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We present the first calculation of the scattering amplitude in the singlet channel beyond QCD.
The calculation is performed in SU(2) gauge theory with Ny = 2 fundamental Dirac fermions
and based on a finite-volume scattering formalism. The theory exhibits a SU(4) — Sp(4) chiral
symmetry breaking pattern that is used to design minimal composite Higgs models that are tested
at the LHC. Our results show that, for the range of underlying fermion mass considered, the lowest

flavour singlet state is stable.

PACS numbers:

I. INTRODUCTION

The discovery of the Standard Model (SM) last miss-
ing piece, the Higgs boson, and the increase in precision
of tests of its properties, continue to trigger the study of
numerous mechanisms to address the fundamental prob-
lems with its formulation.

Among other possibilities, a new strongly interact-
ing sector giving rise to the observed phenomenology at
the electroweak scale and below has been pursued for
decades. Such a new sector could feature a solution to the
naturalness problem and provide a mechanism to gener-
ate non-trivial mass spectrum together with a large scale
separation. These mechanisms have been used for in-
stance in the context of Dark Matter models [T, 2], of
Composite Higgs models [3H8] or of scenarios of dynami-
cal electroweak symmetry breaking [9,[10]. These appeal-
ing ideas motivate the lattice endeavour to understand
gauge theories beyond QCD.

One feature of a strongly interacting sector is the in-
evitable presence of a flavour singlet state of positive
parity—referred to as o in the rest of this paper. In
QCD-like theories, the o is expected to be a resonance of
two Goldstone bosons in the limit of massless underlying
fermions.

Irrespective of the strong dynamics, the experimental
constraints on practical models are derived from the low
energy effective theory corresponding to the low energy
limit of the strong sector weakly perturbed by its cou-
pling to the SM. The construction of the effective theory
at the electroweak scale relies therefore centrally on input
from the strongly interacting sector in isolation from the
SM. Lattice studies of gauge theories provide robust pre-
dictions that can be systematically checked and improved
and are therefore crucial to constrain models of physics
beyond the SM. In writing such an effective theory, it is
for instance often assumed that the contribution of the
o at the electroweak scale is negligible: namely that the
scalar state is a heavy resonance that has no effect on
the phenomenology. In Composite Higgs scenarios, such
a state would mix with the Goldstone Bosons, therefore
altering the properties of the physical Higgs bosons and

giving rise to an additional effective scalar field with a
larger mass. The resonance is expected to be produced
by the LHC in similar fashion to the SM Higgs via gluon
fusion and vector boson fusion mechanisms. The phe-
nomenological implications are for instance discussed in
Ref. [II]. The present work aims at contributing to un-
derstand the role of such a resonance in the phenomenol-
ogy of models based on strongly interacting sectors.

In lattice simulations the only rigorous approach to
reveal the nature of a resonance is to estimate the scat-
tering amplitude of the Goldstone bosons. Lattice simu-
lations in various gauge theories have estimated the mass
of the ¢ in a regime where it is stable, see for instance
Refs. [I2H22]. Scattering amplitudes have been evaluated
also for other channels, see for instance the recent work in
a possible nearly conformal theory for SU(3) with Ny =8
flavours in the maximal-isospin channel [23] and our re-
cent work in the vector meson channel for SU(2) with
Ny =2 flavours [24].

In this work, we consider an SU(2) gauge theory with
N; = 2 fundamental Dirac fermions. The theory fea-
tures an extended SU(4) flavour symmetry that spon-
taneously breaks to Sp(4). The theory is used to build
a pseudo-Nambu-Goldstone Boson (PNGB) Composite
Higgs model in Ref. [25], and it was recently reviewed
in Ref. [26]. In this model, the physical Higgs boson is
a mixture of PNGBs and of the flavour singlet state of
the strong sector. The model has been shown to pass ex-
perimental constraints [26], and the mixing between the
scalar resonance and the Higgs can relax the bounds on
the model [I1].

We present here the first calculation of the scatter-
ing amplitude of Goldstone Bosons in the flavour sin-
glet channel beyond QCD. We have used two operators
to constraint the scattering amplitude at two different
kinematic configurations. The evaluation of disconnected
contributions increases significantly the computational
cost with respect to other channels.

