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reservoir and, therefore, the fidelity of the methane hypothesis to account for this trend 

should be re-evaluated. 

11.1.2. Helmsdale, Sutherland, Scodand 

• ICimmeridgian palaeotemperatures derived from the belemnite S'̂ O record (using the 

Anderson & Arthur ( 1 9 8 3 ) equation) were 9.1 to 2 4 . 0 ° C (average 1 5 . 8 ° C ) . The highest 

palaeotemperatures were recorded in the Lower Kimmeridgian Cymodoce Zone and the 

lowest palaeotemperatures in the Upper Kimmeridgian Elgam Zone. 

• The 5'^Ccari> record shows a distinctive long-term trend towards more negative values 

throughout the Kimmeridgian. This is likely to be associated with a sea-level fall 

during which ' ^ C would be released by the weathering, erosion and oxidation of 

organic-rich sediments. 

• The shift to low S ' ^ C values during the Kimmeridgian is also recorded from the Tethyan 

region and the northem and southern hemispheres. The widespread occurrence of this 

event suggests that the total global carbon reservoir was affected. 

11.1.3. Boyarka River, Yenisei-Khatanga Basin, Siberia 

• Ryazanian-Hauterivian palaeotemperatures derived from the belemnite 6 O record 

(using the Anderson & Arthur ( 1 9 8 3 ) equation) were 2.1 to 19 .0 ' 'C (average 1 0 . 6 ° C ) . 

Both the highest and lowest palaeotemperatures were recorded in the mid-Ryazanian 

Kochi'Analogiis zones. 

• An Upper Valanginian positive carbon-isotope excursion is identified in both the S'^Corg 

and 5''*Ccart) records. This trend is consistent with that observed in Tethyan carbonate 

successions and therefore indicates a strong coupling of the ocean-atmosphere system at 

this time and suggests that the total exchangeable carbon reservoir was affected. 

• The Boyarka River A 5 values may indicate a drop in atmospheric pCO:- This is likely 

to be the result of enhanced organic carbon burial, which could lead to a drawdown of 
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pC02and a period of cooling in the late Valanginian. The palaeotemperature record is 

consistent with a slight cooling event. 

11.1.4. Izhma River, Timan-Pechora Basin, Russia 

• Callovian-Hauterivian palaeotemperatures derived from the belemnite S'̂ O record 

(using the Anderson & Arthur (1983) equation) were 7.3°C to 17.3°C (average 

I3.0''C). A distinct fall in palaeotemperature is observed throughout the Valanginian 

period. This is consistent with previously published evidence for a cooling event 

during the Valanginian. 

• The Late Valanginian positive 5'^C excursion is also recorded here. The timing and 

duration of this excursion is consistent with that observed in the Boyarka River 

succession. The positive S'̂ C excursion occurs at a time of relatively low sea level in 

Russia and Siberia. The exposure and erosion of lowland areas and restricted ocean 

circulation (and therefore enhanced stratification) associated with a period of sea-level 

lowstand may account for increased rates of organic carbon burial. 

• The most positive carbon isotope values coincide with the lowest palaeotemperatures. 

This could be explained by a fall in atmospheric CO2 concentration and a subsequent 

drop in temperature as the result of a significant burial of organic carbon-rich 

sediments. 

11.1.5. Festningen & Janusfjellet, Svalbard 

• The preservation of belemnites at this site is generally very poor. 

• Ryazanian-Upper Valanginian palaeotemperatures derived from the belemnite 5 O 

record (using the Anderson & Arthur (1983) equation) were 7.7 to 21.4°C (average 

I3.0°C). 

• Glendonites and outsized clasts were identified, lending support to the idea that cold 

conditions occurred in the northern high latitudes during the Early Cretaceous. 
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• The 6'^C data display a shift to more positive values from the Ryazanian and into the 

Upper Valanginian (of -2 %o). This shift is consistent with the timing of the Upper 

Valanginian positive carbon isotope excursion. 

11.2. Wider Implications of Research 

In addition to the findings outlined in the previous section, this research presented 

the opportunity to evaluate the use of belemnites as palaeoclimate indicators as well as to 

investigate Late Jurassic and Early Cretaceous global palaeoenvironmental conditions. 

The major conclusions drawn from this research are summarised below. 

11.2.1. Belemnites as Palaeoenvironmental Indicators 

• Belemnite preservation must be assessed using a combined approach incorporating both 

geochemical and optical techniques. 

• Significant natural variability is present in belemnite data, although the reason for this is 

unclear. It is likely to be the combined result of a number of factors including genus-

specific differences in fractionation (this could neither be confirmed nor reftited here), 

ontogenetic differences in fractionation (again this could be neither confirmed nor 

reftited), seasonal temperature variability, migration and comparison with homogenised 

bulk rock records. Providing long term trends are interpreted rather than small scale 

fluctuations, natural variability is not a significant problem. 

• Oxygen isotope data are assumed to reflect fractionation temperature together with a 

salinity/ice-volume effect. This is, however, assumed to be the most appropriate 

belemnite palaeotemperature proxy. 

• It is not possible to determine whether the elemental/Ca data generated in this study 

were influenced primarily by environmental factors (e.g., temperature) or physiological 

factors (e.g., metabolic activity and growth rate). 
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• Mg/Ca ratios regularly generated sub-freezing palaeotemperatures. This suggests that 

the use of the Klein et al. (1996) equation may not be suitable for belemnites, especially 

at relatively low temperatures. 

" Calculations of relative S'^Oscawoicr indicate that the Mg/Ca composition of belemnite 

calcite does not faithftilly record temperature. This is based on the observation of a 

shift towards relatively negative 5*^Oscawatcr values coincident with a fall in 

palaeotemperature. 

• The problems associated with correlating S'̂ 'C records are eliminated here where a 

direct correlation between coeval marine carbonate and terrestrial organic carbon 

records from a given succession is possible. This confirms that the Jurassic-Cretaceous 

ocean-atmosphere system was strongly linked at times. 

11.2.2. Late Jurassic - Early Cretaceous Global Palaeoenvironment 

• A Callovian-Hauterivian compilation of S'̂ C data for the Boreal Realm reveals 

relatively positive values in the Oxfordian, followed by a gradual shift to more 

negative values until the end-Volgian and a distinct positive carbon isotope excursion 

in the Valanginian. This confirms that the Arctic region records the same 5 '^C 

signature as is observed in the Tethyan regions. 

• A Callovian-Hauterivian compilation of S'̂ O data for the Boreal Realm reveals 

evidence for warm polar conditions, punctuated by cold episodes during the Lower 

Oxfordian Cordatum Zone, the mid-Ryazanian Kochi-Analogiis zones and the Upper 

Valanginian Bidichotomus Zone. This is consistent with published research. No 

TithonianA^olgian cold episode was identified, although data were sparse through this 

interval. 

• A comparison with published Late Jurassic-Early Cretaceous palaeotemperatures 

reveals a moderate global temperature gradient for the Upper Valanginian interval i f 
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the standard estimate for 5'^Oscawaicr of -1 %o is substituted with the S'^Oscowatcr 

estimates of Roche et al (2006). 

• The existence of a moderate global temperature gradient during cold episodes is 

contrary to the traditional view of greenhouse conditions, where extreme polar warmth 

is concomitant with temperatures similar to those of present day at the equator. No 

mechanism to account for such a scenario has ever been satisfactorily determined. 

• The most commonly cited mechanism to account for a reduced thermal gradient is 

increased oceanic heat transport, although this may be incompatible with the formation 

of black shales and marine faunal provinciality. 

• Throughout the Late Jurassic and Early Cretaceous high latitude warmth was almost 

certainly the norm. This warmth however, would have been punctuated by cold 

conditions during which limited polar ice may have formed. The key characteristic of 

the Late Jurassic-EaHy Cretaceous high latitudes is likely to be climatic instability, 

which contrasts markedly with the low latitudes that are commonly believed to be 

much more stable. 

• During the cold episodes it is possible that the Earth's climate system functioned in 

much the same way as it does today. I f this is the case, the Late Jurassic-Eariy 

Cretaceous interval represents an ideal analogue through which to investigate the 

nature of fuUire climatic change. 

11.3. Future Work 

This study presents a significant amount of data with which to investigate the 

nature of Late Jurassic and Early Cretaceous northern high latitude palaeoclimates. It also 

highlights the areas where our current knowledge is limited and hence the areas that need 

to be addressed in order to resolve some of the uncertainties present here. The future work 

recommended as a result of this research falls into two key categories; firstly our 
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understanding of belemnite palaeoecology needs to be expanded and secondly additional 

high latitude data need to be examined. 

Perhaps the most important element of ftiture work is to further our understanding 

of belemnite palaeoecology by conducting high resolution investigations of modem 

analogues, namely Sepia officinalis and Spinila spintla. Preliminary work of this nature 

has been conducted by Rexfort & Muiteriose (2006), although significantly more data are 

needed. In particular, the extensive investigation of aquaria specimens is required. 

Analysis of genus-specific and ontogenetic differences in stable isotope and trace element 

fractionation must be focused on, in order to have any hope of truly understanding the 

limitations of belemnite data. Additional analyses of this nature must also be conducted on 

belemnite specimens so that comparisons can be drawn between the taxa. This requires the 

identification of belemnile rich horizons containing individuals belonging to either 

different genera or being of different ages. Work is currently being undertaken by John 

McArthur (University College London) to investigate genus-specific differences in 

belemnite fractionation using a deposit (of what is most likely fossilised Ichthyosaur 

vomit) containing abundant belemnite remains. The results of this research may provide 

information vital to furthering our understanding of belemnile fractionation. 

In order to fully understand belemnite data it is also important to undertake further 

investigation into the nature of relative stable isotope and geochemical compositions of 

belemnites and other co-occurring organisms (e.g., brachiopods, benthic bivalves and 

ammonites). Preliminary work of this kind has been undertaken by several authors (e.g., 

Anderson et o/., 1994; Voigt et al., 2003; Wierzbowski & Joachimski, 2006), although the 

results of such research have been very limited and desperately need expanding. 

In addition to the required work on belemnite palaeoecology it is important to 

collect high resolution data from further high latitude sites (in both the northern and 

southern hemisphere). In particular, data should be sought from Greenland and Alaska 
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where very few studies have been conducted to date. I f possible, attempts should also be 

made to investigate stratigraphically more extensive successions. 
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APPENDIX 1. SYSTEMATIC P A L A E O N T O L O G Y 

Al. l . Introduction 

The present understanding of Boreal belemnite systematics has been derived 

largely fi-om the work of Saks & Nal'nyaeva (e.g., 1964, 1966, 1967) and Gustomesov 

(1964, 1977, 1989). Their interpretation is followed here, although it is worth noting that 

there has been some considerable disagreement regarding the validity of certain belemnite 

genera (Doyle & Kelly, 1988) and subgenera (Dzyuba, 2005), particularly within the 

family Cylindroteuthididae. For example, the position of Pachyteuthis and Acroteuthis 

(which have been considered synonymous by several authors) is discussed by Doyle & 

Kelly (1988) and the status of the genus/subgenus Simobelus is considered by Dzyuba 

(2005). Whilst such problems are acknowledged, the following system (based largely on 

the workof Saks &Narnyaeva (1964, 1966) Gustomesov (1960, 1964) and Doyle & Kelly 

(1988) has been adopted for the family Cylindroteuthididae: 

o Genus: Acroteuthis Stolley, 1911 

Subgenera: Acroteuthis Stolley, 1911; Boreioteuthis Saks & NaPnyaeva, 

1966; Microbelus Gustomesov, 1958 

o Genus: Cylindroteuthis Bayle, 1878 

Subgenera: Cylindroteuthis Bayle, 1878; Arctoteuthis Saks & Nal'nyaeva, 

1964 

o Genus: Lagonibelus Gxistomesov, 1958 

Subgenera: Lagonibelus Gustomesov, 1958; Holcobeloides Gustomesov, 

1958 

o Genus: Pachyteuthis Bayle, 1878 

Subgenera: Pachyteuthis Bayle, 1878; Simobelus Gustomesov, 1958 
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The systematic descriptions given below use the terminology outlined by Doyle & 

Kelly (1988) and Doyle (1990b) (Fig A l . l ) . Approximate size ranges are indicated by the 

terms small (<60 mm), medium (60-80 mm) and large (>80 mm). Al l figures are natural 

size (x l ) and specimens have been photographed in outline (venter forward), right profile 

(venter to the left) and where appropriate, transverse views (orientated with venter down). 

Recorded ranges and distributions are taken from Saks & Nafnyaeva (1964, 1966), Doyle 

& Kelly (1988) and Mutteriose (1988). 

C I R C U L A R 

CYLINDRICAL CONICAL 

APEX 

HASTATE 

Alveolar 
I groove 

Apkal 
groove 

o o o o o 
E L L I P T I C A L 

C O M P R E S S E D D E P R E S S E D 

QUADRATE P Y R I F O R M 

Figure A l . l Morphological terms employed in the systematic descriptions of belemnite rostra. Adapted 
after Doyle & Kelly (1988) and Doyle (1990b). 
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A1.2. Systematic Descriptions 

Class CEPHALOPODA Cuvier, 1794 

Subclass COLEOIDEA Bather, 1888 

SuperorderBELEMNOIDEA Hyatt, 1884 

Order BELEMNITIDA Zittel, 1895 

Suborder BELEMNITINA Zittel, 1895 

Family CYLINDROTEUTHIDIDAE Stolley, 1919 

Genus ACROTEUTHISStoWey, 1911 

Type Species: Belemnites subquadratus Roemer, 1836 

Diagnosis: (After Doyle & Kelly, 1988) Medium to large size. Robust. Symmetrical, 

conical to cylindriconical outline. Profile asymmetrical with flat venter and often 

moderately inflated dorsum. Apex acute to moderately obtuse. Subquadrate and dorso-

ventrally depressed in transverse section. Ventral apical groove short and indistinct, or 

long and well-defined. Phragmocone is ventrally displaced and penetrates one third to one 

half of the rostrum. Apical line is cyrtolineate. 

Range: Recorded from Volgian to Barremian (Doyle & Kelly, 1988; Mutteriose, 1988). 

Distribution: Widespread throughout the Boreal Realm (known ft-om Northwest Europe, 

East Greenland, North Russia, Arctic Canada, North America, Siberia and Svalbard). 

Remarks: There are three subgenera of Acroteuthis: Acroteuthis s. str., A. (Boreioteuthis) 

and A. (Microbelus). The differences between these subgenera are discussed separately 

below. Acroteuthis differs from Pachyteuthis in possessing a generally less inflated 
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dorsum and a (dorso-ventrally) depressed rather than (laterally) compressed transverse 

section (Doyle & Kelly, 1988). 

Subgenus ACROTEUTHIS Stolley, 1911 

Type Species: Belemnites subquadratus Roemer, 1836 

Diagnosis: (After Doyle & Kelly, 1988) Robust, cylindriconical to conical Acroteuthis. 

Ventral apical groove short and indistinct. Subquadrate in transverse section. 

Range: Recorded from Volgian to Barremian (Doyle & Kelly, 1988). 

Distribution: Widespread throughout the Boreal Realm (known ft-om Northwest Europe, 

East Greenland, North Russia, Arctic Canada, North America, Siberia and Svalbard). 

Remarks: Acroteuthis s. str. is distinct from A, (Boreioteuthis), which is more cylindrical 

with a long and distinct ventral apical groove, and from A. (Microbelus), which is smaller, 

with weaker dorsal inflation and a more depressed transverse section (Doyle & Kelly, 

1988). 

Acroteuthis (Acroteuthis) acrei Swinnerton, 1936 

Plate 9, Figures 2-3; Plate 10, Figures 1-2. 

1936 Acroteiithis aceri Swinnerton. p.l4, pi. 4, figs 7-8; pi. 5, figs 9-13. 

\966Acroteuihis (Acroteuthis) acrei Saks &>iaVnyacva. p. 119, pi. 29, figs 1-3; pi. 30, f ig. 1. 

Material: Boyarka River, Lower Valanginian (Klimovskiensis Zone) [KH13; Loose A, 

KHI3; Loose B, KH13; 3.45] and Upper Valanginian to Lower Hauterivian (Bidichotomus 

to Bojarkensis zones) [KH6-7; Loose]. 
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Description: Large and robust. Symmetrical outline, cylindrical to cylindriconical. 

Asymmetrical in profile, with flattened venter, moderately inflated dorsum and some 

flattening of lateral flanks. Apex acute to moderately obtuse, with short and indistinct 

lateral groove. Subquadrate and depressed in transverse section. Phragmocone ventrally 

displaced and penetrates up to one half of the rostrum. 

Range: Valanginian (Saks & Nal'nyaeva, 1966). 

Remarks: Very similar morphology to A. (A.) bojarke Saks & Nal'nyaeva. However, the 

apex of A. (A.) bojarke is more mucronate than that of A. (A.) acrei. The specimen shown 

in PI. 10, Fig. 2 shares all of the characteristics of A. (A.) acrei mentioned in the 

description above, although it is significantly shorter than the other specimens assigned to 

this species (97 mm compared with 124-138 mm). Nevertheless it has been identified here 

as A. (A.) acrei as no other species with comparable features and of an appropriate age 

could be identified. 

Acroteuthis (Acroteuthis) anabarensis (Pavlow, 1914) 

Plate 8, Figures 2-4; 

(A. (A.) cf. anabarensis - Plate 9, Figure 1.) 

1914 Belemnites (Piesetrobelus) anabarensis Pavlow. p. 16, pi. 2, figs 1-3. 

1966 Acroteuthis (Acroteuthis) anabarensis f. curta Saks & NaPnyaeva, p. 103, pi. 24, f ig . 4; pi. 25, figs 1-3. 

1966 Acroteuthis (Acroteuthis) anabarensis f. sulcatiformis Saks & Nal'nyaeva. p. 103, pi. 24, figs 1-3; pi. 

25, fig. 4. 

