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ABSTRACT

Introduction. The consistent emergence/reemergence of filoviruses into a world that previously lacked
an approved pharmaceutical intervention parallels an experience repeatedly played-out for most other
emerging pathogenic zoonotic viruses. Investment to preemptively develop effective and low-cost
prophylactic and therapeutic interventions against viruses that have high potential for emergence
and societal impact should be a priority.

Areas covered. Candidate drugs can be characterized into those that interfere with cellular processes
required for Ebola virus (EBOV) replication (host-directed), and those that directly target virally encoded
functions (direct-acting). We discuss strategies to identify pharmaceutical interventions for EBOV infec-
tions. PubMed/Web of Science databases were searched to establish a detailed catalog of these
interventions.

Expert opinion. Many drug candidates show promising in vitro inhibitory activity, but experience with
EBOV shows the general lack of translation to in vivo efficacy for host-directed repurposed drugs. Better
translation is seen for direct-acting antivirals, in particular monoclonal antibodies. The FDA-approved
monoclonal antibody treatment, Inmazeb™ is a success story that could be improved in terms of impact
on EBOV-associated disease and mortality, possibly by combination with other direct-acting agents
targeting distinct aspects of the viral replication cycle. Costs need to be addressed given EBOV
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emergence primarily in under-resourced countries.

1. Introduction

Ebolaviruses are non-segmented, single-stranded negative
sense RNA viruses that together with marburgviruses repre-
sent the archetypal members of the only two known genera of
the Filoviridae family that cause disease in humans[1].
Members of the remaining four genera have to date not
been associated with human disease [2]. Together with the
recently identified Bombali ebolavirus (Bombali virus, BOMV)
[3], the Ebolavirus genus is comprised of six member species:
Zaire ebolavirus (Ebola virus, EBOV), Sudan ebolavirus (Sudan
virus (SUDV), Tai Forest ebolavirus (Tai Forest virus, TAFV),
Bundibugyo ebolavirus (Bundibugyo virus, BDBV), and Reston
ebolavirus (Reston virus, RESTV) [2]. All species except BOBV
and RESTV have been associated with ebolavirus-like disease
in humans, with EBOV being the major species involved with
human disease since the first of two non-related ebolavirus
outbreaks (involving EBOV and SUDV) [4] in 1976 (based on
current nomenclature, ‘ebolavirus’ relates to the genus com-
prised six species: EBOV SUDV, TAFV, BDBV, BOBV, and RESTV).
Since this time, human ebolavirus outbreaks have become an
ever more frequent occurrence, which is thought to be driven
by human activity including deforestation, bushmeat hunting
and climate change [4-6]. The world’s second largest EBOV
outbreak was recently declared over in the Democratic

Republic of Congo (DRC) on the 25M0f June, 2020 after nearly
2 years and 2,299 deaths [7]. A smaller unrelated outbreak in
western DRC also recently ended on the 18™ of November,
2020 [8].

Small geographically isolated outbreaks have historically
been controlled by implementation of public health mea-
sures and alterations in societal behavior. However, the
2013-2015 epidemic in West Africa, which resulted in over
11,000 deaths, showed the substantial impact of EBOV
emergence into a heavily populated region with a mobile
population and low healthcare infrastructure [9]. It has been
suggested that the healthcare infrastructure in these west
African countries involved in the epidemic may have been
particularly weak even compared to other African countries
due to a lower incidence of HIV/AIDS having resulted in a
relatively low level of investment in health care [9,10]. The
recent 2018-2020 DRC epidemic showed the additional pro-
blems associated with civil unrest on EBOV control, where
the frequency of conflict events such as attacks on Ebola
Treatment Centers affected EBOV control measures such as
contract tracing and vaccination. In a recent study, Wells et
al (2019) showed the impact of such violence, with
increases in the effective reproductive number (Rg) of
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Article highlights

» Lack of preparedness with Ebola virus (EBOV) parallels experience
with emergence of other highly pathogenic viruses in terms of
development of effective prophylactic and therapeutic, low cost
pharmaceutical intervention.

« Investment to preemptively develop such effective and low-cost
prophylactic and therapeutic interventions against families of
viruses with high potential for emergence and societal impact
following emergence such as ebolaviruses and coronaviruses
should be made a high priority.

« Inhibitory activity of host-directed drugs observed in vitro during
repurposing have not, to date, translated into in vivo efficacy
against EBOV in more complex preclinical animal models such as
non-human primates (NHPs), and clinical trials in humans.

« Direct acting, and especially monoclonal antibody-based, EBOV
drugs show the greatest translational potential for efficacy in NHPs
and humans.

+ Although approved, the monoclonal-based treatment Inmazeb™
(Regeneron) shows room for improvement, in terms of impact on
EBOV-associated disease and mortality and cost. Combination with
other direct-acting drugs may be one way to increase effectiveness.

This box summarizes key points contained in the article.

EBOV (observed by number of secondary cases) correlating
closely in time with conflict events [11].

In addition to humans, ebolaviruses cause severe disease
and high mortality in other great ape species, and EBOV has
been associated with significant die-offs of gorillas and chim-
panzees in the wild [12,13]. Bats are regarded as the most
probable reservoir species for ebolaviruses [14], with spillover
believed to occur either directly from bats into humans, or
through handling of infected gorilla and chimpanzee carcasses
[4]. Different species of fruit bats have long been regarded as
the most probable reservoir species involved in ebolavirus
zoonotic transmission [15-17]. However, paralleling the zoo-
notic source of the present SARS-CoV-2 pandemic [18], most
evidence supports the role of a small bat in zoonotic emer-
gence during the 2012-2015 EBOV epidemic [19]. The recent
identification of BOBV in a similar species of insectivorous bat
in Sierra Leone [3], further implicates diverse bat species in
precipitating human ebolavirus outbreaks.

1.1. Ebola virus disease (EVD)

Due to a lack of consistent association of hemorrhagic symp-
tomology with infection, Ebola hemorrhagic fever (EHF) was
renamed EVD during the 2013-2015 West Africa epidemic.
Due to its relatively higher association with human outbreaks
(as well as wild ape disease), most is known about EBOV
compared to other ebolaviruses, and therefore EBOV will
serve as the primary focus of this review. Characteristics of
disease associated with EBOV infection result both from direct
as well as indirect mechanisms. EVD is characterized by an
initial viral prodrome and febrile illness (headache, myalgia,
nausea and vomiting), followed by capillary leakage and
hemorrhage, which progresses in severe cases to a septic-
shock like syndrome with disseminated intravascular coagula-
tion (DIC) and multiorgan failure [20]. EBOV replicates in a