We also report on the comparison of our results to the
chiral perturbation theory predictions (in isolation of the
SM) of Ref. [27] that should match in the limit of light
enough PNGBs.



II. LATTICE SETUP

We use the HiRep [28] suite to simulate an SU(2) gauge
theory with Ny = 2. For the fundamental fermions the
action of choice is the Wilson action [29] with tree-level
O(a)-improvement clover term [30]. For the gauge we
use the tree-level Symanzik improved action [31I]. Both
the bare mass term, a mg, and the Wilson term explicitly
break the SU(4) flavour symmetry to a Sp(4) subgroup.
All our simulation are performed with periodic boundary
conditions in all space-time directions.

Ensemble|L/a|T/a| B | amo |csw|# configs
Heavy | 24 | 48 [1.45|—0.60501.0 1980
Light 32 | 48 |1.45|—-0.6077|1.0 1160

TABLE I: Simulation parameters in our ensembles.

The ensembles used for this work have been generated
for 8 = 1.45, and two different values of the bare fermion
mass. We denote these ensembles as “light” and “heavy”
to reference the different values of the pion mass. Here
and in the following, we will make use of the naming
convention inherited from QCD, that is, the pseudoscalar
PNGB of this theory is referred to as pion. The spatial
size of the ensembles has been tuned to obtain a value
of ML ~ 5. All the relevant simulation parameters are
given in Table [}

For each ensemble, we compute the PNGB mass, M,
and the vector mass, M, from Euclidean time dependence
of appropriate correlation functions. We also extract
the bare pseudoscalar decay constant FP#*, which renor-
malises multiplicatively with the renormalization factor
Z 4. For more details about the calculation of these quan-
tities, we refer the reader to Ref. [32]. All our findings
are summarised in Table [l

In addition, the non-perturbative determination of Z4
was carried out using the RI-MOM scheme [33], using
the same strategy as in the previous setup [32]. For de-
tailed information about the Z4 determination we refer
to Ref. |24], where we estimated Z4 = 0.8022(3) for the
value of 3 of this work.

Ensemble‘ aM, ‘ aM, ‘ aFPare ‘MW/F,E““'E
Heavy 0.2065(12)] 0.438(27) [0.0395(9) 5.24(11)
Light [0.1597(18){0.3864(30)[0.0357(9)| 4.36(11)

TABLE II: Pion mass, vector mass and decay constant for

our two ensembles.

II1. SCATTERING IN SU(2)

In this section we will review and extend the necessary
theoretical background for this work. In particular we
will derive all the group classification needed to evaluate
the operators and the associated correlation functions for

the singlet channel, as well as the finite-volume scattering
formalism and the effective field theory (EFT) descrip-
tion of the relevant scattering amplitude.

A. Flavour singlet operators

We start by considering the flavour symmetries of
the SU(2) gauge theory with Ny = 2. It can be
shown that the massless Lagrangian is symmetric un-
der SU(4) flavour transformation, while the mass term
can be shown to be Sp(4) invariant. This means that
there exist five broken generators, which correspond to
the pseudo-Nambu-Goldstone fields. More specifically, it
can be shown that they correspond to the three pions and
two dibaryons. In terms of the two fundamental fermion
fields v and d, we can construct one-particle operators
with the right quantum numbers as follows:

Moa(x) = 7 (2)(~ics) Crysd(a),
Myq(x) = a(x)(—ios) Crsd(x) T,

7 (@) = () y5d(z), (1)
(@) = —d(@) (),

0(z) = jﬁ [a()ysu(z) — d(z)sd(x)]

where the real and antisymmetric matrix (—io3) acts in
colour space and C' represents the conjugation charge ma-
trix, C' = iy0y2. As we are interested only in the flavour
structure of the operators, we will omit the space-time
dependence of the fields in the equations where possible.