1966 Acroteuthis (Acroteuthis) anabarensis f. typica Saks & NaKnyaeva, p. 103, pi. 23, figs 1-4. 

Material: Boyarka River, Lower Valanginian {Stubendorffi Zone) [ K i i l 8 ; 10.50]. Izhma 

River, Volgian {Maximus Zone) [PC2.6] and Upper Ryazanian to Valanginian 
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(Tzihvinianus to Polyptychus zones) [PC7.a2 B, PC7.cl]. 

Description: Large and robust. Symmetrical and conical to cylindriconical in outline. 

Asymmetrical profile, with flattened venter and weakly inflated dorsum. Apex is obtuse. 

Apical line weak, but exaggerated by extensive weathering. Subquadrate in transverse 

section (with flat ventral edge due to flattening). Phragmocone is ventrally deflected and 

penetrates half-way down the rostrum. 

Range: Late Berriasian to Valanginian (Saks & Nal'nyaeva, 1966). 

Remarks: The specimen shown in PI. 9, Fig. 1 {A. (A.) c f anabarensis) is morphologically 

similar to those specimens described here as A. (A.) anabarensis, however it is cylindrical 

rather than conical in outline and is Middle Volgian in age, which is younger than recorded 

examples of A. (A.) anabarensis. 

Acroteiithis (Acroteuthis) arctica Bluthgen, 1936 

Plate 7, Figure 5; Plate 8, Figure I . 

\936 Acroteiithis arcticus Bliilhgen, p. 31, pi. 5, figs 4-5. 

1966 Acroteiahis (Acroteiithis) arctica f. elata Saks & Nal'nyaeva, p. 95, pi. 20, figs 5-6; pi. 21, figs 1-3; pi. 

22, figs 3-4. 

\966 Acroteiithis (Acroteiithis) arctica f. typica Saks & Nal'nyaeva, p. 95, pi. 21, fig. 4; pi. 22, figs 1-2. 

1988 Acroteiithis (Acroteiithis) arctica Doyle & Kelly, p. 25, pi. 9, figs 1-8. 

Material: Boyarka River, Upper Ryazanian (Meseshnikowi Zone) and Lower Valanginian 

(Klimovskiensis Zone) [ICH13; 4.35]. Izhma River, Upper Ryazanian to Valanginian 

(Tzikwinianus to Polyptychus zones) [PC7.al]. 
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Description: Large and moderately robust. Symmetrical and cylindriconical outline. 

Asymmetrical profile, with flattened venter and weakly inflated dorsum. Moderately acute 

apex, with indistinct apical groove. Transverse section elliptical and depressed. 

Phragmocone deflected towards venter and penetrates one third of rostrum. 

Range: Late Volgian to Early Valanginian (Saks & Nal'nyaeva, 1966; Doyle & Kelly, 

1988). 

Acroteuthis (Acroteuthis) lateralis (Phillips, 1835) 

Plate 10, Figure 3; Plate 11, Figures 1-3. 

1835 Belemnites lateralis Phillips, edit. 3, p. 334, pi. 25, fig. 8. 

1936 Acroteuthis lateralis Swinnerton. pp. 19, pi. 6, figs 3-9; pi. 7, figs 1-2; pi. 8, figs 1-2. 

\966 Acroteuthis (Acroteuthis) lateralis Saks & Nal'nyaeva. p. 122, pi. 30, fig. 2; pi. 31, figs 1-3. 

Material: Izhma River, Lower Valanginian {Syzranicum to Michalskii zones) [PC9a, PC9 

GP22, PC9 GP24 A, PC9 GP24 B]. 

Description: Medium to large and very robust. Commonly broken between top of apical 

region and mid-stem. Symmetrical and cylindriconical to conical in outline. Distinctly 

asymmetrical in profile, with flattened venter and moderately to strongly inflated dorsum. 

Moderately acute apex, displaced ventrally. Short, generally indistinct ventral apical 

groove (although groove can be enhanced in poorly preserved specimens). Transverse 

section subcircular, except for ventral edge of section which is very straight, due to ventral 

flattening. Phragmocone strongly displaced towards venter, with deep penetration of the 

rostrum (up to one half of total length). 

Range: Late Volgian to Berriasian of Russia (Saks & Nal'nyaeva, 1966). Valanginian of 
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the UK (Swinnerton, 1936). 

Remarks: The specimen shown in PI. 11, Fig. 3 was assigned to this species despite the 

lack of apical region for identification. The transverse section (in the stem region) is the 

correct shape and the specimen is of the same age as the others identified here as A. (A.) 

lateralis. This specimen is the largest specimen collected during this research, and A. (A.) 

lateralis is the most massive of the species identified here. 

Genus CYLINDROTEUTHIS Bayle, 1878 

Type Species: Belemnites puzosianus d'Orbigny, 1842 

Diagnosis: (After Doyle & Kelly, 1988) Large and elongate. Symmetrical, cylindrical to 

cylindriconical outline. Profile, usually symmetrical with venter and dorsum equally 

inflated. Apex acute to very acute generally with short apical groove (mostly confined to 

the apex). Weakly to strongly compressed in transverse section. Some species have lateral 

lines. The phragmocone is moderately to strongly ventrally deflected and penetrates 

approximately one fifth of the rostrum. Apical line is cyrtolineate or goniolineate. 

Range: Recorded from Bathonian to Hauterivian (Doyle & Kelly, 1988; Mutterlose, 

1988). 

Distribution: Widespread and common throughout the Boreal Realm (known from 

Northwest Europe, East Greenland, North Russia, Siberia, Svalbard, Arctic Canada, 

Alaska). 

Remarks: There are two subgenera of Cylindroteuthis: Cylindroteuthis s. str. Bayle and C. 

(Arctoteuthis) Saks & NaPnyaeva. The differences between these subgenera are discussed 
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separately below. 

Subgenus CYLINDROTEUTHIS Bayle, 1878 

Type Species: Belemnitespuzosianus d'Orbigny, 1842 

Diagnosis: (After Doyle & Kelly, 1988) Moderately elongate. Symmetrical and 

cylindrical in profile. Venter and dorsum weakly to moderately inflated. Apex acute, with 

well-developed ventral apical groove. Compressed and subquadrate in transverse section. 

Apical line cyrtolineate. 

Range: Recorded from Balhonian to Valanginian (Doyle & Kelly, 1988). 

Distribution: Widespread throughout the Boreal Realm in the Jurassic (Northwest Europe, 

East Greenland, North Russia, Siberia, Svalbard, Alaska) with numbers decreasing into the 

Cretaceous, when C. (Cylindroteuthis) became restricted to the Arctic Province (Stevens, 

1973b; Doyle & Kelly, 1988). 

Cylindroteuthis (Cylindroteuthis) cuspidata Saks & Nal'nyaeva, 1964 

Plate 4, Figure 8; Plate 5, Figures 1-3. 

1964 Cylindroteuthis (Cylindroteitthis) oweni cuspidata Saks & Nal'nyaeva. p. 47, pi. 3, figs 1-8. 

2004 Cylindroteuthis (CyUndroteuthis) cuspidata Dzyuba, p. 83, pi. I , figs 1-2. 

Material: Staffm Bay, Isle of Skye, Lower Callovian to Lower Kimmeridgian (Koenigi to 

Cymodoce zones) [SK4; 1.80, SK5; 4.70, SK6; 6.40, SK7; 20.25 A ] . 

Description: Medium to large and elongate. Symmetrical and cylindriconical to 

cylindrical in outline. Symmetrical profile. Moderately acute to acute apex, with a short 
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and weak ventral apical groove (although this groove may be exaggerated in pooriy 

preserved specimens). Subcircular to subquadrate in transverse section. 

Range: Middle Oxfordian to Kimmeridgian (Saks & Nal'nyaeva, 1964). 

Remarks: Saks & Nal'nyaeva (1964) named a new subspecies of C. (C.) oweni, resulting 

in the designations C. (C.) oweni oweni and C. (C.) oweni cuspidata. These subspecies 

were later included within C. (C.) puzosiana (previously C. (C.) oweni oweni) and C. (C.) 

cuspidata (previously C (C.) oweni cuspidata). 

Cylindroteulhis (Cylindroieuthis) lepida Saks & Nal'nyaeva, 1964 

Plate 5, Figures 4-9. 

1964 Cylindroteuthis (Cylindroteuthis) lepida Saks & Narnyaeva, p. 59, pi. 6, figs 1-6. 

2004 Cylindroteuthis (Cylindroteuthis) lepida Dzyuba. p. 166, pi. 3, figs 3-4. 

Material: Boyarka River, Lower to Upper Ryazanian {Kochi to Meseshnikowi zones) 

[KH17b; 1.35, KH17c; 1.50, KHi7c; 2.55]. Staffm Bay, Isle of Skye, Lower 

Kimmeridgian (Cymodoce Zone) [SK6; 7.20, SK6; 7.40, SK6; 7.80). 

Description: Medium to large and very elongate. Symmetrical and cylindrical in outline. 

Symmetrical profile. Some flattening of ventral flanks. Apex very acute, with long, but 

weak ventral groove (sometimes exaggerated by weathering, particularly in the Skye 

samples). Subcircular to subquadrate or elliptical (compressed) in transverse section. 

Shallow penetration of phragmocone. 

Range: Volgian to Berriasian (Saks & Nal'nyaeva, 1964). 
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Remarks: C. (C.) lepida is very similar in appearance to L (H.) sitnikovi Saks & 

NaKnyaeva. L (H.) sitnikovi is however, slightly less long and slender, with a more 

strongly developed ventral apical groove than C. (C.) lepida. Both species are present 

throughout the Volgian, although only C (CJ lepida is known to continue into the 

Berriasian. For these reasons the specimens shown here were assigned to C (C.) lepida. 

PI. 5, Figs 4, 6, 7 show specimens of C. (C.) lepida from the Isle of Skye. C. (C.) 

lepida has not been recorded from the Kimmeridgian, but these specimens have been 

assigned to this species as it is the closest match for the characteristics observed. 

PI. 5, Fig. 9 shows a juvenile specimen which has been tentatively assigned to this 

species. Although hastate in outline it is very elongate, with an acute apex and long, but 

faint apical groove. It occurs approximately 2 m below the other examples of C (C.) 

lepida from the Boyarka River. 

Cylindroteuthis (Cylindroteuthis) puzosiana (d'Orbigny, 1842) 

Plate 4, Figures 1-7. 

1842 Belemnites puzosianus d'Orbigpy. pi. 16, figs 1-6. 

1844 Belemnites oweni Pratt in Owen, p. 66, pi. 2, figs 3-4. 

1964 Cylindroteuthis (Cylindroteuthis) oweni oweni Saks & NaPnyaeva, pi. I, figs 4-6; pi. 2, fig. I. 

1991 Cylifidroteuthis (Cylindroteuthis)puzosiana Page & Doyle, p. 145, pi. 28, figs 1-4. 

Material: Staffm Bay, isle of Skye, Lower Callovian to Lower Kimmeridgian {Koenigi to 

Cymodoce zones) [SK3; 1.20, SK4; 11.50, SK5; 4.15, SK5; 4.35, SK6; 1.50, SK6; 6.55, 

SK8; 33.70]. 

Description: Large, elongate and slender. Symmetrical and cylindrical in outline. 

Symmetrical to subsymmetrical profile, with some flattening of venter. Moderately acute 

to acute apex that is slightly dorsally deflected (and particularly noticeable in juvenile 
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specimens), with a short and weak ventral apical groove (although this groove may be 

exaggerated by weathering). Subcircular to elliptical (compressed) in transverse section. 

Range: Middle Callovian to Kimmeridgian (Saks & Nal'nyaeva, 1964). 

Remarks: This species is very similar to C. (C.) cuspidata, C. (C.) puzosiana, however, 

lends to be more elongate and cylindrical rather than cylindriconical. 

The juvenile forms shown in PI. 4, Figs 4-7 are here identified as C (C.) c f 

puzosiana. They share the known characteristics of the adult forms, however images of C. 

(C.) puzosiana ']\xvtn\\ts are rarely available for comparison. 

Subgenus ARCTOTEUTHIS Saks & Nal'nyaeva, 1964 

Type Species: Cylindroteuthis septenthonalis Bodylevsky, 1960 

Diagnosis: (After Doyle & Kelly, 1988) Elongate to very elongate. Cylindriconical to 

cylindrical outline. Venter and dorsum very weakly inflated. Uncompressed and 

subcircular or weakly depressed and elliptical in transverse section. Apical grooves absent 

or weakly developed. Goniolineate apical line. 

Range: Recorded from Oxfordian to Hauterivian (Doyle & Kelly, 1988). 

Distribution: This species is largely restricted to the Arctic Basin (Siberia, North Russia, 

Alaska, Arctic Canada, Svalbard). C. (Arctoteuthis) developed many new species in the 

Arctic Province during the Late Volgian, although these were confined to the east of the 

Urals (Stevens, 1973). 

Remarks: The major distinguishing feature of C (Arctoteuthis), compared with C. 
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(Cylindroteuthis), is the absence of a well-developed apical groove. 

Cylindroteuthis (Arctoteuihis) harabylensis Saks & NaPnyaeva, 1964 

Plate 3, Figures 2-3, 

1964 Cylindrotetithis (Arctoteuthis) harabylensis Saks & Nal'nyaeva, p. 80, pi. 15, figs 1-3; pi. 16, figs 1-2. 

Material: Boyarka River, Valanginian to Hauterivian {Bidichotomus to Bojarkensis zones) 

[KHl-4 ; 4.10, KH14; 4.30]. 

Description: Medium and elongate. Symmetrical and cylindriconical in outline. Slightly 

to moderately flattened venter and slightly inflated dorsum. Acute apex with short apical 

groove (confined to apical region). Subcircular and weakly depressed in transverse 

section. 

Range: Valanginian to Early Hauterivian (Saks & NaPnyaeva, 1964). 

Cylindroteuthis (Arctoteuthis) pachsensis Saks & NaPnyaeva, 1964 

Plate 2, Figure 5; Plate 3, Figure I . 

1964 Cylindrotetithis (Arctoteiuhis) pachsensis Saks & Nal'nyaeva. p. 76, pi. 11, fig. 1; pi. 12, fig. 4. 

Material: Boyarka River, Upper Valanginian to Lower Hauterivian {Bidichotomus to 

Bojarkensis zones) [ICHI-4; Loose, ICH1-4; 21.40]. 

Description: Large and elongate (although relatively robust for Cylindroteuthis). 

Symmetrical and cylindrical to cylindriconical in outline. Symmetrical profile, with 

slightly to moderately flattened venter. Acute apex with short apical groove that is often 
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exaggerated by weathering. Transverse section subcircular and weakly depressed. 

Range: Early Hauterivian (Saks & Nal'nyaeva, 1964). 

Cylindroteuthis (Arctoteuthis) porrectiformis Anderson, 1945 

Plate 1, Figures 1-3; Plate 2, Figures 1-2. 

(C (A,) porrectiformis - Plate 2, Figure 3.) 

1945 Cylindroteuthis porrectiformis Anderson, p. 988, pi. 9, fig. 3. 

1964 Cylindroteuthis (Arctoteuthis) porrectiformis Saks & Nal'nyaeva. p. 77, pi. 12, figs 1-3; pi. 13, figs 1-2. 

2004 Cylindroteuthis (Arctoteuthis)porrectiformis Dzyuba. p. 86, pi. 4, figs 1-5. 

Material: Boyarka River, Lower to Upper Ryazanian {Kochi to Meseshnikowi zones) 

[ICHI6; 0.90, ICH16; 2.45; 1CH16; 2.80, lCH17b; 1.55, ICH17c; 2.75]. Izhma River, Lower 

Valanginian {Syzranicum to Michalskii zones) [PC9; GP24 C]. 

Description: Large and very elongate. Symmetrical and cylindrical in outline. 

Symmetrical profile. Acute to moderately apex with a generally short apical groove, 

although this is sometimes extended by weathering. Transverse section compressed and 

elliptical. 

Range: Middle Volgian to Eady Berriasian (Saks & Nal'nyaeva, 1964). 

Remarks: PI. 2, Fig. 3 shows a specimen that is very like C. (A.) porrectiformis in 

appearance. However this specimen is Valanginian in age, and C (A.) porrectifomiis is 

not known from this time. 
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Cylindroteuthis (Arctoteuthis) cf. subporrecia Bodylevsky, 1960 

Plate 2, Figure 4. 

1960 Cylindroteuthis subporrecta Bodylevsky, p. 194, pi. 47, fig. 5. 

1964 Cylindroteuthis (Arctoteuthis) subporrecta Saks & Nal'nyaeva, p. 73, pi. 10, figs 4-5. 

1966 Cylindroteuthis (Arctoteuthis) subporrecta Saks & Nal'nyaeva, p. 203, pi. 40, fig. I . 

Material: Boyarka River, Valanginian to Hauterivian {Bidichotomus to Bojarkensis zones) 

[ICHl-4; 13-00]. 

Description: Large and elongate. Symmetrical and conical to cylindriconical in outline. 

Profile symmetrical. Very acute apex with a short apical groove that is extended by 

weathering. Subcircular and slightly depressed in transverse section. 

Range: Early Hauterivian (Saks &Narnyaeva, 1964). 

