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a b s t r a c t

We present a second-order nonlinear theory for an array of curved flap-type wave
energy converters (WECs) in open sea, excited by oblique incident waves. The flap model,
when at rest, has a weak displacement of its wetted surface about the vertical plane.
Using a perturbation-harmonic expansion technique, we decompose the set of nonlinear
governing equations in a sequence of linearized boundary-value problems that can be
investigated through analytical methods. The velocity potential at the leading order is
solved in terms of elliptical coordinates and related Mathieu functions. Due to quadratic
interactions of the first-order potential, a drift flow, a static angular displacement and a
bound wave appear at the second order. At the same order the effect of the flap shape
forces the first harmonic solution. We then compare an array of flat devices with an array
of curved flaps, assuming several shape functions that could be of practical engineering
interest. We show that hydrodynamic interactions between the curved flaps and incident
waves can have constructive effects in terms of power absorption at large frequencies.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

This paper presents a second-order mathematical model for an array of curved flap-type wave energy converters.
Second-order theories on floating and fixed marine structures have an important practical significance in ocean

engineering. This is because quadratic products of the first-order solutions generate a drift flow and several harmonics
that are related to unexpected forces over the system components (Mei et al., 2005). Analytical models concerning
cylindrical structures involved several authors in the past (Molin, 1979; Chau and Eatock Taylor, 1992; Kim and Yue,
1989; Newman, 1996), while the second-order diffraction theory for elliptical cylinders has more recently been developed
by Chatjigeorgiou and Mavrakos (2012). Higher-order theories involving floating offshore structures have been developed
in several contexts. For example, Sammarco et al. (1997a,b) devised a third-order theory for the Venice gate barrier,
while Michele et al. (2018a) developed a nonlinear theory for an array of oscillating gate-type WECs when excited
subharmonically in a channel.

Floating bodies such as oscillating gate-type and flap-type devices are capable to absorb wave energy with large
efficiency. This is the reason why this kind of devices received much attention by researchers and industry in recent
years. Indeed, several theoretical studies and experiments have been carried out. For an extensive review we leave the
reader to the works of Babarit et al. (2012), Dias et al. (2017) and Babarit (2018).

The hydrodynamics of a single flap and of arrays of flap-type WECs has been investigated theoretically, numerically
and experimentally by several authors in different configurations. In particular, Renzi and Dias (2012) and Sammarco et al.
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(2013) analysed the behaviour of Oscillating Wave Surge Converters (OWSCs) in a long-infinite channel, while Renzi and
Dias (2013), Renzi et al. (2014), Michele et al. (2015), Noad and Porter (2015), Michele et al. (2016b) and Xu et al. (2017)
investigated the case of a single flap and of arrays of oscillating flaps in open sea. The effects of a perfectly reflecting
straight wall on the OWSC’s performance have been analysed by Sarkar et al. (2015) and Michele et al. (2016a), while
investigations on viscous dissipations have been carried out by Wei et al. (2015) and Feng et al. (2018).

A large part of the analytical theories concerning the analysis of WECs mentioned above neglect higher order
contributions. However, Michele et al. (2018a) showed that nonlinear resonances, including mode–mode competitions,
can potentially increase power extraction. Moreover, recent analysis on curved gates showed that curved structures can
both increase energy extraction efficiency (Michele et al., 2018b, 2019; Hodge et al., 2017) and affect significantly the
exciting torque (Nokob and Yeung, 2015).

Motivated by these recent results, in this paper we investigate the combined effects of flap surface curvature and
nonlinear contributions on the energy extraction by an array of WECs. We use a similar approach to the analysis of the
Bragg scattering of incident waves (Mei et al., 2005, 1988; Alam et al., 2010), by introducing a small deviation of the flap
wetted surface about the vertical plane. We show that flap curvature can change significantly the behaviour of the system.
This is more evident at large frequencies when short waves interact with the flap shape function and when oblique waves
excite odd and even out-of-phase modes. A nonlinear set of governing equations is derived and decomposed in a sequence
of linearized boundary value problems through the use of a standard perturbation-harmonic expansion technique (Jordan
and Smith, 2011).

At the first order, the oscillating flap-type device is excited by oblique incident waves. The solution in terms of velocity
potential can be found via integral equations (Noad and Porter, 2015), hypersingular integral equations based on the
Green function method (Renzi and Dias, 2013; Michele et al., 2015, 2016a) and analytical approaches in terms of elliptical
coordinates and Mathieu functions (McLachan, 1951; Morse and Feshbach, 1981; Michele et al., 2016b). In this paper we
use the analytical approach. This method allows us to reduce significantly the computational cost of numerical evaluations
and to obtain explicit expressions for the added inertia, radiation damping and exciting torque. Furthermore, we derive
the Haskind–Hanaoka relation in elliptical coordinates to check the numerical accuracy of the radiation and diffraction
velocity potentials.

At the second order we show that the drift flow is forced by quadratic products of the first harmonic solution. The
corresponding flap angular displacement and bound wave can be found without solving the velocity potential, because
they only depend on the leading order terms. We show that in the case of a single flap, the drift flow makes the WEC
rotate landward, i.e. towards the direction of propagation of the incoming waves. This angular displacement represents
the mean value of the WEC oscillations and can be of engineering interest for design purposes. In the case of an array
of several flaps, the static displacement shape can include flaps rotating either landward or seaward. When the incident
waves frequency is small, the radiation potential is related to in-phase motions and the diffraction potential sets the
rotation of each flap. In this case, the angular rotation axis tends to be orthogonal to the incident waves direction. At
large frequencies, the effect of even and odd natural modes manifests and the hydrodynamics affecting the static angular
displacement increases in complexity.

Finally, we investigate the first-harmonic problem at the second order forced by the array shape function and its
derivatives. Solution is then found again via Mathieu functions. We remark that this problem does not occur for flat
devices, because in that case the boundary value problem would be damped, unforced and identical to the first-order
radiation problem. We show that the array shape yields either constructive or disruptive effects in terms of power
extraction efficiency, depending on the concavity of the flap surface. This aspect becomes more relevant in the case of
multiple flaps, oblique waves and large frequencies.