wide variety of different cell types (macrophages, dendritic
cells (DCs), endothelial cells, hepatocytes and fibroblasts) dur-
ing infection [21], and the biology of EBOV within these dif-
ferent cells accounts, in large part, for characteristics of EVD.
Following initial infection, typically through a breach in the
skin, mucosal exposure, or through direct inoculation into the
blood system (i.e. through a needlestick injury or use of a
contaminated needle), professional antigen-presenting cells,
primarily DCs, and macrophages, serve as the initial site of
EBOV replication [22]. Both cell types are highly permissive to
EBOV, but the virus affects these two cell types in very differ-
ent ways. In macrophages, induction of high levels of inflam-
matory cytokine expression results in the characteristic
‘cytokine storm’ associated with EVD [23,24]. The effect of
this systemic deluge of pro-inflammatory cytokines such as
tumor necrosis factor alpha (TNFa), interleukin 1 (IL-1), and IL-
6 is believed to account for much of the indirect effects of
EBOV infection such as vascular leakage, hypovolemic shock
and, at least in part, lymphocyte apoptosis [21]. Macrophages
are also thought to play a key role in promoting virus disse-
mination to other tissues. In contrast to the effect on macro-
phages, DC infection is associated with the marked
suppression of cytokine expression and induction of a state
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Figure 1. (A) EBOV genome structure. EBOV has a non-segmented, linear,
single-stranded negative-sense RNA genome starting with a 3’ leader followed
by seven genes in the order nucleoprotein (NP), virion protein (VP) 35, VP40,
glycoprotein (GP), VP30, VP24 and RNA-dependent RNA polymerase (L) and
ending with a 5’ trailer. (B) EBOV replication cycle. EBOV mainly enters the cell
through macropinocytosis following binding to attachment factors. In the
endosome, the EBOV GP binds to its receptor Niemann-Pick C1 (NPC1) and
initiates fusion with the endosome membrane to release the genome into the
cytoplasm. Transcription and replication occurs in inclusion bodies (viral fac-
tories) involving the ribonucleoprotein complex consisting of the genomic RNA,
NP, VP35, VP30 and L. Encapsidated genomes move to the plasma membrane
and interact with VP24 and VP40. GP traffics through the endoplasmic reticulum
(ER) via the Golgi complex to the cell plasma membrane where particle
maturation and release occurs. The target sites of promising drugs such as
monoclonal antibodies (mAbs), nucleoside analogs and siRNA are indicated.



of functional impairment [23,25]. Given the critical role of DCs
in activation of the adaptive immune system, this inhibitory
effect on DC function is thought to play a major role in the
delay in EBOV-specific adaptive immune response seen during
infection, especially in severe disease [21].

Later stages of EVD are associated with infection of addi-
tional cell types. Infection of endothelial cells further contri-
butes to the cytokine storm by inducing cytokine expression
from these cells [26]. Although EBOV does not infect lympho-
cytes, the virus induces large-scale bystander apoptotic death
of these cells - via intrinsic and extrinsic pathways involving
proinflammatory cytokines — which results in further suppres-
sion of the adaptive immune response toward the virus
[21,27-29]. In patients that survive this viral onslaught and
recover, ‘immune privileged’ cells of the central nervous sys-
tem (including the eye) and testes may serve as sites of virus
persistence providing a continual site for virus reactivation
and potential spread [30].

1.2. EBOV Replication

Figure 1 depicts the EBOV replication cycle. EBOV entry is a
complex multistep process culminating in cysteine protease—
mediated removal of two major extracellulary exposed regions
of the viral surface glycoprotein complex [31,32], which results
in exposure of the EBOV glycoprotein (GP) receptor-binding
domain (RBD) in the late endosomal/lysosomal compartment
[33]. This exposure of the RBD enables binding of EBOV GP to
Niemann-Pick C1 (NPC1), a multi-pass transmembrane endo-
somal cholesterol transporter, which is followed by fusion of
virion and endosomal membranes and release of the viral
genome into the cytoplasm. Although binding to its internal
NPC1 receptor appears to be a common feature of EBOV
infection in all cell types — to a level that NPC1 knock-out
mice are completely resistant to EBOV replication [34] — sub-
stantial cell-type differences exist at earlier stages of the entry
process, notably at the level of initial attachment and uptake
of the virus into endosomes.

Initial attachment of EBOV to the cell surface occurs
through interactions of N- and O-linked glycans on the heavily
glycosylated EBOV GP molecule with multiple C-type lectins
(CLEGs) that are differentially expressed across a variety of cell
types. EBOV attachment also occurs through an interaction of
phosphatidylserine (PtdSer — a universal marker of apoptotic
bodies) within the virus membrane with PtdSer receptors on
the cell surface. Similar to CLEC-based attachment, the specific
PtdSer receptors involved in EBOV infection as well as the
downstream signaling pathways and mechanism of virus
uptake into the endosomal compartment (primarily macropi-
nocytosis, but also caveolin- or clathrin-dependent endocyto-
sis, phagocytosis) have been shown to differ considerably
between different cell types [33,35-37]. How EBOV entry com-
pares across key cell types during infection in vivo is unclear.

Replication is initiated upon release of the viral ribonucleo-
capsid (RNP) into the cytoplasm. Primary transcription results
in production of viral mMRNAs initiated through incoming RNP
components from the viral infection, thereby supporting sec-
ondary transcription of viral mRNAs and genome replication
via a full-length positive-sense antigenome [38]. At
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approximately 19 kilobases in length, filovirus genomes con-
tain seven linearly arranged genes encoding the nucleoprotein
(NP), viral protein 35 (VP35), VP40, GP, VP30, VP24, and the
RNA-dependent RNA polymerase (L; RdRp) [39]. EBOV genome
transcription and replication is facilitated by the RNP proteins
NP, VP35, VP30, and L in intracellular inclusion bodies [40,41].
In the case of ebolaviruses and most likely cuevaviruses, tran-
scriptional editing by the L protein produces GP gene-specific
mRNA-species encoding different forms of the glycoprotein:
virion-associated GP; , and two soluble glycoproteins, sGP and
ssGP [42]. Over the years, several host factors have been
identified to play a role in EBOV replication and transcription
such as DNA topoisomerase | (TOP1) [43], the RNA-binding
protein Staufen [44] and the RNA splicing and export factors
NXF1 and DDX39B [45]. Host factors are also involved in the
regulation and balance of replication and transcription via the
phosphorylation status of VP30 through the host cell phos-
phatase PP2A, which is recruited to RNPs by interaction with
EBOV NP and the host phosphatase PP1 [46-48]. During the
late stages of RNA synthesis VP24, through interaction with
the RNP complex, likely mediates condensation of the RNP
complexes into replication- and transcription-inactive but
packaging-competent RNPs [49,50].

RNPs are subsequently transported to the cell surface in an
actin-dependent manner [51,52]. In parallel, the matrix protein
VP40 is also transported to the cell surface, where it interacts
with cellular trafficking system components such as actin and
microtubules [53-56]. The filovirus GP moves to the cell sur-
face through the secretory pathway, where it is post-transla-
tionally modified by O- and N-linked glycosylation [57] and
furin cleavage into the mature GP; and GP, subunits [58].
Finally, VP40 coordinates virion assembly and budding at the
plasma membrane supported by host factors such as those of
the endosomal complex required for transport (ESCRT) and
ubiquitin ligases, which interact with VP40 through its late-
domain motifs [59-62]. GP, , was shown to facilitate the traf-
ficking of host scramblases to sites of virion budding, thereby
enhancing exposure of PtdSer on the outer envelope of virions
for binding to PtdSer receptors such as TIM-1 during
entry [63].