Remarks: This species is represented here by a single, poorly preserved specimen. It is 

very similar in appearance to C. (A.) subporrecta as illustrated in Saks & NaPnyaeva 

(1966). However, the Saks & Nal'nyaeva (1966) specimen is very long and elongate 

(reaching -225 mm in length). This specimen has been broken o f f in the stem region. It 

is, therefore, impossible to estimate how long this specimen would have been and whether 

it would have reached the length of C. (A.) subporrecta. It is also similar in appearance to 

C. (A.) porrectiformis, although the apex is perhaps too acute and the transverse section 

slightly the wrong shape (slightly depressed rather than elliptical and compressed) to 

assign this specimen to that species. It has therefore been assigned tentatively to C (A.) 

subporrecta, which is known to occur in Russia at the appropriate time. 
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Genus LAGONIBELUS Gustomesov, 1958 

Type Species: Belemnites magnificus d'Orbigny, 1845 

Diagnosis: (After Doyle & Kelly, 1988) Medium to large and elongate. Symmetrical and 

cylindrical to cylindriconical in outline. Symmetrical in profile and weakly inflated, with 

central, moderately acute apex. Some taxa have a flattened venter. Depressed and 

subquadrate to elliptical in transverse section. Moderate to strong ventral apical groove, 

may continue into stem region (where it broadens substantially). Phragmocone penetrates 

up to one quarter of the rostrum. 

Range: Recorded from Callovian to Hauterivian (Doyle & Kelly, 1988; Mutterlose, 1988). 

Distribution: This genus is common in the Boreal-Arctic Province (Siberia, North 

America, North Russia). 

Remarks: There are two subgenera of Lagonibe/us: Lagonibelus s. str. and L 

(Holcobeloides). The differences between these genera will be described separately below. 

Lagonibelus can be distinguished from Cylindroteuthis by a generally less slender form 

and more strongly developed apical groove. 

Subgenus LAGONIBELUS Gustomesov, 1958 

Type Species: Belemnites magnificus d'Orbigny, 1845 

Diagnosis: (After Doyle & Kelly, 1988) Elongate and cylindrical to cylindriconical 

outline. Symmetrical and weakly inflated profile, with flat venter. Depressed and quadrate 

in transverse section. Moderate apical groove. 
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Range: Recorded from Oxfordian to Hauterivian (Saks & Nal'nyaeva, 1964; Doyle & 

Kelly, 1988). 

Distribution: This subgenus is common in the Boreal-Arctic Province (Siberia, North 

America, North Russia). 

Lagonibelus (Lagonibelus) gustomesovi Saks & Nal'nyaeva, 1964 

Plate 7, Figure 4. 

(£. (L.) gustomesovi - Plate 7, Figure 3.) 

1964 Lagonibelus (Lagonibelus) gustomesovi Saks & Nal'nyaeva. p. 99, pi. 18, figs 1-2; pi. 22, figs 1-4; pi. 

23, fig. 1. 

Material: Boyarka River, Lower Ryazanian {Kochi to Analogus zones) [KHI6; Loose]. 

Izhma River, Upper Ryazanian to Valanginian (Tzihvinianus to Polyptychus zones) 

[PC7.a2 A] . 

Description: Large and elongate. Symmetrical and cylindrical outline. Symmetrical 

profile, with slightly flattened venter and weak dorsal inflation. Apex moderately obtuse, 

with a short, indistinct ventral groove. Transverse section subcircular. 

Range: Late Volgian to Berriasian (Saks & NaPnyaeva, 1964). 

Remarks: The specimen shown in PI. 7, Fig. 4 was broken o f f in the stem region. There is 

no evidence of the alveolus in transverse view and so this specimen must be a minimum of 

three quarters of the total specimen length. 

PI. 7, Fig. 3 shows a specimen of a very similar morphology to that shown in PI. 7, 

Fig. 4, although this specimen is slightly shorter than might be expected for an example of 
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L. (L.) gustomesovi. 

Subgenus HOLCOBELOIDES Gustomesov, 1958 

Type Species: Belemnites beaumontianus d'Orbigny, 1842 

Diagnosis: (After Doyle &, Kelly, 1988) Medium to large and cylindrical outline. 

Symmetrical profile, weakly inflated. Depressed, elliptical to quadrate in transverse 

section. Strong, deep and long apical groove, extending into stem region. 

Range: Callovian to Late Volgian (Saks & Nal^nyaeva, 1964; Doyle & Kelly, 1988). 

Distribution: This subgenus is common in the Boreal-Arctic Province (Siberia, North 

America, North Russia). 

Remarks: L. (Holcobeloides) and L. (Lagonibelus) are distinguished primarily by the 

strength of the apical groove. The groove of L. (Holcobeloides) is stronger, deeper and 

longer than that of L. (Lagonibelus). 

Lagonibelus (Holcobeloides) memorabilis (Gustomesov, 1964) 

Plate 6, Figure 1. 

1964 Cylindroteuthis (Lagonibelus) memorabilis Guslomesov, p. 134, pi. 5, figs 4-5. 

1964 Lagonibelus (Holcobeloides) memorabilis Saks & Nal'nyaeva, p. 120, pi. 27, figs 4-6; pi. 22. 

Material: Izhma River, Middle Volgian {Panderi Zone) [PC3a B]. 

Description: Large and elongate. Symmetrical and cylindriconical in outline. 

Symmetrical and cylindrical profile, with flattened venter. Very long and deep ventral 
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groove, extending through the stem and broadening and shallowing towards the alveolar 

region. Transverse section is elliptical (depressed) to subquadrate. Phragmocone 

penetrates approximately one fifth of rostrum. 

Range: Late Kimmeridgian to Middle Volgian (Saks & Nal'nyaeva, 1964). 

Remarks: The specimen shown here is missing the apical region of the rostrum. 

Lagonibelus (Holcobeloides) rosanovi Gustomesov, 1960 

Plate 7, Figures 1-2. 

1960 Lagonibelus (Holcobeloides) rosanovi Guslomesov. p. 195, pi. 45, figs 1-2. 

1964 Lagonibelus (Holcobeloides) rosanovi Gustomesov. p. 130, pi. 5, figs 1-3. 

1964 Lagonibelus (Holcobeloides) rosanovi Saks & Narnyaeva, p. 115, pi. 25, figs 4-5. 

Material: Izhma River, Middle Volgian (Maxinms Zone) [PC2.11 C, PC2.11 F]. 

Description: Large and elongate. Symmetrical and conical outline. Symmetrical profile, 

with slightly flattened venter. Very acute apex, with very strong, deep and long ventral 

groove extending through the stem region until the alveolus. Transverse section reniform 

in stem region (due to depth of groove) and subquadrate at alveolar region. 

Range: Middle Volgian (Saks & NaKnyaeva, 1964). 

Remarks: L. (H.) rosanovi is very similar to the species L. (H.) sitnikovi, which is of a 

similar age; both species are recorded from the Volgian. The criteria used to separate the 

species here are as follows. L (H.) rosanovi is generally longer, but less slender and more 

conical than L (H.) sitnikovi. 
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Lagonibelus (Holcobeloides) sitnikovi Saks & NaPnyaeva, 1964 

Plate 6, Figures 2, 4-7. 

(L. (H.) cf. sitnikovi - Plate 6, Figure 3.) 

1964 LagoniheUis (Holcobeloides) sitnikovi Saks & NaPnyaeva, p. 122, pi. 28, figs 1-5. 

Material: Izhma River, Middle to Upper Volgian {Maximus to Pseudocraspedites / 

Surites zones) [PC2.4, PC2.I1 A, PC2.11 B, PC2.12 B, PC4a]. Boyarka River, Lower 

Ryazanian (Kochi io Analogus zones) [KH16; 1.15]. 

Description: Medium to large. Symmetrical and cylindrical to cylindriconical oufline 

(although juvenile forms are weakly hastate). Symmetrical profile, with slightly flattened 

venter. Very acute apex, with strong and deep ventral groove extending from apex to 

alveolus (groove is very faint or possibly absent at apex tip). Transverse section reniform 

in stem region (due to depth of groove) and subcircular at alveolar region. 

Range: Volgian (Saks & NaPnyaeva, 1964). 

Remarks: The apparent absence of the ventral groove at the apex tip of some specimens 

might suggest that these specimens should belong to a different genus e.g., Belemnopsis 

rather than Lagonibelus. However, unlike Belemnopsis these specimens do not possess a 

reniform transverse section at the alveolar end and (apart fi-om the juvenile forms) are not 

hastate. 

PI. 6, Fig. 3 shows a poorly preserved specimen, which has been identified as L. 

(H.) cf. sitnikovi. The specimen shares the same characteristics as the other L. (H.J 

sitnikovi specimens identified here. It is however, from the Lower Ryazanian, whilst L. 

(H.) sitnikovi has only been identified in the Volgian. The poor preservation prevents an 

accurate identification. 
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Genus PACHYTEUTHIS Bayle, 1878 

Type Species: Belemnites excentralis Young & Bird, 1822 

Diagnosis: (After Doyle & Kelly, 1988) Medium to large and robust. Outline symmetrical 

and conical to cylindriconical. Profile is either symmetrical with a central apex, or 

asymmetrical with a flat venter and ventrally deflected or recurved apex. Ventral apical 

grove is short and sometimes difficult to distinguish. Moderately compressed and 

subquadrate or elliptical in transverse section. Phragmocone penetrates one half to two 

thirds of rostrum. Apical line cyrtolineate. 

Range: Recorded from Aalenian to Hauterivian (Doyle & Kelly, 1988; Mutteriose, 1988). 

Distribution: This genus is common throughout the Boreal Realm (Northwest Europe, 

East Greenland, North America, Siberia, North Russia, Svalbard). 

Remarks: There are two subgenera of Fachyteuthis: Pachyteuthis s. str. and P. 

(Simobelus). The differences between these subgenera wil l be discussed separately below. 

Pachyteuthis is easily distinguishable from Cylindroteuthis and Lagonibelus, which are 

both elongate with little or no inflation of the rostrum. 

Subgenus PACHYTEUTHIS Bayle, 1878 

Type Species: Belemnites excentralis Young & Bird, 1822 

Diagnosis: (After Doyle & Kelly, 1988) Symmetrical and conical outline. Symmetrical or 

subsymmetrical profile with an acute central apex. Compressed and subquadrate or 

elliptical in transverse section. 
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Range: Recorded f rom Aalenian to Hauterivian (Doyle & Kel ly , 1988). 

Distribution: This subgenus is common throughout the Boreal Realm in the Jurassic 

(Northwest Europe, East Greenland, Siberia, North Russia, Svalbard). It is restricted to 

Siberia and Svalbard f rom the Early Cretaceous (Doyle & Kelly , 1988), with some 

endemic species known from Svalbard (Stevens, 1973b). 

Remarks: The main identifying characteristic that distinguishes P. (Pachyteuthis) f r o m P. 

(Simobelus) is a symmetrical profile. P. (Pachyteuthis) is symmetrical in profile, whilst P. 

(Simobelus) is asymmetrical with a flat venter and dorsal inflation. 

Pachyteuthis (Pachyteuthis) acuta Saks & Nal'nyaeva 1966 (after Bluthgen, 1936) 

Plate 12, Figures 2-3. 

{P, (P.) cf. acuta - Plate 12, Figure 4) 

1936 Acroteitthis johnseni var. acuta Blulhgen. p. 32, pi. 5, figs 9-10. 

1966 Pachyteuthis (Pachyteuthis) acuta Saks & Nal'nyaeva, p. 36, pi. 5, figs 3-5; pi. 6, fig. 1. 

Material: Izhma River, Middle Volgian {Maximus Zone) [PC2.11 D, PC2.11 E, PC3 B ] . 

Diagnosis: Large and robust. Outline, symmetrical and cylindriconical. Subsymmetrical 

profile, wi th slightly flattened venter and some dorsal inflation. Central, moderately acute 

apex, with short, but distinct ventral groove. Transverse section subquadrate to elliptical 

(compressed). 

Range: Late Volgian to Berriasian (Saks & Nal'nyaeva, 1966). 

Remarks: P. (P.) acuta is morphologically very similar to P. (P.) apiculata. The species 
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have been divided here primarily on the robustness o f the rostrum. P. (P.) acuta is slightly 

more robust than P. (P.) apicu/ata and has a slightly less acute apex. 

Although this species has not been described in the Middle Volgian (it is only 

reported f rom the Upper Volgian onwards), specimens are here assigned to this species, as 

P. (P.) acuta is the closest match for the specimens. 

The specimen shown in PI. 12, Fig. 4 (P. (P.) c f . acuta) is slightly shorter and 

stouter than the other specimens o f P. (P.) acuta. 

Pachyteuthis (Pachyteitthis) apiculata Saks & Nal'nyaeva, 1966 

Plate 14, Figures 2-3. 

1966 Pachyteulhis (Pachyteuthis) apiculata Saks & NaPnyaeva, p. 33, pi. 6, fig. 2; pi. 8, figs 1-3. 

2004 Pachyteuthis (Pachyteuthis) apiculata Dzyuba, p. 96, pi. 10, figs 4-5. 

Material: Izhma River, Middle Volgian {Maximus Zone) [PC2.8, PC2.12 A ] . 

Description: Large and robust (although quite slender for Pachyteuthis). Outline, 

symmetrical and cylindrical to cylindriconical. Subsymmetrical profile, wi th slightly 

flattened venter and some dorsal inflat ion. Central, acute apex, with short, but distinct 

ventral groove. Transverse section subrounded to subquadrate. 

Range: Volgian (Saks & Nal'nyaeva, 1966). 

Pachyteuthis (Pachyteuthis) excentralis (Young & Bird, 1822) 

Plate 13, Figures 1-4. 

(P. (P.) cf. excentralis - Plate 14, Figure 1.) 

1822 Belemnites excentralis Young & Bird. edit. 2, p. 275, pi. 14, fig. 4; pi. 15, figs 2, 7. 
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1964 Pachyteuthis (Pachyteuthis) exce/i/r/cfl Guslomesov, p. 158, pi. 12, figs 1-3. 

1966 Pachyteuthis (Pachyteuthis) excentralis Saks & NaPnyavea, p. 45, pi. 10, figs 1-3; pi. 12, figs 1-2. 

2004 Pachyteuthis (Pachyteuthis) excentralis Dzyuba, p. 90, pi. 10, figs 6-7; pi. 11, fig. 1. 

Material: Staffin Bay, Isle o f Skye, Lower Oxfordian to Lower Kimmeridgian (Mariae to 

Cymodoce zones) ( S K I ; 50.00, SIC5, 2.70; SKS, 5.70, SK6; 4.50, SK7; 16.90]. 

Description: Large and robust rostrum. Symmetrical and cylindriconical outline. 

Asymmetrical in profile, wi th flattened venter and weakly inflated dorsum. Some 

flattening o f lateral flanks on several specimens. Moderately acute to acute central apex, 

with very short and weak apical groove (sometimes indistinguishable). Transverse section 

subquadrate to elliptical (compressed). 

Range: Oxfordian to Kimmeridgian (Saks & NaPnyaeva, 1966). 

Remarks: P. (P.) excentralis has a very similar form to that o f P. (P.) explanata. These 

species are both known from throughout the Oxfordian and Kimmeridgian o f the Boreal 

Realm. P. (P.) explanata is generally slightly shorter and more robust than P. (P.) 

excentralis and has a more conical outline. 

Pachyteuthis (Pachyteuthis) cf. explanata (Phillips, 1865) 

Plate 16, Figures 6-7, 9. 

1865 Belemnites explanatus Phillips, p. 128, pi. 36, fig. 96. 

1964 Pachyteuthis (Pachyteuthis) explanata Gustomesov, p. 163, pi. 14, figs 2-6. 

1966 Pachyteuthis (Pachyteuthis) explanata Saks & Nafnyaeva. p. 42, pi. 7, figs 1-5. 

2004 Pachyteuthis (Boreioteuthis) explanata Dzyuba. p. !04, pi. 15, fig. 4; pi. 16, figs 1-3, 5, 6. 

Material: Staffin Bay, Isle o f Skye, Lower Oxfordian to Lower Kimmeridgian {Cordatum 
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to Cymodoce zones) [ S K I ; 60.20, S1C3; 5.20, SK3; 5.80]. 

Description: Medium and robust (although relatively slender for Pachyieuthis). Outline 

symmetrical and cylindriconical. Profile subsymmetrical wi th sHghtly flattened venter and 

some flattening o f lateral flanks. Acute apex, deflected dorsally. Apical groove short and 

indistinct. Transverse section is elliptical (compressed). 

Range: Oxfordian to Early Volgian (Saks & NaPnyaeva, 1966). 

Remarks: The specimens shown here are relatively young specimens and are, therefore, 

d i f f icul t to identify with confidence, as very few published images o f comparable 

specimens exist. 

Pachyieuthis (Pachyfeuihis) cf. ingens Krimholz, 1929 

Plate 12, Figures I . 

1929 Pachyteiithis ingens Krimholz, p. 126, pi. 44, figs 1-3. 

1966 Pachyteuthis (Pachyteuthis) ingens Saks & Narnyaeva. p. 59, pi. 11, fig. 1; pi. 12, fig. 3; pi. 13, 

figs 1-3. 

2004 Lagonibelus (Lagonihelus) ingens Dzyuba. p. 129, pi. 7, figs 1-2; pi. 8, fig. 4. 

Material: Izhma River, Upper Volgian {Pseudocraspedites /Surites Zone) [PC4]. 

Description: Large and robust. Symmetrical and cylindriconical in outline. 

Subsymmetrical profile, with flattened venter. Apex missing, however short indistinct 

ventral groove identifiable towards base o f stem region. Transverse section subcircular 

(but with flat ventral edge due to ventral flattening). 
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Range: ICimmeridgian to Early Volgian (Saks & NaPnyaeva, 1966). 