2. Mathematical model

Referring to Fig. 1, consider an in-line array of Q neighbouring flap-type OWSCs hinged on a rigid bottom. Let us define
a Cartesian reference system

(
x′, y′, z ′

)
with the x′ and y′ axes lying on the undisturbed free surface level z ′

= 0 and the z ′

axis pointing upward. The physical variables are indicated by primes. The horizontal rigid bottom has coordinate z ′
= −h′

and the OWSCs oscillate about a horizontal axis located at z ′
= −h′, x′

= 0. Let a′ be the width of each flap, then w′
= a′Q

represents the entire width of the array. Let t ′ be the time, Gq, q = 1, . . . ,Q , denote the qth flap and Θ ′
q

(
t ′
)
be the angular

displacement of Gq positive anticlockwise. Each flap Gq spans a y′-width given by

y′
∈

[
y′

q, y
′

q+1

]
, y′

q = (q − 1) a′
−
w′

2
, q = 1, . . . ,Q . (1)

Then we can define Θ ′
(
y′, t ′

)
=

{
Θ ′

1

(
t ′
)
, . . . ,Θ ′

Q

(
t ′
)}

as the angular displacement piecewise function of the array,
defined in y′

∈
[
−w′/2, w′/2

]
. The array has negligible thickness if compared to w′, thus the hypothesis for thin obstacles

can be applied to evaluate the wave field (Linton and McIver, 2001; Renzi and Dias, 2012). The fluid is assumed inviscid
and incompressible and the flow irrotational, hence the velocity potential Φ ′

(
x′, y′, z ′, t ′

)
satisfies the Laplace equation

in the entire fluid domain Ω ′
(
x′, y′, z ′

)
. Let us introduce for convenience a local reference system

(
X ′, y′, Z ′

)
which is

integral with the oscillating flap Gq. In this non-inertial reference frame the wetted flap surfaces are

f ′
(
X ′, y′, Z ′

)
= X ′

− δ′
(
y′, Z ′

)
= 0, y′

∈
[
y′

q, y
′

q+1

]
, (2)
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Fig. 1. Plan geometry of the array and side view of the oscillating flap.

where δ′ denotes the deviation of the flap surface from the rotating plane X ′
= 0, while X ′ and Z ′ are respectively:

X ′
= x′ cosΘ ′

q +
(
z ′

+ h′
)
sinΘ ′

q, Z ′
= −x′ sinΘ ′

q +
(
z ′

+ h′
)
cosΘ ′

q. (3)

Let A′ be the amplitude of the incident waves making an angle Ψ with the x′-axis, ω′ the incident wave frequency, λ′

the wavelength and g ′ the acceleration due to gravity. Then introduce the following non-dimensional quantities (Michele
et al., 2018a, 2019; Sammarco et al., 1997a,b):

(x, y, z, X, Z) =

(
x′, y′, z ′, X ′, Z ′

)
λ′

, Φ =
Φ ′

A′ω′λ′
, ζ =

ζ ′

A′
, t = t ′ω′,

δ =
δ′

δ′
g
, (w, a, h) =

(
w′, a′, h′

)
λ′

, Θ =
Θ ′λ′

A′
, G =

g ′

ω′2λ′
,

(4)

where ζ ′ represents the free surface elevation, δ′
g is the length scale for δ′ and G the non-dimensional frequency. Let us

now introduce the following two length ratios:

ϵ =
A′

λ′
≪ 1, µ =

δ′
g

λ′
≪ 1, µ = O (ϵ) . (5)

The Laplace and Bernoulli equations in non-dimensional variables are then

∇
2Φ = 0, (x, y, z) ∈ Ω, (6)

−
p′

ρ ′ω′2λ′2 = Gz + ϵΦt + ϵ2
1
2

|∇Φ|
2 , (x, y, z) ∈ Ω, (7)

where the subscripts denote differentiation with respect to the relevant variable, p′ is the fluid pressure and ρ ′ the fluid
density. The dynamic and mixed boundary conditions on the free surface are given by

−Gζ = Φt + ϵ
1
2

|∇Φ|
2 , z = ϵζ , (8)

Φtt + GΦz + ϵ |∇Φ|
2
t + ϵ2

1
2
∇Φ · ∇ |∇Φ|

2
= 0, z = ϵζ , (9)

while the no-flux condition at the horizontal bottom requires

Φz = 0, z = −h. (10)

The qth flap surface in the reference frame (X, y, Z) can be written as

f (x, z) = x cos ϵΘq + (z + h) sin ϵΘq − µδ (y, Z) = 0, y ∈
[
yq, yq+1

]
, (11)

hence the corresponding kinematic boundary condition is given by

Θt
{
sin ϵΘq [−x + µδZ (z + h)] + cos ϵΘq [(z + h)+ µxδZ ]

}
+ Φx

(
cos ϵΘq + µδZ sin ϵΘq

)
−Φyµδy +Φz

(
sin ϵΘq − µδZ cos ϵΘq

)
= 0,

y ∈
[
yq, yq+1

]
.

(12)
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Finally, the equation of motion of the curved flap with a linear generator at the hinge reads

IϵΘq,tt + GC sin ϵΘq + νptoϵΘq,t =∫ yq+1

yq
dy

{
−

∫ ϵζ+

−h
dz

(
Gz + ϵΦ+

t +
ϵ2

2

⏐⏐∇Φ+
⏐⏐2)

×

{
(z + h)− tan ϵΘ

[
− tan ϵΘ (z + h)

µδ

cos ϵΘ

]
+
µ2δδZ

cos ϵΘ

}
+

∫ ϵζ−

−h
dz

(
Gz + ϵΦ−

t +
ϵ2

2

⏐⏐∇Φ−
⏐⏐2)

×

{
(z + h)− tan ϵΘ

[
− tan ϵΘ (z + h)

µδ

cos ϵΘ

]
+
µ2δδZ

cos ϵΘ

}}
,

(13)

where the superscript + (−) indicates that the corresponding function is evaluated on the right (left) side, I = I ′/ρ ′λ′5

is the non-dimensional inertia of the flap about the hinge, C = C ′/ρ ′λ′4g ′ is the non-dimensional buoyancy restoring
torque and νpto = ν ′

pto/ρ
′λ′5ω′ is the non-dimensional power take off (PTO) coefficient. The free-surface boundary

conditions (8)–(9) can be Taylor expanded about z = 0 up to O
(
ϵ2

)
:

−Gζ = [Φt ]z=0 + [Φtz]z=0 ϵζ + ϵ
1
2

[
|∇Φ|

2]
z=0 , (14)

[Φtt + GΦz]z=0 + ϵ [Φttz + GΦzz]z=0 + ϵ
[
|∇Φ|

2
t

]
z=0 = 0. (15)

Similarly, Taylor expansion of the flap surface expression (11) and of the kinematic boundary condition (12) about x = 0
yields for y ∈ [−w/2, w/2]:

x = − (z + h) ϵΘ + µδ, (16)[
Φ±

x

]
x=±0 = −Θt (z + h)−

[
Φ±

xx

]
x=±0 [− (z + h) ϵΘ + µδ] − ϵΘ

[
Φ±

z

]
x=±0

+ µ
[
Φ±

y δy +Φ±

z δz
]
x=±0

. (17)

The equation of motion (13) can be written as:

IΘq,tt + GCΘq + νptoΘq,t =∫ yq+1

yq
dy

∫ 0

−h
dz

{
∆Φt (z + h)+ ϵ

∆ |∇Φ|
2 (z + h)
2

+∆Φtx (z + h) [µδ − ϵΘ (z + h)]} −

∫ yq+1

yq
dy

[
ϵ
Gh
2
∆ζ 2 + ϵh∆ (Φtζ )

]
,

(18)

where ∆(·) = (·)+ − (·)− denotes the difference of (·) on two sides of the flap.
Let us assume the following perturbation expansion for the unknowns up the second order O (ϵ):

Φ (x, y, z, t) = Φ1 (x, y, z, t)+ ϵΦ2 (x, y, z, t)+ O
(
ϵ2

)
, (19)

ζ (x, y, t) = ζ1 (x, y, t)+ ϵζ2 (x, y, t)+ O
(
ϵ2

)
, (20)

Θ (y, t) = Θ1 (y, t)+ ϵΘ2 (y, t)+ O
(
ϵ2

)
, (21)

Θq (t) = Θq,1 (t)+ ϵΘq,2 (t)+ O
(
ϵ2

)
. (22)

Substitution of the above expansions into the set of governing equations and boundary conditions yields for n = 1, 2:
Laplace equation:

∇
2Φn = 0, (x, y, z) ∈ Ω. (23)

Free surface dynamic condition:

−Gζn = Φnt + Bn, z = 0, (24)

where

B1 = 0, B2 = ζ1Φ1tz +
1
2

|∇Φ1|
2 . (25)

Free surface mixed condition:

Φntt + GΦnz = Fn, z = 0, (26)
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where

F1 = 0, F2 = −ζ1
(
Φ1ttz + GΦ1zz

)
− |∇Φ1|

2
t . (27)

No-flux boundary condition at the bottom:

Φnz = 0, z = −h. (28)

Kinematic condition on the array surface:

Φ±

nx = −Θnt (z + h)+ G±

n , x = ±0, (29)

where

G±

1 = 0, G±

2 = −Φ±

1xx

[µ
ϵ
δ −Θ1 (z + h)

]
+
µ

ϵ

(
Φ±

1yδy +Φ±

1z δz

)
−Φ±

1zΘ1. (30)

Equation of motion of the qth flap:

IΘq,ntt + GCΘq,n + νptoΘq,nt = −

∫ yq+1

yq
dy

∫ 0

−h
∆Φnt (z + h) dz + Dn, (31)

where

D1 = 0, (32)

D2 = −

∫ yq+1

yq
dy

∫ 0

−h
dz

{
∆Φ1tx (z + h)

[µ
ϵ
δ − (z + h)Θ1

]
+
∆ |∇Φ1|

2 (z + h)
2

}
−

∫ yq+1

yq
dy

[
Gh
2
∆ζ 21 + h∆

(
Φ1t ζ1

)]
. (33)

The combination of harmonic forcing terms at higher orders implies that the response of the array includes several
harmonics (Jordan and Smith, 2011). In the next section we apply harmonic-expansion techniques to the unknowns in
order to remove the time dependence and simplify the mathematics.

3. First and second-order solutions

Because higher order solutions imply higher harmonics, we return to physical variables, omit the primes for conve-
nience and assume the following harmonic expansions for the real unknowns:{

Φn, ζn,Θn,Θq,n
}

=

n∑
m=0

{
φnm, ηnm, θnm, θq,nm

}
e−imωt

+ ∗, (34)

where i denotes the imaginary unit while the symbol ∗ indicates the complex conjugate of the first terms on the right-
hand side. Substitution of the latter expansions into the governing equation (23) and boundary conditions (24)–(30) gives
a sequence of linear boundary value problems of order n and harmonic m:

∇
2φnm = 0, in Ω, (35)

φnmz = φnm
m2ω2

g
+ Fnm, z = 0, (36)

ηnm = φnm
imω
g

+ Bnm, z = 0, (37)

φnmz = 0, z = −h, (38)

φ±

nmx
= imωθnm (z + h)+ G±

nm, x = ±0, z ∈ [−h, 0] . (39)

The latter must be solved together with the equation of motion for each flap Gq(31), which upon substitution of (34)
becomes

−m2ω2Iθq,nm + Cθq,nm − imωνptoθq,nm =

imωρ
∫ yq+1

yq
dy

∫ 0

−h
∆φnm (z + h) dz + Dnm.

(40)

In the latter, the forcing terms Fnm, Bnm, Gnm and Dnm’s are defined for each order n and harmonic m in the following
subsections.

Since the angular response of the qth flap is

Θq = θq,10 +
(
θq,11 + ϵθq,21

)
e−iωt

+ ϵθq,20 + ϵθq,22e−2iωt
+ O

(
ϵ2

)
+ ∗, (41)
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the corresponding average extracted power becomes

P = lim
τ→∞

1
τ

∫ τ

0
dt

Q∑
q=1

(
dΘq

dt

)2

νpto

= 2ω2νpto

Q∑
q=1

[⏐⏐θq,11⏐⏐2 + 2ϵ
(
Re

{
θq,11

}
Re

{
θq,21

}
+ Im

{
θq,11

}
Im

{
θq,21

})]
+ O

(
ϵ2

)
, (42)

The contribution of the second-harmonic term θq,22 is of order O
(
ϵ2

)
, and so its effect on the generated power (42) is

negligible at the second order O (ϵ). Therefore, the second-harmonic problem is not considered here because of its small
effects. On the contrary, the first-harmonic terms θq,11 and θq,21 are dominant and can be optimized by requesting that
both have the same phase in the complex plane. In this case, the double products between real and imaginary parts of
the flap amplitude give an extra term of order O (2ϵ), which is not negligible at the second order.