1.3. Animal models

The U.S. Food and Drug Administration (FDA) has implemen-
ted the animal rule allowing licensing of countermeasures
based on efficacy data in animal models in combination with
animal and human safety trials [64]. Multiple common labora-
tory animal species serve as animal disease models for EBOV.
Traditionally, drug candidates are initially screened in rodent
models (mouse, hamster and guinea pig [65]). Unfortunately,
clinical EBOV isolates typically need serial adaptation to a
rodent species to produce disease with uniform lethality.
Mouse models mainly utilize common laboratory strains,
which do not always closely mimic manifestations and pro-
gression of human EVD. A proportion of promising in vitro
drug compounds show efficacy in mouse models, but the
predictive value for efficacy in NHPs and humans is relatively
low (Tables 1 and Table 1 Supplemental) [66,67]. Hamster and
guinea pig models are less often utilized for countermeasure
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efficacy testing mainly due to more difficult handling in bio-
containment and lack of immunological tools. However, their
predictive value for countermeasure efficacy in NHPs and
humans is higher. NHPs, especially cynomolgus and rhesus
macaques, are considered the gold standard animal models
for EBOV due to similar disease presentation as EVD in humans
[66]. Compared to cynomolgus macaques, rhesus macaques
display a slightly prolonged time to death upon EBOV infec-
tion allowing for an extended window of intervention making
them the preferred NHP model for drug efficacy studies. The
ferret is a relatively new animal disease model for EBOV with
even more restrictive limitations than for hamsters and guinea
pigs, and an unknown predictive value for efficacy in NHPs
and humans. Today, most drug compounds developed for
EBOV have gone through the rodent screening and NHP con-
firmatory preclinical pathway prior to use in clinical trials
(Supplemental Tables 1 and 2) [68].

2. EBOV therapeutics

It has been estimated that the average drug takes 10 years to
bring to market and costs more than 2 USD billion, with much
of the cost attributed to the high drug failure rate relating to
efficacy and safety [87,88]. Repurposing of drugs that are
either already commercially approved, or are investigational
but have substantial preclinical pharmacokinetic and toxicolo-
gical data supporting movement toward licensure for other
clinical diseases, has been proposed as a means to quickly
identify interventional drugs for the control of emerging infec-
tious diseases. Repurposing is certainly appealing as it
bypasses the time-consuming and expensive toxicological
testing with its high risk of failure, and optimization of drug
formulation to ensure bioavailability. Repurposing is also par-
ticularly appealing for therapeutics against pathogens such as
EBOV that have a limited commercial market. However, the
extremely small number of drugs that have been successfully
repurposed beyond their specific drug class is an indicator of
the hidden complexities of this approach [89]. To our knowl-
edge, no drug originally developed for non-viral diseases has
been effectively repurposed as an antiviral [90]. In contrast, a
number of direct-acting antivirals have been effectively repur-
posed within their class, but beyond their initially intended
virus target.

To establish a comprehensive history of pharmaceutical inter-
ventions targeting ebolaviruses, searches were conducted in the
PubMed and Web of Science databases. Keywords including
‘Ebolaviruses’, ‘Ebolavirus disease’, ‘Ebola’, ‘Marburg’, ‘Bombali’,
‘Zaire’, ‘Sudan’, ‘Tai Forest’, ‘Bundibugyo’, ‘Reston’, in combina-
tion with ‘drug’, ‘antibody’, ‘therapeutic’, ‘treatment’, ‘pharma-
ceutical’, and ‘intervention” were used to identify studies of
interest. Results were filtered to include only articles published
between 1976 and the present with the latest date of search
being conducted on the 24" of October, 2020.

Multiple studies investigating the repurposing of commer-
cially approved drugs have been performed for EBOV. Table 1
and Supplemental Table 1 detail therapeutics that have been
repurposed for the treatment of EBOV to the level of testing in a
preclinical animal model. Notably, similar to the situation with
the present SARS-CoV-2 pandemic, many of these studies were

initiated only after a major disease outbreak — in this case, the
2013-2015 West Africa EBOV epidemic. To remove the need for
such reactionary responses, it has recently been suggested that
investment should be made into development of antiviral agents
to provide preemptive tools to control emerging viruses with
high potential for societal impact, such as filoviruses and coro-
naviruses [91]. Such a preemptive strategy that develops through
to licensure drugs effective against known individual pathogens,
like EBOV or groups of pathogens such as filoviruses or corona-
viruses with a history of emergence, has considerable attraction
from the present COVID-19 viewpoint.

Prior to preclinical testing, drugs identified through repur-
posing in in vitro screens need also to be assessed based on
known clinical in vivo pharmacokinetic parameters to ensure
therapeutic levels are achievable through normal established
dosing regimens. It is also important to critically evaluate
drugs for their potential for adverse reactions and difficulties
in establishing dosing schedules within the anticipated
infected patient setting. A tier-based system for ranking of
licensed drugs with inhibitory activity identified against emer-
ging pathogens was recently established, in this case to iden-
tify drugs with potential for repurposing against SARS-CoV-2
[92]. Using this system, drug candidates showing in vitro inhi-
bitory activity against the virus being targeted can be rapidly
triaged based on pharmacokinetic parameters (e.g. whether in
vitro inhibitory and in vivo therapeutic levels are comparable),
as well as based on the presence of adverse events not con-
sistent with prophylactic/therapeutic use. The remaining drugs
can then be prioritized for testing in preclinical animal models.
Remarkably, using this system, only 5 of 56 drugs with in vitro
inhibitory activity against coronaviruses (representing 3 dis-
tinct drug classes) were suitable for onward movement into
preclinical trials [92]. As will be detailed below, this experience
is consistent with the poor outcome of repurposing drugs for
EBOV to date.

Translation from in vitro studies to test for potential efficacy in
vivo must also be cautioned with a number of additional caveats.
Even with full commercial licensure, many drugs have a defined
and limited life of production for the market, being superseded by
newer drugs in class with better safety, efficacy or ease of use
profiles. This is particularly common for hepatitis C virus and HIV
antivirals. For repurposing, the lack of available drug formulated for
high bioavailability that results from such cessation of commercial
production can severely impair movement of drugs showing in
vitro efficacy into preclinical animal models. This caveat clearly
removes the ‘off the shelf' availability attraction of repurposed
drugs.

Aside from the inherent variability of inhibitory activity
observed in vitro due to differences in assay conditions
[90,93], the possibility for cell type-specific differences in
characteristics of virus replication also needs to be consid-
ered. African green monkey-derived Vero E6 are a common
cell type used to screen for drug inhibitors of many viruses,
including EBOV. However, infection in these cells will not
reflect the behavior of the EBOV within all cell types impor-
tant for disease in vivo. In addition to differences in the
entry process, Vero E6 cells are also known to be deficient
in multiple aspects of their innate immune response
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pathway [94,95]. Cell type-specific differences may be
particularly important for viruses like EBOV that infect a
wide diversity of cell types at different stages of disease,
and that are highly sensitive to modulation by innate
immune response pathways [96-98].

2.1. Conventional drug screening

EBOV inhibitory drugs can be broadly divided into two cate-
gories: (i) indirect acting, host-directed and (ii) direct acting,
virus-directed. Over the past two decades, myriad drugs have
been tested for their inhibitory capacity against EBOV [99-
105]. Multiple studies have used low throughput, informa-
tion-guided approaches to identify drugs for screening of
EBOV inhibitory activity using critical evaluation of potential
drug candidates based among other criteria on understanding
of mechanism, prior demonstration of antiviral activity, and
drug availability [106-117]. For example, in response to the
West Africa 2013-2015 EBOV epidemic, Dowall et al. (2016)
[118] selected from a panel of antimicrobial agents, 18 drugs
for repurposing against EBOV. The drugs were selected based
either on earlier published evidence supporting an ability to
inhibit EBOV replication in vitro, or on an anticipated high
potential for inhibitory activity against the virus. Half of
these compounds were removed from further study due to
an inability to produce an in vitro inhibitory effect on EBOV
replication. Of the remaining compounds, three were selected
for further characterization in the guinea pig EBOV challenge
model. However, one showed high-level in vivo toxicity pre-
venting further analysis, and neither of the two remaining
agents resulted in a statistically significant impact on guinea
pig survival or EBOV disease (see Tables 1 and Table 1
Supplemental) [118]. These studies highlight the frequent
lack of efficacy when translating from in vitro inhibition studies
into in vivo preclinical models, especially for indirect acting
host-directed therapeutics that can also be associated with
significant toxicity.

