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Abstract In lattice calculations, the approach to the contin-
uum limit is hindered by the severe freezing of the topolog-
ical charge, which prevents ergodic sampling in configura-
tion space. In order to significantly reduce the autocorrelation
time of the topological charge, we develop a density of states
approach with a smooth constraint and use it to study SU(3)
pure Yang Mills gauge theory near the continuum limit. Our
algorithm relies on simulated tempering across a range of
couplings, which guarantees the decorrelation of the topo-
logical charge and ergodic sampling of topological sectors.
Particular emphasis is placed on testing the accuracy, effi-
ciency and scaling properties of the method. In their most
conservative interpretation, our results provide firm evidence
of a sizeable reduction of the exponent z related to the growth
of the autocorrelation time as a function of the inverse lattice
spacing.

1 Introduction

In four spacetime Euclidean dimensions, gauge field con-
figurations can be classified according to their topological
charge Q, defined as

Q = 1

32π2

∫
d4x εμνρσ Tr

(
GμνGρσ

)
, (1)

where Gμν(x) is the field tensor. This integral can be re-
phrased as a mapping from a three-sphere to a SU (2) group,
exposing the fact that Q is related to the homotopy group
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π3 : S3 �→ SU (2). With the normalisation in Eq. (1), Q is
integer-valued.

χ , the susceptibility of Q per unit of volume, is related
to the mass of the η′ particle by the Witten-Veneziano for-
mula [1,2]. Therefore, the topological charge Q and the topo-
logical susceptibility χ play a phenomenologically relevant
role in the theory of the strong interactions and in any the-
oretically convenient generalisation of the latter such as the
large-N limit of SU (N ) gauge theories [3]. It is hardly sur-
prising then that precise measurements of Q and χ have been
one of the most active areas of activity of Lattice Gauge The-
ory since its earliest days (see e.g. [4,5] for recent reviews). In
addition, more recent investigations have used lattice deter-
minations of topological quantities to estimate the mass of
axions from first principles in order to determine a bound for
their density in the Universe [6–8].

On a finite lattice with periodic boundary conditions in all
directions, gauge configurations split into topological sec-
tors labelled by the value of Q and separated by free energy
barriers [9]. Monte Carlo simulations have shown a sharp
growth of the height of these barriers as a → 0, with a
consequent freezeout of the topological sector in numeri-
cal calculations [10]. The phenomenon becomes even more
pronounced as the number of colours N increases [11,12].
This dramatic slowing down of Q and the resulting very
large autocorrelation times pose serious problems of ergod-
icity in simulations and cause a very slow convergence of
physical observables such as hadron masses to their thermo-
dynamic limit values [13,14]. Since the toroidal topology of
the domain plays a crucial role in the freezeout, other setups
have been proposed based for example on open boundary
conditions in time [15] (used at large N in [16,17]) or on
non-orientable manifolds [18]. While these setups are very
promising, their properties and potential drawbacks such as
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the loss of translational invariance with open boundary con-
ditions in time, need further study.

In this work, we take an alternative approach to the prob-
lem of topological freezing without abandoning the use of
periodic boundary conditions in all directions. For the the-
ory formulated on a torus, we build a sequence of couplings
that interpolate from a relatively strong value to a weak cou-
pling value and we perform numerical simulations using an
algorithm in which the coupling is also a dynamical vari-
able taking values in the prebuilt set. More specifically, we
use the density of states approach [19,20] formulated with
a Gaussian constraint [21] and tempering [22,23]. The idea
behind this approach is that the strong coupling values will
act as an ergodic reservoir of topological sectors, while the
tempering guarantees thermal equilibrium of the latter in the
Monte Carlo at weaker coupling. Preliminary results of our
investigation have appeared in [24].

The rest of the work is organised as follows. In Sect. 2, we
recall some key properties of the density of states approach.
Section 3 develops the formalism for a Gaussian constraint
and discusses a simplifying approximation. The lattice gauge
theory model, the simulations and results are described in
Sect. 4. This is a long section as it covers our discussion of the
topological charge and demonstrates that the density of states
approach leads it to couple more weakly to the long timescale
modes of the system. Techniques to analyse the autocorrela-
tion time in this situation are developed. We work on three lat-
tice sizes and present our results concerning scaling in Sect. 5,
before summarising our findings in Sect. 6. Two appendices
provide more technical details: “Appendix A” compares a
multi-histogram calculation using our reference simulations
with the density of states approach; “Appendix B” contains
tables recording details of the simulations performed in this
study.

2 Density of states method

The density of states technique has been shown to be useful in
a variety of models with continuous variables. For example:
U(1) [20], complex action [25], Bose gas [26]. Other versions
of the technique have also been used to study SU(3) gauge
theory [27,28]. In this paper we further develop the technique
and use it to make a detailed study of SU(3) lattice gauge
theory that extends the results of [24].

The density of states approach developed in [19] recon-
structs canonical expectation values from a sufficiently large
and closely spaced set of functional integrals each con-
strained to have central action Si . These constrained func-
tional integrals provide an approximate way to define observ-
ables on the micro-canonical ensemble at Si and while the
original development of the subject employed a sharp con-
straint, in this paper we use a Gaussian constraint of width

δ. The choice of an analytic Gaussian constraint allows sim-
ulations to use the global HMC algorithm which commonly
underlies simulations of lattice gauge theory. The constrained
functional integrals are defined using double bracket notation
as,

〈〈B[φ]〉〉i = 1

N i

∫
Dφ B[φ]e−ai S[φ]e−(S[φ]−Si )2/2δ2

. (2)

Where B and φ denote generic operators and fields respec-
tively. The need for the term e−ai S[φ] is explained below.

Ni is a normalisation factor written as a constrained func-
tional integral without the operator B,

Ni =
∫

Dφ e−ai S[φ]e−(S[φ]−Si )2/2δ2
. (3)

Noting the definition of the density of states,

ρ(S) =
∫

Dφ δ(S[φ] − S) . (4)

We see that since the expression for Ni involves only the
action, the functional integral defining it can be replaced by
an ordinary integral over the density of states,

Ni =
∫

dS ρ(S)e−ai Se−(S−Si )2/2δ2
. (5)

So the Ni are closely related to the density of states eval-
uated at Si . This is most apparent in the limit δ → 0, when
the Gaussian constraints become delta functions and the dou-
ble bracket expressions truly represent the evaluation of an
observable on the micro-canonical ensemble. In this formal
limit there would be no need for the ai ’s. However, at finite δ,
the constraint is wide enough to require the term e−ai S[φ] to
compensate the growth of the density of states in the measure
and to ensure that the mean constrained action 〈〈S〉〉 really is
at Si . The value of ai needed to accomplish this is determined
by an iterative procedure described below. The simulations
which underly the method provide estimates of these dou-
ble bracketed expectations (2) for a set of closely spaced Si
labelled by the index i = 1 . . . NT EMPER , which we refer to
as “tempers” (we reserve the term “replica” to refer to repeats
of the whole simulation procedure with identical parameters,
but different random number sequences). Having chosen an
appropriate set of central action Si to characterise the tem-
pers, the method consists of two phases.
Robbins Monro (RM) Phase to determine ai through a pro-
cedure of minimising 〈〈S− Si 〉〉i for an iterative sequence of
ai ’s. This quantity converges to zero when ai becomes the
derivative of the (log) density of states at Si . Knowledge of
the final ai ’s is sufficient to construct a piecewise approxi-
mation to the density of states that can immediately be used
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to estimate canonical expectation values of operators that
depend only on the action, such as moments of the plaquette.
Measurement Phase (MP) at fixed ai as determined by the
RM phase. This is necessary to compute canonical expecta-
tion values of generic operators through a reweighting pro-
cedure. For example, the topological charge requires more
information than is contained in the density of states alone.
Moreover, the measurement phase provides dynamic infor-
mation about the efficiency of the method through the auto-
correlation.

We are particularly concerned about the accuracy, the rela-
tionship between expectation values computed using RM
phase and those based on the measurement phase (MP),
the autocorrelation time and the efficiency of the tempering
method. To achieve these aims we have repeated the whole
simulation procedure consisting of both phases, NREPL IC A

times, as this provides a way of estimating the errors inherent
in the method.

While the density of states method is applicable to any
model, and indeed has been used to study phase transi-
tions [20], the Yang Mills theory we study here is far from
any phase transition and all results are smooth functions of
parameters. The conclusions that rely on working in this con-
text are not restricted to lattice gauge theory but are expected
to hold for other models in which there is a single coupling
multiplying the action as this most closely mimics simple
statistical mechanics systems.

3 Formalism

According to the density of states approach, log ρ(S) is
approximated as piecewise linear with coefficients given by
the ai appearing in (2),

ρ(S) = ρi e
ai (S−Si ),

(Si−1 + Si )

2
< S <

(Si + Si+1)

2
. (6)

Where ρi is shorthand for ρ(Si ). By convention we take
Si to grow with i . Piecewise continuity leads to,

ρi+1 = ρi e
(ai+ai+1)(Si+1−Si )/2 . (7)

This relation along with the (Si , ai ) is sufficient to com-
pute the piecewise approximation to the density of states in
terms of the value ρic at some base index ic. As ρ varies over
many orders of magnitude, the base index is chosen depend-
ing on the particular problem. When reweighting to coupling
β it is chosen so as to minimise |aic − β|.