In order to build a flavour singlet operator, we intro-
duce:

ury, ury,
dr, dr,
Q - :LEL - (—iJg)Cﬂg ’
dL (—iO’g)Cd?% (2)

0 1,
£ 5)
where we used the convention from Ref.[34], summarised
in appendix [A] together with the standard definition of
qL.,R = PL,Rq and qL.R = (jPRJ, where P, = (1 —75)/2
and Pr = (1+5)/2.
With the above convention we can define the multiplet

II*=%-5 and the singlet O, as
o A
I = 5 I:QT(—ZO'Q)C’}%XlEQ + hC] 5
3)
1 (
O, = — [Q" (—io2)CEQ + h.c| .
NG Q" (—io2) CEQ ]
Here X=1-5 are the broken generators used to

parametrise the coset SU(4)/Sp(4) defined in the ap-
pendix.



Considering the infinitesimal transformation

Q — (14 +1ia"5%) Q, (4)

where o= are real parameters, and S2=1--10 are

the generators of the Lie Algebra of Sp(4). The genera-
tors obey the Lie algebra defining relation:

ES* 4+ (SYT'E =0. (5)

It is straightforward to show that O, is a singlet of Sp(4).
It can also be shown by performing explicitly an infinites-
imal transformation that the multiplet IT transforms as 5-
dimensional irreducible representation of Sp(4) and that
any operator proportional to tr [II ® II] is a singlet of
Sp(4). The reader interested in more details is referred
to Appendix [B]

The operator

1,...,10

4 L
Onn = 7 Z 11 (6)

is therefore a flavour singlet operator. Expressing the
operator O, in terms of the bilinear defined in Eq.
we find:

Opr = {—i— st +n at —7%°

Sl

(7)
4TIl + Hﬂgr[ud} .

Similarly the operator O, can be expressed in terms of
the u and d fields as:

1 _

O, = — |u(x)u(z) +d(z)d(x)] . 8
\/5[()() (z)d(z)] (®)
In the following, we will use O, and O, as the relevant

operators to study the singlet channel. We refer to them
respectively as the two-pion and sigma operators.

B. Contractions

In the rest of the paper we will use the zero momen-
tum projection of the operators defined in Eq. [1]| for the
evaluation of the correlators. Explicitly, this is given by

Hud(t) = Z Hud(Xv t)v (9)

and analogously for the other one-particle operators.
The energy of the flavour singlet state can be computed
from the exponential decay in time of the appropriate
correlation functions of the two-pion and sigma operators
described in the previous section.
The singlet two-pion operator, with each one-particle
operator projected at zero momentum is

Ourltr, ta) = % T (1) (t) + 7 (b)) (1)
—7(t) 7 (t2) (10)

+ Hud(tl)HﬂJ(tZ) + Hﬂ(i(tl)Hud(tQ) ;

where we have included the Euclidean time explicitly.
Analogously, the zero momentum projected sigma oper-
ator can be rewritten as

O,(t) = % Z (a(x, t)u(x,t) + d(x, t)d(x,t)) . (11)

Using the two operators in Egs. [I0] and [I1] we can build
a symmetric two-by-two matrix of correlation functions
as follows:

Cx Ly (t) = % > (Ox(t+ )0y (1)), (12)

t

By solving the associated generalised eigenvalue problem
(GEVP) [35], we are able to obtain the energy of the two
lowest states in the spectrum, by measuring the expo-
nential decay of the two eigenvalues.

The three different correlation functions that enter in
Eq. [12] can be built from eight different Wick contrac-
tions:

Co—)a(t) = _B(t) + 2E(t)7
Crasrn(t) = 2D(t) + 3X(t) — 10R(t) + 5V (t), (13)
Crrnso(t) = V10 (T(t) = W(t)).

These are defined in Fig. [1} along with their naming con-
ventions. Three of the contractions include disconnected
diagrams: V, W and X, and, as will be seen later, they
dominate the statistical uncertainty.

C. Extraction of scattering amplitudes

The Liischer method [36H38] provides a way to obtain
two-particle scattering amplitudes from lattice simula-
tions. The so-called quantization condition connects the
finite-volume energy levels to the phase shift. It is a well-
established technique [39H47], which has been applied to
many systems—see Ref. [48] for a review. In the context
of QCD the singlet channel has often been studied, see
for example Refs. [49-53].

In the case of two identical scalars with only s-wave
interactions, the quantization condition reads [36]:

2
k cot &g (k) = WZOO(UQL U]

where the energy levels are in the A] irreducible repre-
sentation of the octahedral group, and k is the relative
momentum in the center-of-mass (CM) frame. Further-
more, Zgg is the standard Liischer zeta function. Note
that in this form, the quantization condition is a one-to-
one mapping between an energy level and a point in the
phase shift curve.