2.2. High-throughput screening (HTS)

Conventional drug screening approaches have been augmen-
ted by development of high-throughput screening (HTS)
assays [119-124], which has increased the rate at which
drugs can be screened for in vitro inhibitory activity against
EBOV. To enable higher throughput and more rapid screening
than is possible when using more conventional methods of
EBOV quantitation, a number of laboratories have designed
recombinant systems to either (i) more easily enable quantita-
tion under BSL-4 high containment conditions, or (ii) enable
analysis under lower levels of containment. For example,
Towner et al. developed a recombinant EBOV containing
green fluorescent protein (GFP) inserted within the viral gen-
ome [125]. The utility of the virus for screening of drugs in
vitro under BSL-4 containment was initially demonstrated
using interferon-alpha in proof-of-concept studies. Using GFP
EBOV-based assays (as well as lower containment pseudotype-
based entry screens, see below), a series of HTS studies have
been used to screen libraries of molecular probes and com-
mercially approved drugs [117,119,120,126].

Additional strategies have been developed to enable HTS-
based screening, at least initially, under lower or no contain-
ment level. These HTS analyses are comprised of both bioin-
formatic-, and biologically based assays or combinations of the
two approaches [88,127-130]. As many of these screens rely
on computer modeling of small-molecule interactions with
EBOV proteins or essential cellular proteins, they are necessa-
rily focused on well-characterized interactions and resolved
structures. Machine learning-based training using results
from earlier in vitro screens [120,126] has been used as an
alternative bioinformatics-based approach for identification of
EBOV inhibitors. One such large virtual screen identified three
potentially active compounds, which were then confirmed
experimentally in vitro using a GFP-labeled EBOV [131]. All
three candidates were shown to have high levels of in vivo
inhibitory activity in the mouse EBOV challenge model
(Supplemental Table 1) [132-134].

To increase usability of HTS for biologically based filovirus
drug screening, Uebelhoer et al. established an HTS based on
a supernatant luciferase concentration readout using a low
containment mini-genome EBOV luciferase system in a T7
polymerase baby hamster kidney cell line as an initial screen,
followed by recombinant luciferase-expressing EBOV at high
containment using a variety of different cell types [135]. The
potential utility of this dual system was further optimized by
use of a nonfunctional RdRp EBOV control to confirm RdRp-
dependent inhibition in the mini-genome system [136].
Screening systems based on virus-like particles (VLPs) and
pseudotyped viruses have been developed as an alternative
HTS strategy to identify EBOV entry inhibitors without the
need for high containment [121,137,138]. These have also
been used as components of larger HTS screens, which can
also provide further mechanistic insight into the inhibitory
activity of the drugs [117,119,120,122,126].

2.3. In vivo studies

Both host-directed and direct-acting agents have been
tested in preclinical animal models. However, only direct-
acting inhibitors that target either virus replication at the
level of the RdRp (nucleoside analogs) or entry by binding
to GP (monoclonal antibodies; mAbs) have shown any effi-
cacy in the NHP EBOV model, considered the most stringent
preclinical model before translation of drugs and vaccines
into humans. Consistent with performance in NHPs, only
direct-acting antivirals have shown any efficacy in controlled
human clinical trials.

2.3.1. Host-directed antiviral agents

A number of drugs representing a few key classes that target
cellular pathways involved in EBOV replication have been
identified through in vitro analyses to inhibit EBOV replication.
These include a number of inhibitory lectins, which are
believed to function at early, attachment stages of the infec-
tion process. Cationic amphiphilic drugs (CADs) and structu-
rally related amphiphiles represent a second large group of
drugs identified with EBOV inhibitory activity, and include
antimalarial amino-quinolones, selective estrogen receptor
molecules (SERMS), antipsychotics and antidepressants



among others. These drugs are frequently identified as host-
directed antivirals having an in vitro inhibitory activity against
EBOV as well as many other viruses (Table 1 and Supplemental
Table 1) [139]. Structurally, CADs are composed of a hydro-
phobic ring structure linked to a hydrophilic moiety with an
ionizable amine group. Mechanistically, they become trapped
within late endosomes/lysosomes due to protonation of their
amine groups, and are believed to primarily exert their anti-
viral function through an effect on endosomal/lysosomal path-
ways. The calcium channel blocker CADs appear to function at
late endosomal stages of virus fusion [139].

Translation of host-directed drugs with in vitro inhibitory
activity against EBOV to efficacy in preclinical animal models
has been extremely poor, with an associated increasing fre-
quency of failure in efficacy as one moves through increas-
ingly stringent animal models from mice through guinea pigs
to NHPs (Table 1 and Supplemental Table 1). Such failures of
translation into preclinical models do not necessarily always
equate with a demonstrated inability of the drug to prevent
EBOV disease, but rather can also result from unpredicted
toxicity of the drug, or an inability to reach expected inhibi-
tory levels in the preclinical model (Supplemental Table 1)
[126,140].

The case of the CAD sertraline (Zoloft) provides a good
example of a host-directed antiviral to emphasize the
repeated and consistent failure of indirect-acting drugs to
translate initial promising results from in vitro studies to in
vivo preclinical models. As the only host directed antiviral
agent to have been moved from in vitro analyses to be tested
in both rodent and NHP models, sertraline also highlights the
failure of drugs with high inhibitory activity in mice to trans-
late to efficacy in more stringent guinea pig and NHP models.
Sertraline was originally identified through HTS as having low
micromolar in vitro inhibitory activity against EBOV in a num-
ber of different cell types [119,137]. Additional analysis
revealed broad in vitro activity against multiple filoviruses
[119]. Mechanistically, sertraline was shown to function at a
late viral entry step after transport to NCP1+ endosomes con-
sistent with its CAD nature [119]. These results led to assess-
ment of efficacy in the mouse model wherein the drug was
shown to provide high (70%) protection against high-dose
challenge of mouse-adapted EBOV (Supplemental Table 1)
[119]. Based on these data, high-dose sertraline was assessed
as a prophylactic against EBOV infection and disease in the
stringent NHP rhesus macaque EBOV model (Table 1).
Although earlier single dosing studies indicated that plasma
levels in the NHPs were below in vitro inhibitory levels, the
authors indicated that the multiple dosing regimen used
would have brought plasma levels to within range. The results
of this study are notable in terms of the lack of effect of
sertraline on any parameter of EBOV infection, including clin-
ical disease and EBOV viremia in the NHP model compared to
controls, even given the drug’s demonstrated high potency in
multiple cell types in vitro and high efficacy in the mouse
EBOV challenge model [141]. This study also emphasizes the
importance of publication of results from well-controlled stu-
dies even when negative.