To avoid unduly long formulae, the expressions given here
assume fixed spacing Si+1 −Si = δS and also fixed Gaussian
width δi = δ. However, motivated by the desire to ensure

effective mixing across the range of tempers, variable spacing
is used in simulations.

Besides δ and δS another parameter provides a useful
scale to the problem. This parameter is model dependent
and we define σ to be the standard deviation of action fluc-
tuations in the unconstrained system. The strength of the
Gaussian constraint is determined by the dimensionless ratio
δ/σ . Although σ depends on the coupling, for this study it
does not change very much over the narrow range of tem-
pers and thus provides a useful scale. For the pure gauge
SU(3) studied here, ai turns out to be approximately linear:
ai ≈ aic −(i− ic)δS/σ 2 for indices close to the base index ic
where σ can be regarded as constant. Consequently for small
k, ρic+k ≈ ρic e

kaic δS e−k2δ2
S/2σ 2

. However, we emphasise that
this observation relies on the smoothness of the model and
limited range of tempers and should not be regarded as any
kind of modified version of the density of states method.

3.1 Canonical expectation values of the action and its
variance: LLR

The parameters ai obtained from the RM phase for each Si
provide the piecewise estimate of the log of the density of
states, so without any measurement phase we have access
to the full probability density of the action for a range of
couplings β. Estimates can be made of canonical expectation
values of functions of the action, the most common being 〈S〉
and 〈(S − 〈S〉)2〉 which in the lattice gauge theory studied
here are directly related to moments of the plaquette. We shall
call this approach “LLR” as a shorthand to distinguish it from
the “reweighting” approach discussed in the next section.

Direct application of the piecewise approximation (6),(7)
leads to the following expression for the partition function.

ZLLR =
∫

dS ρ(S)e−βS (8)

=
∑
i

ρi e−βSi

ai − β

[
e(ai−β)δS/2 − e−(ai−β)δS/2

]

≈ ZLLR′ = δS
∑
i

ρi e
−βSi . (9)

And similar formulae for the expectation values 〈S〉 and
〈(S − 〈S〉)2〉. These results, because of their reliance on the
piecewise approximation, should be taken to be accurate to
order δ2

S/σ
2.

The further approximation on the third line can be seen
as an expansion for (ai − β)δS � 1 or can be regarded as
a trapezium evaluation of the integral. In numerical work
we always use the full expression but the approximate one,
which we denote as “LLR′” approach is simpler yet remark-
ably accurate. Because of its advantages in exposition we
develop some formalism for this LLR′ approximation and
define weights vi :
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vi = ρi e
−βSi (10)

then

〈 f (S)〉LLR′ =
∑

i vi f (Si )∑
i vi

. (11)

These weights can be normalised to
∑

i vi = 1, but for
numerical reasons in the course of intermediate computa-
tions, it is convenient to choose the weight at the central
index vic to be unity by defining ρic = ρ(Sic ) = eβSic .

The full LLR formulae are straightforward to derive from
(8), but ugly in comparison with (10) and (11).

3.2 Canonical expectation values of arbitrary
operators:reweighting

Observables that are not simply functions of the action can
not be computed using the density of states alone and a
measurement phase is needed The measurements are per-
formed on a set of constrained tempering runs with parame-
ters (Si , ai ) and reweighting is then used to obtain the canon-
ical expectation value:

〈B[φ]〉 = 1

Z
∫

Dφ B[φ]e−βS[φ] . (12)

To relate this to the constrained functional integrals we
consider sums of spaced Gaussians. We intend to use the
functional integral equivalent of the approximate identity
presented below,

K (x) = 1√
2π

δx

δ

∑
i

e−(x−iδx )2/2δ2

= 1 + 2
∑
i>0

e
−2

(
iπδ
δx

)2

cos

(
2iπx

δx

)

= 1 + 2e
−2

(
πδ
δx

)2

cos

(
2πx

δx

)
+ · · ·

≈ 1 (13)

where the omitted terms are exponentially suppressed in
1/δx . This identity should be more properly understood in
its integral form,

∫
Γ

dx f (x)K (x) ≈
∫

Γ

dx f (x) (14)

where f (x) are smooth test functions of width exceeding
δ or δx defined over the domain Γ .

This approximation is extremely accurate and can be
checked in this one-dimensional context either analytically
for Gaussian test functions, or numerically to understand the
errors introduced by a finite set of Gaussians, and by the

choice of the ratio δ/δx . In the limit δ → 0 the sum of Gaus-
sians becomes a comb of delta functions, the right hand side
of (14) becomes a trapezium approximation and the accuracy
of the approximation in this limit is order δ2

x .
Returning to (12) we introduce the functional integral gen-

eralisation of the sum (13) into the expression to obtain:

〈B[φ]〉 ≈ 1

Z
δS√
2πδ

∑
i

∫
Dφ B[φ]e−βS[φ]e−(S[φ]−Si )2/2δ2

.

(15)

In the light of the discussion above, the accuracy of the
approximation is rather better than anticipated from the delta
function limit, but nonetheless still contains an order δ2

S/σ
2

term when there are only a finite set of Gaussians.
Notice that from the definition of the double bracket quan-

tities it is possible to reweight in the usual sense, that is, to
include part of the exponential term as a measured operator
rather than use for importance sampling in the Monte Carlo
simulation.

〈〈B[φ]e(ai−β)S〉〉i = 1

Ni

∫
Dφ B[φ]e−βS[φ]e−(S[φ]−Si )2/2δ2

, (16)

this resembles the terms in the sum (15), so the canoni-
cal expectation value can be written in terms of the double
bracket quantities as:

〈B[φ]〉 ≈ 1

Z
δS√
2πδ

∑
i

Ni 〈〈B[φ]e(ai−β)S〉〉i . (17)

With,

Z = δS√
2πδ

∑
i

Ni 〈〈e(ai−β)S〉〉i . (18)

The normalisation factors, Ni , only involve the action (5),
so they can be evaluated using the piecewise approximation.
This introduces an additional approximation of order δ2

S/σ
2.

Ni ≈
∑
j

ρ j

∫ (S j+1+S j )/2

(S j−1+S j )/2
dS ea j (S−S j ) × e−ai Se−(S−Si )2/2δ2

. (19)

So the Ni can be analytically evaluated in terms of trun-
cated Gaussian integrals or error functions. Using this expres-
sion in (17) and (18), we obtain the reweighting formula for
fixed separation between Gaussians:

〈B[φ]〉 ≈
∑

i Ni 〈〈B[φ]e(ai−β)S〉〉i∑
i Ni 〈〈e(ai−β)S〉〉i . (20)

We define the following weights

wi = δS

δ

Ni√
2πδ

e(ai−β)Si (21)
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where the prefactors are motivated by the simple relation
between wi and the LLR′ weights, vi (10), in various limits
explored in section (3.2.2) below.

The reweighting formula takes its final form, which overall
is accurate to order δ2

S/σ
2.

〈B[φ]〉 ≈
∑

i wi 〈〈B[φ]e(ai−β)(S−Si )〉〉i∑
i wi 〈〈e(ai−β)(S−Si )〉〉i . (22)

This expectation value is defined in terms of the ratio of
sums and it is important to avoid bias in estimating the ratio.
Bootstrap techniques are used as explained later.

3.2.1 Quenched approximation

If the fluctuations of the action are ignored and we approxi-
mate (22) by neglecting the exponential factors in the double
brackets, we obtain a simpler formula

〈B[φ]〉 ≈
∑

i wi 〈〈B[φ]〉〉i∑
i wi

. (23)

At the risk of confusion in the lattice gauge theory com-
munity, we term this approximation “quenched”, following
the more general usage in the theory of disordered systems.

In an attempt to justify this approximation we first consider
the term (ai − β). Provided that the range of reweighting is
sufficiently narrow to allow the approximate linear relation
ai = aic − (i − ic)δS/σ 2, and noting that (aic −β) < δS/σ

2,
we have:

ai − β ≈ −(i − ic)δS/σ
2 . (24)

The double bracket expectation of the second term in the
exponent vanishes, 〈〈S − Si 〉〉i = 0, according to the tun-
ing of ai during the RM phase. Of course, because this sec-
ond term appears in the exponent, fluctuations of the action
cause higher moments to contribute. However, the role of
the Gaussian constraint is precisely to limit the size of these
fluctuations and we expect even moments to scale as:

〈〈(S − Si )
2n〉〉i ∼ δ2n . (25)

Therefore, provided the exponential can be expanded, we
may anticipate the overall result:

〈〈e(ai−β)(S−Si )〉〉i ∼ 1 + O(δδS/σ
2) . (26)

If, by ignoring possible correlations between S and B[φ],
we make a similar assumption for the numerator of (22), we
may expect that the quenched approximation differs from
the full formula by terms of order δδS/σ

2. Since, in practical
work, we set δ/δS to be a value of order 1, the quenched

approximation is plausibly accurate to the same order δ2
S/σ

2

as was the full reweighting formula (22). However, it will
become clear in the numerical work that while the quenched
approximation is often good, it can lead to very different
predictions in some circumstances.

The quenched approximation has a much simpler struc-
ture than the full expression and it can be interpreted as a
reweighting at each time step or configuration of the Monte
Carlo simulation in the measurement phase. This allows for
a straightforward understanding of the quenched autocorre-
lation as that of the evolution of the reweighted quantity.
Indeed, this is the basis for the autocorrelation time reported
in [24].