Once the generated power is obtained, the efficiency of the system is quantified by considering the capture factor CF ,
defined as the ratio between P(42) and the incident wave energy flux per array width w:

CF =
P

ECgw
, (43)

where the term

ECg =
ρgA2ω

4k0

(
1 +

2k0h
sinh 2k0

)
. (44)

In the latter expression, E represents the averaged total energy per unit surface, while Cg denotes the group velocity (Mei
et al., 2005).

We are now in a position to solve the boundary value problems at the leading order O (1) and second order O (ϵ).

3.1. Leading order problem — zeroth harmonic

The zeroth harmonic forcing terms are all null:

F10 = B10 = G±

10 = D10 = 0. (45)

The bounded solution is therefore simply:

φ10 = 0, θ10 = 0, η10 = 0. (46)

Thus, there is no drift flow at the leading order.

3.2. Leading order problem — first harmonic response to incident waves

The incident wave field is assumed to be at the leading order O (1), hence it forces the first harmonic problem. Let the
total solution be

φ11 = φI
+ φS

+

Q∑
q=1

φR
q , (47)

where φI is the velocity potential of the monochromatic incident waves of amplitude A and angle of incidence Ψ

φI
= −

iAg
2ω

cosh k0 (h + z)
cosh k0h

e−ik0(x cosΨ+y sinΨ ), (48)

φS is the scattered velocity potential, φR
q denotes the radiation velocity potential due to the qth moving flap while all the

others are at rest, while the term k0 is the real root of the dispersion relation (see Mei et al., 2005)

ω2
= gk0 tanh k0h,

ω2
= −gkn tan knh, kn = ikn, n = 1, . . . ,∞

}
. (49)

Both φR
q and φS satisfy Eqs. (35)–(38) with null forcing terms F11 = B11 = 0, while the kinematic boundary conditions

on the array (39), read

∂φR±
q

∂x
= iωθq,11(z + h), x = ±0, y ∈

[
yq, yq+1

]
, z ∈ [−h, 0]

∂φR±
q

∂x
= 0, elsewhere on the array surface

⎫⎪⎪⎬⎪⎪⎭ , (50)
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∂φS±

∂x
= −

∂φI±

∂x
, x = ±0, y ∈ [−w/2, w/2] , z ∈ [−h, 0] . (51)

Finally, it is required that φR
q and φS are outgoing for

√
x2 + y2 → ∞.

This boundary-value problem has been extensively studied in the past. Semi-analytical solutions based on integral
and hypersingular integral equations are already available in the literature (Renzi and Dias, 2013; Michele et al., 2015).
Recently, Michele et al. (2016b) showed that the problem at the leading order admits separable solutions expressed in
terms of elliptic coordinates (χ, ϑ) defined as

x =
w

2
sinhχ sinϑ, y =

w

2
coshχ cosϑ, (52)

and Mathieu functions. Michele et al.’s theory has been successfully validated against existing analytical, numerical and
experimental data.

Mathieu functions have the advantage of decreasing significantly the numerical tasks and reducing the algebraic
manipulations with respect to methods based on integral and hypersingular integral equations. For this reason, their
applications can be found in several surface wave diffraction phenomena of the first (Chen and Mei, 1973; Williams
and Darwiche, 1988; Chatjigeorgiou and Mavrakos, 2010; Chatjigeorgiou, 2011) and second order (Chatjigeorgiou and
Mavrakos, 2012) and other fields involving elliptic structures (Stamnes and Spjelkavik, 1995; Ruby, 1995; Gutiérrez-Vega,
2000; Gutiérrez-Vega et al., 2003). Hereafter we summarize the method of solution adopted in Michele et al. (2016b).

Since separation of the z-dependence gives

φR
q =

∞∑
n=0

ϕR
qn cosh kn (h + z) , φS

= ϕS cosh k0 (h + z) , (53)

use of both separation (53) and transformation from rectangular coordinates (x, y) to elliptical coordinates (χ, ϑ)modifies
the Laplace equation (35) to the following two-dimensional Helmholtz equation in elliptic coordinates:[

∂2

∂ϑ2 +
∂2

∂χ2 +

{
2τ 2n
2τ 20

}
(cosh 2χ − cos 2ϑ)

]{
ϕR
qn(χ, ϑ)

ϕS(χ, ϑ)

}
= 0, (54)

where τn = w2k2n/16 is a real non-dimensional parameter that can be greater (propagating waves) or smaller (evanescent
waves) than zero. The general solution of (54) bounded for χ → ∞ corresponds to Michele et al. (2016b), McLachan
(1951) and Morse and Feshbach (1981)

ϕR
qn (χ, ϑ)

ϕS (χ, ϑ)

}
=

∞∑
m=0

{ [
AR

qnm

AS
m

]
ce2m (ϑ)He

(1)
2m (χ)+

[
BR
qnm

BS
m

]
ce2m+1 (ϑ)He

(1)
2m+1 (χ)

+

[
CR
qnm

CS
m

]
se2m+2 (ϑ)Ho

(1)
2m+2 (χ)+

[
DR

qnm

DS
m

]
se2m+1 (ϑ)Ho

(1)
2m+1 (χ)

}
, (55)

where ce (ϑ) and se (ϑ) are called respectively cosine-type and sine-type Mathieu functions of the first kind (or angular
Mathieu functions), He(1) (χ) and Ho(1) (χ) are the even and odd Hankel–Mathieu functions of the first kind (or radial
Mathieu functions), while A, B, C and D denote the unknown coefficients to be determined by applying the boundary
conditions on the array. Mathieu functions are equivalent to Bessel functions in cylindrical coordinates and share similar
interesting properties. We leave the reader to the book of McLachan (1951) for an extensive analysis. Unfortunately,
angular and radial Mathieu Functions are not present in standard software and there are few textbooks regarding their
numerical evaluation. For a detailed numerical scheme we refer to the works of Michele et al. (2016b) and Gutiérrez-Vega
(2000).