Although sertraline was not assessed in any subsequent
clinical trial, a phase I/l clinical trial (EMERGENCY
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Amiodarone Study Against Ebola; EASE) (NCT02307591) using
another host acting CAD, amiodarone, was moved to the
recruitment phase during the West Africa EBOV epidemic
[142]. Similar to sertraline, amiodarone had shown potent in
vitro inhibitory activity [126]. Although this CAD had not been
tested in NHPs, later published studies showed it to have low
efficacy in the mouse model (Supplemental Table 1) [126]. The
clinical trial, led by an Italian non-governmental organization
[143], raised concerns at the time regarding the drug’s asso-
ciated toxicity [144]. The trial was never started, citing insuffi-
cient number of new EVD cases in the waning epidemic [145].
The poor translation of host-directed antivirals with potent in
vitro activity to in vivo efficacy is not completely understood,
but is presumably due to multiple factors including in vitro
assays being unable to completely model replication that is
relevant to cell types involved in EBOV disease in vivo, the
presence of redundant pathways of virus biogenesis, and
possible mismatches between in vitro inhibitory doses and in
vivo therapeutic drug levels.

2.3.2. Direct-acting antiviral agents

In contrast to host-directed drugs, a number of direct-acting
antivirals have proved more successful against EBOV, as well
as other filoviruses. These consist of either mAbs against EBOV
GP, or drugs that target the EBOV RdRp (nucleoside analogs).
Due to their nature, mAbs have necessarily been developed as
an intervention specific to EBOV. In contrast, all currently
identified RdRp-targeting drugs have been developed against
one particular virus or group of viruses, and then repurposed
against EBOV. In general, presumably due to superior potency,
higher achievable plasma levels without associated toxicity,
and longer half-lives, mAbs have shown themselves as super-
ior in efficacy to nucleoside-based inhibitory drugs against
EBOV in all preclinical models and humans. Nucleoside ana-
logs, although less efficacious against EBOV, have a greater
capacity for broader application to the treatment of other
filoviruses, and even beyond to other families of viruses com-
monly associated with emergence. Depending on the drug,
they also have potential for oral administration outside the
hospital setting, for example, following high-risk exposure.

2.3.2.1. Antibodies. The development of treatment options
for filovirus infections started shortly after initial emergence of
ebolaviruses (in this case, EBOV and SUDV) in 1976. However,
before the West African EBOV outbreak efficacy had only been
shown in preclinical animal studies. Clinical trials of mAb
treatment options first began during the 2013-2015 West
African EBOV outbreak. Prior to this time, the use of anti-
body-based approaches to treat EBOV infection had been
controversial. The first documented application of passive
antibody therapy to treat an ebolavirus infection occurred in
1976. A UK laboratory worker, who had a needle stick expo-
sure with a yet unidentified ebolavirus specimen, was initially
treated with anti-EBOV convalescent serum followed by a
second dose of anti-SUDV convalescent serum [146]. The
patient survived; however, the contribution of antibodies to
survival remains unknown as the patient had also received
interferon aside of advanced intensive care.
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The next use of convalescent serum was documented dur-
ing the Kikwit EBOV outbreak in 1995 [147]. Eight patients
were treated with convalescent whole blood of which seven
survived. Despite the treatment success, the role of antibodies
was disputed due to multiple other factors that may have
influenced the outcome. Given the unsatisfying situation,
two NHP studies were performed to address the efficacy of
whole blood or serum as a treatment option for EBOV.
Interestingly, treatment with homologous convalescent
whole blood or pooled homologous convalescent anti-EBOV
serum did not protect the animals from lethal EBOV challenge,
with not even a delay in disease progression (Table 2)
[148,149]. During the 2013-2015 EBOV outbreak, a nonrando-
mized, comparative study was conducted in West Africa using
convalescent plasma. Treatment was not associated with sig-
nificant improvement in survival [150]. During the same out-
break, convalescent blood products were also used for the
treatment of several repatriated EBOV patients. However, the
concomitant use of other experimental therapies and
advanced intensive care again prevented conclusions on the
role of antibodies for patient outcome [151-154].

The first use of passive antibody therapy not derived from
convalescent donors was an equine hyperimmune serum stu-
died in the baboon EBOV model [155]. The equine hyperim-
mune serum completely protected baboons when
administered before or up to 1 h after EBOV challenge, but
survival rapidly declined when treatment was delayed further.
To confirm efficacy of this product, the treatment was evalu-
ated in the EBOV cynomolgus macaque model. Here, only
partial success was demonstrated when animals were treated
twice beginning shortly after EBOV exposure followed by a
second dose 5 days later [156,157]. Despite offering this pro-
duct to the World Health Organization (WHO), equine hyper-
immune serum has never been advanced for human use.

Development of mAbs for ebolavirus began in the early 1990s
(Table 2 and Supplemental Table 2) [158]. Clinical failures of
some murine mAbs for a variety of different indications
[159,160] forested the development of humanized murine
mAbs and later fully human mAbs. The first human EBOV mAb
was the potent glycoprotein-specific neutralizing KZ52 derived
from a survivor of the EBOV-Kikwit outbreak in 1995 [143]. KZ52
demonstrated potent efficacy in the lethal EBOV guinea pig
model [161], but failed to protect in the lethal EBOV rhesus
macaque model (Table 2 and Supplemental Table 2) [162]. This
result, along with the polyclonal equine hyperimmune serum
data in the cynomolgus macaque model, dampened enthusiasm
for antibody-based therapy for ebolavirus.

The next attempt to rectify the use of antibody approaches
for treatment of filovirus infections came in 2012. Dye et al.
used purified polyclonal IgG from EBOV or MARV vaccinated
nonhuman primates [163]. Treatment delivered on days 2, 4,
and 8 post-homologous EBOV and MARV challenge resulted in
survival of all treated animals. This result was striking as the
purified anti-EBOV IgG was less potent in neutralizing EBOV
than was KZ52, which had failed to protect macaques [162]
demonstrating that in vitro neutralization does not necessarily
correlate with in vivo protection. Further partial to complete
protection in the macaque model was also reported when

using cocktails of three mouse mAbs targeting the EBOV GP
administered beginning at either 1 or 2 days after homolo-
gous challenge (Table 2). One study used a cocktail of three
mouse mAbs (1H3, 2G4, 4G7) designated ZMADb, and resulted
in 50-100% protection in the EBOV cynomolgus macaque
model depending on the dosing schedule [164]. The other
study used a cocktail of three mouse-human chimeric mAbs
(13C6, 13F6, 6D8), designated MB-003, and demonstrated 67%
protection in the EBOV rhesus macaque model (Table 2) [165].
The MB-003 cocktail was advanced by treating rhesus maca-
ques at the time of first clinical signs. Treatment starting at
day 4 post EBOV challenge with two subsequent doses on
days 7 and 10 resulted in partial protection [166]. A collabora-
tive effort between the inventors of MB-003 and ZMAb
resulted in the product ZMapp, a cocktail of the three mAbs
13C6, 2G4 and 4G7 produced in tobacco plants [167]. ZMapp
treatment resulted in complete protection of rhesus macaques
when initiated as late as 5 days after EBOV challenge, an
advanced stage of disease in this model.

Main functional characteristics of EBOV-directed mAbs are
presented in Supplemental Table 3. Although the mechanism
of protection for ZMapp is not fully understood, Davidson et
al. have shown that mAb 13C6 binds to the tip of the GP
glycan cap suggesting complement, antibody-dependent cell-
mediated cytotoxicity (ADCC), or another Fc-mediated
mechanism. Conversely, mAbs 2G4 and 4G7 bind to epitopes
in the GP base neutralizing the virus by a structural mechan-
ism [168]. ZMapp has been further optimized into MIL77, a
cocktail of two mAbs, 13C6 and 2G4, produced in Chinese
hamster ovary cells [169]. Other groups have recently explored
human anti-EBOV GP mAbs as treatments in NHPs. Specifically,
monotherapy with mAb114 completely protected rhesus
monkeys when treated beginning as late as 5 days (treatment
regimen on days 5, 6, and 7) after EBOV challenge [170].