In the full expression, (22), the expectation value is defined
in terms of the ratio of sums. The signal to evaluate the
autocorrelation time will be dominated by the larger of the
autocorrelators of the numerator and denominator, in prac-
tice always the numerator. It is then important to avoid bias
in estimating the ratio and bootstrap techniques are used as
explained later.

3.2.2 Limits

Further intuition about the reweighting formula comes from
considering various limits. Firstly, consider the limit δ/σ →
0 holding other quantities, including δS , fixed. The weights
simplify, wi = vi , and moreover in this limit fluctuations
of the action are suppressed, so the reweighting formula
becomes the quenched version (23) resembling the density
of states result in the LLR′ approximation (11) extended to
operators that do not solely depend on the action.

For fixed spacing δS , without taking any limit, the weights
can be written as:

wi = 1√
2π

δS

δ
vi

∑
j

ρ j

ρi
ea j (Si−S j )

× 1√
2πδ

∫ S j−Si+δS/2

S j−Si−δS/2
dSe(a j−ai )Se−S2/2δ2

. (27)

When the range of reweighting is sufficiently narrow to
allow the the approximate linear behaviour ai = aic − (i −
ic)δS/σ 2, the term (ρ j/ρi )ea j (Si−S j ) = 1, and the integral
becomes a function of j − i , so the sum is independent of i
and the weights wi are proportional to the LLR′ weights vi .

Numerically, because the ranges over which we reweight
are small, the ai are linear and the weights obey wi ∝ vi
rather accurately. When the sum of weights is normalised to
unity, wi and vi differ by at most 4 × 10−3.

The limit δ → ∞, corresponding to no constraint, resem-
bles the situation usually treated with the multi-histogram
approach (see “Appendix A” for a general comparison). Rely-
ing on the approximate linearity of the ai , the expression (27)
can be simplified by expanding in σ 2/δ2. However, fluctu-

123



375 Page 6 of 23 Eur. Phys. J. C (2021) 81 :375

ations are not suppressed in this limit and the reweighting
formula (22) does not reduce to the multi-histogram formula.

A more interesting limit is to take δ/σ → 0, δS/σ → 0
holding the ratio δS/δ fixed. Again we assume a narrow range
and rely on linearity of the ai to obtain,

wi = δS

δ
vi

σ√
δ2 + σ 2

→ δS

δ
vi . (28)

Since fluctuations are suppressed in this limit the reweight-
ing formula again becomes the quenched version (23).

4 Lattice gauge theory

Pure Yang Mills lattice gauge theory has been used as a test-
ing ground for the density of states method since [19] studied
SU(2) with a sharp “top hat” constraint and either Metropo-
lis or Heat Bath algorithm. The smooth Gaussian constraint
allows the HMC method to be used as described for SU(2)
in [21]. The tempering method was introduced for SU(3) in
[24].

We work with SU(3) in four dimensions and employ a
standard Wilson action, on 164, 204 and 244 lattices. The
HMC algorithm was used with the same trajectory length and
integrator as [24] and these parameters allow us to validate
our simulations in comparison with results in [10].

Preliminary simulations generated for the purposes of
comparison used the canonical unconstrained approach
rather than the density of states method. These simulations
consider several size lattices and a range of couplings among
which many trajectories at constant boxsize can be identified
to define a continuum limit. Figure 1 illustrates the range
of parameters considered and these are given in Table 1. At
larger values of β the dynamics of the topological charge
becomes extremely slow. All simulations, both these uncon-
strained comparison runs and later constrained runs, use the
HiRep code1 [29,30] and are initialised by thermalising a
random configuration.

As can be seen in Fig. 1, the β values for each lattice
size all overlap in the approximate range 6.0 < β < 6.2. A
comparison of the predictions for plaquette observables from
simulations in this range confirms the absence of finite size
effects for this observable to the accuracy of these results.
This conclusion matches the claim in [10] that finite size
effects are small for the parameters we consider both for
these local observables and later on for the more extended
ones.

A table of parameter values for the constrained runs is
given in “Appendix B”, but some rough observations are
given here as a prelude to a discussion of the method of select-

1 Available at https://github.com/claudiopica/HiRep.

Fig. 1 Reference simulations using an unconstrained approach illus-
trating the range of parameters under consideration over the lattice sizes
164, 204, 244. Top: Plaquette expectation. Bottom: Plaquette variance,
including a volume factor for scaling

ing them. The action is of order 1.5×105 at 164, 3.6×105 at
204 and 7.3×105 at 244. The standard deviation of the action
in the unconstrained case is about σ = 196 at 164, σ = 286
at 204 and σ = 391 at 244 in the centre of the reweighting
range. This parameter provides the scale for the spacing δS
of order 210 at 164, 310 at 204 and 420 at 244. The width of
the Gaussian constraints were set to be about 1.2 times the
spacing in each case, δ/δS = 1.2.

4.1 Tempering method

Constrained functional integrals are estimated from HMC
simulations with action H(ai , φ, Si ) which incorporates the
Gaussian constraint (see Eq. (2)).

H(ai , φ, Si ) = ai S[φ] + (S[φ] − Si )
2/2δ2 . (29)

Because the constraint might allow energy barriers to
block the simulation dynamics there is concern that den-
sity of states simulations will be slower than unconstrained
simulations. For pure gauge theory even the unconstrained
simulations are notorious for the slow dynamics apparent in
topological modes. In an attempt to overcome this problem
we use tempering [22] (this was called the replica exchange
method in [23,24]). Tempering is a technique that considers
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Table 1 Parameters of canonical reference simulations. For each lattice
size, the range of β was spanned by 24 simulations

Size β range Number of sweeps

164 5.79 < β < 6.20 105

204 5.90 < β < 6.35 5 × 104

244 6.00 < β < 6.49 105

Table 2 Parameters of measurement phase of density of states simu-
lations. There were 24 tempers, or simulations at specific values of Si .
To aid comparison, the range of central action is given in terms of a
coupling range below

Size β range Number of sweeps

164 6.07 < β < 6.16 2 × 104

204 6.26 < β < 6.32 2 × 104

244 6.42 < β < 6.46 2 × 104

an ensemble of simulations over a range ofβ, or in our case Si ,
and allows configurations to migrate over this range. Config-
urations suffering from slow dynamics at large β can diffuse
to small β where they evolve more quickly before returning
to small β. We chose a set of NT EMPER = 24 tempers each
with a fixed central action Si . The central energies are listed
in Table 12 in “Appendix B” and correspond to a range of
coupling given in Table 2. These ranges are much narrower
than the ranges of the unconstrained reference simulations.

At regular intervals (every 15 HMC steps in the mea-
surement phase), the tempering method swaps configurations
between pairs of tempers with the following probability

min(1, exp{H(a1, φ1, S1) + H(a2, φ2, S2)

−H(a1, φ2, S1) − H(a2, φ1, S2)}) . (30)

This preserves detailed balance of the entire system of
multiple tempers and aids ergodicity.

In order to ensure that swap probabilities remain constant
across the range of tempers, the values of the set of central
energies Si and the width of the Gaussians δi were chosen
so that the overlap of probability distributions remain fixed.
This amounts to a requirement on the ratio of the spacing δS
and the standard deviation of the constrained action (given

by δi/

√
1 + δ2

i /σ
2). The absolute values of δi/σ and δS/σ

determine the potential accuracy of the method. The effect of
this tuning was monitored through the swap probabilities as
shown in Fig. 2 where the aim was for a swap probability of
0.5. Effects from the edge of the temper range are apparent,
but do not extend far into the main range.

Figure 3 shows the swap history over a short part of the
measurement phase of the simulation illustrating how the pair
swaps enable mixing though the whole space. For all lattice
sizes, more than half the configurations appear at some point

Fig. 2 Average swap probabilities during the course of the measure-
ment phase. Averaged over all replicas. Errors are a combination of
statistical and from the variation between replicas. The overlapping
symbols indicate that the probabilities for 164, 204 and 244 are indis-
tinguishable

Fig. 3 Evolution of configurations showing how swaps between adja-
cent tempers lead to global mixing. Example for 244 over a short part
of the run for one replica near the middle of the measurement phase.
The bold line shows the history of a certain configuration

in every temper. In other words, they appear at every possible
central energy. Moreover, every configuration always appears
in at least half the tempers.

4.2 Observables

Besides the plaquette expectation value which is an action
dependent quantity and hence can be computed using either
of the techniques outlined in Sect. 2, it turned out that the vari-
ation of the plaquette provides a sensitive test of the accuracy
of the method.

Other observables were defined after configurations had
been evolved according to the Wilson flow [31]. The simplest
such observables were the action density E and its clover
version Esym which have been studied before in the context
of Wilson flow [31].

At 164 the flow time was set to t = 2 and this was scaled
for the simulations at 204 to t = 3.125 and at 244 to t = 4.5
so as to preserve the extent of the smoothing radius as the
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same fraction of the lattice in each case, keeping the physical
length fixed. These choices correspond to a requirement on
the dimensional parameter t :

√
2 d t = L/4 . (31)

Where d is the dimension (d = 4) and L is the linear size
of the box in lattice units. Fixing the extent of the smoothing
to 1/4 of the lattice will allow us to study scaling in Sect. 5.

Topological charge was the observable of most interest as
it provides a test of the efficiency of the tempering method in
improving autocorrelation times. The charge was computed
after Wilson flow of the operator to a value of t that was
scaled according to the size of the lattice as described above.
The charge was defined in terms of plaquette-like quantities
on the smoothed configuration [31,32] that amount to the
continuum expression given in the introduction (1).