It is convenient, for our discussion later, to highlight
how bound states manifest themselves in the phase shift
both at finite and infinite volume.

Lk

257

(14)
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FIG. 1: Representation of the different contractions needed for this work. The blobs indicate a fermion bilinear, with gamma
matrix s or identity. The physical correlation functions are constructed from linear combinations thereof as given in Eq. [I3]

In infinite volume, they correspond to poles in the scat-
tering amplitude. The pole’s position is given by

k cot 8o (k) = —/—k2, (15)

which we denote as bound-state condition. The fact that
residue of the pole has a positive sign, implies the follow-
ing condition [54]:

d%? [kcot 8o (k) — (—\/—k2> } <0.  (16)
This means that k cot dg must cross the bound-state con-
dition from below with decreasing k2.

By contrast, the finite-volume solutions to the quan-
tization condition never intersect the bound-state condi-
tion. They are however exponentially close [55], with an
exponent related to the binding momentum [56].

D. EFT prediction

At sufficiently low energies and close to the chiral limit,
Chiral Perturbation Theory (ChPT) should provide a
satisfactory description of the interactions of Goldstone
bosons in QCD-like theories. However, the precise pre-
dictions depend upon the symmetry breaking pattern. As
explained before, in our case a SU(4) flavour symmetry
is spontaneously broken down to Sp(4). This was worked
out in Refs. [27, [57], and is referred to as the pseudo-real
case.

In the present work the quantity of interest is the
two-pion scattering amplitude in the singlet channel—
analogous to that of the “¢” resonance in QCD. In this
exploratory study, the leading-order (LO) ChPT result
will suffice. This reads

M?2 3 s
m- (54 em) 1

where we are using the convention f, = v/2F, for the
normalization of the decay constant, and /s is the CM

energy. From the scattering amplitude, the momentum
dependence of the phase-shift can be easily derived:

1 kcotd

Re T 16my/s

(18)

The LO result is

k M./5  (32nF2
= cotdl = u . 1
M, %0 T 1302 1 16k2 ( M2 ) (19)

Furthermore, the scattering length is defined as

k 1
lim —— I— - 2
lim 2 cot 4, ol (20)
and its result reads
13 M?
M.al = —— —T. 21
4= T4 F2 1)

An interesting remark is that the leading-order ampli-
tude has a zero below threshold (Adler zero), which
translates into a pole in kcotdl. This is located at
(k/My)? = —13/16, and may limit the converge of a poly-
nomial expansions of k cot 6} in k*—the so-called thresh-
old expansion. Such behaviour has been observed, e.g.,
in the isospin-2 77 system in QCD [58].

IV. RESULTS
A. Correlation functions

We construct the correlation functions as indicated in
Eq. In order to evaluate all the contractions depicted
in Fig.[1] we use various types of stochastic sources. First,
for the D, X, R,V and B contractions we use time-diluted
stochastic sources. By placing a source in each of the
timeslices, we can obtain a single stochastic estimator
for each of these contractions. In this case we use 10
stochastic estimators, which require T' x 10 inversions of
sources. By contrast, we use 40 volume sources for the 3



contraction, while for W we combine the building blocks
of V and ¥. Finally, T is computed by employing 40
time-diluted sources that have an additional sequential
inversion.

The contractions ¥ and W are responsible for the
largest contribution to the statistical uncertainty. This
is because they contain the trace of a single propagator
multiplied by the identity in spinor space, and so, they
are dominated by the gauge noise. Because of this, we
choose to measure them more often than the other build-
ing blocks. In fact, we measure the trace of the single
propagator in steps of one unit of Monte Carlo time.

We perform the analysis of uncertainties using jack-
knife samples. In order to account for autocorrelations,
we use the binning procedure. For this, we average corre-
lation functions within a bin length of 10 units of Monte
Carlo time. We have checked that larger bin sizes, 20
and 30, do not lead to any substantial change in the es-
timation of uncertainties.