During the West African EBOV outbreak, ZMapp, ZMAb, or
MIL77 were used compassionately to treat patients repatriated
to Europe and the US [151,171-174]. Unfortunately, the role of
these mAbs in patient survival is difficult to discern as patients
had also received advanced supportive care and most of them an
additional experimental therapy. In 2015, the Partnership for
Research on ebolavirus in Liberia Il (PREVAIL Il) performed a
randomized controlled trial of ZMapp versus the available stan-
dard of care alone in Guinea and Sierra Leone [175]. ZMapp plus
standard care was superior, but unfortunately fell short of the
prespecified probability threshold of 97.5% superiority to stan-
dard care alone in prevention of 28-day mortality, and thus the
result lacked statistical significance. In the more recent 2018-
2020 DRC EBOV outbreak, a clinical trial (Pamoja Tulinde Maisha;
PALM trial) comparing three mAb-based approaches, ZMapp
(Mapp Biopharmaceutical, cocktail of three mAbs), REGN-EB3
[Regeneron Pharmaceuticals, cocktail of mAb 3470 (atoltivimab),
3471 (odesivimab) and 3479 (maftivimab)] and mAb114
(Ridgeback Biotherapeutics, single mAb), with remdesivir
(Gilead Sciences), a small-molecule antiviral drug (see below),
was performed. The PALM trial reported significantly improved
efficacy for mAb114 or REGN-EB3 over ZMapp and remdesivir
[176]. Interestingly, for unknown reasons, ZMapp performed
worse in this trial than in the earlier PREVAIL Il trial. Overall, in
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the PALM trial, antibody specificity, initial higher antibody doses,
and perhaps the more favorable pharmacokinetics of human
antibodies may have conferred an advantage. Despite the suc-
cess, a considerable downside of ZMapp, REGN-EB3, and
MADb114 is their high specificity for EBOV infections with little
to no cross-protective efficacy against other ebolaviruses. More
recently, strategically engineered, next-generation human mAbs
(i.e. MBP134, FVMO04, and CA45) have demonstrated the desired
cross-protective efficacy against EBOV, SUDV, and BDBV in pre-
clinical studies and thus are promising new mAb-based
approaches for future outbreaks [177,178]. On 14th October
2020, REGN-EB3 (called Inmazeb™, Regeneron) became the first
drug approved by the US FDA for treatment of EBOV [179]. Based
on the product quality review literature supplied by the US FDA,
treatment consists of a single intravenous infusion of the three
mAb cocktail comprised 50 mg/kg each of the three mAbs
(atoltivimab, odesivimab and maftivimab), and is approved for
treatment of EBOV infection in adult and pediatric patients,
including neonates born to RT-PCR EBOV-positive mothers [180].

2.3.2.2. Nucleoside analogs. Nucleoside analogs are a
group of direct-acting antivirals that have also shown efficacy
against EBOV in the stringent NHP model. For those tested in
controlled human clinical trials, these drugs have shown dif-
fering levels of efficacy.

2.3.2.2.1. BCX4430 (Galidesivir). BCX4430, developed by
BioCryst Pharmaceuticals, was the first small-molecule inhibi-
tor to show protective capacity against filovirus infection, in
this case MARV, in a NHP model [181]. Consistent with the
frequent repurposing of direct-acting antiviral drugs within a
class to target alternative viruses, BCX4430 was originally
developed as an inhibitor of hepatitis C virus (HCV) [182].
BCX4430, also has the advantage of being administered via
the IM route, and hence would be more suitable for use in the
low healthcare infrastructure EBOV treatment setting than
drugs administered V.

Structurally, BCX4430 is an adenosine ribose analog that was
designed as a non-obligate chain terminator (see below). Similar
to most nucleoside-based inhibitors, the BCX4430 parent com-
pound is activated by intracellular kinases into the active tripho-
sphate form (BCX4430-TP) after being taken up by cells. This
form is incorporated by the viral RdARp enzyme into the nascent
viral RNA strand followed by its inhibition of the RdRp RNA
synthesis function [181]. Nucleoside inhibitors are classified into
3 distinct types (‘obligate’ and ‘non-obligate’ chain terminators
and RNA ‘mutators’), which is based on their mode of RdRp
inhibition mechanism and is dictated by molecular structure of
the drug [183]. BCX4430 is a non-obligate chain terminator as the
molecule contains a 3-OH group which enables RNA chain
elongation to occur beyond its site of incorporation. After incor-
poration of an additional one or two residues the RdRp is inhib-
ited [181], presumably by a BCX4430-induced alteration in the
conformation of the nascent RNA molecule, although the precise
mechanistic details remain unclear.

After showing initial high levels of efficacy against multi-
ple filoviruses in rodent models, BCX4430 was shown to
provide protection in NHPs (cynomolgus macaques) from
lethal MARV infection when treatment was initiated up to
48 hours post-infection, with an associated decrease in virus

serum RNA levels [181]. In addition to potent, low micro-
molar inhibition of filoviruses, BCX4430 showed moderate
levels of in vitro inhibitory activity against members of other
virus families associated with human disease [181]. Peer-
reviewed follow-up studies in the EBOV NHP model have
yet to be published. Meeting abstracts and press-releases
have reported differing levels of efficacy against EBOV dis-
ease [182,184], and a Phase 1 trial studying safety, toler-
ability, and pharmacokinetics of IV administered BCX4430
was recently completed [185].

2.3.2.2.2. GS5-5734 (Remdesivir). Similar to BCX4430, GS-
5734 is an adenosine ribose-based non-obligate chain ter-
minator that targets the viral RdRp. GS-5734 is the prodrug
form of GS-441524 a drug that was original discovered as a
broad range inhibitor of multiple RNA viruses and the HCV
RdRp through in vitro screening of a series of 1'-substituted
analogs of 4-aza-7,9-dideazaadenosine, a nucleoside analog
with potent cytotoxicity in cancer cell lines [186], by Gilead
Sciences [187]. By modification of GS-441524, GS-5734
enabled bypass of the initial phosphorylation step, which
is rate limiting for production of the active tri-phosphory-
lated form of the drug [188]. Consistent with higher intra-
cellular concentrations of the active triphosphate form
resulting from its altered metabolism, GS-5734 was shown
to have higher potency than GS-441524 against multiple
viruses [188,189]. GS-441524 and GS-5734 activity against
EBOV was initially reported in an HTS screen of ~1000
nucleoside and phosphonate analogues [190].

Testing of GS-5734 in established EBOV rodent models is
generally prevented by the short half-life of the drug in these
species due to the presence of high levels of a secreted
carboxylesterase 1c (Cesic) that is absent in primates
[188,191,192]. Although BCX4430 was the first small-molecule
inhibitor to show efficacy against filoviruses in NHPs, GS-5734
was the first to show efficacy specifically against EBOV in
NHPs, which is regarded as a virus more difficult to control
than MARV in these animals [188]. Following IV administration,
the highest dosing of GS-5734 provided protection from lethal
infection when administered starting 72 hours post-infection,
with viral RNA levels being reduced to below the detection
limit in the majority of animals [188]. GS-5734 was shown to
have potent in vitro inhibitory activity against MARV as well as
other ebolavirus species in a variety of different cell types
[188]. The accumulation of the active metabolite within multi-
ple sites including the testes and eyes, suggested that the
drug may also prove useful to eradicate the virus from ‘sanc-
tuary’ sites of EBOV persistence [188].