4.3 RM phase

With a single coupling constant and far from any phase tran-
sition, the value of ai for a given central energy Si will be
close to the value of the coupling β at which 〈S − Si 〉 = 0.
The preliminary simulations allow a fit to the dependence
of 〈S〉 on β which provides a value that is used as a seed
for the RM phase. Since the seed is known so accurately,
the role of the RM phase is simply to improve rather than to
search for the solution in a complex landscape. The litera-
ture [33] indicates that the efficiency of the Robbins Monro
technique can depend sensitively on the relaxation param-
eters. This may be true for high dimension problems com-
mon in AI but is not the case for this improvement of a one
dimensional problem. Indeed, a simple Gaussian model for
the RM process allows the effect of different RM schedules
to be explored for much longer convergence times than are
possible for the real system. The model consists of sampling
〈〈S−Si 〉〉 from a Gaussian of width δ/

√
1 + δ2/σ 2 and mean

−(ai −a∗
i )δ

2/(1 + δ2/σ 2) where a∗
i is the assumed solution.

It was found that there was little advantage in more elabo-
rate tuning than the choice of parameters n0 and c in the RM
iteration:

ai (n) = ai (n − 1) − c

n0 + n
〈〈S − Si 〉〉i . (32)

In the RM phase, 〈〈S− Si 〉〉i was computed from 50 mea-
surements on consecutive HMC configurations with fixed ai .
Test runs which made an update according to (32) every mea-
surement had the same behaviour and were barely any faster.
These simulations were performed without any replica swaps
during the evaluation of 〈〈S − Si 〉〉i because, while these
do not usually affect final convergence, they do prevent it
at the very edges of the temper range. Moreover they lead
to larger early fluctuations which would require a different

tuning regime. Swaps were allowed between evaluations of
〈〈S − Si 〉〉i .

The value of c was chosen to be rather smaller than the
supposed optimal one as larger values tended to drive the sys-
tem too far from the accurate seed value. This choice does not
compromise the convergence properties of the algorithm. The
starting iteration n0 was set to 20 as a compromise between
excess change over the first few iterations and speed of con-
vergence later (the value was slightly raised to n0 = 25 for
244).

In contrast to the details of the RM schedule, starting
and following independent RM simulations was useful both
to test the convergence and to provide a bootstrap mecha-
nism for computing errors arising from inaccuracy in this
phase. The whole simulation procedure is repeated for a set
of NREPL IC A replicas. During the RM phase, each replica
or RM iterate starts from a different random configuration
separately thermalised with a different sequence of random
numbers, but with the same seed value ai (0). We distinguish
the replicas with an upper index a = 1 . . . NREPL IC A and
in this work there are NREPL IC A = 8 different replicas.
The mean over replicas at each RM phase iteration step n, is
denoted with an overbar as,

āi (n) = 1

NREPL IC A

NREPL IC A∑
a=1

aai (n) . (33)

According to the theory of the Robbins Monro tech-
nique [33], different iterates will asymptotically converge to
a Gaussian distribution of width proportional to 1/

√
n. The

variance in replica space is therefore a convenient conver-
gence parameter,

Ci (n) = 1

NREPL IC A

NREPL IC A∑
a=1

(aai (n) − āi (n))2 . (34)

4.3.1 Convergence

Examples of typical convergence are shown in Fig. 4. Ideal
behaviour is for the convergence parameter to decrease as
1/n.

During the RM phase the behaviour of the convergence
parameter is characterised by a noisy initial phase after which
the scaling regime is reached. The shape of these curves
varies considerably between replicas and tempers but all
eventually display the asymptotic behaviour.

The primary convergence criterion is to ensure that con-
vergence parameter has reached the asymptotic regime, but
this still leaves some flexibility in exactly when to stop. In the
present work we first ensure that the convergence has reached
the asymptotic phase and terminate after a fixed number of
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Fig. 4 Convergence during the RM phase at 204 for the temper with
central action 363310. Top: history of ai (n) showing 8 independent
replicas all starting from the seed 6.28980. The mean is also shown as
the thick line. Bottom: history of convergence parameter Ci (n) defined
in the text

iterations nmax . nmax = 442 iterations for 164 and 500 in the
case of 204 and 244.

The error in the final value of ai may be estimated from the
standard deviation,

√
Ci (nmax )/NREPL IC A, at the end of the

RM phase. When averaged over tempers, this was 2.7×10−5,
1.7 × 10−5, 1.3 × 10−5 for 164, 204 and 244 respectively.
Note that these values are similar to the difference between
the final mean value āi (nmax ) and the initial seed value. As is
clear from the behaviour of the convergence parameter of the
RM phase convergence shown in Fig. 4 it takes considerable
effort to improve the accuracy of the ai .

4.3.2 Predictions from RM phase

The LLR procedure of Sect. 3.1 was followed to compute
the plaquette and its variation based solely on the Si and the
ai determined by the RM phase. This was done separately
for each of the 8 replicas and at the final stage errors are
evaluated using bootstrap. Note that the scales are different
for each size shown in Fig. 5. For the values of β shown
in these plots, the original runs using traditional HMC were
supplemented by additional unconstrained runs at 204 and
244 intended to improve statistics.

The range of β considered for these measurements was
limited because deviations from a smooth plot appear near
the edges of the temper range. The full LLR version of the
weights (10) changes abruptly from an approximately linear
dependence on β and it is straightforward to choose a cutoff
that amounts to discarding three tempers at each boundary.
The resulting ranges are given in Table 3.

Although the plaquette can easily be measured using
traditional techniques, it is reassuring that we obtain the
same results, with high accuracy, using the density of states
method. The mean plaquette shown in the first column of
Fig. 5 appears the same whether computed using density of
states information from the RM phase or reweighting results
from the measurement phase. The plaquette variance shown
in the second column of Fig. 5 provides a more sensitive test.
Indeed, an early 204 run with shorter RM phase and values of
ai only known to accuracy of around 1 × 10−4 (compared to
3×10−5 for the data shown in Fig. 5), led to errors in the vari-
ance about five times bigger then in the data presented here.
The third column of Fig. 5 is discussed in the next section.

4.4 Measurement phase

The measurement phase has a duration of 2 × 104 HMC
steps with potential swaps every 15 steps and was repeated
for each of the 8 RM replicas and also for all three lattice
sizes. There are two distinct contributions to the error: from
uncertainly in the ai arising from the RM phase and from
statistical fluctuation in the measurement phase due to limited
length runs. We refer to these as the RM error and MP error
respectively.

The set of β at which to compute canonical expectation
values by the reweighting procedure of Sect. 3.2 as adapted
for simulations below, are chosen sufficiently close to give a
good approximation to a continuous curve in the plots. We
choose a β spacing of 0.002 irrespective of lattice size.

4.4.1 Reweighting

In order to relate the formalism developed in Sect. 3 to the
output of simulations it is helpful to explicitly recognise that
in the measurement phase of the constrained Monte Carlo,
the double bracket quantities appearing in (22) are identified
as averages over HMC configurations or time-steps t for a
particular temper i . The usual estimator is:
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Fig. 5 Predictions for the mean plaquette and its variance. Rows show
164, 204 and 244. The first column shows the mean plaquette with
errors that are too small to be visible and this appears the same whether
computed using information from the RM phase (LLR) or reweighting

results from the measurement phase. The second and third columns
show the plaquette variance computed using LLR and reweighting
respectively. Errors are shown with shaded regions. All plots also show
data points obtained using traditional unconstrained methods

〈〈B[φ]e(ai−β)(S−Si )〉〉i = 1

T

∑
t

e(ai−β)(Si [t]−Si )Bi [t] . (35)

Where Si [t] and Bi [t] are the measurements of the respec-
tive observables at that configuration or time-step.

For each HMC configuration and separately for each RM
replica labelled by index a, we perform the following tem-
per sums appearing in the numerator and denominator of
equation (22). Usually, the variance of the operator is also

a quantity of interest so computations involving B2
i [t] are

made at the same time.

Ba[t] =
∑
i

wa
i e

(aai −β)(Sai [t]−Si )Ba
i [t] (36)

=
∑
i

wa
i [t]Ba

i [t] (37)

wa[t] =
∑
i

wa
i e

(aai −β)(Sai [t]−Si ) =
∑
i

wa
i [t] . (38)
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Table 3 Ranges of β for LLR predictions based on the RM phase

Size β range

164 6.066 ≤ β ≤ 6.164

204 6.256 ≤ β ≤ 6.320

244 6.416 ≤ β ≤ 6.462

Fig. 6 The average normalised weight for β near the centre of the tem-
per range. Shown for 164, β = 6.118; other sizes and β are very similar.
The time dependent weight (39) is averaged over all measurements and
all RM replicas. Errors are too small to be visible

Where we have defined the time dependent weights,

wa
i [t] = wa

i e
(aai −β)(Sai [t]−Si ) . (39)

Which in the quenched approximation reduce to the ordi-
nary static weights wa

i (21).
Using these definitions the reweighting expression (22)

for a particular RM replica, a, becomes

〈B[φ]〉 =
∑

t B
a[t]∑

t w
a[t] . (40)

The integrated autocorrelation time is defined as the maxi-
mum of the autocorrelation time in numerator and denomina-
tor and is computed according to the prescription in [34]. In
order to estimate the ratio that appears in the reweighting for-
mula (40) without bias, a bootstrap technique is used over the
2 × 104 measurements divided by the autocorrelation time.
The same bootstrap selection is employed for both numerator
and denominator. This procedure also yields an estimate of
the error of the ratio due to the fluctuations in the measure-
ments. We call this statistical error the “measurement phase
(MP) error”.