Remarks: This specimen (PI. 12, Fig. 1) has been tentatively assigned to P. (P.) ingens 

due to the length and robustness o f the stem region o f the rostrum. P. (P,) ingens is one o f 

very few belemnites to reach this size. P. (P.) ingens however is not known f rom the 

Upper Volgian. Positive identification is impossible without the apical region. 

Pachyteuthis (Pachyteuthis) panderiana (d'Orbigny, 1845) 

Plate 14, Figure 4; Plate 15, Figures 1-3. 

1845 Belemnites panderianus d'Orbigny, p. 423, pi. 30, figs 1-11. 

1964 Pachyteuthis (Pachyteuthis) panderi Giislomesov, p. 159, pi. 11, figs 1-4. 

1966 Pachyteuthis (Pachyteuthis)panderiana Saks & Nal'nyavea, p. 30, pi. 4, figs 2-4. 

2004 Pachyteuthis (Pachyteuthis)panderiana Dzyuba. p. 92, pi. 10, figs 1-3; pi. 13, fig. 5. 

Material: Staffin Bay, Isle o f Skye, Lower Oxfordian to Lower ICimmeridgian {Mariae to 

Cytnodoce zones) [ S K I ; 47.10, SIC5; 3.90, SK5; 8.10, SK6; 2.40]. 

Description: Large and elongate. Symmetrical and conical to cylindriconical outline. 

Profile asymmetrical, with slight ventral flattening and dorsal inflation. Apex moderately 

to very acute and either central or ventrally displaced. Short indistinct apical groove. 

Subrounded in transverse section. 

Range: Oxfordian to Eady Kimmeridgian (Saks & NaPnyaeva, 1966). 

Remarks: This species shows considerable morphological variation (as recorded by 

Gustomesov (1964) and Saks & NaKnyaeva (1966)), f rom conical forms with a very acute 

apex to shorter, cylindrical forms with a less acute apex. 
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Pachyteuthis (Pachyteuthis) subrectangulata (Bliithgen, 1936) 

Plate 15, Figures 4-6; Plate 16, Figures 1-3. 

{P. (P.) cf, subrectangulata - Plate 16, Figures 4-5) 

1936 Acroteuihis subrectangulatus Bliithgen. p. 35, pi. 6, figs 10-11. 

1966 Pachyteuthis (Pachyteuthis) subrectangulata Saks & Nal'nyaeva. p. 39, pi. 6, figs 3-6. 

Material: Boyarka River, Lower Valanginian {KUmovskiensis to Stubendorjji zones) 

[ICH13; 2.30, KLHIS; 7.10]. Izhma River, Upper Valanginian to Lower Hauterivian 

{Bidichotomus to Bojarkensis zones) [PC5 C, PC5 D, PC6.2, PClOa A , PClOa B ] . 

Description: Medium to large rostrum. Symmetrical and cylindrical to cylindriconical 

outline. Symmetrical in profile, but wi th a slightly flattened venter. Apex central and 

moderately acute, wi th a short and indistinct ventral groove. Subquadrate to elliptical and 

compressed in transverse section. Phragmocone deflected towards venter. 

Range: Berriasian to Early Hauterivian (Saks & Nal'nyaeva, 1966). 

Remarks: Several species have similar characteristics to P. (P.) subrectangulata e.g., 

relatively small specimens o f A. (A.) anabarensis. A. (A.) arctica and P. (P.) acuta. 

However the specimens shown here were assigned to the species P. (P.) subrectangulata 

on the basis o f robustness P. (P.) subrectangulata is slightly less stout than the others) and 

their transverse sections, which, i f slightly elliptical, are generally compressed rather than 

depressed (as in A. (A.) anabarensis, A. (A.) arctica and P. (P.) acuta). 
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Pachyteuthis (Pachyleuthis) iroslayana (d'Orbigny, 1850) 

Plate 16, Figures 8, lO- l I . 

1850 Belemnites troslayanus d'Orbigny. p. 43. 

1966 Pachyteuthis (Pachyteuthis) troslayana Saks & Nal'nyaeva, p. 50, pi. 9, figs 5-8. 

2004 Pachyteuthis (Boreioteuthis) troslayana Dzyuba. p. 102, pi. 14, fig. 5; pi. 15, figs 1-3. 

Material: Staffm Bay, Isle o f Skye, Upper Oxfordian to Lower Kimmeridgian {Regulare 

to Cymodoce zones) [SK5; 5.70 B, S K : 6 ; 1.90, SK7; 1.10], 

Description: Medium and relatively slender ( for Pachyteuthis). Symmetrical and 

cylindrical to cylindriconical outline. Profile subsymmetrical, wi th slight flattening o f 

venter. Acute apex, with slight dorsal deflection. Short ventral apical groove. 

Subrounded in transverse section. 

Range: ICimmeridgian (Saks & Nal'nyaeva, 1966). 

Pachyteuthis (Pachyteuthis) sp. indet. 

Plate 16, Figures 12. 

Material: Lower Ryazanian o f the Boyarka River {Kochi to Analogus zones) [ICH16; 

1.25]. 

Description: Medium rostrum. Symmetrical and cylindriconical outline. Subsymmetrical 

profile. Apex moderately obtuse (although this could be the result o f extremely poor 

preservation). Presence and extent o f apical line uncertain. Transverse section subcircular. 

Remarks: Although the specimen in PI. 16, Fig. 12 is very poorly preserved it is possible 
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to ascertain that it is most probably a young specimen o f P. (Pachyteuthis). It is too short 

and robust to belong to either Cylindroteuthis or Lagonibelus, but appears to be less robust 

than Acroteuthis. It has little ( i f any) dorsal inflation so it has been assigned here to P, 

(Pachyteuthis) rather than P. (Simobelits). 

Pachyteuthis (Pachyteuthis) sp. indet. juv. 

Plate 17, Figures 9-10. 

Material: Izhma River, Upper Ryazanian to Upper Valanginian (Tzikwinianus to 

Bidichotomus zones) [PC5 A, PC7.c2]. 

Description: Short and robust. Symmetrical and subcylindrical to weakly hastate in 

outline. Profile symmetrical and cylindrical, wi th flattened venter. Apex acute and 

central, with a very short and indistinct ventral groove. Elliptical (depressed) in transverse 

section. 

Genus 5 / v W 0 B £ L i / 5 Gustomesov, 1958 

Type Species: Belemnites breviaxis Pavlow, 1892. 

Diagnosis: (Af te r Doyle & Kelly, 1988) Symmetrical and conical outline. Asymmetrical 

profile, with flat venter and ventrally displaced or recurved apex, often mucronate (with a 

sharp point). Subquadrate in transverse section. 

Range: Recorded f rom Oxfordian to Hauterivian (Doyle & Kelly , 1988). 

Distribution: This subgenus is common throughout the Boreal Realm (Northwest Europe, 

East Greenland, Arctic Canada, Siberia, North Russia, Svalbard). Some endemic species 
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are known f rom the Early Cretaceous o f Svalbard (Stevens ,1973b; Doyle & Kel ly , 1988). 

Pachyteuthis (Sitnobelus) cf. breviaxis (Paview, 1892) 

Plate 17, Figure 3. 

1892 Belenmites breviaxis Pavlow, p. 67, pi. 8, fig. 7. 

1964 Pachyteuthis (Simobehts) breviaxis Gustomesov, p. 174, pi. 16, figs 2-4. 

1966 Pachyteuthis (Simobelus) breviaxis Saks & Nal'nyaeva. p. 65, pi. 14, figs 5-6; pi. 15, fig. 1; pi. 19, 

fig. 4. 

2004 Simobelus (Simobelus) breviaxis Dzyuba, p. 110, pi. 16, fig. 4; pi. 17, figs 1-3. 

Material: Staffm Bay, Isle o f Skye, Upper Oxfordian to Lower ICimmeridgian {Regulare 

to Baylei zones) [SK7; 20.25 B] . 

Description: Short and robust. Symmetrical and conical in outline. Asymmetrical profile, 

with flattened venter and some slight lateral compression. Acute apex, deflected dorsally 

and with a short and indistinct lateral groove. Elliptical (depressed) in transverse section. 

Phragmocone deflected ventrally. 

Range: Middle Oxfordian to ICimmeridgian (Saks & Nal'nyaeva, 1966). 

Remarks: Only one juvenile specimen of this species was recorded, making a positive 

identification di f f icul t . 

Pachyteuthis (Simobelus) curvula Saks & Nal'nyaeva, 1966 

Plate 17, Figures 1-2,4. 

1966 Pachyteuthis (Simobelus) curvula Saks & Narnyaeva. p. 84, pi. 7, fig. 6; pi. 8, figs 4-7. 

1988 Pachyteuthis (Simobelus) cf curvula Doyle & Kelly, p. 32, pi. 7, figs 10-12; pi. 8, figs 1-2. 
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Material: Boyarka River, Upper Ryazanian {Meseshnikowi Zone) [KH17b; Loose A, 

KH17b, Loose B, KH17c; 3.40]. 

Description: Medium and robust rostrum. Symmetrical and conical outline. Profile 

asymmetrical, with flattened venter (especially in apical region) and moderately to strongly 

inflated dorsum. Apex is ventrally displaced and mucronate. No distinguishable apical 

groove. Subrounded to subquadrate in transverse section. Phragmocone displaced towards 

venter. 

Range: Berriasian (Saks & Nal'nyaeva, 1966). 

Pachyteuthis (Simobelus) insignis Saks & Nal'nyaeva, 1966 

Plate 17, Figure 5. 

1966 Pachyteuthis (Simohelus) insignis Saks & Nal'nyaeva, p. 73, pi. 17, figs 2-4; pi. 19, fig. 3. 

2004 Simobelus (Simobelus) insignis Dzyuba. p. 121, pi. 18, fig. 1; pi. 21, figs 1-6. 

Material: Izhma River, Middle Volgian {Panderi Zone) [PC3a A ] . 

Description: Medium rostrum. Symmetrical and conical outline. Asymmetrical profile, 

with some flattening o f venter. Strongly flattened laterally. Moderately acute apex with 

short and indistinct ventral groove. Subquadrate and compressed in transverse section. 

Range: Volgian (Saks & NaPnyaeva, 1966). 
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Suborder BELEMNOPSEINA Jeletzky, 1965 

Family B E L E M N O P S E I D A E N a e f , 1922 

Genus BELEMNOPSIS Bayle, 1878 

Type Species: Belemnites bessinus d 'Orbigny, 1942. 

Diagnosis: (After Page & Doyle, 1991) Small to medium, slender and elongate. Outline 

symmetrical and hastate (sometimes weakly hastate). Cylindrical profi le with acute apex. 

Depressed and reniform (kidney-shaped) in transverse section. Deep ventral groove, 

emanating in alveolar region and broadening towards apex. Very shallow penetration o f 

phragmocone. 

Range: Recorded from Toarcian to Valanginian (Mutterlose, 1988). 

Distribution: This genus is widespread in the Indo-Pacific region f rom the Aalenian 

(Afr ica , India, Indonesia, New Zealand, Australia, Antarctica). Only recorded in the 

Boreal and Mediterranean regions until the Middle Oxfordian (Mutterlose 1988). 

Remarks: Both Beletnnopsis and Lagonibelus possess a long and deep ventral groove. 

They are easily distinguished, however, as the groove in Belemnopsis is present in the 

alveolar region and dies out towards the apex, whilst the reverse occurs in Lagonibelus. 

Belemnopsis cf. depressa (Quenstedt, 1848) 

Plate 17, Figure 6. 

1848 Belemnites depressa Quensledt. 

1991 Belemnopsis depressa Page & Doyle, p. 148, pi. 29, figs 3-4. 
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Material: Staffin Bay, Isle o f Skye, Lower to Upper Callovian (Koenigi to Lamberti 

zones) [SK4; 10.50]. 

Description: Medium, elongate rostrum. Symmetrical and weakly hastate in outline. 

Cylindrical profile wi th acute apex. Strong and deep ventral alveolar groove, extending 

through stem region and shallowing towards the apex (where it disappears). Subquadrate 

and reniform in transverse section. 

Range: Callovian (Page & Doyle, 1991). 

Remarks: This specimen is very similar morphologically to B. depressa, although perhaps 

with a slightly more acute apex, and slightly weaker hastate form (however this may be 

within the variability o f the species). B. depressa is common in the Middle Callovian o f 

the Oxford Clay (e.g., Wiltshire and Cambridgeshire). 

Genus HIBOLITHES Montford, 1808 

Type Species: Hibolithes hastata Montford, 1808. 

Diagnosis: (After Doyle & Kelly, 1988) Small to large, slender and elongate. Symmetrical 

and hastate in outline and profile. Maximum inflation in apical region, ft-om which flanks 

converge towards the alveolus. Acute, obtuse or rounded apex. Normally circular in 

transverse section. Prominent ventral alveolar groove (does not reach apex). 

Phragmocone penetrates up to one fifth o f the rostrum. Apical line is ortholineate. 

Range: Recorded fi-om Bajocian to Aptian (Doyle & Kelly, 1988; Mutteriose, 1988). 

Distribution: This genus is common in the Tethyan Realm (South and Central Europe, 
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East Afr ica , Antarctica, South America, Australasia and India), w i th some Boreal Realm 

incursions (particularly in the Early Cretaceous) (Mutterlose, et al, 1983). 

Remarks: The flanks o f Hibolithes converge strongly towards the alveolus, whilst those o f 

Belemnopsis do not. Belemnopsis also has a much stronger and deeper alveolar groove 

than Hibolithes. This strong groove gives Belemnopsis its reniform appearance in 

transverse section, compared with the generally circular transverse appearance of 

Hibolithes. Belemnopsis is therefore easily distinguished fi"om Hibolithes, by shape and 

alveolar groove. 

(?)Hibolithes sp. juv. 

Plate 17, Figures 7-8. 

Material: Staffin Bay, Isle o f Skye, Lower to Middle Oxfordian {Cordatum to 

Tenuiserratum zones) [SIC2; 2.80, SK8; 39.40]. 

Description: Small and slender rostrum. Symmetrical and hastate outline. Symmetrical 

and weakly hastate in profile, with a bulbous stem and apical region. Apex is central and 

acute. Faint alveolar groove present in the specimen shown in PI. 17, Fig. 8 (does not 

extend past the middle o f the stem region), but absent in the smaller specimen. Elliptical 

(depressed) in transverse section. 

Remarks: These obviously juvenile forms have been assigned to the genus Hibolithes on 

the basis o f their hastate form, and in the case o f the specimen illustrated in PI. 17, Fig. 8 

evidence o f a faint alveolar groove. It is impossible to conf i rm the identify o f these 

specimens beyond genus level due to their small size (< 34 mm). However it is worth 

noting that H. hastata (Montford) is frequently recorded f rom the Upper Callovian and 
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Lower Oxfordian o f the Oxford Clay (e.g., Cambridgeshire). 

Belemnite gen. et sp. indet. juv. 1 

Plate 17, Figure I I . 

Material: Izhma River, Middle Volgian {Maximus Zone) [PC2.3]. 

Description: Small and robust. Symmetrical and cylindrical in both outline and profile. 

Flattened venter, plus some flattening o f lateral flanks. Apex acute and slightly deflected 

ventrally. Short and indistinct ventral apical groove. Transverse section subquadrate to 

elliptical (compressed). 

Remarks: This species is possibly a juvenile o f P. (Pachyteuthis) based on the fo l lowing 

features: The rostrum is robust and symmetrical in profile, with a short and indistinct 

apical groove and a slightly compressed transverse section. 

Belemnite gen. et sp. indet. juv. 2 

Plate 17, Figure 12. 

Material: Izhma River, Upper Ryazanian to Valanginian (Tzikwinianus to Polyptychus 

zones) [PC7.c8]. 

Description: Small and robust rostrum. Outline symmetrical and cylindriconical to 

conical. Profile symmetrical and conical. Apex moderately obtuse (probably due to poor 

preservation). Transverse section subcircular wi th a flat ventral edge (due to flattening o f 

the venter). 
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Remarks: The robust rostrum wi th flattened venter and depressed transverse section 

suggest that this specimen may be an Acroteuthis juvenWe. 

Belemnite gen. et sp. indet. juv. 3 

Plate 17, Figure 13. 

Material: Izhma River, Middle Volgian (Panderi Zone) [PC3 A ] . 

Description: Small and moderately robust to elongate rostrum. Outline and profile both 

symmetrical and cylindrical. Flattened venter. Acute central apex wi th short and indistinct 

ventral apical groove. Lateral grooves present. Transverse section elliptical (depressed). 

Remarks: This specimen is too slender to be Acroteuthis, although it may be Pachyteuthis 

or Cylindroteuthis. The presence of distinct lateral grooves may suggest that this is a 

Cylindroteuthis )uven\\e. This is possibly the same species as that shown in PI. 17, Fig. 16 

(Belemnite gen. et sp. indet. j uv . 6). 

Belemnite gen. et sp. indet. juv. 4 

Plate 17, Figure 14. 

Material: Izhma River, Upper Valanginian to Lower Hauterivian (Bidichotonnts to 

Bojarkensis zones) [PC 10]. 

Description: Small and robust. Symmetrical and hastate in outline. Profile asymmetrical 

and hastate. Maximum inflation at base o f stem region. Apex strongly recurved. No 

ventral groove (apical or alveolar) identifiable. Faint lateral grooves present. Elliptical 

(depressed) in transverse section. 
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Remarks: This form is similar in appearance to the juvenile form o f Mesoteuthis 

tiungensis (Saks). However, M tiungensis has only been recorded f r o m the Toarcian in 

Russia (Saks & NaPnyaeva, 1975). 

Belemnite gen. et sp. indet. juv. 5 

Plate 17, Figure 15. 

Material: Staffin Bay, Isle o f Skye, Upper Oxfordian {Serratum to Regulare zones) 

[SKIO; 12.70]. 