Substitution of the expansion (53) into (50)–(51) yields the boundary conditions expressed in terms of elliptical
coordinates:

∂ϕR
qn

∂χ
= iωθq,11 sinϑ

wDn

2Cn
, on Sq,

∂ϕR
qn

∂χ
= 0, elsewhere on the array surface

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (56)

∂ϕS

∂χ
=

Awgk0 cosΨ e−ik0(w/2) sinΨ cosϑ sinϑ
2ω cosh k0h

, χ = 0, ϑ ∈ [0, 2π ] , (57)

where

Cn =
1
2

(
h +

g
ω2 sinh2 knh

)
, Dn =

1 − cosh knh + knh sinh knh
k2n

, (58)
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while Sq defines the boundary of the moving flap Gq expressed in the plane (χ, ϑ):

Sq =
{
χ = 0, ϑ ∈

[
ϑq+1, ϑq

]
∪

[
2π − ϑq; 2π − ϑq+1

]}
. (59)

In the latter expression

ϑq = arccos
[
2(q − 1)

Q
− 1

]
. (60)

Since the Mathieu Functions satisfy the orthogonality condition (McLachan, 1951)∫ 2π

0
cemcep dϑ =

∫ 2π

0
semsep dϑ = πδmp, (61)

integration of (56)–(57) yields:

AR
qnm = BR

qnm = AS
m = BS

m ≡ 0, (62)

CR
qnm =

iωθq,11wDn

2πCn Ho(1)
2m+2 χ

⏐⏐⏐
χ=0

∫
Sq
se2m+2 (ϑ) sinϑ dϑ, (63)

DR
qnm =

iωθq,11wDn

2πCn Ho(1)
2m+1 χ

⏐⏐⏐
χ=0

∫
Sq
se2m+1 (ϑ) sinϑ dϑ, (64)

CS
m =

Awgk0 cosΨ

2ω cosh k0h Ho(1)
2m+2 χ

⏐⏐⏐
χ=0

×

∞∑
j=0

B(2m+2)
2j+2

[
i2j+1J2j+1

(
−k0

w

2
sinψ

)
− i2j+3J2j+3

(
−k0

w

2
sinψ

)]
, (65)

DS
m =

Awgk0 cosΨ

2ω cosh k0h Ho(1)
2m+1 χ

⏐⏐⏐
χ=0

×

∞∑
j=0

B(2m+1)
2j+1

[
i2jJ2j

(
−k0

w

2
sinψ

)
− i2j+2J2j+2

(
−k0

w

2
sinψ

)]
, (66)

in which the subscript (·)χ denotes the derivative of (·) with respect to the radial coordinate χ , B(m)
j is the jth coefficient

for the angular Mathieu function sem (see Michele et al., 2016b, for details) and Jj is the Bessel Function of the first kind
and order j. To determine the flap response, we now use the equation of motion (40):[(

−ω2I + C − iωνpto
)
I − ω2M − iωN

] {
θ11

}
=

{
F
}
, (67)

where
{
θ11

}
is a column vector of length Q that includes all the angular displacements of the flaps θq,11, q = 1, . . . ,Q , I

is the square identity matrix of size Q ×Q , M and N are respectively the added inertia matrix and the radiation damping
matrix of size Q × Q as well:

M =

⎡⎢⎣µ
1
1 . . . µ

Q
1

...
. . .

...

µ1
Q . . . µ

Q
Q

⎤⎥⎦ , N =

⎡⎢⎣ν
1
1 . . . ν

Q
1

...
. . .

...

ν1Q . . . ν
Q
Q

⎤⎥⎦ , (68)

in which

µp
q = −

ρw

2ω

∞∑
n=0

Dn Im

{∫
Sq
ϕR
pn(0, ϑ) sinϑ dϑ

}
, (69)

νpq = ρD0
w

2
Re

{∫
Sq
ϕR
p0(0, ϑ) sinϑ dϑ

}
, (70)

represent, respectively, the added inertia and the radiation damping of the flap Gq due to the unit rotation of the flap Gp.
The forcing term

{
F
}
is a column vector of size Q including the values of the exciting torque acting on each flap Gq:{

F
}

=
{
F1, . . . , Fq, . . . , FQ

}T
, Fq = iωρD0

w

2

∫
Sq
ϕS(0, ϑ) sinϑ dϑ. (71)
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We now focus the attention on the accuracy of the numerical computations for the hydrodynamic parameters F and ν by
applying the well-known Haskind–Hanaoka identity. Let us consider the simple case of Q = 1. The asymptotic behaviour
of the radiation potential in the far field for unit rotational velocity of the flap is given by

∞∑
n=0

φR
n ∼

iAR(ϑ)
ω

cosh k0(h + z)

√
2

πk0r
ei

(
k0r−

3π
4

)
, (72)

where r = weχ/4 is the radius expressed in terms of the radial elliptic coordinate χ , while:

AR(ϑ) =

∞∑
m=0

wD0s2m+1se2m+1 (ϑ)

2
√
τ0C0 Ho(1)

2m+1 χ

⏐⏐⏐
χ=0

, (73)

represents the angular variation of the radially spreading wave. The term s2m+1 in (73) has the following expres-
sion (McLachan, 1951; Michele et al., 2016b):

s2m+1 = se2m+1 ϑ

⏐⏐
ϑ=0 se2m+1

(π
2

)
. (74)

The three-dimensional Haskind–Hanaoka relation therefore reads

F =
2AgρC0

cosh k0h
AR

(π
2

− ψ

)
. (75)

Unlike (Michele et al., 2016b), we disregard the assumption of sinϑ ∼ sem (ϑ), hence the general identity (75) can be
also applied for large values of τ0. Eqs. (71) and (75) will be used in Section 4 to check the accuracy of the numerical
evaluations.