Expanding on earlier studies [187], GS-5734 was shown to
have in vitro inhibitory activity against a broad range of RNA
viruses [188,193], which recently translated into in vivo efficacy
against Nipah, MERS and SARS-CoV-2 in NHPs [189,194,195].
Following compassionate use in two EVD patients [172,190],
both of which survived, a clinical trial for EVD patients in the
DRC was initiated (PALM trial, see above), based in large part
on the NHP efficacy data [188]. This randomized clinical trial
was comprised of a direct side-by-side comparison of GS-5734
with three different mAb-based therapeutics in 681 EVD
patients during the DRC EBOV outbreak [176]. Patients were
enrolled after an average of 5.5 days following onset of



symptoms. Interim analysis resulted in termination of the GS-
5734 arm based on inferiority, with an overall increase in 28-
day mortality rate of approximately 20% regardless of stratifi-
cation for disease severity based on viremia compared to the
best performing mAb therapy (see above) [176]. The results of
this study presumably reflect the greater potency and half-life
of fully humanized mAbs over virus-targeting drugs. However,
even the best mAb cocktail was still associated with an overall
mortality of over 60%. This indicates that there is still more to
do regarding use of therapeutics for patient disease manage-
ment, possibly involving use of mixtures of mAbs and drugs
such as GS-5734, perhaps in combination with drugs that
ameliorate the over-reactive response of the host associated
with infection. It also emphasizes the need to detect and treat
infected patients as early as possible.

2.3.2.2.3. T-705 (favipiravir). T-705 is a fluorinated derivative
(six-member aromatic ring containing 2 N atoms) of a pyrazine
compound originally discovered through a HTS screen of a
chemical library for inhibitory drugs against influenza A by
Toyama Chemical Co. Ltd [196,197]. Similar to other nucleo-
side analogues, the tri-phosphorylated form of T-705 is the
active molecule, which has been suggested to function as a
purine analog. The modes of action are believed to be both
through RNA mutagenesis, serving to increase the error rate
resulting in genomic catastrophe, as well as by causing pre-
mature chain termination [197,198]. The drug was shown to
have potent inhibitory activity against multiple influenza A, B
and C viruses, which translated to efficacy in preclinical animal
models. Clinical trials showed efficacy against seasonal influ-
enza A, and the drug was licensed for use against novel or
reemerging influenza A in Japan in 2014 [198]. T-705 is also
available for oral administration, which may have advantages
in resource-poor settings.

Similar to BCX4430 and GS-5734, T705 has been shown to
have inhibitory effect against a broad range of RNA viruses
[197], with a moderate level of potency against EBOV in vitro
[199]. Efficacy studies in rodent models showed substantial
levels of protection even when drug treatment was delayed
until 6 days after EBOV infection (Supplemental Table 1) [199].
Although an antiviral effect was seen in terms of a moderate
(2 to 3-log) reduction in viremia and increase in time to death,
translation into NHPs was associated with only low to moder-
ate levels of protection, even when treatment was initiated
prior to EBOV infection (Table 1) [200-202]. The decreased
viremia was dose dependent and associated with an increase
in mutations consistent with T-705 mode of action as an RNA
mutagen [201].

Based in part on the preclinical efficacy rodent studies, an open
multicenter nonrandomized clinical trial (called the JIKI trial) was
conducted, which with 126 patients was the largest therapeutic trial
conducted during the 2013-2015 EBOV epidemic [202]. Patients,
when stratified based on disease severity, showed no significant
beneficial effect of T-705, although in patients with less severe
disease a trend toward better survival was observed. Subsequent
analysis suggests that one reason for the poor response may have
been the failure to reach desired plasma trough levels due to
unexpected pharmacokinetics of T-705 [202] Together with the
inferiority of GS-5734 in the PALM trial, this suggests that RdRp
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targeting drugs may, by themselves not be sufficient to control
EBOV when administered later in the course of disease following
symptom onset. However, the capacity for oral dosing of T-705
does raise the possibility for use in a high-risk exposure setting,
which may not be suited to drugs and mAb-based therapeutics
that are given via parenteral routes. Given the recent commercial
approval of a highly efficacious EBOV vaccine, such high-risk expo-
sure may have most utility for outbreaks involving other ebolavirus
species and related filoviruses.
2.3.2.2.4. CMX001 (Brincidofovir). Although DNA rather than
RNA viruses, the herpesvirus family has been the focus of
intensive nucleoside analogue inhibitor development over
the past three decades. Cidofovir (CDV), a deoxycytidine ana-
logue, and its more bioavailable lipid-conjugated orally admi-
nistered prodrug form, CMXO001 (Brincidofovir), function as
non-obligate chain terminators [203]. CMX001 was developed
by Chimerix Inc [204] to overcome certain limitations of CDV
in response to an identified need by the US Department of
Health and Humans Services for a medical countermeasure to
treat symptomatic smallpox disease in a growing smallpox
naive world. CMX001, which was created by conjugation of a
lipid moiety to the CDV molecule, has a number of advantages
over its CDV parent molecule in level of cellular uptake, oral
bioavailability, and decreased nephrotoxicity [204,205].
CMX001 was shown to potently inhibit EBOV and other
ebolavirus species in multiple cell types in vitro [206].
Interestingly, the lipid side chain of CMX001 rather than the
CDV-PP molecule appeared critical for activity against EBOV,
with CDV itself being shown to have poor activity against
EBOV at the levels used for analysis (<50uM) [206]. During
the 2013-2015 epidemic, the US FDA authorized CMX001 for
compassionate use in EVD patients, and a single-arm Phase 2
trial was initiated in Liberia (NCT02271347) [207]. Results from
mouse studies not available at the time subsequently showed
lack of efficacy against EBOV [206], and differences in pharma-
cokinetics of the drug prevented testing in NHPs [204,2071.
Following treatment of a total of four patients the manufac-
turer, Chimerix Inc, terminated the trial. No patient completed
the treatment course and none survived to day 14, the period
of assessment for the primary survival outcome. Consistent
with earlier safety data, no adverse or serious adverse reac-
tions were identified [207].

2.3.2.3. Small interfering RNAs (siRNA). Early approaches
to target the viral replication machinery involved the use of
small interfering RNAs (siRNAs) to achieve degradation of viral
mRNAs (TKM-Ebola) [208] or phosphorodiamidate morpholino
oligomer (PMO) to block translation of viral proteins [209].
TKM-Ebola was developed to target VP35, VP24 and L and
chemically modified to avoid induction of a nonspecific innate
immune response and packaged in novel lipid nanoparticle
(LNP) for delivery. IV treatment of rhesus macaques starting
30 minutes after EBOV challenge and again at either days 1, 3,
and 5 or daily through day 6 after virus exposure resulted in
66% and 100% protection, respectively [208]. The PMO-based
approaches were most successful in animal models, including
NHPs, when targeting VP24 (AVI-6002 and AVI-7537) [209].