Description: Small and slender. Symmetrical and weakly hastate in both outline and 

profile. Maximum inflation at apical region. Acute central apex, wi th very short and faint 

ventral groove. Circular in transverse section. 

Remarks: This specimen is too slender to be Acroteuthis, although it may be a 

Pachyteuthis or Cylindroteuthis juvenile. Due to the slendemess o f the specimens 

Cylindroteuthis seems the more likely determination. 

Belemnite gen. et sp. indet. juv. 6 

Plate 17, Figure 16. 

Material: Izhma River, Middle Volgian {Maximus Zone) [PC2.14]. 

Description: Very small rostrum. Outline, symmetrical and subcylindrical to very weakly 

hastate. Profile cylindrical. Acute apex. No ventral groove visible. Transverse section 

subcircular. 
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Remarks: This is possible the same species as the specimen shown in PI. 17, Fig. 13. 

Both specimens are from the Middle Volgian of the Izhma River. 
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Figure A 1.2 Siraiigraphical and geographical ranges of the belemnile species recorded in this study. Key to 
colours: Staffin Bay, Isle of Skye (blue); Boyarka River, Yenisei-Khatanga Basin, Siberia (red); Izhma River, 
Timan-Pechora Basin, Russia (green). 
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P L A T E S Al-17 

All figures are natural size (x l ) and specimens have been coated with ammonium chloride. 

Specimens have been photographed in outline (venter forward), right profile (venter to the 

left) and where appropriate, transverse views (orientated with venter down). Specimen 

numbers prefixed by the letters ICH, PC and SK refer to specimens collected from the 

Boyarka River, Izhma River and Staffin Bay respectively. Specimens from Helmsdale 

(HL) and Svalbard (FS and JS) were not suitable for inclusion here. 
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P L A T E Al 

1. Cylindroteuthis (Arctoteitthis) porrectiformis Anderson, 1945. (a) ventral outline, (b) 

right profile, (c) transverse section. Lower Ryazanian, Kochi to Analogies Zone material, 

Boyarka River, Siberia. (KH 16; 0.90) 

2. Cylindroteuthis (Arctoteuthis) porrectiformis Anderson, 1945. (a) ventral outline, (b) 

right profile, (c) transverse section. Lower Ryazanian, Kochi to Analogus Zone material, 

Boyarka River, Siberia. (KH 16; 2.45) 

3. Cylindroteuthis (Arctoteuthis) porrectiformis Anderson, 1945. (a) ventral outline, (b) 

right profile, (c) transverse section. Upper Ryazanian, Meseshnikowi Zone, Boyarka River, 

Siberia. {KH 17c; 2.75) 
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P L A T E A2, 

1. Cylindroteuthis (Arctoteuthis) porrectiformis Anderson, 1945. (a) ventral outline, (b) 

right profile. Upper Ryazanian, Meseshnikowi Zone, Boyarka River, Siberia. (ICH 17b; 

1.55) 

2. Cylindroteuthis (Arctoteuthis) {l)porrectiformis Anderson, 1945. (a) ventral outline, (b) 

right profile. Lower Ryazanian, Kochi to Analogus Zone material, Boyarka River, Siberia. 

(KLH 16; 2.80) 

3. Cylindroteuthis (Arctoteuthis) c f porrectiformis Anderson, 1945. (a) ventral outline, (b) 

right profile, (c) transverse section. Lower Valanginian, Syzranicum to Michalskii Zone 

material, Izhma River, Russia (PC9; GP24 C) 

4. Cylindroteuthis (Arctoteuthis) c f subporrecta Bodylevsky, 1960. (a) ventral outline, (b) 

right profile. Upper Valanginian or Lower Hauterivian, Bidichotomus to Bojarkensis Zone 

material, Boyarka River, Siberia. (ICHI-4; 13.00) 

5. Cylindroteuthis (Arctoteuthis) pachsensis Saks & Nafnyaeva, 1964. (a) ventral outline, 

(b) right profile, (c) transverse section. Upper Valanginian or Lower Hauterivian, 

Bidichotomus to Bojarkensis Zone material, Boyarka River, Siberia. (KH 1-4; 21.40) 
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P L A T E A3, 

1. Cylindroteuthis (Arctoteuihis) pachsensis Saks & NaPnyaeva, 1964. (a) ventral outline, 

(b) right profile, (c) transverse section. Upper Valanginian or Lower Hauterivian, 

Bidichotomus to Bojarkensis Zone material, Boyarka River, Siberia. (KH 1-4; Loose) 

2. Cylindroteuthis (Arctoteuthis) harabylensis Saks & Nal'nyaeva, 1964. (a) ventral 

outline, (b) right profile, (c) transverse section. Upper Valanginian or Lower Hauterivian, 

Bidichotomus to Bojarkensis Zone material, Boyarka River, Siberia. (K-H 1-4; 4.30) 

3. Cylindroteuthis (Arctoteuthis) harabylensis Saks & Nal'nyaeva, 1964. (a) ventral 

outline, (b) right profile, (c) transverse section. Upper Valanginian or Lower Hauterivian, 

Bidichotomus to Bojarkensis Zone material, Boyarka River, Siberia. (KH 1-4; 4.10) 
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P L A T E A4. 

1. Cylindroteuthis (Cylindroteuthis) puzosiana (d'Orbigny, 1842). (a) ventral outline, (b) 

right profile. Lower Kimmeridgian, Cymodoce Zone, Staffin Bay, UK. (SK6; 6.55) 

2. Cylindroteuthis (Cylindroteuthis) puzosiana (d'Orbigny, 1842). (a) ventral outline, (b) 

right profile, (c) transverse section. Callovian, Koenigi to Lamberti Zone material, Staffin 

Bay, UK. (SK4; 11.50) 

3. Cylindroteuthis (Cylindroteuthis) puzosiana (d'Orbigny, 1842). (a) ventral outline, (b) 

right profile, (c) transverse section. Lower or Middle Oxfordian, Cordatum to 

Densiplicatum Zone material, Staffin Bay, UK. (SK3; 1.20) 

4. Cylindroteuthis (Cylindroteuthis) puzosiana (d'Orbigny, 1842). (a) ventral outline, (b) 

right profile. Lower Kimmeridgian, Baylei to Cymodoce Zone material, Staffin Bay, UK. 

(SK5;4.15) 

5. Cylindroteuthis (Cylindroteuthis) puzosiana (d'Orbigny, 1842). (a) ventral outline, (b) 

right profile. Lower Oxfordian, Cordatum Zone, Staffin Bay, UK. (SK8; 33.70) 

6. Cylindroteuthis (Cylindroteuthis) puzosiana (d'Orbigny, 1842). (a) ventral outline, (b) 

right profile. Lower ICimmeridgian, Cymo^^oce Zone, Staffin Bay, UK. (SK6; 1.50) 

7. Cylindroteuthis (Cylindroteuthis) puzosiana (d'Orbigny, 1842). (a) ventral outline, (b) 

right profile, (c) transverse section. Lower Kimmeridgian, Baylei to Cymodoce Zone 

material, Staffin Bay, UK. (SK5; 4.35) 
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8. Cylindroteuthis (Cylindroteuthis) cuspidata Saks & Nal'nyaeva, 1964. (a) ventral 

outline, (b) right profile. Upper Oxfordian or Lower Kimmeridgian, Regulare to Baylei 

Zone material, Staffin Bay, UK. (SK7; 20.25 A) 
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P L A T E A5. 

1. Cylindroteuthis (Cylindroteuthis) cuspidata Saks & Nal'nyaeva, 1964. (a) ventral 

outline, (b) right profile, (c) transverse section. Lower ICimmeridgian, Cymodoce Zone, 

Staffin Bay, UK. (SK6; 6.40) 

2. Cylindroteuthis (Cylindroteuthis) cuspidata Saks & Nal'nyaeva, 1964. (a) ventral 

outline, (b) right profile, (c) transverse section. Callovian, Koenigi to Lamberti Zone 

material, Staffin Bay, UK. (SK4; 1.80) 

3. Cylindroteuthis (Cylindroteuthis) cuspidata Saks & Nal'nyaeva, 1964. (a) ventral 

outline, (b) right profile. Lower Kimmeridgian, Baylei to Cymodoce Zone material, Staffin 

Bay, UK. (SK5; 4.70) 

4. Cylindroteuthis (Cylindroteuthis) lepida Saks & Nal'nyaeva, 1964. (a) ventral outline, 

(b) right profile, (c) transverse section. Lower Kimmeridgian, Cymodoce Zone, Staffin 

Bay, UK. (SK6; 7.40) 

5. Cylindroteuthis (Cylindroteuthis) lepida Saks & Nal'nyaeva, 1964. (a) ventral outline, 

(b) right profile, (c) transverse section. Upper Ryazanian, Meseshnikowi Zone, Boyarka 

River, Siberia. (KH17c; 2.55) 

6. Cylindroteuthis (Cylindroteuthis) lepida Saks & Nal'nyaeva, 1964. (a) ventral outline, 

(b) right profile. Lower Kimmeridgian, Cymodoce Zone, Staffin Bay, UK. (SK6; 7.80) 

7. Cylindroteuthis (Cylindroteuthis) lepida Saks & NaPnyaeva, 1964. (a) ventral outline, 

(b) right profile. Lower Kimmeridgian, Cymodoce Zone, Staffin Bay, UK. (SK6; 7.20) 
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8. Cylindroteuthis (Cylindroieuthis) lepida Saks & Nal'nyaeva, 1964. (a) ventral outline, 

(b) right profile. Upper Ryazanian, Meseshnikowi Zone, Boyarka River, Siberia. (ICHI7c; 

1.50) 

9. Cylindroteuthis (Cylindroteuthis) (l)lepida jnv. Saks & Nal'nyaeva, 1964. (a) ventral 

outline, (b) right profile. Upper Ryazanian, Meseshnikowi Zone, Boyarka River, Siberia. 

(ICHI7b; 1.35) 
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PLATE A5 

9a f 9b 



P L A T E A6, 

1. Lagonibelus (Holcobeloides) memorabilis (Gustomesov, 1964). (a) ventral outline, (b) 

right profile, (c) transverse section. Middle Volgian, Panderi Zone, Izhma River, Russia. 

(PC3a B) 

2. Lagonibelus (Holcobeloides) si/nikovi Saks & NaPnyaeva, 1964. (a) ventral outline, (b) 

right profile, (c) transverse section. Middle Volgian, Maximus Zone, Izhma River, Russia. 

(PC2.12 B) 

3. Lagonibelus (Holcobeloides) c f sitnikovi Saks & Nal'nyaeva, 1964. (a) ventral outline, 

(b) right profile. Lower Ryazanian, Kochi to Analogus Zone material, Boyarka River, 

Siberia. (ICH16; 1.15) 

4. Lagonibelus (Holcobeloides) sitnikovi Saks & NaPnyaeva, 1964. (a) ventral outline, (b) 

right profile, (c) transverse section. Middle Volgian, Maximus Zone, Izhma River, Russia. 

(PC2.1I B) 

5. Lagonibelus (Holcobeloides) sitnikovi Saks & NaPnyaeva, 1964. (a) ventral outline, (b) 

right profile, (c) transverse section. Upper Volgian, Subditus Zone, Izhma River, Russia. 

(PC4a) 

6. Lagonibelus (Holcobeloides) sitnikovi Saks & NaPnyaeva, 1964. (a) ventral outline, (b) 

right profile. Middle Volgian, AYaT//;m.y Zone, Izhma River, Russia. (PC2.11 A) 

7. Lagonibelus (Holcobeloides) sitnikovi Saks & NaPnyaeva, 1964. (a) ventral outline, (b) 

right profile, (c) transverse section. Middle Volgian, Maximus Zone, Izhma River, Russia. 

(PC2.4) 
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P L A T E A7. 

1. Lagombelus (Holcobeloides) rosanovi Gustomesov, 1960. (a) ventral outline, (b) right 

profile, (c) transverse section. Middle Volgian, Maximus Zone, Izhma River, Russia. 

(PC2.11 F) 

2. Lagombelus (Holcobeloides) rosanovi Gustomesov, 1960. (a) ventral outline, (b) right 

profile, (c) transverse section. Middle Volgian, Maximus Zone, Izhma River, Russia. 

(PC2.11 C) 

3. Lagonibelus (Lagonibelus) cf. gustomesovi Saks & NaTnyaeva, 1964. (a) ventral 

outline, (b) right profile. Upper Ryazanian or Valanginian, Tzikwinianus to Polyptychus 

Zone material, Izhma River, Russia. (PC7.a2 A) 

4. Lagonibelus (Lagonibelus) gustomesovi Saks & Nal'nyaeva, 1964. (a) ventral outline, 

(b) right profile, (c) transverse section. Lower Ryazanian, Kochi to Analogus Zone 

material, Boyarka River, Siberia. (ICH 16; Loose) 

5. Acroteuthis (Acroteuthis) arctica Bliithgen, 1936. (a) ventral outline, (b) right profile, 

(c) transverse section, (d) dorsal outline. Lower Valanginian, Klimovskiensis Zone, 

Boyarka River, Siberia. (KLH13;4.35) 
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P L A T E A8, 

1. Acroteitthis (Acroteuthis) arctica Bluthgen, 1936. (a) ventral outline, (b) right profile, 

(c) transverse section. Upper Ryazanian or Valanginian, Tzikwinianus to Polyptychus 

Zone material, Izhma River, Russia. (PC7.al) 

2. Acroteuthis (Acroteuthis) anabarensis (Pavlow, 1914). (a) ventral outline, (b) right 

profile, (c) transverse section. Upper Ryazanian or Valanginian, Tzikwinianus to 

Polyptychus Zone material, Izhma River, Russia. (PC7.a2 B) 

3. Acroteuthis (Acroteuthis) anabarensis (Pavlow, 1914). (a) ventral outline, (b) right 

profile, (c) transverse section. Upper Ryazanian or Valanginian, Tzikwinianus to 

Polyptychus Zone material, Izhma River, Russia. (PC7.cl) 

4. Acroteuthis (Acroteuthis) anabarensis (Pavlow, 1914). (a) ventral outline, (b) right 

profile, (c) transverse section. Lower Valanginian, Stubendorffi Zone, Boyarka River, 

Siberia. (KHI8; 10.50) 
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PLATE A8 
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P L A T E A9, 

1. Acroteuthis (Acroteuthis) cf. anabarensis (Pavlow, 1914). (a) ventral outline, (b) right 

profile, (c) transverse section. Middle Volgian, Maximus Zone, Izhma River, Russia. 

(PC2.6) 

2. Acroteuthis (Acroteuthis) acrei Swinnerton, 1936. (a) ventral outline, (b) right profile, 

(c) transverse section. Lower Valanginian, Klimovskiensis Zone, Boyarka River, Siberia. 

(ICH13; Loose A) 

3. Acroteuthis (Acroteuthis) acrei Swinnerton, 1936. (a) ventral outline, (b) right profile, 

(c) transverse section. Lower Valanginian, Klimovskiensis Zone, Boyarka River, Siberia. 

(1CH13; Loose B) 
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P L A T E AlO, 

1. Acroteuthis (Acroteuthis) acrei Swinnerton, 1936. (a) ventral outline, (b) right profile, 

(c) transverse section. Lower Valanginian, Klimovskiensis Zone, Boyarka River, Siberia. 

(KH13; 3.45) 

2. Acroteuthis (Acroteuthis) acrei Swinnerton, 1936. (a) ventral outline, (b) right profile, 

(c) transverse section. Upper Valanginian or Lower Hauterivian, Bidichotomus to 

Bojarkensis Zone material, Boyarka River, Siberia. (ICH6-7; Loose) 

3. Acroteuthis (Acroteuthis) lateralis (Phillips, 1835). (a) ventral outline, (b) right profile, 

(c) transverse section. Lower Valanginian, Syzranicum to Michalskii Zone material, Izhma 

River, Russia. (PC9 GP24 A) 
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P L A T E AlO 



P L A T E Al l . 

1. Acroteuthis (Acroteuthis) lateralis (Phillips, 1835). (a) ventral outline, (b) right profile, 

(c) transverse section. Lower Valanginian, Syzranicum to Michalskii Zone material, Izhma 

River, Russia. (PC9 GP24 B) 

2. Acroteuthis (Acroteuthis) lateralis (Phillips, 1835). (a) ventral outline, (b) right profile, 

(c) transverse section. Lower Valanginian, Syzranicum to Michalskii Zone material, Izhma 

River, Russia. (PC9GP22) 

3. Acroteuthis (Acroteuthis) lateralis (Phillips, 1835). (a) ventral outline, (b) right profile, 

(c) alveolar transverse section, (d) stem transverse section. Lower Valanginian, 

Syzranicum to Michalskii Zone material, Izhma River, Russia. (PC9a) 
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P L A T E All 

I 
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P L A T E A12. 

1. Pachyteuthis (Pachyteuthis) cf. ingens ICrimholz, 1929. (a) ventral outline, (b) right 

profile, (c) stem transverse section. Upper Volgian, Pseudocraspedites / Surites Zone, 

Izhma River, Russia. (PC4) 

2. Pachyieuthis (Pachyteuthis) acuta Saks & NaPnyaeva 1966. (a) ventral outline, (b) 

right profile, (c) transverse section. Middle Volgian, Maximus Zone, Izhma River, Russia. 

(PC2.11 E) 

3. Pachyteuthis (Pachyteuthis) acuta Saks & Nal'nyaeva 1966. (a) ventral outline, (b) 

right profile. Middle Volgian, Maximus Zone, Izhma River, Russia. (PC2.I I D) 

4. Pachyteuthis (Pachyteuthis) c f acuta Saks & Nal'nyaeva 1966. (a) ventral outline, (b) 

right profile, (c) transverse section. Middle Volgian, Panderi Zone, Izhma River, Russia. 