3.3. Second order problem O (ϵ) - zeroth harmonic drift

The quadratic products of the first-order solution give the following forcing terms of the drift flow, respectively, on
the free surface and on the flap:

F20 = −
η11

gϵ

[
−ω2φ11z + gφ11zz

]∗
−
η∗

11

gϵ

[
−ω2φ11z + gφ11zz

]
, (76)

G±

20 =
1
ϵ

[
φ±

11xxθ
∗

11 (z + h)− φ±

11z θ
∗
]
+

1
ϵ

[
φ∗±

11xxθ11 (z + h)− φ∗±

11z θ11
]
. (77)

The forcing terms B20 and D20 allow us to evaluate directly the real expression for the bound wave independent on time
(or wave set up/set down):

η20 = −
1
gϵ

[
iω

(
−φ11zη

∗

11 + φ∗

11zη11
)
+ |∇φ11|

2] , (78)

and the expression for the static angular displacement:

θq,20 =
ρ

ϵC

{
−

∫ yq+1

yq
dy

∫ 0

−h
(z + h)∆ |∇φ11|

2 dz +
hω2

g

∫ yq+1

yq
∆ |φ11|

2 dy

}
. (79)

This latter term indicates that the flap Gq oscillates about θq,20 and not about θq = 0 as in the linearized theory. Moreover
θq,20 is a real number, indeed all the integrands above are referred to absolute values of complex functions.

3.4. Second order problem O (ϵ) - first harmonic and flap shape effects

This problem represents the effects of the flap shape on the total wave field. Indeed, the corresponding forcing terms
are:

F21 = B21 = 0, (80)

G±

21 =
1
ϵ

[
−φ±

11xxδ + φ±

11yδy + φ±

11z δz

]
, (81)

D21 =
iωρ
ϵ

∫ yq+1

yq
dy

∫ 0

−h
∆φ11xδ (z + h) dz = 0. (82)

The boundary conditions on z = 0 and z = −h remain like those of the first-harmonic O (1) problem. This suggests that
the solution can be expanded in terms of hyperbolic cosine eigenfunctions:

φ21 =

∞∑
n=0

ϕ21,n cosh kn (z + h) . (83)
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To simplify the algebra, we decompose ϕ21,n as follows:

ϕ21,n = Γn +Λn, (84)

where Γn satisfies the following boundary condition on the flap

∂Γ ±
n

∂x
= iωθq,21

Dn

Cn
, x = ±0, y ∈

[
yq, yq+1

]
∂Γ ±

n

∂x
= 0, elsewhere on the array surface

⎫⎪⎪⎬⎪⎪⎭ , (85)

while the boundary condition for Λn reads

∂Λ±
n

∂x
=

1
Cn

∫ 0

−h
cosh kn (z + h) G±

21 (y, z) dz = Ξ±

n (y) ,

x = ±0, y ∈ [−w/2, w/2] .
(86)

The boundary value problem for Γn is identical to that for ϕR
qn, thus, we do not need to solve it again. The velocity

potentialΛn represents the forcing term for the flap oscillations θ21. Its general solution can be found by applying elliptical
coordinates:

Λn =

∞∑
m=0

{
AΛ

nmce2m (ϑ)He
(1)
2m (χ)+ BΛnmce2m+1 (ϑ)He

(1)
2m+1 (χ)

+CΛnmse2m+2 (ϑ)Ho
(1)
2m+2 (χ)+ DΛ

nmse2m+1 (ϑ)Ho
(1)
2m+1 (χ)

}
, (87)

where each constant is now given by

AΛ
nm =

w

2ϵπCn He(1)2m χ

⏐⏐⏐
χ=0

∫ 2π

0
ce2m (ϑ)Ξn (ϑ) sinϑ dϑ, (88)

BΛnm =
w

2ϵπCn He(1)2m+1 χ

⏐⏐⏐
χ=0

∫ 2π

0
ce2m+1 (ϑ)Ξn (ϑ) sinϑ dϑ, (89)

CΛnm =
w

2ϵπCn Ho(1)
2m+2 χ

⏐⏐⏐
χ=0

∫ 2π

0
se2m+2 (ϑ)Ξn (ϑ) sinϑ dϑ, (90)

DΛ
nm =

w

2ϵπCn Ho(1)
2m+1 χ

⏐⏐⏐
χ=0

∫ 2π

0
se2m+1 (ϑ)Ξn (ϑ) sinϑ dϑ. (91)

Note that, unlike the leading order problem analysed before, the constants AΛ
nm and BΛnm that multiply the even Mathieu

functions in (87) differ from zero. This is because the integrals in (88)–(91) do not have orthogonal properties in the
interval ϑ ∈ [0, 2π ].

Once Λn is given, we must apply the equation of motion to the flap Gq to find the response θq,21. The equation of
motion in matrix form is[(

−ω2I + C − iωνpto
)
I − ω2M − iωN

] {
θ21

}
=

{
F21

}
, (92)

in which the matrices I, M and N are equal to those introduced in (68), while each element Fq,21, q = 1, . . . ,Q , inside the
column vector

{
F21

}
now corresponds to

Fq,21 = iωρ
∞∑
n=0

∫ yq+1

yq
dy

∫ 0

−h
∆Λn (h + z) cosh kn (h + z) dz. (93)

The latter is the complex exciting torque for the first harmonic motion at the second order, and represents the action
due to the flap profile. In the absence of flap curvature, i.e. δ = δy = δz = 0, the exciting torque becomes Fq,21 = 0 and
consequently θq,21 = 0, q = 1, . . . ,Q . Therefore, the flap curvature has a direct effect on the first-harmonic solution at
the second order. On the other hand, the terms on the left side of (92) do not depend on the flap curvature. Hence the
angular displacement θq,21 is maximum if the exciting torque function Fq,21 is maximized by choosing appropriate shape
functions.
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Fig. 2. (a) Added inertia µ, radiation damping ν and (b) magnitude of the exciting torque |F | versus incident wave frequency ω. The exciting torque
diminishes when the angle of incidence Ψ increases.

4. Results and discussion for the case Q = 1

In this section we discuss the simple case of a single flap in open sea. The solution for the leading order radiation
potential (55) simplifies as follows

ϕR
n (χ, ϑ) =

iωθ11wDn

2Cn

∞∑
m=0

B(2m+1)
1 se2m+1 (ϑ)Ho

(1)
2m+1 (χ)

Ho(1)
2m+1 χ

⏐⏐⏐
χ=0

, (94)

while the solution for the leading order scattering potential is given by

ϕS (χ, ϑ) =
Awgk0 cosΨ
2ω cosh k0h

∞∑
m=0

sem (ϑ)Ho(1)
m (χ)

Ho(1)
m χ

⏐⏐⏐
χ=0

×

∞∑
j=1

B(m)
j

[
ij−1Jj−1

(
−kn

w

2
sinψ

)
− ij+1Jj+1

(
−kn

w

2
sinψ

)]
.