As the operators have vacuum quantum numbers,
there is an overall constant in all our correlation func-
tions. Because of this, we will work with the shifted
correlator:

Clt)y=z[C(t—1)-C(t+1)]. (22)

N =

This is a discrete version of the derivative in Euclidean
time that keeps the same exponential decay, but cancels
the undesired constant.

The results for the two ensembles are shown in Fig. [2]
As can be seen, the statistical noise is dominated by the
ones including the O, operator, which contain the W
and X contractions in Fig. [[] It is also clear that one
cannot trust the correlator in the region dominated by
the statistical noise.

B. Spectrum determination

We now turn to the determination of the spectrum.
For this, we build a two-by-two matrix, as presented in
Eq.[[2l The GEVP is defined by means of the shifted

correlator as

é(t)vn(tvtO) = )\n(t,to)C(to)Un(t,tO), (23)

where ty is a reference timeslice. Note that A, are the
eigenvalues of C~1(tg)C(t). In our case, we choose to = 4
as, for both ensembles, it is the first stable point.

There are various ways of solving the eigenvalue equa-
tion. One can fix the diagonalisation point, or diagonalise
separately in each timeslice. We opt for the latter, but
we have seen that it does not lead to any substantial
change compared the the other method. Regarding the
estimation of uncertainties, we choose to diagonalise in
each jackknife sample separately. We have also checked
that fixing the diagonalisation in all samples barely alters
the outcome.
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FIG. 2: Correlation functions built with two different oper-
ators with singlet quantum numbers. For visualization pur-
poses we include an arbitrary normalization.

The dependence of the eigenvalues with Euclidean time
is expected to be a sum of exponentials. Solving the
GEVP allows to isolate the low-lying energy states. In
the limit of sufficiently large Euclidean time, each eigen-
value decays as a single exponential:

Ai(t) — AgeBit (24)

which holds up to effects that are exponentially sup-
pressed with the time extent of the lattice—thermal ef-
fects. The corresponding exponents, F;, are associated
to one energy level of the studied channel.

The dependence of the eigenvalues with Euclidean time
is shown in Fig.[3] The dashed lines depict the best fit in
the chosen fit interval. Note that we do not include in the
fits the region in which the C,, correlator is dominated
by noise.

A summary of the extracted energy levels—in units of
the pion mass—is given in Tab. [[T]] and in Fig. [4 As
can be seen, the central value of the lowest energy is well
below threshold, and the second level is around the two-
particle threshold in both cases. The physical interpre-
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FIG. 3: Lowest two eigenvalues for the two ensembles of this
work. The dashed line indicates the fit range.

tation of this states can only be discussed after inspect-
ing the scattering amplitude. In particular, to answer
whether the lowest state corresponds to a bound state,
or an attractive scattering state. This will be addressed
in the next subsection.

Ensemble| Ey /My | E2/Mx

1.59(34)[2.27(28)
1.81(22)[1.93(18)

Heavy
Light

TABLE III: Two-particle energy levels in the singlet channel
extracted from the fits in Fig. [3]

C. Results for the scattering amplitude

We are now in position of exploring the scattering am-
plitude in the singlet channel using the Liischer method.
For this, we insert the energy levels of Tab. [[I]] into the
two-particle quantization condition in Eq. [T4}

The corresponding points in the phase shift are shown
in Fig. [f]for both ensembles, where we also include the 1o

0 --=-- two-particle threshold
2.4
2.2
By g 1
1.8
161 u]

1.4+

1.2

Ensemble

FIG. 4: Energy levels obtained from our simulations.

region for visualization. As can be seen in this figure, we
find in both cases a point below threshold whose central
value is close to the bound state condition. Even if the
uncertainty is large, the most likely interpretation is that
there is indeed a bound state in this channel for the ex-
plored pseudoscalar mass. The second point in the curve
is around threshold, and thus could be used to constrain
the scattering length of the channel. Unfortunately the
uncertainty is too large, and the result is inconclusive.

We can also comment on the comparison of our re-
sults and the leading-order prediction from ChPT. This
is depicted as solid grey line in Fig. f] The LO ChPT
prediction shows no sign of a bound state in the region
where we seem to find one. It does however predict one
bound state well below threshold, which is an artefact
caused by the Adler zero [59]. Moreover, the leading
chiral prediction is also not able to accommodate the ob-
served points around threshold. Thus, it seems that the
value of the pseudoscalar masses of our simulations are
outside of the window for which leading-order ChPT is a
good description.