(PC3 B) 
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P L A T E A13. 

1. Pachyteuthis (Pachyteuthis) excentralis (Young & Bird, 1822). (a) ventral outline, (b) 

right profile. Upper Oxfordian or Lower Kimmeridgian, Regulare to Baylei Zone material, 

Staffin Bay, UK. (S1C7; 16.90) 

2. Pachyteuthis (Pachyteuthis) excentralis (Young & Bird, 1822). (a) ventral outline, (b) 

right profile. Lower ICimmeridgian, Baylei to Cymodoce Zone material, Staffm Bay, UK. 

(SK5; 5.70) 

3. Pachyteuthis (Pachyteuthis) excentralis (Young & Bird, 1822). (a) ventral outline, (b) 

right profile. Lower Oxfordian, Mariae to Cordatum Zone material, Staffin Bay, UK. 

(SKI; 50.00) 

4. Pachyteuthis (Pachyteuthis) excentralis (Young & Bird, 1822). (a) ventral outline, (b) 

right profile, (c) transverse section. Lower Kimmeridgian, Baylei to Cymodoce Zone 

material, Staffin Bay, UK. (SK5; 2.70) 
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P L A T E A14. 

1. Pachyteuthis (Pachyteuthis) cf. excentralis (Young & Bird, 1822). (a) ventral outline, 

(b) right profile. Lower ICimmeridgian, Cymodoce Zone, Staffin Bay, UK. (SK6; 4.50) 

2. Pachyteuthis (Pachyteuthis) apiculata Saks & NaPnyaeva, 1966. (a) ventral outline, (b) 

right profile, (c) transverse section. Middle Volgian, Maximus Zone, Izhma River, Russia. 

(PC2.8) 

3. Pachyteuthis (Pachyteuthis) apiculata Saks & Nal'nyaeva, 1966. (a) ventral outline, (b) 

right profile, (c) transverse section. Middle Volgian, Maximus Zone, Izhma River, Russia. 

(PC2.12 A) 

4. Pachyteuthis (Pachyteuthis) panderiana (d'Orbingny, 1845). (a) ventral outline, (b) 

right profile, (c) transverse section. Lower Oxfordian, Mariae to Cordatum Zone material, 

Staffm Bay, UK. (SKI; 47.10) 
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P L A T E A15. 

1. Pachyteuthis (Pachy tenth is) panderiana (d'Orbingny, 1845). (a) ventral outline, (b) 

right profile, (c) transverse section. Lower Kimmeridgian, Baylei to Cymodoce Zone 

material, Staffin Bay, UK. (SK5; 8.10) 

2. Pachyteuthis (Pachyteuthis) panderiana (d'Orbingny, 1845). (a) ventral outline, (b) 

right profile, (c) transverse section. Lower Kimmeridgian, Baylei to Cymodoce Zone 

material, Staffin Bay, UK. (SK5; 3.90) 

3. Pachyteuthis (Pachyteuthis) panderiana (d'Orbingny, 1845). (a) ventral outline, (b) 

right profile. Lower Kimmeridgian, Cymodoce Zone, Staffm Bay, UK. (SK6; 2.40) 

4. Pachyteuthis (Pachyteuthis) subrectangulata (Bliithgen, 1936). (a) ventral outline, (b) 

right profile, (c) transverse section. Lower Valanginian, Klimovskiensis Zone, Boyarka 

River, Siberia. (KH13; 2.30) 

5. Pachyteuthis (Pachyteuthis) subrectangulata (Bluthgen, 1936). (a) ventral outline, (b) 

right profile, (c) transverse section. Upper Valanginian or Lower Hauterivian, 

Bidichotomus to Bojarkensis Zone material, Izhma River, Russia. (PC 10a A) 

6. Pachyteuthis (Pachyteuthis) suhrectangulata (Bluthgen, 1936). (a) ventral outline, (b) 

right profile, (c) transverse section. Upper Valanginian or Lower Hauterivian, 

Bidichotomus to Bojarkensis Zone material, Izhma River, Russia. (PC 10a B) 
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P L A T E A16, 

1. Pachyteuthis (Pachyieuthis) subrectangulata (Bliithgen, 1936). (a) ventral outline, (b) 

right profile, (c) transverse section. Upper Valanginian, Bidichotomus Zone, Izhma River, 

Russia. (PCS D) 

2. Pachyteuthis (Pachyteuthis) subrectangulata (Bliithgen, 1936). (a) ventral outline, (b) 

right profile, (c) transverse section. Upper Valanginian, Bidichotomus Zone, Izhma River, 

Russia. (PC5 C) 

3. Pachyteuthis (Pachyteuthis) subrectangulata (Blulhgen, 1936). (a) ventral outline, (b) 

right profile, (c) transverse section. Lower Valanginian, Stubendorffi Zone, Boyarka 

River, Siberia. (KLH18;7.I0) 

4. Pachyteuthis (Pachyteuthis) c f subrectangidata (Bliithgen, 1936). (a) ventral outline, 

(b) right profile, (c) transverse section. (?)Upper Valanginian, {l)Bidichotomus Zone, 

Izhma River, Russia. (PC6.2) 

5. Pachyteuthis (Pachyteuthis) c f subrectangidata (Bluthgen, 1936). (a) ventral outline, 

(b) right profile, (c) transverse section. Upper Valanginian, Bidichotomus Zone, Izhma 

River, Russia. (PCS B) 

6. Pachyteuthis (Pachyteuthis) c f explanata (Phillips, 186S). (a) ventral outline, (b) right 

profile, (c) transverse section. Lower or Middle Oxfordian, Cordatum to Densiplicatum 

Zone material, Staffin Bay, UK. (SIC3; 5.80) 
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7. Pachyteuthis (Pachyteuthis) cf. explanata (Phillips, 1865). (a) ventral outline, (b) right 

profile, (c) transverse section. Lower Oxfordian, Mariae to Cordattm Zone material, 

Staffin Bay, UK. ( S K I ; 60.20) 

8. Pachyteuthis (Pachyteuthis) troslayana (d'Orbigny, 1850). (a) ventral outline, (b) right 

profile, (c) transverse section. Lower Kimmeridgian, Baylei to Cymodoce Zone material, 

Staffin Bay, UK. (SK5; 5.70 B) 

9. Pachyteuthis (Pachyteuthis) c f explanata (Phillips, 1865). (a) ventral outline, (b) right 

profile. Lower - Middle Oxfordian, Cordatum to Densiplicatum Zone material, Staffm 

Bay, UK. (SK3; 5.20) 

10. Pachyteuthis (Pachyteuthis) troslayana (d'Orbigny, 1850). (a) ventral outline, (b) right 

profile. Lower Kimmeridgian, Cymodoce Zone, Slaffin Bay, UK, (SK6; 1.90) 

11. Pachyteuthis (Pachyteuthis) troslayana (d'Orbigny, 1850). (a) ventral outline, (b) right 

profile. Upper Oxfordian or Lower Kimmeridgian, Regulare to Baylei Zone materia), 

Staffin Bay, UK. (SK7; 1.10) 

12. Pachyteuthis (Pachyteuthis) sp. indet. (a) ventral outline, (b) right profile. Lower 

Ryazanian, Kochi to Analogus Zone material, Boyarka River, Siberia. (KH16; 1.25) 
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P L A T E A17. 

1. Pachyteuthis (Simobehts) curvula Saks & Nal'nyaeva, 1966. (a) ventral outline, (b) 

right profile, (c) transverse section. Upper Ryazanian, Meseshnikowi Zone, Boyarka River, 

Siberia. (KK17c; 3.40) 

2. Pachyteuthis (Simobelus) curvula Saks & Nal'nyaeva, 1966. (a) ventral outline, (b) 

right profile, (c) transverse section. Upper Ryazanian, Meseshnikowi Zone, Boyarka River, 

Siberia. (KHlTb; Loose A) 

3. Pachyteuthis (Simobehts) c f breviaxis (Pavlow, 1892). (a) ventral outline, (b) right 

profile. Upper Oxfordian or Lower Kimmeridgian, Regidare to Baylei Zone material, 

Staffin Bay, UK. (SK7; 20.2S B) 

4. Pachyteuthis (Simobehts) curvula Saks & Nal'nyaeva, 1966. (a) ventral outline, (b) 

right profile, (c) transverse section. Upper Ryazanian, Meseshnikowi Zone, Boyarka River, 

Siberia. (KHl7b; Loose B) 

5. Pachyteuthis (Simobelus) insignis Saks & Nal'nyaeva, 1966. (a) ventral outline, (b) 

right profile, (c) transverse section. Middle Volgian, Panderi Zone, Izhma River, Russia. 

(PC3a A) 

6. Belemnopsis c f depressa (Quenstedt, 1848). (a) ventral outline, (b) right profile, (c) 

transverse section. Callovian, Koenigi to Lamberti Zone material, Staffin Bay, UK. (SK4; 

10.50) 
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7. (l)Hibolithes sp. juv. (a) ventral outline, (b) right profile. Lower Oxfordian, Cordatum 

Zone, Staffin Bay, UK. (SK8; 39.40) 

8. {l)Hibolithes sp. juv. (a) ventral outline, (b) right profile. Middle Oxfordian, 

Densiplicatum to Tenuiserrotum Zone material, Staffin Bay, U K . (SK2; 2.80) 

9. Pachyteuthis (Pachyteuthis) sp. indet. juv. (a) ventral outline, (b) right profile, (c) 

transverse section. Upper Ryazanian or Valanginian, Tzikwinianus to Polyptychus Zone 

material, Izhma River, Russia. (PC7.c2) 

10. Pachyteuthis (Pachyteuthis) sp. indet. juv. (a) ventral outline, (b) right profile, (c) 

transverse section. Upper Valanginian, Bidichotomus Zone, Izhma River, Russia. (PC5 A) 

11. Belemnite gen. et. sp. indet. juv. 1. (a) ventral outline, (b) right profile, (c) transverse 

section. Middle Volgian, Maximus Zone, Izhma River, Russia. (PC2.3) 

12. Belemnite gen. et. sp. indet. juv. 2. (a) ventral outline, (b) right profile, (c) transverse 

section. Upper Ryazanian or Valanginian, Tzihvinianus to Polyptychus Zone material, 

Izhma River, Russia. (PC7.c8) 

13. Belemnile gen. et. sp. indet. juv. 3. (a) ventral outline, (b) right profile. Middle 

Volgian, Panderi Zone, Izhma River, Russia. (PC3 A) 

14. Belemnite gen. et. sp. indet. juv. 4. (a) ventral outline, (b) right profile, (c) transverse 

section. Upper Valanginian or Lower Hauterivian, Bidichotomus to Bojarkensis Zone 

material, Izhma River, Russia. (PC 10) 
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15. Belemnite gen. et. sp. indet. juv. 5. (a) ventral outline, (b) right profile. Upper 

Oxfordian, Serratum to Regulare Zone material, Staffin Bay, U K . ( S K I O ; 12.70) 

16. Belemnite gen. et. sp. indet. juv. 6. (a) ventral outline, (b) right profile. Middle 

Volgian, Maximus Zone, Izhma River, Russia. (PC2.14) 
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No. Somple No. Age Am. Zone Type SEM 

TOC Rook-Eval 

d13C No. Somple No. Age Am. Zone Type SEM 
1 2 3 mean 

TOC[%] 
MING 

[%1 

HI [mg 
HC/g 
TOC) 

Ol [mg 
C02/g 
TOC] 

Tmax d13C 

1 KH1-4: -1.10 Val.-Haut. D.bld.-H.boy. Ch X -23.47 
2 KH1-4: -0.60 A Val.-Haut. D.bid.-H.t}oy. ? -23.92 
3 KH1-4; -0.60 8 Val.-Haut. D.bld.-H.boy. Ch-Co -23.35 
4 KH1-4: -0.60 Val.-Haut. D.bid.-H.boy. ? -22.83 
6 KH1-4: -0.40 Val.-Haut. D.bld.-H.boy. Ch-Co -25.16 
6 KH1-4; -0.30 Val.-Haut. D.bld.-H.boy. ? -24.21 
7 K H M ; 0.06 Val.-Haut. D.bid.-H.boy. Ch-Co -23.06 
8 KH1-4: 0.90 Val.-Haut. D.bld.-H.boy. Co •24.90 
9 KH1-4; 1.30 Val.-Haut. D.bld.-H.boy. Ch-Co -2Z71 

10 KH1.4; 1.70 A Val.-Haul. D.bld.-H.boy. Co -22.91 
11 KH1.4: 1.70 B Val.-Haut. D.bid.-H.boy. Ch X -22.75 
12 KH1-4: 2.00 Val.-Haut. D.bld.-H.boy. Co -2200 
13 KH1-4: 2.20 Val.-Haut. D.bid.-H.boy. Ch-Co -23.24 
14 KH1-4: 2.35 Val.-Haut. D.bid.-H.boy. ? •22.99 
16 KH1-4: 2.75 Val.-Haut. D.bld.-H.boy. Ch (w) -2282 
16 KH1-4: 2.60 Val.-Haut. D.bid.-H.boy. Ch-Co -23.81 
17 KH1-4: 3.25 A Val.-Haut. D.bid.-H.boy. Ch-Co -23.85 
18 KH1-4; 3.25 B Val.-Haut. D.bid.-H.boy. Ch-Co -2Z73 
19 KHl-4; 3.30 Val.-Haut. D.bid.-H.boy. Ch -2265 
20 KH1-4: 3.40 Val.-Haut. D.bid.-H.boy. Ch-Co -23.58 
21 KH1-4: 3.60 A Val.-Haut. D.bid.-H.boy. Ch -22.83 
22 KH1-4: 3.60 B Val.-Haut. D.bid.-H.boy. Ch -24.23 
23 KH1-4: 3.75 Val.-Haut. D.bid.-Kboy. Ch(w) X -23.13 
24 KH1.4: 3.90 Val.-Haut. D.bld.-H.boy. Co -23,27 
2fi KH1-4; 4.00 A Val.-Haut. D.bld.-H.boy. Ch-Co -23.32 
26 KH1-4; 4.00 B Val.-Haut. D.bld.-H.boy. Ch(w) 

Ch-Co 
-23.95 

27 KH1-4; 4.10 Val.-Haut. D.bid.-H.boy. 
Ch(w) 
Ch-Co -2238 

28 KH1-4: 4.20 Val.-Haut. D.bid.-H.boy. Ch (w) -22.70 
29 KH1-4; 4.40 A Val.-Haut. D.bid.-H.boy. Ch (w) -23.85 
30 KH1-4; 4.40 B Val.-Haut. D.bid.-H.boy. Ch-Co -21.36 
31 KH1-4: 4.50 Val.-Haut. D.bid.-H.boy. Col X -22.16 
32 KH1.4: 4.80 Val.-Haut. D.bid.-H.boy. Co -23.38 
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33 KH1.4 5.10A Val.-Haut. D.bid.-H.boy. Ch-Co •24.04 
34 KH1-4 5.10 B Val.-Haut. D.bid.-H.boy. Ch-Co -24.55 
36 KH1-4 5.20 Val.-Haut. D.bid.-H.boy. Ch -25.00 
36 KH1-4 5.30 Val.-Haut. D.bid.-H.boy. 7 -24.55 
37 KH1-4 5.40 Val.-Haut. D.bid.-H.boy. Co -23.72 
38 KH1-4 6.00 A Val.-Haut. D.btd.-H.boy. Ch-Co X -24.60 
39 KH1-4 6.00 B Val.-Haut. D.bld.-H.boy. Co -24.49 
40 KH1-4 6.30 A Val.-Haut. D.bid.-H.boy. Co •25.56 
41 KH1-4 6 . x B Val.-Haut. D.bid.-H.boy. ? -24.03 
42 KH1-4 6.30 C Val.-Haut. D.bid.-H.boy. Ch-Co -25.13 
43 KH1-4 7.00 Val.-Haut. D.bid.-H.boy. Co! -25.05 
44 KH1-4 8.45 Vat.-Haut. D.bid.-H.boy. Ch-Co -24.34 
46 KH1-4 8.60 Val.-Haut. D.bid.-H.bov. Ch-Co -24.37 
48 KH1-4 8.90 A Val.-Haut. D.bid.-H.boy. Ch -25.16 
47 KH1-4 8.90 8 Val.-Haut. D.bid.-H.boy. Ch-Co -24.12 
48 KH1-4 9.30 Val.-Haut. D.bid.-H.boy. Ch X -23.91 
49 KH1-4 9.40 Val.-Haut. D.bid.-H.boy. Ch -23.99 
60 KH1-4 9.60 Val.-Haut. D.bld.-H.boy. Ch-Co -24.35 
61 KH1-4 11.40 Val.-Haut. D.bld.-H.boy. Co •24.20 
62 KH1-4 11.60A Val.-Haut. D.bid.-H.boy. Co •24.17 
63 KH1-4 11.60B Val.-Haut. D.bid.-H.boy. Ch-Co -24.23 
64 KH1-4 11.80 Val.-Haut. D.bid.-H.boy. Co -21.21 
66 KH1-4 1210 Val.-Haut. D.bid.-H.boy. Col -2288 
66 KH1-4 12.60 Val.-Haut. D.bid.-H.boy. Col -21.99 
67 KH1-4 13.00 Val.-Haut. D.bId.-H.boy. Co -25.04 
68 KH1-4 13.20 Val.-Haut. D.bld.-H.boy. Ch-Co X -2294 
69 KH1-4 13.60 Val.-Haut. D.btd.-H.boy. Ch-Co -24.61 
60 KH1-4 14.50 Val.-Haut. D.bld.-H.boy. Ch-Co -25.06 
61 KH1-4 15.20 Vat.-Haut. D.bid.-H.boy. Coll -23.29 
62 KHl-4 15.40 A Val.-Haut. D.bid.-H.boy. Co -23.59 
63 KH1.4 15.40 B Val.-Haut. D.bid.-H.boy. Co •23.28 
64 KHl-4 16.00 Val.-Haut. D.bid.-H.boy. Ch -24.34 
66 KHl-4 17.60 Vai.-Haut. D.bId.-H.boy. Coll -23.33 
66 KHl-4 17.60 Val.-Haut. D.bld.-H.boy. Co •23.39 
67 KHl-4 18.20 Val.-Haut. D.bld.-H.boy. Ch-Co -23.38 
68 KHl-4 18.50 Val.-Haut. D.bld.-H.boy. Col -24.21 