The procedure above is repeated for the NREPL IC A differ-
ent RM replicas. A separate analysis over these reweighted
measurements gives the error associated with imprecision in
knowledge of the value of the ai ’s that were derived in the
RM phase. Depending on the observable, the relative sizes

Table 4 Ranges of β for reweighting predictions based on the mea-
surement phase according to criteria in the text

Size β range

164 6.072 ≤ β ≤ 6.160

204 6.258 ≤ β ≤ 6.318

244 6.418 ≤ β ≤ 6.462

of the errors arising from each source, RM or measurement,
is different and in plots the two different contributions to the
error are represented by distinct shaded regions.

The static weights, named wi and defined by equation (21)
in the formalism above, are computed in such a way as to
avoid danger of numerical overflow, based on the parameters
(Si , ai ) and the desired β for reweighting using generalisa-
tions of the formulae (21) adapted for variable action spacing.
When the reweighting parameter β happens to be similar to
a value of ai in the middle of the temper range, the static
weights are largest for tempers that are near that central part
of the range. For time varying weights (39) there are fluc-
tuations and the weights of more distant tempers contribute.
Although these weights vary for each step of the measure-
ment simulation, their average is very stable. Figure 6 shows
how the average normalised time dependent weight varies
across the temper index for β chosen near the centre of the
temper range. Plots for other size lattices or other values of
β near the centre of the tempering range look very similar
indicating that the range of tempers that contribute apprecia-
ble weight is fairly constant at about seven tempers for our
parameters.

As β approaches an edge of the temper range, reweight-
ing becomes less accurate since tempers not simulated could
have significant weights. The reweighting range is deter-
mined by requiring that the average normalised weight for
edge tempers be less than 1%. A different criterion based on
the limiting the fraction of weights that are greater than 0.01
for example, leads to the same range. The resulting ranges
are apparent from the plots, but are explicitly given in Table
4. There appears to be a slight decrease in the useful fraction
of the temper range as the lattice size increases.

4.4.2 Plaquette predictions

The expectation of the mean plaquette and variance can be
computed via either of the techniques, LLR based on the RM
phase or reweighting measurements, and it is interesting to
compare the results. A plot of the mean is indistinguishable
from the left column of Fig. 5 though as is apparent from
Tables 5, 6, 7, the LLR approach leads to greater accuracy.
The plaquette variance according to the reweighting method
is shown in the right column of Fig. 5. The RM errors for
each approach are similar but the reweighting approach is
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Table 5 Plaquette observables for 164 at β = 6.118. Entries are com-
puted using LLR, LLR′ or reweighted measurements with quenched
(QRewt) or varying weights (Rewt). Multi-histogram results based on
unconstrained simulations are given for comparison (see “Appendix B”)

Obs Method Value RM-err MP-err

Mean MultiHist 0.605906 3.6e−06 –

Mean LLR’ 0.605904 1.8e−06 –

Mean LLR 0.605904 1.9e−06 –

Mean QRewt 0.605904 1.7e−06 3.4e−06

Mean Rewt 0.605905 1.9e−06 4.2e−06

Var MultiHist 2.4761e−07 12.2e−10 –

Var LLR’ 2.4820e−07 6.3e−10 –

Var LLR 2.4813e−07 6.9e−10 –

Var QRewt 3.9087e−07 8.6e−10 31.7e−10

Var Rewt 2.4446e−07 13.2e−10 29.2e−10

τint QRewt 2.17 0.05 0.13

τint Rewt 0.73 0.05 0.03

Table 6 Plaquette observables for 204 at β = 6.290

Obs Method Value RM-err MP-err

Mean MultiHist 0.621560 10.6e−06 –

Mean LLR’ 0.621569 0.9e−06 –

Mean LLR 0.621569 1.0e−06 –

Mean QRewt 0.621569 0.7e−06 1.9e−06

Mean Rewt 0.621570 1.0e−06 2.4e−06

Var MultiHist 0.8806e−07 3.9e−10 –

Var LLR’ 0.8902e−07 1.6e−10 –

Var LLR 0.8900e−07 1.7e−10 –

Var QRewt 1.4034e−07 2.0e−10 10.8e−10

Var Rewt 0.8778e−07 3.6e−10 8.6e−10

τint QRewt 1.95 0.02 0.11

τint Rewt 0.90 0.06 0.04

Table 7 Plaquette observables for 244 at β = 6.438

Obs Method Value RM-err MP-err

Mean MultiHist 0.633594 5.6e−06 –

Mean LLR’ 0.633621 0.6e−06 –

Mean LLR 0.633621 0.6e−06 –

Mean QRewt 0.633622 0.6e−06 1.4e−06

Mean Rewt 0.633620 1.0e−06 1.4e−06

Var MultiHist 0.3257e−07 2.34e−9 -

Var LLR’ 0.3906e−07 0.5e−10 –

Var LLR 0.3905e−07 0.5e−10 –

Var QRewt 0.6199e−07 1.6e−10 4.9e−10

Var Rewt 0.3871e−07 1.2e−10 3.7e−10

τint QRewt 1.91 0.06 0.11

τint Rewt 0.89 0.02 0.03

also subject to MP errors which for the run length chosen,
are a few times larger that the RM errors.

In order to provide more detail about the relative size of
the RM errors from uncertainly in the ai from the RM and
the MP errors due to limited length runs, Tables 5, 6, 7 show
data for a representative value of β chosen in the centre of the
range for each lattice size. Overall, because it is only subject
to RM and not MP errors, the LLR approach that only uses
the density of states is more accurate than reweighting. In this
case it is possible to see that the difference between measure-
ments using the full formulae based on (9) and those using
the approximation denoted LLR′ are always smaller than the
error due to uncertainty in ai . The tables also show results
from unconstrained simulations reweighted to the reference
β using multi-histogram [35] (see “Appendix B”). Note that
the error from this approach reflects both the intrinsic statisti-
cal error of the unconstrained simulations and also how close
the reference β happens to be to one of the widely spaced set
of β used in those simulations, so the way it changes with
lattice size is not significant.

The tables also allow us to compare the use of quenched
and fluctuating weights for reweighted measurements. Both
lead to very similar results for the mean plaquette and its
errors. However there is a clear difference in the result for
the plaquette variance and comparison with either density of
states or traditional simulations favours the approach derived
in (22), that is, the one with fluctuating weights. This result
clearly indicates that the quenched approach is incorrect, we
will continue to study it to illuminate the autocorrelation of
the topological charge, but in all further plots of expectation
values we use the fluctuating weights. For both the plaquette
mean and variance, the MP error for the chosen run length is
a few times larger than the RM error.

The autocorrelation times displayed in the tables are the
integrated version computed using the Wolff criterion as
described in Sect. 4.6 and are order 1 HMC step remain-
ing fairly constant as β varies. The consequences of the use
of fluctuating weights are most apparent in the integrated
autocorrelation time which becomes half the value obtained
in a quenched analysis. The equivalent value for the tradi-
tional simulation dropped to a plateau of about 3 HMC steps
for β > 6. For varying weights, the MP and RM errors are
of similar size while for quenched weights the MP error is
larger.

4.4.3 Observables defined after Wilson flow

Wilson flow corresponds to an operation that cannot be treat-
ed without using reweighting. Expectation values for the
symmetric cloverleaf energy density, Esym , after Wilson flow
are shown in Fig. 7 and the equivalent results for the energy
density after Wilson flow are very similar. For the values of β
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Fig. 7 The symmetric cloverleaf energy density after Wilson flow
using reweighted measurements. Rows for 164, 204, 244. Also shown
for comparison are results from traditional simulations supplemented
by additional runs. Left: the mean value. Right: the variance (with a

volume factor). Errors from the measurement and the RM phase are
similar but small and are shown as the shaded region barely visible in
the case of the mean

shown, the traditional unconstrained simulations have been
supplemented with additional runs to improve statistics. As
we have come to expect for the plaquette, the mean value of
Esym has small error and agrees closely with the reference
simulations for all sizes. The variance is much better behaved
than it was for the original plaquette variance without Wil-
son flow and has closer agreement with the unconstrained
simulations. Errors arising from RM and measurement are
of similar size and both less than 0.1% for the mean and less
than 2% for the variance.

A discussion of the autocorrelation time for these observ-
ables is postponed until after we discuss the computation of
autocorrelation in the case of the topological charge.

4.5 Topological charge

We devote a whole section to this topic because a strong
motivation for studying alternative approaches such as den-
sity of states is the freezing of the topological charge in the
continuum limit of traditional simulations.
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Fig. 8 The topological charge based on reweighted measurements.
Also shown for comparison are results from unconstrained simulations
with additional runs. Left: the charge itself which must be zero. Right:

the variance of the charge. From top to bottom: 164, 204, 244. Errors
from the measurement and the RM phase are shown as shaded regions.
The Q data point for 244 at β = 6.43 is off plot

The expectation of the topological charge must of course
vanish and the left column of Fig. 8 shows that the reweight-
ed measurements always contain zero within the error range,
while the rather longer traditional simulations have not yet
met this requirement. Vanishing charge is often regarded
as a check that simulations are sufficiently long and the
widely varying sizes of the error bars for the variance of
the traditional simulations at larger sizes, even with the
help of supplemental runs, indicates that these simulations
are not yet ergodic. Even the configurations of the mea-
surement phase simulations rarely change charge at large
size, but the swaps lead to much more rapid change of
fixed central energy trajectories. These qualitative consid-

erations are more formally studied with the autocorrelator
below.