(95)

We remark that the first-order terms are not affected by the small curvature of the flap.
Let us assume water depth h = 10 and flap width w = a = 20 m. For these flap dimensions, buoyancy and inertia

are considered respectively C = 3.53 × 107 kg m2 s−2 and I = 2.6 × 106 kg m2. The ratio between the incident wave
amplitude A and the sea depth h must be of order O (ϵ), hence we assume A = 1 m. The corresponding behaviour of
added inertia µ, radiation damping ν and magnitude of the exciting torque F for Ψ = 0 rad and Ψ = π/6 rad versus
the frequency ω ∈ [0.25, 4] rad s−1 is shown in Fig. 2. Expressions (71) and (75) can now be used to check the numerical
evaluations for both radiation and diffraction potentials. As in Renzi and Dias (2013), let us define the relative error ϵ̃ as

ϵ̃ =
|l.h.s − r.h.s|

|r.h.s|
, (96)

where ‘l.h.s.’ represents the exciting torque given by (71), while ‘r.h.s.’ denotes the exciting torque given by the Haskind–
Hanaoka relation (75). Taking max m = 5 in the expression for the velocity potentials (55), we obtain a maximum relative
error ϵ̃ = O

(
10−15

)
.

This is a single-degree-of-freedom system, thus it has one eigenfrequency at the leading order (Sammarco et al., 2013).
Indeed, the eigenfrequency satisfies the following implicit equation in ω:

−ω2 (I + µ)+ C = 0. (97)

with µ being dependent on ω as well. Solution of the latter expression yields ω = 0.57 rad s−1. Maximization of the power
output for the resonance condition requires that the νpto coefficient is equal to the radiation damping for ω = ω (Mei
et al., 2005). Numerically, we have νpto = 9 × 106 kg m2 s−1 (see also Fig. 2(a)).

Once the parameters are fixed, we can evaluate the static displacement due to the second order drift, which again is
not affected by the small curvature of the flap. Fig. 3 shows the behaviour of θ20 versus the frequency ω for Ψ = 0 rad
and Ψ = π/6 rad. Both curves correspond to positive values, i.e. the flap equilibrium position is rotated anticlockwise in
the same direction of the incoming waves.
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Fig. 3. Static rotation of a single flap θ20 due to quadratic products of the velocity potential φ11 at the second order. For both configurations, the
static rotation is positive and anticlockwise.

Table 1
Eigenfrequencies and period for each natural mode.
ω (rad s−1) Period (s) Mode

0.57 11.02 N (ω1)

0.88 7.14 N4
1.13 5.56 N3
1.3 4.83 N2
1.4 4.48 N1

The curvature of the flap affects the second-order solution of the first harmonic, which in turn has an impact on the
extracted power (42). To investigate such effects, we compare the flat device with null curvature (δ = δy = δz = 0) with
six different configurations in terms of power extraction. We remark that δg/w ∼ O (ϵ), thus we assume the maximum
value of the array surface deviation from X ′

= 0 be equal to w/10 m. Let us introduce the following flap configurations
of practical engineering interest described by the following expressions:

δ1 =
w

10
cos

πy
w
, δ2 = −

w

10
cos

πy
w
,

δ3 =
w

10
sin

π (z + h)
h

, δ4 = −
w

10
sin

π (z + h)
h

,

δ5 =
w

10
cos

πy
w

sin
π (z + h)

h
, δ6 = −

w

10
cos

πy
w

sin
π (z + h)

h
,

(98)

in which configurations δ1,2 depend on the y-coordinate, δ3,4 depend on the vertical coordinate z while δ5,6 depend both
on y and z. Figs. 4(a) and 4(b) show the behaviour of the capture factor CF of each configuration versus ω, respectively,
for normal incident waves with Ψ = 0 rad and oblique waves with Ψ = π/6 rad. In all cases, the efficiency decreases
with the incidence angle Ψ . The effect of the curvature disappears for oblique waves, thus the efficiency is practically
the same as that of a flat body. Note also that the maximum value of CF correspond to the theoretical maximum value
predicted by Michele et al. (2016b) when sinϑ ∼ sem (ϑ):

CFmax (ψ = 0) =
2 cos2 0
wk0

≃ 1.65, CFmax

(
ψ =

π

6

)
=

2 cos2 π
6

wk0
≃ 1.24, (99)

in which k0 ≃ 0.061 m−1 is the wavenumber related to the eigenfrequency ω = ω.
At low frequencies the effect of the flap surface shape is small. Its constructive or destructive effects arise mainly

at large frequencies. This is because long waves do not interact with a small δ and the array appears to them as a flat
oscillating body. Configurations 4 and 6 are more efficient than the flat device for large frequencies ω > 1.5 rad s−1.
These configurations correspond to concave surfaces in (x, y, z), hence a phenomenon similar to the focusing of radiated
and diffracted waves occurs (Stamnes, 1986). The least beneficial effects occur in Configuration 3 and 5. We now turn to
investigate an array of Q = 5 flaps.

5. Results and discussion for the case Q = 5

Here we discuss the case of Q = 5 flaps excited by waves having amplitude A = 1 m. The values of inertia and buoyancy
for each flap are the same of the previous case divided by Q = 5, i.e. C = 7.06 × 106 kg m2 s−2 and I = 5.33 × 105 kg
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Fig. 4. Behaviour of the capture factor CF of each configuration versus incident wave frequency ω for two different values of the angle of incidence
Ψ . (a) Ψ = 0 rad. (b) Ψ = π/6 rad. The power take-off coefficient is optimized for the eigenfrequency ω = 0.57 rad s−1 .

Fig. 5. Behaviour of the static rotation θq,20 of each flap versus incident wave frequency ω for two different values of Ψ . (a) Ψ = 0 rad. (b) Ψ = π/6
rad. Both positive and negative rotations of the flaps are now possible.

m2. Non-trivial solutions of the following unforced and undamped nonlinear system

det
[(

−ω2I + C
)
I − ω2M

]
= 0, (100)

give one in-phase mode N (ω1), 2 even out-of-phase modes (N1,N3) and 2 odd out-of-phase modes (N2,N4) with related
eigenfrequencies (see Sammarco et al., 2013; Michele et al., 2015, 2016a,b, for details). As in the previous section, let us
consider normal incident waves (Ψ = 0 rad) and oblique waves with Ψ = π/6 rad. In the first case, only the even modes
can be excited, whereas in the second case both even and odd modes can be excited because symmetry of the exciting
torque is lost. The numerical values of the eigenfrequencies and periods for each mode are listed in Table 1.