J 

69 KHl-4: 19.70 Val.-Haut. D.bid.-Kboy. Co!l -23.90 
70 KHl-4; 19.80 Val.-Haut. D.bid.-H.boy. Co! X -2250 
71 KHl-4; 21.00 Val.-Haut. D.bld.-H.boy. ? -25.13 
72 KHl-4; 21.40 Val.-Haut. D.bid.-H.boy. ? -25.39 
73 KHl-4; 21.60 A Val.-Haul. D.btd.-H.boy. Co -2275 
74 KHl-4; 21.60B Val.-Haut. D.bld.-H.boy. Co -23.57 
76 KHl-4: 22.60 Val.-Haut. D.bld.-H.boy. ? -25.56 
76 KHl-4: 23.80 Val.-Haut. D.bid.-H.boy. Co •24.68 
77 KHl-4: 24.30 Val.-Haut. D.bid.-H.boy. Co -23.59 
78 KHl-4: 25.80 Val.-Haut. D.bid.-H.boy. ? -23.91 
79 KHl-4: 26.80 Val.-Haut. D.bld.-H.boy. Co -24.85 
80 KHl-4: 26.90 Val.-Haut. D.bid.-H.boy. Co -24.91 
81 KHl-4: 27.30 Val.-Haut. D.bld.-H.boy. Ch-Co -23.77 
82 KH1.4: 27.90 A Val.-Haut. D.bld.-H.boy. ? -24.99 
83 KHl-4: 27.90 B Val.-Haut. D.bid.-H.boy. Ch-Co X -23.19 
84 KHl-4: 28.15 Val.-Haut. D.bid.-H.boy. Co -23.92 
86 KHl-4: 28.70 Val.-Haut. D.bid.-H.boy. Ch-Co -23.33 
86 KHl-4: 30.00 Val.-Haut. D.bid.-H.boy. Co -23.02 
87 K H M : 30.70 Val.-Haut. D.bid.-H.boy. Ch-Co •23.81 
88 KHl-4: 31.90 Val.-Haut. D.bid.-H.boy. Co •23.63 
89 KHl-4: 3210 Val.-Haut. D.bid.-H.boy. ? -25.70 
90 K H M ; 3230 Val.-Haut. D.btd.-Kboy. 7 -23.43 
01 KHl-4; 35.70 Val.-Haut. D.bld.-H.boy. Co -23.91 
92 KHl-4: 41.30 Val.-Haut. D.btd.-H.boy. Co -23.15 
93 KHl-4: 41.90 Val.-Haut. D.bid.-H.boy. Co -23.97 
94 KHl-4: 42.00 Val.-Haut. D.bid.-Kboy. Co -23.55 
96 KHl-4: 42.30 Val.-Haut. D.bid.-H.boy. Co -24.03 
96 KHl-4: 43.10 Val.-Haut. D.bId.-H.boy. Ch -23.00 
97 KHl-4: 43.50 Val.-Haut. D.bld.-H.boy. Co -24.27 
98 KHl-4: 47.10 A Val.-Haut. O.bld.-H.boy. Co X -23.25 
99 KH1.4: 47.10 B Vai.-Haut. D.bid.-H.boy. Co -23.76 

100 KHl-4: 49.90 Val.-Haut. D.bid.-H.boy. Co -23.54 
101 KHl-4; 5270 Val.-Haut. D.bid.-H.boy. Ch-Co -2262 
102 KHl-4: 54.00 Val.-Haut. D.bid.-H.boy. Ch-Co •23.39 
103 KHl-4; 59.30 Val.-Haut. D.bid.-H.boy. Co -24.67 
104 KHl-4: 61.40 Val.-Haut. D.bid.-H.boy. Ch (w) -23.99 



106 KHl-4; 61.60 Val.-Haut. D.bid.-H.boy. Co -23.12 

106 KHl-4: 62.10 Val.-Haut. D.bid.-H.boy. Co -24.68 

107 KHl-4: 64.00 Val.-Haut. D.bid.-H.boy. ? -24.39 

108 KH1-4b: -8.00 L. Val. D.bidlchot. ? -23.24 

109 KH1-4b; -6.60 L. Val. D.bidichot. ? -25.23 

110 KH1-4b: -8.80 A L. Val. D.bidichot. ? -25.34 

111 KH1-4b: -8.80 8 L. Val. D.bidichot. ? -23.31 

112 KH1-4b: -9.00 L. Val. D.bidichot. Ch X -2276 

113 KH1-4b:-13.15 L. Val. D.bidichot. ? -2255 

114 KH1-4b: -15.50 L. Val. D.bidichot. ? -23.85 

116 KH1-4b: -16.60 L. Val. D.bidichot. Co -23.17 

116 KH1-4b: -20.00 L. Val. D.bidtchot. Ch -23.96 

117 KH1-4b: -20.06 L. Val. D.bidichot. Ch -23.15 

118 KH5: Loose A E. Val. N.klimov. Ch (w) -24.34 

119 KH5; Loose B E. Val. N.klimov. Ch na 

120 KH5; Loose C E. Val. N.klimov. Ch (w sll) X -24.80 

121 KH10-11: Loose A E. Val. P.stuben. Ch-Co -25.45 

122 KH10-11; Loose B E. Val. P.stuben. Ch-Co -26.08 

123 KHlO-11: Loose C E. Val. P.stuben. Ch -24.78 

124 KH13; 1.30 E. Val. N.klimov. Ch -24.45 

126 KH13; 1.50 E. Val. N.klimov. Ch -26.62 

126 KH13; 1.70 E. Val. N.ktimov. Ch -25.30 

127 KH13: 2.05 E. Val. N.klimov. Co -25.28 

128 KH13: 2.40 E. Val. N.klimov. Ch -24.30 

129 KH13: 2.60 E. Val. N.klimov. Ch -24.87 

130 KH13: 3.20 E. Val. N.klimov. Ch -26.22 

131 KH13: 3.30 E. Val. N.klimov. Ch (w sll) -24.39 

132 KH13: 3.90 E. Val. N.MImov. Ch-Co -26.42 

133 KH13: 4.45 A E. Val. N.klimov. Ch-Co -24.72 

134 KH13: 4.45 B E. Val. N.klimov. Ch-Co X -24.33 

136 KH13: 4.45 C E. Val. N.klimov. Ch (virsil) -25.06 

136 KH13; 5.25 A E. Val. N.ktimov. Ch -24.33 

137 KH13: 5.25 B E. Val. N.klimov. Ch na 

138 KH13: 5.40 E. Val. N.klimov. Ch-Co -27.20 

139 KH13: 5.50 E. Val. N.klimov. Co na 

140 KH13: 5.60 E. Val. N.klimov. Co -24.31 



141 KH13: 6.10 E. Vat. N.klimov. Ch-Co -24.50 

142 KH13: 6.30 E. Val. N.klimov. Ch-Co -24.40 

143 KH13; 7.90 E. Val. N.klimov. Co -25.25 

144 KH13: 8.20 E. Val. N.klimov. Co na 

146 KH13: 8.90 A E. Val. N.klimov. Ch (w) X -23.86 

146 KH13; 8.90 B E. Val. N.klimov. Ch (v )̂ -24.00 

147 KH13; 11.00 E. Val. N.ktimov. Co na 

148 KH13:15.60A E. Val. N.klimov. Co -24.65 

149 KH13: 15.60 B E. Val. N.klimov. Co -24.74 

160 KH13:18.30 E. Val. N.klimov. Ch-Co na 

161 KH16: -0.25 E. Ryaz. H.koc.-S.an. Ch (w sil) X -24.03 

162 KH16; 0.90 E. Ryaz. H.koc.-S.an. Ch-Co -24.29 

163 KH16:1.00 A E. Rvaz. H.koc.-S.an. Ch-Co -25.08 

164 KH16:1.00 B E. Ryaz. H.koc.-S.an. Ch-Co -24.78 

166 KH16; 1.10 E. Ryaz. H.koc.-S.an. Ch-Co -26.98 

166 KH16; 1.60 E. Ryaz. H.koc.-S.an. Ch-Co -24.53 

167 KH16:1.70 E. Ryaz. H.koc.-S.an. Ch-Co X -23.81 

168 KH16: 1.85 E. Ryaz. H.koc.-S.an. Co -24.33 

169 KH16: 210 E. Ryaz. H.koc.-S.an. Co -23.77 

160 KH16: 250 E. Ryaz. H.koc.-S.an. 7 -25.43 

161 KH16; 3.50 E. Ryaz. H.koc.-S.an. ? -25.46 

162 KH16; 3.80 E. Ryaz. H.koc.-S.an. Co -24.95 

163 KH17a: 0.25 B. Lst LRyaz. B.meses. Ch (w sil) X -26.20 

164 KH17c: 2.25 A LRyaz. B.meses. Ch-Co -24.71 

166 KHl7c: 225 B LRyaz. B.meses. Ch-Co -24.43 

166 KH17c: 225 C LRvaz. B.meses. Ch {w sil) -26.72 

167 KH17c; 250 LRyaz. B.meses. Co -24.88 

168 KH17c: 290 LRyaz. B.meses. Co -23.74 

169 KH18:0.60 E. Val. P.Gtuben. Ch-Co X -25.19 

170 KH18:1.75 E. Val. P.stuben. ? -24.98 

171 KH18: 1.80 E. Val. P.stuben. ? -25.30 

172 KH18; 230 E. Val. P.stuben. Co -24.90 

173 KH18: 280 E. Val. P.stuben. Ch-Co -25.12 

174 KH18: 5.45 E. Val. P.stuben. ? -24.38 

176 KH18: 5.65 E. Vat. P.stuben. ? -23.20 

176 KHie: 6.30 A E. Val. P.stuben. Ch -23.31 



177 KH18; 6.30 B E. Val. P.stuben. Co -23.70 
178 KH18: 6.30 C E. Val. P.stuben. Ch X -24.13 
179 KH18: 6.60 E. Val. P.stuben. ? -25.20 
180 KH18: 8.40 E. Vat. P.stuben. Ch -24.32 
181 KH18; 8.55 E. Vat. P.stuben. Ch-Co -23.78 
182 KH18: 8.65 A E. Val. P.stuben. Ch -24.11 
183 KH18: 8.65 B E. Val. P.stuben. ? -24.98 
184 KH18: 10.00 E. Val. P.stuben. ? -24.55 

186 SKI;-1.00 E. Oxf. Mar-Cor M.W.D. 1.07 0.88 1.05 1.00 1.41 0.91 95 62 426 -2229 
186 SKI: 1-20 E. Oxf. Mar-Cor M.W.D. 3.20 299 277 2.99 -21.67 
187 SKI; 280 E. Oxf. Mar-Cor M.W.D. 1.67 1.77 1.05 1.50 -22.50 
188 SKI: 3.70 E. Oxf. Mar-Cor M.W.D. 1.32 1.31 1.38 1.34 -2235 
189 SKI; 4.00 E. Oxf. Mar-Cor M.W.D. 1.10 1.89 1.25 1.41 •22.30 
190 SKI; 4.50 E. Oxf. Mar-Cor M.W.D. 0.00 0.94 0.92 0.93 •2204 
191 SKI; 5.90 E. Oxf. Mar-Cor M.W.D. -21.58 
192 SKI; 6.60 E. Oxf. Mar-Cor M.W.D. 3.84 3.75 3.70 3.76 1.30 0.50 52 51 421 -21.29 
193 SK1;14.20 E. Oxf. Mar-Cor M.W.D. 043 0.30 0.42 0.38 -2282 
194 SKI; 15.80 E. Oxf. Mar-Cor M .w.a -2236 
196 SKI; 18.20 E. Oxf. Mar-Cor M.W.D. 0.26 0.15 0.37 0.26 -2259 
196 SKI; 21.50 E. Oxf. Mar-Cor M.W.D. -2270 
197 SKI; 22.10 E. Oxf. Mar-Cor M.W.D. •2269 
198 SKI; 24.30 E. Oxf. Mar-Cor M.W.D. 059 0.62 0.59 0.60 -2265 
199 SKI; 26.10 E. Oxf. Mar-Cor M.W.D. •22.32 
200 SKI; 28.60 E. Oxf, Mar-Cor M.W.D. -2259 
201 SKI: 30.60 E. Oxf. Mar-Cor M.W.D. 0.36 0.37 0.46 0.40 0.66 1.76 81 104 424 -23.43 
202 SKI; 33.20 E. Oxf. Mar-Cor M.W.D. 1.45 4.19 41 55 425 -2231 
203 SKI: 35.50 E. Oxf. Mar-Cor M.W.D. 0.59 0.56 0.46 0.54 -2281 
204 SKI; 37.40 E. Oxf. Mar-Cor M.W.D. -2209 
206 SKI; 38.70 E. Oxf. Mar-Cor M.W.D. 0.58 0.89 0.81 0.76 -2237 
206 SKI; 41.40 E. Oxf. Mar-Cor M.W.D. -2255 
207 SKI; 41.50 E. Oxf. Mar-Cor M.W.D. 3.38 1.60 43 36 433 -21.73 
208 SKI; 43.00 E. Oxf. Mar-Cor M.W.D. 1.07 1.15 0.92 1.05 -2234 
209 SKI; 44.60 E. Oxf. Mar-Cor M.W.D. -2211 
210 SK1: 46.60 E. Oxf. Mar-Cor M.W.D. -2273 
211 SKI: 47.10 E. Oxf. Mar-Cor M.W.D. -22.64 