The effect of Wilson flow on the topological charge is
well known [31] and for measurements on either traditional
unconstrained or constrained simulations the flowed charge
bunches close to integer values. Several tempers that can have
different (each almost integer) values of the charge contribute
to the reweighted charge which is no longer expected to be
close to an integer.

The variance or topological susceptibility is shown in the
right column of Fig. 8. Note that the scale varies and that the
size of the errors of the reweighted results actually decreases
as the lattice size increases.
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Table 8 Topological charge observables for 164 at β = 6.118. All
tables are computed using reweighted measurements with quenched
weights (QRewt) or fluctuating weights (Rewt). Entries for reference
simulations reweighted according to multi-histogram (see “Appendix
B”) are given for comparison

Obs Method Value RM-err MP-err

TC QRewt 0.03 0.04 0.07

TC Rewt 0.02 0.04 0.06

TC variance MultiHist 1.72 0.06 –

TC variance QRewt 1.82 0.05 0.13

TC variance Rewt 1.83 0.04 0.13

TC τint QRewt 91 8 27

TC τint Rewt 26 5 9

Table 9 Topological charge observables for 204 at β = 6.290

Obs wts Value RM-err MP-err

TC QRewt 0.05 0.04 0.08

TC Rewt 0.06 0.03 0.07

TC variance MultiHist 1.44 0.39 –

TC variance QRewt 1.53 0.06 0.15

TC variance Rewt 1.53 0.05 0.12

TC τint QRewt 170 11 63

TC τint Rewt 50 5 22

Table 10 Topological charge observables for 244 at β = 6.438

Obs wts Value RM-err MP-err

TC QRewt −0.08 0.07 0.10

TC Rewt −0.07 0.06 0.09

TC variance MultiHist 2.57 0.94 –

TC variance QRewt 1.59 0.10 0.20

TC variance Rewt 1.59 0.09 0.14

TC τint QRewt 264 83 128

TC τint Rewt 89 30 52

Tables 8, 9 and 10, show detailed results for a single value
of β from the centre of the range at each lattice size to
illustrate the relative size of the RM and MP error and to
expose the relation between reweighting with quenched or
fluctuating weights. The values predicted for mean or vari-
ance of the topological charge by either type of reweighting
is close. The unconstrained results reweighted according to
multi-histogram always have large errors and become poorer
at larger lattice size. Note that, as described in the next sec-
tion, τint is computed using a different criterion for fluctu-
ating weight than for quenched weights. Both RM and MP
errors for each quantity are fairly similar for quenched and
unquenched. MP errors are in all cases larger than RM errors.

Fig. 9 Quenched and fluctuating autocorrelation functions for the
topological charge for a representative example at β = 6.290 for 204.
Both functions are normalised. Top: over short times where for the fluc-
tuating weight autocorrelator the first few points show the rapid decay
component. Bottom: over long times showing typical fluctuations

The autocorrelation time and the dramatic difference
between the its value for quenched and fluctuating weights
is the subject of the next section.

4.6 Autocorrelation

The autocorrelation time determines the size of errors and so
is used as a way of evaluating the efficiency of competing
algorithms. The particular autocorrelation time relevant to
computing errors is the integrated form, τint as distinct from
τexp which characterises the long time decay of the correla-
tion function. This distinction is emphasised by Madras and
Sokal [36], but a connection appeared in more recent work
by Wolff [34] (also see [10]) as an estimate for τexp helps
determine an optimal value for the upper limit of the sum
defining τint . It turns out that the present work illuminates
the different definitions as it allows us to give an estimate for
τexp in a case where τint and τexp are very different.

First observe that the autocorrelation functions for the
quenched and fluctuating weight approaches have distinct
character. Typical autocorrelation functions, Γ (t), are shown
in Fig. 9. Each autocorrelation function is normalised to
Γ (0) = 1 and it is clear that while the quenched approach
leads to the usual decay, the fluctuating weight approach suf-
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Fig. 10 Autocorrelation times obtained from the autocorrelation func-
tion for topological charge based on reweighting measurements with
fixed weights. Showing the integrated τint and the fitted τ f i t (A = 1)

as described in the text for, from top to bottom, 164, 204 and 244. Also
shown for comparison are results from unconstrained simulations. For
each τ the largest source of error is shown with a shaded region. The
RM errors of each τ are of similar size but the MP error for τint is larger

fers from a rapid decay over a few HMC steps followed by
a component with a long timescale. The techniques used to
analyse these cases are different.

4.6.1 Quenched autocorrelation

The top curve of the upper plot of Fig. 9, shows that the
quenched autocorrelation function for the topological charge
has the usual long timescale decay. We first review the stan-

dard technique for computing τint by analysing this usual
case.

The expression for the integrated autocorrelation time is:

τint (W ) = 1

2
+

W∑
t=1

Γ (t)

Γ (0)
. (41)

We follow the prescription of Wolff [34] to determine the
window, W , by minimising the combination of truncation
and statistical errors, estimated as:

e−W/τexp + 2

√
W

T
. (42)

Where T is the duration of the measurement simulations,
20000 steps. For smooth autocorrelation functions without
timescales much longer than τint , the exponential autocorre-
lation time, τexp appearing in this expression, is estimated as
S τint with the parameter S in the range 1 ∼ 2. All quenched
reweighted autocorrelation functions behave like the exam-
ple shown in Fig. 9 without any indication of timescales
longer that τint which is of the order of 100’s of HMC steps.
So we take the conventional value S = 1.5.

As a rough justification for this approach and the one we
will follow for fluctuating weights, we consider a direct fit
of the normalised autocorrelation function to a single expo-
nential decay:

Ae−t/τ f i t . (43)

We first make a fit in which we set A = 1, thus guar-
anteeing the normalisation and the short time behaviour that
appears in τint . Fits are made over the range 1 to a few 1000’s
and we have checked that the value of the right hand cut has
negligible effect on the fit parameters. The resulting averaged
values for τ f i t are shown, in Fig. 10. The similarity between
τ f i t (A = 1) and τint is striking.

An alternative fit in which A is also a fitting parameter
leads to a rather longer τ f i t (A) which resembles τexp accord-
ing to the hypothesis τexp = S τint and provides reassurance
that the choice S = 1.5 is reasonable. We do not attempt to
tune S using this fitting information as this would have little
effect on the resulting value of W or τint (W ).

Figure 10 also shows error estimates for τint and τ f i t (A =
1). For a single replica, the error of the integrated autocorre-
lation time is:

Δτint = 2

√
W

T
τint . (44)

We regard this as the MP error and observe that it is far
larger than the error for the fitted version, Δτ f i t , which arises
from uncertainty in the fitting procedure. The RM errors are
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Fig. 11 Autocorrelation times obtained from the autocorrelation func-
tion for topological charge based on reweighting measurements with
fluctuating weights. Showing the integrated τint , the fitted τ f i t L and the
combination A τ f i t L as described in the text for, from top to bottom,
164, 204 and 244. Also shown for comparison are results from tradi-
tional simulations. For each τ the RM error and the MP error are shown
with shaded regions. The MP error for τint is dominant, the RM errors
of each τ are of similar size and the statistical fitting error of τ f i t L is
smallest and omitted from the plot

similar for each. It is unsatisfactory that the measurement
phase statistical errors of two ways of computing the autocor-
relation time are so different. The fitting error of τ f i t appears
to be underestimated. Indeed, when the measurement phase
is repeated for a replica with identical RM parameters but a
different sequence of random numbers, there is a significant
difference in the results of the fit which are well beyond the
error estimate Δτ f i t .

4.6.2 Fluctuating weight autocorrelation

The action or plaquette observable has a short autocorrelation
time never more than a few HMC steps irrespective of exactly
which τ is computed. This short timescale appears in the
varying weights (39) and pollutes any long timescale that
may be present in any observable computed by reweighting
with these weights.

In the case of the topological charge the fluctuations of
the weights do not entirely hide the long timescale compo-
nent. Figure 9 shows an example of the fluctuating weight
autocorrelation function for the topological charge over both
short and long times. This autocorrelation function suffers
a rapid decay over a few HMC steps, but clearly leaves a
well distinguished long timescale component. This feature
is observed for all RM replicas and all lattice sizes, though
with differing amplitude for the long component. Over the
longer timescales shown in the lower plot of Fig. 9, the vary-
ing weight autocorrelation function continues to have short
time fluctuations that manifest as the greater thickness of the
line compared with the quenched version. It is also appar-
ent from this plot that long timescale fluctuations persist for
both autocorrelation functions but with larger amplitude for
the quenched than the fluctuating weight case.

The Wolff procedure described in the previous section
for computing the integrated autocorrelation time for fixed
weights is not appropriate for the fluctuating weight results
with mixed decay times. Indeed, reference [34] suggests that
the choice of parameter S must be reexamined in this situa-
tion. We have considered many alternative approaches with
the aim of finding a robust prescription. Our final approach
is to directly fit the following normalised double exponential
decay according to the two stages described below.

(1 − A)e−t/τ f i t S + Ae−t/τ f i t L . (45)

Fitting multiple exponentials has a reputation of being
fraught with problems, but in this case the two τ parame-
ters take such different values, τ f i t L/τ f i t S > 100, that the
technique is robust for the variety of autocorrelation func-
tions arising from different RM replicas, β and lattice sizes.
Nonetheless, the procedure for the fit is in two stages.