A few years later, TKM-Ebola was modified by eliminating
the anti-VP24 siRNA and modifying the LNP (TKM-100802).
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During the 2013-2015 West African EBOV outbreak, TKM-
100802 was further modified to ensure specificity to the
EBOV Makona strain by substitutions in the VP35 and L
siRNAs (TKM-130803) [210]. This formulation was again mod-
ified by changing the LNP to an LNP2 composition. Evaluation
of the new TKM-130803 in rhesus macaques challenged with
the EBOV Makona strain and treated IV (0.5 mg/kg) beginning
on day 3 after challenge for a total of seven daily treatments
resulted in complete protection of the animals [211].

During the West Africa EBOV outbreak, TKM-100802 was
administered to five patients and to one individual as postexpo-
sure prophylaxis. Unfortunately, efficacy and safety could not be
assessed as the individuals were also treated with other products
[212]. Subsequently, the newer TKM-130803 formulation was
assessed in a small single-arm phase 2 trial conducted in Sierra
Leone [210]. Infected patients received single daily IV adminis-
trations for 7 days resulting in three survivors out of 12 treated
patients. TKM-130803 appeared safe in this poorly conducted
trial but showed no clear efficacy. The siRNA technology has also
been applied to filoviruses other than EBOV in pre-clinical NHP
models [213,214]. The siRNA technology was not considered as
part of the DRC PALM trial.

3. Conclusions

The filovirus field has come a long way over more than three
decades in finding prophylactic and therapeutic countermea-
sures for EBOV infections as reviewed in this article. Many
modalities, identified through in vitro screens or repurposing
strategies, had been confirmed and characterized in preclinical
animal work over the years, but clinical trials remained rather
limited. The devastating West African (2013-2015) and recent
second largest EBOV outbreak in the northeastern DRC (2018-
2020) became game changing events for the translation of
countermeasures into clinical trials ultimately resulting in
licensure of several EBOV vaccines, but only a single EBOV
treatment modality utilizing a mAb cocktail (Inmazeb™,
Regeneron).

In general, therapeutic interventions have lagged behind
vaccine development. State-of-the-art supportive care is most
critical for the success of EVD patient management and should
be the foundation for any treatment strategy. Currently, the
mAb-based approaches targeting EBOV GP demonstrate the
highest level of efficacy in clinical trials (PALM trial) and would
be the first treatment choice. It is to be expected that more
mAb products will be licensed over the next few years. The
main disadvantages of mAbs are high virus specificity, vulner-
ability to virus escape and evolutionary changes, mAb produc-
tion cost and time, and repetitive intravenous administration
which is less ideal in resource-poor settings.

Direct-acting antivirals are the second treatment choice
and likely ideal for combination therapy. For relapsed or persi-
tently infected convalescent patients these drugs may be the
only choice. Remdesivir (Veklury®, Gilead) is the leading candi-
date and was part of the PALM trial, but other nucleoside
analogs and distinct polymerase inhibitors should also be
continued. The main advantages of this class of drugs are
broad spectrum efficacy and lower production cost and time.

Future efforts should study synergistic and/or additive effects
of these compounds in combination with mAbs.

Looking forward, future treatment development should
focus on broad spectrum direct-acting compounds (i.e. mAbs
and nucleoside analogs) with efficacy after a single dose that
can be adminstered via less invasive oral and intranasal routes.
The treatment modalities need also to be affordable and meet
logistical constraints for provision to those most in need living
in resource-poor settings.

4. Expert opinion

Due to their high potency, long half-life and low-toxicity mAb-
based therapeutics are superior in performance, especially in the
symptomatic period, to any nucleoside analog - the only other
therapeutic class that has consistently shown efficacy against
EBOV in NHP models. Nucleoside analogs may have a more potent
affect when used in combination therapy, and orally administered
nucleoside analogs may play an important role in protection
against high-risk exposure prior to or at very early stages of
infection. Notably, regardless of demonstrated in vitro inhibitory
activity and efficacy in rodent models, host-directed monotherapy
therapeutics consistently fail in more stringent preclinical models.

The mAb cocktail, Inmazeb™ (Regeneron), became the first
drug approved by the US FDA for treatment of EBOV infection
[179] (approved 14" October 2020). However, what we have
learned for EBOV will undoubtedly be applicable to manage
related filovirus outbreaks, with more recent work being
focused increasingly on development of mAbs and RdRp-tar-
geting therapeutics with broader range that encompass these
related viruses. Through the optics of the present COVID-19
pandemic, preemptive development and manufacture of effi-
cacious, yet inexpensive broadly acting therapeutics validated
in the most stringent preclinical models available through to
the point of licensure is critical if we are to avoid further
reactive and largely ineffective responses to future filovirus
outbreaks. These drugs should be suitable for use in multiple
scenarios, from high-risk exposure to severely diseased
patients.

Given the relative high level of success of mAb therapy for
treatment of EVD, development of technology for more rapid
generation and production of virus-specific mAbs is expected to
remain an area of focus. While mAbs show clear superiority, at least
in the symptomatic patient, cost makes them prohibitively expen-
sive, preventing widespread use - especially in the countries in
which filoviruses normally emerge. Development of alternative
strategies that take advantage of mAb technology, but with a
focus to cost reduction whether through more effective routes of
administration (IM and mucosal delivery) or ease and efficiency of
manufacture should be an area of increased focus to broaden
application of this promising therapeutic intervention.

An area that warrants further attention is combination ther-
apy, with drugs ideally targeting different individual aspects of
the filovirus lifecycle susceptible to therapeutic control. A num-
ber of studies have identified combinations of host-directed
drugs that functioned synergistically against EBOV in vitro
[123,215]. An obvious choice is the combination of mAbs,
which function at the level of entry, with direct-acting antivirals



such as GS-5734 that inhibit at the level of the RdRp. This
approach may also address the issue of virus persistence, by
potentially preventing the establishment of persistent infection
within immune privileged sites. Therapies and combinations
more amenable to use following high-risk exposure, such as
those able to rapidly achieve necessary systemic levels following
oral administration, should also be developed, particularly as at
this early stage of infection, the virus may be more susceptible to
pharmacologic control.

Most of the achievements in treatment of filovirus diseases
have been targeted to EBOV. Future efforts need to be focused
on more broadly acting therapies whether it be mAbs targeting
multiple ebolaviruses or direct-acting antivirals targeting RdRp or
a combination of both. Drug screening programs will remain as
useful tools in therapeutic development strategies. However, the
past has shown that in vitro efficacy is largely insufficient for
selecting a candidate. Small rodent models such as the mouse
are a necessary confirmatory step even though they are often still
not sufficiently predictive. The guinea pig and ultimately NHP
model are key components of preclinical screening for filovirus
intervention programs. We advise future reports on antiviral
therapeutics against filoviruses to include a minimal in vivo pre-
clinical component to help to limit costs and time in the drug
development process.

Over the next years, the field needs to prioritize refine-
ment of current promising approaches and move them
through clinical trials for licensure application. Those drugs
(or combinations thereof) then need to be produced to
sufficient quantities and properly stored for immediate and
uncomplicated release and administration. With lower priority,
second-generation drug development programs should con-
tinue as needed and funding allows. If the COVID-19 pan-
demic has taught us anything, it is that preemption is by far
less costly in lives and resources than reaction with poor
preparation. Finally, early and rapid diagnosis in combination
with immediate isolation of cases and thorough contact tra-
cing cannot be replaced by any therapeutic intervention.
These public health measures are a necessary prerequisite
for any successful therapeutic intervention strategy in future
filovirus outbreaks.
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