212 SKI; 50.00 E. Oxf. Mar-Cor M.W.D. 0.63 0.61 0.80 0.68 -22.60 
213 SKI; 52.30 E. Oxf. Mar-Cor M.W.D. -2231 
214 SKI; 52.50 E. Oxf. Mar-Cor M.W.D. -2229 
216 SKI; 55.10 E. Oxf. Mar-Cor M.W.D. 1.10 0.81 0.81 0.91 -2255 
216 SKI ; 58.90 E. Oxf. Mar-Cor M.W.D. -2281 
217 SKI; 60.20 E.Oxf. Mar-Cor M.W.D, -2225 
218 SKI; 61.60 E.Oxf. Mar-Cor M.W.D. 0.45 0.55 0.70 0.57 1.16 1.49 53 73 423 -2278 
219 SKI; 66.30 E. Oxf. Mar-Cor M.W.D. -2255 
220 SKI; 66.50 E. Oxf. Mar-Cor M.W.D. -21.98 
221 SKI: 66.70 E. Oxf. Mar-Cor M.W.D. 3.58 1.71 3.59 2.96 9.22 0.93 40 21 428 -21.55 
222 SK2; 0.00 M. Oxf. Den-Ten M.W.D. 209 2.07 2.06 2.07 260 0.67 28 32 426 -21.56 
223 SK2; 0.25 M. Oxf. Den-Ten M.W.D. -21.64 
224 SK2: 0.50 M. Oxf. Den-Ten M.W.D. -2218 
226 SK2: 0.75 M. Oxf. DervTen M.W.D. 7.59 7.13 7.07 7.26 -21.91 
226 SK2; 1.00 M. Oxf. Den-Ten M.W.D. -2213 
227 SK2; 1.05 M. Oxf. Den-Ten M.W.D. -22.04 
228 SK2; 1.25 M. Oxf. Den-Ten M.W.D. 3.20 0.94 45 56 427 -21.83 
229 SK2; 1.50 M. Oxf. DervTen M.W.D. -22.01 
230 SK2;1.75 M. Oxf. DervTen M.W.D. -22.47 
231 SK2 2.00 M. Oxf. DervTen M.W.D. 0.19 0.38 0.32 0.30 •23.71 
232 SK2; 215 M. Oxf. DervTen M.W.D. 3.43 221 60 23 429 •23,74 
233 SK2; 2.25 M. Oxf. DervTen M.W.D. •23.66 
234 SK2; 250 M. Oxf. DervTen M.W.D. 1.00 1.52 89 79 424 -23.63 
236 SK2 280 M. Oxf. Den-Ten M.W.D. 0.66 223 57 113 423 -23.39 
236 SK2: 3.25 M. Oxf. DervTen M.W.D. -22.24 
237 SK2: 3.30 M. Oxf. Den-Ten M.W.D. -
238 SK2. 3.50 M. Oxf. DervTen M.W.D. 1.99 1.68 66 36 427 -21.82 
239 SK2; 3.70 M. Oxf. Den-Ten M.W.D. 265 241 263 2.56 -21.84 
240 SK2; 3.90 M.Oxf. DervTen M.W.D. -21.96 
241 SK2; 4.15 M. Oxf. DervTen M.W.D. -21.67 
242 SK2: 4.40 M. Oxf. DervTen M.W.D. -22.48 
243 SK2; 4.55 M. Oxf. Den-Ten M.W.D. 1.26 1.09 1.13 1.16 
244 SK2: 4.80 M. Oxf. Den-Ten M.W.D. -2247 
246 SK2: 5.05 M. Oxf. Den-Ten M.W.D. 3.41 1.93 53 28 430 -22.28 
246 SK3: 0.10 E-M. Oxf. Cor-Den M.W.D. 1.50 1.56 1.47 1.51 -2221 
247 SK3; 0.25 E-M. Oxf. Cor-Den M.W.D. -21.79 
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248 SK3; 0.70 E-M. Oxf. Cor-Den M.W.D. 
249 SK3; 0.85 E-M. Oxf. Cor-Den M.W.D. 279 1.25 37 39 431 -22.06 
260 SK3; 1.20 E-M. Oxf. Cor-Den M.W.D. -21.57 
261 SK3; 1.50 E-M. Oxf. Cor-Den M.W.D. 4.50 5.31 4.76 4.86 •21.80 
262 SK3: 2.00 E-M. Oxf. Cor-Den M.W.D. -21.79 
263 SK3; 2.20 E-M. Oxf. Cor-Den M.W.D. -22.23 
264 SK3: 3.00 E-M. Oxf. Cor-Den M.W.D. 4.63 4.60 4.66 4.63 -21.89 
266 SK3: 3.50 E-M. Oxf. Cor-Den M.W.D. -21.88 
266 SK3: 5.20 E-M. Oxf. Cor-Den M.W.D. 3.36 1.10 23 37 425 -21.81 
267 SK3; 5.55 E-M. Oxf. Cor-Den M.W.D. -2Z06 
268 SK3: 5.65 E-M. Oxf. Cor-Den M.W.D. 2.10 2.44 2.05 2.20 
269 SK3; 5.80 E-M. Oxf. Cor-Den M.W.D. •21.86 
260 SK3: 5.90 E-M. Oxf. Cor-Den M.W.D. 
261 SK3; 6.15 E-M. Oxf. Cor-Den M.W.D. 6.24 6.23 6.30 6.26 -21.68 
262 SK3; 6.40 E-M. Oxf. Cor-Den M.W.D. -22.08 
263 SK3: 7.35 E-M. Oxf. Cor-Den M.W.D. -2226 
264 SK3; 7.55 E-M. Oxf. Cor-Den M.W.D. -2226 
266 SK3; 7.90 E-M. Oxf. Cor-Den M.W.D. 1.41 1.86 1.28 1.52 1.98 1.42 82 43 426 -2250 
266 SK4; 0.20 E-L. Call. Koe-Lam M.W.D. 0.71 0.66 0.72 0.70 0.78 0.14 92 105 422 -24.90 
267 SK4: 0.45 E-L. Call. Koe-Lam M.W.O. -25.19 
268 SK4:1.05 E-L. Call. Koe-Lam M.W.D. 204 0.40 223 57 418 -26.28 
269 SK4; 1.55 E-L. Call. Koe-Lam M.W.D. -25.34 
270 SK4: 1.80 E-L. Call. Koe-Lam M.W.D. 1.02 0.33 114 72 420 -24.96 
271 SK4; 2.50 E-L. Call. Koe-Lam M.W.D. -25.18 
272 SK4; 3.20 E-L Call. Koe-Lam M.W.D. •25.10 
273 SK4: 3.70 E-L. Call. Koe-Lam M.W.D. -24.81 
274 SK4; 6.80 E-L. Call. Koe-Lam M.W.D. 1.01 1.08 1.05 -23.05 
276 SK4; 6.90 E-L. Call. Koe-Lam M.W.D. 0.50 1.87 49 317 421 -23.67 
276 SK4: 8.95 E-L. Call. Koe-Lam M.W.D. -23.04 
277 SK4; 10.50 E-L. Call. Koe-Lam M.W.D. 1.88 1.27 44 97 426 -2252 
278 SK4:11.50 E-L. Call. Koe-Lam M.W.D. 0.36 0.33 0.45 0.38 •22.92 
279 SK5; -1.10 E. Kimm. Bay-Cym M.W.D. 2.89 2.85 2.88 2.87 -25.12 
280 SK5: -0.60 E. Kimm. Bay-Cym M.W.D. -24.46 
281 SK5; 1.90 E. Kimm. Bay-Cym M.W.D. -24.40 
282 SK5; 2.10 E. Kimm. Bay-Cym M.W.D. -24.39 
283 SK5: 2.45 E. Kimm. Bay-Cvm M.W.D. 1.93 2.38 2.12 2.14 -24.27 
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284 SK5: 2.70 E. Kimm. Bay-Cym IVJ.W.D. -24.40 

286 SK5: 2.95 E. KImm. Bay-Cym M.W.D. 1.68 0.48 111 73 428 •24.81 

288 SK5: 3.10 E. Kimm. Bay-Cym M.W.D. 1.98 1.99 2.08 2.02 -
287 SK5: 3.40 E. Kimm. Bay-Cym M.W.D. -24.74 

288 SK5; 4.35 E. Kimm. Bay-Cym IW.W.D. -24,07 

289 SK5: 4.60 E. Kimm. Bav-Cym M.W.D. 7.99 8.06 9.03 8.36 -
290 SK5: 4.70 E. Kimm. Bay-Cym IVI.W.D. 3.54 0.29 88 43 419 -23.84 

291 SK5: 5.25 E. Kimm. Bay-Cym IW.W.D. -24.13 

282 SK5; 5.70 E. Kimm. Bay-Cym lyi.W.D. 3.11 3.19 3.19 3.16 -24.05 

293 SK5: 5.90 E. Kimm. Bay-Cym IW.W.D. -23.97 

294 SK5: 6.25 E. Kimm. Bay-Cym M.W.D. 2.18 2.14 2.14 2.15 -23.91 

296 SK5: 7.20 E. Kimm. Bay-Cym M.W.D. -24.22 

298 SK5: 7.40 E. Kimm. Bav-Cym M.W.D. 4.99 4.65 5.54 5.06 
297 SK5; 7.70 E. Kimm. Bay-Cym M.W.D. -24.67 

298 SK5: 8.10 E. Kimm. Bay-Cym M.W.D. 3.19 0.40 197 47 420 -24.71 

299 SK5: 8.95 E. Kimm. Bav-Cym M.W.D. 1.66 1.79 1.85 1.77 -24.00 

300 SK6: -0.30 E. Kimm. Cym M.W.D. 1.39 1.34 1.37 1.37 -23.94 

301 SK6:0.00 E. Kimm, Cym M.W.D. -24,07 

302 SK6; 0.50 E. Kimm. Cym M.W.D. -24.07 

303 SK6:1.50 E. Kimm. Cym M.W.D. 1.28 0.20 31 70 421 -23.54 

304 SK6: 1.90 E. Kimm. Cym M.W.D. -23.90 

306 SK6: 2.30 E. Kimm. Cym M.W.D. -23.89 

308 SK6: 2.40 E. Kimm. Cvm M.W.D. 1.95 1.86 1.60 1.80 -
307 SK6; 2.50 E. Kimm. Cym M.W.D. -23.75 

308 SK6: 2.60 E. Kimm. Cym M.W.D. -23.85 

309 SK6: 4.05 E. Kimm. Cvm M.W.D. 3.57 3.29 3.33 3.40 -24.57 

310 SK6: 4.50 E. Kimm. Cym M.W.D. -24.47 

311 SK6: 5.30 E. Kimm. Cvm M.W.D. -24.81 

312 SK6: 5.55 E. Kimm. Cym M.W.D. -25.28 

313 SK6; 5.80 E. Kimm. Cym M.W.D. 2.76 0.26 165 45 416 -25.30 

314 SK6; 5.90 E. Kimm. Cym M.W.D. 3.27 3.26 3.18 3.24 -25.06 

316 SK6: 6.40 E. Kimm. Cym M.W.D. •24.93 

318 SK6; 6.55 E. Kimm. Cym M.W.D. -24.99 

317 SK6:6.90 E. Kimm. Cym M.W.D. 3.58 3.77 3.75 3.70 -24.88 

318 SK6: 7.00 E. Kimm. Cym M.W.D. -24.96 

319 SK6: 7.20 E. Kimm. Cvm M.W.D. 2.18 0.31 82 56 415 •24.72 



320 SK6; 7.40 E. Kimm. Gym IVI.W.D. -24.79 

321 SK6: 7.50 E. KImm. Cym M.W.D. -25.29 

322 SK6: 7.70 E. Kimm. Cym M.W.D. 2.89 0.19 147 43 418 -25,36 

323 SK6; 7.80 E. Kimm. Gym M.W.D. 
324 SK6; 7.90 E. Kimm. Gym M.W.D. 2.27 2.90 2.59 -25.27 

326 SK7:1.20 Oxf.-Kim. Ren-Bay IVI.W.D. 2.64 2.53 2.75 2.64 -23.34 

326 SK7: 1.40 Oxf.-Klm. Req-Bay M.W.D. •23.69 

327 SK7; (2.80) Oxf.-Kim. Req-Bay M.W.D. -24.36 

328 SK7: 3.00 Oxf.-Kim. Reg-Bay 
Req-Bay 

M.W.D. 3.70 0.55 68 42 425 -23.22 

328 SK7: 5.70 Oxf.-Kim. 
Reg-Bay 
Req-Bay M.W.D. •24.28 

330 SK7; 6.80 Oxf.-Kim. Req-Bay M.W.D. 1.44 1.50 1.43 1.46 -24.54 

331 SK7; 9.30 Oxf.-Kim. Reg-Bay M.W.D. -24.18 

332 SK7:10.80 Oxf.-Kim. Req-Bay M.W.D. 1.08 0.28 63 75 421 -24.40 

333 SK7:11.10 Oxf.-Kim. Req-Bay M.W.D. •25.06 

334 SK7:12.10 Oxf.-Kim. Reg-Bay M.W.D. -24.86 

336 SK7:12.20 Oxf.-Kim. Req-Bay M.W.D. 1.09 0.40 62 83 423 -25.06 

336 SK7:14.80 Oxf.-Kim. Req-Bay M.W.D. 3.04 3.17 3.11 3.11 •24.56 

337 SK7: 15.40 Oxf.-Kim. Reg-Bay M.W.D. -24.50 

338 SK7:16.90 Oxf.-Kim. Reg-Bay M.W.D. •^.29 

339 SK7:17.35 Oxf.-Kim. Req-Bay M.W.D. 4.56 1.05 398 40 420 •26.07 

340 SK7: 17.70 Oxf.-Kim. Reg-Bay M.W.D. 1.63 1.58 1.85 1.69 

341 SK7: 17.80 Oxf.-Kim. Req-Bay M.W.D. -24.69 

342 SK7: 17.90 Oxf.-Kim. Req-Bay M.W.D. 2.56 0.22 68 47 417 -24.45 

343 SK7; 18.40 Oxf.-Kim. Reg-Bay M.W.D. -25.40 

344 SK7:19.90 Oxf.-Kim. Req-Bay M.W.D. 4.79 4.93 4.85 4.86 -24.08 

346 SK7: 20.25 Oxf.-Kim. Req-Bay M.W.D. -24.14 

346 SK7; 20.75 Oxf.-Kim. Reg-Bay M.W.D. 2.19 0.18 52 48 421 -24.27 

347 SK7: 20.90 Oxf.-Kim. Reg-Bay M.W.D. -24.21 

348 SK7: 27.30 Oxf.-Kim. Req-Bay M.W.D. -25,03 

349 SK7; 27.95 Oxf.-Kim. Req-Bay M.W.D. 2.38 2.45 2.41 2.41 -24.73 

360 SK8:14.80 E. Oxf. Gor M.W.D. 0.11 0.23 0.19 0.18 0.90 2.15 61 158 424 •2Z62 

361 SK8; 18.50 E. Oxf. Gor M.W.D. -22.24 

362 SK8: 25.75 E. Oxf. Gor M.W.D. 3.35 3.30 3.33 3.77 1.06 35 35 425 -21.51 

363 SK8: 26.70 E. Oxf. Cor M.W.D. -21.57 

364 SK8; 27.20 E. Oxf. Cor M.W.D. -21.66 

366 SK8: 27.40 E. Oxf. Cor M.W.D. -21.71 
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366 SK8: 31.80 E. Oxf. Cor M.W.D. 1.77 1.61 1.30 1.56 -21.86 
367 SKB; 33.35 E. Oxf. Cor M.W.D. 5.44 1.68 44 28 427 -21.26 
368 SK8: 33.70 E. Oxf. Cor M.W.D. -21.66 
369 SK8: 34.70 E. Oxf. Cor M.W.D. -21.46 
360 SK8; 35.80 E. Oxf. Cor M.W.D. -21.50 
361 SK8: 36.20 E. Oxf. Cor M.W.D. -21.56 
362 SK8: 39.40 E. Oxf. Cor M.W.D. 3.64 3.94 3.67 3.75 -21.95 
363 SK9: -2.00 M-L. Oxf. Ten-Glo M.W.D. 2.24 2.79 2.23 2.42 5.23 1.72 64 28 424 -21.98 
364 SK9; -1.70 M-L. Oxf. Ten-Glo M.W.D. -2259 
366 SK9: -0.30 M-L. Oxf. TervGlo M.W.D. 1.04 3.28 59 94 424 -22.91 
366 SK9; 0.40 M-L. Oxf. Ten-Glo M.W.D. -22.30 
367 SK9; 0.60 M-L. Oxf. Ten-Glo M.W.D. -
368 SK9: 0.90 M-L. Oxf. Ten-Glo M.W.D. 3.31 1.73 61 34 428 -22.19 
369 SK9; 1.00 M-L. Oxf. Ten-Glo M.W.D. 
370 SK9:1.20 M-L. Oxf. Ter>^lo M.W.D. 3.77 3.87 3.86 3.83 -22.29 
371 SK9:1.50 M-L. Oxf. Ten-Glo M.W.D. -2ZS9 
372 SK9; 2.00 M-L. Oxf. Ten-Glo M.W.D. -21.77 
373 SK9; 2.40 M-L. Oxt. Ten-Glo M.W.D. -21.76 
374 SK9: 2.70 M-L Oxf. Ten-Glo M.W.D. -21.70 
376 5K9: 2.90 M-L. Oxf. Ten-Glo M.W.D. -2Z05 
376 SK9; 3.40 M-L. Oxf. Ten-Glo M.W.D. 4.96 5.76 5.27 5.33 -22.10 
377 SK9; 3.70 M-L. Oxf. Ten-Glo M.W.D. -22.25 
378 SK9: 3.90 M-L. Oxf. Ten-Glo M.W.D. -2225 
379 SK9: 4.20 M-L. Oxf. Ten-Glo M.W.D. 2.61 2.53 2.53 2.56 -22.50 
380 SK9; 4.70 M-L. Oxf. Ten-Glo M.W.D. 5.90 0.99 30 24 433 -21.69 
381 SK9; 4.90 M-L. Oxf. Ten-Glo M.W.D. -
382 SK9; 5.25 M-L. Oxf. Ten-Glo M.W.D. 1.81 2.56 45 49 426 -2258 
383 SK9: 5.65 M-L. Oxf. Ten-Glo M.W.D. -2253 
384 SK9:6.05 M-L. Oxf. Ter>-GIo M.W.D. 2.06 2.15 2.01 2.07 -2281 
386 SK9; 6.70 M-L. Oxf. Ten-Glo M.W.D. -2275 
386 SK9: 7.30 M-L. Oxf. Ten-Glo M.W.D. -23.24 
387 SK9; 7.55 M-L. Oxf. Ten-Glo M.W.D. -23.11 
388 SK9: 7.80 M-L. Oxf. Ten-Glo M.W.D. 
389 SK9; 7.95 M-L. Oxf. Ten-Glo M.W.D. •2269 
390 SK9: 8.55 M-L. Oxf. Ten-Glo M.W.D. -1.08 -1.18 -1.50 -1.25 1.14 5.31 73 69 427 -23.27 
391 SK9:10.80 M-L. Oxf. Ten-Glo M.W.D. 4.43 0.19 29 28 422 -22.35 



392 SKg; 12.50 M-L. Oxf. Ten-Glo M.W.D. -23.19 
393 SK9; 12.60 M-L. Oxf. Ten-Glo M.W.D. -
394 SK9; 12.75 M-L. Oxf. Ten-Glo M.W.D. 3.84 3.83 4.13 3.93 -
396 SK9; 13.10 M-L. Oxf. Ten-Glo M.W.D. -23.79 
396 SK9; 13.40 M-L. Oxf. Ten-Glo M.W.D. 1.66 1.65 1.65 1.65 1.96 0.16 250 26 419 -24.26 
397 SK10; 0.40 LOxf. Ser-Reg M.W.D. 1.59 1.58 1.59 1.59 1.78 0.19 123 26 427 •24.49 
398 SK10; 0.90 L. Oxf. Ser-Reg M.W.D. -24.43 
399 SK10; 3.40 L. Oxf. Ser-Reg M.W.D. -23.97 
400 SKIO; 4.60 L. Oxf. Ser-Reg M.W.D. 222 0.28 58 33 425 -23.15 
401 SK10:8.20 LOxf. Ser-Reg M.W.D. -23.83 
402 SKIO: 1220 L. Oxf. Ser-Reg M.W.D. 243 2.41 246 2.43 -24.34 
403 SK10; 1270 L Oxf. Ser-Reg M.W.D. -
404 SK10: 13.40 L Oxf. Ser-Reg M.W.D. 1.63 0.24 91 30 425 •24.13 
406 SKIO: 14.30 LOxf. Ser-Reg M.W.D. 1.14 1.10 1.13 1.12 •24.28 
406 SKIO; 15.30 L Oxf. Ser-Reg M.W.D. -
407 SKIO; 15.70 L Oxf. Ser-Reg M.W.D. •24.68 
408 SKIO: 21.90 L Oxf. Ser-Req M.W.D. 1.23 1.21 1.34 1.26 1.35 0.27 123 44 427 •25.18 