Firstly, all three parameters of the function are fitted over
a short range, up to a cut at about 300 steps. Secondly, with
short timescale parameters A and τ f i t S frozen, the single
parameter τ f i t L is fitted over a much longer time range of
more than 1000 steps. We find that the dependence of τ f i t L

on the short range cut is smaller than the statistical errors, and
that there is negligible dependence on the long range cut when
it is taken to be sufficiently large. The same cuts are used for
all RM replicas but they take different values according to
lattice size (164 : 1500, 204 : 3000, 244 : 4000).
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The integrated autocorrelation time for a double exponen-
tial decay with such widely separated timescales will, for suf-
ficiently large window, be dominated by the long timescale
and we expect,

τint ≈ A τ f i t L . (46)

A more accurate equation involving logs along the lines
of the one discussed in [10,34] can be derived, but since
our approach relies on widely separated scales, the simpler
equation (46) is adequate.

In view of Eq. (46), we set the value of S used to estimate
τexp appearing in (42) to S = 1/A and follow the Wolff
procedure. Figure 11 shows τint computed according to this
technique along with Aτ f i t L from the fit. The MP error for
τint is computed using (44) and as for the quenched case,
it is large, making the agreement all the more remarkable.
This value of τint is used to estimate errors in the topological
charge measurements and these appear in Tables 8, 9, 10, and
Fig. 8.

The proportionality factor A introduced in (45) can be
interpreted as the coupling to the long timescale. Its value of
around 0.2 ± 0.05 does not appear to be very sensitive to the
value of the reweighting coupling β or even to the size of
the lattice. We expect it to depend on the parameters of the
density of states method, in particular the ratio δ/σ .

4.6.3 Comments

While the shape of the autocorrelation function is very differ-
ent for the quenched and the fluctuating weights, it is inter-
esting to see if the long time behaviour matches. In other
words, is τexp the same? Our best estimates of this quantity
are based on fits: τ f i t (A) in the quenched case and τ f i t L

for fluctuating weights. A comparison of these quantities is
not shown, but although there are large fluctuations, they are
compatible within the errors.

To summarise this discussion of the autocorrelation time
of the topological charge: we have used information from the
fit of a double exponential to the fluctuating weight autocor-
relation function in order to tune the parameter S, and obtain a
better value for the Wolff window leading to a more accurate
prediction for τint . We find relations between the integrated
and fitted autocorrelation times. For the quenched case:
τint ≈ τ f i t (A = 1), and for varying weights: τint ≈ Aτ f i t L .
Finally, we observe that our estimates for the long time τexp
behaviour of either quenched or fluctuating weights is simi-
lar.

We conclude this section by clarifying how these insights
carry over to the computation of τint for other observables.
The quenched case is straightforward and the standard Wolff
procedure outlined at the start of Sect. 4.6.1 for the topo-
logical charge is used for all observables. For the fluctuating

weight case, even for quantities such as Esym after Wilson
flow that have τint ≈ 50 ∼ 60 for unconstrained simulations,
there is no clear long timescale remaining that would allow
any improved estimate of τexp. Hence S can take the con-
ventional value, S = 1.5 and we follow the ordinary Wolff
procedure outlined at the start of Sect. 4.6.1.

5 Scaling

The analysis reported so far has involved figures presenting
densities against β and with the exception of Fig. 1, have been
for a single lattice size. In this section, scaling properties are
discussed and the density of states method is used to illustrate
the approach to the continuum at fixed box size.

As was discussed in Sect. 4.2, Wilson flow introduces
a new scale into the system; the parameter t specifying
the endpoint of the flow is dimensional and equation (31)
shows how it represents the scale over which the configu-
ration is smoothed. Our simulations, both constrained and
unconstrained choose t in such a way that that the scale of
smoothing is a fixed fraction of the size of the lattice. Then,
by comparing results for couplings, β, corresponding to the
same physical box size, the Wilson flow scale is physically
identical and quantities on different lattice sizes can be com-
pared.

Figures 12 and 13 plot global quantities for the box, versus
the boxsize and display this for different lattice resolutions.
Namely, the figures show the global observables V Esym ,
V 2Var(Esym) and Q2.

The scaling of the symmetric clover link energy at the
top of Fig. 12 is almost linear and all data from different
size lattices and from both traditional and density of states
simulations coincide. The variance of this quantity displayed
in the lower part of Fig. 12 shows noisier data and the lines
of reweighted data from different size lattices do not quite
coincide.

Figure 13 shows the topological charge variance scaling.
As was the case in Fig. 8, the data points from the tradi-
tional simulations are noisy and especially for larger lattices,
indicate worse ergodicity than the density of states data.

6 Conclusions

We have presented a comprehensive and detailed study of
the use of the density of states method for SU(3) Yang Mills
theory. To do this we derived the reweighting formalism
appropriate for a smooth Gaussian constraint and empha-
sised that the expression for a canonical expectation value
is a ratio of weighted sums and that the weights fluctuate
because they contain a term that depends on the action. We
explored the quenched approximation in which this variation
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Fig. 12 Scaling plot of the symmetric clover link energy based on
reweighted measurements and also showing traditional results. Three
lines correspond to data from the three lattice sizes. The shaded areas
represent the MP errors which are slightly larger than the RM errors
(not shown)

Fig. 13 Scaling plot of the Topological charge susceptibility based on
reweighted measurements and also showing traditional results. Three
lines correspond to data from the three lattice sizes. The shaded areas
represent the MP errors which are considerably larger than the RM
errors (not shown)

is neglected and found that when the weights vary there is a
dramatic effect on autocorrelation times which is absent for
the quenched approximation. However we want to empha-
sise that as there is no theoretical basis for the quenched
approximation and even though it appears to be reasonably
accurate for the expectation values of most observables, there
is a notable exception, the plaquette variance, identifying the
approximation as uncontrollable.

Fig. 14 Overall plot of autocorrelation times for topological charge
both for unconstrained simulations and density of states. The band of
data points shows τint for traditional simulations for each lattice size.
The shaded regions display τint computed using reweighting and indi-
cate the statistical error which dominates the RM error

We compared predictions for the plaquette and its vari-
ance (which are both simple functions of the action) from the
LLR approach based solely on reconstructing the density of
states obtained from RM phase, and the reweighting approach
based on information from the measurement phase. We found
that these were always compatible, though reweighting led
to greater uncertainty associated with the finite duration of
the measurement phase. We noted that the plaquette variance
is a delicate test of the accuracy of the technique and indeed
it is also a good check for multi-histogram reweighting of
traditional unconstrained simulations.

For quantities that are defined after Wilson Flow, and for
which only the reweighting approach is possible, our method
allows families of continuum limit trajectories to be defined.
These are characterised by the boxsize associated with the
value of the coupling constant for which we are performing
the reweighting. Scaling of the topological charge suscepti-
bility at finite temperature is an interesting area of investiga-
tion [6] and we have demonstrated the possibility of going
to reasonably small lattice spacing with only modest size
lattices and fairly short runs.

The main conclusion of the preliminary work [24] con-
cerned the reduction in autocorrelation time for the topologi-
cal charge. The conclusions presented here are more nuanced.
Figure 14 shows the growth of the autocorrelation time for
traditional simulations along with τint for reweighted results
in each of the regions where we have computed it. The rate
of growth of τint for traditional unconstrained simulations
is compatible with that reported in the high statistics study
[10]; namely z ∼ 5 for the model τint ∝ a−z . The den-
sity of states method yields a much smaller value for τint and
more importantly, the rate of growth appears to be much less.
The size of the errors evident in the reweighting data shown
in Fig. 14 prohibit anything better than a crude estimate.
Using three values corresponding to the same box size gives
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z ∼ 1 ± 2.5. While the uncertainty in this estimate makes it
almost meaningless, it is clearly smaller than the exponent
for unconstrained simulations. This is an exciting result as it
offers the potential to compute accurate values of the topolog-
ical charge with less effort. However, the small value of τint
is mainly the consequence of the reduction in the coupling
of the topological charge to the long timescale modes of the
problem. These modes have not gone away, and indeed long
timescale modes themselves are often the primary subject
of interest in studies of the relative performance of different
algorithms rather than the topological charge which is fre-
quently used simply as a proxy for studying these modes.
In the text we discussed our estimate of τexp which is a bet-
ter measure of the long timescales of the problem (though, as
always, there may be even longer timescales beyond the dura-
tion of the simulations). This does show a decrease from the
equivalent parameter of standard HMC simulations We high-
light that the changes to the HMC algorithm necessary for the
density of states approach, namely the Gaussian constraint
and tempering swap, do not affect the scaling behaviour of
the timing of our implementation with the number of lattice
points.

A notable aspect of this study is that we explored the errors
of the method by tracking eight replicas for each lattice size.
We noticed that there was considerable variation in the con-
vergence during the RM phase. Our study chose a simple
common time duration for this phase, but a more sophis-
ticated temper dependent criterion for terminating the RM
phase that could put more effort into controlling the scaling
convergence of the RM process, might provide better overall
accuracy.

We distinguished two sources of error: the RM errors and
the MP errors. For all results using reweighting the relative
contribution of RM and MP errors depend on the particu-
lar observable under study. The RM errors can be reduced by
increasing the number of replicas in the RM phase and the MP
errors can be reduced with a longer measurement phase. For
our choice of NREPL IC A and duration of the measurement
phase the largest contribution to the error for most observ-
ables was from measurement.