V. CONCLUSION AND OUTLOOK

This work represents the first study of the singlet
channel in four-dimensional gauge theories beyond QCD.
Specifically, we have considered an SU(2) gauge theory
with two fundamental fermions that serves as a minimal
template for a Composite Higgs model.

In this theory, the symmetry breaking pattern dif-
fers from that of QCD—the SU(4) flavour symmetry
breaks down to Sp(4). Therefore, we have derived the
group-theoretical setup required to analyse this scatter-
ing channel. It can also be noted that our analysis holds
for generic Sp(2N) gauge theories with two fundamen-
tal fermions as the same symmetry breaking pattern is
realised.
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FIG. 5: s-wave phase shift in the form (k/M;) cot dp for the two ensembles of this work. The empty marker is the central
value, as the shaded area represents the 1o resulting from the quantization condition. Note that the width of the shaded area
is arbitrary, and has been chosen for illustrative purposes. We also include the leading-order chiral prediction, as well as the

bound-state condition.

We have used two ensembles with different pion
masses. Using two different operators to solve the GEVP,
we have computed the lowest two energy levels. These
are fed into the Liischer quantization condition, and we
have been able to put non-perturbative constraints to the
singlet scattering amplitude. Interestingly, we find that
leading-order chiral perturbation theory does not seem to
describe the amplitude correctly, and fails in predicting
a bound state around the region where we observe it.

Our results strongly suggest that in the explored re-
gion of fermion masses the sigma is most likely a stable
particle, that is, a two-pion bound state. We however ex-
pect this feature to depend strongly upon the pion mass.
Therefore, more work is required to investigate discretisa-
tion effects and to reach the phenomenologically appeal-
ing region, that is, where the sigma becomes unstable.
We expect to pursue this direction in a subsequent work.
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Appendix A: Lie algebra of SU(4)

Following the convention used in Ref. [34], we define

By = 04, By = i04, B3 = 03, By = i03, (A1)

Bs = 01, Bg = i01, Dy = 02, D5 = 102,

where o4 is the identity matrix, and o=, 3 are the
Pauli matrices. The ten generators of Sp(4) are de-
noted S4=1-10 together with the five broken generators
Xi=L-5 they are a basis of the Lie Algebra of SU(4).
They are defined as follows:

1 o 0
S & , a=1,...,4
2\/§<0 —03)

e =

xi= L (0PN oy
—2\/5 Dj- 0 s 1 =4, .

The generators S® satisfy the relation (S¢)T E+ES® = 0.
The generators are normalised so that:

151']"

(578" = 56, [XIXT] = "

tr [S“Xi] =0.

The structure constants of the algebra of Sp(4) are de-
fined as fup. = 2tr [S’“[Sb, SC]].

Appendix B: Transformation under the flavour
symmetry group Sp(4)

Using the following relations:

{07 ’75} = 07 OT = 707

Bl
C*=1, (—iox)®=-1, (B

and the definitions of the Goldstone bosons interpolating
fields in Egs. [I] we find that:

1 . i i=1,...,5
II = 5 [QT(—ZUQ)C"/E,X EQ + hC]
T —7T
1 i(fm~ +xh)
= —= \/57('0 . (B2)
V2 (11 + M)
Hgg — g

Performing an infinitesimal transformation Q@ — Q +
1a®S* where a® are real infinitesimal parameters, we find
that

II — I+ MII, with
0 —o® —a? —a” b
o’ 0 —al —af —a?
M=v2]| o> o 0 o —alf (B3)
a’ ab —ad 0 4
—a® ab ol ot 0

Here, M is an antisymmetric matrix that can be decom-
posed onto the algebra of SO(5), therefore showing that
IT belongs to a 5-dimensional irreducible representation of
Sp(4). The transformation of tr [II ® II] therefore reads:

tr I I — tr [ @ I + tr [ MII ® II + II @ MII]

= tr I @ I 4+ TI7 MTI = tr [T @ 10,
(B4)

where we have used that M is antisymmetric in the last
equality.
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