Note that the in-phase solution has the same eigenfrequency of the single flap analysed in Section 4, thus we expect
that the array behaves as a single flap when N (ω1) is resonated by incident waves. Now, let us maximize power extraction
for ω = 0.57 rad s−1 by imposing that the PTO coefficient is νpto = 1.8 × 106 kg m2 s−1 and evaluate the value of the
static angular displacement θq,20 for each flap Gq. Figs. 5(a) and 5(b) show the behaviour of θq,20, q = 1, . . . ,Q , versus
the frequency of the incident waves for Ψ = 0 rad and Ψ = π/6 rad, respectively. Unlike the case of a single flap, here
θq,20 can be negative also for normal incidence. At small frequencies the exciting torque plays a predominant role in the
flap displacement. This is the reason why the flaps located on the left side are rotated towards x > 0 when Ψ = π/6 rad
(see again Fig. 5(b)). When the frequency ω increases, the effects of the natural out-of-phase modes start to arise and the
dynamics increases in complexity.

We now consider the same six configurations δi, i = 1, . . . , 6, analysed in the previous section and investigate the
variation of the capture factor for different incident wave frequencies. The behaviour of CF versus ω for each configuration
is shown in Fig. 6(a) for normal incidence (Ψ = 0 rad) and Fig. 6(b) for oblique incoming waves (Ψ = π/6 rad).
Constructive and disruptive interactions appear mainly at larger frequencies characterized by short waves. As in the case
analysed before, configurations δ4 and δ6 are the most efficient when ω > 1.5 rad s−1.
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Fig. 6. Behaviour of the capture factor CF of each configuration δi, i = 1, . . . , 6, versus incident wave frequency ω for two different values of the
angle of incidence Ψ . (a) Ψ = 0 rad. (b) Ψ = π/6 rad. The power take-off coefficient is optimized for the in-phase eigenfrequency ω = 0.57 rad
s−1 .

Comparison of Fig. 6(b) with Fig. 4(b), shows that significant energy extraction occurs at large frequencies when the
array is excited by inclined waves with respect to the case of a single flap. Furthermore, differences between flat and
curved arrays are appreciable even in the case of oblique incidence (see again Fig. 6(b)). On the other hand, at small
frequencies the overall array motion returns in-phase, the wavelength starts to increase and the array behaves as a single
large flat body. Indeed, the maximum values of the capture factor almost coincide with the maxima of the single flap
showed in Figs. 4(a) and 4(b).

6. Conclusion

We investigated the first and second order dynamics of an array of flap-type curved WECs in open sea of constant
depth. The theoretical solution has been pursued in terms of angular Mathieu functions and Hankel–Mathieu functions
of the first kind. This method is fast converging and becomes more useful than existing semi-analytical models when
extensions to higher orders are carried out. Moreover, hydrodynamic parameters such us added inertia, radiation damping
and exciting torque can be evaluated explicitly.

Perturbation-harmonic expansion up to the second order allowed us to find the forcing terms that depend on the
array shape function. First, we assumed monochromatic incident waves of constant amplitude and arbitrary direction to be
present at the leading order. Then, we optimized power extraction by fixing the PTO coefficient to be equal to the radiation
damping when synchronous resonance occurs. Numerical accuracy has been checked by deriving the Haskind–Hanaoka
identity in elliptical coordinates.

Next, we obtained the static angular displacement of each flap and the bound wave at the second order. We remark
that the corresponding expressions depend on the leading order terms only and that can be found without passing through
the drift flow solution. We compared the single flap and the array of flaps and found that the static angular displacement
has a strong dependence on the wave direction and the occurrence of out-of-phase motion.

Finally we analysed the effects of the flap shape by solving the first-harmonic problem at the second order. We found
that the corresponding velocity potential cannot exist for flat devices because forcing terms depend on interactions
between the flap profile and the wave field at the leading order. We investigated array configurations that can be of
interest for engineering and design purposes and compared them with a standard flat device of the same size.

Our results show that curved arrays can have beneficial effects at large frequencies when short waves interact with
the array curvature. We found that in the case of normally incident waves the differences between the single flap and the
array are minimal in terms of power extraction. On the contrary, for oblique incident waves the array is more efficient
than the single flap at large frequencies. Indeed, differences in the capture factor behaviour of a flat array and a system
made of curved flaps are appreciable.

We also found that the vertical shape of each element of the array is more important than the horizontal curvature in
maximizing power extraction. In particular, vertical concave configurations analysed in this work showed the maximum
efficiency, while configurations that varies with the horizontal coordinate did not give significant beneficial effects.

The results obtained in this work shows the relevance of higher-order contributions, combined with curved flap
surfaces, for energy extraction purposes. The zeroth-harmonic effects at the second order clearly do not influence energy
extraction but can be of engineering interest in order to optimize the system layout and to predict unwanted behaviours
such as the excessive inclination of the flaps. Moreover, the presented analytical model is numerically fast and can be
implemented in algorithms able to seek the optimal shape function that maximizes energy extraction efficiency for a
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particular configuration, depending on a large number of parameters. For this reason, a parametric analysis is necessary
and will be addressed in future works. This will allow us to obtain a set of optimized configurations that can be of interest
to the wave energy research community and industry.

We assumed that the flap surface function is small when compared to the spatial coordinate scales. Thus the ratio
between the wavelength and the length scale for the flap shape must be small. When this condition stops to be valid,
the array system at the first order cannot be approximated as a flat vertical plane and the theory fails. Solution to this
problem can be potentially found by following semi-analytical approaches based on Green’s function methods and integral
equations, however the analysis at higher orders may result algebraically complex and cumbersome. This aspect is rather
important and should be taken into account to evaluate the nonlinear response of floating flaps in open sea when the
curved surface profile is not small anymore.

Finally, waves in real seas require representations that include broad banded spectra. Since the problem analysed here
is nonlinear and the incident frequency in irregular waves is not fixed, the harmonic expansion applied in this work
cannot be extended to the case of random seas. Indeed, complex interactions arise and a new approach based on the
Fourier formulation is needed (Mei et al., 2005).
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