This work has kept δ/δS fixed at 1.2 and scaled δ for dif-
ferent size lattices according to a fixed fraction of the stan-
dard deviation of the constrained action. These parameters
affect the accuracy and efficiency of the method and a more
detailed study would be welcome. For example, it would be
interesting to investigate the dependence of the topological
charge susceptibility on δ/σ while preserving the ratio δ/δS
(along the lines of figure 6 of reference [20] which studies the
dependence of CV in a U(1) theory), and the coupling of the
topological charge to the long timescale modes. The number
of tempers used in the tempering method was 24 for all lat-
tice sizes. A wider range of tempers would be expected to
allow better mixing of regimes with faster and slower Monte

Carlo dynamics and thus improve the autocorrelation time.
As the lattice size increases, the spacing δS is expected to
grow as

√
V in order to preserve the same level of accu-

racy. The corresponding spacing in β will therefore decrease
in the same way. If the efficiency of the tempering depends
on the span of β, then more tempers will be needed (with
NT EMPER ∼ √

V ). This scaling prediction and the effects
of the length of the RM and measurement phases and the
number of replicas on the accuracy require further study.

Note added

While this manuscript was in preparation, two studies
appeared that report on investigations of the topological
charge. Ref. [37] performs a study in SU(6) with a novel algo-
rithm where a tempering procedure is used to move across
systems with boundary conditions interpolating between par-
tially open and periodic; this algorithm is proved to be suc-
cessful at reducing the correlation time of the topological
charge. Ref. [38] studies topological properties at finite tem-
perature using a density of states method that allows it to
sample rare events. The relative merits of our algorithm and
those new proposals would need to be assessed by dedicated
studies.
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Appendix A: Multi-histogram

The density of states method reconstructs canonical expec-
tation values from a set of constrained expectation values at
fixed central action. It is natural to contrast this approach with
traditional multi-histogram reweighting [35] which recon-
structs canonical expectation values at intermediate cou-
plings from a set of unconstrained expectation values at fixed
coupling. The multi-histogram approach does not benefit
from the tempering update step and hence a timing com-
parison would be meaningless.

Rather than make a detailed comparison, requiring addi-
tional unconstrained runs at values of the coupling commen-
surate with the set of central actions discussed in the main
paper, this appendix studies multi-histogram based on the
unconstrained reference simulations. To recap, these simula-
tions were at 24 widely spaced β values for each lattice size,
covering the ranges listed in Table 1. In the following, so
as to directly compare with the density of states results, we
only consider the narrower ranges that appear in the figures;
so only 7, 6, 4 (for 164, 204 and 244) of the 24 runs were
necessary. Errors are obtained using a bootstrap approach of
resampling the original data taking into account the autocor-
relation time for the observable in question. These errors are
reported in the column “RM-err” of Tables 5, 6, 7, 8, 9 and
10.

Multihistogram provides access to the partition function
or the free energy of the system and allows a direct compar-
ison with the density of states approach via Eq. (9). A plot
of F = − ln(Z)/β appears linear over the ranges in ques-
tion and no useful graphical comparison is possible. Figure
15 shows the difference between F computed with multi-
histogram and with LLR. Averages are taken over the boot-
strap samples in the case of multihistogram, and over RM
replicas for LLR, and the results are normalised by setting

Fig. 15 Free energy difference between Multihistogram and density
of states approaches. Only shown for 164. The gap is related to nor-
malisation as discussed in the text. Errors are shown as shaded regions

Fig. 16 Plaquette variance from Multihistogram. Also shown for com-
parison are results from unconstrained simulations with additional runs.
From top to bottom: 164, 204. The plot for 244 is not shown as plagued
by huge fluctuations. Errors are shown as shaded regions

F(β = 6.118) = 0. This difference between very different
approaches is compatible with zero at two sigmas.

Despite the accuracy suggested by Fig. 15, the free
energy does not encode much more information than the first
moments of the plaquette expectation values. The plaquette
variance shown in Fig. 16 should be compared with the LLR
predictions in the middle column of Fig. 5 (though note a
small shift of scale at 204). The LLR prediction has smaller
error and is smoother. While the quality of the LLR predic-
tion does decrease for larger lattice sizes, the multihistogram
results deteriorate much more markedly and indeed are use-
less at 244. As already emphasised, the reason for poor per-
formance of the multi-histogram results is not the method
itself, but our choice of data to illustrate it.

Multihistogram can also be used for quantities such as the
symmetric cloverleaf or topological charge, both after Wilson
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flow. These behave better than the plaquette variance, but
again the excessive spacing of the coupling in the reference
simulations leads to declining quality for the larger lattice
sizes.

Appendix B: Run details

This appendix records details of the main simulations.
Table 11 shows the couplings used for the reference simu-
lations. The last column uses the fitting function from Gat-
tringer and Lang [39] to compute the box size. The duration of
these reference simulations was between 6×104 and 12×104

Table 11 Parameter ranges for the canonical reference simulations

164 204 244 Box size (fm)

5.78900 5.90359 6.00745 2.23408

5.80687 5.92367 6.02941 2.15162

5.82474 5.94373 6.05132 2.07358

5.84261 5.96377 6.07317 1.99967

5.86048 5.98380 6.09495 1.92962

5.87835 6.00380 6.11665 1.86318

5.89622 6.02376 6.13827 1.80012

5.91409 6.04370 6.15980 1.74021

5.93196 6.06360 6.18124 1.68326

5.94983 6.08345 6.20257 1.62909

5.96770 6.10327 6.22379 1.57752

5.98557 6.12303 6.24490 1.52839

6.00344 6.14274 6.26590 1.48155

6.02130 6.16240 6.28677 1.43689

6.03917 6.18201 6.30753 1.39422

6.05704 6.20156 6.32816 1.35345

6.07491 6.22104 6.34867 1.31447

6.09278 6.24047 6.36906 1.27717

6.11065 6.25983 6.38932 1.24145

6.12852 6.27913 6.40946 1.20723

6.14639 6.29837 6.42949 1.17441

6.16426 6.31754 6.44939 1.14291

6.18213 6.33665 6.46918 1.11266

6.20000 6.35570 6.48887 1.08359

Table 12 Parameters Si and δi used for density of states runs

164 204 244

Si δi Si δi Si δi

152685 228.4 359926 338.2 724396 467.0

152891 228.8 360232 338.6 724815 467.5

153098 229.3 360537 338.9 725234 468.0

153305 229.9 360844 339.4 725653 468.6

153513 230.5 361150 339.8 726074 469.1

153722 231.1 361458 340.3 726494 469.6

153931 231.7 361765 340.9 726915 470.0

154140 232.3 362073 341.4 727337 470.5

154350 233.0 362382 341.9 727759 471.0

154561 233.6 362691 342.4 728181 471.5

154772 234.3 363000 343.0 728604 471.9

154984 234.9 363310 343.5 729027 472.4

155196 235.6 363620 344.0 729451 472.8

155409 236.2 363931 344.5 729874 473.2

155623 236.8 364242 345.0 730299 473.7

155837 237.4 364554 345.4 730724 474.1

156052 238.0 364866 345.9 731149 474.5

156267 238.6 365179 346.4 731574 474.9

156483 239.2 365492 346.8 732000 475.4

156699 239.8 365805 347.2 732426 475.8

156916 240.5 366119 347.6 732853 476.2

157133 241.1 366433 348.1 733280 476.6

157351 241.7 366747 348.4 733707 477.0

157570 242.3 367062 348.8 734135 477.4

steps at 164, between 5 × 104 and 11 × 104 at 204 and fixed
at 9.6 × 104 at 244. Extended simulations to improve data
points over a restricted range at 204 and 244 were mentioned
in the text. These simulations were for four β values and two
replicas at 204 and for two β values and four replicas at 244.
For all extended simulations the duration was 105 steps with
Wilson Flow measurements only every 10 steps.

The list of central action for the density of states runs is
given in Table 12. Spacing, δS , is variable and can be read
off from the differences in Si . The width of the Gaussian
constraint δi is also shown and the ratio δi/δS is kept fixed
at 1.2. The equivalent ranges in terms of the coupling β are
given in Table 2.
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Table 13 Results of RM phase: mean value of ai for each temper

164 204 244

6.17897 6.33166 6.47020

6.17337 6.32783 6.46743

6.16766 6.32402 6.46468

6.16202 6.32019 6.46195

6.15644 6.31634 6.45920

6.15083 6.31257 6.45644

6.14527 6.30874 6.45371

6.13967 6.30494 6.45098

6.13411 6.30117 6.44823

6.12858 6.29734 6.44547

6.12304 6.29358 6.44272

6.11747 6.28981 6.43999

6.11199 6.28601 6.43725

6.10648 6.28225 6.43452

6.10099 6.27847 6.43177

6.09551 6.27468 6.42907

6.09002 6.27094 6.42630

6.08460 6.26720 6.42361

6.07918 6.26343 6.42085

6.07375 6.25970 6.41815

6.06833 6.25594 6.41542

6.06295 6.25221 6.41272

6.05763 6.24847 6.40998

6.05226 6.24475 6.40731

Table 13 is the result of the RM phase and lists the mean ai
across replicas. The RM error of this quantity varies slightly
between tempers and lattice size, but it is bounded by 4×10−5

in all cases. Averaged over tempers, the error is 2.7 × 10−5,
1.7 × 10−5, 1.3 × 10−5 for 164, 204 and 244 respectively.
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